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Abstract 

The idea of Internet of Things (IoT) is to connect all the devices into one network and to enable 

interoperability between them. Interoperability benefits also the process industry when the 

control devices and software can interoperate with management software. One part of the 

industrial IoT is being able to efficiently analyze the data from the field devices so that for 

example predictive maintenance can be achieved. Information modelling is needed to enable 

communication between the different software and to make analyzing data easier. This thesis 

examines the state of the IoT and the benefits of information modelling. The aim is to find the 

information modelling standard most suitable for the process industry and to figure out how 

standard conforming information models are created. 

The literature part of this thesis studies the current state and the future of IoT. The focus is 

especially on the possibilities it brings for the oil and gas industry. A broad collection of 

information modelling standards is introduced. According to the comparison made, OPC UA 

was selected in this work as the most suitable standard for the needs of process industry.  

In the experimental part the information modelling process is introduced and three OPC UA 

modelling tools are examined. Instructions for information modelling with OPC UA were created. 

An OPC UA standard conforming information model of a distillation column was created to be 

used to configure a soft sensor. The model was validated using expert knowledge. The model 

was also successfully connected to a data source that was in this case a DCS emulator.  
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Tiivistelmä 

Esineiden internetin ajatuksena on kytkeä kaikki laitteet samaan verkkoon ja mahdollistaa 

niiden välinen yhteensopivuus. Myös prosessiteollisuudessa on hyötyä yhteensopivuudesta, 

kun säätölaitteet ja ohjausjärjestelmät voivat kommunikoida hallintojärjestelmien kanssa. 

Teollisessa esineiden internetissä kenttälaitteiden tuottamaa data pystytään analysoimaan 

tehokkaasti siten, että esimerkiksi ennakoiva huolto on mahdollista. Tietomalleja tarvitaan 

laitteiden välisen kommunikaation mahdollistamiseksi ja tiedon analysoinnin helpottamiseksi.  

Tämä diplomityö käsittelee esineiden internetin tilaa sekä tietomallinnuksella saavutettavia 

hyötyjä. Tavoitteena on löytää prosessiteollisuuteen sopivin tietomallinnusstandardi sekä 

selvittää, miten valitun standardin mukaisia tietomalleja laaditaan.  

Kirjallisuusosassa selvitellään esineiden internetin nykytila sekä tulevaisuudennäkymät. 

Erityisest keskitytään esineiden internetin öljy- ja kaasuteollisuudelle tuomiin mahdollisuuksiin. 

Työssä esitellään laaja kokoelma tietomallinnusstandardeja. Tehdyn vertailun jälkeen OPC UA 

valittiin tässä työssä prosessiteollisuuden käyttötarkoitukisiin sopivimmaksi standardiksi. 

Soveltavassa osassa esitellään tietomallinnusprosessi sekä tutustutaan kolmeen erilaiseen 

OPC UA tietomallinnustyökaluun. Tietomallintamisesta OPC UA -standardin avulla laadittiin 

ohjeet.  Työssä laadittiin OPC UA:n mukainen tietomalli tislauskolonnista virtuaalisen säätimen 

konfigurointikäyttöön. Laaditun mallin toimivuutta arvioitiin asiantuntijoiden avulla. Malli 

kiinnitettiin onnistuneesti tietolähteeseen, joka tässä tapauksessa oli DCS emulaattori.  

Avainsanat  Tietomallinnus, OPC UA, teollinen esineiden internet 
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1 INTRODUCTION 

1.1 Background 

Internet of Things (IoT) means connecting different physical objects with smart 

sensors to communicate with each other over the Internet. (Breivold, Sandström 

2015) The industrial counterpart of IoT, the Industrial Internet of Things (IIoT), 

can provide the industry with effective predictive maintenance, equipment 

monitoring and resource optimization just to name a few possibilities. (Slaughter, 

Bean & Mittal 2015) IoT still needs a lot of technology development and changes 

in the infrastructure. To enable single system to handle dynamic business and 

engineering processes it is necessary to connect the existing factory automation 

systems with enterprise resource planning (ERP) and manufacturing execution 

systems (MES) over the IoT infrastructure. The challenge in this is the variety of 

proprietary control systems in the industry. (Kumar, Bose 2015) There are 

various efforts to standardize the interaction. Deciding between the different 

standards is hard because there is no tracking of the use of standards. Many 

initiatives like Germanys Industrie 4.0 and USA’s Industrial Internet Consortium 

are contributing to standards. (Lu, Morris & Frechette 2016)  

This master’s thesis focusses on standards regarding information models and 

management of process data.  Information modelling is a concept for presenting 

process data in a technologically independent way and providing interoperability. 

This is needed since automation systems use different technologies and 

standards that have their own ways to represent process data. A uniform view of 

the system is required for enterprise and management level applications, like 

ERP and MES. Having all the information of different automation systems in one 

unified management system makes cross-domain optimization possible. (van der 

Linden, Granzer & Kastner 2011) 

There is a number of interesting standards for information modelling and 

exchange. This thesis studies a set of standards. It is not exhaustive but tries to 

cover a wide range of standards suitable for the industry’s needs . Standards 

selected are OPC UA, ISA-95, ISO 15926, CAEX, AutomationML, PandIX, 

Common Information Model and IEC 61850. Because the variety of standards, 
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some initiatives on synchronization between the standards exist. One example of 

them is the Oil & Gas Interoperability Pilot. (Johnston et al. 2012) This thesis tries 

also to describe the synchronization and interoperability possibilities of standards 

when addressing them.  

1.2 The objective 

The first objective of this thesis is to take a look at the current state of Internet of 

Things and study the trends concerning oil and gas industry. Also the possibilities 

the IoT brings in the future are to be studied.  

Another aim is to study how standards are used for information modelling and 

what are the benefits and drawbacks of different standards. The second question 

is what can be achieved with these information models and how the selection of 

the standards affects to this. Also the different stakeholders need to be studied to 

map their needs and expectations for the information models. The ultimate goal is 

to figure out the most important development needs and select the most suitable 

way to create the information models with these requirements in mind. The 

information modelling tools are studied and evaluated to be able to create the 

actual information models. 

The main objective is to create information model of a distillation process unit. 

The created model needs to match the development needs defined for 

information models in usual applications and the ones defined specially for the 

use case. Also a tool to carry out this task is selected based on the evaluation 

made and based on what is supported in the server used for hosting the models 

in this thesis. The equipment modelled and the use case of the information model 

needs to be studied carefully before the modelling.  

The results of the thesis present the benefits and the drawbacks of the standards 

studied as well as the guidelines to the process of information modelling. The 

reasoning is given for selection of the most suitable standard for the needs of 

process industry. An information model of a distillation process unit is done using 

the modelling guidelines written. The model is evaluated against the goals set for 

it. Also the results of comparison of modelling tools created for this standard are 

explained.  
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1.3 Structure of the thesis 

The thesis starts with background check to the state of Internet of Things (IoT). 

The standards, trends and the possibilities are reviewed. The different standards 

and their applications are presented. In Section 3, information modelling and the 

existing modelling tools are introduced. The expectation and the needs of 

stakeholders and what is achieved with the information models is determined 

based on the knowledge gathered. The modelling practices and a comparison of 

modelling tools are presented in Section 4. The equipment to be modelled and 

the tools used are introduced in Section 5. Section 6 consists of explaining the 

modelling process while the models are explained in Section 7. Finally the 

conclusions and future work are discussed in Section 8.   
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2 INTERNET OF THINGS 

This chapter provides a background on Internet of Things (IoT). First the future 

visions as well as the challenges concerning IoT are discussed. A brief overview 

on the standard organizations and initiatives is given in the second subchapter. 

Also the architectures driven by the different initiatives are introduced. Finally the 

trends specific to oil and gas industry are studied. Challenges and possible 

solutions are presented together with an example of the work aiming towards 

achieving interoperability in the industry.  

2.1 Current state of Internet of Things 

There is no single universal definition for the Internet of Things (IoT). In brief it 

means that objects with sensing, processing and identifying capabilities are all 

connected to the same network and communicate with each other. (Whitmore, 

Agarwal & Xu 2014) In 2015 IEEE defined IoT as “a self-configuring and adaptive 

system consisting of networks of sensors and smart objects whose purpose is to 

interconnect all things, including every day and industrial objects, in such a way 

as to make them intelligent, programmable and more capable of interacting with 

humans”. (Breivold, Sandström 2015) Currently IEEE is asking for comments to 

form a broader and more accurate definition of IoT. (IEEE 2015) 

Whitmore et al. (Whitmore, Agarwal & Xu 2014) divided the most common 

applications of IoT into four sub-categories that are smart infrastructure, 

healthcare, supply chain/logistics and social applications. Smart infrastructure 

means connecting smart objects into physical infrastructure. An example of this is 

a smart grid that collects data about energy consumption and makes it available 

online for further analyzing. Smart infrastructures improve flexibility, reliability and 

efficiency of the infrastructure. In healthcare sector IoT could be used to 

automate some tasks that the patients have to perform. One scenario is placing 

sensors on health monitoring devices to collect information about the patient’s 

current health status. The data from the sensors could then be made available for 

doctors over the Internet to enable more efficient treatment. In the field of 

logistics, supply chains already use sensor networks in assembly lines and 

Radio-Frequency Identification (RFID) to track products. IoT can still provide 
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more detailed and up-to-date information further improving efficiency. Social 

applications of IoT include connecting IoT devices to services such as Facebook 

or Twitter. The devices could for example provide information about user’s 

location and activities attended. This information could be used to tell the user if 

they are nearby a friend or some event that might interest them. (Whitmore, 

Agarwal & Xu 2014)  

The biggest challenges of IoT are information security, data integrity and privacy, 

interoperability and scalability. Industrial IoT (IIoT) shares the challenges of 

consumer IoT, but of course there are also additional challenges like exact timing 

and criticality of the systems. Automation systems have to be accurate in time, 

reliable and safe. (Breivold, Sandström 2015)  

Security issues grow larger as the systems grow larger and more complex. 

Encryption is seen as the key for secure information exchange. The current 

encryption algorithms are made for devices where the resources are not 

restricted. The smallest IoT devices however are limited in power and are 

currently unable to support robust encryption. The algorithms have to be made 

faster and less energy-consuming to enable encryption on the IoT. Moreover, 

efficient key distribution scheme should be found. (Bandyopadhyay, Sen 2011) 

Also identity is important factor for security. When communicating with smart 

devices, we have to be able to ensure that the device is what it claims to be. 

(Whitmore, Agarwal & Xu 2014) Additionally in industrial systems, the security 

updates have to be made without interference to the control of the process 

(Breivold, Sandström 2015). 

IoT is basically a complex network of devices and software. Also in automation 

systems there are thousands of different components like controllers, 

workstations and servers.  It means having a huge heterogeneity in interfaces 

and communication solutions. They all present and interpret data differently. 

There are efforts to standardize the communications to achieve interoperability. 

Integration of different systems is costly without standards. (Breivold, Sandström 

2015)  
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Middleware is getting more and more important since it can well be used for 

integration of legacy technologies into new systems. In the last years the 

architecture proposed for middleware has been service-oriented architecture 

(SOA). The commonly mentioned advantages of SOA are enhanced flexibility, 

interoperability and reuse.(Atzori, Iera & Morabito 2010) SOA is a software 

architecture design in which the independent processes are usable via services. 

Services are some small functions such as reading or writing. The loose coupling 

of services enables the flexible interconnection between applications. (Rouse 

2014)  

2.2 IoT standard organizations and initiatives 

The challenges in integrating systems have resulted in efforts to standardize the 

communications in automation systems. (Breivold, Sandström 2015) International 

standard organizations like ISO and IEC are working on standards for industrial 

process control and automation. ISO’s committee on automation systems and 

integration (TC184) has two subcommittees, SC4 and SC5, that are particularly 

concerned on data exchange standards. SC4 focusses on industrial data 

standards such as ISO 10303 for exchange of product manufacturing information 

and ISO 15926 for integration of life-cycle data for process plants. SC5 on the 

other hand focusses on interoperability, integration and architectures for 

automation applications. IEC has developed standards like IEC 62264 which is 

standardized version of ISA-95 for integrated enterprise and control systems. 

There are also several consortia, like the OPC Foundation, developing standards 

for IIoT and communication between device and software. These sometimes are 

offered to ISO or IEC to achieve wider usage. Furthermore, professional societies 

like ISA and academically oriented societies like IEEE are working on standards. 

(Lu, Morris & Frechette 2016) The selection of organizations above is wide but 

not exhaustive. There are still many more organizations developing standards.   

Standards are the enablers of efficient manufacturing systems by providing a 

method to exchange data between software and devices of different vendors. 

Interoperability between standards is still a problem. Because of the multiplicity of 

standards, there is a huge amount of obsolete standards. There is no tracking on 

the adoption of the standards. The industry and the software and device 

providers are on their own when trying to find the most suitable and most 
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common standards. The vast amount of the standard organizations also causes 

overlap and redundancy between the standards. The standards in the same 

technical area are be defined separately for different industry sectors. These 

standards are not always consistent which also causes overlapping and 

redundancy. To overcome these issues, the standard organizations have to 

collaborate for harmonizing standards. (Lu, Morris & Frechette 2016) According 

to ISO this means that different standards on the same subject provide similar 

information or interchangeability of products or processes. The presentation and 

the guidance on how to match the requirements can be different, but the output 

has to be the same. (ISO/IEC Guide 2:2004: 2004) 

IoT has also given rise to new initiatives that contribute to the standards and 

create reference architectures. Next, four of the initiatives, Plattform Industrie 4.0, 

Industrial Internet Constortium, Arrowhead and Internet of Things - Architecture 

are presented. In addition to these, IEEE is developing Standard for an 

Architectural Framework for the Internet of Things. (Weyrich, Ebert 2016) 

2.2.1 Plattform Industrie 4.0 

Industrie 4.0 was originally a strategy developed by the German government to 

promote the computerization of manufacturing. Now Industrie 4.0 can be seen as 

an alternative expression of Internet of Things. In this thesis IoT is used meaning 

the intelligent and connected network of things and Industrie 4.0 is used only in 

this subchapter meaning the German alternative of IoT.  
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Plattform Industrie 4.0 aims to develop a basis for a consistent and reliable IoT 

framework through a dialog with business, science and government. (Plattform 

Industrie 4.0 2016) The potential of Industrie 4.0 is in smart factories that allow 

meeting individual customer requirements, dynamic business and engineering 

processes, optimized decision making and new ways of creating value. In order 

to deliver these goals, Industrie 4.0 should be able to implement full integration of 

all the manufacturing systems. The value networks should be horizontally 

integrated as well as the whole automation pyramid vertically integrated meaning 

networked manufacturing systems. The entire value chain should be integrated 

from end to another. The Industry 4.0 Working Group has divided the work into 

eight key areas of which one, standardization and reference architecture, is in 

particular interest in this thesis. (Kagermann, Wahlster & Helbig 2013) 

The result of the work is Reference Architectural Model for Industrie 4.0 (RAMI 

4.0). (Plattform Industrie 4.0 2016) The first version was released in July 2015 by 

Figure 1. Reference architecture model for Industrie 4.0 (Adolphs et al. 

2015) 
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ZVEI, VDMA and BITKOM. The reference architecture model is three 

dimensional. The “Hierarchy Levels” axis represents the different functionalities 

within factories. It uses hierarchies from IEC 62264 standard. The “Life Cycle & 

Value Stream” axis represents the life cycle of facilities and products and is 

based on IEC 62890. The “layers” axis describes the decomposition of a machine 

into its properties. The layers are business, functional, information, 

communication, integration and asset. The data models used for layers need to 

be consistent during the whole lifecycle and all hierarchy levels. The three 

dimensional model of Industrie 4.0 is presented in Figure 1. RAMI 4.0 is based on 

many existing standards. It proposes certain standards to be used in certain 

layers. In communication layer, OPC UA is used. For the Information layer IEC 

Common Data Dictionary, eCl@ass characteristics, Electronic Device Description 

(EDD) and Field Device Tool (FDT) are used. Field Device Integration (FDI) is 

used for implementation of functional and information layer. Finally for end-to-end 

engineering AutomationML, ProSTEP iViP and eCl@ass are used. (Adolphs et 

al. 2015) 

2.2.2 Industrial Internet Consortium 

The U.S. equivalent of Industrie 4.0 is the Industrial Internet Consortium (IIC) 

founded by GE, IBM, Cisco, Intel and AT&T. It brings together organizations and 

technologies necessary to accelerate the growth of Industrial Internet. The 

consortium has different committees, such as the technology committee. In case 

of this thesis, the architecture task group of the technology committee is in 

particular interest. It has developed a reference architecture called the Industrial 

Internet Reference Architecture (IIRA). (Industrial Internet Consortium 2016) 

The IIRA documentation defines an Industrial Internet System (IIS). The IIS is a 

large network connecting industrial control systems to people and integrating 

them with other systems such as enterprise systems. According to IIRA the IIS 

has various concerns that can be grouped as viewpoints. These viewpoints are 

business, usage, functional and implementation. The business viewpoint is 

concerned with the identification of business stakeholders. The usage viewpoint 

focuses on the expected system usage. The functional viewpoint addresses 

functional components of IIS, their interrelation and external interactions. Finally, 
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the implementation viewpoint deals with the technologies needed. (Industrial 

Internet Consortium 2016) 

When discussing the architecture itself the functional and implementation 

viewpoints are the points of interest. The IIS is decomposed into five functional 

domains which are control, operations, information, application and business 

domains. Information is exchanged between these domains. Figure 2 shows the 

relations of functional domains and the data and control flows between them. The 

architecture is described in the implementation viewpoint. The architecture 

patterns suggested include the three-tier pattern and the gateway-mediated edge 

connectivity and management pattern. (Industrial Internet Consortium 2016) 

 

 

 

Figure 2. The functional domains of IIRA. (Industrial Internet Consortium 

2016) 
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To integrate all the different technologies IIRA suggests a concept where all the 

subsystems are connected with a core connectivity “databus”. This can be seen 

in Figure 3. Some subsystems may require a gateway for connection and 

transition from data standard to another.  The “databus” or a Connectivity Core 

Standards as IIRA calls it needs standards that fulfill certain requirements. The 

requirements are achieving interoperability between endpoints, automated 

service discovery, performance and scalability, programming model, Quality of 

Service (QoS) and support to peer-to-peer, client-server and publish-subscribe 

patterns. (Prismtech (c) 2016) The QoS parameters are reliable data delivery, 

timeliness, ordering, durability, lifespan, fault tolerance and security. In the first 

release IIRA doesn’t recommend a specific standard to be used in the “databus”. 

(Industrial Internet Consortium 2015) However, Real-Time Innovations (RTI) sees 

Data Distribution Service (DDS) by the Object Management Group (OMG) as the 

best core connectivity standard for the architecture. (Schneider 2015) 

Figure 3. Industrial Internet Reference Architecture (Industrial Internet 

Consortium 2015) 
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2.2.3 Arrowhead 

The Arrowhead is a project funded by the European Union. The vision of the 

project is to enable interoperability of services provided by almost any device. 

The project aims to provide technical framework and propose solutions for 

integration with legacy systems. The technical solution is evaluated with real 

experimentations in different industry sectors. The project targets five business 

domains which are production, smart buildings and infrastructures, electro 

mobility, energy production and virtual markets of energy. (Arrowhead 2016a)  

The Arrowhead Framework is a SOA based framework for integrating multi-

vendor applications. The framework consists of Core Services and Application 

Services. These can be seen in Figure 4. The Application Services handle the 

exchange of information while the Core Services support them. The specialized 

Application Services could be for example reading sensors. The Core Services 

for example provide application installation or status monitoring functionality. The 

framework addresses also design of gateways or mediators that make systems 

with different standards compliant with Arrowhead. (Arrowhead 2016b)  

Figure 4. The Arrowhead Framework (Arrowhead 2016b) 
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2.2.4 Internet of Things - Architecture 

Internet of Things – Architecture (IoT-A) was another project funded by the 

European Union to develop a common reference model and architecture for IoT. 

It was active from 01.09.2010 to 31.08.2013. Like the other initiatives, also IoT-A 

aimed to the interoperability of different solutions. It based the development on 

the existing standards. The architecture developed in the project is called 

Architectural Reference Model (ARM). (Bauer et al. 2013b) 

The ARM consists of three parts. The first one is the IoT Reference Model that 

provides the highest abstraction level for ARM. The IoT Reference Model 

provides an IoT Domain Model which is the top-level description of the 

architecture. Other relevant models are the sub-models that address the 

information, functional, communication and the security views.  The Reference 

Architecture is the second part of ARM and the reference for building compliant 

IoT architectures. The architecture consists of views that build further on the 

models defined in IoT Reference Model. The last part of ARM is the guidelines on 

how to derive a concrete architecture from the model. (Bauer et al. 2013a)  

2.2.5 Comparison of Internet of Things architectures 

The four architectures for IoT have different perspectives. IoT-A provides a 

detailed view of the information technology related to IoT. IIRA is strongly 

focused on industry but also includes healthcare, energy and transportation 

information. RAMI4.0 on the other hand focusses on manufacturing and logistics 

details. (Weyrich, Ebert 2016) Arrowhead’s goal is to build architecture for 

automation in production, buildings, electro-mobility and energy-market. 

(Arrowhead 2016a) The different perspectives lead to architectural differences, 

for example the presentation of semantics. Because IIRA focuses on industry, 

also the data description is focusing on functionality of that domain. RAMI4.0 is 

almost the same as IIRA, but includes additional life-cycle and value stream data. 

(Weyrich, Ebert 2016) Arrowhead is concentrated on industry, business and 

energy data. (Arrowhead 2016b) IoT-A is more generic when it comes to the 

semantics. IoT-A has also broader definitions for middleware functionality and 

cloud aspects while IIRA addresses the same things but is more focused on 

business and use cases. (Weyrich, Ebert 2016) 
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In March 2016 IIC and Plattform Industrie 4.0 agreed to work together to see if it 

is possible to achieve interoperability and alignment of IIRA and RAMI4.0. 

(Federal Ministry for Economic Affairs and Energy 2016b, RTI News 2016) There 

is however no desire to merge the two architectures since they focus on different 

domains. As said earlier, RAMI4.0 has focusses on manufacturing in depth while 

IIRA is more cross domain focused. The industry however needs to be able to 

operate cross domain, manufacturing being one of the domains. The domains are 

illustrated clearly in Figure 5. (Federal Ministry for Economic Affairs and Energy 

2016a) 

 

 

Figure 5. The domains the IIRA (IIC) and RAMI4.0 (I4.0) operate on. (Federal 

Ministry for Economic Affairs and Energy 2016a) 

 

On 13th of April OMG and OPC Foundation announced to collaborate for 

interoperability of the underlying DDS (IIRA) and OPC UA (RAMI4.0) standards. 

The organizations have found two ways to achieve interoperability and are 

developing them. The first is a “OPC UA/DDS gateway” that allows applications 

and devices using DDS to connect to OPC UA and vice versa. The second is 

“OPC UA DDS Profile” which enables integrated use cases. (Object Management 

Group 2016)  
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2.3 IoT trends concerning oil and gas industry  

Because of the low market prices of oil and the cost of producing oil going up, the 

oil and gas (O&G) industry today is in need of enhanced production technologies. 

Each step of the chain from drilling to customer has to be made more efficient. 

IoT is seen as one solution, because it provides a way to gather and connect 

information about processes, supply chains and customer relationships. In 

addition to optimizing the mentioned things, the new information can bring 

innovative aspects on how the ways to do business should be changed. Because 

the O&G industry is so diverse there is no single IoT solution for all. The 

objectives for everyone, however, are more or less the same. The common goals 

are to improve reliability of processes, optimize operations and create new value. 

(Slaughter, Bean & Mittal 2015) 

Traditionally the oil companies have been looking for technologies to improve 

single discipline, for example to exploit more complex resources. The 

investments go to a new process or control system when needed or to 

development of a single technology. A so called silo effect is caused by giving no 

attention to integrating these new systems with existing ones. This means that 

different organizations of the company or parts of the factory are separated 

disciplines with distinct roles. The silos limit the agility and cripple IoT. The 

organizations, or silos, have to be connected and interoperating to get real 

benefits from IoT. (Moriarty et al. 2015) 

Instead of focusing on individual technologies, more value can be obtained when 

the new technologies are integrated cross disciplines. Only a minor part of the 

data gathered from the refinery processes is available for the industry’s decision 

makers. Increasing this availability and analysis can save money by for example 

eliminating unplanned outages. (Slaughter, Bean & Mittal 2015) 

According to survey made by Cisco (Moriarty et al. 2015) data is the area of IoT 

where the O&G leaders see the need for improvements. Cisco sees three key 

challenges in data area of IoT and proposes solutions for them. As a solution for 

integrating heterogeneous data from distributed sources the data is virtualized. 

The data can actually be stored anywhere, but it seems to origin from one 

source. The second challenge is automating the data collection to get the data to 

the right place at the right time to be analyzed. Sometimes, for example in the 
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offshore drilling-platforms, the data cannot be moved, because of weak 

connections. With smart devices the data can be processed at the edge of the 

network. The third problem is the lack of skills or resources to analyze the data 

gathered. Solving this requires attracting employees with sufficient knowledge.  

New connected sensors and closed loop systems, where changes to operation 

are made by machines pose new vulnerabilities. This creates more opportunities 

for cybercriminals to exploit. Many of the oil and gas companies do not have a 

proper response plan for cybersecurity incidents yet there has been many attacks 

targeting the energy sector. This has to change before the companies can fully 

take advantage of IoT. (Moriarty et al. 2015)  

According to Cisco Consulting Services (Moriarty et al. 2015), IoT has potential to 

create over 500 million dollars of net profit for an oil company with 50 billion dollar 

revenue and production of 270 million barrels annually. Most, 83%, of this profit 

comes from improvements in upstream operations, while midstream and 

downstream upgrades are only minor part. The analysis, however, doesn’t take 

into account how the implementation costs divide between the different 

operations. The analysis clearly pointed out the importance of data. The biggest 

profit producing operation was reducing lifting and production costs, where the 

value comes from better monitoring and data management capabilities, real time 

optimization and automatic analyses. The second biggest value generator was rig 

uptime, which depends on advanced sensors and Big Data analytics to conduct 

predictive maintenance. (Moriarty et al. 2015) 

In the upstream sector, or the exploration and production sector, the 

technological complexity is increasing. This means installing new sensors which 

produce a bigger flow of data. In addition the scale and the frequency of the data 

are growing and there is a need to expand the scope. These data flows cannot 

be fully taken advantage of because of the weak data-management capabilities. 

The communications between different software is limited by the lack of open 

standards and the diversity and incompatibility of the proprietary communication 

formats. Overcoming these challenges creates possibilities like automating the 

production, faster deployment of new projects and better modelling of the earth’s 

surface to find oil. (Slaughter, Bean & Mittal 2015)  
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In midstream, the shale oil boom, has made transporting the liquids and natural 

gas more complex, since the volumes and locations have started altering rapidly. 

The old pipelines and monitoring devices are causing losses due to fuel leaks. 

The safety and reliability could be improved with investing to new sensor 

technologies. Further analyzing the data from these sensors could benefit in 

better selection of shipping routes. (Slaughter, Bean & Mittal 2015) 

The most mature part and therefore also financially the most challenging part of 

O&G industry is refining crude-oil. A critical part with potential for improvement is 

avoiding unscheduled shutdowns. At the moment the maintenance done for the 

equipment is time-based preventive planning where the equipment is taken to 

workshop for inspection without knowledge of the actual condition. Time is 

wasted inspecting equipment that isn’t in the need of repairing. With new sensors 

technologies, advanced wireless networks, open standards and integrated device 

management the strategy can be shifted to condition-based predictive 

maintenance. Another problem in downstream O&G is that so far the information 

has been analyzed mostly on the plant level only. If this scope is made wider the 

whole supply chain and the logistics after production can be taken into account. 

One benefit from this kind of data analyzing could be the ability to buy crude oil 

dynamically from various sources instead of long contracts. (Slaughter, Bean & 

Mittal 2015)  

As described earlier, the amount of data gathered in the upstream sector is 

growing but the traditional SCADA systems use proprietary protocols which 

hinder the exchange of data. Also the governments have started demanding 

reports about the drilling conditions and safety in a standardized form. This has 

led the petroleum industry to drive towards standardization of data exchange. 

(Cotton et al. 2012) Standards Leadership Council (SLC) was formed in 2012 to 

unite the standard organizations of upstream O&G to promote the adoption of 

open standards. The consortium has several member organizations including 

The OPC Foundation, Energetics and POSC Caesar Association. (Standards 

Leadership Council 2016) Norway has been one of the leaders in the upstream 

O&G standardization. In 2008-2012 a project called The Integrated Operations in 

the High North Joint Industry Project (IOHN) tested using ISO 15926 to ensure 

interoperability, to facilitate integration and to transfer data. (Cotton et al. 2012) 
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To enable all the standards to work together OpenO&M Initiative has developed 

system-of-systems interoperability architecture called Open Industrial 

Interoperability Ecosystem (OIIE). The OpenO&M Initiative was formed by ISA, 

MESA International, MIMOSA and OPC Foundation to name a few. Also Fiatech, 

POSC Caesar Association and Professional Petroleum Data Management 

Association have joined the work. (Mitchell 2016) OIIE defines an architectural 

framework for enterprise architecture. The main idea is to use the best standard 

for each different task and allow them to function together. OIIE has a portfolio of 

standards to choose the most suitable from. The architecture model has an 

information message bus as a “transporter”. Information models and message 

models are used to represent data. (MIMOSA 2016) The information message 

bus can be seen in Figure 6, which presents the OIIE architecture model. 

Figure 6. OIIE architecture model (Johnston, Hoppe & Sandmark 2015) 
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To prove the OIIE concept, a public test-bed, Oil & Gas Interoperability (OGI) 

Pilot, is run. The purpose is also to test if the standards are actually applicable to 

real processes. The pilot is a debutanizer project that demonstrates the feasibility 

of the ecosystem from design to operation and maintenance. (Mitchell 2016) The 

pilot had three different companies doing the process engineering. Worley 

Parson produced intelligent process and instrumentation diagrams (P&ID) with 

XMpLant-technology. AVEVA produced the same thing using Proteus (an XML 

scheme) and Bentley produced Ontology Web Language (OWL) (part of ISO 

15926 specification) and ecXML files. All of these were transformed into ISO 

15926 -model with a transform engine created in the University of South-

Australia. The ISO 15926 is again transformed to MIMOSA model. The data is 

then exported to CCOM-XML. The communications are done using Information 

Service Bus Model (ISBM). The data is then mapped to Assetricity Integrated 

Operations and Maintenance for Oil & Gas (IOMOG) –register. It stores all the 

data and takes care of mapping all the synonyms of the same piece of equipment 

into one. From IOMOG the data is loaded to IBM Integrated Information Core 

server which transforms it to ISA models and accessible with OPC/OPC UA 

standards. The data can be then connected to systems like OSIsoft’s PI System 

for collecting real-time data. (Johnston et al. 2012) The whole process is 

summarized in Figure 7. The pilot still continues and phase two will for example 

add more process diagram and automation suppliers. In addition to this 

downstream pilot, there is also going to be an upstream pilot from the same 

group. (Johnston 2013) 

 

Figure 7. Oil and Gas Interoperability Pilot workflow (Johnston 2013) 
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3 INFORMATION MODELLING  

In this chapter the concept of information modelling is introduced. First the 

meaning of middleware and service-oriented architecture is explained because 

information modelling is closely related to them. After that the definition of an 

information model is given together with requirements and stakeholders for the 

models. A wide selection of information model specifications is presented. The 

models discussed are OPC UA, ISA-95, ISO 15926, CAEX, AutomationML, 

PandIX, Common Information Model and IEC 61850. A comparison of the 

presented specifications is given at the end of the chapter.  

3.1 Middleware and Service-Oriented Architecture 

The common approach to automation system integration usually separates the 

automation system into layers. The structure is called the automation pyramid.  

The problem with this is that the information has to pass through all the layers 

and often there is a need for data transitions between the layers. The SOA based 

middleware provides a suitable way to integrate the engineering software with the 

process control. The difference of these two approaches is presented in Figure 8. 

(Melik-Merkumians et al. 2012) 

 

 

Figure 8. The differences of traditional layered automation pyramid (right) 

and the SOA-based approach (left) (Melik-Merkumians et al. 2012)  
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Middleware is not used only for exchanging data but also to provide information 

for example about the status of the device or the measurement range. The 

middleware should provide this information in a structured way and this is what 

requires the middleware to provide a way for information modelling. (Mahnke et 

al. 2011) There is a variety of different information modelling methods which are 

addressed in this chapter. 

Another option to achieve interoperability is to implement the piece of software 

providing the communication functions in all the different applications of the 

system. Using middleware, however, benefits in reuse, distributed development, 

simplicity, flexibility and better maintainability. The drawback of the middleware 

might be defining the interface and the semantics of the information too strictly. A 

fixed definition is easy to start with, but not capable of accommodating to change. 

The middleware should provide flexible interfaces and describe the semantics in 

an abstract way. (Mahnke et al. 2011) 

3.2 Information models 

By definition information models are descriptions of certain concepts like 

buildings or processes. They provide a framework for presenting objects and their 

relationships, variables, constraints and functions. In a way, information models 

are a common language between software systems and devices.  

There are four main stakeholders for developing communication standards and 

information models. First, hardware vendors want to optimize the 

communications of their devices. For software developers the value of the 

information models is in making the development and maintenance of software 

easier. System integrators can more easily integrate solutions of different brands 

and vendors. The end users achieve broader possibilities to the choice of 

hardware and software. (van der Linden, Granzer & Kastner 2011) 

To achieve the optimal communication, there are requirements that the 

information models should fulfil. The most important requirement and the actual 

drive for developing information models further is to obtain a single 

comprehensive standard to describe all the equipment instead of specific 

description formats. Therefore the models have to be rather abstract. (Mahnke et 
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al. 2011) The information models have to cover at least most if not all the 

information required or produced within the engineering process of production 

systems. They have to be extendable and flexible enough to accommodate to 

change. The extensions could be for example vendor specific data. The 

representation of the data has to be efficient. Also human readable format is 

desired. (Schmidt, Lüder 2015)  

3.2.1 OPC UA 

The OPC Unified Architecture (UA) was released in 2008 by the OPC Foundation 

and expands the classic OPC. The classic OPC consists of many specifications, 

the most important being Data Access, Alarm & Events and Historical Data 

Access. These specifications define the access to current process data, interface 

for event-based information and functions to access historical data. OPC’s 

information exchange is using client-server approach. The interfaces of OPC are 

based on Microsoft Component Object Model (COM) and Distributed COM 

(DCOM). These were used to reduce the development time and specification 

work. Resulting from the use of these technologies, OPC is tied to Windows 

operating systems. It is also one of its biggest disadvantages. (Mahnke, Leitner & 

Damm 2009) 

OPC UA overcomes OPCs flaws by for example, being more secure and platform 

independent. The basic layers of OPC UA are presented in Figure 9. The base 

components of OPC UA are transport mechanisms and data modelling. The 

specification of OPC UA has 13 parts but the one addressed in this thesis is Part 

5: Information Model. The whole concept of OPC UA is presented shortly before 

going to information models. (OPC Foundation 2015c, OPC Foundation 2016c)  

The communication model of OPC UA is abstract and does not depend on 

protocol mappings. Currently there are two mappings, UA Web Services and UA 

Native. The UA Web Services mapping uses protocols like SOAP/HTTP while the 

UA Native uses TCP protocol. These transport mechanisms use the message-

based security model from Web Services. Data modelling defines rules and 

building blocks to describe OPC UA information models. The access points to 

address space and the base types of type hierarchy are also defined. The base 

defined in data modelling layer can be extended to build information models. 
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OPC UA is based on SOA. The services are abstract descriptions and therefore 

protocol independent. The services provide the interface between servers as 

supplier of an information model and clients as consumers of the information 

model. (Mahnke, Leitner & Damm 2009) 

The information modelling in OPC UA is based on nodes and references between 

them. The nodes can have attributes that further define them. Figure 10 gives an 

example of the usage of nodes. Nodes are divided to NodeClasses that include 

object, variable and method nodes. Variable nodes contain values with data 

types. They can present a value of a measurement for example. The concept of 

method is the same as in object-oriented programming. Method can be called 

with possible input arguments and it returns a result. Objects structure the 

Address Space. They can be used to group variables, methods or other objects 

by using references. This way the variables and methods belong to objects.  The 

attributes of nodes depend on the class. For example the Variable has “Value” as 

one attribute. There are several attributes common for all the nodes, but the most 

important is the NodeId that is a unique identifier used to reference the nodes. 

The references are relations between two nodes. They have information about 

the direction of the relations, the type of the reference and of course the ids of the 

Figure 9. OPC UA information model layers. (Burke 2013) 
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source and target nodes. The reference types in OPC UA are for example 

HasSubtype or HasTypeDefinition. (Mahnke, Leitner & Damm 2009) 

In OPC UA information models, types are used for defining objects and variables. 

Variables have data types like string but also objects have type definitions that 

specify the type of device that the object is describing. As explained earlier, also 

the references have types that define them. The types can be simple or complex. 

Complex types can have for example references to variables and methods. 

Simple types just define semantics. (Mahnke, Leitner & Damm 2009) There are a 

lot of predefined general types in the specification. Types can inherit other types. 

The new derived types will have the same properties as the "parent" type but can 

also have own extended properties. For example, if there is a type called 

VesselType and it has a reference to a variable called Diameter, its subtype, let’s 

say PressureVesselType will have the same referenced variable. In addition the 

PressureVesselType could have a variable called MaxPressure. All the object 

types are inherited from BaseObjectType, all the variables from 

BaseVariableType and so on also for reference, data types and events. (OPC 

Foundation 2015b)   

OPC UA has several companion specifications. They include specifications for 

Analyzer Device Integration (ADI), PLCOpen, Field Device Integration (FDI), 

Figure 10. OPC UA Nodes, Attributes and References (Mahnke, Leitner et al. 

2009) 
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Device Integration (DI), ISA-95, AutomationML and AutoID. (OPC Foundation 

2016d) The hierarchy of the information models was presented in Figure 9. 

3.2.2 ISA-95 

ISA-95 is developed by the International Society of Automation. It contains 

models and terminology to define a format for information exchange between 

different systems. The ISA-95 standard has five parts. In the scope of this thesis 

is Part 2 Object Model Attributes, but also a brief overview is given. (ISA-95 

2015)  

ISA-95 standard defines five activity levels for a manufacturing organization. 

Level 0 defines the actual manufacturing process while levels 1 and 2 are the 

automation and control. Level 3 is manufacturing operations management (MOM) 

level, containing for example MES applications and level 4 is business planning 

and logistics, meaning ERP for example. The levels of ISA-95 are presented in 

Figure 11. Activity levels of ISA-95 (OPC Foundation 2013b) 
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Figure 11. The main focus in the standard is the information exchange between 

levels 3 and 4 and across level 3 systems. (OPC Foundation 2013b) 

The part 2 of ISA-95 lists industry-independent information as attributes that can 

be used to define processes. Industry specific and application specific information 

is characterized as property objects. These industry-independent attributes 

include the resource models. They are Personnel, Material, Equipment, Physical 

Assets and Process Segments. (OPC Foundation 2013b) These models and the 

overview of the ISA-95 are presented in Figure 12. 

For representing information as objects ISA-95 uses Unified Modelling Language 

(UML). A set of attributes is associated to these object models. A UML 

presentation of the Equipment model is presented in Figure 13. It includes the 

definition of “Equipment” and “Equipment Class” which are the definitions of the 

equipment type in the production, for example the class could be a tank. The 

classes also have properties. (OPC Foundation 2013b) 

ISA-95 is an abstract specification since it doesn’t provide implementation. There 

are some implementations such as Business to Manufacturing Markup Language 

by MESA. (OPC Foundation 2013b) 

 

Figure 12. ISA-95 Overview. (OPC Foundation 2013b) 
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3.2.3 ISO 15926 

ISO 15926 (Licycle Information Exchange) is a standard for representing 

information related to engineering, construction and operation of a process plant. 

It tries to cover the whole life-cycle of a plant. It is specially meant for the O&G, 

but since it is generic model it is applicable for other industries as well.  (ISO 

15926-1 2004) ISO 15926 has currently 8 parts and two parts are still under 

development. (ISO/TS 15926-11 2015) 

Figure 13. ISA-95 Equipment Model (OPC Foundation 2013b) 
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The second part of ISO 15926 defines a generic data model that is used to 

represent and exchange the life-cycle data. It establishes the basic entity types 

and their connections. The entity types are not enough to represent a plant and 

detailed information about the objects, like pipes, needs to be added as reference 

data. The reference data consists of classes that define plant objects. It is 

organized in the reference data library which is accessible through the reference 

data services.  The reference data is standardized in parts three and four of ISO 

15926 but additional reference data can be created by authorized users. (Holm et 

al. 2012) The ISO 15926 architecture is presented in Figure 14. 

The entity types of ISO 15926 can be hierarchically ordered using subtype and 

supertype relationships. Another major modelling strategy is temporal and special 

composition by relation entities. In the hierarchical model subtypes are derived 

from root element “thing”. The root element carries information about identity and 

derived abstract basic entities class, relationship and multidimensional object. 

This is presented in Figure 15. Attributes are implemented as instances of basic 

data types or references to other elements. (Mahnke et al. 2011)   

 

Figure 14. ISO 15926 architecture (ISO 15926-1 2004)  
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3.2.4 CAEX 

Computer Aided Engineering Exchange (CAEX), or also known as IEC/EN 

62424, is a data format that provides meta-model that can define hierarchical 

plant models and define attributes for models. It defines elements, interfaces and 

components and concepts for modelling relationships and functional and 

topological hierarchies of them. These concepts can be used as a model for 

information exchange between engineering software tools. (Mahnke et al. 2011) 

Especially CAEX is focused on the exchange P&I diagrams from tools that create 

them to process control engineering or computer-aided engineering tools. (Holm 

et al. 2012)  

Figure 15. The basic model elements of ISO 15926 (Mahnke et al. 2011) 
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CAEX defines three class libraries which are SystemUnitClassLib, RoleClassLib 

and InterfaceClassLib. The InterfaceClassLib contains interfaces for modelling 

the information flow between resources and controls systems or mechanical 

connections like flange for connecting pipes. A class in this library defines type of 

the link between elements. It can also have attributes, like “direction”. The 

RoleClassLib comprises RoleClasses that are used to model functions of objects. 

The functions are something that the technical implementation has to fulfill, like 

for example "a conveyor". The roles are also used to assign graphical images to 

the objects. An object with the role "conveyor" would have a corresponding image 

in the diagram. The SystemUnitClassLib holds logical and physical plant objects. 

They are like classes of object-oriented programming. They describe the system 

elements in detail by defining the content and meaning of the elements. Roles 

can be assigned to these classes and with roles the elements get new attributes 

and interfaces. The classes from SystemUnitClassLib are used for instantiating 

InternalElements which are instances of these objects. The plant hierarchy is 

constructed in SystemHierarchy, which is kind of a container-object of the model. 

(Schleipen 2010, Holm et al. 2012) Figure 16 shows how all these libraries are 

used together.  

 

Figure 16. The usage of CAEX libraries. (Schleipen 2010) 
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Figure 17. Basic architecture of AutomationML. (AutomationML consortium 

2010) 

3.2.5 AutomationML 

AutomationML (Automation Markup Language, AML) is a data format developed 

by Daimler, ABB, Siemens, Rockwell, Kuka, Zühlke, netAllied and the universities 

of Magdeburg and Karlsruhe. The idea behind AML is to be a neutral format that 

serves for data exchange between manufacturing engineering tools, like CAD or 

simulation tools. (Drath et al. 2008) 

Like many other standards, AML is object-oriented and describes plant 

components as data objects. The objects can consist of sub-objects and be part 

of some higher level object themselves. Data objects can be everything from 

robots or signals and values to tanks and manufacturing cells. The aspects 

depicted are for example objects position in plant topology, relations to other 

objects, its behavior, kinematics or geometry. (AutomationML consortium 2010) 

AML uses established data formats for different aspects. It mainly serves as 

integration format between the standards and defines how to use them to 

achieve interoperability. The standards useds are CAEX, PLCopen XML and 

COLLADA™. (Drath et al. 2008) 
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For plant topology, AML uses CAEX. Because topology is also the top level of 

AML, CAEX is the high level integration frame of it. A specific usage for the 

format is defined. For geometry objects COLLADA™ -format is used to store 

them in separate XML files. Also kinematic information is stored similarly. The 

logic information is described with PLCopen XML –format as sequential 

functional charts (SFC). The variables in SFCs can be published as CAEX 

ExternalInterfaces so that the high level interconnections can be presented. The 

links between CAEX and external files, references, and the connections between 

CAEX objects, relations, are presented with standard CAEX mechanisms. The 

use of these standards and the basic architecture of AML are presented in Figure 

17. There are several advantages from the AML architecture. When established 

data formats are reused, the specification effort of AML is reduces. The data is 

distributed into different files and the bulk data handling is therefore easier. The 

library files usage is simplified by storing and exchanging them separately. The 

geometry and logic variants can be stored separately to distinguish between 

degrees of detail. (Drath et al. 2008) 

For the application of CAEX, AML defines certain rules and special libraries. AML 

defines how to identify objects and classes. InterfaceClassLib contains several 

interface classes for general automation systems. The classes of the library allow 

modelling of user defined interface instances. RoleClassLib defines the role 

classes that explain the functionality of CAEX objects. AML standard doesn’t 

define specific SystemUnitClassLib, but it does define some rules for it. 

InstanceHierarchy stores project data and is the core of AML data. It is hierarchy 

of object instance and its properties, references and relations. (Drath et al. 2008) 

3.2.6 PandIX 

PandIX is an information modelling method developed to exchange the data of 

P&I diagrams. It describes the functionality of the plant structure for control 

purposes in a standardized way. It doesn’t model any other relations, like 

chemical or physical reactions or balances. PandIX extends the CAEX model and 

it provides interfaces for interoperability with CAEX. Also interfaces are provided 

for vendor-specific solutions and XMpLant which is based on ISO 15926. PandIX 

was developed in Aachen University. (Schuller, Epple 2012) 
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PandIX uses interface based on CAEX to export the information related to 

functionality of the plant from the engineering software. The information that is 

irrelevant for process control engineering is not exchanged. The PandIX model is 

specified as a meta-model. The specification contains the model description, a 

library of standardized process plant elements, a suggestion for positioning 

system and mapping rules to create CAEX XML file for the model. (Schuller, 

Epple 2012) 

PandIX model has two types of technical units. They are process plant elements 

and process control elements. The plant units are for example pipes and vessels 

Figure 18. Example of process plant element in PandIX (Schuller, Epple 

2012) 
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and the control units are for example sensors. Both element types must have at 

least one interface. Links are used to connect interfaces. These links cannot have 

any functional properties since every functional connector, like pipe, is modelled 

as an element. In addition to having interfaces process plant elements have 

always at least one channel for products. The channels also have interfaces. A 

channel describes the flow of the actual product inside the process element.  A 

pipe would have one channel for example while a heat exchanger would have 

two. An example of a process plant element is presented in Figure 18. The 

variables of the element are on the left side and the interfaces on the right. 

Process control elements are used to send and receive information between the 

real and the virtual world. They have interfaces for signals and control. The signal 

interface enables connecting two control elements and the control interface 

enables transferring information to process plant element. (Schuller, Epple 2012) 

PandIX also provides form and positioning information. These can be used for 

example to describe geometry of vessels or positioning of a sensor. There are 

two ways to define this kind of information in PandIX. Other one is to export a 

complete 3D model, and the other is to add only the necessary pieces of 

information to PandIX. (Schuller, Epple 2012) 

3.2.7 IEC 61970/61968 Common Information Model 

The IEC 61970 is a model used to define the components of a power system and 

their relationships at an electrical level. IEC 61968 goes hand in hand with IEC 

61970 since it extends the model to cover also the other aspects of power system 

software data exchange. These could be billing, asset tracking and work 

scheduling for example. The standards also define Common Information Model 

(CIM) for power systems. The primary use of the standards is to facilitate the 

exchange of power system network data between companies and to allow the 

exchange of data between applications. (McMorran 2007) 

CIM is described using UML concepts. The IEC 61970-301 specifies the core 

packages and the IEC 61968-11 brings additional packages. The CIM consists of 

multiple main packages with different functionalities. There are also sub 

packages and classes with attributes and associations. Physical objects like 

equipment and abstract objects like operations can be described with this set of 
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abstract classes, attributes and associations. (Rohjans, Uslar & Appelrath 2010) 

The basic concept of CIM is presented in Figure 19. As can be seen classes can 

have subclasses and relationships to other classes. They have also attributes. 

Classes belong to packages which can be nested.  

An example of the usage of CIM is given in Figure 20. It is a model of a steam 

turbine. Inheritance is presented with arrows. For example, StreamTurbine-object 

inherits PrimeMover-object. There are also references. The StreamTurbine has 

SteamSupplys for example. Almost all the objects have attributes. The basic 

attributes required for identifying an instance of an object can be seen in 

Core::IdentifiedObject. 

 

 

Figure 19. Basic concept of CIM. (Mahnke et al. 2011) 
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3.2.8 IEC 61850  

As the name of IEC 61850 tells, it is a standard for “Communication Networks 

and Systems in Substations”. Although IEC 61850 is mainly a communication 

standard, in Part 7-4 it also defines basic information model used to describe 

specific substations, hydro-power generation and decentralized power 

generation. IEC 61400 extends this list with wind power generation. (Kostic, 

Preiss & Frei 2003, Mahnke et al. 2011)  

The modelling concept of IEC 61850 is object-oriented. It supports objects, 

attributes, data types and aggregation. Inheritance is not supported. (Mahnke et 

al. 2011) In the model, the main abstraction type is a logical node. The nodes can 

represent two things. Either they depict a function of substation the automation 

system or they depict external process equipment. The nodes contain a hierarchy 

Figure 20. Steam turbine CIM model. (Rohjans, Uslar & Appelrath 

2010) 
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of data objects and the objects contain attributes. The attributes store process 

information as well as configuration information etc. (Brunner 2008) In addition 

each attribute has a type, like boolean or integer. The information model can be 

seen in Figure 21. The standard defines several domain specific logical nodes. 

To extend the model, logical nodes and object classes can be added by the user. 

The information model is designed with and information exchange model. The 

standard specifies also a Substation Configuration Language (SCL). It can be 

used to exchange configuration information between tools. (Mahnke et al. 2011) 

3.3 Comparison of standards 

To obtain understanding about the modelling capabilities of the standards a 

simple comparison was made. The necessary requirements for all the information 

models are hierarchy, aggregation and variables. They are needed to present the 

structure of the process or the plant. Some of the models don’t support functions 

or concepts of object object-oriented programming. However, these capabilities 

Figure 21. The IEC 61850 Information Model (Mahnke et al. 2011) 
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are not needed for the uses of the models lacking them. (Mahnke et al. 2011) 

The results of the comparison are presented in Table 1. The comparison is 

similar to the one made by Mahnke et al. (Mahnke et al. 2011), but 

AutomationML and PandIX were added to it. (Schmidt, Lüder 2015, Schuller, 

Epple 2012) Also the support of inheritance and classes was added to CAEX 

according to Schleipen (Schleipen 2010). As can be seen from the table OPC UA 

is the standard with the strongest information modelling capabilities.  

 

Table 1. Comparison of the information modelling standards (Mahnke et al. 

2011, Schleipen 2010, Schmidt, Lüder 2015, Schuller, Epple 2012) 

 

OPC 

UA 

ISA-

95 

ISO 

15926 CAEX AML PandIX 

IEC 

61970 

(CIM) 

IEC 

61850 

Hierarchy x x x x x x X x 

Aggregation x x x x x x X x 

Variables x x x x x x X x 

Functions x x - - - - - - 

References x x x x x x X - 

Classes x x x x x x X Partly 

Methods x - - - - - X - 

Inheritance x x x x x x X - 

Data Types x - x x x x X x 
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Other important concept of information modelling is, as mentioned earlier, the 

extensibility or flexibility of the information models. This is needed to add vendor 

or end-user specific data. The concreteness of the model is also significant to be 

able to understand how domain-specific the models are. The models do also 

have different philosophies on how to model the system. The comparison of 

these features is presented in Table 2. (Mahnke et al. 2011) 

It is clear that there are lots of standards with different use cases and purposes. 

At the moment it is impossible to find a single standard applicable for all the uses. 

This leads to heterogeneous system of software build on different standards. 

(Selway et al. 2015) Therefore one significant factor in choosing the standard is 

how compatible it is with other standards. The best selection of the standard 

should fit to the use case, in this case process industry and specifically 

downstream O&G. The standard chosen should also be fairly popular to be 

supported by many devices and software systems.   

OPC UA as well as ISA-95 is developed to be used in all kinds of industries and 

everything from batch processes to continuous processes. (Mahnke, Leitner & 

Damm 2009, OPC Foundation 2013b) ISO 15926 on the other hand has a clear 

scope in upstream O&G, but being a generic model, it is applicable to other 

processes as well. (Holm et al. 2012) CAEX aims to be a standard for the 

exchange of data between P&I diagram development tools and process control 

engineering tools. (Holm et al. 2012) AutomationML is a standard developed for 

production systems engineering and commissioning. (Schmidt, Lüder 2015) 

PandIX is meant for the exchange of P&I diagrams. (Schuller, Epple 2012) IEC 

61970 and IEC 61850 are related to energy generation and grids. IEC 61970 

models components of power systems and their relationships. (McMorran 2007) 

IEC 61850 is for describing substations, hydro-power generation and 

decentralized power generation. (Mahnke et al. 2011) 
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Table 2. Comparison of the qualitative attributes of the standards. 

  Extensibility Philosophy Concreteness Source 

OPC UA 

Extensible in 

several ways, 

adding type 

hierarchies 

and reference 

types 

Object-

oriented + 

(Mahnke, 

Leitner & 

Damm 2009) 

ISA-95 

User specific 

data types and 

property 

values 

Object-

oriented + 

(Mahnke et 

al. 2011) 

ISO 15926 

Authorized 

users can add 

reference data Ontology ++ 

(Holm et al. 

2012) 

CAEX 

External 

interfaces Meta -- 

(Holm et al. 

2012) 

AutomationML 

User defined 

classes and 

libraries Meta - 

(Schmidt, 

Lüder 2015) 

PandIX 

External 

interfaces Meta - 

(Schuller, 

Epple 2012) 

IEC 61970 

(CIM) 

Extensible 

classes, 

attributes, 

pakcages, 

methods 

Object-

oriented ++ 

(Mahnke et 

al. 2011) 

IEC 61850 

Extensible 

logical nodes 

and objects 

Object-

oriented ++ 

(Mahnke et 

al. 2011) 

 

 



 

41 

 

OPC UA seems to be the standard to which other standards are relying on and 

trying to find compatibility. ISA-95 and AutomationML for example have OPC UA 

specifications. (OPC Foundation 2016d) According to Mahnke, Gössling and 

Graube, OPC UA can be used to map CAEX, ISA-95, ISO 15926, IEC 16970 and 

IEC 61850 information models. (Mahnke et al. 2011) Most likely also PandIX is 

compatible with OPC UA, since it is also based on CAEX.  

Because of the above mentioned reasons, OPC UA is selected to be the 

standard used for information modelling in this thesis. The advantages in 

selecting OPC UA are that OPC UA is highly platform independent standard. It 

supports complex data types and object models. It is capable of achieving high 

speed transfers by using efficient binary protocols. One of the main reasons for 

selecting OPC UA is that OPC UA has a broad industry support and it is being 

used to support also other standards like ISA-95, ISA-88, EDDL and MIMOSA. 

(Postół 2015) It is supported also by Germany’s Industrie 4.0. (OPC Foundation 

2015a) The drawback of OPC UA is that it isn’t capable of addressing the whole 

life-cycle. It is focused only on the operational phase. (Mahnke et al. 2011) 
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4 DEVELOPMENT OF INFORMATION MODELS 

This chapter explains the process of designing information models. In the 

previous chapter, different information model specifications were introduced and 

compared. According to the comparison made OPC UA provides the widest 

information modelling capabilities and was selected to be used in this thesis. In 

the first subchapter a rather generic modelling process is explained. The second 

subchapter gives some rules regarding information modelling in OPC UA. The 

existing modelling tools are reviewed in the last subchapter.  

4.1 Information modelling process 

Harju (Harju 2015) proposed steps for designing information models in his thesis. 

At first, the designer should get to know the process and the equipment to be 

modelled. That is done in three steps. First, data is gathered from P&IDs, process 

experts and other sources. At the same time the equipment related to the 

process are discovered. Next the signals such as measurements available from 

the process are studied to figure out which of them are necessary for the model. 

The gathered data needs to be validated before continuing from this initial step 

forward. (Harju 2015) In addition to the information of the process and equipment, 

also defining the requirements is important. The requirements help to understand 

the needed level of detail of the model and what information should be focused 

on. This kind of information can be gathered from the stakeholders of the 

information models by asking what is going to be done with the model and how. 

They could be for example clients or the ones maintaining the address space. 

The defined requirements should also be validated.  

After familiarizing the process, the modelling tools can be selected. Of course 

there is always the option to create models by writing with a simple text editor. 

However, tools can be helpful for modelling and maintaining the server address 

space. Three existing modelling tools are presented briefly later in the second 

subchapter. Creating own tool might be a feasible choice for maintaining the 

models. (Harju 2015) After the tools are set up and all the information is 

gathered, the actual modelling can be done.  
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First the devices are modelled. The existing types can be inherited and expanded 

to match the devices. The modelling should start from the highest level of 

abstraction and move towards smaller components. For example if a whole plant 

is modelled, the plant is the highest level but if a simple process is modelled, the 

process unit should be the highest level. From process unit the next level could 

be devices, then analyzer devices or sensors and finally simple input signals. 

Subchapter 4.3 gives some rules for information modelling with OPC UA.  

When the devices are modelled and the equipment hierarchy is ready the model 

can be moved to OPC UA server. Many of the information modelling tools provide 

a code generation function. The code can be inspected and own changes can be 

made before the server is set up. After the server is running instances can be 

created to server address space and used. (Harju 2015) 

4.2 Existing modelling tools 

Information models can be created by writing code directly or using some 

graphical editor that handles the code generation. Using these modelling tools 

brings some benefits. First of all, the tools make information modelling possible 

for users that don’t know how to code. Even for coders the tools can provide 

validation and ensure that the produced model is error free and valid OPC UA. 

The tested modelling tools in this thesis were OPC UA Address Space Model 

Designer from CAS, UaModeler from Unified Automation and OPC-UA-Modeler 

from Fraunhofer IOSB. The two first of these are freely available for testing, while 

the third one is not provided as a demo version. The selection of tools does not 

intend to be exhaustive. 

4.2.1 OPC UA Address Space Model Designer 

OPC UA Address Space Model Designer is available in two editions, professional 

and standard. The main difference is that the professional version is capable of 

importing and exporting XML schemas or UML while the standard is not. The 

professional version can also be used for UA Server Configuration and has some 

other more advanced features. The standard version can be used for basic 

modelling and also supports publishing the model as OPC UA Address Space. 

(CAS 2011a) The version tested was 3.20 Professional. 
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The OPC UA Address Space Model Designer user interface is divided into two 

panes. Figure 22 represents the user interface. On the right side, it always shows 

properties and data bindings of an object clicked. On the left side it has different 

views that are called “Model”, “Browse View” and “Model 3D”. The “Model” shows 

the information model currently under development and a type library. The 

“Browse View” shows the Address Space of the models as it can be seen on the 

server. The “Model 3D” is a graphical representation of the model. It seems 

rather complex, unclear and hard to use. In addition to these the designer tool 

provides help pane with lots of information about OPC UA. (CAS 2016) 

The tool currently has many different features under development. Many of them 

are helper functions like undo and redo. One interesting feature of the tool is the 

data binding functionality. It allows binding process data to the model at the 

modelling phase. Also other plug-in tools can be added. (CAS 2016) 

The OPC UA Address Space Model Designer can load models from XML-files 

and its own file format. Also saving is possible. Import can be done from UA node 

set XML-files. OPC DA server address space can be imported. Multiple import 

Figure 22. The user interface of OPC UA Address Space Model Designer. 
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formats, like UML diagram, XML schema and Visio are under development. The 

same formats are also under development for export. The model documentation 

can be exported to a Word document or Microsoft Assistance Markup Language 

(MAML). (CAS 2016) The tool is capable of exporting XML-files and generating 

C#-code to present the functionality of the model and to create the node 

instances. It must be noted that the functions created are just empty function 

stubs. Also other code generators can be added. (CAS 2011b) 

4.2.2 UaModeler 

The version of UaModeler tested for this thesis was 1.4.3. The UaModeler 

provides a graphical interface to build OPC UA information model. The tool has 

two modelling views. The one called “Graphics View” is the more graphical 

presentation of the model. It shows the objects and their relationships in a 

diagram. The other one is called “Nodes View” and provides detailed information 

about nodes, their attributes, children etc. The user interface and nodes view can 

be seen in Figure 23. For modelling purposes the node view seems more 

practical even though the graphical view allows seeing the relationships more 

clearly. In addition to these views the user has information model and project 

panes always at sight. At least the information model pane seems useful since it 

provides a clear view of the model hierarchy. (Unified Automation 2016a) 

Figure 23. The user interface of UaModeler. 
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The UaModeler provides standard OPC UA node set and in addition to that it 

comes with node sets for PLCOpen and Device Integration (DI). Other models 

have to be added by the user. For example, the ISA-95 model can be found from 

the OPC Foundation web site. (Harju 2015) The models can be imported from 

XML files or from UaModelers own file format. XML is also used for exporting the 

models. For generating code UaModeler has several options. C and C++ server 

code as well as a .NET server or client C# codes can be generated with 

UaModeler. The codes are used to provide function stubs or create instances of 

the model nodes. XML is required for providing the structure and type definitions. 

(Unified Automation 2016a) Other licenses for code generation can be purchased 

from Unified Automation. (Unified Automation 2016b) 

4.2.3 OPC-UA-Modeler 

OPC-UA-Modeler from Fraunhofer IOSB provides a graphical view to develop 

information models. One interesting feature of the tool is that it supports importing 

CAEX and AutomationML formats. It can be used to set up OPC UA servers 

using CAEX or AML files.  As well as the other tools, also OPC-UA-Modeler 

supports XML import and export. The application is based on Windows 

Presentation Foundation (WPF) and Silverlight. It is possible to get the 

application in German or English. (Harju 2015, Fraunhofer IOSB (c) 2016) 

4.2.4 Comparison 

Of the two tested tools, the UaModeler from Unified Automation has the best user 

interface. It is clear and easy to use. The hierarchy of the nodes is clear and the 

editor has excellent helper functions like automatically filling some information or 

an easy way to add children to a node. OPC UA Address Space Model Designer 

from CAS has the largest set of features and some really useful features under 

development. The comparison of the tools can mainly be done between these 

two, since the Fraunhofer OPC-UA-Modeler lacks important features such as a 

code generator. Fraunhofer’s tool however provides CAEX support which makes 

it stand out a bit. In this thesis CAEX support is not important.   

All the tools provide XML import and export capabilities. A graphical view is 

available in all the tools although the 3D view in OPC UA Address Space Model 
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Designer was quite hard to use and interpret. The Address Space Model 

Designer and UaModeler both provide code generators. UaModeler can generate 

C, C++ and .NET server (C#) code, while the Address Space Model Designer 

can create C# code. Other compilers can be added to both of tools. Both of these 

tools use XML for type definitions and providing the structure of the information 

model. The code is used for creating instances of nodes and to provide function 

stubs that require implementation. The binding of process data is a unique 

feature for Address Space Model Designer and makes it stand out. However 

because of the complex and less intuitive graphical user interface, it is harder to 

use than the UaModeler.  

Even when using modelling tools, some things still need to be done by hand. 

Both, the UaModeler and the Address Space Model Designer are capable of 

creating methods. The methods are generated with input and output parameters 

but the actual method code has to be added by the user after the method stub 

has been generated by the tool. 

Because of the well-designed user interface of the UaModeler it would be the first 

choice out of these three modelling tools. It is a lot easier to use than the OPC 

UA Address Space Model Designer and the models can be created with a lot less 

clicks. Also the validation during design is better in UaModeler. For example, if 

ReferenceType is removed, all the references are removed also. Address Space 

Model Designer validates the code when compiling. The code generated with 

UaModeler is more easily readable than the one from Address Space Model 

Designer. Although it must be said that Address Space Model Designer uses the 

code compiler provided by OPC Foundation. In functionality the Address Space 

Model Designer is as good or even better choice than the UaModeler. 

4.3 Generic rules for information modelling with OPC UA 

When creating information models, the model should always be kept as simple as 

possible for the use case. The level of detail in the model depends on the 

requirements and the data source. If the client only needs to access some values 

with ids, a full information model is unnecessary. If the data source is only a 

simple OPC DA server it is impossible to create a rich information model. 

(Mahnke, Leitner & Damm 2009) 
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OPC UA allows the developer to define more data types freely to match the 

application needs. There is also existing set of types and instances. The new 

data types inherit the existing type from which they derive from but they can also 

have modifications to the features. New data types must be exposed to the 

Address Space by the server. (Postół 2015) The data types used should be 

standardized types if possible. The standardized types can be selected from OPC 

UA specification or from a selected companion specification. (Mahnke, Leitner & 

Damm 2009) 

Generally speaking there are two ways to design new information models that 

describe the behavior and state of a process. One is to adopt an existing model 

from a companion specification and the other to design a custom model with own 

data types. To unify the information models and to promote reusability, OPC UA 

has many companion specifications for different processes. (Postół 2015) The 

standard information models defined in the companion specifications should be 

used when available because they might be familiar to the clients. (Mahnke, 

Leitner & Damm 2009) 

4.3.1 Structuring 

In OPC UA objects are used to access methods and variables. The detail of 

structure of the model depends on the usage. The more the client needs to 

browse the address space the more structured it should be. Grouping of nodes 

and variables can be done in several ways. Nodes should match devices or 

similar instances. The variables under them can be grouped by objects according 

to the purpose of the variable. The device nodes can be ordered according to 

location, functionality etc. OPC UA allows having multiple hierarchies. (Mahnke, 

Leitner & Damm 2009)  

The ReferenceTypes can be used to define relationships between the nodes. 

There are hierarchical and non-hierarchical references. When existing 

ReferenceTypes are not enough, new types can be made. A supertype should be 

selected carefully for a new ReferenceType. Appropriate supertypes allow easy 

filtering of Address Space. (Mahnke, Leitner & Damm 2009) 



 

49 

 

Views can be used to show parts of Address Space while hiding unnecessary 

information. They either provide a hierarchy or to hide subcomponents of a node. 

(Mahnke, Leitner & Damm 2009) 

In addition to structuring a single information model, also the whole namespace 

needs some kind of form. To keep the structure of the models easily 

understandable, all the different plants types should have their own namespaces. 

(Harju 2015) For example a distillation unit and cracking unit should be in their 

own separate namespaces.  

4.3.2 Defining types 

All the objects and variables need to have an OPC UA type definition. If server is 

lacking types, BaseObjectType and BaseDataVariableType can be used. 

PropertyType is always used for properties. The definitions give more information 

about the objects. Therefore providing specific type definitions is useful and 

especially so when the definition is specified in a standard information model. 

This is because the client applications also use those type definitions. (Mahnke, 

Leitner & Damm 2009) 

Before creating new type definitions some things should be considered. If it is 

possible to provide the same information with a standard type definition, a new 

one shouldn’t be created. Subtypes or instance specific information can be used 

to extend those standard definitions. If the decision is made to create a new type 

definition, a suitable supertype needs to be selected. There are always the base 

types but if a more specialized supertype is available, it should be used. The 

supertype is always specialized more by the subtype by for example adding 

semantic. A supertype cannot be used if application is unable to prove some 

mandatory information. When creating VariableTypes, the subtype has to have 

the same data type as the supertype. In OPC UA multiple-inheritance is possible 

but there are no rules for that. Because of the complexity of multiple-inheritance it 

should be avoided.  (Mahnke, Leitner & Damm 2009) 

OPC UA has simple and complex ObjectTypes. Simple ObjectTypes only define 

semantics of the object while complex types define the structure. The ObjectType 

should be complex if the type is going to have multiple instances that have the 
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same structure. This is the typical case for a device. Simple types are needed 

when the instances have different structures, like in an object representing a 

factory area for example. (Mahnke, Leitner & Damm 2009) 

If an object provides only one variable, like a simple sensor for example, using 

VariableType might be considered. However, this doesn’t support extensibility 

well. If you have also more complex sensors, you need to define them as 

ObjectTypes. Having both ObjectTypes and VariableTypes representing sensors 

is harder to handle and bad design. Therefore all of the similar devices should be 

the same kind of type to enable similar handling. If there are only simple sensors 

VariableType can be used but if there are more complex sensors, all the sensors 

should be ObjectType. (Mahnke, Leitner & Damm 2009) 

4.3.3 Naming of new types 

Common naming practices help programmers to get an idea what a type is doing 

without reading the whole code. The type libraries created should be named 

similarly as the predefined OPC UA type libraries. They are called ObjectTypes, 

VariableTypes etc. They always start with a descriptive name written with 

uppercase letter and end with Types. Own type libraries have to be named 

accordingly. Also the types themselves in the OPC UA specification start with a 

descriptive name written with uppercase first letter and end with the word "Type". 

Therefore also the own types should start with an uppercase letter and name and 

end with "Type". An exception is reference type that doesn't have a specified 

ending.  

4.4 Information models in an OPC UA server 

Since there are different OPC UA servers there is no generic way of uploading 

models. The models can be uploaded in different file formats and the nodes of 

the address space can be defined before uploading the models or dynamically in 

the server. Also there are different ways to bind the process data to the model. 

Instead of trying to describe the process of setting up an OPC UA server, this 

chapter studies the different file formats that can be used to describe OPC UA 

information models and how the model should be validated before moving it to 

the server. First the benefits and drawbacks of the file formats are discussed from 
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a few viewpoints. The viewpoints are capabilities of describing the model, the 

interchangeability and the possibilities of dynamically changing the information 

model.  

4.4.1 File formats 

Information models or the standard nodes of them should be stored in some 

machine readable file format. This enables populating servers Address Space 

automatically from the file. However, some constraints always need to be defined 

in text format. (Mahnke, Leitner & Damm 2009) Having a common format that is 

both human- and machine-readable allows the model to be processed in future 

also. It also supports interchangeability of the model. (Postół 2015) OPC 

Foundation provides the standard nodes and also companion specification nodes 

in XML-files based on its own UANodeSet XML Schema. (OPC Foundation 

2015d) The benefit of using this standardized schema is that it is compatible with 

some OPC UA tools, like modelers. Since it is defined by OPC Foundation itself, 

it can be expected to be the format used in future. 

The information model needs another file format for the implementation of the 

Address Space functionality and the connection to the real world. It needs to be 

capable of instantiating Address Space at runtime. This code is usually generated 

with some compiler that can be used as an individual solution or embedded to the 

model designer tool or to a server. (Postół 2015) OPC Foundation provides an 

open source Model Compiler to generate ANSI C or C# source code from XML 

files. (OPC Foundation 2016a) The provided source code can be used to 

instantiate and interconnect nodes at runtime. In addition to the code languages 

mentioned also other languages like C++ and Java can be used. The selection 

depends on the server. In this thesis we are interested in developing information 

models for a .NET server. From now on, the discussion will focus on .NET 

servers. 

The way most of the .NET servers function is the one described above. They load 

the XML and the code generated. The XML files contain the node set while the 

code contains the connections to the data. The code handles creation of the 

instances. However, there are also optional ways that will be discussed next.  
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Information models can be also specified only with code, like C#. The code can 

be separately compiled and moved to a .NET server using Dynamic-link library 

(DLL) -files. As said earlier, the code is needed to provide functionality to the 

information model. This functionality doesn't only mean methods but also 

functionality in assigning values, checking ranges etc.  

Information models cannot be described only with XML since currently there is no 

used technique to provide functionality that way. However, in the future new XML 

scripting techniques might provide functionality to XML-format. For example 

Stuart (Stuart 2009), has written a patent of an XML based scripting language. 

Currently there is no de facto XML scripting technique. Of course own methods to 

do this can be defined but it would require more work and the interchangeability 

benefits of XML would then be lost. It also cannot be said for sure that there is 

ever going to be de facto XML scripting standard.  

Compared to coding XML has one practical benefit. XML is designed to present 

structure while code is not. Interpreting structure from code even if it is object-

oriented requires more effort. The hierarchies in XML are also more human-

readable.  

XML and generating executable code from it in server has also another benefit. It 

allows changing information models at runtime since the XML models can be 

easily removed from server. However, dynamically changing the information 

models requires some means of modifying the existing node instances and to 

maintain their data bindings.  

Loading new DLL-files to a server is also possible but a lot more complex than 

loading XML-files. This is due to the fact that there is no way to unload an 

existing DLL-file from a .NET assembly. The problem could be solved by loading 

DLLs to a separate new AppDomain. AppDomain means an isolated layer or 

environment where applications execute. (Microsoft (c) 2016) When the DLL-files 

need to be updated, the old AppDomain can be disposed and a new one can be 

created. (Holstad 2007) The information model is updated by loading the new 

DLL-files to the new AppDomain.  

Of course for the update to be useful also the existing instances of the modified 

objects have to be changed. One way of doing this could be creating new 
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instances of every existing instance and creating a method to copy each value of 

the instance to the new instance. After this the old instances could be removed. 

Writing information models with C# and uploading them to server as DLL-files 

was selected to be used in this thesis. The reason is that functionality still 

requires some parts of the information models to be presented as code. XML 

scripting is not developed enough to be used in this yet and it might never be. 

Dynamically changing the information model database with DLL-files is hard but 

not impossible. The drawback of the selection is that the readymade tool 

solutions like modelling tools and servers usually support XML the way described 

in the beginning of chapter. Also the code doesn't present the structure in an as 

human-readable format as XML does. Reading and understanding how the XML 

models are formed and how one should write information model in XML is a lot 

easier than understanding the code. Programming the models requires much 

more knowledge of OPC UA, the server functionality and of course programming. 

4.4.2 Architecture 

The information models logically build upon each other when they are created by 

programming. A logical architecture is presented in Figure 24. The vendor 

specific models on the top layer inherit the lower layers and so on. The methods 

are called directly from the objects. There are a lot of advantages in this kind of 

architecture. There is a lot of reuse of the lower level components since all the 

top level components can use the same base. Adding new components is easy 

and therefore the application is scalable. However, the architecture also has 

disadvantages. The clearest disadvantage is that changes to the lower levels 

usually affect the top levels. This kind of architecture is not usually optimal 

performance vice either because depending on the internal server architecture 

the communication might need to pass many layers. 
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Another option for the design would be implementing an interface through which 

all the communication would pass as presented in Figure 25. The idea is to base 

logic on the interfaces instead of the internal implementation details of the 

objects. An interface of an object can be thought as a type definition of an object. 

It defines the methods the object has but the object class itself has to take care of 

the implementation. Using the interface reduces the dependencies of the code. 

Because the interface defines the interactions between the object they cannot 

reference each other directly anymore. Of course having this kind of single 

package to handle all the communication introduces a single point of failure and 

a bottleneck. Also the interface package can become really complex if not 

designed properly. 

Figure 24. Layered information model architecture. 
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The use of interfaces makes sure that there are no references from code 

instance to another. Because the address space of an OPC UA server builds the 

references between the nodes using OPC UA reference definitions, referencing 

objects in the code in unnecessary. If objects reference each other in the code 

removing the nodes becomes complicated. In addition to removing the node and 

its OPC UA references from the server, the possible code object references to 

the object need to be removed. If a code object reference to the object stays, the 

.NET garbage collector will not remove the actual object. Also recreating the 

internal code object references when the server is restarted is harder than simply 

recreating the address space.  

The layered approach is definitely more instinctive solution since it is based on 

the OPC UA Information Model hierarchy. The hierarchy and the inheritances can 

Figure 25. Alternative architecture approach with interface. 
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be written directly to the code. In the single interface approach, the hierarchy has 

to be built run-time and not by referencing the objects in the code.  

One problem in the layered architecture is that always when an instance of a 

class is not being used anymore, the node might be removed from memory while 

there are still some references to it. Because of the objects referencing each 

other directly there are a lot of references and deleting all of them is hard. With 

the interface approach this is not a problem.  

Another benefit of having an interface for the communications is that the actual 

information models can be easily modified and new information models can be 

added. This is because the information models are not aware of each other. Only 

the communication interface might require modifications when something is 

altered or added. 

In this thesis the architecture the information models are based on is layered 

architecture. This is because the existing models are using layered architecture. 

It would require a lot of changes and refactoring to start modelling with different 

architecture.  

4.4.3 Validation 

Information models that are not properly done can cause problems in the server. 

Since programming and modelling tools provide ways to detect syntax errors they 

are not usually the reason. Logical errors like mistakes in calculations or resource 

management cannot be detected by programming tools. Of course good 

practices of coding and clear instructions help avoiding these errors but it should 

be never trusted that the code is completely error free.  

Before a new model is used some validation and checking for the most common 

logic errors should be done. Having the code or at least the functional parts 

inspected visually by a colleague could help but isn't enough. 

In addition to peer inspection some kind of testing has to be done. There are 

software applications for continuous integration. This means applications that are 

capable of building and testing software continuously and even delivering them. 

The basic idea is that when changes are added to the version control the 



 

57 

 

software running on the version control server automatically builds the software 

project. Then it executes the unit tests made. It is necessary to test that the new 

information model is compatible with also the previous server and information 

model library versions. If it is not, some feedback is needed to know which 

versions can be used with the information model. Since unit testing is time 

consuming and often neglected it is important that it can be done automatically. 

At least the most critical parts of the system, meaning the ones with possibility to 

cause the system to fail, should be tested. All kinds of functions or methods with 

calculations, casting or conversions can be considered critical. Boundaries could 

be set for example to calculations such as division, square root and logarithms 

since they cannot be always calculated and cause non-numerical values. 

When the information model is delivered to the client's system a sandbox 

environment is required to allow the developers to safely test the system before 

launching it. Sandboxing means a technique where the program is isolated from 

other programs to test it. Often it is a virtual machine that is a copy of the actual 

server with an identical database and environment. It protects the actual server 

because it allows only the virtual machine to fail. The reason this is needed is that 

there is always the possibility that something in the client's system has been 

changed after the first delivery or during it. Sandboxing takes time especially in 

the process environment since all the anomalies don't occur in a day. However, it 

is worth doing at least until a certain predefined level of confidence is reached. 

How long the sandboxing should be done depends on the nature of the process.  
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5 INTRODUCTION TO THE EXPERIMENTAL PART 

In this chapter the aims of the practical part of the thesis are explained. First the 

problem with interoperability in a current solution is explained. After that the 

possible improvement is presented together with steps to achieve that. Also 

targeted ideal functionality of the solution is given. The second subchapter 

presents the equipment modelled in the thesis to give a clear image of what is 

going to be done. It defines specific requirements for the information models to 

achieve the goals of the practical part.  

5.1 Development needs 

The aim of the practical part of this thesis is to create information models that 

enable interoperability between different software. The models are created to 

Neste Jacobs Oy's NAPCON solution environment. The specific target is to 

achieve interoperability in NAPCONs distillation column calculation software.  
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Currently, whenever calculating something with the distillation column calculation 

tool, the distillation column has to be defined and configured with an offline tool. 

The tool then creates an XML file. The XML file contains the model of the 

distillation column and tags of the data needed from the database. When the 

calculation is started the XML is loaded and de-serialized into instances. The 

database variables are saved into their own table. The architecture of the current 

solution is presented in Figure 26. 

To improve the interoperability and the flexibility of this solution the information 

model should exist in the OPC UA Server. The resulting architecture, presented 

in Figure 27, would be simple and more intuitive than the old one. With 

information models existing on the server the configuration tool could function 

online and the calculator could directly use the information models and the data 

from the database. Also the result could be returned directly. When the 

information models exist on the server there is no need for external configuration 

Figure 26. Architecture of the current solution. (Räisänen 2014) 
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files. The client can see the defined distillation column on the server and the 

calculations made are therefore more transparent. Also the architecture supports 

the IoT way of doing things. The models are not only accessible to the calculation 

tool but also to other clients.  

To implement this, first the distillation process is studied as well as the 

requirements of the calculation. An information model of the distillation column is 

created using OPC UA information modelling specification. The development 

started with creating a generic distillation column information model, moving on to 

the data specific to this application. The model is then moved to the server and its 

functionality is tested. Some changes are needed for the existing calculation tool 

to support the model. Also a new or modified configuration tool is needed to 

Figure 27. Architecture of the solution with information models in the 

database  
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create the instances of distillation columns to the database. However these are 

not in scope of this thesis. Only the information models are assessed.  

5.2 Equipment modelled 

The equipment to be modelled in this thesis is a continuous multi-product 

distillation unit. In addition to all the parts of the column also the feeds and 

product streams are modelled. Base type definitions are created for all distillation 

columns to create a good and reusable hierarchy. 

In multi-product distillation the feed consists of multiple components. The 

components are separated in a single column producing multiple products. Multi-

product distillation is more complex than a binary distillation column. (Räisänen 

2014) Both of these have feed flow coming from the middle of the column. The 

liquid phase comes out from the bottom of the column. In some cases part of the 

liquid is vaporized in the reboiler and fed back to the column. The overhead vapor 

comes out from the top of the column. It is condensed to liquid. Part of the liquid 

is fed back to the column as a reflux flow and the rest is distillate. The actual 

distillation columns can be tray columns or packed bed columns.  

Multi-product distillation columns have more variety in structure. Mainly the 

difference is that there are multiple side draws. One possible multi-product 

distillation column is presented in Figure 28. This column has five different 

products. The side draws are stripped to remove absorbed light components from 

the distillate and to feed them back to the column as vapor. Vapor can also be 

fed from the bottom of the column. This lowers the partial pressure of the stripped 

light components in the gas phase. It increases the yield of the separation. There 

are also circulating flows to condensers next to the side draws. The condensers 

in the mid parts of the column reduce the need of energy in the top of the column. 

In addition they increase the liquid flow below them and affect the concentration 

of the product flow. (Räisänen 2014) 

Because of the complexity and variety of multi-product distillation columns the 

information model made from the column has to be abstract and flexible. It has to 

enable creation of different column structures. The amount of distillate flows out 

can vary. Columns can have different number of trays. Sometimes there is no 
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stripping but the vapor flow out from the mid part of the column is condensed 

directly into liquid and divided into reflux and distillate. In addition to this there can 

be some kind of thermal integration both between the flows of the column and 

between multiple different process units. For example in crude oil distillation the 

feed of the column is heated with the condenser of the top of the column, reflux 

flows and a separate heater (Räisänen 2014). 

In this case also knowledge about the calculations and variables needed for them 

is necessary in addition to the knowledge about the column. In the calculation 

software the column is divided to unit columns. The unit columns consist of the 

actual column part, the side draw-off unit with possible stripper and a condenser 

circulation. It is important to know with which tray the streams are associated. 

Figure 28. Multi-product distillation column 
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The bottom and the top unit columns are different from the others since they do 

not have the same process units related to them.  

The column itself has multiple measurement points for temperature, pressure and 

flow. These are all associated with different trays. Calculating the flows between 

the trays is important and therefore also the measurements and knowing their 

location is important. In addition to these there is some additional data about the 

column, like the pressure loss in trays or the dew point.  

The heat exchanger objects like condensers and boilers have information about 

flows going in and out and also the power used and the maximum power 

available. These can be used for energy calculations.  

Information is required about the flows both inside the column and going from the 

column to different equipment. Flow properties such as mass flow, pressure and 

temperature are necessary as well as information about heavy key and vapor 

fractions and density. These all should be available for the calculations. There 

are also properties that are calculated like enthalpy, molar flow and molar weight 

as well as the Watson characterization factor. If available, also the distillation 

curve temperatures are necessary information.  
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6 THE MODELLING PROCESS 

This chapter explains how the modelling of distillation column was done. First the 

choice of tools and programming languages are motivated quickly. After that the 

actual process of modelling is presented. It includes justifying the choices of 

companion specifications and explaining how they were used.  

6.1 Tools used for modelling 

The modelling in this thesis was done by programming in C# language by using 

Visual Studio as the editor. The reason for the choice was that the modelling 

tools couldn't produce code suitable for the NAPCON OPC UA server. Also 

programming would have been needed anyway since the modelers are not 

capable of implementing functionality. The choice to write the models only as 

code and not using XML makes the model structure a bit harder to interpret for 

human. Also currently no modelling tools can be used for the produced code but 

there is a possibility to develop own OPC UA modeler in the future.  

The information models created were uploaded to NAPCON UA Server. 

Browsing the server's address space and creating the node instances was done 

with NAPCON Information Manager. All the testing and validation was done by 

examining the models and using the methods of the nodes with Information 

Manager.  

6.2 Development of the base information models 

ISA-95 companion specification defines information model that includes for 

example EquipmentType. Using this ready-made type seemed reasonable 

because equipment were modelled. Another option would have been creating 

own type definitions. Using information model from a ready-made companion 

specification supports interoperability of the model. Also other companion 

specifications could have been used but ISA-95 seemed the best since it is 

suitable all kinds of processes. The ISA-95 model for OPC UA has been released 

already in 2013. (OPC Foundation 2013b) ISA-95 is abstract model for functions 
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and operations of a plant and therefore suitable for models used in production 

control systems.  

Another companion specification that was used was the Device Integration -

specification (DI). The DI model provides a base for modelling devices such as 

temperature or pressure meters and simplifies the integration of different devices. 

The DI model has TopologyElement as its base type. It contains parameter and 

method sets organized by FunctionalGroupType. The DeviceType inherits 

TopologyElement and is the base type for devices. (OPC Foundation 2013a) 

The DI information model had already been programmed to the used type library 

so there was no need to edit them. The ISA-95 model was not defined so it had 

to be made. It was programmed following the OPC UA for ISA-95 Common 

Object model specification. The properties and references of each needed type 

were read from the specification and transformed into code. The programming 

was carried out by starting by modelling the EquipmentType and creating all the 

other types it needed. The new types were then modelled and the associated 

types created and so on until there were no more associations. As the result 

whole model was not programmed but only the parts necessary for this work. 

They were the equipment, physical asset and material information parts. Also 

ISA-95 Base Information model was required. ISA-95 model can be seen in 

Figure 29 in OPC UA notation. In the Common Object Model the Role based 

equipment information, Physical asset information and Material information were 

the parts modelled.  
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Figure 29. ISA-95 OPC UA Information Model (OPC Foundation 2013b) 
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Even from the modelled parts some features of the ISA-95 specification were left 

out on purpose since they were optional and weren't useful for the data of the 

NAPCON solutions. For example EquipmentCapabilityTestSpecificationType and 

other similar types were not used because currently there is no need for such 

capability test data. If the data is needed later the classes can be added. Also 

Data Representation Model was left out since there was no possibility to create 

new data types to the server. Instead the most suitable OPC UA data type was 

selected when there was a need for ISA-95 specific data type. 

Before modelling the distillation process some generic process equipment types 

were created. These were added to their own information model library to be 

easily subtyped in other information models. ProcessUnitType was created to be 

a generic base type with common properties for all process units. PipeType was 

created to be a generic type for all pipes in processes. Both of these types were 

defined as a subtype of EquipmentType. Also other generic equipment types 

such as TankType or HeatExchangerType were modelled as a subtype of 

EquipmentType. To model the flow of fluids from a unit to another FlowsTo 

reference type was added as a subtype of NonHierarchialReferences. FlowType 

was created to store the information about the liquid flowing in a pipe. 

MaterialClassType for ISA-95 specification was used as a supertype of 

FlowType. To define the relationship of a pipe and a flowing liquid 

HasMaterialFlow -reference was created. In addition types for equipment, like 

condenser, stripper and boiler, common for many processes were added.  

All in all the modelling process was carried out starting from the highest level of 

abstraction and proceeding towards the smallest concrete pieces of equipment 

and devices. First the process unit level was modelled. The distillation process 

was further on divided into small sub-units, like the column containing trays or a 

condenser circulation unit containing draw-off and reflux pipes. The equipment 

were modelled after the sub-unit were done. First the focus was in creating a 

generic and flexible model of a distillation column and not so much on providing 

the necessary details for calculations. Because of this approach the model can 

be used in other applications also and is not limited to the calculation software 

only. 
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6.3 Modelling of the distillation column 

The modelling process began by studying different multi-product distillation 

column structures and trying to find the parts common for them. The information 

was gathered from articles as well as by asking from experts. Also the calculation 

software related to the distillation columns was studied and the future of it was 

discussed with experts. A generic model of distillation column was build. The 

column was divided into small pieces with the idea to keep the model as flexible 

as possible. Modelling the outline of the process was rather simple but some 

things like functions for adding trays and decisions about the structure was more 

involved. It was also time consuming to study how the server and its OPC UA 

address space works.  

After the outline of the distillation process was ready, it was tested and validated 

with NAPCON Information Manager. The testing was carried out by creating a 

distillation column with different sub-pieces and trying all the different functions 

and checking if correct references and nodes exist after that. Also shutting down 

and restarting the server was tested to see if the nodes and references in the 

address space are correctly reconstructed after that. The reconstruction was 

proven out to be somewhat problematic. It had to be taken care that the 

reference is added actually to the address space not just to the code object so 

that it would be stored and reconstructed after restart.  

The code of the distillation column calculation software and the XML-file used for 

configuring the software were studied to find out the required data. The 

measurements in the column and pipes were modelled according to the 

calculation software's objects. It was found out that also data about the flows, 

such as distillation curve related data, is required.  

Finally to prove the concept of interoperability the information model was 

connected to data located on another server. Further on this data was used in 

calculations and results were returned to the database. Also writing data from the 

local server to another server was tested.   
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7 IMPLEMENTATION OF THE INFORMATION MODELS 

This chapter will first present the generic design of the created information 

models. First an overview is given about the libraries created and how different 

types are divided into libraries. Also the structure of the distillation column models 

is explained together with the idea behind it. After that the thesis contains 

discussion about the type definitions of the most important equipment and the 

data the definitions contain.  

7.1 Design of the models 

The created type definitions were divided into two different libraries. Most of the 

modelled equipment is only related to distillation processes and therefore located 

in the DistillationEquipmentTypes -library. However some common equipment 

was modelled for applicable processes. Type definitions such as PipeType or 

HeatExchangerType were placed into the ProcessEquipmentTypes -library. The 

idea is that the ProcessEquipmentTypes library can be used when modelling 

other process units as well. This promotes code reuse.  

Most of the type definitions in ProcessEquipmentTypes-library can be used 

directly since they are made for common equipment. Notably there is also a 

ProcessUnitType that should be used as a base for all the process units 

modelled. The DistillationProcessUnitType is the highest level of abstraction in 

the distillation process model. It is inherited from ProcessUnitType. 

ProcessUnitType contains location information and is again inherited from ISA-95 

EquipmentType 

In general most of the created type definitions are inherited from EquipmentType. 

A couple of exceptions are type definitions for measurement instruments that are 

inherited from DI-model's DeviceType. The FlowType defining material flowing in 

the pipes is inherited from ISA-95 MaterialClassType. In addition to these there 

are also reference types that were created that inherit the most suitable reference 

type from the OPC UA -specification.  

The created information model of the distillation process is separated to various 

different components or subunits. The highest level unit, 
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DistillationProcessUnitType, is an abstract object type having generic 

components of a distillation process as children. The components are 

FeedUnitType, BottomUnitType and TopUnitType as well as the 

DistillationColumnType itself. The UnitTypes present collections of equipment 

that can be handled as a single component of the bigger process. In the 

distillation column case they contain at least a pipe connected to the column. 

There is a possibility to add equipment like a boiler to the bottom unit or a heater 

to the feed unit. 

The concrete types for distillation processes are 

MultiProductDistillationProcessUnitType and BinaryDistillationProcessType. Only 

the first is required for this thesis. In addition to the inherited components the 

Figure 30. The distillation process divided into components. 



 

71 

 

MultiProductDistillationProcessUnitType has HeatExchangerCirculationUnitType 

and SideDrawOffUnitType as components. Figure 30 presents how the distillation 

process is divided to different parts in MultiProductDistillationProcessUnitType. In 

the figure, the red squares present a sub-component. One column can have 

multiple condenser circulations and side draw-offs. Figure 31 presents the UML 

diagram with the main classes of the information model.  

7.2 Implementation details 

Most important part of the model is the column itself. The DistillationColumnType 

is an abstract type and cannot be used directly. It has node sets to hold 

temperature, pressure and flow measurement nodes as children. The concrete 

subtypes of DistillationColumnType are TrayDistillationColumnType and 

PackedDistillationColumnType. PackedDistillationColumnType has 

PackingMaterialType as a child. TrayDistillationColumnType needs to have a set 

of trays inside and method for adding the trays in order. In addition to these the 

TrayDistillationColumn has data for the calculations, such as the dew point.  

There is a TrayType to define one tray. It contains information about the trays 

above and below. Two special references, VaporFlowTo and LiquidFlowTo, are 

created to define the relationship between a tray and the upper tray or the tray 

Figure 31. The UML diagram of the main classes of the information model. 
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below. TrayType also has information about the vapor flow and the liquid flow 

going through the tray. FlowType is used to define a flow. TrayType has data 

about its pressure loss to support the calculations. It also has a diameter so that 

the geometry of the column can be defined. The UML diagram in Figure 32 

presents the DistillationColumnType and its related types.  

FlowType contains information about the material flowing in a pipe. Things that 

can be measured or are usually measured from the pipe are children of the 

PipeType. FlowType contains data that is not measured but known from lab 

results such as density. FlowType belongs to ProcessEquipmentTypes since it 

needs to be available for other applications also. However it has a subtype called 

DistillationFlowType in DistillationEquipmentTypes. The subtype has distillation 

specific data like the Watson characterization factor or the dataset to store 

distillation curve temperatures.  

Figure 32. The UML diagram of the DistillationColumnType and related 

types. 
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PipeType is important since it creates all the connections between other 

equipment. It uses FlowsTo reference to tell the direction of the flow in the 

process. It also has information about the material flowing in the pipe and the 

possible measurements. FlowType is referenced with HasMaterialFlow reference. 

Figure 33 shows the class diagram of PipeType. Commonly some measurement 

devices are connected to PipeType but there is no standard measurement set 

defined. 

All the equipment have their own type definitions. For example boilers have 

BoilerType. The BoilerType is inherited from HeatExchangerType. The type 

definition for all heat exchangers has data item nodes containing the information 

how much power it uses and what is the maximum power.  

 

Figure 33. The UML diagram of the PipeType 
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The unit types connected to the distillation column always contain at least the 

pipe connected to the column. FeedUnitType has optionally also a heat 

exchanger to warm up the column feed. The TopUnitType has the option to add a 

condenser and reflux drum and all the pipes connected to them. There can be 

more than one condenser but most likely these cases can be simplified and 

modelled with only one condenser. If necessary, there is a possibility for 

additional condensers. The BottomUnitType allows adding reboiler and pipes 

related to it. The unit types have methods for creating all the child nodes 

mentioned here. Of course adding other child nodes and different equipment is 

possible. The main idea in having these methods is to make sure that the correct 

set of equipment is added and that the correct references are used between the 

equipment.  

As mentioned earlier the MultiProductDistillationProcessUnit has two additional 

unit types as children. It also has methods for adding them. 

HeatExchangerCirculationUnitType always consists of an outflow pipe from the 

column, a heat exchanger and a reflux pipe. The heat exchanger is 

HeatExchangerType. Also subtypes like CondenserType can be used in the 

circulation unit. The SideDrawOffUnitType has always a pipe out from the 

column. There could be also a stripper, a reflux pipe and a product pipe from the 

stripper. The SideDrawOffUnit has method for adding a stripper. The PipeType 

nodes of the condenser circulation and the side draw off are connected to the 

TrayType nodes in the distillation column. The distillation column can be divided 

into unit columns for the calculation software with this information. It was decided 

not to create the unit columns to the information model since the information 

model is supposed to be generic and applicable for other use cases as well.  

Measurement devices have their own type definition called 

MeasurementDeviceType. The type definition contains an AnalogItem that 

contains information about the measurement and its value. 

MeasurementDeviceType has enumeration variable to define if the measurement 

is pressure, temperature, flow, density or level measurement. The nodes of 

MeasurementDeviceType can be added to nodes of PipeType or TrayType for 

example. 
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A ControllerDeviceType was also created. It has node of 

MeasurementDeviceType as a child. In addition to that the controller needs to 

have a set point and an output. These are added as AnalogItems.  The type 

definition of the controller device is really simplified. When creating it the model of 

ControlEquipment in "OPC Unified Architecture for AutomationML" -specification 

was studied. However the model was seen as too specific since it represents the 

controller from the level of the actual device. For this model only presenting the 

data was important and the implementation of the actual device could be 

skipped. Therefore it was decided to keep the type definition as simple as 

possible. (OPC Foundation 2016b) The ControllerDeviceType and the 

MeasurementDeviceType can be seen in Figure 34. 

 

Figure 34. The ControllerDeviceType and the MeasurementDeviceType. 

 

7.3 Connecting to the data 

MeasurementDeviceType and ControllerDeviceType type were connected to data 

existing on another server to prove the interoperability. First the server was 

connected to the remote database containing the process values. The references 

could be made once the remote database was connected and accessible. 

In the MeasurementDeviceType the measurement was connected to another 

property using HasInput-reference. The MesurementDeviceType had to be 

programmed so that adding HasInput-reference triggers an event of writing new 
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value to measurement and adding value listener to the source node. The value 

listener was programmed so that every time the value of the source node 

changes also the measurement changes.  

In addition of getting measurement values the ControllerDeviceType had to be 

capable of writing the output value to the remote database. The same HasInput-

reference was used also in this but it was inverted meaning that the output is the 

input of the remote value. In OPC UA all references have an inverted meaning. 

Instead of using something called "IsOutput" using the inverted HasInput is OPC 

UA compliant. Again the type was programmed so that adding the reference 

triggers function that handles adding value listener to output and writing to the 

remote property. Therefore every time the output is updated also the remote 

property will be updated.   

The calculation framework can be connected to the information model without 

any additional modifications to the existing NAPCON Calculation framework. The 

old distillation calculation tool however cannot be directly used with the 

information models. It requires some modifications so that it is capable of reading 

the column structure from the information models. A simple sum calculation was 

tested with the NAPCON Calculation framework to validate the connection.  

With these modifications adding a fully functioning controller would be possible. 

The set point can be fed to the database by the user or by some program. After 

this the calculations can compare the measured value obtained from the process 

to the set point. If they are not the same, the output can be adjusted. The output 

value is again sent to the process to adjust the actuators.   
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8 CONCLUSIONS 

In this work eight different information modelling standards were studied in order 

to find the one most suitable for the process industry. Out of these OPC UA 

specification was selected as the one to be used because according to the 

comparison made it has the widest modelling capabilities. In addition, OPC UA 

has many companion specifications and broad industry support. For example 

Industrie 4.0 is relying on OPC UA. It can be concluded that OPC UA is highly 

interoperable and compatible with other standards as well. Together with OPC 

UA also ISA-95 and DI companion specification were used. These were selected 

because they provided a readymade platform for modelling devices and 

equipment. 

OPC UA modelling tools were evaluated before starting the modelling work. A list 

of available tools was found from the OPC Foundation's website. Only two of 

them, OPC UA Address Space Model Designer and UaModeler were available 

for testing. The UaModeler seemed easier to use and came with all the relevant 

features. OPC UA Address Space Model Designer provides more features such 

as binding process data to the model already at the modelling phase.  

Despite testing the different tools the actual models were created using C# 

programming language. This was because the modelling tools export the 

developed models as XML. The OPC UA server used for the information models 

had the earlier type libraries in C# so it was feasible to use the same method. 

Also the XML-files would still require code with them to provide functionality.  

In the experimental part an information model of a distillation column was 

developed. The aim was to formulate good practices of information modelling and 

figure out how the models should be created. Some rules were discovered and 

generic instructions were given in Chapter 5.3.  

When studying possible architectures for information models it was noted that 

instead of having the models interact with each other hierarchically in a layered 

form it might be beneficial to handle the communications through interfaces. This 

kind of architecture would provide flexibility and modifiability to the models.   
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During the development of information models it was found out that using objects 

and referencing them from other objects in code is problematic. When the server 

is restarted and the address space reconstructed the object references made in 

code won't be correct. Also when removing nodes the object references would 

still stay there and be wrong after the deletion. The code should be made using 

interfaces rather than classes. When using interfaces the object references won't 

be made and only way to use other objects is through OPC UA references. With 

interfaces the code has less coupling.  

It was found out that coding the information models is time consuming and 

requires some expertise. First the developer has to get familiar with the existing 

code and understand how the models work. Studying the existing code is 

required always when a new programmer has to develop information models. Of 

course the instructions help but some studying always needs to be done to 

understand the context of the instructions. Time is consumed also when doing 

the actual coding since the code also has a lot of unavoidable repetition. Creating 

a modelling tool could be a solution to speed up the production. 

The actual model created was evaluated by creating and studying the possible 

address space with NAPCON Information Manager and by speaking to experts. 

The structure of the model was proven to be flexible enough to be able to present 

different kinds of distillation columns. The model was considered suitable for the 

needs of distillation column calculation software. The model was seen as a good 

basis for further development. The generic types created and the ISA-95 types 

can be used as a starting point for creating other information models.   

Connecting parts of the model to data and calculations proved that the model can 

really provide interoperability between different process parts. Creating more 

information models for different parts of a plant and further on connecting these 

models to calculation and control software creates new opportunities to enhance 

the production processes.  

8.1 Future research and development 

It is recommendable to develop a graphical OPC UA modelling tool to simplify 

information modelling in the future. This tool would need to provide code directly 
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suitable for the NAPCON UA Server. Even though the development work 

requires time, more time is lost in studying the modelling process from the 

existing models and code. The benefits are that anybody could design and create 

the information models without much knowledge about how the server works. 

Programming skills would still be needed to create functionality but not for all the 

models. The generated code would also be more robust since it wouldn't have 

any programming mistakes. Of course logical errors would still be possible.  

Because of the logical errors a test environment for the models is necessary. 

First the tests are run in the development environment. It should be studied what 

are the most common and most critical errors and how they could be tested. 

Another test related development target is to create a sandbox testing practices. 

This enables testing the product in the actual runtime environment without the 

risk of disturbing the actual automation system. 

One important aspect of the thesis was if the models can be loaded dynamically 

or not. Loading type definitions dynamically is possible when using C# and 

multiple .NET AppDomains. Achieving this requires major modifications to the 

current server. 

The type libraries should be modified so that they use safe server interfaces to 

define the types rather than interacting directly with other objects inside the 

server address space. Classes interacting with each other creates rather high 

coupling to the code, while the interfaces are more decoupled. References in 

information models should be made using OPC UA address space references 

only. The classes referencing each other cause problems since the object 

references stay even if the node related to the object is deleted.  

A graphical tool is required to simplify building the address space of the 

distillation column and to connect it to data. The connections of nodes and the 

structure of the model are hard to understand with tree based solutions. The tool 

should be able to create a graphical presentation of the address space and 

should allow creation of type instances and references to the address space.  
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