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Accurate forecasting is important for retail companies that want to minimize the capital 
that is tied in stocks while simultaneously ensuring adequate product availability for their 
customers. Forecasting processes are typically automated; however, time-consuming and 
costly manual corrections to forecasts are often made. Therefore, retailers would benefit 
from clear criteria for selecting products for which forecast accuracy has the greatest 
impact. In addition, quantifying the business impact of forecast accuracy could help 
retailers that are considering investments in advanced forecasting solutions. Furthermore, 
researched and clearly documented evidence about the importance of forecast accuracy 
could aid communication both within retail companies and with other players in the 
supply chain. For these reasons, the goal of this thesis is to identify the situations in which 
forecast accuracy is important and those in which it is not. 

This thesis utilizes real sales figures from a major European retailer and mathematical 
simulations to clarify when forecast accuracy is important. Approximately 7 million 
product locations were included in the thesis, and the data covered sales history for 24 
months. With access to real product-specific sales data, the researcher was able to 
simulate the future using real sales figures from the past. In other words, it was possible to 
go a few years back in time and test the impact a certain forecast would have had. Using 
real sales and product data, it was possible to vary the key forecast and product location 
parameters and then to simulate the business outcome. 

The results of this study suggest clear principles for prioritizing product locations and 
quantify how much additional stock is needed to compensate for forecast errors. The 
results also reveal the impact of different product location parameters on the business 
importance of forecast accuracy. The sales volume of a product location proved to be the 
most important parameter, although relative batch size also had some importance. 
Average time to delivery plays a minor role in some cases, while relative sales standard 
deviation (STD) had only an insignificant effect. 

Based on the results of this thesis, retailers should consider focusing their efforts on 
improving the forecast accuracy of high-selling products and, to some extent, on products 
with small batch sizes. Average time to delivery deserves closer scrutiny only in cases with 
systematic forecast errors. Relative sales STD proved so marginal that retail managers 
could consider ignoring it. 
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Keywords: Forecasting, retail business, statistical methods 

 1 



Tiivistelmä      

Tekijä: Teemu Belt   

Työn nimi: Milloin ennustetarkkuus on tärkeää vähittäiskaupassa? Tuotteen 
avainparametrien vaikutus 

Koulu: Perustieteiden korkeakoulu Laitos: Tuotantotalous 

Professuuri: Teollisuustalous Koodi: TU-22 

Sivuja: 56 Päiväys: 22.2.2017 Työn sijainti: TU 

Tarkat ennusteet ovat tärkeitä vähittäiskaupan yrityksille, jotka haluavat minimoida 
varastoihin sitoutuneen pääoman, mutta samalla pitää riittävästi tuotteita saatavilla 
asiakkailleen. Ennustaminen on tyypillisesti pääosin automatisoitua, mutta ennusteisiin 
tehdään usein käsin kalliita ja aikaa vieviä korjauksia. Vähittäiskauppa hyötyisi selkeistä 
kriteereistä, joilla valita ne tuotteet, joille ennustetarkkuus on kaikkein tärkeintä. 
Ennustarkkuuden vaikutusten kvantifioiminen voisi olla höydyllistä myös silloin, kun 
vähittäiskauppa harkitsee investointeja edistyneempiin ennustemenetelmiin. Lisäksi 
selkeästi esitetty tutkimustieto ennustetarkkuuden merkityksestä edistäisi 
kommunikointia vähittäiskaupan toimitusketjussa. Näistä syistä tämän diplomityön 
tavoitteena on tunnistaa, milloin ennustetarkkuudella on merkitystä ja milloin ei. 

Diplomityön tavoitteen saavuttamiseksi hyödynnettiin yhden merkittävän eurooppalaisen 
vähittäiskauppaketjun myyntitietoja, joiden pohjalta tehtiin simulointeja. Data sisälsi noin 
7 miljoonaa tuotelokaatiota, joiden myyntihistoriaa tarkasteltiin 24:n kuukauden ajalta. 
Toteutuneen myynnin avulla oli mahdollista mennä ajassa taaksepäin ja tutkia, millaisia 
vaikutuksia erilaisilla ennusteilla olisi ollut. Käyttäen todellista myynti- ja tuotedataa oli 
mahdollista simuloida ennuste- ja tuoteparametrien vaikutusta liiketoimintaan. 

Tämän tutkimuksen tulokset tarjoavat selkeän tavan priorisoida tuotelokaatioita ja 
kvantifioida sitä, kuinka paljon lisää varastoa tarvitaan ennustevirheen kompensointiin. 
Tulokset kuvaavat myös, miten eri tuotelokaatioparametrit vaikuttavat ennustevirheen 
liiketoiminnalliseen merkitykseen. Tärkeimmäksi parametriksi osoittautui 
myyntivolyymi ja verrattain tärkeä oli myös suhteellinen eräkoko. Keskimääräisellä 
ajalla seuraavaan toimitukseen oli jossain tilanteissa pieni vaikutus, mutta myynnin 
hajonnalla ei ollut merkittävää vaikutusta. 

Tulosten perusteella vähittäiskaupan kannattaisi keskittää ennustetarkkuuden 
parantamiseen tähtäävät panostukset tuotteisiin, joita myydään paljon, sekä jossain 
määriin tuotteisiin, joilla on pieni eräkoko. Keskimääräinen aika seuraavaan toimitukseen 
on tarkkailemisen arvoinen vain tilanteissa, joissa ennusteessa on systemaattista virhettä. 
Myynnin hajonnan vaikutus on niin pieni, että vähittäiskauppiaat voivat harkita sen 
jättämistä pois tarkastelusta.  

Valvoja: Prof. Kari Tanskanen 
Ohjaaja: TkT Timo Ala-Risku 

Avainsanat: ennustaminen, vähittäiskauppa, tilastolliset menetelmät 
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Key terms 

Product location A specific product in a specific location (store) 

Forecast error Difference between actual sales and forecasted 
sales 

Forecast bias Tendency for forecasts to be too high (positive 
bias) or too low (negative bias) 

Random forecast deviation  Random deviation of forecast from actual sales 

Availability Percentage of days that end with a stock of 
more than zero 

Inventory days of supply1 
Relative inventory2 

How many days of average sales it takes to sell 
all items in inventory; average stock level 
divided by average daily sales 

Supply of order batch size1 
Relative batch size2 

How many days with average sales it takes to 
sell one batch; batch size divided by average 
daily sales  

Batches sold per day Average number of batches sold per day 

Lead time1 
Delivery time2 Time between order and delivery 

Order interval  Number of days between two possible order 
dates 

Average time to delivery 
Expected time until the next possible delivery;  
(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2
) 

Average daily sales Average daily sales 

Relative sales standard 
deviation 

Standard deviation of sales divided by average 
daily sales 

1  Established RELEX term 

2  Alternative term 
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1 Introduction 

1.1 Motivation for the study 

Forecasting is important for retail companies, which, like all firms, want to 

minimize the capital tied in their stocks (Bowersox, Closs, & Cooper, 2002; Levy 

& Weitz, 2011). Additionally, there are retail-specific reasons for demanding 

high forecast accuracy, including relatively short product life-cycles and high 

cost of space in popular store locations (Bowersox et al., 2002; Stadtler & Kilger, 

2004). 

The forecasting process is mostly automated; however, manual corrections to 

the forecasts and improvements to the forecasting models are often necessary 

(Fildes & Goodwin, 2009). Manual corrections are time-consuming and costly, 

and therefore it is crucial to know when improved forecast accuracy is worth the 

effort. Consequently, retailers would benefit from clear criteria for selecting 

products for which forecast accuracy has the greatest impact. 

Quantifying the business impact of forecast accuracy could also help retailers 

that are considering investments in advanced forecasting solutions. 

Furthermore, knowing when forecast accuracy is not important might help 

avoid unnecessary efforts to improve forecast accuracy. 

In addition, having clear, researched evidence about the importance of forecast 

accuracy could aid communication both within retail companies and with other 

players in the supply chain. Clear and illustrative communication is important 

as forecast-related topics are complicated, the amount of data is hard for 

humans to grasp, and there are many people involved. This is often the case in 

the retail industry, in which large companies may have millions of product 

locations and dozens of people working on tasks related to forecasts.  

1.2 Research goal 

For the reasons discussed above, the goal of this thesis is to identify the 

situations in which forecast accuracy is important and those in which it is not. 

To answer that, the interdependences of forecast accuracy, context, and supply 
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chain performance need to be analyzed. Figure 1 illustrates these conceptual 

interdependences.  

 

Figure 1. Conceptual interdependences of forecast accuracy, context, and 

supply chain performance 

The research goal will be discussed in detail in Section 1.4 (Research questions) 

after the gaps in the scientific literature have been discussed. 

1.3 Gaps in previous research 

In the scientific literature, there is a lot of discussion about the effects of 

forecast accuracy. However, some aspects of this topic have received little 

attention. First, the scientific literature does not adequately cover the 

importance of forecast accuracy in the retail sector. Most studies focus on 

manufacturing (Biggs & Campion, 1982; Fildes & Kingsman, 2011; Ritzman & 

King, 1993) or warehouse environments (Sanders & Graman, 2009), whereas 

this thesis focuses on the retail environment. Second, scientific studies often use 

randomly generated demand data (Biggs & Campion, 1982; Ritzman & King, 

1993; Xie, Lee, & Zhao, 2004). It seems that scientific literature seldom uses 

real business data, such as sales history. Third, the factors affecting the 

importance of forecast accuracy have not been adequately covered. Specifically, 

the scientific literature seems to lack systematic and quantified descriptions of 

Forecast accuracy 

Context 

Supply chain 
performance 

 8 



how different parameters affect the importance of forecast accuracy. Section 1.4 

will describe how this thesis aims to fill these gaps in previous research. 

1.4 Research questions 

As illustrated earlier in Figure 1, understanding the interdependences of 

forecast accuracy, context, and supply chain performance is important in this 

study. Figure 2 illustrates these interdependences when applied to the context of 

the study. Forecast accuracy is represented by measurable metrics: forecast bias 

and random forecast deviation. Context is represented by product location 

parameters: batch size, lead time, order interval, average daily sales and 

relative sales standard deviation (STD). Supply chain performance is 

represented by key performance indicators (KPIs): availability and inventory 

days of supply. All the aspects highlighted in italics above can be expressed 

numerically, which supports the purpose of this study.  

 

Figure 2. The interdependences of forecast accuracy, context, and supply 

chain performance applied to this thesis 

The interdependences of forecast accuracy, context, and supply chain 

performance can be expressed using the following three research questions: 

RQ1. What is the relationship between availability and stock? 

Accuracy metrics 
Forecast bias 

Forecast variability 

Product location 
parameters 

Relative batch size, Lead 
time, Order interval, Av. daily 
sales, Relative sales STD 

KPIs 
Availability 

Stock 
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In order to measure supply chain performance, relevant KPIs must be defined. 

In the retail context, these include 1) product availability at point of sales and 2) 

required stock. As described by Johnston, Taylor, & Oliveria (1988), these two 

KPIs are interdependent, and in order to accurately estimate the overall supply 

chain performance, both of them need to be taken into account.  

RQ2. How does forecast error affect supply chain performance? 

Intuitively, it would make sense for high forecast error to worsen supply chain 

performance, but this might not always be the case. Additionally, the sensitivity 

to forecast error should be quantified into a variable in order to be used in 

further analyses. This master’s thesis follows Hausman (2004), who suggests 

that overall supply chain performance could be assessed by analyzing product 

availability, required stock, and the interdependence between these two factors. 

RQ3. How do different product location parameters affect sensitivity to 

forecast error? 

By studying how sensitivity to forecast error is affected by product location 

parameters, such as lead time and batch size, it is possible to identify when 

forecast accuracy is important. 

1.5 Research environment 

The research background of this master’s thesis includes real sales figures from 

a major European retailer and the supply chain management tools of RELEX 

Solutions. Approximately 7 million product locations were included, and the 

data covers sales history for two years. In order to keep the scope of this 

master’s thesis reasonable, only data from a single case were included.  

All the main product groups of the chosen retailer were included in the data to 

be analyzed. However, only products with relatively long shelf lives were 

included, and quickly spoiling food products were excluded as modeling the 

spoilage of products differs significantly from modeling other aspects of supply 

chain optimization. 

Supply chain management software was used to run mathematical simulations 

to clarify the situations in which forecast accuracy is important. The software 
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includes features for demand forecasting, automatic replenishment, and 

inventory management. This master’s thesis was conducted at and for RELEX 

Solutions, which provided the retailer sales data.  

1.6 Methodology of the study 

1.6.1 A quantitative approach 

The purpose of this thesis is to clarify the situations in which forecast accuracy 

is important and define clear criteria for selecting products for which forecast 

accuracy will have the greatest business impact. In order to prioritize products 

for which forecasts need to be manually corrected, their priority should be 

quantified. Similarly, in order to properly consider investments in new 

forecasting solutions, their benefit should be quantified. Communication is also 

easier when backed by clear numerical results. These arguments support the 

choice to use a quantitative approach for this thesis. In addition, there was a 

possibility to use real sales figures in a quantitative form. 

1.6.2 Real sales data 

The word “forecast” refers to the future; however, this study takes advantage of 

the possibility of simulating the future using real sales figures from the past. 

Using actual sales history, it was possible to study how different forecasts affect 

supply chain performance. In other words, it was possible to go a few years back 

in time and test the impact that a certain forecast would have had. In this thesis, 

the two key forecast parameters, bias and variability, are varied in order to 

identify how they affect business outcomes. 

1.6.3 Product location parameters 

The above-mentioned forecast parameters, bias and variability, can be 

influenced by the forecaster (e.g., RELEX). Conversely, product location 

parameters, such as batch size, lead time, and time between orders, are typically 

determined by retailers or their supply chains, not by the forecaster. In this 

master’s thesis, the forecast parameters that can actually be influenced by the 

forecaster are varied. In doing so, this master’s thesis aims to study the impact 

of real-life variations in product parameters using the available business data. 
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2 Literature review 

2.1 Retail business 

2.1.1 Key functions of retail 

Retail can be defined as selling products to end-users (i.e., consumers) (Levy & 

Weitz, 2011). However, it should be noted that retailers can also sell to 

businesses (Ayers & Odegaard, 2007). Retailers’ role in a supply chain is to link 

manufacturers to consumers (Levy & Weitz, 2011). 

Retailers can create value for their customers in several ways. Levy & Weitz 

(2011) divide these value-creating activities into four categories. First, retailers 

provide a variety of products in one store so that consumers can satisfy their 

purchasing needs without visiting multiple stores. According to Ayers & 

Odegaard (2007), this is the most important function of retailers. Second, 

retailers buy products in large quantities at low prices from manufacturers, or 

wholesalers, and sell them to consumers (Levy & Weitz, 2011). This 

arrangement serves the needs of both the consumers, who want to buy products 

in small volumes, and manufacturers, who specialize in producing large 

volumes of products at low costs. Third, retailers maintain an easily accessible 

inventory for consumers and avoid storing large quantities of products 

themselves. Fourth, retailers provide services in addition to products, such as 

displaying products for customers to see and test, providing options to buy 

products on credit, offering warranties, and gift wrapping.  

2.1.2 Availability and inventory in retail business 

Creating value for customers usually requires having products in stock. The 

ability to have inventory when it is needed by a customer is called availability 

(Bowersox et al., 2002). In the retail context, this refers to the availability of 

products to end users at the point of sale. Agrawal & Smith (2015) argue that not 

having a product on a shelf often causes customers to leave the store.  

It is, obviously, possible to increase availability by increasing inventory (Fildes 

& Kingsman, 2005). However, this is not always the best option, as maintaining 

a limited stock is important for a retailer’s financial success (Levy & Weitz, 

2011). According to Bowersox, Closs, & Cooper (2002), good store locations are 
 12 



costly, and therefore it is logical to minimize the area required for the store and 

the number of products in stock. 

Value-creating activities are related to inventory in various ways (Levy & Weitz, 

2011). In order to offer products to customers at any time, products must be 

available in the store’s inventory. Offering a large variety of products increases 

the total number of products in stock. Even if a small number of each product is 

kept in stock, the total stock can be significant when there are tens of thousands 

of different products. Additionally, buying in large batches causes temporary 

peaks in stock levels. Furthermore, providing services, such as the option to see 

and test products, may require more products to be in stock.  

2.2 Key performance indicators 

There are a few key aspects of supply chain operations that determine the 

performance of the chain (Hausman, 2004), including product availability, 

inventory level, and costs related to personnel, logistics, and procurement. 

There are various metrics for measuring these aspects. These metrics are not 

always independent from each other; there are often tradeoffs between two or 

more metrics (Fildes & Kingsman, 2005). For example, it is possible to increase 

availability by increasing inventory level. These tradeoffs can be modeled 

mathematically as response curves (Johnson, Tellis, & Ip, 2013). The 

relationship between stock level and availability is especially important 

(Bowersox et al., 2002). Due to the high cost of maintaining inventory, it is 

important for retailers to minimize their stock levels. However, they also need to 

keep their customers happy by providing a sufficient service level.  

There are several ways to measure availability, but two commonly used ones are 

cycle service level and fill rate (Syntetos, Nikolopoulos, & Boylan, 2010). Cycle 

service level can be defined as the percentage of replenishment cycles in which 

there are no stock-outs, that is, all demand can be satisfied directly from the 

stock. Fill rate can be defined as the percentage of total demand that can be 

delivered from the stock.  

Calculating cycle service level or fill rate can be challenging in practice. In a case 

in which a product’s stock is zero, it may be impossible for the retailer to know 
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whether there is demand for the products. For this reason, RELEX measures 

availability as the percentage of days that end with more than zero stock. This 

can be seen as an approximation of cycle service level, and it was the way in 

which availability was measured in this thesis. 

2.3 Measuring forecast accuracy 

According to Krajewski, Ritzman, & Mallhotra (2013), forecasts are predictions 

of the future that are made for planning purposes. There are different types of 

forecasts, such as demand, sales, capacity, and backflow forecasts (Lu, 2014). In 

retail, demand forecasts are used to calculate optimal orders (Ayers & Odegaard, 

2007). This is done to minimize inventory and ordering costs while avoiding 

stock-outs. 

Forecasts can be based on mathematical models, managerial judgment, or a 

combination of both (Krajewski et al., 2013). Forecasters try to select the most 

accurate method for each situation. However, even with the best methods, 

forecast error can still occur (Biggs & Campion, 1982).  

Forecast error is usually defined as the difference between the actual and 

forecasted demand (Krajewski et al., 2013). This can be expressed as a formula 

(Chase, 2013):  

𝑒𝑒𝑡𝑡 = 𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡 (1) 

where  et = forecast error for period t 
 at = demand for period t 
 ft = forecasted demand for period t 

2.3.1 Forecast error metrics 

Formula (1) only defines error for a single period. To summarize forecast 

accuracy over several periods, different metrics must be used (R. J. Hyndman & 

Koehler, 2006). One simple approach is to use the mean absolute deviation 

(MAD) (T. Lee, Cooper, & Adam, 1993): 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�|𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡|
𝑛𝑛

𝑡𝑡=1

 (2) 
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However, there is no one metric that is suitable for every situation; choosing an 

applicable forecast error metric should depend on the nature of the demand 

data. When choosing a metric, it is crucial to consider whether it is scale-

independent (R. Hyndman, 2014). For instance, a change expressed in absolute 

units is scale-dependent, while a relative change is scale-independent. A scale-

independent metric yields the same results regardless of scale (for example, 

using thousands of units instead of units sold) (Leitch & Tanner, 1991). Scale-

independent metrics should be used when comparing different data series, such 

as the demand forecasts of different product locations, as is the case in this 

thesis (Krajewski et al., 2013). For this reason, scale-independent metrics were 

used here.  

One scale-independent metric is mean absolute percentage error (MAPE), 

defined as follows (Ott, Mensendiek, & Gmeinwieser, 2013): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
��

𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡
𝑎𝑎𝑡𝑡

�
𝑛𝑛

𝑡𝑡=1

 (3) 

There are some problems with MAPE that make it unsuitable for the purposes 

of this thesis (Ott et al., 2013). For instance, if a product does not sell during a 

given period, a division by zero occurs, creating undefined or infinite values. 

Similarly, low sales can lead to very high values. When comparing individual 

product locations, it is common to observe zero sales in a given period, and 

therefore a different metric should be chosen.  

Weighted absolute percentage error (WAPE) largely solves the above-

mentioned problem of undefined values and provides consistent measurements 

across different product locations (Hoover, 2009). Instead of dividing the error 

by the sales for each period and summing them up, it sums all the errors 

together and divides it by the sum of sales, thus avoiding the division by zero. 

The calculation logic is shown in the following formula: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =  
∑ |𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡|𝑛𝑛
𝑡𝑡=1
∑ 𝑎𝑎𝑡𝑡𝑛𝑛
𝑡𝑡=1

(4) 

WAPE is undefined only when the total sales are zero, a very rare case that is 

unimportant. Additionally, WAPE is advantageous because it is relatively easy 

to understand (Hoover, 2009); the scientific literature also discusses other 
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metrics that are more complicated to interpret (Cleophas, Frank, & Kliewer, 

2009; R. Hyndman, 2014). 

2.3.2 Forecast bias and random deviation metrics 

WAPE measures total forecast error. However, as pointed out by Zhao, Xie, & 

Wei (2002) and Sanders & Graman (2009), forecast bias and random deviation 

may have different effects on supply chain performance. For this reason, it 

would be beneficial to measure these factors separately. Forecast bias occurs 

when forecasts are systematically too high or too low, whereas random 

deviation occurs when the forecasted value differs from the mean forecast 

(Biggs & Campion, 1982).  

Forecast bias can be measured using the cumulative sum of forecast errors 

(CFE), sometimes defined as follows (Krajewski et al., 2013): 

𝐶𝐶𝐶𝐶𝐶𝐶 =  �(𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑡𝑡=1

 (5) 

This metric has the problem of being scale-dependent, but it can be made scale-

independent by dividing it by total sales: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) =  
∑ (𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡)𝑛𝑛
𝑡𝑡=1  
∑ 𝑎𝑎𝑡𝑡𝑛𝑛
𝑡𝑡=1

(6) 

According to Ritzman & King (1993), random deviation in forecasts can be 

measured using the standard deviation of the forecast error, as presented in 

Formula (7): 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝐹𝐹𝐹𝐹𝐹𝐹) =  �
1

𝑛𝑛 − 1
�(𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡)2
𝑛𝑛

𝑡𝑡=1

 (7) 

This metric is also scale-dependent, but it can easily be made scale-independent 

by dividing it by average sales: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) =  
� 1
𝑛𝑛−1

∑ (𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡)2𝑛𝑛
𝑡𝑡=1

1
𝑛𝑛
∑ 𝑎𝑎𝑡𝑡𝑛𝑛
𝑡𝑡=1

 (8) 
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2.3.3 Summary of forecast error metrics 

The forecast error metrics used in this thesis are summarized in Table 1. WAPE 

was used as in previous literature, whereas RCFE and RFSD, highlighted with a 

grey background, had to be modified to fit the purposes of this thesis.  

Table 1. Summary of forecast error metrics 

Forecast 

error type 

Metric 

name 

Alternative 

names 

Formula Source 

Total error WAPE  MAD/mean 

ratio, MAPE 

∑ |𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡|𝑛𝑛
𝑡𝑡=1
∑ 𝑎𝑎𝑡𝑡𝑛𝑛
𝑡𝑡=1

 
(R. Hyndman, 

2014) 

Bias 

 

RCFE  ∑ (𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡)𝑛𝑛
𝑡𝑡=1  
∑ 𝑎𝑎𝑡𝑡𝑛𝑛
𝑡𝑡=1

 
Modified from 

(Krajewski et al., 

2013) 

Random 

deviation 

RFSD  
� 1
𝑛𝑛−1

∑ (𝑎𝑎𝑡𝑡 − 𝑓𝑓𝑡𝑡)2𝑛𝑛
𝑡𝑡=1

1
𝑛𝑛
∑ 𝑎𝑎𝑡𝑡𝑛𝑛
𝑡𝑡=1

 

Modified from 

(Ritzman & King, 

1993) 

 

2.3.4 Importance of measuring forecast accuracy 

Measuring forecast accuracy is important for several reasons (Kerkkänen, 

Korpela, & Huiskonen, 2009).  First, forecast error measurements can be used 

to correct systematic forecast errors. For example, a forecast that is 

systematically too low can be adjusted to be higher. Second, forecast error 

metrics can be used to assess the impact of manual corrections made to a 

forecast (Chase, 2013). Third, different statistical models use forecast error 

measures to determine which forecast fits the historical demand or best predicts 

future sales (Chase, 2013). Fourth, even in cases in which forecasts cannot be 

improved, forecast error measurements can be used to plan how to cope with 

errors (e.g., by setting appropriate safety stocks) (Kerkkänen et al., 2009). 

The forecast accuracy metrics discussed above do not measure the economic 

impact of forecast errors (Leitch & Tanner, 1991; Ott et al., 2013). The 
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connection between forecast accuracy and economic impact is discussed in the 

following sections. 

2.4 Effects of forecast accuracy 

2.4.1 Is accuracy worth it? 

Companies want to have the most accurate forecasts possible. However, more 

accurate forecasts tend to cost more both during implementation and use (Biggs 

& Campion, 1982). Therefore, obtaining the best forecast accuracy might not 

always be feasible (Fildes & Kingsman, 2011). In some cases, it might be more 

effective to improve supply chain performance by means other than improving 

forecast accuracy (Biggs & Campion, 1982). For example, it might be better to 

reduce lot sizes or increase flexibility. For these reasons, some kind of cost–

benefit analysis is needed.  

An ideal approach for choosing a forecasting system is to minimize the total 

cost. This includes both the cost of creating the forecast and the cost of forecast 

errors. Unfortunately, this is not always possible in reality due to the difficulty 

of estimating the cost of forecast errors. However, even roughly estimating these 

costs might help prioritize improvement efforts (Kerkkänen et al., 2009). 

2.4.2 Effects of forecast accuracy 

According to Wemmerlöv (1989), an inventory system operating with imperfect 

forecasts is fundamentally different from one with perfect forecasts. The most 

obvious difference is the former system’s inability to satisfy all demand. 

Forecast errors also have other impacts (Kerkkänen et al., 2009), most notably 

on stock, availability, and total costs (Biggs & Campion, 1982). 

The literature discusses different efforts to quantify the effect of forecast errors 

on total costs or other performance metrics. The reported results have been 

mixed. Fildes & Kingsman (2011) suggest exponentially increasing costs to 

maintain the same service level when forecast error increases. However, 

Sanders & Graman (2009) claim that costs increase linearly with an increase in 

forecast error.  
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As suggested by Barman, Tersine, & Burch (1990); Kerkkänen, Korpela, & 

Huiskonen (2009); and Sanders & Graman (2009), forecast bias and random 

deviation might have different effects on supply chain performance. 

According to the literature, there may be a need to model positive and negative 

biases separately as they might behave differently (Barman et al., 1990). Positive 

forecast bias can cause excess stocks, excess manpower, and a need for discount 

prices (Biggs & Campion, 1982; Ott et al., 2013), while negative bias can lead to 

lost sales and a shortage of manpower.  

Interestingly, deliberate biasing of forecasts can sometimes have a positive 

effect on system performance (T. S. Lee & Shih, 1989). However, as pointed out 

by Sanders & Graman (2009), it is not a practical option as it has the obvious 

risk of biasing the forecast too much and thus damaging performance. In 

addition, Sanders & Graman did not find the improvements to be statistically 

significant in many cases. 

2.5 When is forecast accuracy important? 

2.5.1 Motivation to study situations in which forecast accuracy is 

important 

Forecast accuracy has an impact on supply chain performance, but the impact is 

not the same in all situations (Ritzman & King, 1993). As pointed out by Hoover 

(2009), some products are more important than others when it comes to 

forecast accuracy.  

Hoover (2009) suggests assigning different weights to different products to 

reflect their differing economic impacts. This kind of prioritization, in 

combination with forecast accuracy metrics, might allow a forecaster to identify 

the most important products. Ott et al. (2013) reports that a model 

implemented at a large German retailer demonstrated that a scoring model is 

easy to implement, flexible, and can provide important insights for improving 

demand planning processes. 

Prioritizing products based on the impact forecast errors have on them is 

especially interesting from the viewpoint of potential manual adjustments. The 

 19 



number of products is often so high that demand forecasting has to be 

automated using statistical methods. However, these automated forecasts can 

be improved by manual adjustments made by experts (Syntetos et al., 2010). A 

human expert can correct faults in the applied statistical model or consider 

circumstances that were not included in the model (Fildes & Goodwin, 2009). 

This process of automatically creating an initial forecast and then manually 

adjusting it is common in companies. These adjustments can lead to substantial 

savings regarding inventories (Syntetos et al., 2010). However, they also create 

substantial costs and slow down the creation of forecasts (Fildes & Goodwin, 

2009). Therefore, there is a need to analyze the importance of forecast accuracy 

at the level of individual products.  

The importance of forecast accuracy for a product is affected by factors such as 

sales volume (Kerkkänen et al., 2009) and lot size (Ritzman & King, 1993). 

Analyzing these factors might help companies calculate products’ priorities and 

then focus their forecasting efforts on the products that matter the most. 

2.5.2 Possible factors affecting the importance of forecast accuracy 

The scientific literature identifies several product location parameters that affect 

the importance of forecast accuracy.  

According to Ritzman & King (1993), batch size could act as a buffer, similar to 

safety stock, and thus affect the importance of forecast accuracy. Also, Fildes & 

Kingsman (2011) suggest that reducing lot sizes would lead to increased 

sensitivity to forecast errors. 

Ott et al. (2013) points out that lead time might also have an effect as it 

determines how fast a shortage of a product can be fixed. For example, if the 

forecast for a product with a long lead time was too low, stock-outs could occur, 

but if the lead time is very short, more products could be purchased quickly and 

the stock-out would be brief. 

Hoover (2009) argues that sales volume could be a significant factor affecting 

the importance of forecast accuracy (see also Ott et al. 2013). Further, 

Kerkkänen et al. (2009) argue that it is not feasible to spend much effort on 

improving forecasts for low-volume products. If the volume of a product is low, 
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lot size is considered more important than forecast accuracy. Stock-out of a 

high-selling product results in many customers experiencing bad service. 

Uneven demand might also affect the importance of forecast accuracy (Ritzman 

& King, 1993). Fildes & Goodwin (2009) suggest measuring demand 

unevenness using a coefficient of variation (i.e., the standard deviation of sales 

divided by average sales). 

3 Research method 

3.1 Choosing an appropriate method 

There were two basic quantitative options to choose from: simulations and 

analytical solutions. As pointed out by Fildes & Kingsman (2011), analytical 

solutions tend to require simplifying the problem in order to make the 

mathematics manageable. According to Lu (2014), these simplifications might 

result in impractical solutions, even though some insights into the supply chain 

might be obtained.  

In simulations, demand can either be randomly generated or based on real 

sales. However, randomly generated demand can cause some problems 

regarding the reliability of the results. For example, in the scientific literature, it 

is common to assume normally distributed demand, but this can lead to 

negative demand, a situation that should not occur in reality (Strijbosch & 

Moors, 2005).  

It is often not possible to know the real demand for a product (Cleophas et al., 

2009). A retailer knows the real sales, but, for example, in the case of a stock-

out, sales differ from demand. However, sales data can serve as a sufficient 

approximation of demand (Syntetos et al., 2010). 

This thesis used the simulation approach and real sales data to approximate 

demand. Simulation results were analyzed using the statistical methods 

described in the following subsection. 

 21 



3.2 Statistical methods 

Regression is a statistical method that describes how a variable depends on 

another variable or variables (Freedman, Pisani, & Purves, 2007). For example, 

stock level might be used to explain availability. In this example, stock level 

would be an independent variable, and availability would be the dependent 

variable. If there is more than one independent variable, the method is called 

“multiple regression analysis” (Mendenhall & Sincich, 2011).  

Ordinary least squares (OLS) is a commonly used method of regression 

(Sheather, 2009). It assumes a linear relationship between the dependent and 

independent variables, as described in Formula (9): 

𝑦𝑦 = 𝑎𝑎 + 𝑘𝑘𝑘𝑘 + 𝑒𝑒 (9) 

where  y = dependent variable 
 a = constant 
 k = slope 
 x = independent variable 
 e = error term 
 

A regression model seldom explains the dependent variable exactly, and 

therefore an error term, e, is included in the formula above. OLS aims to 

minimize the sum of the squared errors.   

In multilevel regression modeling, regression coefficients are estimated using 

another regression model. Multilevel models are well suited for situations in 

which the data are organized in groups. A common solution is to use a two-level 

regression model (Gelman & Hill, 2007). In the first level, regression 

coefficients are estimated for each group. Then, in the second level, the 

estimated coefficients are explained using a group-level variable.  

3.3 Research process 

This thesis investigated the importance of forecast accuracy in retail companies 

by simulating forecasts using real customer data. Numerous forecasts with 

deliberate variations were created and tested to determine how different 

forecast errors affect business outcomes. Figure 3 illustrates the research 
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process utilized in this master’s thesis. Each of the phases of the research 

process will be discussed in the following subsections. The conclusions phase 

will be discussed in Section 6 (Discussion and conclusions). 

 

Figure 3. Research process 

The data used in this thesis consists of real sales history and product 

information from a European retail company, an important customer of 

RELEX. Different forecasts were created by introducing intentional errors into 

the sales data. During the simulation phase, orders were calculated in the same 

way as they would be for real retail replenishment, using the initial stock level 

and different deliberately modified forecasts. Real sales history was used as 

demand to calculate changes in inventory. During the analysis phase, the 

impacts of different forecast errors and product location parameters on average 

stock level and availability were analyzed. Finally, conclusions were made 

regarding when forecast accuracy is important.  

3.4 Data collection 

The data used in this thesis consists of real sales history and product 

information from the case company. This customer company has approximately 

7 million product locations, and the data included sales from 1 May 2014 to 30 

April 2016. Real sales data were used to estimate actual demand and generate 

different forecasts to be used in simulations. 

All the main product groups of the chosen customer were included in the data to 

be analyzed. These product groups included bakery products, baking supplies, 

beverages, cleaning supplies, cosmetics and hygiene products, dairy, frozen 

food, fruits and vegetables, meat and fish, ready-made meals, sweets, and 

snacks. Only products with relatively long shelf lives were included. 

Data 
collection

Creating 
forecasts Simulation Analysis Conclusions
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3.5 Creating forecasts for simulations 

With the real demand known, differing “forecasts” were created for situations 

that occurred a few years earlier by introducing deliberate deviations from the 

actual demand. Using this approach, it was possible to study the effects of 

perfect forecasts on supply chain performance implications by using the realized 

demand as the forecast. Imperfect forecasts could be studied by introducing 

intentional errors into the perfect forecast. This approach had some advantages. 

First, it allowed the creation of perfect forecasts, something that is impossible in 

real business. Second, forecast biases and random deviations could be created 

separately from each other. Third, forecast errors could be created precisely in 

the desired quantities. 

This master’s thesis analyzed forecasts with numerous biases, random 

deviations, and combinations of both. In total, 11 levels of forecast bias and 7 

levels of random forecast deviation were used. This resulted in a total of 77 

different forecasts, as all combinations of biases and random deviations were 

tested. 

3.6 Simulations 

This thesis was based on simulations run using RELEX software. Using initial 

stock, demand, and forecast values as inputs, the software was used to calculate 

the key operational parameters, such as orders, deliveries, and stock levels. The 

resulting availability levels, stock levels, and other results were exported for 

further analysis, which was carried out using the statistical software R. 

Numerous simulations were run using different levels of safety stock and 

forecast error. In total, 77 forecast error levels and 21 safety stock levels were 

analyzed, resulting in 1,617 simulations. The simulations took over 40 hours of 

server time to run, and related analyses using R took over 10 hours. The number 

of simulations proved adequate for the purposes of this study, and the required 

server time did not significantly harm ordinary business operations.  

All product parameters that are determined by the case customer’s business 

environment and cannot be changed by RELEX, including lead time, batch size, 
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and order interval, were kept constant. Also, the demand data remained the 

same in all simulations. Even though these product location parameters were 

kept constant in all simulations, the business data used as input included 

variations in these parameter values. The impact of these variations was 

analyzed as a separate step. 

The statistical mathematics used for analysis makes no distinction between 

parameters that RELEX can control and those that are determined by external 

factors. However, the interpretation of this thesis is easier if the aspects that 

RELEX can control (i.e., forecast and safety stock) are separated from lead time, 

batch size, order interval, and customer demand. Therefore, these two aspects 

are separated in this thesis when the findings are discussed. 

3.7 Analysis 

The purpose of the analysis phase was to utilize the results of the simulation 

phase and then determine how different product location parameters affect 

sensitivity to forecast error. This analysis section describes how stock levels and 

availability depend on different safety stocks, forecast errors, and product 

location parameters.  

The analysis phase included the following four steps: 

1. Analysis of stock and availability 

o Estimation of the stock level that is needed to reach a chosen 

availability level (95% or 99%) 

2. Regression level 1  

o Calculation of the sensitivity of each product location to forecast 

error  

3. Regression level 2 

o Analysis of how different product location parameters affect 

sensitivity to forecast error 

4. Diagnosis 

Figure 4 illustrates how data were transferred between the three first steps in 

the list above. The purpose of performing an analysis of stock and availability 

was to simplify supply chain performance into a single variable, added stock, to 
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make later analyses easier. Added stock refers to how much more stock is 

required to compensate for forecast error. Regression level 1 aimed to simplify 

sensitivity to forecast errors into two variables: sensitivity to bias and 

sensitivity to random deviation. Regression level 2 created a model to describe 

how product parameters affect sensitivity to forecast biases and random 

deviations. Additionally, the created model was diagnosed to determine 

whether it fulfilled the assumptions of OLS, the chosen regression method. The 

regression method will be discussed in Section 3.7.3 (Regression level 2). 

Relative batch size
Av. time to delivery
Av. daily sales
Relative sales STD 
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simulations

Regression

Response 
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RegressionForecast error 
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Historic sales
Initial stock
Different forecasts

Analysis of 
stock and 
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Regression 
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Regression 
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(due to forecast error)

Availability
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Sensitivity to forecast 
error

Analysis of stock and 
availability

 

 26 



Figure 4. Analysis process 

3.7.1 Analysis of stock and availability 

The simulation results determine the interdependence between availability and 

stock. This interdependence varies to some extent between product locations, 

but the general structure is similar. The results of this thesis indicate that an 

increase in availability leads to an increase in stock. Figure 5 illustrates this 

interdependence. The increase in stock is higher when the availability is already 

high, but it is impossible to find a simple function, such as a logarithmic or 

quadratic function, to describe this relationship. These findings are similar to 

those obtained by Johnston, Taylor, & Oliveria (1988).  

 

Figure 5. Example of the interdependence between availability and stock 

One of the key purposes of the simulations was to calculate how deliberate 

errors in a perfect forecast affect the interdependence between availability and 

stock (i.e., the shape of the curve above) (Figure 5). Figure 6 illustrates the 

interdependence curves for a perfect forecast and for a forecast with a deliberate 
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error. This approach to analyzing supply chain performance is in line with 

Hausman (2004). 

In order to numerically analyze the phenomenon, the difference between the 

curves must be quantified. Figure 6 illustrates how much stock must be added in 

order to maintain a 95% availability level when a deliberate forecast error is 

introduced.  

Different availability levels should produce similar results, but for the sake of 

completeness, two commonly used availability levels, 95% and 99%, were used 

in this study and the results were compared. This approach is similar to that 

used by Fildes & Kingsman (2011). 

As availability levels are outcomes of simulations rather than inputs, it is 

impossible to obtain simulation results for exactly 95% or 99% availability. The 

required added stock for these availabilities can be interpolated by using 

simulation results from closely located data points. Interpolation based on the 

closest data points was chosen instead of modeling the whole curve, as the curve 

is difficult and computationally expensive to model (Johnston et al., 1988).  
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Figure 6. Effect of forecast error on the response curve 

3.7.2 Regression level 1 

As discussed before, the purpose of the first level of the regression was to 

simplify sensitivity to forecast errors into two variables: sensitivity to bias and 

sensitivity to random deviation. 

Two linear regression models were created for each product location: one for 

bias and another for random deviation. The independent variable in the models 

was forecast bias or random deviation, and the dependent variable was added 

stock. Figure 7 and Figure 8 illustrate the interdependence between added stock 

and bias/random deviation.  
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Figure 7. Effect of forecast bias on added stock 

 

Figure 8. Effect of random deviation of forecasts on added stock 

In mathematical terms, the relationships between added stock and bias/random 

deviation are defined as follows:  
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𝑦𝑦 = 𝑎𝑎 + �𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑒𝑒 (10) 

where  y = added stock 
 a = constant 
 x = bias or random deviation 
 k = regression coefficient 
 e = error term 
 
The two created models produced coefficients for each product location. The 

obtained coefficients can be interpreted as the product location’s sensitivity to 

forecast bias and random deviation.  

3.7.3 Regression level 2 

In the first level of the regression, sensitivity to forecast error was calculated 

separately for each product location. The second level of the regression uses 

product location parameters to explain why different product locations have 

different sensitivities. 

As was the case for the first level, there are two linear regression models for the 

second level: one for bias and one for random deviation. The product location’s 

sensitivity to forecast error was the dependent variable, and product 

parameters, such as batch size, were the independent variables.  

In mathematical terms, the relationships between sensitivity to forecast 

bias/random deviation and product location parameters are defined as follows:  

𝑦𝑦 = 𝑎𝑎 + �𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑒𝑒 (11) 

where  y = sensitivity to bias/random deviation 
 a = constant 
 xi = parameter value 
 ki = regression coefficient 
 e = error term 
 
In Formula (11), there are five values for k and x, one for each product location 

parameter. In other words, i can refer to relative batch size, lead time, order 

interval, average daily sales, or relative sales STD. 
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4 Model development 

The purpose of this thesis was to create a statistical model to explain product 

location’s sensitivity to forecast error. When created, a model should describe 

reality as closely as possible. OLS is a statistical method that is commonly used 

to explain observations about a phenomenon. In order to use OLS, some key 

requirements should be met, including multicollinearity, linearity, and 

normality (Mendenhall & Sincich, 2011). There should be no multicollinearity 

(i.e., independent variables should not correlate with each other). The 

relationships between independent and dependent variables should be linear. 

The residuals (i.e., deviations between the model and observations) should be 

normally distributed. These three key criteria are discussed in the following 

sections.  

4.1 Multicollinearity 

In order to obtain a good model, the independent variables should be linearly 

independent (i.e., the multicollinearity of different variables should be 

minimized). Table 2 illustrates the correlations between different variables, 

including both the dependent variables (i.e., sensitivity to random deviation and 

sensitivity to bias) as well as the independent variables (i.e., relative batch size, 

lead time, order interval, average daily sales, and relative sales STD). 

Correlations between the independent variables can be problematic and may 

violate the assumptions of OLS, while correlations between dependent variables 

are allowed and even expected. For clarity, the two dependent variables are 

highlighted in grey below. 
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Table 2. Correlation matrix 

Variable 1) 2) 3) 4) 5) 6) 7) 

1) Sensitivity to random deviation 1 

      2) Sensitivity to bias 0.81 1 

     3) Relative batch size -0.36 -0.34 1 

    4) Lead time 0.12 0.33 -0.3 1 

   5) Order interval 0.11 0.26 -0.2 0.87 1 

  6) Av. daily sales 0.81 0.64 -0.35 0.07 0.11 1 

 7) Relative sales STD -0.47 -0.46 0.75 -0.33 -0.27 -0.48 1 

 

Unfortunately, there are some rather high correlations. The highest correlation 

appears to be between lead time and order interval (highlighted in red), which is 

a potential problem. Also, the correlation between sensitivity to bias and 

sensitivity to random deviation and that between average daily sales and 

sensitivity to random deviation appear to be high (highlighted in green). 

However, the latter two are not problematic as sensitivity to random deviation is 

a dependent variable. 

In order to assess the severity of multicollinearity, an additional indicator, 

variance inflation factor (VIF), was applied. The left column of Table 3 presents 

the VIFs for all the independent variables. The VIFs for lead time and order 

interval appear to be relatively high (highlighted in red). It was realized that the 

situation could be improved by combining lead time and order interval into one 

variable, average time to delivery, using Formula (3): 

𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +
 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2
(3) 

Average time to delivery refers to the mean time until the next possible delivery. 

The right column of Table 3 presents the VIFs after this transformation. As the 

right column shows, the situation has significantly improved (highlighted in 

green). 
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Table 3. VIFs 

With all the values separate   With two values combined 

Variable VIF   Variable VIF 

Relative batch size 2.375215 

 

Relative batch size 2.316457 

Lead time 4.440452 

 

Av. time to delivery 1.129104 

Order interval 4.193709 

 

Av. daily sales 1.318292 

Av. daily sales 1.344835 

 

Relative sales STD 2.750745 

Relative sales STD 2.750897       

 

4.2 Linearity 

In order to satisfy the assumptions of OLS, the relationships between 

independent and dependent variables should be linear. As Figure 9 shows, the 

relationship between sensitivity and relative batch size was not linear. This 

problem could be corrected by applying a suitable transformation to the 

independent variable: in this case, relative batch size. A potential solution is to 

use the mathematical inverse of relative batch size—1/(relative batch size)—

which can be interpreted as the number of batches sold per day. Figure 10 

shows that the linearity requirement could be better achieved using batches per 

day instead of relative batch size, and therefore, the former proved to be a better 

alternative to the independent variable in question.  
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Figure 9. Relationship between sensitivity to random forecast deviation and 

relative batch size 

 

Figure 10.  Relationship between sensitivity to random forecast deviation and 

batches per day 
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4.3 Forecast error 

Using the parameters defined in the previous sections, it was possible to build a 

linear model with sensitivity to forecast error as an independent variable and 

relative batch size, average time to delivery, average daily sales and relative 

sales STD as dependent variables. The key characteristics of this linear model 

are presented in Table 4, which reveals some interesting observations. As the 

significance column shows, three of the variables proved to be statistically 

significant (highlighted in green). First, the factor batches sold per day seems to 

have a positive effect on sensitivity to forecast error. In other words, large batch 

sizes make forecast accuracy less important. Second, average time to delivery 

and average daily sales have a positive effect on the importance of forecast 

accuracy, that is, large values make forecast accuracy more important. Relative 

sales STD was found to be statistically insignificant. 

Table 4. Linear model of what affects sensitivity to forecast error 

Variable Estimate Pr(>|t|) Significance 

(Intercept) 0.00453 0.83896 

 Batches sold per day 0.21617 0.00000 *** 

Av. time to delivery  0.02568 0.00000 *** 

Av. daily sales 0.02709 0.00000 *** 

Relative sales STD 0.00222 0.71618   

* significant at p<0.05; ** significant at p<0.01; *** significant at p<0.001 

4.4 Forecast bias and random deviation 

As suggested by Barman, Tersine, & Burch (1990), Kerkkänen, Korpela, & 

Huiskonen (2009), and Sanders & Graman (2009), forecast bias and random 

deviation might have different effects on supply chain performance. For this 

reason, there was a need to create separate models for bias and random 

deviation to test whether there is a difference between the two. However, Table 

5 shows that bias and random deviation behaved similarly in the created 
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models. In particular, batches sold per day and average daily sales had a 

positive effect on both sensitivity to bias and sensitivity to random deviation. 

However, average time to delivery was only significant for sensitivity to bias. 

Table 5. Comparison between forecast bias and random deviation 

Sensitivity to bias      Sensitivity to random deviation 

 Variable Estimate 

  

Variable Estimate 

 (Intercept) -0.04130 *** 

 

(Intercept) 0.03793 *** 

Batches sold per day 0.08741 *** 

 

Batches sold per day 0.11997 *** 

Av. time to delivery  0.02673 *** 

 

Av. time to delivery  0.00185 

 Av. daily sales 0.00968 *** 

 

Av. daily sales 0.01615 *** 

Relative sales STD -0.00981 ** 

 

Relative sales STD -0.00753 ** 

* significant at p<0.05; ** significant at p<0.01; *** significant at p<0.001 
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4.5 Positive and negative biases 

According to prior literature, there might be a need to model positive and 

negative biases separately as they might behave differently (Barman et al., 

1990). However, Table 6 shows that positive and negative biases had very 

similar effects. Therefore, it was sufficient to analyze only the magnitude of bias. 

Table 6. Comparison of positive and negative bias 

Sensitivity to pos. bias      Sensitivity to neg. bias  

 Variable Estimate 

  

Variable Estimate 

 (Intercept) -0.04117 *** 

 

(Intercept) -0.04473 ** 

Batches sold per day 0.06950 *** 

 

Batches sold per day 0.10767 *** 

Av. time to delivery  0.03540 *** 

 

Av. time to delivery  0.01757 *** 

Av. daily sales 0.00575 *** 

 

Av. daily sales 0.01320 *** 

Relative sales STD -0.01636 *** 

 

Relative sales STD -0.00138 

 * significant at p<0.05; ** significant at p<0.01; *** significant at p<0.001 

 

4.6 Different availability levels 

It was crucial to test whether the models produced different results for different 

availabilities. Availability levels of 95% and 99% are commonly used in related 

literature (Fildes & Kingsman, 2011; Syntetos et al., 2010). Table 7 illustrates 

how the independent variables affect sensitivity to forecast error in cases with 

95% and 99% availability. The results proved similar in regards to batches sold 

per day, average daily sales, and relative sales STD. However, average time to 

delivery was not significant with 99% availability. 
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Table 7. Comparison of 95% and 99% availability levels 

95% availability     99% availability 

 Variable Estimate 

  

Variable Estimate 

 (Intercept) 0.00453 

  

(Intercept) 0.12181 *** 

Relative batch size 0.21617 *** 

 

Relative batch size 0.20807 *** 

Av. time to delivery  0.02568 *** 

 

Av. time to delivery  -0.00453 

 Av. daily sales 0.02709 *** 

 

Av. daily sales 0.03722 *** 

Relative sales STD 0.00222 

  

Relative sales STD -0.00671 

 * significant at p<0.05; ** significant at p<0.01; *** significant at p<0.001 

 

4.7 Distribution of residuals 

The OLS regression methods used in this thesis assume normally distributed 

residuals (i.e., deviations between the model and observations). Figure 11 

illustrates the obtained residuals for one of the developed models. The residuals 

for other models were very similar. The residuals were relatively close to the 

normal distribution. Figure 12 illustrates the difference between normal 

distribution and the distribution of the obtained residuals. According to 

Sheather (2009), the plot should be close to a straight line for the data to be 

consistent with that of a normal distribution. Figure 12 seems to be close to a 

straight line. 
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5 Results 

5.1 Effect of forecast error on added stock 

Based on simulations using real sales data from a major retail customer, this 

thesis clarified how supply chain performance is affected by forecast errors. The 

results quantify how much additional stock is needed to compensate for forecast 

error. The effect of forecast errors was found to be linear for both bias and 

random deviation. The results were obtained by expressing bias and random 

deviation as described in Section 2 (Literature review), i.e., RCFE and RFSD, 

respectively. 

5.2 Effect of product location parameters on sensitivity to forecast 
error 

Chapter 4 (Model development) discussed the statistical significance of each of 

the independent variables. From a business viewpoint, the key issue is to 

quantify the importance of each of the variables regarding sensitivity to forecast 

error. Figure 13 illustrates the importance of average daily sales, relative batch 

size, average time to delivery, and relative sales STD. Importance was 

calculated by comparing the R2 values of different models. The R2 values 

describe how well each model explains variations in the dependent variable. 

First, a model was created with sensitivity to forecast error as a dependent 

variable and all four product location parameters as independent variables. 

Then, another model was created with one of the independent variables 

removed. The R2 values of the models were compared, and the difference was 

interpreted as the importance of the removed variable. The same process was 

repeated for each of the independent variables. Finally, the importance values 

were scaled to add up to 100%. The differences in importance proved to be very 

clear, indicating a logical basis for prioritization. 
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Figure 13. Importance of each of the independent variables based on their R2 

values 

5.2.1 Average daily sales 

Average daily sales proved to be the most significant factor affecting the 

importance of forecast accuracy. Sensitivity to forecast accuracy declined 

sharply with a decrease in average sales, as depicted in Figure 14. In this figure, 

sensitivity to forecast error is defined using relative changes in stock, that is, the 

percentage of additional stock needed to achieve the same availability. From a 

business viewpoint, absolute figures are more important than relative ones. 

Consequently, both stock and availability are very important for products with 

higher sales. Figure 15 repeats the information presented in Figure 14 but scales 

the values by average inventory. Thus, Figure 15 better represents the business 

viewpoint. Figure 15 has absolute sensitivity on the y-axis regarding business 

importance, whereas Figure 14 has relative sensitivity. 

By comparing Figure 14 and Figure 15, it is clear that average sales of a product 

location is more important than what initially appeared. This finding highlights 

the need to concentrate on high-selling products when efforts to improve 

forecast accuracy are considered. Table 8 presents additional information 
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related to Figure 14 and Figure 15, illustrating the number of product locations 

in different average daily sales categories.  

Table 8. Number of product locations in different average daily sales 

categories 

Average daily sales (pcs) Product locations % of product locations 

μ < 1/30 22 2 % 
1/30 < μ < 1/7 315 23 % 
1/7 < μ < 1 481 35 % 
1 < μ < 5 156 11 % 
5 < μ < 10 196 14 % 
μ > 10 210 15 % 
 

 

Figure 14. Effect of sales frequency on relative sensitivity to forecast error 

based on the sample data. μ = average unit sales per day. For example, μ < 

1/30 means less than one unit sold per month, and μ > 5 means more than 

five units sold per day. Relative sensitivity is the sensitivity to forecast error 

(i.e., the percentage of stock that is added with one unit of change in forecast 

error). 
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Figure 15. Effect of sales frequency on absolute sensitivity to forecast error 

based on the sample data. Absolute sensitivity is the sensitivity to forecast 

error (i.e., how many units of stock are added with one unit of change in 

forecast error). 

A low-selling product may have a large relative forecast error; however, this is 

not necessarily important for business. One specific problem with forecasting 

low-selling products is the discrete nature of product sales; products can only be 

sold in whole numbers, but forecasts can produce decimal values. For example, 

a product selling once a week on average could have a forecast of 0.14 per day. 

This could produce fairly accurate orders and low stock levels but still be 

associated with a fairly large relative forecast error.  

5.2.2 Relative batch size 

The second most important factor affecting sensitivity to forecast error was 

relative batch size, which can also be expressed as batches sold per day. Figure 

16 illustrates the effect of this factor. Large batch sizes result in higher average 
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sizes, forecast errors only matter at the end of the replenishment cycle. 
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also explain why sensitivity to forecast error and relative batch size did not 

follow a linear relationship, but rather seemed to be inversely related. This 

makes sense; for example, doubling the batch size would halve the number of 

days on which forecast accuracy is important.  

 

Figure 16. Effect of relative batch size on relative sensitivity to forecast error 

based on the sample data. q = relative batch size. For example, q < 1 means 

that one batch does not cover the sales of an average day. Relative sensitivity 

is the sensitivity to forecast error (i.e., the percentage of stock that is added 

with one unit of change in forecast error). 

5.2.3 Average time to delivery 

As shown in Figure 13, average time to delivery had some effect on the 

importance of forecast accuracy, but the effect was relatively small. This is most 

likely due to short lead times and review periods, as is typical in the retail 

industry. In the analyzed business data, most lead times were only one day long. 

Very few products had lead times of one week, and none had lead times longer 

than one week. Therefore, it is logical that average time to delivery was not 

critical.  
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Average time to delivery was found to be a statistically significant factor for 

sensitivity to bias but not for sensitivity to random deviation of forecasts. This is 

understandable; in the case of bias, forecast errors accumulate over time and 

cause stock-outs or excess stock if the uncertainty period is long, while in the 

case of random deviation, forecast errors tend to cancel each other out over 

periods of time. Thus, average time to delivery did not prove significant. 

As discussed in Section 4.6 (Different availability levels), average time to 

delivery was a statistically significant factor with 95% availability but not with 

99% availability. This can be explained by the relatively small number of 

products with high average time to delivery and high safety stocks caused by the 

high level of availability. The high safety stocks were likely capable of absorbing 

the relatively minor effects of the few products with longer times to delivery. 

5.2.4 Relative sales STD 

Relative sales STD was analyzed since it was discussed in the scientific 

literature. However, the results of this study show that this variable is not 

important from the business perspective (see Figure 13).  

5.2.5 The impact of product location parameter variations 

Table 9 illustrates the impact of variations in the values of product location 

parameters if the random deviation of forecasts decreases from 3 to 2 when 

measured using WAPE. Table 9 compares the changes in inventory when daily 

sales are increased five-fold, batch size is decreased to one-fifth of the original 

size, and time to delivery is increased seven-fold. In other words, the table 

includes two different values for each of the three product location parameters. 

Table 9. Example of the impact of product location parameters 

  Batch 
size 

Time to 
delivery 

Daily 
sales 

Expected change 
in inventory 

Case 1 10 1 2 7.46 % 
Case 2 10 1 10 16.36 % 
Case 3 2 1 2 12.18 % 
Case 4 10 7 2 8.11 % 
 

Table 9 shows that the most important parameter is daily sales, followed by 

batch size, as these factors showed the largest changes in inventory.  
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5.2.6 Summary of the impact of all product location parameters 

Figure 17 summarizes the impact of all product location parameters by 

illustrating the importance of the most important product locations. The figure 

shows the percentage of improvement that can be obtained by taking into 

account the top 1%, 2%, 5%, 10%, 20% or 50% of product locations. The grey 

bars illustrate the impact of the theoretical maximum (i.e., if we knew the exact 

absolute importance of each product location). The white bars illustrate the 

impact of using the model developed in this thesis to choose which product 

locations are taken into account. 

 

Figure 17. The importance of the highest-selling product locations 

6 Discussion and conclusions 

This thesis aimed to clarify the situations in which forecast accuracy is 

important. In order to achieve this goal, real sales and product data from a 

major retail customer of RELEX were used to simulate the effects of different 
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6.1 Scientific implications  

The scientific literature identifies several product location parameters that affect 

the importance of forecast accuracy, including batch size (Ritzman & King, 

1993; Fildes & Kingsman, 2011), lead time (Ott et al., 2013), sales volume 

(Hoover, 2009; Ott et al. 2013; Kerkkänen et al. 2009), and unevenness of 

demand (Ritzman & King, 1993). However, the scientific literature fails to 

prioritize these parameters. This thesis contributes to scientific knowledge by 

suggesting a clear priority for the business importance of the key product 

location parameters in the retail context. 

The results of this study indicate that a product’s average daily sales is the most 

significant factor affecting the importance of forecast accuracy. Relative batch 

size proved to be the second most important product location parameter. 

Average time to delivery was the third most important parameter, and relative 

sales STD was the fourth. It is worth noting that average time to delivery was 

significant only in the case of forecast bias, something that was not found in 

literature. 

The results of this study showed a positive correlation between availability and 

inventory days of supply, but this relationship did not follow a simple 

mathematical model. These observations are in line with those obtained by 

other researchers (Fildes & Kingsman, 2011; Johnston et al., 1988). 

In this study, the effect of forecast errors on supply chain performance was 

found to be linear. This covered errors due to both bias and random deviation, 

as measured by RCFE and RFSD. The literature seems to have mixed results on 

this topic; some articles reported a linear relationship between supply chain 

performance and forecast error, while others found the relationship to be 

exponential (Fildes & Kingsman, 2011; Sanders & Graman, 2009). These mixed 

results could be explained by the fact that different studies used different 

metrics in their analyses. An additional reason might be that this research used 

real sales data, while most researchers used simulated data (Biggs & Campion, 

1982; Xie et al., 2004). 

The results of this study showed no significant difference between the effects of 

positive and negative biases, even though the literature suggests that there 
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might be differences (Barman et al., 1990; Biggs & Campion, 1982; Ritzman & 

King, 1993). This can be logically explained by the use of a single variable, 

supply chain performance, instead of two (or more) different variables, stock 

and availability, as is often done in the scientific literature. Successful 

simplification of supply chain performance into one variable in the retail context 

is in itself a contribution to the scientific knowledge. 

6.2 Practical implications 

6.2.1 Implications for retail business 

This thesis aimed to clarify the situations in which manual efforts to improve 

forecast accuracy are valuable for retail companies. The results of this study 

suggest clear principles for prioritizing product locations to achieve the 

maximum benefit from manual corrections. In addition, clear prioritization 

principles may be useful when considering investments in more accurate 

methods, such as weather-based forecasting or analysis of competitors’ actions. 

These advanced forecasting methods require reliable data and are costly. 

Therefore, the business benefits of such investments need to be proven. 

The findings of this thesis highlight the importance of average daily sales and 

relative batch size over other product location parameters. Therefore, retailers 

should consider focusing their efforts primarily on improving forecast accuracy 

for high-selling products and, to some extent, for products with small batch 

sizes.  

Average time to delivery and relative sales STD were both found to be 

statistically significant at least in some cases. However, as pointed out by Fildes 

& Kingsman (2011), statistical significance is not necessarily associated with 

economic importance of the same magnitude. From the business perspective, 

sales volume of a product location proved to be the most important parameter, 

and relative batch size had some importance. Other product location 

parameters are relatively unimportant when compared to these two, although 

average time to delivery might play a minor role. The role of relative sales STD 

proved so marginal that retail managers could consider ignoring it. 
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The clear prioritization principles discussed above may need justification before 

implementation within retail companies and their suppliers. In particular, there 

is a need to explain why average time to delivery and relative sales STD play 

only minor roles. The minor role of average time to delivery can be explained by 

relatively short lead times and review periods for products in the case company, 

as is typical in retail businesses. In other settings, such as warehouses, there 

might be a wider variety in lead times, potentially increasing the importance of 

lead times. A logical explanation for why relative sales STD proved unimportant 

in this thesis is that this viewpoint is already covered by the most important 

product location parameter (i.e., average daily sales). Product locations with 

high average daily sales tend to also have low relative sales STD, and therefore it 

is sufficient to analyze only the more important factor of these two. 

6.2.2 Implications for RELEX 

The results of this study suggest clear principles for retail companies to 

prioritize product locations to achieve the maximum benefit from manual 

corrections. RELEX may benefit from the results by offering this prioritization 

functionality as part of their product.  

This thesis managed to quantify how much additional stock is needed to 

compensate for forecast error. The results also revealed the impact of different 

product location parameters on the business importance of forecast accuracy. 

The obtained results may help RELEX’s sales efforts as it will be easier to show 

how much potential new customers could save with better forecasts. Therefore, 

it will be easier to prove that investing in RELEX’s forecasting solutions is 

profitable for retail customers. In addition, knowing the customer’s potential 

savings could help RELEX set prices for its solutions. Furthermore, knowing 

when forecast accuracy is not important could help when negotiating with 

customers demanding unnecessary accuracy.  

RELEX often deals with competing companies that offer complicated and non-

transparent forecasting methods. The results of this thesis may provide 

research-based evidence for criticizing competitors’ sales arguments if the 

potential improvements in accuracy can be shown to be on products for which 

improved forecast accuracy does not have any noteworthy business benefit. 
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Both RELEX and its competitors offer advanced forecasting methods, such as 

weather-based forecasting, which require a lot of sales data to be reliable. The 

results of this thesis may give arguments for selling these advanced 

functionalities. The results favor prioritization of highly selling products, which 

also benefit from advanced forecasting methods. Through this synergy, it is a 

logical decision for customers to invest in these advanced functionalities.  

6.3 Generalizability and limitations 

This study was based on sales and product data from a large European retailer, 

with quickly spoiling products excluded. Therefore, it can be assumed that the 

findings are generalizable to companies similar to the case company. Typical 

beneficiary companies could be relatively large retailers and chains with a 

significant part of their revenue coming from fast moving consumer goods with 

reasonably long shelf lives. Retailers with a slightly different profile might also 

benefit from the findings of this study to a certain extent.  

There are a few limitations in this study regarding the generalizability of the 

findings. First, the study only analyzed one case company. Product location 

parameters might have significantly differing values in different companies, 

potentially changing the prioritization of the parameters. However, these 

parameters depend more on products and suppliers than retail companies, and 

therefore the problem might not be severe. 

Second, artificially generated forecasts might not correctly simulate all the 

properties of real forecasts. Thus, it is possible that forecast errors occurring in 

reality differ from the artificially generated ones.  

Another potential problem could be that the curve describing the relation 

between availability and inventory days of supply was not continuous in this 

study. Therefore, linear interpolation was required for values between the data 

points. Linear interpolation introduces small errors as the relationship is not 

totally linear. However, the distance between data points was not large, and 

therefore these errors should not be significant. 
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6.4 Further research 

A natural next step is to perform similar simulations in other companies and in 

other sectors to increase the generalizability of the findings. For retail 

companies, it would be beneficial to expand this study by including products 

with short shelf lives. However, this would require mathematically modeling 

spoilage.  

This study focused on retail stores. Another potential way to expand this study 

is to investigate how different players in the supply chain are affected by 

forecast errors and the same product location parameters that were studied in 

this master’s thesis.  

It would also be interesting to study whether analyzing cumulative human 

experiences and views would result in different conclusions than this purely 

quantitative study, which was based on simulations and statistical analyses. 

Therefore, qualitative studies involving interviews with experienced 

representatives of different actors in the supply chain could be an area for 

further research. 
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