

School of Chemical Technology
Degree Programme of Chemical Technology

Ella Potka

MANAGEMENT OF COMPLEX DATA SETS IN PROCESS INDUSTRY

Master’s thesis for the degree of Master of Science in Technology

submitted for inspection, Espoo, 13.2.2017.

Supervisor Professor Sirkka-Liisa Jämsä-Jounela

Instructor M.Sc. Lauri Haapanen

M.Sc. Markus Sintonen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80723632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University, P.O. BOX 11000, 00076 AALTO

www.aalto.fi

Abstract of master's thesis

Author Ella Potka

Title of thesis Management of complex data sets in process industry

Department Department of Biotechnology and Chemical Technology

Professorship Process Control Code of professorship KE-90

Thesis supervisor Professor Sirkka-Liisa Jämsä-Jounela

Thesis advisor(s) / Thesis examiner(s) M.Sc, Lauri Haapanen, M.Sc. Markus Sintonen

Date 13.2.2017 Number of pages 86 Language English

Abstract

The idea of Internet of Things (IoT) is to connect all the devices into one network and to enable

interoperability between them. Interoperability benefits also the process industry when the

control devices and software can interoperate with management software. One part of the

industrial IoT is being able to efficiently analyze the data from the field devices so that for

example predictive maintenance can be achieved. Information modelling is needed to enable

communication between the different software and to make analyzing data easier. This thesis

examines the state of the IoT and the benefits of information modelling. The aim is to find the

information modelling standard most suitable for the process industry and to figure out how

standard conforming information models are created.

The literature part of this thesis studies the current state and the future of IoT. The focus is

especially on the possibilities it brings for the oil and gas industry. A broad collection of

information modelling standards is introduced. According to the comparison made, OPC UA

was selected in this work as the most suitable standard for the needs of process industry.

In the experimental part the information modelling process is introduced and three OPC UA

modelling tools are examined. Instructions for information modelling with OPC UA were created.

An OPC UA standard conforming information model of a distillation column was created to be

used to configure a soft sensor. The model was validated using expert knowledge. The model

was also successfully connected to a data source that was in this case a DCS emulator.

Keywords Information modelling, OPC UA, Industrial Internet of Things

 Aalto-yliopisto, PL 11000, 00076 AALTO

www.aalto.fi

Diplomityön tiivistelmä

Tekijä Ella Potka

Työn nimi Suurten datamäärien hallinta prosessiteollisuudessa

Laitos Biotekniikan ja kemian tekniikan laitos

Professuuri Prosessien ohjaus Professuurikoodi KE-90

Työn valvoja Professori Sirkka-Liisa Jämsä-Jounela

Työn ohjaaja(t)/Työn tarkastaja(t) DI Lauri Haapanen, DI Markus Sintonen

Päivämäärä 13.2.2017 Sivumäärä 86 Kieli Englanti

Tiivistelmä

Esineiden internetin ajatuksena on kytkeä kaikki laitteet samaan verkkoon ja mahdollistaa

niiden välinen yhteensopivuus. Myös prosessiteollisuudessa on hyötyä yhteensopivuudesta,

kun säätölaitteet ja ohjausjärjestelmät voivat kommunikoida hallintojärjestelmien kanssa.

Teollisessa esineiden internetissä kenttälaitteiden tuottamaa data pystytään analysoimaan

tehokkaasti siten, että esimerkiksi ennakoiva huolto on mahdollista. Tietomalleja tarvitaan

laitteiden välisen kommunikaation mahdollistamiseksi ja tiedon analysoinnin helpottamiseksi.

Tämä diplomityö käsittelee esineiden internetin tilaa sekä tietomallinnuksella saavutettavia

hyötyjä. Tavoitteena on löytää prosessiteollisuuteen sopivin tietomallinnusstandardi sekä

selvittää, miten valitun standardin mukaisia tietomalleja laaditaan.

Kirjallisuusosassa selvitellään esineiden internetin nykytila sekä tulevaisuudennäkymät.

Erityisest keskitytään esineiden internetin öljy- ja kaasuteollisuudelle tuomiin mahdollisuuksiin.

Työssä esitellään laaja kokoelma tietomallinnusstandardeja. Tehdyn vertailun jälkeen OPC UA

valittiin tässä työssä prosessiteollisuuden käyttötarkoitukisiin sopivimmaksi standardiksi.

Soveltavassa osassa esitellään tietomallinnusprosessi sekä tutustutaan kolmeen erilaiseen

OPC UA tietomallinnustyökaluun. Tietomallintamisesta OPC UA -standardin avulla laadittiin

ohjeet. Työssä laadittiin OPC UA:n mukainen tietomalli tislauskolonnista virtuaalisen säätimen

konfigurointikäyttöön. Laaditun mallin toimivuutta arvioitiin asiantuntijoiden avulla. Malli

kiinnitettiin onnistuneesti tietolähteeseen, joka tässä tapauksessa oli DCS emulaattori.

Avainsanat Tietomallinnus, OPC UA, teollinen esineiden internet

PREFACE

This master's thesis was written in the Technology and Product Development

department of Neste Jacobs Oy between 1st of April and 30th of September 2016.

First of all, I would like to thank Professor Sirkka-Liisa Jämsä-Jounela for supervising

this thesis. I also wish to thank my advisors Lauri Haapanen and Markus Sintonen for

the invaluable guidance and advices they gave me. Their input and precise comments

were greatly appreciated. I want to show gratitude to Samuli Bergman and Antti

Räisänen for sharing their expert knowledge and for their help during the practical part

of the thesis. In addition to the above mentioned my other colleagues deserve a thank

you for being cheerful and always giving me the best start to the day.

I want to express deep gratitude to my family for supporting me during my studies.

Huge thanks to my friends for all the stupid things we have done and the great

memories we have made. My free-time wouldn't have been as enjoyable without Laos-

pellet, #Vauva.fi (not the website), 176, JTM3 and finally TPJTMK. I would like to

express special gratitude to Kaisa for being almost like my personal study advisor

during my master’s studies. The project is finally done. Feels good.

Espoo, 2.1.2017

Ella Potka

TABLE OF CONTENTS

1 INTRODUCTION .. 1

1.1 Background..1

1.2 The objective ...2

1.3 Structure of the thesis ...3

2 INTERNET OF THINGS... 4

2.1 Current state of Internet of Things ..4

2.2 IoT standard organizations and initiatives ..6

2.2.1 Plattform Industrie 4.0 ... 7

2.2.2 Industrial Internet Consortium ... 9

2.2.3 Arrowhead ... 12

2.2.4 Internet of Things - Architecture ... 13

2.2.5 Comparison of Internet of Things architectures 13

2.3 IoT trends concerning oil and gas industry ...15

3 INFORMATION MODELLING.. 20

3.1 Middleware and Service-Oriented Architecture20

3.2 Information models ..21

3.2.1 OPC UA ... 22

3.2.2 ISA-95.. 25

3.2.3 ISO 15926 ... 27

3.2.4 CAEX ... 29

3.2.5 AutomationML ... 31

3.2.6 PandIX ... 32

3.2.7 IEC 61970/61968 Common Information Model 34

3.2.8 IEC 61850.. 36

3.3 Comparison of standards ..37

4 DEVELOPMENT OF INFORMATION MODELS ... 42

4.1 Information modelling process ..42

4.2 Existing modelling tools ...43

4.2.1 OPC UA Address Space Model Designer 43

4.2.2 UaModeler ... 45

4.2.3 OPC-UA-Modeler .. 46

4.2.4 Comparison ... 46

4.3 Generic rules for information modelling with OPC UA47

4.3.1 Structuring ... 48

4.3.2 Defining types.. 49

4.3.3 Naming of new types... 50

4.4 Information models in an OPC UA server...50

4.4.1 File formats.. 51

4.4.2 Architecture ... 53

4.4.3 Validation ... 56

5 INTRODUCTION TO THE EXPERIMENTAL PART 58

5.1 Development needs ..58

5.2 Equipment modelled..61

6 THE MODELLING PROCESS ... 64

6.1 Tools used for modelling ...64

6.2 Development of the base information models ..64

6.3 Modelling of the distillation column ...68

7 IMPLEMENTATION OF THE INFORMATION MODELS.............................. 69

7.1 Design of the models...69

7.2 Implementation details ..71

7.3 Connecting to the data ..75

8 CONCLUSIONS ... 77

8.1 Future research and development ..78

REFERENCES .. 80

LIST OF SYMBOLS AND ABBREVIATIONS

ADI Analyzer Device Integration

AML AutomationML, Automation Markup Language

ARM Architectural Reference Model

B2MML Business to Manufacturing Markup Language

CAEX Computer Aided Engineering Exchange

CIM Common Information Model

COM Component Object Model

DCOM Distributed Component Object Model

DDS Data Distribution Service

DI Device Integration

DLL Dynamic-Link Library

ERP Enterprise Resource Planning

FDI Field Device Integration

IIC Industrial Internet Consortium

IIoT Industrial Internet of Things

IoT Internet of Things

IoT-A Internet of Things - Architecture

IEC The International Electrotechnical Commission

IIRA Industrial Internet Reference Architecture

IOMOG Assetricity Integrated Operations and Maintenance for Oil & Gas

ISA-95 International Society of Automation standard 95

ISBM Information Service Bus Model

ISO International Organization for Standardization

MES Manufacturing Execution System

MIMOSA Machinery Information Management Open Systems Alliance

OPC Object Linking and Embedding for Process Control

OPC UA OPC Unified Architecture

OWL Ontology Web Language

O&G Oil and Gas

P&ID Piping and Instrumentation Diagram

RAMI 4.0 Reference Architectural Model for Industrie 4.0

RFID Radio-Frequency Identification

SCADA Supervisory Control and Data Acquisition

SCL Substation Configuration Language

SFC Sequential Functional Chart

SOA Service-Oriented Architecture

UML Unified Modelling Language

XML Extensible Markup Language

1

1 INTRODUCTION

1.1 Background

Internet of Things (IoT) means connecting different physical objects with smart

sensors to communicate with each other over the Internet. (Breivold, Sandström

2015) The industrial counterpart of IoT, the Industrial Internet of Things (IIoT),

can provide the industry with effective predictive maintenance, equipment

monitoring and resource optimization just to name a few possibilities. (Slaughter,

Bean & Mittal 2015) IoT still needs a lot of technology development and changes

in the infrastructure. To enable single system to handle dynamic business and

engineering processes it is necessary to connect the existing factory automation

systems with enterprise resource planning (ERP) and manufacturing execution

systems (MES) over the IoT infrastructure. The challenge in this is the variety of

proprietary control systems in the industry. (Kumar, Bose 2015) There are

various efforts to standardize the interaction. Deciding between the different

standards is hard because there is no tracking of the use of standards. Many

initiatives like Germanys Industrie 4.0 and USA’s Industrial Internet Consortium

are contributing to standards. (Lu, Morris & Frechette 2016)

This master’s thesis focusses on standards regarding information models and

management of process data. Information modelling is a concept for presenting

process data in a technologically independent way and providing interoperability.

This is needed since automation systems use different technologies and

standards that have their own ways to represent process data. A uniform view of

the system is required for enterprise and management level applications, like

ERP and MES. Having all the information of different automation systems in one

unified management system makes cross-domain optimization possible. (van der

Linden, Granzer & Kastner 2011)

There is a number of interesting standards for information modelling and

exchange. This thesis studies a set of standards. It is not exhaustive but tries to

cover a wide range of standards suitable for the industry’s needs . Standards

selected are OPC UA, ISA-95, ISO 15926, CAEX, AutomationML, PandIX,

Common Information Model and IEC 61850. Because the variety of standards,

2

some initiatives on synchronization between the standards exist. One example of

them is the Oil & Gas Interoperability Pilot. (Johnston et al. 2012) This thesis tries

also to describe the synchronization and interoperability possibilities of standards

when addressing them.

1.2 The objective

The first objective of this thesis is to take a look at the current state of Internet of

Things and study the trends concerning oil and gas industry. Also the possibilities

the IoT brings in the future are to be studied.

Another aim is to study how standards are used for information modelling and

what are the benefits and drawbacks of different standards. The second question

is what can be achieved with these information models and how the selection of

the standards affects to this. Also the different stakeholders need to be studied to

map their needs and expectations for the information models. The ultimate goal is

to figure out the most important development needs and select the most suitable

way to create the information models with these requirements in mind. The

information modelling tools are studied and evaluated to be able to create the

actual information models.

The main objective is to create information model of a distillation process unit.

The created model needs to match the development needs defined for

information models in usual applications and the ones defined specially for the

use case. Also a tool to carry out this task is selected based on the evaluation

made and based on what is supported in the server used for hosting the models

in this thesis. The equipment modelled and the use case of the information model

needs to be studied carefully before the modelling.

The results of the thesis present the benefits and the drawbacks of the standards

studied as well as the guidelines to the process of information modelling. The

reasoning is given for selection of the most suitable standard for the needs of

process industry. An information model of a distillation process unit is done using

the modelling guidelines written. The model is evaluated against the goals set for

it. Also the results of comparison of modelling tools created for this standard are

explained.

3

1.3 Structure of the thesis

The thesis starts with background check to the state of Internet of Things (IoT).

The standards, trends and the possibilities are reviewed. The different standards

and their applications are presented. In Section 3, information modelling and the

existing modelling tools are introduced. The expectation and the needs of

stakeholders and what is achieved with the information models is determined

based on the knowledge gathered. The modelling practices and a comparison of

modelling tools are presented in Section 4. The equipment to be modelled and

the tools used are introduced in Section 5. Section 6 consists of explaining the

modelling process while the models are explained in Section 7. Finally the

conclusions and future work are discussed in Section 8.

4

2 INTERNET OF THINGS

This chapter provides a background on Internet of Things (IoT). First the future

visions as well as the challenges concerning IoT are discussed. A brief overview

on the standard organizations and initiatives is given in the second subchapter.

Also the architectures driven by the different initiatives are introduced. Finally the

trends specific to oil and gas industry are studied. Challenges and possible

solutions are presented together with an example of the work aiming towards

achieving interoperability in the industry.

2.1 Current state of Internet of Things

There is no single universal definition for the Internet of Things (IoT). In brief it

means that objects with sensing, processing and identifying capabilities are all

connected to the same network and communicate with each other. (Whitmore,

Agarwal & Xu 2014) In 2015 IEEE defined IoT as “a self-configuring and adaptive

system consisting of networks of sensors and smart objects whose purpose is to

interconnect all things, including every day and industrial objects, in such a way

as to make them intelligent, programmable and more capable of interacting with

humans”. (Breivold, Sandström 2015) Currently IEEE is asking for comments to

form a broader and more accurate definition of IoT. (IEEE 2015)

Whitmore et al. (Whitmore, Agarwal & Xu 2014) divided the most common

applications of IoT into four sub-categories that are smart infrastructure,

healthcare, supply chain/logistics and social applications. Smart infrastructure

means connecting smart objects into physical infrastructure. An example of this is

a smart grid that collects data about energy consumption and makes it available

online for further analyzing. Smart infrastructures improve flexibility, reliability and

efficiency of the infrastructure. In healthcare sector IoT could be used to

automate some tasks that the patients have to perform. One scenario is placing

sensors on health monitoring devices to collect information about the patient’s

current health status. The data from the sensors could then be made available for

doctors over the Internet to enable more efficient treatment. In the field of

logistics, supply chains already use sensor networks in assembly lines and

Radio-Frequency Identification (RFID) to track products. IoT can still provide

5

more detailed and up-to-date information further improving efficiency. Social

applications of IoT include connecting IoT devices to services such as Facebook

or Twitter. The devices could for example provide information about user’s

location and activities attended. This information could be used to tell the user if

they are nearby a friend or some event that might interest them. (Whitmore,

Agarwal & Xu 2014)

The biggest challenges of IoT are information security, data integrity and privacy,

interoperability and scalability. Industrial IoT (IIoT) shares the challenges of

consumer IoT, but of course there are also additional challenges like exact timing

and criticality of the systems. Automation systems have to be accurate in time,

reliable and safe. (Breivold, Sandström 2015)

Security issues grow larger as the systems grow larger and more complex.

Encryption is seen as the key for secure information exchange. The current

encryption algorithms are made for devices where the resources are not

restricted. The smallest IoT devices however are limited in power and are

currently unable to support robust encryption. The algorithms have to be made

faster and less energy-consuming to enable encryption on the IoT. Moreover,

efficient key distribution scheme should be found. (Bandyopadhyay, Sen 2011)

Also identity is important factor for security. When communicating with smart

devices, we have to be able to ensure that the device is what it claims to be.

(Whitmore, Agarwal & Xu 2014) Additionally in industrial systems, the security

updates have to be made without interference to the control of the process

(Breivold, Sandström 2015).

IoT is basically a complex network of devices and software. Also in automation

systems there are thousands of different components like controllers,

workstations and servers. It means having a huge heterogeneity in interfaces

and communication solutions. They all present and interpret data differently.

There are efforts to standardize the communications to achieve interoperability.

Integration of different systems is costly without standards. (Breivold, Sandström

2015)

6

Middleware is getting more and more important since it can well be used for

integration of legacy technologies into new systems. In the last years the

architecture proposed for middleware has been service-oriented architecture

(SOA). The commonly mentioned advantages of SOA are enhanced flexibility,

interoperability and reuse.(Atzori, Iera & Morabito 2010) SOA is a software

architecture design in which the independent processes are usable via services.

Services are some small functions such as reading or writing. The loose coupling

of services enables the flexible interconnection between applications. (Rouse

2014)

2.2 IoT standard organizations and initiatives

The challenges in integrating systems have resulted in efforts to standardize the

communications in automation systems. (Breivold, Sandström 2015) International

standard organizations like ISO and IEC are working on standards for industrial

process control and automation. ISO’s committee on automation systems and

integration (TC184) has two subcommittees, SC4 and SC5, that are particularly

concerned on data exchange standards. SC4 focusses on industrial data

standards such as ISO 10303 for exchange of product manufacturing information

and ISO 15926 for integration of life-cycle data for process plants. SC5 on the

other hand focusses on interoperability, integration and architectures for

automation applications. IEC has developed standards like IEC 62264 which is

standardized version of ISA-95 for integrated enterprise and control systems.

There are also several consortia, like the OPC Foundation, developing standards

for IIoT and communication between device and software. These sometimes are

offered to ISO or IEC to achieve wider usage. Furthermore, professional societies

like ISA and academically oriented societies like IEEE are working on standards.

(Lu, Morris & Frechette 2016) The selection of organizations above is wide but

not exhaustive. There are still many more organizations developing standards.

Standards are the enablers of efficient manufacturing systems by providing a

method to exchange data between software and devices of different vendors.

Interoperability between standards is still a problem. Because of the multiplicity of

standards, there is a huge amount of obsolete standards. There is no tracking on

the adoption of the standards. The industry and the software and device

providers are on their own when trying to find the most suitable and most

7

common standards. The vast amount of the standard organizations also causes

overlap and redundancy between the standards. The standards in the same

technical area are be defined separately for different industry sectors. These

standards are not always consistent which also causes overlapping and

redundancy. To overcome these issues, the standard organizations have to

collaborate for harmonizing standards. (Lu, Morris & Frechette 2016) According

to ISO this means that different standards on the same subject provide similar

information or interchangeability of products or processes. The presentation and

the guidance on how to match the requirements can be different, but the output

has to be the same. (ISO/IEC Guide 2:2004: 2004)

IoT has also given rise to new initiatives that contribute to the standards and

create reference architectures. Next, four of the initiatives, Plattform Industrie 4.0,

Industrial Internet Constortium, Arrowhead and Internet of Things - Architecture

are presented. In addition to these, IEEE is developing Standard for an

Architectural Framework for the Internet of Things. (Weyrich, Ebert 2016)

2.2.1 Plattform Industrie 4.0

Industrie 4.0 was originally a strategy developed by the German government to

promote the computerization of manufacturing. Now Industrie 4.0 can be seen as

an alternative expression of Internet of Things. In this thesis IoT is used meaning

the intelligent and connected network of things and Industrie 4.0 is used only in

this subchapter meaning the German alternative of IoT.

8

Plattform Industrie 4.0 aims to develop a basis for a consistent and reliable IoT

framework through a dialog with business, science and government. (Plattform

Industrie 4.0 2016) The potential of Industrie 4.0 is in smart factories that allow

meeting individual customer requirements, dynamic business and engineering

processes, optimized decision making and new ways of creating value. In order

to deliver these goals, Industrie 4.0 should be able to implement full integration of

all the manufacturing systems. The value networks should be horizontally

integrated as well as the whole automation pyramid vertically integrated meaning

networked manufacturing systems. The entire value chain should be integrated

from end to another. The Industry 4.0 Working Group has divided the work into

eight key areas of which one, standardization and reference architecture, is in

particular interest in this thesis. (Kagermann, Wahlster & Helbig 2013)

The result of the work is Reference Architectural Model for Industrie 4.0 (RAMI

4.0). (Plattform Industrie 4.0 2016) The first version was released in July 2015 by

Figure 1. Reference architecture model for Industrie 4.0 (Adolphs et al.

2015)

9

ZVEI, VDMA and BITKOM. The reference architecture model is three

dimensional. The “Hierarchy Levels” axis represents the different functionalities

within factories. It uses hierarchies from IEC 62264 standard. The “Life Cycle &

Value Stream” axis represents the life cycle of facilities and products and is

based on IEC 62890. The “layers” axis describes the decomposition of a machine

into its properties. The layers are business, functional, information,

communication, integration and asset. The data models used for layers need to

be consistent during the whole lifecycle and all hierarchy levels. The three

dimensional model of Industrie 4.0 is presented in Figure 1. RAMI 4.0 is based on

many existing standards. It proposes certain standards to be used in certain

layers. In communication layer, OPC UA is used. For the Information layer IEC

Common Data Dictionary, eCl@ass characteristics, Electronic Device Description

(EDD) and Field Device Tool (FDT) are used. Field Device Integration (FDI) is

used for implementation of functional and information layer. Finally for end-to-end

engineering AutomationML, ProSTEP iViP and eCl@ass are used. (Adolphs et

al. 2015)

2.2.2 Industrial Internet Consortium

The U.S. equivalent of Industrie 4.0 is the Industrial Internet Consortium (IIC)

founded by GE, IBM, Cisco, Intel and AT&T. It brings together organizations and

technologies necessary to accelerate the growth of Industrial Internet. The

consortium has different committees, such as the technology committee. In case

of this thesis, the architecture task group of the technology committee is in

particular interest. It has developed a reference architecture called the Industrial

Internet Reference Architecture (IIRA). (Industrial Internet Consortium 2016)

The IIRA documentation defines an Industrial Internet System (IIS). The IIS is a

large network connecting industrial control systems to people and integrating

them with other systems such as enterprise systems. According to IIRA the IIS

has various concerns that can be grouped as viewpoints. These viewpoints are

business, usage, functional and implementation. The business viewpoint is

concerned with the identification of business stakeholders. The usage viewpoint

focuses on the expected system usage. The functional viewpoint addresses

functional components of IIS, their interrelation and external interactions. Finally,

10

the implementation viewpoint deals with the technologies needed. (Industrial

Internet Consortium 2016)

When discussing the architecture itself the functional and implementation

viewpoints are the points of interest. The IIS is decomposed into five functional

domains which are control, operations, information, application and business

domains. Information is exchanged between these domains. Figure 2 shows the

relations of functional domains and the data and control flows between them. The

architecture is described in the implementation viewpoint. The architecture

patterns suggested include the three-tier pattern and the gateway-mediated edge

connectivity and management pattern. (Industrial Internet Consortium 2016)

Figure 2. The functional domains of IIRA. (Industrial Internet Consortium

2016)

11

To integrate all the different technologies IIRA suggests a concept where all the

subsystems are connected with a core connectivity “databus”. This can be seen

in Figure 3. Some subsystems may require a gateway for connection and

transition from data standard to another. The “databus” or a Connectivity Core

Standards as IIRA calls it needs standards that fulfill certain requirements. The

requirements are achieving interoperability between endpoints, automated

service discovery, performance and scalability, programming model, Quality of

Service (QoS) and support to peer-to-peer, client-server and publish-subscribe

patterns. (Prismtech (c) 2016) The QoS parameters are reliable data delivery,

timeliness, ordering, durability, lifespan, fault tolerance and security. In the first

release IIRA doesn’t recommend a specific standard to be used in the “databus”.

(Industrial Internet Consortium 2015) However, Real-Time Innovations (RTI) sees

Data Distribution Service (DDS) by the Object Management Group (OMG) as the

best core connectivity standard for the architecture. (Schneider 2015)

Figure 3. Industrial Internet Reference Architecture (Industrial Internet

Consortium 2015)

12

2.2.3 Arrowhead

The Arrowhead is a project funded by the European Union. The vision of the

project is to enable interoperability of services provided by almost any device.

The project aims to provide technical framework and propose solutions for

integration with legacy systems. The technical solution is evaluated with real

experimentations in different industry sectors. The project targets five business

domains which are production, smart buildings and infrastructures, electro

mobility, energy production and virtual markets of energy. (Arrowhead 2016a)

The Arrowhead Framework is a SOA based framework for integrating multi-

vendor applications. The framework consists of Core Services and Application

Services. These can be seen in Figure 4. The Application Services handle the

exchange of information while the Core Services support them. The specialized

Application Services could be for example reading sensors. The Core Services

for example provide application installation or status monitoring functionality. The

framework addresses also design of gateways or mediators that make systems

with different standards compliant with Arrowhead. (Arrowhead 2016b)

Figure 4. The Arrowhead Framework (Arrowhead 2016b)

13

2.2.4 Internet of Things - Architecture

Internet of Things – Architecture (IoT-A) was another project funded by the

European Union to develop a common reference model and architecture for IoT.

It was active from 01.09.2010 to 31.08.2013. Like the other initiatives, also IoT-A

aimed to the interoperability of different solutions. It based the development on

the existing standards. The architecture developed in the project is called

Architectural Reference Model (ARM). (Bauer et al. 2013b)

The ARM consists of three parts. The first one is the IoT Reference Model that

provides the highest abstraction level for ARM. The IoT Reference Model

provides an IoT Domain Model which is the top-level description of the

architecture. Other relevant models are the sub-models that address the

information, functional, communication and the security views. The Reference

Architecture is the second part of ARM and the reference for building compliant

IoT architectures. The architecture consists of views that build further on the

models defined in IoT Reference Model. The last part of ARM is the guidelines on

how to derive a concrete architecture from the model. (Bauer et al. 2013a)

2.2.5 Comparison of Internet of Things architectures

The four architectures for IoT have different perspectives. IoT-A provides a

detailed view of the information technology related to IoT. IIRA is strongly

focused on industry but also includes healthcare, energy and transportation

information. RAMI4.0 on the other hand focusses on manufacturing and logistics

details. (Weyrich, Ebert 2016) Arrowhead’s goal is to build architecture for

automation in production, buildings, electro-mobility and energy-market.

(Arrowhead 2016a) The different perspectives lead to architectural differences,

for example the presentation of semantics. Because IIRA focuses on industry,

also the data description is focusing on functionality of that domain. RAMI4.0 is

almost the same as IIRA, but includes additional life-cycle and value stream data.

(Weyrich, Ebert 2016) Arrowhead is concentrated on industry, business and

energy data. (Arrowhead 2016b) IoT-A is more generic when it comes to the

semantics. IoT-A has also broader definitions for middleware functionality and

cloud aspects while IIRA addresses the same things but is more focused on

business and use cases. (Weyrich, Ebert 2016)

14

In March 2016 IIC and Plattform Industrie 4.0 agreed to work together to see if it

is possible to achieve interoperability and alignment of IIRA and RAMI4.0.

(Federal Ministry for Economic Affairs and Energy 2016b, RTI News 2016) There

is however no desire to merge the two architectures since they focus on different

domains. As said earlier, RAMI4.0 has focusses on manufacturing in depth while

IIRA is more cross domain focused. The industry however needs to be able to

operate cross domain, manufacturing being one of the domains. The domains are

illustrated clearly in Figure 5. (Federal Ministry for Economic Affairs and Energy

2016a)

Figure 5. The domains the IIRA (IIC) and RAMI4.0 (I4.0) operate on. (Federal

Ministry for Economic Affairs and Energy 2016a)

On 13th of April OMG and OPC Foundation announced to collaborate for

interoperability of the underlying DDS (IIRA) and OPC UA (RAMI4.0) standards.

The organizations have found two ways to achieve interoperability and are

developing them. The first is a “OPC UA/DDS gateway” that allows applications

and devices using DDS to connect to OPC UA and vice versa. The second is

“OPC UA DDS Profile” which enables integrated use cases. (Object Management

Group 2016)

15

2.3 IoT trends concerning oil and gas industry

Because of the low market prices of oil and the cost of producing oil going up, the

oil and gas (O&G) industry today is in need of enhanced production technologies.

Each step of the chain from drilling to customer has to be made more efficient.

IoT is seen as one solution, because it provides a way to gather and connect

information about processes, supply chains and customer relationships. In

addition to optimizing the mentioned things, the new information can bring

innovative aspects on how the ways to do business should be changed. Because

the O&G industry is so diverse there is no single IoT solution for all. The

objectives for everyone, however, are more or less the same. The common goals

are to improve reliability of processes, optimize operations and create new value.

(Slaughter, Bean & Mittal 2015)

Traditionally the oil companies have been looking for technologies to improve

single discipline, for example to exploit more complex resources. The

investments go to a new process or control system when needed or to

development of a single technology. A so called silo effect is caused by giving no

attention to integrating these new systems with existing ones. This means that

different organizations of the company or parts of the factory are separated

disciplines with distinct roles. The silos limit the agility and cripple IoT. The

organizations, or silos, have to be connected and interoperating to get real

benefits from IoT. (Moriarty et al. 2015)

Instead of focusing on individual technologies, more value can be obtained when

the new technologies are integrated cross disciplines. Only a minor part of the

data gathered from the refinery processes is available for the industry’s decision

makers. Increasing this availability and analysis can save money by for example

eliminating unplanned outages. (Slaughter, Bean & Mittal 2015)

According to survey made by Cisco (Moriarty et al. 2015) data is the area of IoT

where the O&G leaders see the need for improvements. Cisco sees three key

challenges in data area of IoT and proposes solutions for them. As a solution for

integrating heterogeneous data from distributed sources the data is virtualized.

The data can actually be stored anywhere, but it seems to origin from one

source. The second challenge is automating the data collection to get the data to

the right place at the right time to be analyzed. Sometimes, for example in the

16

offshore drilling-platforms, the data cannot be moved, because of weak

connections. With smart devices the data can be processed at the edge of the

network. The third problem is the lack of skills or resources to analyze the data

gathered. Solving this requires attracting employees with sufficient knowledge.

New connected sensors and closed loop systems, where changes to operation

are made by machines pose new vulnerabilities. This creates more opportunities

for cybercriminals to exploit. Many of the oil and gas companies do not have a

proper response plan for cybersecurity incidents yet there has been many attacks

targeting the energy sector. This has to change before the companies can fully

take advantage of IoT. (Moriarty et al. 2015)

According to Cisco Consulting Services (Moriarty et al. 2015), IoT has potential to

create over 500 million dollars of net profit for an oil company with 50 billion dollar

revenue and production of 270 million barrels annually. Most, 83%, of this profit

comes from improvements in upstream operations, while midstream and

downstream upgrades are only minor part. The analysis, however, doesn’t take

into account how the implementation costs divide between the different

operations. The analysis clearly pointed out the importance of data. The biggest

profit producing operation was reducing lifting and production costs, where the

value comes from better monitoring and data management capabilities, real time

optimization and automatic analyses. The second biggest value generator was rig

uptime, which depends on advanced sensors and Big Data analytics to conduct

predictive maintenance. (Moriarty et al. 2015)

In the upstream sector, or the exploration and production sector, the

technological complexity is increasing. This means installing new sensors which

produce a bigger flow of data. In addition the scale and the frequency of the data

are growing and there is a need to expand the scope. These data flows cannot

be fully taken advantage of because of the weak data-management capabilities.

The communications between different software is limited by the lack of open

standards and the diversity and incompatibility of the proprietary communication

formats. Overcoming these challenges creates possibilities like automating the

production, faster deployment of new projects and better modelling of the earth’s

surface to find oil. (Slaughter, Bean & Mittal 2015)

17

In midstream, the shale oil boom, has made transporting the liquids and natural

gas more complex, since the volumes and locations have started altering rapidly.

The old pipelines and monitoring devices are causing losses due to fuel leaks.

The safety and reliability could be improved with investing to new sensor

technologies. Further analyzing the data from these sensors could benefit in

better selection of shipping routes. (Slaughter, Bean & Mittal 2015)

The most mature part and therefore also financially the most challenging part of

O&G industry is refining crude-oil. A critical part with potential for improvement is

avoiding unscheduled shutdowns. At the moment the maintenance done for the

equipment is time-based preventive planning where the equipment is taken to

workshop for inspection without knowledge of the actual condition. Time is

wasted inspecting equipment that isn’t in the need of repairing. With new sensors

technologies, advanced wireless networks, open standards and integrated device

management the strategy can be shifted to condition-based predictive

maintenance. Another problem in downstream O&G is that so far the information

has been analyzed mostly on the plant level only. If this scope is made wider the

whole supply chain and the logistics after production can be taken into account.

One benefit from this kind of data analyzing could be the ability to buy crude oil

dynamically from various sources instead of long contracts. (Slaughter, Bean &

Mittal 2015)

As described earlier, the amount of data gathered in the upstream sector is

growing but the traditional SCADA systems use proprietary protocols which

hinder the exchange of data. Also the governments have started demanding

reports about the drilling conditions and safety in a standardized form. This has

led the petroleum industry to drive towards standardization of data exchange.

(Cotton et al. 2012) Standards Leadership Council (SLC) was formed in 2012 to

unite the standard organizations of upstream O&G to promote the adoption of

open standards. The consortium has several member organizations including

The OPC Foundation, Energetics and POSC Caesar Association. (Standards

Leadership Council 2016) Norway has been one of the leaders in the upstream

O&G standardization. In 2008-2012 a project called The Integrated Operations in

the High North Joint Industry Project (IOHN) tested using ISO 15926 to ensure

interoperability, to facilitate integration and to transfer data. (Cotton et al. 2012)

18

To enable all the standards to work together OpenO&M Initiative has developed

system-of-systems interoperability architecture called Open Industrial

Interoperability Ecosystem (OIIE). The OpenO&M Initiative was formed by ISA,

MESA International, MIMOSA and OPC Foundation to name a few. Also Fiatech,

POSC Caesar Association and Professional Petroleum Data Management

Association have joined the work. (Mitchell 2016) OIIE defines an architectural

framework for enterprise architecture. The main idea is to use the best standard

for each different task and allow them to function together. OIIE has a portfolio of

standards to choose the most suitable from. The architecture model has an

information message bus as a “transporter”. Information models and message

models are used to represent data. (MIMOSA 2016) The information message

bus can be seen in Figure 6, which presents the OIIE architecture model.

Figure 6. OIIE architecture model (Johnston, Hoppe & Sandmark 2015)

19

To prove the OIIE concept, a public test-bed, Oil & Gas Interoperability (OGI)

Pilot, is run. The purpose is also to test if the standards are actually applicable to

real processes. The pilot is a debutanizer project that demonstrates the feasibility

of the ecosystem from design to operation and maintenance. (Mitchell 2016) The

pilot had three different companies doing the process engineering. Worley

Parson produced intelligent process and instrumentation diagrams (P&ID) with

XMpLant-technology. AVEVA produced the same thing using Proteus (an XML

scheme) and Bentley produced Ontology Web Language (OWL) (part of ISO

15926 specification) and ecXML files. All of these were transformed into ISO

15926 -model with a transform engine created in the University of South-

Australia. The ISO 15926 is again transformed to MIMOSA model. The data is

then exported to CCOM-XML. The communications are done using Information

Service Bus Model (ISBM). The data is then mapped to Assetricity Integrated

Operations and Maintenance for Oil & Gas (IOMOG) –register. It stores all the

data and takes care of mapping all the synonyms of the same piece of equipment

into one. From IOMOG the data is loaded to IBM Integrated Information Core

server which transforms it to ISA models and accessible with OPC/OPC UA

standards. The data can be then connected to systems like OSIsoft’s PI System

for collecting real-time data. (Johnston et al. 2012) The whole process is

summarized in Figure 7. The pilot still continues and phase two will for example

add more process diagram and automation suppliers. In addition to this

downstream pilot, there is also going to be an upstream pilot from the same

group. (Johnston 2013)

Figure 7. Oil and Gas Interoperability Pilot workflow (Johnston 2013)

20

3 INFORMATION MODELLING

In this chapter the concept of information modelling is introduced. First the

meaning of middleware and service-oriented architecture is explained because

information modelling is closely related to them. After that the definition of an

information model is given together with requirements and stakeholders for the

models. A wide selection of information model specifications is presented. The

models discussed are OPC UA, ISA-95, ISO 15926, CAEX, AutomationML,

PandIX, Common Information Model and IEC 61850. A comparison of the

presented specifications is given at the end of the chapter.

3.1 Middleware and Service-Oriented Architecture

The common approach to automation system integration usually separates the

automation system into layers. The structure is called the automation pyramid.

The problem with this is that the information has to pass through all the layers

and often there is a need for data transitions between the layers. The SOA based

middleware provides a suitable way to integrate the engineering software with the

process control. The difference of these two approaches is presented in Figure 8.

(Melik-Merkumians et al. 2012)

Figure 8. The differences of traditional layered automation pyramid (right)

and the SOA-based approach (left) (Melik-Merkumians et al. 2012)

21

Middleware is not used only for exchanging data but also to provide information

for example about the status of the device or the measurement range. The

middleware should provide this information in a structured way and this is what

requires the middleware to provide a way for information modelling. (Mahnke et

al. 2011) There is a variety of different information modelling methods which are

addressed in this chapter.

Another option to achieve interoperability is to implement the piece of software

providing the communication functions in all the different applications of the

system. Using middleware, however, benefits in reuse, distributed development,

simplicity, flexibility and better maintainability. The drawback of the middleware

might be defining the interface and the semantics of the information too strictly. A

fixed definition is easy to start with, but not capable of accommodating to change.

The middleware should provide flexible interfaces and describe the semantics in

an abstract way. (Mahnke et al. 2011)

3.2 Information models

By definition information models are descriptions of certain concepts like

buildings or processes. They provide a framework for presenting objects and their

relationships, variables, constraints and functions. In a way, information models

are a common language between software systems and devices.

There are four main stakeholders for developing communication standards and

information models. First, hardware vendors want to optimize the

communications of their devices. For software developers the value of the

information models is in making the development and maintenance of software

easier. System integrators can more easily integrate solutions of different brands

and vendors. The end users achieve broader possibilities to the choice of

hardware and software. (van der Linden, Granzer & Kastner 2011)

To achieve the optimal communication, there are requirements that the

information models should fulfil. The most important requirement and the actual

drive for developing information models further is to obtain a single

comprehensive standard to describe all the equipment instead of specific

description formats. Therefore the models have to be rather abstract. (Mahnke et

22

al. 2011) The information models have to cover at least most if not all the

information required or produced within the engineering process of production

systems. They have to be extendable and flexible enough to accommodate to

change. The extensions could be for example vendor specific data. The

representation of the data has to be efficient. Also human readable format is

desired. (Schmidt, Lüder 2015)

3.2.1 OPC UA

The OPC Unified Architecture (UA) was released in 2008 by the OPC Foundation

and expands the classic OPC. The classic OPC consists of many specifications,

the most important being Data Access, Alarm & Events and Historical Data

Access. These specifications define the access to current process data, interface

for event-based information and functions to access historical data. OPC’s

information exchange is using client-server approach. The interfaces of OPC are

based on Microsoft Component Object Model (COM) and Distributed COM

(DCOM). These were used to reduce the development time and specification

work. Resulting from the use of these technologies, OPC is tied to Windows

operating systems. It is also one of its biggest disadvantages. (Mahnke, Leitner &

Damm 2009)

OPC UA overcomes OPCs flaws by for example, being more secure and platform

independent. The basic layers of OPC UA are presented in Figure 9. The base

components of OPC UA are transport mechanisms and data modelling. The

specification of OPC UA has 13 parts but the one addressed in this thesis is Part

5: Information Model. The whole concept of OPC UA is presented shortly before

going to information models. (OPC Foundation 2015c, OPC Foundation 2016c)

The communication model of OPC UA is abstract and does not depend on

protocol mappings. Currently there are two mappings, UA Web Services and UA

Native. The UA Web Services mapping uses protocols like SOAP/HTTP while the

UA Native uses TCP protocol. These transport mechanisms use the message-

based security model from Web Services. Data modelling defines rules and

building blocks to describe OPC UA information models. The access points to

address space and the base types of type hierarchy are also defined. The base

defined in data modelling layer can be extended to build information models.

23

OPC UA is based on SOA. The services are abstract descriptions and therefore

protocol independent. The services provide the interface between servers as

supplier of an information model and clients as consumers of the information

model. (Mahnke, Leitner & Damm 2009)

The information modelling in OPC UA is based on nodes and references between

them. The nodes can have attributes that further define them. Figure 10 gives an

example of the usage of nodes. Nodes are divided to NodeClasses that include

object, variable and method nodes. Variable nodes contain values with data

types. They can present a value of a measurement for example. The concept of

method is the same as in object-oriented programming. Method can be called

with possible input arguments and it returns a result. Objects structure the

Address Space. They can be used to group variables, methods or other objects

by using references. This way the variables and methods belong to objects. The

attributes of nodes depend on the class. For example the Variable has “Value” as

one attribute. There are several attributes common for all the nodes, but the most

important is the NodeId that is a unique identifier used to reference the nodes.

The references are relations between two nodes. They have information about

the direction of the relations, the type of the reference and of course the ids of the

Figure 9. OPC UA information model layers. (Burke 2013)

24

source and target nodes. The reference types in OPC UA are for example

HasSubtype or HasTypeDefinition. (Mahnke, Leitner & Damm 2009)

In OPC UA information models, types are used for defining objects and variables.

Variables have data types like string but also objects have type definitions that

specify the type of device that the object is describing. As explained earlier, also

the references have types that define them. The types can be simple or complex.

Complex types can have for example references to variables and methods.

Simple types just define semantics. (Mahnke, Leitner & Damm 2009) There are a

lot of predefined general types in the specification. Types can inherit other types.

The new derived types will have the same properties as the "parent" type but can

also have own extended properties. For example, if there is a type called

VesselType and it has a reference to a variable called Diameter, its subtype, let’s

say PressureVesselType will have the same referenced variable. In addition the

PressureVesselType could have a variable called MaxPressure. All the object

types are inherited from BaseObjectType, all the variables from

BaseVariableType and so on also for reference, data types and events. (OPC

Foundation 2015b)

OPC UA has several companion specifications. They include specifications for

Analyzer Device Integration (ADI), PLCOpen, Field Device Integration (FDI),

Figure 10. OPC UA Nodes, Attributes and References (Mahnke, Leitner et al.

2009)

25

Device Integration (DI), ISA-95, AutomationML and AutoID. (OPC Foundation

2016d) The hierarchy of the information models was presented in Figure 9.

3.2.2 ISA-95

ISA-95 is developed by the International Society of Automation. It contains

models and terminology to define a format for information exchange between

different systems. The ISA-95 standard has five parts. In the scope of this thesis

is Part 2 Object Model Attributes, but also a brief overview is given. (ISA-95

2015)

ISA-95 standard defines five activity levels for a manufacturing organization.

Level 0 defines the actual manufacturing process while levels 1 and 2 are the

automation and control. Level 3 is manufacturing operations management (MOM)

level, containing for example MES applications and level 4 is business planning

and logistics, meaning ERP for example. The levels of ISA-95 are presented in

Figure 11. Activity levels of ISA-95 (OPC Foundation 2013b)

26

Figure 11. The main focus in the standard is the information exchange between

levels 3 and 4 and across level 3 systems. (OPC Foundation 2013b)

The part 2 of ISA-95 lists industry-independent information as attributes that can

be used to define processes. Industry specific and application specific information

is characterized as property objects. These industry-independent attributes

include the resource models. They are Personnel, Material, Equipment, Physical

Assets and Process Segments. (OPC Foundation 2013b) These models and the

overview of the ISA-95 are presented in Figure 12.

For representing information as objects ISA-95 uses Unified Modelling Language

(UML). A set of attributes is associated to these object models. A UML

presentation of the Equipment model is presented in Figure 13. It includes the

definition of “Equipment” and “Equipment Class” which are the definitions of the

equipment type in the production, for example the class could be a tank. The

classes also have properties. (OPC Foundation 2013b)

ISA-95 is an abstract specification since it doesn’t provide implementation. There

are some implementations such as Business to Manufacturing Markup Language

by MESA. (OPC Foundation 2013b)

Figure 12. ISA-95 Overview. (OPC Foundation 2013b)

27

3.2.3 ISO 15926

ISO 15926 (Licycle Information Exchange) is a standard for representing

information related to engineering, construction and operation of a process plant.

It tries to cover the whole life-cycle of a plant. It is specially meant for the O&G,

but since it is generic model it is applicable for other industries as well. (ISO

15926-1 2004) ISO 15926 has currently 8 parts and two parts are still under

development. (ISO/TS 15926-11 2015)

Figure 13. ISA-95 Equipment Model (OPC Foundation 2013b)

28

The second part of ISO 15926 defines a generic data model that is used to

represent and exchange the life-cycle data. It establishes the basic entity types

and their connections. The entity types are not enough to represent a plant and

detailed information about the objects, like pipes, needs to be added as reference

data. The reference data consists of classes that define plant objects. It is

organized in the reference data library which is accessible through the reference

data services. The reference data is standardized in parts three and four of ISO

15926 but additional reference data can be created by authorized users. (Holm et

al. 2012) The ISO 15926 architecture is presented in Figure 14.

The entity types of ISO 15926 can be hierarchically ordered using subtype and

supertype relationships. Another major modelling strategy is temporal and special

composition by relation entities. In the hierarchical model subtypes are derived

from root element “thing”. The root element carries information about identity and

derived abstract basic entities class, relationship and multidimensional object.

This is presented in Figure 15. Attributes are implemented as instances of basic

data types or references to other elements. (Mahnke et al. 2011)

Figure 14. ISO 15926 architecture (ISO 15926-1 2004)

29

3.2.4 CAEX

Computer Aided Engineering Exchange (CAEX), or also known as IEC/EN

62424, is a data format that provides meta-model that can define hierarchical

plant models and define attributes for models. It defines elements, interfaces and

components and concepts for modelling relationships and functional and

topological hierarchies of them. These concepts can be used as a model for

information exchange between engineering software tools. (Mahnke et al. 2011)

Especially CAEX is focused on the exchange P&I diagrams from tools that create

them to process control engineering or computer-aided engineering tools. (Holm

et al. 2012)

Figure 15. The basic model elements of ISO 15926 (Mahnke et al. 2011)

30

CAEX defines three class libraries which are SystemUnitClassLib, RoleClassLib

and InterfaceClassLib. The InterfaceClassLib contains interfaces for modelling

the information flow between resources and controls systems or mechanical

connections like flange for connecting pipes. A class in this library defines type of

the link between elements. It can also have attributes, like “direction”. The

RoleClassLib comprises RoleClasses that are used to model functions of objects.

The functions are something that the technical implementation has to fulfill, like

for example "a conveyor". The roles are also used to assign graphical images to

the objects. An object with the role "conveyor" would have a corresponding image

in the diagram. The SystemUnitClassLib holds logical and physical plant objects.

They are like classes of object-oriented programming. They describe the system

elements in detail by defining the content and meaning of the elements. Roles

can be assigned to these classes and with roles the elements get new attributes

and interfaces. The classes from SystemUnitClassLib are used for instantiating

InternalElements which are instances of these objects. The plant hierarchy is

constructed in SystemHierarchy, which is kind of a container-object of the model.

(Schleipen 2010, Holm et al. 2012) Figure 16 shows how all these libraries are

used together.

Figure 16. The usage of CAEX libraries. (Schleipen 2010)

31

Figure 17. Basic architecture of AutomationML. (AutomationML consortium

2010)

3.2.5 AutomationML

AutomationML (Automation Markup Language, AML) is a data format developed

by Daimler, ABB, Siemens, Rockwell, Kuka, Zühlke, netAllied and the universities

of Magdeburg and Karlsruhe. The idea behind AML is to be a neutral format that

serves for data exchange between manufacturing engineering tools, like CAD or

simulation tools. (Drath et al. 2008)

Like many other standards, AML is object-oriented and describes plant

components as data objects. The objects can consist of sub-objects and be part

of some higher level object themselves. Data objects can be everything from

robots or signals and values to tanks and manufacturing cells. The aspects

depicted are for example objects position in plant topology, relations to other

objects, its behavior, kinematics or geometry. (AutomationML consortium 2010)

AML uses established data formats for different aspects. It mainly serves as

integration format between the standards and defines how to use them to

achieve interoperability. The standards useds are CAEX, PLCopen XML and

COLLADA™. (Drath et al. 2008)

32

For plant topology, AML uses CAEX. Because topology is also the top level of

AML, CAEX is the high level integration frame of it. A specific usage for the

format is defined. For geometry objects COLLADA™ -format is used to store

them in separate XML files. Also kinematic information is stored similarly. The

logic information is described with PLCopen XML –format as sequential

functional charts (SFC). The variables in SFCs can be published as CAEX

ExternalInterfaces so that the high level interconnections can be presented. The

links between CAEX and external files, references, and the connections between

CAEX objects, relations, are presented with standard CAEX mechanisms. The

use of these standards and the basic architecture of AML are presented in Figure

17. There are several advantages from the AML architecture. When established

data formats are reused, the specification effort of AML is reduces. The data is

distributed into different files and the bulk data handling is therefore easier. The

library files usage is simplified by storing and exchanging them separately. The

geometry and logic variants can be stored separately to distinguish between

degrees of detail. (Drath et al. 2008)

For the application of CAEX, AML defines certain rules and special libraries. AML

defines how to identify objects and classes. InterfaceClassLib contains several

interface classes for general automation systems. The classes of the library allow

modelling of user defined interface instances. RoleClassLib defines the role

classes that explain the functionality of CAEX objects. AML standard doesn’t

define specific SystemUnitClassLib, but it does define some rules for it.

InstanceHierarchy stores project data and is the core of AML data. It is hierarchy

of object instance and its properties, references and relations. (Drath et al. 2008)

3.2.6 PandIX

PandIX is an information modelling method developed to exchange the data of

P&I diagrams. It describes the functionality of the plant structure for control

purposes in a standardized way. It doesn’t model any other relations, like

chemical or physical reactions or balances. PandIX extends the CAEX model and

it provides interfaces for interoperability with CAEX. Also interfaces are provided

for vendor-specific solutions and XMpLant which is based on ISO 15926. PandIX

was developed in Aachen University. (Schuller, Epple 2012)

33

PandIX uses interface based on CAEX to export the information related to

functionality of the plant from the engineering software. The information that is

irrelevant for process control engineering is not exchanged. The PandIX model is

specified as a meta-model. The specification contains the model description, a

library of standardized process plant elements, a suggestion for positioning

system and mapping rules to create CAEX XML file for the model. (Schuller,

Epple 2012)

PandIX model has two types of technical units. They are process plant elements

and process control elements. The plant units are for example pipes and vessels

Figure 18. Example of process plant element in PandIX (Schuller, Epple

2012)

34

and the control units are for example sensors. Both element types must have at

least one interface. Links are used to connect interfaces. These links cannot have

any functional properties since every functional connector, like pipe, is modelled

as an element. In addition to having interfaces process plant elements have

always at least one channel for products. The channels also have interfaces. A

channel describes the flow of the actual product inside the process element. A

pipe would have one channel for example while a heat exchanger would have

two. An example of a process plant element is presented in Figure 18. The

variables of the element are on the left side and the interfaces on the right.

Process control elements are used to send and receive information between the

real and the virtual world. They have interfaces for signals and control. The signal

interface enables connecting two control elements and the control interface

enables transferring information to process plant element. (Schuller, Epple 2012)

PandIX also provides form and positioning information. These can be used for

example to describe geometry of vessels or positioning of a sensor. There are

two ways to define this kind of information in PandIX. Other one is to export a

complete 3D model, and the other is to add only the necessary pieces of

information to PandIX. (Schuller, Epple 2012)

3.2.7 IEC 61970/61968 Common Information Model

The IEC 61970 is a model used to define the components of a power system and

their relationships at an electrical level. IEC 61968 goes hand in hand with IEC

61970 since it extends the model to cover also the other aspects of power system

software data exchange. These could be billing, asset tracking and work

scheduling for example. The standards also define Common Information Model

(CIM) for power systems. The primary use of the standards is to facilitate the

exchange of power system network data between companies and to allow the

exchange of data between applications. (McMorran 2007)

CIM is described using UML concepts. The IEC 61970-301 specifies the core

packages and the IEC 61968-11 brings additional packages. The CIM consists of

multiple main packages with different functionalities. There are also sub

packages and classes with attributes and associations. Physical objects like

equipment and abstract objects like operations can be described with this set of

35

abstract classes, attributes and associations. (Rohjans, Uslar & Appelrath 2010)

The basic concept of CIM is presented in Figure 19. As can be seen classes can

have subclasses and relationships to other classes. They have also attributes.

Classes belong to packages which can be nested.

An example of the usage of CIM is given in Figure 20. It is a model of a steam

turbine. Inheritance is presented with arrows. For example, StreamTurbine-object

inherits PrimeMover-object. There are also references. The StreamTurbine has

SteamSupplys for example. Almost all the objects have attributes. The basic

attributes required for identifying an instance of an object can be seen in

Core::IdentifiedObject.

Figure 19. Basic concept of CIM. (Mahnke et al. 2011)

36

3.2.8 IEC 61850

As the name of IEC 61850 tells, it is a standard for “Communication Networks

and Systems in Substations”. Although IEC 61850 is mainly a communication

standard, in Part 7-4 it also defines basic information model used to describe

specific substations, hydro-power generation and decentralized power

generation. IEC 61400 extends this list with wind power generation. (Kostic,

Preiss & Frei 2003, Mahnke et al. 2011)

The modelling concept of IEC 61850 is object-oriented. It supports objects,

attributes, data types and aggregation. Inheritance is not supported. (Mahnke et

al. 2011) In the model, the main abstraction type is a logical node. The nodes can

represent two things. Either they depict a function of substation the automation

system or they depict external process equipment. The nodes contain a hierarchy

Figure 20. Steam turbine CIM model. (Rohjans, Uslar & Appelrath

2010)

37

of data objects and the objects contain attributes. The attributes store process

information as well as configuration information etc. (Brunner 2008) In addition

each attribute has a type, like boolean or integer. The information model can be

seen in Figure 21. The standard defines several domain specific logical nodes.

To extend the model, logical nodes and object classes can be added by the user.

The information model is designed with and information exchange model. The

standard specifies also a Substation Configuration Language (SCL). It can be

used to exchange configuration information between tools. (Mahnke et al. 2011)

3.3 Comparison of standards

To obtain understanding about the modelling capabilities of the standards a

simple comparison was made. The necessary requirements for all the information

models are hierarchy, aggregation and variables. They are needed to present the

structure of the process or the plant. Some of the models don’t support functions

or concepts of object object-oriented programming. However, these capabilities

Figure 21. The IEC 61850 Information Model (Mahnke et al. 2011)

38

are not needed for the uses of the models lacking them. (Mahnke et al. 2011)

The results of the comparison are presented in Table 1. The comparison is

similar to the one made by Mahnke et al. (Mahnke et al. 2011), but

AutomationML and PandIX were added to it. (Schmidt, Lüder 2015, Schuller,

Epple 2012) Also the support of inheritance and classes was added to CAEX

according to Schleipen (Schleipen 2010). As can be seen from the table OPC UA

is the standard with the strongest information modelling capabilities.

Table 1. Comparison of the information modelling standards (Mahnke et al.

2011, Schleipen 2010, Schmidt, Lüder 2015, Schuller, Epple 2012)

OPC

UA

ISA-

95

ISO

15926 CAEX AML PandIX

IEC

61970

(CIM)

IEC

61850

Hierarchy x x x x x x X x

Aggregation x x x x x x X x

Variables x x x x x x X x

Functions x x - - - - - -

References x x x x x x X -

Classes x x x x x x X Partly

Methods x - - - - - X -

Inheritance x x x x x x X -

Data Types x - x x x x X x

39

Other important concept of information modelling is, as mentioned earlier, the

extensibility or flexibility of the information models. This is needed to add vendor

or end-user specific data. The concreteness of the model is also significant to be

able to understand how domain-specific the models are. The models do also

have different philosophies on how to model the system. The comparison of

these features is presented in Table 2. (Mahnke et al. 2011)

It is clear that there are lots of standards with different use cases and purposes.

At the moment it is impossible to find a single standard applicable for all the uses.

This leads to heterogeneous system of software build on different standards.

(Selway et al. 2015) Therefore one significant factor in choosing the standard is

how compatible it is with other standards. The best selection of the standard

should fit to the use case, in this case process industry and specifically

downstream O&G. The standard chosen should also be fairly popular to be

supported by many devices and software systems.

OPC UA as well as ISA-95 is developed to be used in all kinds of industries and

everything from batch processes to continuous processes. (Mahnke, Leitner &

Damm 2009, OPC Foundation 2013b) ISO 15926 on the other hand has a clear

scope in upstream O&G, but being a generic model, it is applicable to other

processes as well. (Holm et al. 2012) CAEX aims to be a standard for the

exchange of data between P&I diagram development tools and process control

engineering tools. (Holm et al. 2012) AutomationML is a standard developed for

production systems engineering and commissioning. (Schmidt, Lüder 2015)

PandIX is meant for the exchange of P&I diagrams. (Schuller, Epple 2012) IEC

61970 and IEC 61850 are related to energy generation and grids. IEC 61970

models components of power systems and their relationships. (McMorran 2007)

IEC 61850 is for describing substations, hydro-power generation and

decentralized power generation. (Mahnke et al. 2011)

40

Table 2. Comparison of the qualitative attributes of the standards.

 Extensibility Philosophy Concreteness Source

OPC UA

Extensible in

several ways,

adding type

hierarchies

and reference

types

Object-

oriented +

(Mahnke,

Leitner &

Damm 2009)

ISA-95

User specific

data types and

property

values

Object-

oriented +

(Mahnke et

al. 2011)

ISO 15926

Authorized

users can add

reference data Ontology ++

(Holm et al.

2012)

CAEX

External

interfaces Meta --

(Holm et al.

2012)

AutomationML

User defined

classes and

libraries Meta -

(Schmidt,

Lüder 2015)

PandIX

External

interfaces Meta -

(Schuller,

Epple 2012)

IEC 61970

(CIM)

Extensible

classes,

attributes,

pakcages,

methods

Object-

oriented ++

(Mahnke et

al. 2011)

IEC 61850

Extensible

logical nodes

and objects

Object-

oriented ++

(Mahnke et

al. 2011)

41

OPC UA seems to be the standard to which other standards are relying on and

trying to find compatibility. ISA-95 and AutomationML for example have OPC UA

specifications. (OPC Foundation 2016d) According to Mahnke, Gössling and

Graube, OPC UA can be used to map CAEX, ISA-95, ISO 15926, IEC 16970 and

IEC 61850 information models. (Mahnke et al. 2011) Most likely also PandIX is

compatible with OPC UA, since it is also based on CAEX.

Because of the above mentioned reasons, OPC UA is selected to be the

standard used for information modelling in this thesis. The advantages in

selecting OPC UA are that OPC UA is highly platform independent standard. It

supports complex data types and object models. It is capable of achieving high

speed transfers by using efficient binary protocols. One of the main reasons for

selecting OPC UA is that OPC UA has a broad industry support and it is being

used to support also other standards like ISA-95, ISA-88, EDDL and MIMOSA.

(Postół 2015) It is supported also by Germany’s Industrie 4.0. (OPC Foundation

2015a) The drawback of OPC UA is that it isn’t capable of addressing the whole

life-cycle. It is focused only on the operational phase. (Mahnke et al. 2011)

42

4 DEVELOPMENT OF INFORMATION MODELS

This chapter explains the process of designing information models. In the

previous chapter, different information model specifications were introduced and

compared. According to the comparison made OPC UA provides the widest

information modelling capabilities and was selected to be used in this thesis. In

the first subchapter a rather generic modelling process is explained. The second

subchapter gives some rules regarding information modelling in OPC UA. The

existing modelling tools are reviewed in the last subchapter.

4.1 Information modelling process

Harju (Harju 2015) proposed steps for designing information models in his thesis.

At first, the designer should get to know the process and the equipment to be

modelled. That is done in three steps. First, data is gathered from P&IDs, process

experts and other sources. At the same time the equipment related to the

process are discovered. Next the signals such as measurements available from

the process are studied to figure out which of them are necessary for the model.

The gathered data needs to be validated before continuing from this initial step

forward. (Harju 2015) In addition to the information of the process and equipment,

also defining the requirements is important. The requirements help to understand

the needed level of detail of the model and what information should be focused

on. This kind of information can be gathered from the stakeholders of the

information models by asking what is going to be done with the model and how.

They could be for example clients or the ones maintaining the address space.

The defined requirements should also be validated.

After familiarizing the process, the modelling tools can be selected. Of course

there is always the option to create models by writing with a simple text editor.

However, tools can be helpful for modelling and maintaining the server address

space. Three existing modelling tools are presented briefly later in the second

subchapter. Creating own tool might be a feasible choice for maintaining the

models. (Harju 2015) After the tools are set up and all the information is

gathered, the actual modelling can be done.

43

First the devices are modelled. The existing types can be inherited and expanded

to match the devices. The modelling should start from the highest level of

abstraction and move towards smaller components. For example if a whole plant

is modelled, the plant is the highest level but if a simple process is modelled, the

process unit should be the highest level. From process unit the next level could

be devices, then analyzer devices or sensors and finally simple input signals.

Subchapter 4.3 gives some rules for information modelling with OPC UA.

When the devices are modelled and the equipment hierarchy is ready the model

can be moved to OPC UA server. Many of the information modelling tools provide

a code generation function. The code can be inspected and own changes can be

made before the server is set up. After the server is running instances can be

created to server address space and used. (Harju 2015)

4.2 Existing modelling tools

Information models can be created by writing code directly or using some

graphical editor that handles the code generation. Using these modelling tools

brings some benefits. First of all, the tools make information modelling possible

for users that don’t know how to code. Even for coders the tools can provide

validation and ensure that the produced model is error free and valid OPC UA.

The tested modelling tools in this thesis were OPC UA Address Space Model

Designer from CAS, UaModeler from Unified Automation and OPC-UA-Modeler

from Fraunhofer IOSB. The two first of these are freely available for testing, while

the third one is not provided as a demo version. The selection of tools does not

intend to be exhaustive.

4.2.1 OPC UA Address Space Model Designer

OPC UA Address Space Model Designer is available in two editions, professional

and standard. The main difference is that the professional version is capable of

importing and exporting XML schemas or UML while the standard is not. The

professional version can also be used for UA Server Configuration and has some

other more advanced features. The standard version can be used for basic

modelling and also supports publishing the model as OPC UA Address Space.

(CAS 2011a) The version tested was 3.20 Professional.

44

The OPC UA Address Space Model Designer user interface is divided into two

panes. Figure 22 represents the user interface. On the right side, it always shows

properties and data bindings of an object clicked. On the left side it has different

views that are called “Model”, “Browse View” and “Model 3D”. The “Model” shows

the information model currently under development and a type library. The

“Browse View” shows the Address Space of the models as it can be seen on the

server. The “Model 3D” is a graphical representation of the model. It seems

rather complex, unclear and hard to use. In addition to these the designer tool

provides help pane with lots of information about OPC UA. (CAS 2016)

The tool currently has many different features under development. Many of them

are helper functions like undo and redo. One interesting feature of the tool is the

data binding functionality. It allows binding process data to the model at the

modelling phase. Also other plug-in tools can be added. (CAS 2016)

The OPC UA Address Space Model Designer can load models from XML-files

and its own file format. Also saving is possible. Import can be done from UA node

set XML-files. OPC DA server address space can be imported. Multiple import

Figure 22. The user interface of OPC UA Address Space Model Designer.

45

formats, like UML diagram, XML schema and Visio are under development. The

same formats are also under development for export. The model documentation

can be exported to a Word document or Microsoft Assistance Markup Language

(MAML). (CAS 2016) The tool is capable of exporting XML-files and generating

C#-code to present the functionality of the model and to create the node

instances. It must be noted that the functions created are just empty function

stubs. Also other code generators can be added. (CAS 2011b)

4.2.2 UaModeler

The version of UaModeler tested for this thesis was 1.4.3. The UaModeler

provides a graphical interface to build OPC UA information model. The tool has

two modelling views. The one called “Graphics View” is the more graphical

presentation of the model. It shows the objects and their relationships in a

diagram. The other one is called “Nodes View” and provides detailed information

about nodes, their attributes, children etc. The user interface and nodes view can

be seen in Figure 23. For modelling purposes the node view seems more

practical even though the graphical view allows seeing the relationships more

clearly. In addition to these views the user has information model and project

panes always at sight. At least the information model pane seems useful since it

provides a clear view of the model hierarchy. (Unified Automation 2016a)

Figure 23. The user interface of UaModeler.

46

The UaModeler provides standard OPC UA node set and in addition to that it

comes with node sets for PLCOpen and Device Integration (DI). Other models

have to be added by the user. For example, the ISA-95 model can be found from

the OPC Foundation web site. (Harju 2015) The models can be imported from

XML files or from UaModelers own file format. XML is also used for exporting the

models. For generating code UaModeler has several options. C and C++ server

code as well as a .NET server or client C# codes can be generated with

UaModeler. The codes are used to provide function stubs or create instances of

the model nodes. XML is required for providing the structure and type definitions.

(Unified Automation 2016a) Other licenses for code generation can be purchased

from Unified Automation. (Unified Automation 2016b)

4.2.3 OPC-UA-Modeler

OPC-UA-Modeler from Fraunhofer IOSB provides a graphical view to develop

information models. One interesting feature of the tool is that it supports importing

CAEX and AutomationML formats. It can be used to set up OPC UA servers

using CAEX or AML files. As well as the other tools, also OPC-UA-Modeler

supports XML import and export. The application is based on Windows

Presentation Foundation (WPF) and Silverlight. It is possible to get the

application in German or English. (Harju 2015, Fraunhofer IOSB (c) 2016)

4.2.4 Comparison

Of the two tested tools, the UaModeler from Unified Automation has the best user

interface. It is clear and easy to use. The hierarchy of the nodes is clear and the

editor has excellent helper functions like automatically filling some information or

an easy way to add children to a node. OPC UA Address Space Model Designer

from CAS has the largest set of features and some really useful features under

development. The comparison of the tools can mainly be done between these

two, since the Fraunhofer OPC-UA-Modeler lacks important features such as a

code generator. Fraunhofer’s tool however provides CAEX support which makes

it stand out a bit. In this thesis CAEX support is not important.

All the tools provide XML import and export capabilities. A graphical view is

available in all the tools although the 3D view in OPC UA Address Space Model

47

Designer was quite hard to use and interpret. The Address Space Model

Designer and UaModeler both provide code generators. UaModeler can generate

C, C++ and .NET server (C#) code, while the Address Space Model Designer

can create C# code. Other compilers can be added to both of tools. Both of these

tools use XML for type definitions and providing the structure of the information

model. The code is used for creating instances of nodes and to provide function

stubs that require implementation. The binding of process data is a unique

feature for Address Space Model Designer and makes it stand out. However

because of the complex and less intuitive graphical user interface, it is harder to

use than the UaModeler.

Even when using modelling tools, some things still need to be done by hand.

Both, the UaModeler and the Address Space Model Designer are capable of

creating methods. The methods are generated with input and output parameters

but the actual method code has to be added by the user after the method stub

has been generated by the tool.

Because of the well-designed user interface of the UaModeler it would be the first

choice out of these three modelling tools. It is a lot easier to use than the OPC

UA Address Space Model Designer and the models can be created with a lot less

clicks. Also the validation during design is better in UaModeler. For example, if

ReferenceType is removed, all the references are removed also. Address Space

Model Designer validates the code when compiling. The code generated with

UaModeler is more easily readable than the one from Address Space Model

Designer. Although it must be said that Address Space Model Designer uses the

code compiler provided by OPC Foundation. In functionality the Address Space

Model Designer is as good or even better choice than the UaModeler.

4.3 Generic rules for information modelling with OPC UA

When creating information models, the model should always be kept as simple as

possible for the use case. The level of detail in the model depends on the

requirements and the data source. If the client only needs to access some values

with ids, a full information model is unnecessary. If the data source is only a

simple OPC DA server it is impossible to create a rich information model.

(Mahnke, Leitner & Damm 2009)

48

OPC UA allows the developer to define more data types freely to match the

application needs. There is also existing set of types and instances. The new

data types inherit the existing type from which they derive from but they can also

have modifications to the features. New data types must be exposed to the

Address Space by the server. (Postół 2015) The data types used should be

standardized types if possible. The standardized types can be selected from OPC

UA specification or from a selected companion specification. (Mahnke, Leitner &

Damm 2009)

Generally speaking there are two ways to design new information models that

describe the behavior and state of a process. One is to adopt an existing model

from a companion specification and the other to design a custom model with own

data types. To unify the information models and to promote reusability, OPC UA

has many companion specifications for different processes. (Postół 2015) The

standard information models defined in the companion specifications should be

used when available because they might be familiar to the clients. (Mahnke,

Leitner & Damm 2009)

4.3.1 Structuring

In OPC UA objects are used to access methods and variables. The detail of

structure of the model depends on the usage. The more the client needs to

browse the address space the more structured it should be. Grouping of nodes

and variables can be done in several ways. Nodes should match devices or

similar instances. The variables under them can be grouped by objects according

to the purpose of the variable. The device nodes can be ordered according to

location, functionality etc. OPC UA allows having multiple hierarchies. (Mahnke,

Leitner & Damm 2009)

The ReferenceTypes can be used to define relationships between the nodes.

There are hierarchical and non-hierarchical references. When existing

ReferenceTypes are not enough, new types can be made. A supertype should be

selected carefully for a new ReferenceType. Appropriate supertypes allow easy

filtering of Address Space. (Mahnke, Leitner & Damm 2009)

49

Views can be used to show parts of Address Space while hiding unnecessary

information. They either provide a hierarchy or to hide subcomponents of a node.

(Mahnke, Leitner & Damm 2009)

In addition to structuring a single information model, also the whole namespace

needs some kind of form. To keep the structure of the models easily

understandable, all the different plants types should have their own namespaces.

(Harju 2015) For example a distillation unit and cracking unit should be in their

own separate namespaces.

4.3.2 Defining types

All the objects and variables need to have an OPC UA type definition. If server is

lacking types, BaseObjectType and BaseDataVariableType can be used.

PropertyType is always used for properties. The definitions give more information

about the objects. Therefore providing specific type definitions is useful and

especially so when the definition is specified in a standard information model.

This is because the client applications also use those type definitions. (Mahnke,

Leitner & Damm 2009)

Before creating new type definitions some things should be considered. If it is

possible to provide the same information with a standard type definition, a new

one shouldn’t be created. Subtypes or instance specific information can be used

to extend those standard definitions. If the decision is made to create a new type

definition, a suitable supertype needs to be selected. There are always the base

types but if a more specialized supertype is available, it should be used. The

supertype is always specialized more by the subtype by for example adding

semantic. A supertype cannot be used if application is unable to prove some

mandatory information. When creating VariableTypes, the subtype has to have

the same data type as the supertype. In OPC UA multiple-inheritance is possible

but there are no rules for that. Because of the complexity of multiple-inheritance it

should be avoided. (Mahnke, Leitner & Damm 2009)

OPC UA has simple and complex ObjectTypes. Simple ObjectTypes only define

semantics of the object while complex types define the structure. The ObjectType

should be complex if the type is going to have multiple instances that have the

50

same structure. This is the typical case for a device. Simple types are needed

when the instances have different structures, like in an object representing a

factory area for example. (Mahnke, Leitner & Damm 2009)

If an object provides only one variable, like a simple sensor for example, using

VariableType might be considered. However, this doesn’t support extensibility

well. If you have also more complex sensors, you need to define them as

ObjectTypes. Having both ObjectTypes and VariableTypes representing sensors

is harder to handle and bad design. Therefore all of the similar devices should be

the same kind of type to enable similar handling. If there are only simple sensors

VariableType can be used but if there are more complex sensors, all the sensors

should be ObjectType. (Mahnke, Leitner & Damm 2009)

4.3.3 Naming of new types

Common naming practices help programmers to get an idea what a type is doing

without reading the whole code. The type libraries created should be named

similarly as the predefined OPC UA type libraries. They are called ObjectTypes,

VariableTypes etc. They always start with a descriptive name written with

uppercase letter and end with Types. Own type libraries have to be named

accordingly. Also the types themselves in the OPC UA specification start with a

descriptive name written with uppercase first letter and end with the word "Type".

Therefore also the own types should start with an uppercase letter and name and

end with "Type". An exception is reference type that doesn't have a specified

ending.

4.4 Information models in an OPC UA server

Since there are different OPC UA servers there is no generic way of uploading

models. The models can be uploaded in different file formats and the nodes of

the address space can be defined before uploading the models or dynamically in

the server. Also there are different ways to bind the process data to the model.

Instead of trying to describe the process of setting up an OPC UA server, this

chapter studies the different file formats that can be used to describe OPC UA

information models and how the model should be validated before moving it to

the server. First the benefits and drawbacks of the file formats are discussed from

51

a few viewpoints. The viewpoints are capabilities of describing the model, the

interchangeability and the possibilities of dynamically changing the information

model.

4.4.1 File formats

Information models or the standard nodes of them should be stored in some

machine readable file format. This enables populating servers Address Space

automatically from the file. However, some constraints always need to be defined

in text format. (Mahnke, Leitner & Damm 2009) Having a common format that is

both human- and machine-readable allows the model to be processed in future

also. It also supports interchangeability of the model. (Postół 2015) OPC

Foundation provides the standard nodes and also companion specification nodes

in XML-files based on its own UANodeSet XML Schema. (OPC Foundation

2015d) The benefit of using this standardized schema is that it is compatible with

some OPC UA tools, like modelers. Since it is defined by OPC Foundation itself,

it can be expected to be the format used in future.

The information model needs another file format for the implementation of the

Address Space functionality and the connection to the real world. It needs to be

capable of instantiating Address Space at runtime. This code is usually generated

with some compiler that can be used as an individual solution or embedded to the

model designer tool or to a server. (Postół 2015) OPC Foundation provides an

open source Model Compiler to generate ANSI C or C# source code from XML

files. (OPC Foundation 2016a) The provided source code can be used to

instantiate and interconnect nodes at runtime. In addition to the code languages

mentioned also other languages like C++ and Java can be used. The selection

depends on the server. In this thesis we are interested in developing information

models for a .NET server. From now on, the discussion will focus on .NET

servers.

The way most of the .NET servers function is the one described above. They load

the XML and the code generated. The XML files contain the node set while the

code contains the connections to the data. The code handles creation of the

instances. However, there are also optional ways that will be discussed next.

52

Information models can be also specified only with code, like C#. The code can

be separately compiled and moved to a .NET server using Dynamic-link library

(DLL) -files. As said earlier, the code is needed to provide functionality to the

information model. This functionality doesn't only mean methods but also

functionality in assigning values, checking ranges etc.

Information models cannot be described only with XML since currently there is no

used technique to provide functionality that way. However, in the future new XML

scripting techniques might provide functionality to XML-format. For example

Stuart (Stuart 2009), has written a patent of an XML based scripting language.

Currently there is no de facto XML scripting technique. Of course own methods to

do this can be defined but it would require more work and the interchangeability

benefits of XML would then be lost. It also cannot be said for sure that there is

ever going to be de facto XML scripting standard.

Compared to coding XML has one practical benefit. XML is designed to present

structure while code is not. Interpreting structure from code even if it is object-

oriented requires more effort. The hierarchies in XML are also more human-

readable.

XML and generating executable code from it in server has also another benefit. It

allows changing information models at runtime since the XML models can be

easily removed from server. However, dynamically changing the information

models requires some means of modifying the existing node instances and to

maintain their data bindings.

Loading new DLL-files to a server is also possible but a lot more complex than

loading XML-files. This is due to the fact that there is no way to unload an

existing DLL-file from a .NET assembly. The problem could be solved by loading

DLLs to a separate new AppDomain. AppDomain means an isolated layer or

environment where applications execute. (Microsoft (c) 2016) When the DLL-files

need to be updated, the old AppDomain can be disposed and a new one can be

created. (Holstad 2007) The information model is updated by loading the new

DLL-files to the new AppDomain.

Of course for the update to be useful also the existing instances of the modified

objects have to be changed. One way of doing this could be creating new

53

instances of every existing instance and creating a method to copy each value of

the instance to the new instance. After this the old instances could be removed.

Writing information models with C# and uploading them to server as DLL-files

was selected to be used in this thesis. The reason is that functionality still

requires some parts of the information models to be presented as code. XML

scripting is not developed enough to be used in this yet and it might never be.

Dynamically changing the information model database with DLL-files is hard but

not impossible. The drawback of the selection is that the readymade tool

solutions like modelling tools and servers usually support XML the way described

in the beginning of chapter. Also the code doesn't present the structure in an as

human-readable format as XML does. Reading and understanding how the XML

models are formed and how one should write information model in XML is a lot

easier than understanding the code. Programming the models requires much

more knowledge of OPC UA, the server functionality and of course programming.

4.4.2 Architecture

The information models logically build upon each other when they are created by

programming. A logical architecture is presented in Figure 24. The vendor

specific models on the top layer inherit the lower layers and so on. The methods

are called directly from the objects. There are a lot of advantages in this kind of

architecture. There is a lot of reuse of the lower level components since all the

top level components can use the same base. Adding new components is easy

and therefore the application is scalable. However, the architecture also has

disadvantages. The clearest disadvantage is that changes to the lower levels

usually affect the top levels. This kind of architecture is not usually optimal

performance vice either because depending on the internal server architecture

the communication might need to pass many layers.

54

Another option for the design would be implementing an interface through which

all the communication would pass as presented in Figure 25. The idea is to base

logic on the interfaces instead of the internal implementation details of the

objects. An interface of an object can be thought as a type definition of an object.

It defines the methods the object has but the object class itself has to take care of

the implementation. Using the interface reduces the dependencies of the code.

Because the interface defines the interactions between the object they cannot

reference each other directly anymore. Of course having this kind of single

package to handle all the communication introduces a single point of failure and

a bottleneck. Also the interface package can become really complex if not

designed properly.

Figure 24. Layered information model architecture.

55

The use of interfaces makes sure that there are no references from code

instance to another. Because the address space of an OPC UA server builds the

references between the nodes using OPC UA reference definitions, referencing

objects in the code in unnecessary. If objects reference each other in the code

removing the nodes becomes complicated. In addition to removing the node and

its OPC UA references from the server, the possible code object references to

the object need to be removed. If a code object reference to the object stays, the

.NET garbage collector will not remove the actual object. Also recreating the

internal code object references when the server is restarted is harder than simply

recreating the address space.

The layered approach is definitely more instinctive solution since it is based on

the OPC UA Information Model hierarchy. The hierarchy and the inheritances can

Figure 25. Alternative architecture approach with interface.

56

be written directly to the code. In the single interface approach, the hierarchy has

to be built run-time and not by referencing the objects in the code.

One problem in the layered architecture is that always when an instance of a

class is not being used anymore, the node might be removed from memory while

there are still some references to it. Because of the objects referencing each

other directly there are a lot of references and deleting all of them is hard. With

the interface approach this is not a problem.

Another benefit of having an interface for the communications is that the actual

information models can be easily modified and new information models can be

added. This is because the information models are not aware of each other. Only

the communication interface might require modifications when something is

altered or added.

In this thesis the architecture the information models are based on is layered

architecture. This is because the existing models are using layered architecture.

It would require a lot of changes and refactoring to start modelling with different

architecture.

4.4.3 Validation

Information models that are not properly done can cause problems in the server.

Since programming and modelling tools provide ways to detect syntax errors they

are not usually the reason. Logical errors like mistakes in calculations or resource

management cannot be detected by programming tools. Of course good

practices of coding and clear instructions help avoiding these errors but it should

be never trusted that the code is completely error free.

Before a new model is used some validation and checking for the most common

logic errors should be done. Having the code or at least the functional parts

inspected visually by a colleague could help but isn't enough.

In addition to peer inspection some kind of testing has to be done. There are

software applications for continuous integration. This means applications that are

capable of building and testing software continuously and even delivering them.

The basic idea is that when changes are added to the version control the

57

software running on the version control server automatically builds the software

project. Then it executes the unit tests made. It is necessary to test that the new

information model is compatible with also the previous server and information

model library versions. If it is not, some feedback is needed to know which

versions can be used with the information model. Since unit testing is time

consuming and often neglected it is important that it can be done automatically.

At least the most critical parts of the system, meaning the ones with possibility to

cause the system to fail, should be tested. All kinds of functions or methods with

calculations, casting or conversions can be considered critical. Boundaries could

be set for example to calculations such as division, square root and logarithms

since they cannot be always calculated and cause non-numerical values.

When the information model is delivered to the client's system a sandbox

environment is required to allow the developers to safely test the system before

launching it. Sandboxing means a technique where the program is isolated from

other programs to test it. Often it is a virtual machine that is a copy of the actual

server with an identical database and environment. It protects the actual server

because it allows only the virtual machine to fail. The reason this is needed is that

there is always the possibility that something in the client's system has been

changed after the first delivery or during it. Sandboxing takes time especially in

the process environment since all the anomalies don't occur in a day. However, it

is worth doing at least until a certain predefined level of confidence is reached.

How long the sandboxing should be done depends on the nature of the process.

58

5 INTRODUCTION TO THE EXPERIMENTAL PART

In this chapter the aims of the practical part of the thesis are explained. First the

problem with interoperability in a current solution is explained. After that the

possible improvement is presented together with steps to achieve that. Also

targeted ideal functionality of the solution is given. The second subchapter

presents the equipment modelled in the thesis to give a clear image of what is

going to be done. It defines specific requirements for the information models to

achieve the goals of the practical part.

5.1 Development needs

The aim of the practical part of this thesis is to create information models that

enable interoperability between different software. The models are created to

Neste Jacobs Oy's NAPCON solution environment. The specific target is to

achieve interoperability in NAPCONs distillation column calculation software.

59

Currently, whenever calculating something with the distillation column calculation

tool, the distillation column has to be defined and configured with an offline tool.

The tool then creates an XML file. The XML file contains the model of the

distillation column and tags of the data needed from the database. When the

calculation is started the XML is loaded and de-serialized into instances. The

database variables are saved into their own table. The architecture of the current

solution is presented in Figure 26.

To improve the interoperability and the flexibility of this solution the information

model should exist in the OPC UA Server. The resulting architecture, presented

in Figure 27, would be simple and more intuitive than the old one. With

information models existing on the server the configuration tool could function

online and the calculator could directly use the information models and the data

from the database. Also the result could be returned directly. When the

information models exist on the server there is no need for external configuration

Figure 26. Architecture of the current solution. (Räisänen 2014)

60

files. The client can see the defined distillation column on the server and the

calculations made are therefore more transparent. Also the architecture supports

the IoT way of doing things. The models are not only accessible to the calculation

tool but also to other clients.

To implement this, first the distillation process is studied as well as the

requirements of the calculation. An information model of the distillation column is

created using OPC UA information modelling specification. The development

started with creating a generic distillation column information model, moving on to

the data specific to this application. The model is then moved to the server and its

functionality is tested. Some changes are needed for the existing calculation tool

to support the model. Also a new or modified configuration tool is needed to

Figure 27. Architecture of the solution with information models in the

database

61

create the instances of distillation columns to the database. However these are

not in scope of this thesis. Only the information models are assessed.

5.2 Equipment modelled

The equipment to be modelled in this thesis is a continuous multi-product

distillation unit. In addition to all the parts of the column also the feeds and

product streams are modelled. Base type definitions are created for all distillation

columns to create a good and reusable hierarchy.

In multi-product distillation the feed consists of multiple components. The

components are separated in a single column producing multiple products. Multi-

product distillation is more complex than a binary distillation column. (Räisänen

2014) Both of these have feed flow coming from the middle of the column. The

liquid phase comes out from the bottom of the column. In some cases part of the

liquid is vaporized in the reboiler and fed back to the column. The overhead vapor

comes out from the top of the column. It is condensed to liquid. Part of the liquid

is fed back to the column as a reflux flow and the rest is distillate. The actual

distillation columns can be tray columns or packed bed columns.

Multi-product distillation columns have more variety in structure. Mainly the

difference is that there are multiple side draws. One possible multi-product

distillation column is presented in Figure 28. This column has five different

products. The side draws are stripped to remove absorbed light components from

the distillate and to feed them back to the column as vapor. Vapor can also be

fed from the bottom of the column. This lowers the partial pressure of the stripped

light components in the gas phase. It increases the yield of the separation. There

are also circulating flows to condensers next to the side draws. The condensers

in the mid parts of the column reduce the need of energy in the top of the column.

In addition they increase the liquid flow below them and affect the concentration

of the product flow. (Räisänen 2014)

Because of the complexity and variety of multi-product distillation columns the

information model made from the column has to be abstract and flexible. It has to

enable creation of different column structures. The amount of distillate flows out

can vary. Columns can have different number of trays. Sometimes there is no

62

stripping but the vapor flow out from the mid part of the column is condensed

directly into liquid and divided into reflux and distillate. In addition to this there can

be some kind of thermal integration both between the flows of the column and

between multiple different process units. For example in crude oil distillation the

feed of the column is heated with the condenser of the top of the column, reflux

flows and a separate heater (Räisänen 2014).

In this case also knowledge about the calculations and variables needed for them

is necessary in addition to the knowledge about the column. In the calculation

software the column is divided to unit columns. The unit columns consist of the

actual column part, the side draw-off unit with possible stripper and a condenser

circulation. It is important to know with which tray the streams are associated.

Figure 28. Multi-product distillation column

63

The bottom and the top unit columns are different from the others since they do

not have the same process units related to them.

The column itself has multiple measurement points for temperature, pressure and

flow. These are all associated with different trays. Calculating the flows between

the trays is important and therefore also the measurements and knowing their

location is important. In addition to these there is some additional data about the

column, like the pressure loss in trays or the dew point.

The heat exchanger objects like condensers and boilers have information about

flows going in and out and also the power used and the maximum power

available. These can be used for energy calculations.

Information is required about the flows both inside the column and going from the

column to different equipment. Flow properties such as mass flow, pressure and

temperature are necessary as well as information about heavy key and vapor

fractions and density. These all should be available for the calculations. There

are also properties that are calculated like enthalpy, molar flow and molar weight

as well as the Watson characterization factor. If available, also the distillation

curve temperatures are necessary information.

64

6 THE MODELLING PROCESS

This chapter explains how the modelling of distillation column was done. First the

choice of tools and programming languages are motivated quickly. After that the

actual process of modelling is presented. It includes justifying the choices of

companion specifications and explaining how they were used.

6.1 Tools used for modelling

The modelling in this thesis was done by programming in C# language by using

Visual Studio as the editor. The reason for the choice was that the modelling

tools couldn't produce code suitable for the NAPCON OPC UA server. Also

programming would have been needed anyway since the modelers are not

capable of implementing functionality. The choice to write the models only as

code and not using XML makes the model structure a bit harder to interpret for

human. Also currently no modelling tools can be used for the produced code but

there is a possibility to develop own OPC UA modeler in the future.

The information models created were uploaded to NAPCON UA Server.

Browsing the server's address space and creating the node instances was done

with NAPCON Information Manager. All the testing and validation was done by

examining the models and using the methods of the nodes with Information

Manager.

6.2 Development of the base information models

ISA-95 companion specification defines information model that includes for

example EquipmentType. Using this ready-made type seemed reasonable

because equipment were modelled. Another option would have been creating

own type definitions. Using information model from a ready-made companion

specification supports interoperability of the model. Also other companion

specifications could have been used but ISA-95 seemed the best since it is

suitable all kinds of processes. The ISA-95 model for OPC UA has been released

already in 2013. (OPC Foundation 2013b) ISA-95 is abstract model for functions

65

and operations of a plant and therefore suitable for models used in production

control systems.

Another companion specification that was used was the Device Integration -

specification (DI). The DI model provides a base for modelling devices such as

temperature or pressure meters and simplifies the integration of different devices.

The DI model has TopologyElement as its base type. It contains parameter and

method sets organized by FunctionalGroupType. The DeviceType inherits

TopologyElement and is the base type for devices. (OPC Foundation 2013a)

The DI information model had already been programmed to the used type library

so there was no need to edit them. The ISA-95 model was not defined so it had

to be made. It was programmed following the OPC UA for ISA-95 Common

Object model specification. The properties and references of each needed type

were read from the specification and transformed into code. The programming

was carried out by starting by modelling the EquipmentType and creating all the

other types it needed. The new types were then modelled and the associated

types created and so on until there were no more associations. As the result

whole model was not programmed but only the parts necessary for this work.

They were the equipment, physical asset and material information parts. Also

ISA-95 Base Information model was required. ISA-95 model can be seen in

Figure 29 in OPC UA notation. In the Common Object Model the Role based

equipment information, Physical asset information and Material information were

the parts modelled.

66

Figure 29. ISA-95 OPC UA Information Model (OPC Foundation 2013b)

67

Even from the modelled parts some features of the ISA-95 specification were left

out on purpose since they were optional and weren't useful for the data of the

NAPCON solutions. For example EquipmentCapabilityTestSpecificationType and

other similar types were not used because currently there is no need for such

capability test data. If the data is needed later the classes can be added. Also

Data Representation Model was left out since there was no possibility to create

new data types to the server. Instead the most suitable OPC UA data type was

selected when there was a need for ISA-95 specific data type.

Before modelling the distillation process some generic process equipment types

were created. These were added to their own information model library to be

easily subtyped in other information models. ProcessUnitType was created to be

a generic base type with common properties for all process units. PipeType was

created to be a generic type for all pipes in processes. Both of these types were

defined as a subtype of EquipmentType. Also other generic equipment types

such as TankType or HeatExchangerType were modelled as a subtype of

EquipmentType. To model the flow of fluids from a unit to another FlowsTo

reference type was added as a subtype of NonHierarchialReferences. FlowType

was created to store the information about the liquid flowing in a pipe.

MaterialClassType for ISA-95 specification was used as a supertype of

FlowType. To define the relationship of a pipe and a flowing liquid

HasMaterialFlow -reference was created. In addition types for equipment, like

condenser, stripper and boiler, common for many processes were added.

All in all the modelling process was carried out starting from the highest level of

abstraction and proceeding towards the smallest concrete pieces of equipment

and devices. First the process unit level was modelled. The distillation process

was further on divided into small sub-units, like the column containing trays or a

condenser circulation unit containing draw-off and reflux pipes. The equipment

were modelled after the sub-unit were done. First the focus was in creating a

generic and flexible model of a distillation column and not so much on providing

the necessary details for calculations. Because of this approach the model can

be used in other applications also and is not limited to the calculation software

only.

68

6.3 Modelling of the distillation column

The modelling process began by studying different multi-product distillation

column structures and trying to find the parts common for them. The information

was gathered from articles as well as by asking from experts. Also the calculation

software related to the distillation columns was studied and the future of it was

discussed with experts. A generic model of distillation column was build. The

column was divided into small pieces with the idea to keep the model as flexible

as possible. Modelling the outline of the process was rather simple but some

things like functions for adding trays and decisions about the structure was more

involved. It was also time consuming to study how the server and its OPC UA

address space works.

After the outline of the distillation process was ready, it was tested and validated

with NAPCON Information Manager. The testing was carried out by creating a

distillation column with different sub-pieces and trying all the different functions

and checking if correct references and nodes exist after that. Also shutting down

and restarting the server was tested to see if the nodes and references in the

address space are correctly reconstructed after that. The reconstruction was

proven out to be somewhat problematic. It had to be taken care that the

reference is added actually to the address space not just to the code object so

that it would be stored and reconstructed after restart.

The code of the distillation column calculation software and the XML-file used for

configuring the software were studied to find out the required data. The

measurements in the column and pipes were modelled according to the

calculation software's objects. It was found out that also data about the flows,

such as distillation curve related data, is required.

Finally to prove the concept of interoperability the information model was

connected to data located on another server. Further on this data was used in

calculations and results were returned to the database. Also writing data from the

local server to another server was tested.

69

7 IMPLEMENTATION OF THE INFORMATION MODELS

This chapter will first present the generic design of the created information

models. First an overview is given about the libraries created and how different

types are divided into libraries. Also the structure of the distillation column models

is explained together with the idea behind it. After that the thesis contains

discussion about the type definitions of the most important equipment and the

data the definitions contain.

7.1 Design of the models

The created type definitions were divided into two different libraries. Most of the

modelled equipment is only related to distillation processes and therefore located

in the DistillationEquipmentTypes -library. However some common equipment

was modelled for applicable processes. Type definitions such as PipeType or

HeatExchangerType were placed into the ProcessEquipmentTypes -library. The

idea is that the ProcessEquipmentTypes library can be used when modelling

other process units as well. This promotes code reuse.

Most of the type definitions in ProcessEquipmentTypes-library can be used

directly since they are made for common equipment. Notably there is also a

ProcessUnitType that should be used as a base for all the process units

modelled. The DistillationProcessUnitType is the highest level of abstraction in

the distillation process model. It is inherited from ProcessUnitType.

ProcessUnitType contains location information and is again inherited from ISA-95

EquipmentType

In general most of the created type definitions are inherited from EquipmentType.

A couple of exceptions are type definitions for measurement instruments that are

inherited from DI-model's DeviceType. The FlowType defining material flowing in

the pipes is inherited from ISA-95 MaterialClassType. In addition to these there

are also reference types that were created that inherit the most suitable reference

type from the OPC UA -specification.

The created information model of the distillation process is separated to various

different components or subunits. The highest level unit,

70

DistillationProcessUnitType, is an abstract object type having generic

components of a distillation process as children. The components are

FeedUnitType, BottomUnitType and TopUnitType as well as the

DistillationColumnType itself. The UnitTypes present collections of equipment

that can be handled as a single component of the bigger process. In the

distillation column case they contain at least a pipe connected to the column.

There is a possibility to add equipment like a boiler to the bottom unit or a heater

to the feed unit.

The concrete types for distillation processes are

MultiProductDistillationProcessUnitType and BinaryDistillationProcessType. Only

the first is required for this thesis. In addition to the inherited components the

Figure 30. The distillation process divided into components.

71

MultiProductDistillationProcessUnitType has HeatExchangerCirculationUnitType

and SideDrawOffUnitType as components. Figure 30 presents how the distillation

process is divided to different parts in MultiProductDistillationProcessUnitType. In

the figure, the red squares present a sub-component. One column can have

multiple condenser circulations and side draw-offs. Figure 31 presents the UML

diagram with the main classes of the information model.

7.2 Implementation details

Most important part of the model is the column itself. The DistillationColumnType

is an abstract type and cannot be used directly. It has node sets to hold

temperature, pressure and flow measurement nodes as children. The concrete

subtypes of DistillationColumnType are TrayDistillationColumnType and

PackedDistillationColumnType. PackedDistillationColumnType has

PackingMaterialType as a child. TrayDistillationColumnType needs to have a set

of trays inside and method for adding the trays in order. In addition to these the

TrayDistillationColumn has data for the calculations, such as the dew point.

There is a TrayType to define one tray. It contains information about the trays

above and below. Two special references, VaporFlowTo and LiquidFlowTo, are

created to define the relationship between a tray and the upper tray or the tray

Figure 31. The UML diagram of the main classes of the information model.

72

below. TrayType also has information about the vapor flow and the liquid flow

going through the tray. FlowType is used to define a flow. TrayType has data

about its pressure loss to support the calculations. It also has a diameter so that

the geometry of the column can be defined. The UML diagram in Figure 32

presents the DistillationColumnType and its related types.

FlowType contains information about the material flowing in a pipe. Things that

can be measured or are usually measured from the pipe are children of the

PipeType. FlowType contains data that is not measured but known from lab

results such as density. FlowType belongs to ProcessEquipmentTypes since it

needs to be available for other applications also. However it has a subtype called

DistillationFlowType in DistillationEquipmentTypes. The subtype has distillation

specific data like the Watson characterization factor or the dataset to store

distillation curve temperatures.

Figure 32. The UML diagram of the DistillationColumnType and related

types.

73

PipeType is important since it creates all the connections between other

equipment. It uses FlowsTo reference to tell the direction of the flow in the

process. It also has information about the material flowing in the pipe and the

possible measurements. FlowType is referenced with HasMaterialFlow reference.

Figure 33 shows the class diagram of PipeType. Commonly some measurement

devices are connected to PipeType but there is no standard measurement set

defined.

All the equipment have their own type definitions. For example boilers have

BoilerType. The BoilerType is inherited from HeatExchangerType. The type

definition for all heat exchangers has data item nodes containing the information

how much power it uses and what is the maximum power.

Figure 33. The UML diagram of the PipeType

74

The unit types connected to the distillation column always contain at least the

pipe connected to the column. FeedUnitType has optionally also a heat

exchanger to warm up the column feed. The TopUnitType has the option to add a

condenser and reflux drum and all the pipes connected to them. There can be

more than one condenser but most likely these cases can be simplified and

modelled with only one condenser. If necessary, there is a possibility for

additional condensers. The BottomUnitType allows adding reboiler and pipes

related to it. The unit types have methods for creating all the child nodes

mentioned here. Of course adding other child nodes and different equipment is

possible. The main idea in having these methods is to make sure that the correct

set of equipment is added and that the correct references are used between the

equipment.

As mentioned earlier the MultiProductDistillationProcessUnit has two additional

unit types as children. It also has methods for adding them.

HeatExchangerCirculationUnitType always consists of an outflow pipe from the

column, a heat exchanger and a reflux pipe. The heat exchanger is

HeatExchangerType. Also subtypes like CondenserType can be used in the

circulation unit. The SideDrawOffUnitType has always a pipe out from the

column. There could be also a stripper, a reflux pipe and a product pipe from the

stripper. The SideDrawOffUnit has method for adding a stripper. The PipeType

nodes of the condenser circulation and the side draw off are connected to the

TrayType nodes in the distillation column. The distillation column can be divided

into unit columns for the calculation software with this information. It was decided

not to create the unit columns to the information model since the information

model is supposed to be generic and applicable for other use cases as well.

Measurement devices have their own type definition called

MeasurementDeviceType. The type definition contains an AnalogItem that

contains information about the measurement and its value.

MeasurementDeviceType has enumeration variable to define if the measurement

is pressure, temperature, flow, density or level measurement. The nodes of

MeasurementDeviceType can be added to nodes of PipeType or TrayType for

example.

75

A ControllerDeviceType was also created. It has node of

MeasurementDeviceType as a child. In addition to that the controller needs to

have a set point and an output. These are added as AnalogItems. The type

definition of the controller device is really simplified. When creating it the model of

ControlEquipment in "OPC Unified Architecture for AutomationML" -specification

was studied. However the model was seen as too specific since it represents the

controller from the level of the actual device. For this model only presenting the

data was important and the implementation of the actual device could be

skipped. Therefore it was decided to keep the type definition as simple as

possible. (OPC Foundation 2016b) The ControllerDeviceType and the

MeasurementDeviceType can be seen in Figure 34.

Figure 34. The ControllerDeviceType and the MeasurementDeviceType.

7.3 Connecting to the data

MeasurementDeviceType and ControllerDeviceType type were connected to data

existing on another server to prove the interoperability. First the server was

connected to the remote database containing the process values. The references

could be made once the remote database was connected and accessible.

In the MeasurementDeviceType the measurement was connected to another

property using HasInput-reference. The MesurementDeviceType had to be

programmed so that adding HasInput-reference triggers an event of writing new

76

value to measurement and adding value listener to the source node. The value

listener was programmed so that every time the value of the source node

changes also the measurement changes.

In addition of getting measurement values the ControllerDeviceType had to be

capable of writing the output value to the remote database. The same HasInput-

reference was used also in this but it was inverted meaning that the output is the

input of the remote value. In OPC UA all references have an inverted meaning.

Instead of using something called "IsOutput" using the inverted HasInput is OPC

UA compliant. Again the type was programmed so that adding the reference

triggers function that handles adding value listener to output and writing to the

remote property. Therefore every time the output is updated also the remote

property will be updated.

The calculation framework can be connected to the information model without

any additional modifications to the existing NAPCON Calculation framework. The

old distillation calculation tool however cannot be directly used with the

information models. It requires some modifications so that it is capable of reading

the column structure from the information models. A simple sum calculation was

tested with the NAPCON Calculation framework to validate the connection.

With these modifications adding a fully functioning controller would be possible.

The set point can be fed to the database by the user or by some program. After

this the calculations can compare the measured value obtained from the process

to the set point. If they are not the same, the output can be adjusted. The output

value is again sent to the process to adjust the actuators.

77

8 CONCLUSIONS

In this work eight different information modelling standards were studied in order

to find the one most suitable for the process industry. Out of these OPC UA

specification was selected as the one to be used because according to the

comparison made it has the widest modelling capabilities. In addition, OPC UA

has many companion specifications and broad industry support. For example

Industrie 4.0 is relying on OPC UA. It can be concluded that OPC UA is highly

interoperable and compatible with other standards as well. Together with OPC

UA also ISA-95 and DI companion specification were used. These were selected

because they provided a readymade platform for modelling devices and

equipment.

OPC UA modelling tools were evaluated before starting the modelling work. A list

of available tools was found from the OPC Foundation's website. Only two of

them, OPC UA Address Space Model Designer and UaModeler were available

for testing. The UaModeler seemed easier to use and came with all the relevant

features. OPC UA Address Space Model Designer provides more features such

as binding process data to the model already at the modelling phase.

Despite testing the different tools the actual models were created using C#

programming language. This was because the modelling tools export the

developed models as XML. The OPC UA server used for the information models

had the earlier type libraries in C# so it was feasible to use the same method.

Also the XML-files would still require code with them to provide functionality.

In the experimental part an information model of a distillation column was

developed. The aim was to formulate good practices of information modelling and

figure out how the models should be created. Some rules were discovered and

generic instructions were given in Chapter 5.3.

When studying possible architectures for information models it was noted that

instead of having the models interact with each other hierarchically in a layered

form it might be beneficial to handle the communications through interfaces. This

kind of architecture would provide flexibility and modifiability to the models.

78

During the development of information models it was found out that using objects

and referencing them from other objects in code is problematic. When the server

is restarted and the address space reconstructed the object references made in

code won't be correct. Also when removing nodes the object references would

still stay there and be wrong after the deletion. The code should be made using

interfaces rather than classes. When using interfaces the object references won't

be made and only way to use other objects is through OPC UA references. With

interfaces the code has less coupling.

It was found out that coding the information models is time consuming and

requires some expertise. First the developer has to get familiar with the existing

code and understand how the models work. Studying the existing code is

required always when a new programmer has to develop information models. Of

course the instructions help but some studying always needs to be done to

understand the context of the instructions. Time is consumed also when doing

the actual coding since the code also has a lot of unavoidable repetition. Creating

a modelling tool could be a solution to speed up the production.

The actual model created was evaluated by creating and studying the possible

address space with NAPCON Information Manager and by speaking to experts.

The structure of the model was proven to be flexible enough to be able to present

different kinds of distillation columns. The model was considered suitable for the

needs of distillation column calculation software. The model was seen as a good

basis for further development. The generic types created and the ISA-95 types

can be used as a starting point for creating other information models.

Connecting parts of the model to data and calculations proved that the model can

really provide interoperability between different process parts. Creating more

information models for different parts of a plant and further on connecting these

models to calculation and control software creates new opportunities to enhance

the production processes.

8.1 Future research and development

It is recommendable to develop a graphical OPC UA modelling tool to simplify

information modelling in the future. This tool would need to provide code directly

79

suitable for the NAPCON UA Server. Even though the development work

requires time, more time is lost in studying the modelling process from the

existing models and code. The benefits are that anybody could design and create

the information models without much knowledge about how the server works.

Programming skills would still be needed to create functionality but not for all the

models. The generated code would also be more robust since it wouldn't have

any programming mistakes. Of course logical errors would still be possible.

Because of the logical errors a test environment for the models is necessary.

First the tests are run in the development environment. It should be studied what

are the most common and most critical errors and how they could be tested.

Another test related development target is to create a sandbox testing practices.

This enables testing the product in the actual runtime environment without the

risk of disturbing the actual automation system.

One important aspect of the thesis was if the models can be loaded dynamically

or not. Loading type definitions dynamically is possible when using C# and

multiple .NET AppDomains. Achieving this requires major modifications to the

current server.

The type libraries should be modified so that they use safe server interfaces to

define the types rather than interacting directly with other objects inside the

server address space. Classes interacting with each other creates rather high

coupling to the code, while the interfaces are more decoupled. References in

information models should be made using OPC UA address space references

only. The classes referencing each other cause problems since the object

references stay even if the node related to the object is deleted.

A graphical tool is required to simplify building the address space of the

distillation column and to connect it to data. The connections of nodes and the

structure of the model are hard to understand with tree based solutions. The tool

should be able to create a graphical presentation of the address space and

should allow creation of type instances and references to the address space.

80

REFERENCES

Adolphs, P., Bedenbender, H., Dirzus, D., Ehlich, M., Epple, U., Hankel, M.,
Heidel, R., Hoffmeister, M., Huhle, H., Kärcher, B., Koziolek, H., Pichler, R.,
Pollmeier, S., Schewe, F., Walter, A., Waser, B. & Wollschlaeger, M., 2015,
Status Report: Reference Architecture Model Industrie 4.0 (RAMI4.0), ZVEI,
Düsseldorf, Germany.

Arrowhead, 2016a, Arrowhead - General Overview [Online]. Available:
http://www.arrowhead.eu/about/general-overview/ [2016, 04/25].

Arrowhead, 2016b, Arrowhead framework [Online]. Available:
http://www.arrowhead.eu/about/arrowhead-common-technology/arrowhead-
framework/ [2016, 04/25].

Atzori, L., Iera, A. & Morabito, G., 2010, "The Internet of Things: A survey",
Computer Networks, vol. 54, no. 15, pp. 2787-2805,
http://dx.doi.org.libproxy.aalto.fi/10.1016/j.comnet.2010.05.010.

AutomationML consortium, 2010, AutomationML Part 1 - Architecture and
general requirements (Whitepaper), AutomationML consortium, Magdeburg,
Germany.

Bandyopadhyay, D. & Sen, J., 2011, "Internet of things: Applications and
challenges in technology and standardization", Wireless Personal
Communications, vol. 58, no. 1, pp. 49-69, 10.1007/s11277-011-0288-5.

Bauer, M., Boussard, M., Bui, N., Carrez, F., Jardak, C., De Loof, J., Magerkurth,
C., Meissner, S., Nettsträter, A., Olivereau, A., Thoma, M., Walewski, J.W.,
Stefa, J. & Salinas, A., 2013a, Deliverable D1.5 – Final architectural
reference model for the IoT v3.0, Internet of Things - Architecture.

Bauer, M., Bui, N., Carrez, F., Giacornin, P., Halller, S., Ho, E., Jardak, C., De
Loof, J., Magerkurth, C., Nettsträter, A., Serbanati, A., Thoma, M., Walewski,
J.W. & Meissner, S., 2013b, Introduction to the Architectural Reference
Model for the Internet of Things (Whitepaper), Internet of Things -
Architecture.

Breivold, H.P. & Sandström, K., 2015, "Internet of Things for Industrial
Automation -- Challenges and Technical Solutions", 2015 IEEE International
Conference on Data Science and Data Intensive Systems, pp. 532-539,
10.1109/DSDIS.2015.11.

Brunner, C., 2008, "IEC 61850 for power system communication", Transmission
and Distribution Conference and Exposition, 2008. D. IEEE/PESIEEE, pp. 1-
6, 10.1109/TDC.2008.4517287.

http://www.arrowhead.eu/about/general-overview/
http://www.arrowhead.eu/about/arrowhead-common-technology/arrowhead-framework/
http://www.arrowhead.eu/about/arrowhead-common-technology/arrowhead-framework/
http://dx.doi.org.libproxy.aalto.fi/10.1016/j.comnet.2010.05.010

81

Burke, T.J., 2013, "OPC Foundation open standards - Automation and business
interoperability improves efficiency", [Online]. Available:
https://www.isa.org/standards-publications/isa-publications/intech-
magazine/2013/december/opc-foundation-open-standards/.

CAS, 2016, OPC UA Address Space Model Designer, 3.20th edn, CAS, Poland.

CAS, 2011a, OPC UA ADDRESS SPACE MODEL DESIGNER -- STANDARD &
PROFESSIONAL EDITIONS COMPARISON, CAS.

CAS, 2011b, OPC UA Address Space Model Designer Professional (Datasheet),
CAS, Poland.

Cotton, D., Grissom, M., Spalding, D. & Want, R., 2012, Standardization Barriers
in the Petroleum Industry, University of Colorado, Boulder, USA.

Drath, R., Luder, A., Peschke, J. & Hundt, L., 2008, "AutomationML - the glue for
seamless automation engineering", 2008 IEEE International Conference on
Emerging Technologies and Factory Automation, IEEE, Hamburg, Germany,
pp. 616-623, 10.1109/ETFA.2008.4638461.

Federal Ministry for Economic Affairs and Energy, 2016a, Cooperation between
Plattform Industrie 4.0 and Industrial Internet Consortium [Homepage of
Federal Ministry for Economic Affairs and Energy], [Online]. Available:
https://www.plattform-i40.de/I40/Redaktion/EN/PressReleases/2016/2016-
03-02-blog-iic.html [2016, 09/13].

Federal Ministry for Economic Affairs and Energy, 2016b, Plattform Industrie 4.0
and Industrial Internet Consortium agree on cooperation [Homepage of
Federal Ministry for Economic Affairs and Energy], [Online]. Available:
http://www.plattform-i40.de/I40/Redaktion/EN/PressReleases/2016/2016-03-
02-kooperation-iic.html [2016, 04/17].

Fraunhofer IOSB, 2016, OPC-UA-Modeler [Online]. Available:
http://www.iosb.fraunhofer.de/servlet/is/35891/ [2016, 05/26].

Harju, J.H., 2015, Plant information models for OPC UA: case copper refinery,
Tampere University of Technology, Tampere, Finland, 62 p.

Holm, T., Christiansen, L., Göring, M., Jäger, T. & Fay, A., 2012, "ISO 15926 vs.
IEC 62424 — Comparison of plant structure modeling concepts",
Proceedings of 2012 IEEE 17th International Conference on Emerging
Technologies & Factory Automation (ETFA 2012), pp. 1-8,
10.1109/ETFA.2012.6489662.

Holstad, S., 2007, Using AppDomain to Load and Unload Dynamic Assemblies
[Homepage of Clarity Consulting], [Online]. Available:
https://blogs.claritycon.com/blog/2007/06/using-appdomain-to-load-and-
unload-dynamic-assemblies/ [2016, 06/08].

https://www.isa.org/standards-publications/isa-publications/intech-magazine/2013/december/opc-foundation-open-standards/
https://www.isa.org/standards-publications/isa-publications/intech-magazine/2013/december/opc-foundation-open-standards/
https://www.plattform-i40.de/I40/Redaktion/EN/PressReleases/2016/2016-03-02-blog-iic.html
https://www.plattform-i40.de/I40/Redaktion/EN/PressReleases/2016/2016-03-02-blog-iic.html
http://www.plattform-i40.de/I40/Redaktion/EN/PressReleases/2016/2016-03-02-kooperation-iic.html
http://www.plattform-i40.de/I40/Redaktion/EN/PressReleases/2016/2016-03-02-kooperation-iic.html
http://www.iosb.fraunhofer.de/servlet/is/35891/
https://blogs.claritycon.com/blog/2007/06/using-appdomain-to-load-and-unload-dynamic-assemblies/
https://blogs.claritycon.com/blog/2007/06/using-appdomain-to-load-and-unload-dynamic-assemblies/

82

IEEE, 2015, Define IoT [Homepage of IEEE], [Online]. Available:
http://iot.ieee.org/definition.html [2016, 04/12].

Industrial Internet Consortium, 2016, Industrial Internet Consotrium - Working
Groups [Online]. Available: http://www.iiconsortium.org/working-
committees.htm [2016, 05/25].

Industrial Internet Consortium, 2015, Industrial Internet Reference Architecture
(Whitepaper), Industrial Internet Consortium.

ISA-95, 2015, ISA-95 Enterprise Control Systems - General Information [Online].
Available: https://isa-95.com/isa-95-enterprise-control-systems/ [2016,
04/26].

ISO 15926-1, 2004, Industrial automation systems and integration -- Integration
of life-cycle data for process plants including oil and gas production facilities
-- Part 1: Overview and fundamental principles, 1st edn, International
Organization for Standardization, Geneva, Switzerland.

ISO/IEC Guide 2:2004, 2004, Standardization and related activities — General
vocabulary, 8th edn, International Organization for Standardization, Geneva,
Switzerland.

ISO/TS 15926-11, 2015, Industrial automation systems and integration --
Integration of life-cycle data for process plants including oil and gas
production facilities -- Part 11: Methodology for simplified industrial usage of
reference data, International Organization for Standardization, Geneva,
Switzerland.

Johnston, A., 2013, Oil and Gas Interoperability Pilot & ISO TC 184 OGI
Technical Specification -presentation, MIMOSA, MIMOSA/PCA/FIATECH
Conference, San Antonio, USA.

Johnston, A., Cormac, R., Klein, J., Grossmann, G., Bever, K. & Hyre, B., 2012,
Recording of Live Oil & Gas Interoperability (OGI) Phase 1 Pilot
Demonstration, MIMOSA, YouTube
(https://www.youtube.com/watch?v=ShvX4_C7QJg).

Johnston, A., Hoppe, S. & Sandmark, N., 2015, The Open Industrial
Interoperability Ecosystem and the Oil and Gas Interoperability Pilot -
presentation, Standards Leadership Council, Houston, USA.

Kagermann, H., Wahlster, W. & Helbig, J., 2013, Recommendations for
implementing the strategic initiative INDUSTRIE 4.0, Platform Industrie 4.0,
Frankfurt/Main, Germany.

Kostic, T., Preiss, O. & Frei, C., 2003, "Towards the formal integration of two
upcoming standards: IEC 61970 and IEC 61850", Large Engineering
Systems Conference on Power Engineering, 2003, IEEE, pp. 24-29,
10.1109/LESCPE.2003.1204674.

http://iot.ieee.org/definition.html
http://www.iiconsortium.org/working-committees.htm
http://www.iiconsortium.org/working-committees.htm
https://isa-95.com/isa-95-enterprise-control-systems/
https://www.youtube.com/watch?v=ShvX4_C7QJg)

83

Kumar, R. & Bose, A.K., 2015, "Internet of Things and OPC UA", IARIA, Rome,
Italy, pp. 38-43.

Lu, Y., Morris, K. & Frechette, S., 2016, Current Standards Landscape for Smart
Manufacturing Systems, NIST, 10.6028/NIST.IR.8107.

Mahnke, W., Gössling, A., Graube, M. & Urbas, L., 2011, "Information modeling
for middleware in automation", Emerging Technologies & Factory
Automation (ETFA), 2011 IEEE 16th Conference on, pp. 1-7,
10.1109/ETFA.2011.6059111.

Mahnke, W., Leitner, S. & Damm, M., 2009, OPC Unified Architecture, Springer,
Berlin.

McMorran, A.W., 2007, A Introduction to IEC 61970-301 & 61968-11: The
Common Information Model, University of Strathclyde, Glasgow, UK.

Melik-Merkumians, M., Baier, T., Steinegger, M., Lepuschitz, W., Hegny, I. &
Zoitl, A., 2012, "Towards OPC UA as portable SOA middleware between
control software and external added value applications", IEEE 17th
Conference on Emerging Technologies & Factory Automation (ETFA), 2012,
IEEE, Krakow, Poland, pp. 1-8, 10.1109/ETFA.2012.6489640.

Microsoft, 2016, AppDomain Class [Online]. Available:
https://msdn.microsoft.com/en-us/library/system.appdomain(v=vs.110).aspx
[2016, 06/08].

MIMOSA, 2016, Open Industrial Interoperability Ecosystem (OIIE) [Homepage of
MIMOSA], [Online]. Available: http://www.mimosa.org/open-industrial-
interoperability-ecosystem-oiie [2016, 04/18].

Mitchell, G., 2016, Standards Interoperability Breaks Silos In Operating Facilities
[Homepage of The Manufacturing Connection], [Online]. Available:
http://reliabilityweb.com/articles/entry/standards-interoperability-breaks-silos-
in-operating-facilities [2016, 04/08].

Moriarty, R., O'Connell, K., Smit, N., Noronha, A. & Barbier, J., 2015, A New
Reality for Oil & Gas -- Complex Market Dynamics Create Urgent Need for
Digital Transformation (Whitepaper), Cisco.

Object Management Group, 2016, Object Management Group and OPC
Foundation Announce Collaborative Strategy for the DDS and OPC UA
Connectivity Standards [Online]. Available:
http://www.omg.org/news/releases/pr2016/04-13-16.htm [2016, 05/04].

OPC Foundation, 2016a, GitHub: OPCFoundation/UA-ModelCompiler [Online].
Available: https://github.com/OPCFoundation/UA-ModelCompiler [2016,
06/07].

https://msdn.microsoft.com/en-us/library/system.appdomain(v=vs.110).aspx
http://www.mimosa.org/open-industrial-interoperability-ecosystem-oiie
http://www.mimosa.org/open-industrial-interoperability-ecosystem-oiie
http://reliabilityweb.com/articles/entry/standards-interoperability-breaks-silos-in-operating-facilities
http://reliabilityweb.com/articles/entry/standards-interoperability-breaks-silos-in-operating-facilities
http://www.omg.org/news/releases/pr2016/04-13-16.htm
https://github.com/OPCFoundation/UA-ModelCompiler

84

OPC Foundation, 2016b, OPC UA - AML Libraries NodeSet [Homepage of
AutomationML], [Online]. Available:
https://opcfoundation.org/UA/AML/AMLLibs/Opc.Ua.AMLLibraries.NodeSet2.
xml [2016, 08/18].

OPC Foundation, 2016c, Unified Architecture [Online]. Available:
https://opcfoundation.org/about/opc-technologies/opc-ua/ [2016, 04/26].

OPC Foundation, 2016d, Unified Architecture - OPC Unified Architecture
Specification [Online]. Available: https://opcfoundation.org/developer-
tools/specifications-unified-architecture [2016, 04/26].

OPC Foundation, 2015a, OPC UA in the Reference Architecture Model RAMI 4.0
[Online]. Available: https://opcfoundation.org/opc-connect/2015/06/opc-ua-in-
the-reference-architecture-model-rami-4-0/ [2016, 05/12].

OPC Foundation, 2015b, OPC Unified Architecture, Part 5 Specification - Part 5:
Information Model, 1.03rd edn, OPC Foundation.

OPC Foundation, 2015c, UA Overview [Online]. Available:
https://opcfoundation.org/wiki/index.php/UA_Overview [2016, 04/26].

OPC Foundation, 2015d, 08/18/2015-last update, UA/Schemas [Online].
Available: https://opcfoundation.org/UA/schemas/ [2016, 06/07].

OPC Foundation, 2013a, OPC Unified Architecture for Devices - Companion
Specification, 1.01st edn, OPC Foundation.

OPC Foundation, 2013b, OPC Unified Architecture for ISA-95 Common Object
Model Companion Specification, 1.0th edn, OPC Foundation.

Plattform Industrie 4.0, 2016, What is Industrie 4.0? [Homepage of German
Federal Ministry for Economic Affairs and Energy], [Online]. Available:
http://www.plattform-
i40.de/I40/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-
industrie40.html [2016, 04/15].

Postół, M., 2015, OPC UA INFORMATION MODEL DEPLOYMENT
(Whitepaper), CAS.

Prismtech, 2016, Industrial Internet Reference Architecture [Online]. Available:
http://www.prismtech.com/products/vortex/technologies/industrial-internet-
reference-architecture [2016, 05/04].

Räisänen, A., 2014, Reaaliaikaisen laskentaohjelmiston arkkitehtuurikehitys ja
yleistys monituotetislauskolonneille, Aalto University, Espoo, Finland, 100 p.

Rohjans, S., Uslar, M. & Appelrath, H., 2010, "OPC UA and CIM: Semantics for
the smart grid", IEEE PES Transmission and Distribution Conference and
Exposition, 2010, IEEE, New Orleans, USA, pp. 1-8,
10.1109/TDC.2010.5484299.

https://opcfoundation.org/UA/AML/AMLLibs/Opc.Ua.AMLLibraries.NodeSet2.xml
https://opcfoundation.org/UA/AML/AMLLibs/Opc.Ua.AMLLibraries.NodeSet2.xml
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/opc-connect/2015/06/opc-ua-in-the-reference-architecture-model-rami-4-0/
https://opcfoundation.org/opc-connect/2015/06/opc-ua-in-the-reference-architecture-model-rami-4-0/
https://opcfoundation.org/wiki/index.php/UA_Overview
https://opcfoundation.org/UA/schemas/
http://www.plattform-i40.de/I40/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40.html
http://www.plattform-i40.de/I40/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40.html
http://www.plattform-i40.de/I40/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40.html
http://www.prismtech.com/products/vortex/technologies/industrial-internet-reference-architecture
http://www.prismtech.com/products/vortex/technologies/industrial-internet-reference-architecture

85

Rouse, M., 2014, Service-oriented architecture (SOA) [Homepage of
TechTarget], [Online]. Available:
http://searchsoa.techtarget.com/definition/service-oriented-architecture
[2016, 05/03].

RTI News, 2016, Object Management Group and OPC Foundation Announce
Collaborative Strategy for the DDS and OPC UA Connectivity Standards
[Homepage of RTI], [Online]. Available:
http://www.rti.com/company/news/omg-opcf-collaborative-strategy.html
[2016, 04/17].

Schleipen, M., 2010, Automated Production Monitoring and Control System
Engineering by Combining a Standardized Data Format (CAEX) with
Standardized Communication (OPC UA)., INTECH Open Access Publisher,
10.5772/9503.

Schmidt, N. & Lüder, A., 2015, AutomationML in a Nutshell (Whitepaper),
AutomationML consortium, Magdenburg, Germany.

Schneider, S., 2015, Data Connectivity in the Industrial Internet Reference
Architecture [Homepage of Real-Time Innovations], [Online]. Available:
https://blogs.rti.com/tag/iira/ [2016, 04/25].

Schuller, A. & Epple, U., 2012, "PandIX—Exchanging P&I diagram model data",
IEEE 17th Conference on Emerging Technologies & Factory Automation
(ETFA), 2012IEEE, Krakow, Poland, pp. 1-8, 10.1109/ETFA.2012.6489537.

Selway, M., Stumptner, M., Mayer, W., Jordan, A., Grossmann, G. & Schrefl, M.,
2015, "A conceptual framework for large-scale ecosystem interoperability",
Conceptual Modeling, Springer, pp. 287-301.

Slaughter, A., Bean, G. & Mittal, A., 2015, Connected barrels: Transforming oil
and gas strategies with the Internet of Things, Deloitte University Press.

Standards Leadership Council, 2016, SLC Webpage [Online]. Available:
http://www.oilandgasstandards.org/ [2016, 04/15].

Stuart, A.F., 2009, XML based scripting language, Google Patents.

Unified Automation, 2016a, UaModeler, 1.4.3 edn, Unified Automation, Poland.

Unified Automation, 2016b, UaModeler "Turns Design into Code" [Online].
Available: https://www.unified-automation.com/products/development-
tools/uamodeler.html [2016, 05/26].

van der Linden, D., Granzer, W. & Kastner, W., 2011, "OPC Unified Architecture
(OPC UA) new opportunities of system integration and information modelling
in automation systems", 9th IEEE International Conference on Industrial
Informatics (INDIN), 2011, IEEE, Lisbon, Portugal, pp. 1-169,
10.1109/INDIN.2011.6035016.

http://searchsoa.techtarget.com/definition/service-oriented-architecture
http://www.rti.com/company/news/omg-opcf-collaborative-strategy.html
https://blogs.rti.com/tag/iira/
http://www.oilandgasstandards.org/
https://www.unified-automation.com/products/development-tools/uamodeler.html
https://www.unified-automation.com/products/development-tools/uamodeler.html

86

Weyrich, M. & Ebert, C., 2016, "Reference Architectures for the Internet of
Things", Software, IEEE, vol. 33, no. 1, pp. 112-116.

Whitmore, A., Agarwal, A. & Xu, L., 2014, "The Internet of Things---A survey of
topics and trends", Information Systems Frontiers, vol. 17, no. 2, pp. 261-
274, 10.1007/s10796-014-9489-2.

