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The SI unit ampere will be tied to an agreed value of the elementary charge within
few years. With this rede�nition, the ampere can be realised by controlled transfer of
individual electrons at a constant frequency. This provides a direct frequency-to-current
conversion.

One promising candidate for a new current standard is the SINIS turnstile, which con-
sists of a small normal metal island that is connected to two superconducting leads
via insulating barriers. A major problem for these types of devices is the existence
of nonequilibrium quasiparticles, which are generated during operation of the device.
These quasiparticles may tunnel through the insulating barriers causing excess current.

In order to reduce the number of quasiparticles in the vicinity of the junctions, the
geometry of the leads must be optimised. The quasiparticle density can be signi�cantly
reduced by designing the leads in such a way that the quasiparticles may e�ectively
di�use away from the tunnel junction. In this work, we have studied a simple di�usion
model for quasiparticle transport and fabricated SINIS turnstiles with varying lead
thicknesses.

In this work, we have fabricated devices where the normal metal island is either Cu or
AlMn. The Mn suppresses the superconducting properties of Al, resulting in a normal
metal island that can be oxidised in order to fabricate tunnel junctions for devices with
very thick superconducting leads.

We were able to demonstrate that AlMn based devices can be indeed fabricated and that
their charging energy can exceed the superconducting gap, which is essential in order to
suppress several error mechanisms. However, we were not able to verify whether having
thicker leads has a signi�cant e�ect on the quasiparticle density.

Keywords: ampere, superconductivity, SINIS turnstile, quasiparticles, lead ge-
ometry

Language: English
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SI-järjestelmän perusyksikkïhin kuuluva ampeeri tullaan lähitulevaisuudessa määritte-
lemään uudestaan kiinnittämällä alkeisvarauksen arvo. Uuden määritelmän perusteella
ampeeri voidaan toteuttaa siirtämällä yksittäisiä elektroneja kiinteällä taajuudella, mi-
kä tarjoaa suoran taajuus-virta-muunnoksen.

Eräs lupaava kandidaatti uudeksi virtastandardiksi on SINIS-hybridikiertompumppu,
joka koostuu pienestä normaalimetallisaarekkeesta, joka on yhdistetty kahteen supra-
johtavaan johtimeen siten, että metallien välissä on eristekerros. Eräs suurimmista on-
gelmista pumpuille on pumppaksen aikana syntyvät kvasipartikkelit, jotka voivat tun-
neloitua eristekerroksen läpi kasvattaen laitteen läpi kulkevaa sähkövirtaa.

Jotta kvasipartikkelien lukumäärää tunneliliitosten läheisyydessä voidaan vähentää, on
johdinten geometriaa optimoitava. Johtimet on suunniteltava siten, että kvasipartikkelit
pääsevät tehokkaasti di�undoitumaan kauemmas liitoksista. Tässä diplomity�ssä kvasi-
partikkelien kulkeutumista tutkittiin yksinkertaisella di�uusiomallilla sekä valmistettiin
hybridikiertopumppuja, joiden johdinten paksuus vaihteli.

Työssä valmistettujen pumppujen normaalimetalleina käytettiin joko kuparia tai man-
gaanilla seostettua alumiinia. Mangaani tukahduttaa alumiinin suprajohtavat ominai-
suudet, jolloin tuloksena on normaalimetalli, jonka pinnalle voidaan kasvattaa oksidi-
kerros, joka toimii pumpuissa saaren ja johtimet erottavana eristeenä, kun halutaan
valmistaa laitteita, joissa on hyvin paksut johtimet.

Työssä osoitettiin, että alumiinin ja mangaanin seoksesta voidaan valmistaa hybridi-
pumppuja, joiden varautumisenergia on suurempi kuin suprajohtavan alumiinin energia-
aukko. Tämä on tärkeä ominaisuus, sillä näin saadaan estettyä tiettyjä keskeisiä vir-
hemekanismeja. Työssä ei kuitenkaan saatu kokeellisesti vahvistettua sitä, vaikuttaako
johdinten paksuus merkittävästi kvasipartikkelitiheyteen.

Asiasanat: ampeeri, suprajohtavuus, SINIS-kääntöportti, kvasipartikkelit,
johdingeometria

Kieli: Englanti
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2 Introduction

When measuring any physical quantity, the whole process boils down to a comparison.
If one is using a ruler as the instrument, then the value to which the distance between
two given points is compared, is the distance between two ticks of the ruler. The distance
between the ticks of the ruler then needs to be compared to some other reference and so
forth. In the SI system, the ultimate reference for length is the distance traveled by light
in vacuum in a certain time interval. Thus, the de�nition of the SI unit of length, the
meter, is based on a constant of Nature, namely the speed of light c [1].

Currently, four of the seven base units of the SI system are based on constants of Na-
ture. In addition to the meter, these are the second, kelvin and candela. The kilogram is
based on the mass of an artefact, which is susceptible to drifting over time. Furthermore,
the de�nitions of the mole and the ampere are also tied to this artifact since the mole is
de�ned as the number of atoms in 12 grams of 12C whereas the de�nition of the ampere
is even more convoluted:

"The ampere is that constant current which, if maintained in two straight parallel con-
ductors of in�nite length, of negligible circular cross-section, and placed 1 metre apart in
vacuum, would produce between these conductors a force equal to 2×10−7 newton per
metre of length." [1]

This de�nition is problematic in several ways. As mentioned earlier, it ties the ampere
to the de�nition of the kilogram through the unit of force, the newton. Secondly, due
to geometrical constraints, the ampere has not been directly realised at an uncertainty
level lower than a few parts per 106 [2]. Perhaps a bit surprisingly, the main limitation
is not the geometry of the wires since the force between wires of any shape can be
exactly predicted using Biot-Savart's Law [3] and the Lorentz Force law. Instead, the
lack of su�cient knowledge about the current distribution within the wires restricts the
accuracy [4].

In the upcoming revision of the SI units, the ampere will be tied to the elementary
charge e while the mole will be tied directly to the Avogadro number. Furthermore, the
de�nitions of kilogram and kelvin will also be tied to constants of Nature, namely the
Planck's constant h and Boltzmann constant kB, respectively.

Since its advent in the early 1900s, quantum mechanics has been used to explain and
predict numerous fascinating phenomena. From the point of view of electrical metrology,
two phenomena are of crucial importance. The �rst one is the Josephson e�ect [5], where
the average voltage across a junction, consisting of two superconductors separated by an
insulating layer, that is driven by an ac current at frequency fJ , is quantized and takes
values nhfJ/2e = nfj/KJ , where n is an integer and KJ = 2e/h ≈ 484 THz/V is called
the Josephson constant.

The second phenomenom is the Quantum Hall e�ect [6], which is the quantization
of the resistance of a two-dimensional electron gas under a high magnetic �eld, where
the resistance takes values h/ne2 = Rk/n, where Rk = h/e2 ≈ 25.8 kΩ is called the von
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Klitzing constant and n is an integer.
The two e�ects have been used to establish the standards for volt and ohm, respec-

tively. With these standards, the ampere can be realised indirectly with smaller uncer-
tainty [4]. However, this type of realisation wouldn't be practical since tracing electrical
units to fundamental constants provides much higher accuracy.

As discussed above, the rede�nition of ampere will be based on a �xed value of the
elementary charge. Thus, one ampere can be realised by the controlled transport of N
electrons at a �xed frequency f resulting in a current I = Nef [7]. The most promising
candidates for devices capable of such transfer are based on quantum mechanical tunnel-
ing, which is is yet another example of quantum phenomena being used for metrological
purposes. Research on these so-called single electron sources has been active over the last
few decades thanks to advances in nanofabrication techniques [8]. In this introduction, we
will discuss normal metallic and hybrid (consisting of normal metallic and superconduct-
ing parts) devices in more detail. Fully superconducting devices have also been proposed
[9, 10], in addition to devices based on semiconducting quantum dots [11�13].

Most single-electron devices transfer electrons between two conducting leads via an
island in-between. Due to a phenomenom called Coulomb blockade [14], the island can
usually be occupied by a small number, usually just one, excess electron. This also requires
that the thermal energy of the electrons does not exceed the characteristic charging energy
in these systems, which means that the experiments have to be carried out at very low
temperatures.

The earliest single-electron current sources utilised several normal metal islands con-
nected in series [15], and electrons were transported through the islands by controlling
their electrostatic potential with external gate electrodes.

With fully normal metallic devices, suppression of so-called co-tunneling, where an
electron tunnels from the source lead to the island while an electron simultaneously
tunnels from the island to the drain lead, is of crucial importance. Errors caused by co-
tunneling are reduced by connecting multiple islands in series. So far, the most accurate
results for normal metallic devices have been achieved with a device consisting of seven
tunnel junctions [16]. As the number of islands increases, operating the device becomes
more di�cult, which ultimately restricts the operating frequency. In the seven-junction
pump, an accuracy of 1.5× 10−8 was achieved, but the operating frequency was only 5.05
MHz, and the resulting current output was 0.8 pA, which is not high enough to establish
a current standard. In a later experiment, a similiar device was used to establish the
standard for capacitance [17].

In 2008, the hybrid single electron turnstile was introduced [18]. In this device, either
the island or the leads are superconducting. The former device is called a NISIN turnstile
whereas the latter is called a SINIS turnstile. The letters S, I and N refer to supercon-
ductor, insulator and normal metal, respectively. The energy gap in the density of states
in a superconductor e�ectively suppresses cotunneling, leading to a much simpler device
design, consisting of only a single island. This relatively simple structure allows several
devices to be connected in parallel to increase the current output, as was demonstrated
in 2009 [19]. Parallelisation of the devices is essential since it has been predicted, that
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the current of aluminum-based devices is limited to around 10 pA [8], whereas a current
output of the order of 100 pA is required for metrological applications.

A major problem for the accuracy of the turnstile are the non-equilibirum quasi-
particles injected into the leads during turnstile operation. These quasiparticles consist
of unpaired electrons in the superconductor that carry enough energy to overcome the
Coulomb blockade, resulting in an excess current output, unless they are removed from
the vicinity of the junctions. Several schemes for this have been suggested, such as normal
metallic traps [20] or magnetic vortices [21]. In this thesis, we wish to study the e�ects
of the thickness of the leads on the density of the quasiparticles in the framework of a
simple di�usion model.

In addition to the realisation of the rede�ned ampere, single electron current sources
can be used to conduct an experiment known as the quantum metrological triangle [22].
In such an experiment, the current produced by a single-electron device is fed through
a resistor operating at one of the resistance plateaus related to the Quantum Hall e�ect
while the voltage across the resistor is probed using an array of Josephson junctions. If
the single electron device is operated at a frequency fSET and the Josephson junction
array is driven with an ac current at frequency fJ , then by using Ohm's law, one obtains

KJRKQSET = in
fJ
fSET

, (1)

where QSET is the amount of charge transfered in a single cycle of the single-electron
current source and n and i are the indices of the Josephson voltage and Hall plateaux
used, respectively. The right-hand side consists of a product of two integers and the
ratio between two frequencies, which can be measured with extremely low uncertainty.
Thus, the quantum metrological triangle acts as a consistency check for the fundamental
physical constants e and h. Furthermore, since the right-hand size is dimensionless, it is
independent of the chosen unit system.

This thesis is organized as follows: in the next section we will review the physics
relevant to the SINIS turnstiles by brie�y discussing superconductivity, followed by the
basic physics of hybrid single electron transistors, including both stationary and time-
dependent operation. Finally, we will discuss quasiparticle excitations in the turnstile
in further detail. In the third section we will review the experimental techniques used
to study the devices. We will give a brief overview of the sample fabrication process,
followed by the description of the experimental setup and the measurement procedures.
In the fourth section we will present the results of our measurements and in the �fth
section we will discuss the results.
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3 Theoretical background

3.1 Superconductivity

Superconductivity is a feature that some metals exhibit at below a material-dependent
critical temperature. In a superconducting state, two striking features emerge. The �rst
feature is the lack of electrical resistance, allowing electric currents to run without dissi-
pation for extended periods of time [23]. For the work presented in this thesis, however,
a more interesting feature is a temperature-dependent energy gap ∆ in the density of
states of the electrons.

Superconductivity is due to pairing of electrons of opposite momenta and spin via a
phonon-mediated attractive interaction. [24] The electrons in a superconductor can be
described by the following Hamiltonian [25]:

Ĥ =
∑
kσ

εkc
†
kσckσ +

∑
kl

Vklc
†
k↑c
†
−k↓c−l↓cl↑, (2)

where ckσ and c
†
kσ are the fermionic annihilation and creation operators for electrons with

momentum k and spin σ, εk are the energies of the single-particle states with momentum
k and Vkl describes the interaction between electrons with momentum k and l.

Now de�ne the operators bk = 〈c−k↓ck↑〉 and δk = c−k↓ck↑ − bk. Assuming that δk is
small, we can expand equation (2) up to �rst order to obtain

Ĥ =
∑
kσ

εkc
†
kσckσ −

∑
k

(∆kc
†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑ −∆kb

∗
k), (3)

where ∆k = −
∑

l Vklbl is called the superconducting gap. Equation (3) can be simpli�ed
by introducing the operators c†k↑ = v∗kγ−k↓ + ukγ

†
k↑

c†−k↓ = −v∗kγk↑ + ukγ
†
−k↓

(4)

and by choosing the coe�cients vk and uk so that|uk|2 + |vk|2 = 1

|vk|2 = 1
2(1− εk

Ek
),

(5)

where Ek =
√
ε2
k + ∆2

k. With these conditions, inserting equation (4) into the Hamilto-
nian in equation (3) leads to

Ĥ =
∑
kσ

Ekγ
†
kσγkσ + constant (6)

The constant in equation (6) may be ignored since we are only interested in changes in
energy.
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We will now calculate the density of states in a superconductor. We start by noting
that close to the Fermi energy, the energies Ek do not depend on the momentum and we
can thus drop the subscripts k. According to equation (6), we can describe excitations in
superconductors as fermions created by γ† that are in one-to-one correspondence with the
standard electronic creation operator c†. Therefore we can then set Ns(E)dE = Nn(ε)dε
because the number of electronic states must be equal to the number of quasiparticle
states corresponding to the same energy. Since we are only considering fairly narrow
energy ranges in the vicinity of the Fermi energy, we may consider the normal state
density of states constant. Denoting this constant as N0 we obtain

ns(E) = N0
dε

dE
=

|E|√
∆2 − E2

(7)

for |E| > ∆ and zero elsewhere.

3.2 Single-electron tunnelling

A tunnel junction is a structure consisting of two conducting electrodes with an insulating
barrier between them. In such a structure, charge transport is achieved by quantum
mechanical tunneling. As discussed in the introduction, the devices studied in this thesis
contain junctions consisting of a normal metal (N) and a superconductor (S) separated
by an insulator (I), or NIS junctions for short. They can be described with the following
Hamiltonian

Ĥ = ĤN + ĤS + ĤT . (8)

The �rst two terms describe the electrons in the normal and superconducting electrodes.
ĤN has the form Ĥ =

∑
kσ εka

†
kσakσ, where a

† and a are the fermionic creation and
annihilation operators for the normal metal, and ĤS is the BCS Hamiltonian discussed
earlier. The third term in equation (8) is the tunneling Hamiltonian, which can be written
as ĤT =

∑
kσ = tkqc

†
qσakσ + h.c. [26]. The current �owing through the junction can be

computed by constructing the corresponding operator. This is most conveniently done
using the Heisenberg picture. We obtain

Î = e
d

dt
N̂N =

ie

~
[Ĥ, N̂N ] =

ie

~
[ĤT , N̂N ], (9)

where N̂N =
∑

kσ a
†
kσakσ is the number of electrons in the normal metal. By calculating

the expectation value 〈I〉 of the current operator, we obtain the single electron tunneling
rates from the normal metal to the superconductor and vice versa. The result is

ΓN→S(δE) =
1

e2RT

∫ ∞
−∞

dEnS(E)fN (E − δE)(1− fS(E)) (10)

ΓS→N (δE) =
1

e2RT

∫ ∞
−∞

dEnS(E)fS(E)(1− fN (E + δE)) (11)

where e is the elementary charge, RT is the tunneling resistance, ns is the density of
states in the superconductor and f(E) is the Fermi-Dirac distribution function [26].
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In addition to charge, the tunneling electrons also carry heat. The heat �ow between
the normal metal and superconductor can be calculated in a similiar manner as the
tunneling rate, yielding

Q̇N→S =
1

e2RT

∫ ∞
−∞

dEEnS(E)fN (E − δE)(1− fS(E)) (12)

Q̇S→N =
1

e2RT

∫ ∞
−∞

dEEnS(E)fS(E)(1− fN (E + δE)) (13)

The subscriptsN and S in equations (10)�(13) refer to normal metal and superconductor,
respectively. As discussed above, the density of states in the normal metal close to the
Fermi level may be considered constant and is thus included in the tunneling resistance.
Due to the properties of the density of states of the superconductor and the Fermi-
Dirac distribution, it can be shown with elementary algebra that the tunneling rates do
not depend on the tunneling direction but only on the energy gain, i.e. ΓN→S(δE) =
ΓS→N (δE), and we can drop the subscripts.

In �g. 1 we have plotted a diagram of the electron occupations on both sides of the
junction as well as the I-V curve of a single NIS junction at two di�erent temperatures.
A bias voltage across the junction shifts the Fermi energies of the two electrodess. At low
temperatures the current is suppressed in the subgap regime since there are no available
states in the superconductor around the Fermi energy of the normal metal.

Current in subgap voltages (Vb � ∆/e) may also arise by various other mechanisms
such as coupling to a high-temperature environment [27] or higher-order tunneling pro-
cesses [28]. The leakage caused by absorption of photons from the environment can, under
realistic approximations, be modeled by using an e�ective density of states

neff =

∣∣∣∣∣Re(
E/∆ + iγ√

(E/∆ + iγ)2 − 1
)

∣∣∣∣∣ , (14)

where the unitless γ is called the leakage parameter. With this density of states, the
subgap current is approximately Isg ≈ γV/RT , which allows us to experimentally deter-
mine the parameter γ. In aluminum-based devices, it is usually in the range 10−5�10−6

[29]. This environmentally activated tunneling can be reduced drastically with proper
microwave shielding of the samples. [30]

3.3 The SINIS turnstile

A more complex device than a single tunnel junction, where single electron tunneling
plays a pivotal role, is the single electron transistor (SET) [14]. It consists of a small
conducting island connected to two leads via tunnel junctions. Furthermore, the island
is also connected to a gate electrode, as shown in �g. 2. The SINIS turnstile is simply a
biased SET, where a periodic gate drive Vg is applied to the capacitively coupled gate
electrode.

We start our theoretical treatment by considering a static case, where the gate voltage
is constant and derive an expression for the electrostatic energy of the island.
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Figure 1: A schematic �gure of electron transport in a NIS junction. In panel (a) the bias
voltage is less than ∆/e and the current is suppressed. In panel (b) the bias voltage is
higher than ∆/e and electrons may tunnel across the junction as indicated by the right-
pointing arrow. In panel (c) the temperature of the normal metal is higher compared to
panel (a), and electrons may tunnel across the junction even at low bias voltages. In panel
(d) we have plotted the I-V characteristics of the junction at two di�erent temperatures.
We did not consider the temperature dependence of the gap since it is not signi�cant for
T . Tc/3.

From �g. 2 we can deduce that {
VI = Vi − Qi

Ci∑
iQi = −ne,

(15)

where VI is the potential of the island and Vi and Qi are the voltage and charge of each
capacitor. Multiplying the �rst equation by CiCj yields

CiCjVI = CiCj(Vi −
Qi
Ci

) = (CiVi −Qi)Cj , (16)
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Vg
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V1 V2

R ,1 C1 R ,2 C2

ne

Figure 2: The single-electron transistor consists of a conducting island capacitively cou-
pled to several voltage sources.

and summing over all indices and rearranging the terms �nally yield for the charge of
capacitor i

Qi = CiVi +
Ci
CΣ

e(n− ng), (17)

where the CΣ =
∑

iCi is the total capacitance and

ng =
∑
i

CiVi
e

(18)

is called the gate o�set. With the charges known, we can compute the energy stored in
the circuit, which is de�ned as

Etot =
∑
i

Q2
i

2Ci
−QiVi. (19)

The �rst term describes the energy associated with the Coulomb repulsion of the charges
on the capacitors while the second term is the energy supplied by the voltage sources.
Substituting Qi from equation (17) and keeping only the n-dependent part yields

E(n) =
e2

2CΣ
(n− ng)2 ≡ Ec(n− ng)2, (20)

where Ec = e2/(2CΣ) is called the charging energy. Thus, when the electron number on
the island changes from n to n± 1, the change in the electrostatic energy is

δE± = E(n)− E(n± 1) = ∓2Ec(n− ng ± 1/2). (21)

13



We still need to take into account the bias voltage. Therefore, the total change in energy
when an electron tunnels through junction i is

δE±0i = E(n)− E(n± 1) = ∓2Ec(n− ng ± 1/2)∓ eVi. (22)

When considering charge transport through an SET, one has to take into account all
the possible charge states. Let Pn be the probability of n excess electrons occupying the
island. Then these probabilities evolve according to the master equation

d

dt
Pn = −(Γn,n−1 + Γn,n+1)Pn + Γn−1,nPn−1 + Γn+1,nPn+1, (23)

where Γi,j is the sum of all tunneling rates that change the charge on the island from
i to j. In a steady state ( ddtPn = 0) the master equation reduces to a system of linear
equations and the corresponding current through junction i is then

Ii = −e
∑
n

P (n)(ΓS→N (δE+
i (n)− ΓN→S(δE−i (n)). (24)

In �g. 3 we have plotted the current-voltage characteristics of a SINIS type single electron
transistor for di�erent values of ng. For every ng the current is suppressed in the sub-gap
regime since in this regime the voltage sources do not provide enough energy to break the
Cooper pairs. For ng = n+ 1/2, where n is an integer, we observe that the regime where
the current is suppressed is the smallest. This is because in such a case, the charge states
n and n+ 1 have equal energy and hence as long as the voltage sources provide enough
energy to break the Cooper pairs, electrons may tunnel from the leads to the island. On
the other hand, when ng is an integer, the regime of suppressed current is widest. This
is because for integer values of ng the change in energy, when n changes to n± 1, is the
largest, as can be seen from equation (21).

3.4 Charge pumping with the SINIS turnstile

We will now turn our attention to the time-dependent case where the gate o�set is driven
sinusoidally, i.e. ng(t) = ng0 +Ag sin (2πft). We assume that the bias voltage is less than
the gap energy so that dc current is suppressed during turnstile operation.

From equation (22) we can derive the threshold for an electron to tunnel to or from
the island through each junction. For describing the basic operation of the turnstile, we
only need to consider the thresholds for the charge states n = 0 and n = 1. The threshold
for an electron to tunnel on the island via the left lead is

ng =
∆− eVb

2Ec
+

1

2
. (25)

This threshold corresponds to the solid black line in �g. 4. The �gure also shows the
other single-electron tunneling thresholds between states n = 0 and n = 1. The driving
is shown as the double-headed black arrow. We assume that the driving starts at ng = 1

2 .
As we increase the gate o�set we will eventually reach the tunneling threshold L(0→ 1)
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Figure 3: The dc current characteristics of a hybrid single electron transistor as a function
of gate o�set and bias voltage. In the calculation, we use Ec = 2∆.
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Figure 4: The operation of the SINIS turnstile. The solid and dashed lines correspond to
various tunneling thresholds between charge states n = 0 and n = 1.

and an electron may tunnel through the left junction into the island. If we now start
decreasing the gate o�set until the solid red line [corresponding to R(1→ 0)] is crossed,
the electron will tunnel out from the island through the right junction, resulting in one
electron being transfered through the device during one cycle of the gate drive, yielding
an output current of ef . In �g. 5 we show a simulated current output of the device as a
function of the drive parameters, namely the o�set and the amplitude. It can be clearly
seen that we obtain various stable current plateaus with varying current outputs. It can
also be seen that the current output is periodic as a function of the gate o�set with a
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period of unity.

Figure 5: A simulation of the current output as a function of the driving amplitude and
o�set. We notice that the current output is periodic as a function of the gate o�set with
a period of unity. Various current plateaus with di�erent current outputs can easily be
distinguished.
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Figure 6: Simulated pumping curves for several bias voltages. The bias voltages in the
legends indicate voltage per junction so the bias over the whole device is twice as high. The
vertical axis displays the normalised current. The horizontal axis displays the amplitude
of the pumping in units of of the normalised gate o�set ng. The gate o�set is driven
around the points ng = 1/2 and the temperature used in the simulations is 40∆/kB in
the normal metal and 25∆/kB in the superconductor.
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Figure 7: Same pumping curves as in �g. 6 on a zoomed scale. The colors correspond to
the same biases as in the previous �gure.

Figures 6 and 7 show simulations of the output current as a function of gate amplitude
at several bias voltages. From the �gure we can see that at lower biases, the current output
starts decreasing at higher amplitudes before the sharp increase in current when reaching
the second plateau, where I = 3ef . This decrease in current happens when the trajectory
of ng crosses the dashed lines in �g. 4, which are known as the backtunneling thresholds.
A straightforward calculation shows that this threshold (black dashed line in �g. 4) is

nbg =
eVb + ∆

2Ec
+

1

2
(26)

As we cross this threshold, it becomes possible for an electron to tunnel back from the
island through the left junction, bringing the charge state back to 0 from 1, resulting in
no net charge transfer for that particular cycle and thus a decreased current. While errors
caused by backtunneling are decreased as we increase the bias voltage, increasing the bias
results in extra electrons tunneling on the island, which increase the current output of the
device as shown in �g. 7. Therefore, choosing the bias voltage requires balancing between
these two thermal error mechanisms. The relative error rate caused by backtunneling
scales as e−eV/kBT whereas the relative error rate caused by extra tunneling events scales
as e−(2∆−eV )/kBT [18]. The total error rate is minimized when eVb ' ∆/2 per junction.

At even higher amplitudes, we notice that the current output increases to 3ef . This
happens when the trajectory extends to the regions where the charge states n = 2 and
n = −1 are stable. For metrology, these plateaus are not relevant since backtunneling is
unavoidable and the current output starts decreasing immediately after the onset of this
current step. The larger current also heats the island more.

Fig. 8 shows simulated pumping curves at di�erent values of the product ∆/(e2RT f),
where RT is the resistance per junction. Therefore it displays how the performance of
the turnstile is a�ected by the operating frequency as well as the tunneling resistance of
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Figure 8: Simulated pumping curves for di�erent frequencies at a constant bias voltage
eVb = ∆/2 per junction.

the junctions. It can be seen that the performance degrades at higher frequencies and
resistances. This is due to missed tunneling events: at higher frequencies the amount of
time spent in the region where tunneling is possible is smaller and the electrons may not
have enough time to tunnel through the junctions. This also explains why the current
output increases until the backtunneling threshold. As the resistance increases, the single-
electron tunneling rates are smaller according to equations (10) and (11).

From equations (25) and (26) we can calculate that the width of the region between
the forward and backward tunneling thresholds is eVb/Ec. This would suggest that the
current step becomes wider as we decrease the charging energy. However, due to var-
ious higher-order processes, this is not the case. In an SINIS structure, the dominant
higher-order processes are two-electron processes that do not break Cooper pairs. Such
processes are the elastic co-tunneling and Andreev tunneling. Co-tunneling is e�ectively
suppressed by the superconducting gap, which leaves Andreev tunneling as the dominant
two-electron process. In Andreev tunneling, an electron coming from the superconduc-
tor is re�ected as a hole or, in other words, two electrons tunneling from the normal
metal tunnel and form a Cooper pair in the superconductor. Since the process involves
transport of two electrons, it causes excess current [28].

The change in energy when two electrons are added or removed from the island is,
according to equation (20)

δE±± = ∓4Ec(n− ng ± 1)∓ 2eV, (27)

when taking into account the bias. Since the process does not involve breaking Cooper
pairs, it remains allowed as long as the energy gain is positive. Therefore, we can easily
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calculate the threshold for Andreev tunneling, which gives

nAg = n± (1− eVb
∆

). (28)

Figure 9: Thresholds for single-electron and Andreev tunneling for two di�erent charging
energies.
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Figure 10: The forward (blue), backward (red) and Andreev (greem) tunneling thresholds
as a function of charging energy. The shaded region corresponds to the values of the
pumping amplitude, which yields a �at plateau since the backtunneling and Andreev
tunneling are suppressed.

In �g. 9 we have plotted the thresholds for both Andreev tunneling and single-electron
tunneling as a function of charging energy. It can be seen that at low charging energies, the
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threshold for Andreev tunneling is lower than for single-electron tunneling, which means
that a �at pumping plateau cannot be achieved in such case. In order for the plateau
to exist in the �rst place, we must have nfg > nAg . When the correspoding thresholds
are plugged into the inequality, we obtain Ec/∆ > 1, meaning that the charging energy
should be at least higher than the superconducting gap.

In order to have the plateau as wide as possible, we need to maximise min (nbg, n
A
g ).

In �g. 10 we have plotted the three tunneling thresholds at eVb = ∆ as a function of the
charging energy. From the plot we can see that the plateau is widest when Ec = 2∆.

3.5 Quasiparticle excitations

As shown earlier, the Hamiltonian describing the electrons in the superconductor can
be diagonalized by introducing the operators γ† and γ, which are linear combinations
of the standard electronic creation and annihilation operators. Therefore we refer to
excitations in superconductors as quasiparticles. The number of these excitations decays
exponentially as we decrease the temperature.

Deriving the density of states for the superconductor revealed that the density of
states has two branches. In the ground state, electrons occupy the states lying below
the energy gap whereas the high-energy branch remains vacant. As electrons are excited,
states lying above the energy gap become occupied, leaving vacancies on the low-energy
branch. The former are called particle like excitations whereas the latter are hole like
excitations. The total number of quasiparticles on both branches is equal.

The density of quasiparticles in the high-energy branch is

nE>∆
qp = D(EF )

∫ ∞
∆

dEnS(E)fS(E), (29)

where D(EF ) is the density of states at the Fermi energy in the normal state. In order
to evaluate the integral, we assume that the temperature kBT � ∆. In this regime, the
Fermi-Dirac distribution 1

1+eE/kBT
≈ e−E/kBT for E ≥ ∆ and we have

nE>∆
qp = D(EF )

∫ ∞
∆

dEe−E/kBTS
E√

E2 −∆2
= D(EF )∆K1(∆/kBTS). (30)

Above, K1(x) is the modi�ed Bessel function of the second kind. Since we assumed the
temperature to be low, we can write K1(x) ≈

√
π
2xe
−x for x � 1, to obtain the total

density of quasiparticles:

nqp = 2nE>∆
qp = D(EF )

√
2πkBTS∆e−∆/kBTS , (31)

which gives the relation between the quasiparticle density and the temperature of the
superconductor.

The e�ect of these thermally excited quasiparticles on the performance of the SINIS
turnstile can be estimated by considering the tunneling rates in the subgap regime, when
the energy gained in a tunneling event is less than the gap energy. If the temperature of
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the normal metal is low, we have 1 − fN (E + δE) ≈ 1 for E > ∆ and −∆ < δE < ∆.
We may then write the tunneling rates as

ΓsgS→N =
1

e2RT

∫ ∞
∆

dEnS(E)fS(E). (32)

By comparing this with equation (29) we see that

ΓsgS→N =
nqp

2e2RTD(EF )
, (33)

and the excess current becomes simply I = nqp/eRTD(EF ). From a device design point
of view, we notice that the errors caused by quasiparticle tunneling can be reduced by
increasing the resistance of the sample, which leads to a trade-o�: higher resistance leads
to more missed tunneling events while lower resistance leads to excess currents due to
quasiparticle excitations.

During turnstile operation, we remove electrons from one lead and inject them into
the other. Since the electrons we remove lie below the gap and the electrons we inject in
the other lead will be above the energy gap, this leads to so-called branch imbalance [31].
In this case, the validity of equation (31) is not evident. However, it has been shown that
there is no signi�cant branch imbalance during turnstile operations since the relaxation
of the imbalance is fast compared to the quasiparticle injection rate [32]. We may thus
use equation (31) with an elevated temperature in the superconducting leads. This also
allows us to use the SINIS turnstile to probe the quasiparticle density.

In this work, we have used quasiparticle traps to reduce the number of quasiparticles.
The trap is a piece of normal metal coupled to the superconducting leads either via a
tunnel junction or a direct contact. As with the choice of other device parameters, such
as the resistance, we have to balance between two properties: if the trap is too far away
from the junction, the transport of the quasiparticles to the trap is not e�cient. On the
other hand, if the trap is too close and also in very good contact with the lead, it will
deteorirate the superconductivity of the leads via inverse proximity e�ect [33], leading to
a large value of the Dynes parameter γ in equation (14).
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3.6 Heat transport in the superconducting leads

tunnel junction

normal metal

qp injection
superconductor

direct contact traptunnel junction trap

substrate

Figure 11: A schematic �gure of the quasiparticle relaxation. The quasiparticles are in-
jected to the supercondicting lead via the tunnel junction connecting the lead to the
normal metal island on the left. Quasiparticles are removed from the superconductor by
a normal metal trap, which is coupled to the superconductor with a tunnel junction and
a direct contact further away from the junction.

We model the transport of quasiparticles in the superconducting leads with a simple heat
di�usion equation

∇ · ~J = −p, (34)

where ~J is the heat �ux and p is the power removed per unit volume. We use Fourier's
law ~J = −κS∇T , where κS is the thermal conductivity of the superconductor. We will
�rst compute the derivatives to obtain

−p = ∇ · ~J = −(∇κS) · (∇T )− κS∇2T. (35)

The thermal conductivity is given by [34]

κS = κN
2F1(−y) + 2y ln (1 + e−y) + y2(1 + ey)

2F1(0)
. (36)

Above, κN is the thermal conductivity in the normal state, y = ∆/kBT and

F1(−y) =

∫ ∞
0

dx
x

1 + ex+y
. (37)

In the limit kBT � ∆ the thermal conductivity becomes

κS =
6

π2

(
∆

kBT

)2

e−∆/kBTL0T/ρn (38)

where L0 = (πkB)2/3e2 is the Lorentz number and ρn is the resistivity of the leads in
normal state.
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For simplicity, we only consider the strong exponential temperature dependencies for
the heat conductivity. With this approximation, we may write the gradient of the thermal
conductivity as

∇κS =
2∆3

e2ρNkBT
e−∆/kBT

∇T
T 2

. (39)

Substituting this into equation (35) yields

p =
2∆2

e2ρnT
e−∆/kBT

[
∆(∇T )2

kBT 2
+∇2T

]
(40)

We will now write equation (40) in terms of the quasiparticle density using equation (31).
We will again consider only the strong exponential dependencies. Thus, the gradient of
the quasiparticle density is

∇nqp =
D(EF )e−∆/kBT∆

√
2πkBT∆

kBT 2
∇T, (41)

and the Laplacian

∇2nqp = ∇ · ∇nqp =
D(EF )∆

√
2πkBT∆

kBT 2
e−∆/kBT

[
∆(∇T )2

kBT 2
+∇2T

]
. (42)

Comparing equations (40) and (42) we see that

p =

√
2kBT∆√

πe2ρnD(EF )
∇2nqp ≡ D∇2nqp, (43)

where we have de�ned the di�usion constant D =
√

2kBT∆√
πe2ρnD(EF )

.
In order to study the transport in more detail, we need to derive an expression for

the LHS of equation (43). Heat is removed from the leads by quasiparticles tunneling to
the normal metal trap through an oxide layer. Since the leads and the normal metal trap
are large we do not need to consider charging e�ects. Furthermore, the lead and the trap
have the same potential. Therefore, we may use equation (13) with δE = 0 to obtain the
power removed per unit volume

ptrap =
2σT
e2d

∫ ∞
∆

dEEnS(E)(fS(E)− fN (E)), (44)

where σT is the conductance per unit area of the trap and d is the thickness of the
superconducting leads. Evaluating the integral gives

ptrap =
2σT∆2

e2d
(K2(∆/kBTS)−K2(∆/kBTN )). (45)

In the low-temperature limit ∆/kBT � 1 we can approximateK2(∆/kBT ) ≈ K1(∆/kBT )
and we may use equation (30) to get

ptrap ≈
σT∆

e2dD(EF )
(nqp − nqp0), (46)
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where nqp0 is the quasiparticle density of a fully thermalised superconductor. Substituting
equation (46) into equation (43) �nally gives

∇2nqp = λ2(nqp − nqp0), (47)

where λ2 =
√
π∆ρnσT√
2kBTd

. This parameter characterises the distance the quasiparticles travel
before relaxing to the temperature of the normal metal trap. Since nqp0 may be considered
constant, we de�ne ñ = nqp − nqp0 and write

∇2nqp = ∇2ñ = λ2ñ. (48)

In order solve equation (48) for our lead geometries, we need to derive the necessary
boundary conditions. We assume that the there is a direct contact to a normal metal
trap that is at distance R from the junction. The direct contact forces the temperature
of the leads to be the same as that of the normal metal, i.e.

ñ(R) = 0. (49)

A second boundary condition comes from the quasiparticle injection: the total heating
power at the junction must correspond to the injected power, which leads to the following
boundary condition: ∫

Ainj

d~S · ~J = Pinj , (50)

where Ainj is the quasiparticle injection area. In a pumping experiment we may set
Pinj = f∆, which allows us to estimate the quasiparticle density also as a function of
pumping frequency. Using Fourier's law and equation (41) we can write the boundary
condition as

−
√

2kBT∆√
πD(EF )ρne2

∫
Ainj

dS(n̂ · ∇n) = −D
∫
Ainj

dS(n̂ · ∇n) = Pinj (51)

We will now study the e�ects of the lead geometry on the quasiparticle density,
particularly near the tunnel junction. We �rst consider di�usion in a wire that has length
L, width w and thickness d. If L � w, d we may consider the di�usion in only one
dimension and obtain a general solution

ñ(x) = Aeλx +Be−λx. (52)

Applying the �rst boundary condition gives

ñ(x) = B(e−λx − eλ(x−2L)) (53)

We assume that quasiparticles are injected through the other end so that the normal vec-
tor at the junction is parallel to the x-axis. Then equation (51) becomes −wdD ∂ñ

∂x

∣∣
x=0

=
Pinj , which gives

ñ =
Pinje

−λL

2wdDλ cosh(λL)
(e−λ(x−2L)−eλx). (54)
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From this, we can evaluate the quasiparticle density at the junction:

ñ(0) =
Pinj tanh (λL)

wdDλ
. (55)

R

r
0

d

θ

Figure 12: The geometry used to solve equation (48) in polar coordinates. The quasipar-
ticles are injected at distance r0 and the direct contact trap is located at distance R. The
thickness of the lead is d.

The experiments presented in this thesis were performed with leads that have the
shape of a circular sector. In this case we may write equation (48) in polar coordinates.
Assuming there is no azimuthal dependence we get

r2ñ′′(r) + rñ′(r)− r2λ2ñ(r) = 0. (56)

By making a change of variable to x = λr we notice that equation (56) is a modi�ed
Bessel di�erential equation and we get a general solution

ñ = AI0(λr) +BK0(λr), (57)

where I0 and K0 are modi�ed Bessel functions of �rst and second kind, respectively.
Assuming the lead to terminate to the direct contact trap at distance R away from the
junction, we get

ñ(r) = B

[
K0(λr)− K0(λR)

I0(λR)
I0(λr)

]
. (58)

We assume that the quasiparticles are injected radially at distance r0 from the tip of the
leads through a cylinder surface with height d, and radius r0. Assuming the leads open
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at a �xed angle θ, we get Ainj = θr0d and n̂ ·∇ñ = ∂ñ
∂r so the second boundary condition

reads −Dθr0d
∂ñ
∂r

∣∣
x=0

= Pinj and the quasiparticle density becomes

ñ(r) =
Pinj [I0(λR)K0(λr)−K0(λR)I0(λr)]

λDθr0d[K1(λr0)I0(λR) +K0(λR)I1(λr0)]
(59)

and the quasiparticle density at the junction becomes approximately

ñ(r0) ≈ PinjK0(λr0)

λDθr0dK1(λr0)
. (60)
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Figure 13: The quasiparticle density as a function of distance from the junction for the
wire (upper panel) and the sector shaped leads (lower panel) at �ve di�erent transparan-
cies of the oxide trap. We have normalised the distance by the length of the lead. In the
lower panel, the length is de�ned as R− r0, where r0 and R are de�ned in �g. 12.

In �g. 13 we have plotted the quasiparticle density in the leads for various transparen-
cies of the oxide trap. We can clearly see that using the widening leads, one achieves a
much lower quasiparticle density. This is due to the quasiparticles spreading over a larger
area.

It should be noted that the simple form of boundary condition (51) can only be used
if the leads and the island have similar thicknesses. If the leads are much thicker than
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the island, several points need to be considered: �rst of all, having thicker leads increases
the e�ective opacity of the trap, which increases the overall quasiparticle density. On
the other hand, we noticed simply by considering the wire and sector-shaped leads that
the quasparticle relaxation is more e�cient for the latter geometry. This is due to the
heat �ow spreading over a larger area. If the leads are very thick, we can no longer
assume that the di�usion occurs on a two-dimensional plane. The simplest 3D model
would be to solve equation (48) in spherical coordinates. The shape of the leads result
in rather complex boundary conditions so we will instead consider a situation where the
quasiparticles relax only via the direct contact trap, i.e. we set ptrap to zero. We also omit
the angular dependence but since the dimensions of our structures are much larger than
the length scale set by

√
Ainj ∼ r0, this approximation is valid at least in the vicinity of

the junction.
We obtain the following solutions:

ñ =
Pinj
AinjD

(L− x) (wire) (61)

ñ = − r0Pinj
AinjD

ln
R

r
(polar) (62)

ñ =
r2

0Pinj
AinjD

(
1

r
− 1

R
) (spherical) (63)
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Figure 14: The quasiparticle densities in the absence of an oxide trap for three di�erent
geometries. We have used R/r0 = 10.

In �g. 14 we have plotted the quasiparticle density as a function of distance from the
junction. We clearly see that in the spherical geometry, the quasiparticle density is the
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smallest, which we attribute to the more e�cient spreading of the heat �ow. Therefore
we may conclude that despite the possibly reduced tunneling into the trap, spreading the
heat �ow over an even larger area may result in an overall reduction in the quasiparticle
density for thicker leads.
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4 Experimental methods

4.1 Sample fabrication

200 nm

Figure 15: A schematic of the entire sample design with a zoomed-in false color SEM
image of the turnstile. In the schematic design, the green part is the ground plane and
the orange parts are the bonding pads, which also act as a direct contact quasiparticle
trap. In the false color image, the red parts are copper and the blue parts are aluminum.
Note that the gate electrode bonding pad was deposited together with the ground plane,
but it is shown here in orange for clarity.

200 nm
200 nm 200 nm

Figure 16: Scanning electron micrographs of the samples with thick superconducting
leads. On the left is a sample with an AlMn island. The bright, downwards-shifted shadow
copy of the structures is the undoped aluminum while the darker areas are AlMn. The
sample on the right was fabricated using the three-angle technique. The metals in the
middle and bottom are aluminum whereas the metal on the top is copper.
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The devices studied in this thesis were fabricated on thermally oxidised silicon wafers
using the shadow evaporation technique [35]. In this technique, we use a mask suspended
on top of a copolymer layer and deposit the structures at two di�erent incident angles.
After evaporating the �rst metal, we may �ll the deposition chamber with oxygen to
grow an insulating oxide layer followed by deposition of the second metal. With proper
mask design, tunnel junctions are formed where the metals overlap, as shown in �g. 17.
Scanning electron micrographs of typical samples are shown in �gs. 15 and 16.

We �rst fabricated ground planes and the RF gates underneath the turnstiles, as
well as alignment markers for subsequent lithography steps. The ground plane is simply
a large piece of conductor underneath the turnstiles. The main purpose of the ground
plane is to reduce the e�ect of environmentally activated tunneling [36]. The ground
plane was fabricated by �rst spin-coating the wafers with a single, approximately 300 nm
thick layer of AR-P 6200 e-beam resist [37]. The resist was then patterned with electron
beam lithography (EBL). In EBL, we focus an electron beam on speci�c parts of the
resist. This breaks down the long polymer chains of the resist, making them soluble to a
suitable developer.

After patterning and developing the wafer, we deposited the ground planes and gates.
The deposition was done using electron beam physical vapor deposition (EBPVD). In
this process, we heat a piece of the target metal with an electron beam, causing it to
melt and then evaporate. In high vacuum, the metal atoms take a line-of-sight passage
to the substrate, forming a thin �lm. The evaporation rate was monitored using a quartz
crystal microbalance. The ground planes and the gate consist of a 30 nm thick gold layer
sandwiched between two 2 nm thick layers of titanium. The titatium layer underneath
the gold facilitates the adhesion of the gold layer whereas the layer on the top layer helps
the growth of the dielectric aluminum oxide layer in a subsequent step of the process.

After depositing the �lms, we remove any remaining resist as well as the metal residing
on top of the resist layer in the so-called lift-o� step. This consists of immersing the wafer
in a suitable chemical for several hours. For our samples, we used Allresist AR 600-546.
[37]

Next, we isolated the ground planes and gates by growing a layer of aluminum oxide
using atomic layer deposition (ALD) [38].

Following the ALD, we performed another lithography, where we fabricated the bond-
ing pads and the normal metal leads extending roughly 10 µm away from the turnstile
junctions. These are displayed in orange in �g. 15. The process was essentially the same
as the previous lithography step with the only di�erence being that the bonding pads
were made out of gold palladium to prevent them from oxidising, and the thin titanium
layer on top was omitted. Preventing oxidation is crucial since we want the contact be-
tween the superconducting leads and the normal metal leads extending from the bonding
pads to be clean. This is because these normal metal leads act as the direct contact trap
discussed in the previous section.
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Figure 17: A schematic �gure of the shadow evaporation technique. The lithography is
done using a stack of three materials on the substrate. On the bottom is a thick layer
of a copolymer (blue). In this work, the copolymer used was poly-methyl metacrylate
(P(MAA-MMA)). On top of the copolymer is a thin �lm of germanium (grey). On top of
the germanium we spin-coat a thin layer of PMMA (green), which is patterned using a
focused electron beam (a). The pattern is transferred on the germanium using reactive ion
etching. We also form an undercut in the copolymer layer underneath the germanium (b).
Metal is deposited through the germanium mask at two di�erent angles (c) and tunnel
junctions are formed where the metals overlap. Finally the germanium, the copolymer
and any metal deposited on top of the mask is removed in the lift-o� step (d). The
germanium layer was only used for the turnstiles. When fabricating the RF gate, the
ground plane and the bonding pads, we only need a single resist layer since we do not
perform a multi-angle evaporation. Note that the thicknesses of the layers are not to
scale.

The third lithography step di�ered from the two previous steps in several ways. This
is mainly because the turnstiles were fabricated using the shadow evaporation technique,
which is sketched in �g. 17. We �rst spin-coat a layer of the copolymer. This copolymer
layer needs to be su�ciently thick so that we can deposit the small structures at small
incident angle in order to prevent the mask from blocking. A single P(MMA-MAA) layer
is 400-500 nm thick, which is su�cient. After spinning the copolymer layer, we perform
a soft bake step to remove any excess solvent.

After coating the wafer with the copolymer, we evaporate a 22 nm thick germanium
�lm on top of the copolymer layer. We then spin-coated the wafer with PMMA, which
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was then patterned using EBL. After patterning the resist, part of the wafer is cut into
smaller chips, which are processed further individually.
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Figure 18: The Ge mask development process. The resist parts that were exposed in the
EBL are removed by immersing the chips in a solution containing MIBK and IPA (a).
The pattern is then transferred into the germanium by etching the chip with CF4 plasma
(b). Finally, the undercut is formed in two steps: �rst by exposing the chips to a low-
pressure oxygen plasma to etch the copolymer somewhat anisotropically (c), followed by
an isotropic etching step with higher pressure (d). The oxygen plasma also removes the
PMMA layer on top of the germanium.

In order to transfer the patterns from the PMMA into the germanium �lm, we used
a combination of wet etching and reactive ion etching (RIE). This development process
is sketched in �g. 18. We �rst immersed the chips in a mixture of 1:3 volumetric ratio
of methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA), followed by rinsing the
chips in pure IPA and blow-drying them with nitrogen. In this step, the development
time is rather crucial since if the chips are kept in the mixture for too long, the features
become more round whereas if the time is not long enough, all of the exposed PMMA
might not be removed.

After the wet etching, we perform the RIE by �rst exposing the chips to a CF4 plasma.
This etches the germanium underneath the exposed parts of the PMMA, transferring the
pattern on the germanium �lm. Finally, we create the undercut: we expose the chips to an
oxygen plasma in the RIE tool, which etches the copolymer underneath the germanium
�lm. The oxygen also removes the PMMA on top of the germanium.
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After development, we deposit the structures using EBPVD. For the samples with
thin leads, we �rst deposit an aluminum �lm with a thickness of around 25 nm. The
aluminum layer de�nes the superconducting parts of the turnstiles. The deposition of
the aluminum is followed by an immediate in-situ oxidation to form an AlOx layer on
top of the aluminum. The properties of the oxide layer can be tuned by changing the
pressure and the oxidation time. This way we can control the tunneling resistances of the
junctions. The oxide layer is typically a few nm thick. After oxidation, we deposit the
copper parts at a di�erent angle, as discussed earlier. A typical evaporation rate was 2-3
Å/s. The rate was measured using a quartz crystal microbalance. This copper layer acts
as the normal metal for the turnstiles. The copper is deposited at a slightly tilted angle
to shift the patterns so that the copper island overlaps with the aluminum leads. In this
step, large areas of copper are also deposited on top of the superconducting leads. This
forms the oxide traps. The copper layer was usually around 30 nm thick.

Finally, we perform the lift-o� to remove the rest of the resist and only leave the
metallic structures on the chips. This is done simply by immersing the chips in acetone.
We then quickly rinse the chips in IPA and blow-dry them with nitrogen.

For the samples with the thick aluminum leads we tried two approaches. Since the aim
is to fabricate aluminum leads that are an order of magnitude thicker than the normal
metal parts, while keeping the charging energy high, the normal metal has to be deposited
�rst. This poses a problem since fabricating the tunnel junctions relies on oxidising the
superconducting aluminum. In this work, we investigated two di�erent approaches to
overcome this challenge.

The �rst approach was a three-angle evaporation in which we would �rst evaporate
a thin layer of aluminum. We would then immediately, without an oxidation in between,
tilt the sample to a di�erent angle and deposit another aluminum �lm with a much
higher thickness. We would then oxidise both aluminium layers simultaneously, followed
by deposition of the normal metal at a third angle. The tunnel junctions of the turnstile
would be formed where the normal metal island overlaps with the thin aluminum �lm.
This idea makes designing the mask more challenging in order to avoid any unwanted
overlapping between the di�erent islands and leads.

We studied in more detail the second method, which is based on the use of manganese-
doped aluminum as the normal metal. The manganese suppresses the superconductivity
of aluminum [39], while retaining the possibility to oxidise it in the same manner as
undoped aluminium. Junctions based on AlMn have previously been used in e.g. radiation
detectors [40] and NIS coolers [41]. This allows us to fabricate tunnel barriers in the same
manner as before. The evaporation process itself was very similiar to the case of the
thinner leads: we �rst deposited the doped aluminum and oxidised it and then deposited
the undoped aluminum. We performed another oxidation step after fabricating the leads
in order to reduce the in�uence of possible aging e�ects on the devices. The thickness
pro�le for the two types of samples is schematically shown in �g. 19.

SEM images of samples fabricated with both of these methods are shown in �g. 16.
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Figure 19: A schematic of the pro�les of the samples with the thin (left) and thick (right)
superconducting leads. For the thin leads, the superconductor (blue) is deposited �rst and
then oxidised, forming the insulating layer. Finally, we deposit the normal metal (red).
For the samples with the thick leads, we use manganese-doped aluminum as the normal
metal. We �rst deposit the island and oxidise it before depositing the superconducting
leads.

For the fabrication of the thicker leads, the angles used for evaporation were chosen
di�erently compared to the case of thin leads. For the latter ones, we choose the angles
symmetrically, i.e. we evaporate the normal metal parts at some angles ±α with respect
to the normal of the substrate surface, where α is determined by the resist thickness
and the desired shift of the pattern. Due to this, the mask becomes partially blocked,
which won't be a crucial issue if the �lms are su�ciently thin. For the thicker leads, this
blocking will become more signi�cant, which is why the thick �lms were evaporated at
zero incidence angle.

4.2 Measurement setup

The samples were mounted on a custom made plastic dilution cryostat. The dilution
cryostat is based on the enthalpy of mixing two isotopes of helium, namely 3He and 4He
[42]. The base temperature of the cryostat we used was about 60 mK. The sample was
mounted on the cryostat by attaching it to an In-shielded [43] sample stage with 6 dc and
2 RF lines. The bonding pads on the chips were connected to pads on the sample stage
PCB by ultrasonic wedge bonding using Al wires with a diameter of 20 µm. The sample
stage contained separate lines for the dc and RF signals. The dc lines were connected
to a common 20 pin connector whereas each of the RF line had its own connector. The
connectors and the bonding pads were joined by thermocoaxial cables with a length of
some tens of centimeters. Thermocoaxial cables were chosen since they e�ectively �lter
out high-frequency noise due to skin e�ect [44]. Finally, the chip was covered with two
nested caps with an indium seal on the inner cap, providing e�ective shielding from stray
mirowave radiation from warmer parts of the cryostat. The sample stage was connected to
the higher-temperature parts of the setup via a combination of thermocoax and twisted
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pair cables.
A circuit diagram of the measurement setup is shown in �g. 20. We bias one of

the leads using a Keysight 33522B waveform generator [45] at room temperature and
a voltage divider. A typical voltage division used in the experiments was 1000, so that
the voltages across the turnstile were of the order of hundreds of microvolts. The output
current was ampli�ed at room temperature with a Femto DDPCA-30 transimpedance
ampli�er [46]. The gains used ranged from 1010 to 1012. The RF gate signal was generated
with the same kind of waveform generator that was used for biasing the turnstile. The
generator was connected to an attenuator, which was then connected to the gate on
the device. The attenuators we used typically attenuate the signal by 40 dB at room
temperature and by 20 dB at 4.2 K. The frequencies used typically ranged from 5 MHz
to 30 MHz.
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Figure 20: A circuit diagram of the measurement setup. We bias one of the leads of the
turnstile using a voltage divider based on a simple network of resistors. The gate signal
is fed through one of the RF lines in the cryostat. We read the output current through a
dc line connected to the other lead. The dashed line shows which parts of the setup are
at cryogenic cryogenic temperatures and which ones are at room temperature.

4.3 Measurement procedure

Before performing pumping experiments, we determined the dc characteristics of each
sample, i.e. the superconducting gap, charging energy and tunneling resistance.

Majority of the detailed pumping experiments were performed in the gate open state,
i.e. with ng0 = 1/2. To �nd the dc voltage corresponding to this gate o�set, we exploit
the periodicity of the current output by performing pumping at constant amplitude and
sweeping over some gate voltage dc o�set range. The pumping curves obtained this way
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show �at plateaus whose midpoints correspond to the gate open position. The procedure
is displayed in �g. 21. In order to determine the location of the midpoints, we �tted a
double Gaussian function with the distance of the peaks corresponding to the dc gate
period of the device, determined by the gate capacitance. This gate capacitance can be
extracted from the dc measurements discussed earlier.

Figure 21: Finding the voltage o�set corresponding to ng0 = 1/2. We measure the cur-
rent output with a constant pumping amplitude Ag and varying gate o�sets ng0, which
corresponds to determining the cross-section of the pumping surface and a plane corre-
sponding to a constant o�set (the grey plane). The obtained pumping current (red line)
displays periodic plateaus or peaks whose midpoints correspond to ng0 = 1/2.

For each combination of bias and frequency, we performed several pumping measure-
ments and average over all repetitions. Due to the asymmetrical biasing, the terms in
equation (18) that contain the bias voltages do not cancel, resulting in a change in the
dc o�set as we change the bias voltage. In order to keep the driving signal around the
degeneracy point, this change has to be compensated. Therefore for each bias voltage, we
may either search the correct dc o�set in the manner discussed above, or simply do it for
several bias voltages and make a linear �t. There are three methods to get around this
problem. The �rst one is searching for the correct gate o�set in the manner discussed
above for each bias. The second method relies on determining the junction capacitance
appearing in equation (18) by determining the correct o�set for several biases and mak-
ing a linear �t. Finally, one could bias both leads and try to cancel the respective terms
in equation (18). The latter two methods are susceptible to drifts in the equipment and
are thus not as reliable as the �rst method.

We also determined the Dynes parameter for each of samples by measuring the dc
characteristics in the subgap regime, i.e. |Vb| < ∆/e with ng = 1/2 using an ampli�er
with a high gain. For these measurements, it is imperative that we are as close to the
degeneracy point as possible. Because we can not say with certainty whether the turn-
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stiles were at degeneracy for the duration of the entire subgap measurements, the Dynes
parameters obtained this way are simply upper bounds.

4.4 Data processing

For both the dc measurements and pumping experiments, we solve equation (23) numer-
ically and use equation (24) to evaluate the current expected from the theoretical model.
For the dc measurements, we simulate the steady-state current for gate open and closed
positions so that the current values obtained by sweeping the gate o�set fall between the
currents corresponding to these extrema. In the simulations we do not take into account
the bias-dependent heating of the normal metal island, meaning that the true values of
Ec are likely larger. The superconducting gap may be extracted from the width of the
region where the current is suppressed in the gate open position whereas the charging
energy is obtained from the width of the corresponding region in the gate closed position.
The slope of the iv curve at large values of bias voltage gives the tunneling resistance.

The quasiparticle density can be estimated by determining the temperature of the
superconducting leads and using equation (31). In order to determine the temperature,
we make comparisons by solving the time-dependent master equation for each driving
amplitude. We divide one period of the drive into time intervals of equal length. A more
straightforward approach is then to simply start with a random probability distribution
and calculate the tunneling matrix Γ for each time interval assuming that the tunneling
rates do not change during said interval. We then use the tunneling rates to update the
probability distribution and evaluate the current for each time instant using equation
(24). We then average the output current over several periods of the drive in order to
obtain the output current. We use the probability distribution at the end of the simulation
as the initial guess for the simulation for the following amplitude.

Before comparing the experimental data to the simulations, we exclude any obvious
erroneus measurements from the averaging. Most of these are caused by random jumps
of the background o�set charge. The superconductor quasiparticle temperature can be
obtained by studying pumping experiments at constant frequency but di�erent bias volt-
ages. The frequency-dependence of the quasiparticle density and thus the temperature
of the superconductor becomes evident by substituting Pinj = ∆f into equation (55)
or (60). Due to the �nite quasiparticle density, the current plateaux at di�erent biases
correspond to di�erent currents, as seen in �g. 7, and at higher temperatures, they spread
over a larger current range.
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5 Results

Here we report measurements from three out of the several samples we investigated: one
conventional sample with thin (30 nm) aluminum leads and a copper island and two
structures with thick (350 nm) aluminum leads and an aluminum manganese island (35
nm). From here on, we refer to the thin-leaded sample as sample A and the thick-leaded
samples as samples B and C. The opening angle of the leads in sample A was π/2 whereas
the opening angle in samples B and C was π. Furthermore, samples B and C were both
located on the same chip.

In this section we �rst present the results of the dc measurements on the samples,
which allow us to extract values for the superconducting gap, charging energy and tun-
neling resistance. We will also present results from sub-gap leakage measurements, which
allow us to extract a value for the Dynes parameter.

5.1 Dc characterisation of the samples
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Figure 22: The dc current-voltage characteristics of sample A. The blue points are ex-
perimental data obtained by sweeping the gate o�set at each bias voltage over multiple
periods of gate modulation. The solid red lines are simulations corresponding to ng0 = 0
and ng0 = 1/2. From the data, we extract the parameters ∆=230 µeV, Ec=292 µeV and
RT=1.1 MΩ.
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Figure 23: The dc current-voltage characteristics of sample B. We extract ∆=185 µeV,
Ec=284 µeV and RT=1.5 MΩ.
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Figure 24: The dc current-voltage characteristics of sample C. We extract ∆=185 µeV,
Ec=308 µeV and RT=2.0 MΩ
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In �gures 22�24 we display the dc current-voltage characteristics of samples A, B and
C, respectively. From the dc measurements as well as the leakage measurement presented
in �gures 25�27 we extract the following parameters:

Table 1: The characteristic dc parameters of the three measured samples
Junction type ∆ (µeV) Ec (µeV) Ec/∆ RT (MΩ) Rsg (GΩ) γ

A Al/Cu 230 292 1.27 1.1 180 5.9 × 10−6

B Al/AlMn 185 284 1.54 1.5 80 1.8 × 10−5

C Al/AlMn 185 308 1.67 2.0 110 1.4 × 10−5

We may immediately see that for sample A the superconducting gap is larger than
for the two other. This is expected since previous experiments [47] have shown that the
superconducting gap for aluminum is larger for thin �lms. The value observed for sam-
ples B and C is relatively close to the bulk value of 170 µeV [48]. The resistances of all
three samples are also relatively high, which limits the possible operation frequencies, as
discussed earlier. However, by optimizing the oxidation conditions during sample fabri-
cation, it is possible to fabricate junctions with signi�cantly smaller resistances. Samples
with lower tunneling resistances have already been measured since the measurements
presented in this thesis.

The charging energies of all three samples are of similiar magnitude, which is to be
expected since the design of the island is the same. Due to the smaller energy gap, the
ratio Ec/∆ is higher for samples B and C, which is advantageous from the point of view
of suppressing Andreev tunneling.
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Figure 25: The sub-gap dc characteristics of sample A. The blue dots are the measured
current values and the solid line is their average over 172 repetitions. The ratio of the
subgap conductance, which is simply the slope of the green line, and large-Vb conductance
(inverse of the tunneling resistance) gives the leakage parameter γ ≈ 5.9×10−6.
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Figure 26: The sub-gap dc characteristics of sample B. For this sample, the measurement
was repeated 58 times. From the slope of the green line, we obtain γ ≈ 1.8×10−5.
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Figure 27: The sub-gap dc characteristics of sample C. For this sample, the measurement
was repeated 66 times. We obtain γ ≈ 1.4×10−5.

In �gures 25�27 we have plotted the subgap IV characteristics of the three samples.
The data was obtained by �rst determining the gate open position as described earlier
for a single bias voltage and changing the gate voltage to compensate for the change in
gate o�set as we change the bias voltage.

From the slopes of the linear �ts, we obtain γ = 5.9×10−6, γ = 1.8×10−5 and
γ = 1.4×10−5 for samples A, B and C, respectively. However, these values can not be
considered very reliable since the gate o�set has to remain in the gate open position for
the entire duration of the leakage measurement. If we do not perform the measurement at
the degeneracy point, we obtain lower subgap conductance leading to smaller estimates
for the leakage parameter.
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5.2 Pumping results

In this subsection, we present the results of the pumping experiments on the three mea-
sured samples.

5.2.1 Sample A

For sample A, we show the results from pumping experiments at 10 MHz, 20 MHz, 30
MHz and 40 MHz sinusoidal drive, for several bias voltage around the optimum Vb =
∆/e per junction. For each combination of frequency and bias voltage, we averaged the
experimental data over ten repetitions in this particular set of experiments.
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Figure 28: The measured pumping curves for sample A at 10 MHz. The crosses connected
by the dashed lines are the experimental data. The solid lines are numerical simulations.
The smaller panel displays the pumping plateaus on a zoomed scale.
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Figure 29: The measured pumping data for sample A at 20 MHz.
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Figure 30: The measured pumping data for sample A at 30 MHz.
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Figure 31: The measured pumping data for sample A at 40 MHz.
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In �gures 28�31 we show the measured pumping curves as well as numerical simu-
lations. We are able to numerically reproduce the pumping results quite accurately on
a large scale. However, the �ts start to deviate signi�cantly on the onset of the second
pumping plateau. This may be due to drifts in the measurement equipment but also be-
cause at higher currents the turnstiles heat up more whereas we have only used a single,
constant temperature for the N island in the simulations. However, this is not a crucial
issue since we are only interested in the �rst pumping plateau. It can be clearly seen that
the relative error is larger at low frequencies. This is to be expected since the current
output is also smaller, which means that similiar absolute errors lead to higher relative
errors. At higher frequencies, the second current plateau also seems to correspond to a
lower current but this phenomenom is caused simply by the saturation of the current
ampli�er. Finally, the maximum pumping amplitude is lower at higher frequencies. The
amplitude of the signal generated at room temperature was the same for all frequencies
but the high-frequency signals get attenuated more in the RF lines of the cryostat and
in particular the sample stage.
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5.2.2 Samples B and C
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Figure 32: The measured pumping data for sample B at 5 MHz.
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Figure 33: The measured pumping data for sample B at 10 MHz.
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Figure 34: The measured pumping data for sample B at 15 MHz.
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Figure 35: The measured pumping data for sample B at 20 MHz.
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Figure 36: The measured pumping data for sample B at 30 MHz.
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Figure 37: The measured pumping data for sample C at 10 MHz.
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Figure 38: The measured pumping data for sample C at 15 MHz.
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Figure 39: The measured pumping data for sample C at 25 MHz.
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Figure 40: The measured pumping data for sample C at 30 MHz.

In �gures 32�40 we present the pumping data for samples B and C. We observe that
the data is much noisier for these two samples. This is largely because we had to exclude
a signi�cant amount of pumping experiments from the averaging. Furthermore, in this
cooldown the overall low-frequency noise was larger compared to sample A and later
experiments. Due to the noise, it is impossible to reliably extract the temperature of the
superconducting leads from the experimental data, since e.g. in �g. 33 it can be seen
that the noise itself may be greater than the spreading of the pumping plateau in the
simulations. We also observe that the onset of the pumping plateau corresponding to
current output of 3ef is not particularly steep. This may be caused by drift in the dc
part of the gate drive, in which case the gate drive does not occur around the degeneracy
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point. As a results, the onset occurs at higher amplitudes, as can be seen in �g. 5. For
this measurement, we did not save the gate modulations obtained during the automated
estimation of the dc voltage corresponding to ng0 = 1/2. This source of uncertainty was
�xed in subsequent measurements.

5.3 Quasiparticle density
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Figure 41: Quasiparticle density calculated from the estimated temperatures for sample
A.

In �g. 41 we present the quasiparticle density estimates based on the temperatures used
to �t the pumping data for sample A. For sample B and C we were not able to extract
a temperature dependence due to the bad quality of the data. For sample A, we have
estimated signi�cantly larger quasiparticle densities than in previous experiments with
similiar sample geometry [49]. However, in this experiment the resistances of the samples
measured were an order of magnitude smaller than in the experiments discussed in this
thesis. For a given bias range, having a smaller tunneling resistance leads to a larger
leakage current, resulting in a wider spread of the pumping plateaus, which makes tem-
perature estimates easier. Since samples B and C had an even larger tunneling resistance,
estimating the temperature is even harder.
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6 Summary and discussion

In the work presented in this thesis, we have fabricated hybrid single electron turnstiles
with two di�erent lead geometries and signi�cantly di�erent thicknesses in order to study
the e�ects of lead thickness and geometry on the density of non-equilibrium quasiparticles
during turnstile operation.

The advantage in using superconducting leads with a higher thickness is that the
di�usion of the quasiparticles away from the tunnel junctions is more e�cient, resulting
in an overall smaller quasiparticle density near the junction. Reducing the quasiparticle
density is essential in reaching accuracies required for metrological applications.

We present the �rst experimental demonstration of charge pumping with Al/AlMn
turnstiles with a junction quality comparable to conventional Al/Cu structures. However,
we were not able to quantitatively observe the predicted improvements on the turnstile
performance based on the better thermalization of the superconducting leads. Our initial
analysis of the experiments suggested signi�cantly larger quasiparticle densities for our
samples with thin aluminum leads compared to quasiparticle densities observed in pre-
vious experiments. For the samples with very thick aluminum leads, we were not able to
extract any kind of temperature dependence due to the low quality of the experimental
data.

Despite the shortcomings in the experiments, we were able to fabricate SINIS turn-
stiles with charging energy exceeding the superconducting gap with very thick aluminum
leads. We noted that at these thicknesses the superconducting gap approaches its bulk
value, which is lower than for thin �lms. Low superconducting gap deteriorates the per-
formance the device. Building on our demonstrations of AlMn based devices, in future
work this issue might be addressed by using some other metal as the superconductor,
e.g. niobium or vanadium. Aluminum is typically chosen as the superconductor because
it can easily be oxidised in order to fabricate the tunnel barriers. With the fabricating
methods we have used, this is not an issue since we oxidise the normal metal instead of
the superconductor. However, niobium-based junctions typically have a larger value for
the Dynes parameter γ. [50]

In order to verify whether having thicker leads decreases the quasiparticle density,
more experiments are required. There is, however, plenty of room for improvement in the
sample fabrication process. The most important parameter to improve is the tunneling
resistance of the samples, which can be made an order of magnitude smaller. The re-
sistance is determined by the junction size and the oxidation conditions. Increasing the
junction size also increases the capacitance of the junctions, which leads to a smaller
charging energy and therefore the most feasible way to tune the resistance is by changing
the oxidation parameters. In our sample fabrication process, the oxidation time was of
the order of minutes, which means that it can easily be decreased.
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