
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Liisa Sailaranta

Real-time predictions in Web services

Master’s Thesis
Espoo, January 14, 2017

Supervisor: Associate Professor Keijo Heljanko, Aalto University
Advisors: Timo Lehtonen M.Sc. (Tech.)

Teppo E. Ahonen Ph.D

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80723514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Liisa Sailaranta

Title:
Real-time predictions in Web services

Date: January 14, 2017 Pages: 62

Major: Computer Science Code: SCI3042

Supervisor: Associate Professor Keijo Heljanko

Advisors: Timo Lehtonen M.Sc. (Tech.)
Teppo E. Ahonen Ph.D

In this Master’s Theses a real-time analytics pipeline is built to serve predictions
to users based on the usage and the operational data of a Web service. The data
of the service is analyzed and a predictive model is built using statistical learning
methods. The pipeline is set up to serve the predictions real-time using compo-
nents from Amazon Cloud Services.

The aim is to show the user a prediction of how long will it take until she/he gets
a verdict on her/his application from the service. As additional goals, the aim is to
study the dataset and its possibilities and research the suitability of the Amazon
Machine Learning service in real-time predictions in Web context.

The features for the predictive model are selected by exploring the dataset and
using the Amazon Machine Learning service to evaluate the features. The Ama-
zon Machine Learning service is also used to build a predictive machine learning
model. The real-time analytics pipeline is built using Amazon components and
following the Lambda Architecture guidelines.

The best model performed better than the baseline model, though only moder-
ately. The data lacked some vital information for the prediction target such as
information about the personnel. Implementing the pipeline with Amazon com-
ponents was considered straightforward. The Lambda Architecture worked well
for the problem. It was found out that the Amazon Machine Learning service is
easy to use but its machine learning capabilities and user interface are limited. It
was highlighted that it is essential to explore and learn the dataset before build-
ing or designing the pipeline, as the pipeline design depends heavily from the data
and from the use case.

Keywords: Machine learning, Real-time analytics, Statistical learning,
Cloud computing, Lambda Architecture

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Liisa Sailaranta

Työn nimi:
Reaaliaikaiset ennustukset verkkopalveluissa

Päiväys: 14. Tammikuuta 2017 Sivumäärä: 62

Pääaine: Tietotekniikka Koodi: SCI3042

Valvoja: Professori Keijo Heljanko

Ohjaajat: Diplomi-insinööri Timo Lehtonen
Filosofian tohtori Teppo E. Ahonen

Tässä diplomityössä on rakennettu reaaliaikainen analytiikkajärjestelmä, jolla
näytetään ennustuksia käyttäjille eräässä verkkopalvelussa, perustuen verkko-
palvelun käyttödataan ja operatiiviseen dataan. Verkkopalvelun dataa analysoi-
daan ja sen perusteella rakennetaan tilastollisiin menetelmiin pohjaava ennusta-
va koneoppimismalli. Analytiikkajärjestelmä rakennetaan käyttäen komponentte-
ja Amazonin pilvipalvelusta.

Tarkoituksena on näyttää käyttäjälle ennustus siitä kauanko kestää, että hän
saa vastauksen verkkopalveluun jättämäänsä hakemukseen. Tämän lisäksi tavoit-
teena on muodostaa ymmärrys verkkopalvelun datasta ja sen mahdollisuuksista,
sekä tutkia soveltuuko Amazonin koneoppimispalvelu reaaliaikaisten ennustuk-
sien näyttämiseen verkkoympäristössä.

Ennustavan mallin ominaisuudet valittiin tarkastelemalla dataa ja evaluoimalla
ominaisuudet Amazonin koneoppimispalvelun avulla. Amazonin koneoppimispal-
velua käytettiin myös ennustavan koneoppimismallin rakentamiseen. Reaaliaikai-
nen analytiikkajärjestelmä rakennettiin käyttäen komponentteja Amazonin pilvi-
palveluista ja seuraten Lambda-arkkitehtuurin suunnitteluperiaatteita.

Paras rakennetuista koneoppimismalleista oli parempi kuin pohjamalli, joskaan
ei mitenkään merkittävästi. Datasta puuttui joitain ennustettavan arvon kan-
nalta tärkeitä tekijöitä kuten tietoa hakemuksia käsittelevästä henkilökunnasta.
Analytiikkajärjestelmän rakentaminen Amazoniin osoittautui kuitenkin helpoksi.
Amazonin koneoppimispalvelu todettiin helppokäyttöiseksi, vaikkakin se todet-
tiin koneoppimisominaisuuksiltaan melko yksinkertaiseksi, sekä käyttöliittymän
osalta rajoittuneeksi. Työssä korostetaan, että on tärkeää tutkia dataa ennen kuin
rakentaa analytiikkajärjestelmän, sillä järjestelmän rakenne riippuu suuresti siitä
minkälaista data on ja mikä on sen sekä datan käyttötarkoitus.

Asiasanat: koneoppiminen, reaaliaikainen analytiikka, tilastollinen oppi-
minen, pilvilaskenta, Lambda-arkkitehtuuri

Kieli: Englanti

3

Acknowledgements

I would like to thank my supervisor Keijo Heljanko for support and guidance
during this Master’s Thesis.

I would like to thank my instructor Timo Lehtonen for this interesting
topic for the Thesis and all the support and guidance during the process. I
would like thank my instructor Teppo E. Ahonen for support on working with
the text and for his great substance knowledge and professional attitude.

I would like to thank my colleague Jussi Määttä for inspiration and ideas
on the data. I would like to thank Lea Hämäläinen for proofreading this Mas-
ter’s Thesis. I would like thank all my colleagues and friends who read and
commented my Thesis and gave me new ideas and encouraged me in the pro-
cess.

Finally I would like to thank my family for all the support during my
studies and during this Master’s thesis.

Espoo, January 14, 2017

Liisa Sailaranta

4

Abbreviations and Acronyms

AML Amazon Machine Learning service
CSV Comma Separated Values
API Application Programming Interface
REST Representational State Transfer
RMSE Root Mean Square Error

5

Contents

Abbreviations and Acronyms 5

1 Introduction 7
1.1 Problem statement . 8
1.2 Structure of the thesis . 9

2 Background 11
2.1 Machine learning in Web services 11
2.2 Statistical machine learning 13
2.3 Amazon Machine Learning service 15
2.4 Lupapiste service . 16

3 Methods 19
3.1 Linear regression . 19
3.2 Feature selection . 21
3.3 Lambda Architecture . 23

4 Implementation 27
4.1 Data preprocessing . 27
4.2 Explorative data analyses . 28
4.3 Machine learning model . 37
4.4 Pipeline implementation . 42

5 Discussion 48

6 Conclusions 53

A The AWS-Lambda function code in Python 60

B The Hadoop Pig script 62

6

Chapter 1

Introduction

Machine learning has many interesting applications in Web services. Web
services can be optimized and customized with the help of machine learn-
ing methods. A Web service can automatically recommend content to a user
based on his previous behavior on the Web service. Statistical learning mod-
els can give the user insight to his process and give him additional information
about his case.

There are however challenges on the way of making machine learning part
of every day Web development. Many of the machine learning applications
and data analysis technologies lack scalability and robustness. On the other
hand most of software developers lack the theoretical knowledge of machine
learning to implement predictive machine learning applications. Big amounts
of data and demand for real time data processing also set demands on soft-
ware developers and architects.

In this Master’s Thesis we are going to build a real time analytics pipeline
to bring real time predictions in a Web service. The pipeline will show a real-
time prediction to the user visiting the Web service. The prediction will give
user insight to his process and add transparency to the Web service. The pre-
dictions will be based on the usage and operational data of the Web service.

By building this pipeline we learn about the challenges of bringing ma-
chine learning to a Web service and the motives and possibilities of machine
learning in Web context. To simplify our pipeline we will be using the Ama-
zon Machine Learning service to provide the machine learning functionality
to our pipeline. The Amazon Machine Learning service is a software as a
service solution built by Amazon to provide an easy to adapt machine learn-
ing service to every day software development. We will evaluate the Amazon
Machine Learning service and its suitability to solve our problem.

The service we are going to adapt our real time analytics pipeline to, is Lu-
papiste Web service, which is a service for applying for a construction permit

7

CHAPTER 1. INTRODUCTION 8

from a municipality. The service was built by Solita1. It has extensive logging
data from the usage of the service over the service lifetime. Our pipeline aims
to predict information from the log and operational data sets of the service
that would be beneficial for the user and to the authorities. By bringing the
machine learning dimension to the Lupapiste service, we wish to bring more
transparency to the service and learn about the Lupapiste data set and its
possibilities.

1.1 Problem statement

In this Master’s Thesis we will research how well the Lupapiste data set and
the Amazon Machine Learning service answer our goal of creating real-time
predictions in a Web service and what is the pipeline architecture that suits
our needs. We will analyze our data and discuss how well the data answers to
our problem and what sort of preprocessing is needed for the data. We will
discuss the architecture of the real time analytics pipeline and implement the
essential parts of it.

We will explore the Lupapiste data and build a predictive machine learn-
ing model based on the data using the Amazon Machine Learning service. We
will choose the features for our machine learning model based on the analy-
ses of the business logic of the Lupapiste service and explorative analyses on
the data. The Amazon Machine Learning service provides us the functional-
ity to evaluate our assumptions on the data and train and build the machine
learning model. Once the machine learning model is built and running in the
Amazon Machine Learning service, we will design and build a real time ana-
lytics pipeline using Amazon components. The aim of the real time pipeline
is to bring the prediction to the users in real-time based on the model we
built. The pipeline will adapt the architecture of the Lambda Architecture.

The first part of our problem is to find out whether our data can predict
the desired target and how accurate this prediction is. Our data set will be
a combination of Lupapiste usage data logs and Lupapiste operational data
from the production database. Based on that data we want to show to the
user a prediction of how long his application processing time will be. By pro-
cessing time we refer to time that goes after user submits the application to
the point the municipality gives a verdict on the application. We will ex-
plore the data to find the features that have correlation with our target that
is the processing time. Once we have good feature candidates we will build
a machine learning model from the candidates using the Amazon Machine

1Solita is a Finnish software and consulting company founded on 1996. It develops
digital solutions to customers in private and public sectors.

CHAPTER 1. INTRODUCTION 9

Learning service and let the service evaluate our model. Based on the evalu-
ation we know whether our feature candidates actually have any correlation
with the target and whether it improves our model. Using the Amazon Ma-
chine Learning service we can iterate over all of our feature candidates to find
the best predicting model.

The second part of our problem will be the integration of the Amazon
Machine Learning service with the Lupapiste service to bring the real time
predictions to users. The Amazon Machine Learning service is a ready built
stand-alone Web service, so no implementation or infrastructure set up is
needed there. The service also offers an API for requesting the real time pre-
dictions. Therefore the main problem we will need to solve in this phase, is
how to gather all the needed information for the prediction and how to serve
the prediction real time to the user. To solve these problems, we will set up
the Lambda Architecture type pipeline in a cloud environment containing
several databases and other components. We will analyze the scalability of
our pipeline and discuss the price and information security perspectives. We
will discuss about the value cloud computing can bring to data analysis and
machine learning solutions.

For all our infrastructure we choose Amazon cloud services due to Ama-
zon being a big, popular cloud service provider and widely used at Solita.
There are similar solutions and even similar machine learning solution to the
Amazon Machine Learning service offered by Microsoft Azure and Google
Cloud, but we will concentrate on Amazon solutions in this theses. In some
extend our solution could be applied to other providers, but this will be left
for further research.

1.2 Structure of the thesis

In Chapter 1 we introduce our problem and the scope and describe the struc-
ture of this Master’s Theses.

In Chapter 2 we will go through the machine learning basic principles
using fundamental literature of this area. We will take a look of previous re-
search made in the past on machine learning and real-time prediction in Web
services. We will shortly discuss cloud services and introduce the Amazon
Machine Learning service. At last we will introduce the Lupapiste service.

In Chapter 3 we will introduce an approach called linear regression used
in the model building. We will explain the method for selecting the features.
We will introduce a design called Lambda Architecture, that we will use for
our pipeline.

In Chapter 4 we will run the data analysis, discuss and present the results

CHAPTER 1. INTRODUCTION 10

of the analysis. We will describe the process needed for preprocessing and
feature engineering the data and describe the process of building the model
with Amazon Machine Learning service. We will describe the implementation
of our pipeline.

In Chapter 5 we will discuss our model and possible ways to improve it.
We will discuss the scalability and other attributes of our suggested pipeline.

In Chapter 6 we will present our conclusions, by summing up what we
learned from building our machine learning model and data pipeline.

Chapter 2

Background

2.1 Machine learning in Web services

In this Master’s Thesis we want to bring real-time predictions to users in our
Web service. To get background to our problem we will first take a look at
similar research done in the past related to real-time predictions and machine
learning in Web services.

Real-time predictions in Web services has been a research topic already
already from the early days of the Web [11]. The interest for this problem
setup comes from the desire to recommend user content in a Web service real-
time. The motive behind this or any other personalization or customization
based on user’s profile is to engage users to the Web service or increase the
conversion rate of the Web service [25]. Especially in the Web services such
as e-commerce Web services, where conversions bring direct profit, different
sorts of recommendation systems have become more a necessity than an ad-
ditional feature. A system which can profile users and recommend content
based on the profiling can be referred to a recommendation engine.

The first real-time prediction systems were based on preferences and in-
formation a user inputted himself in a Web service [22]. User was shown for
example questionnaires on a Website or was offered a possibility to rate the
content while using the service. This however resulted to sluggish user experi-
ence and collected possible biased data as users failed to judge their interests
and motives objectively [22]. Questionnaires and forms in Web services also
raised information privacy concerns and users were not always willing to offer
personal data about themselves [11].

To avoid the concerns of user inputted data and also to find more unex-
pected patterns and connections in data, the existing data like click stream
data, application logs or visited URLs can be mined for finding the user pro-

11

CHAPTER 2. BACKGROUND 12

files or patterns [23][26][22]. The traditional approach for creating predictions
from this sort of usage data is comparing the new user to history records us-
ing clustering methods and selecting the users with most similar behavior in
the Web service [26]. For example we can examine the URLs user visited on
Web service and group users by those URLs. That would mean if users A
and B visited URLs a and b and user C visited URLs c and d, we would
divide our users to two clusters, one with A and B and other with the user
C. If we now have a new user D which would have visited URL c we would
divide him to same group with C since they have most same visited URLs.
Now based on other content user C has visited, we could recommend to user
D the content d. This approach can be called collaborative filtering [17]. De-
spite being a simple approach this is a relative efficient and intuitive solution
for this problem. It is used by big, modern Web services such as Amazon
e-commerce Web service and YouTube Web service [20][8].

In reality clustering is not this straightforward. Especially in the Web
services of today, where user can visit hundreds of URLs during one session,
defining the distance between two users’ profile can get complicated. The
pure clustering approach also lacks scalability: finding the right cluster for
new entry might end up in a unbearable latency with multidimensional data
[23]. Therefore lots of research has been done to define and optimize the pro-
cess of calculating the distance between two users profile. For example in
case of URLs, different URLs in the Web service can be given different weight
when calculating the distance to emphasize the essential content on the Web
service [26]. Also instead of clustering the visited URLs we can examine the
sequence of the URLs and recognize patterns in the sequences the user vis-
ited [22][4]. In addition to URLs, in context of e-commerce for example the
previous purchases or in context of social media the relationships between
the users or user’s search queries can be used as attributes when building the
clusters [17][14].

In the earlier research a clear separation is made between offline and on-
line processes of the predictive machine learning workflow [22]. By offline
process is referenced to the phase were the data is pre-processed and the clus-
ters are formed. By online process is referenced to the phase where user is
offered the prediction in the Web service. The modern Web services of today
need to however handle huge amount of rapidly evolving data and several
different variables when building the predictions. Therefore the separation
between offline and online process is no longer an working analogy but ser-
vices have complicated data pipelines specifically built for collecting, process-
ing and serving the data in real time [29][19]. For these purposes specific Big
Data solutions have been developed for fast and robust data access, process
and storage [12]. Most notable of these technologies are collection of database

CHAPTER 2. BACKGROUND 13

technologies called NoSQL databases and batch and stream processing frame-
works for efficient data processing [6][9].

The data pipelines essentially collect and aggregate data from different
data sources for example from different log files or real-time data streams.
After that the pipeline usually processes some calculations over the data and
stores the processed results to separate storage for further analyzes or for
serving results to users. The pipelines need to deal with heavy write opera-
tions, evolving data schemas and offer high availability, fault isolation, real
time view on the processed data [5][29][7]. To meet these requirements dif-
ferent components in the data pipeline might for example need be duplicated
and many completely new architectural designs need to be made.

The problem we are trying to solve in this thesis differs slightly from the
earlier research presented here. Firstly, our motive differs from the most typ-
ical use case of real time predictions. We are not trying to engage the user
on our Web service or recommend him content. We want to give user in-
formation based on our model. Our motive is to bring transparency to the
process and by that in the long run to accumulate the process. Secondly, our
case differs from the cases described here since instead of blindly clustering
our data we have some prior knowledge of our users. For users who have al-
ready gotten a decision to their application in the service, we already know
our target which is the processing time of the application. We can utilize this
information when creating the predictions for the new users. The approach
we use in this thesis can be called supervised learning.

We will open the term supervised learning and the statistical learning con-
cepts powering the predictions in Chapter 2.2.

2.2 Statistical machine learning

To understand the method of creating predictions based on existing data we
will shortly go through the principles and basic methods of statistical learn-
ing. We will build here the necessary theory of statistical learning needed to
follow the rest of the thesis.

In statistical learning we try solve the following problem: if we are pro-
vided with variables X how can we predict the output value Y based on those
variables. To open this we go through a simple example: sales predicting. In
this example we are selling a product and we are interested in the sales of it.
Therefore the sales is the output value Y that we are trying to predict. The
amount of sales depends on several variables such as TV advertising, social
media advertising or re-sellers. These variables are described as X. Essen-
tially the problem we are trying to solve is to find a function f to fit our

CHAPTER 2. BACKGROUND 14

variables X to our target Y [15]. In other words we try figure out how do
different variables X (TV advertising, social media advertising or re-sellers)
effect our target Y (sales). After finding the f , we can use the f to predict
target Y based on the variables X for completely new entries. That means
we could predict or at least give an estimation of the sales based on planned
advertising and re-sellers already beforehand or even better we can select our
TV advertising, social media advertising and re-sellers to optimize the sales.

Essentially most of the statistical learning problems fall into two cate-
gories: supervised and unsupervised learning. The example of sales previ-
ously is an example of supervised learning. For each sample there is a corre-
sponding target value Y that is supervised output. In contrast in unsupervised
learning there is no supervised output available for the data [15]. To explain
the idea of unsupervised learning, we will go through an other example. If
we would be selling a product we would have an idea of the groups of peo-
ple buying our product. Each group could be described by the motives and
demographics of the group. Being able to fit a new potential buyer to any
of our user groups would be beneficial, since we might be able to target our
advertising and supply better. However these groups are not known before-
hand and therefore no supervised method can be applied here. To find out
these user groups, we must use unsupervised methods for clustering the data
[15]. These clusters then represent our buyer groups. Once the clusters are
known we can fit a new buyer to one of the clusters and use that to predict
a user’s motives or behavior. This problem of user groups is similar to the
problem of grouping users by visited URLs described earlier.

In this thesis we are going to use the supervised learning method. Our
problem is more similar to the first example of sales than to second example
of the buyers. We have the variables X and also the supervised output Y to
predict. Essentially supervised learning processes consists from two phases,
the training and the valuation phase. In the training phase we will estimate
the f based on the training data with supervised output. After training we
go through the an evaluation phase for testing our model against evaluation
data, which must be different from the training data [15]. This evaluation
data set must also have supervised output Y in order to evaluate the model
performance. If we are satisfied with evaluation results, we can use our model
to give predictions for new data entries.

Developing a statistical learning model also includes a feature selection
phase. That means we try to select the variables that give us the best model.
In the rest of this Master’s Thesis we will call the these variables features. We
can improve our features by extracting more information out of the original
data or phenomena. This sort of feature extraction requires a sufficient do-
main understanding [33]. There are also automatic methods for selecting the

CHAPTER 2. BACKGROUND 15

significant features, but in this thesis we will not be using any of those but
select our features based on domain understanding. Automatic methods for
feature selection are not needed in our research since the variable set in our
data is relatively small. Also we want to build a good understanding from
the data and by selecting features through explorative data analysis we get
to examine and learn about the data.

2.3 Amazon Machine Learning service

The Amazon Machine Learning service functionality is based on the statisti-
cal learning methods described before. We will discuss our motivations and
interests for using the service in this Master’s Thesis.

The Amazon Machine Learning service is a software as service solution de-
veloped by Amazon1. It was published 2015 to bring Amazon to the market
field of low cost fast adapt machine learning solutions. The service offers both
an user interface and APIs for building and evaluating a predictive machine
learning model and fetching predictions based on the model. The service of-
fers both real-time predictions and batch predictions for bigger amounts of
data.

The details of the implementation of the Amazon Machine Learning ser-
vice are not public, but we can come up with some conclusions of the imple-
mentation based on the documentation and the API of the service. Based
on the documentation we can say that the machine learning functionality
is based on linear regression and logistic regression algorithms. These algo-
rithms are introduced in Chapter 3.1. Both of these algorithms are efficient
algorithms suitable for many machine learning problems but also relatively
basic and standards in the industry [24][32].

As there is nothing pivotal in the machine learning functionality of the
Amazon Machine Learning service, to understand the motivation behind it
we must examine it from a system architecture point of view. Based on pre-
vious discussion and introduction to machine learning methods it is easy to
see that building a machine learning application is not trivial. It requires un-
derstanding about statistical methods, machine learning technologies and the
data set itself. The application easily becomes heavily domain specific and
difficult to test or write the exact specifications other than in the most trivial
cases [28]. There are solutions described in literature to use batch processing
frameworks for building machine learning applications [13][19]. That sort ap-
proach however requires knowledge over machine learning methods and also

1http://docs.aws.amazon.com/machine-learning/latest/dg/machinelearning-dg.pdf

CHAPTER 2. BACKGROUND 16

deep knowledge about the batch processing framework implementation to be
able to run algorithms efficiently. With Amazon Machine learning service the
company or the team can take machine learning service as part of the sys-
tem easier, without a need to build and maintain a complex machine learning
system on their own. Even in a case where the company would be interested
in investing in building a machine learning solution in the long run, with the
Amazon Machine Learning service or with any other similar solution by any
other service provider, the machine learning feature can be tested and pro-
totyped with low cost.

Being a cloud solution the Amazon Machine Learning service also offers
scalability that the common tools for analyzing data and building models
such as R and Matlab lack by default [3][30]. Even though there are commer-
cial and community solutions for bringing scalability to Matlab and R, those
tools can not yet be trivially scaled to run on several machines [28]. Machine
learning applications will by design need to be able to handle big data sets.
Building a machine learning model is an iterative process which requires lots
of computing power. However the need for high computation power is not
constant since building the model is a temporary process and does not need
to run constantly. The cloud services have the appearance of infinite comput-
ing power which is available on demand [2]. By using cloud services in ma-
chine learning, it is possible to avoid big upfront commitment and only pay
for resources that are needed. Therefore we do not end up constantly paying
for the computing power that is only needed for relatively small amount of
time when building the model or creating predictions. This circumstance is
also reflected in the Amazon Machine learning service billing policy. The us-
age of the service is billed by time when building the model. The predictions
are billed, by the amount of predictions requested from the service.

2.4 Lupapiste service

The Web service that we are going to target in our research is the Lupapiste
Web service2. We will next explain the basic functionality of the service and
discuss our motivation of bringing a machine learning dimension to the Lu-
papiste service.

Lupapiste is a Web service for applying construction permission from mu-
nicipalities. It was released in the spring 2013. By end of year 2016 it is in use
approximately in 100 municipalities in Finland. The Lupapiste service sim-
plifies the application process for both applicant and municipality authorities,

2www.lupapiste.fi

CHAPTER 2. BACKGROUND 17

Figure 2.1: The state diagram of application in the Lupapiste service

by providing a fluent communication channel for all parties included in the
construction process and simple, informative user interface.

To get the construction permission one must declare detailed a plan for
the building project, the ownership, the materials and the techniques to be
used in the construction project. The municipality authorities will make a
verdict of a construction permission based on the offered information and
documents. Especially for large projects, the key personnel such as lead de-
signer or project manager must also be accepted by the municipality. The
application process states are shown in the state diagram in Figure 2.1. In
this diagram we see the Lupapiste process states from creating the applica-
tion to the state where application is assigned to the municipality and finally
given a verdict.

It is typical that the processing time takes longer than excepted. Addi-
tional information from the applicant is often needed, when all needed in-
formation is not submitted in the initial submission. The service does pre-
validation of the data user entered such as mandatory attachments for saving
time of the municipality officers in most trivial cases. However maintaining
detailed validation rules for tens of available application types soon turns out
to overly troublesome. Due applicant failing to give out all the needed infor-
mation in the first place the application goes back to applicant to be com-
plimented and from there again to be processed by authorities which results
to extended processing time. Also other matters, like municipality personnel
work situation effect the application processing times.

In this Master’s Thesis, we are trying to model the application processing

CHAPTER 2. BACKGROUND 18

time based on data available at the moment the user submits the application.
By processing time we refer to the time that goes from submitting the ap-
plication to the point the verdict is given by the municipality. We want to
show a prediction of the processing time to the applicant real-time in the
Lupapiste service after the applicant submits his application. Based on this
information the applicant can estimate how long it is going to take to get
the verdict. We chose the processing time as prediction target, since gener-
ally it is the single most interesting variable to the applicant. Predicting the
processing time is also interesting, since the authorities want to shorten the
processing time. Therefore they are interested to understand the variables
that cause the application process to lengthen.

Chapter 3

Methods

3.1 Linear regression

We will build and evaluate our machine learning model using the Amazon
Machine Learning service. For building the machine learning model the Ama-
zon Machine Learning service uses an approach called linear regression. Un-
derstanding the linear regression algorithm is not mandatory for using the
Amazon Machine Learning service as the service hides most of its internal
functionality. We will however go through the idea of the linear regression,
as this will later help us to understand and analyze our results.

Linear regression is based on the idea of finding a linear formula for pre-
dicting target Y based on variable X. It is a supervised learning approach.
To use this algorithm there must be a linear relationship between the variable
X and target Y [15]. Mathematically we can write this linear relationship as
follows:

Y ≈ β0 + β1X, (3.1)

≈ meaning approximately modeled as. The β0 and β1 in Equation 3.1 are
two unknown constants: coefficients. Once we manage to give estimations
for the coefficients we can use this equation as a model to create prediction
for target Y based on variable X. We can also present the idea of linear
regression visually as in Figure 3.1. In the figure we use red dots to present
our sample data and a blue line to estimate the linear relationship between
the variables and target. The aim of linear regression is to fit the blue line
so its best describes the data.

We evidently try to select our coefficients β0 and β1 so that our predictions
are as close as possible to the supervised output values. The standard way for
measuring this closeness is the minimizing least squares criterion [15]. From

19

CHAPTER 3. METHODS 20

Figure 3.1: Fitting a linear regression line to sample data

this criterion we can lead a formula for calculating the coefficients. To un-
derstand this a little better we will go through the idea of the minimizing the
least squares criterion. To calculate the least squares -error we must first cal-
culate the predicted i :th value from the data as ŷi = β0 +β1xi, where β0 and
β1 are our estimated coefficients. Based on that we can calculate the residual,
the difference between our predicted i :th value and the i :th supervised value
of the data as ei = ŷi− yi. Then we calculate the sum over the squares of all
residuals. This is called as the Residual Sum of Squares (RSS) and presented
formally as RSS = e21 + e22 + ... + e2n [15]. By creating a formula to mini-
mize this RSS, we can after some calculus come up with following formulas
for coefficients:

b̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)
(3.2)

b̂0 = y − b̂1x, (3.3)

where y is the mean of values Y and x the mean of values X. From Equa-
tions 3.2 and 3.3 we get the estimations for β0 and β1 and placing them to
our original Equation 3.1 we can now create predictions for new data entries.

The case presented here is a simple form of linear regression. We only
have one variable that the target depends on. In most of the cases, also in
our research case, the target depends on several variables. The case where
linear regression is applied to multiple parameters is called multiple linear
regression [15]. Instead of having a single variable effecting the target Y , we
have multiple variables with their coefficients:

CHAPTER 3. METHODS 21

Y ≈ β0 + β1X1 + β2X2 + ...+ βpXp (3.4)

Unlike with simple linear regression with one variable, estimating the co-
efficients in multiple linear regression can not be represented as a simple for-
mula so we will not present the formula here. Essentially the idea of estimat-
ing the coefficients is the same as with simple linear regression. The biggest
challenge the multiple regression poses is finding the significant features from
the variables. Different variables might perform differently when combined in
the same model than when researched individually [15]. To tackle this when
building the linear regression model, we will need to try different combina-
tions of our features.

Linear regression requires the data be of a linear type, meaning that the
distance between data points can be given a value. It only suits numeric val-
ues. The Amazon Machine Learning service however lets us also predict bi-
nary and categorical values. A method called logistic regression is used there.
Our target will however be a numeric value so in this research we will use the
linear regression.

Another limitation of the linear regression approach is that it only per-
forms well with data, to which a linear model can be fitted naturally [15].
That means that if the variables X and the target Y do not have a linear re-
lationship the linear regression can not fit a model with good predictions. In
this case alternative methods such as Support Vector Machines could bring
better results [15]. However the Amazon Machine Learning service does not
support other methods than linear regression. We however assume that our
data has approximately a linear correlation with the target. Therefore we
assume that the linear regression model is a suitable approach for us.

3.2 Feature selection

We will start the model building by extracting the significant features from
the data. The method for finding the significant features will be the following.
We will first come up with ideas of the features by analyzing and understand-
ing the business context of the Lupapiste service. Then we will examine the
data by plotting figures to verify our assumptions.

When we have a good feature candidate, we will test our feature using the
Amazon Machine Learning service linear regression algorithm. The Amazon
Machine Learning service builds a linear regression model from our features
and data we upload to the service. This model would be technically already
as such ready to be used for predictions, but we will in this phase only use it
for testing our features.

CHAPTER 3. METHODS 22

The service evaluates the model by calculating the Root Mean Square
error (RMSE) to our values. RMSE is a similar value than RSS described in
Chapter 3.1. In addition of summing the squares of the residuals the RMSE
takes a mean of the squares and then the square root from the mean. We can
present this mathematically as following:

RMSE =

√√√√ 1

N

N∑
i=0

e2i , (3.5)

where N amount of the amount entries in our data. By using the RMSE we
get the idea of the error per sample. Instead of looking at a big sum of errors,
we examine the single error which we can compare to our data values. This
way we can get an idea of how much the error actually is proportioned to the
data samples. However it is good to notice that even though the RMSE is
a single constant value, the error per sample is not constant among samples,
but differs depending on the sample. The way RMSE is calculated emphases
big errors. The samples that differ a lot from the other samples have a big
error close to the RMSE, but the samples that fit well to the linear model
might actually have smaller error than the RMSE suggests.

By using the RMSE we can analyze whether our feature brings any value
for the model. If the RMSE seems to be bigger than with previous feature sets
we should probably drop out this feature. If the RMSE however is smaller
than with previous features, the feature improves our model and we should
keep it. However as discussed Chapter 3.1, the same feature might show cor-
relation to the target in some feature combinations but in some other combi-
nations show no correlation. The feature that first seemed insignificant might
seem significant when combined with some other features. Due this we should
try out different feature combinations to find the most optimal model.

The benefit of our method is that we do constant cross checking of our
assumptions about the data with the Amazon Machine Learning service. We
do not build a separate model for evaluating the data, which might give us
results that would not later be repeatable with Amazon Machine Learning
service. We can constantly be sure that Amazon sees and understands the
features in a similar manner that we do. Once we are done with feature en-
gineering and selection we will have a ready to use machine learning model
in Amazon with no need to start building a new model on another platform
or going through the training and the validation processes again.

CHAPTER 3. METHODS 23

3.3 Lambda Architecture

To bring the real time predictions to the Lupapiste users we must build a real
time analytics pipeline, that will deliver the predictions to the users real time.
At high level the pipeline has following requirements. It should take in one
data entry: the application, do the needed preprocessing to the application,
request a prediction for it from the Amazon Machine Learning service and
return the prediction to the Lupapiste service. The Lupapiste service will
handle showing the prediction to the users in the user interface.

For requesting the prediction from the machine learning service we need
to have some information about the application based on what the machine
learning service can give the prediction. Earlier we dubbed this information
features. What these features are in our case is discussed in Chapter 4.2. Our
data is log events enriched with operational data. We can call this primitive
data just purely data. To be able to turn data into features we must be able
to derive our data into information. To turn the data into information we
must be able to run queries over data. These queries aggregate information
from data in different ways. They might calculate sums over data or calculate
distinct values in a column. To not pose any limitations for queries, they must
essentially be able to run over the whole data set. Formally we could define
the query as following:

query = function(all data) (3.6)

By running the query over the whole data set we will be able to answer
questions about the data such as how many times did certain events occur in
the data or what is the final status after each event. However running queries
on all the data will in the long term require lots of resources and result into
huge latency. Over the Lupapiste service lifetime the service is going to col-
lect gigabytes of log data, that would all need to be analyzed in each query.
There are solutions specifically designed for efficient big data batch process-
ing. However even with these solutions the latency soon becomes unbearable
for real-time predictions and also the required resources get really expensive.

To tackle this problem of fast queries on a big constantly growing data set
a design called Lambda Architecture has been described [21]. The Lambda
Architecture describes a system which provides implementing any arbitrary
function over any data with results returning in low latency. Essentially the
Lambda Architecture consists from three layers: a batch processing layer for
big data batches, a serving layer for queries over the data and a fast real time
layer for low latency queries [21]. Figure 3.2 shows the overall idea of the
Lambda Architecture. We will go more details on the design of each layer.

CHAPTER 3. METHODS 24

Figure 3.2: The Lambda Architecture overview

The batch layer and serving layer together do roughly what we invented
earlier when discussing the requirements of our pipeline. The batch layer
takes all our data and calculates a batch view of the data [21]. That means
that in case we would be interested in knowing how many times a certain
event occurs in the data, the batch layer would calculate this information
from the data and save it to a file. This processed data would then be a new
view to our data. The batch processing layer is built using specific batch pro-
cessing systems. These systems allow the user to write arbitrary queries on
data as the system was a single threaded program, however under the hood
the program execution will be distributed [21]. The distribution is done with
so called MapReduce paradigm and clusters. The distributed computing will
significantly speedup the processing time compared to single threaded pro-
gram.

The batch processing solution outputs the data for example to a text file.
To be able to run queries over this data we must move the data to a database
solution that can index and serve our data [21]. This database can be called
a serving layer. This database needs to support fast random reads but no
random writes. Therefore that database can be read optimized and relatively
simple. The serving layer is responsible for constantly reading in the new
batches from the batch layer. As we pointed out earlier the batch layer will
essentially run through the whole data. Therefore the all data in the tserving
layer will be replaced by every new batch.

The batch and serving layer already almost completely respond to our re-

CHAPTER 3. METHODS 25

quirements. We can process the data and run arbitrary queries over it. How-
ever we are not willing to run the batch layer constantly when the data up-
dates, due to the latency and resource costs. Due to that the Lambda Archi-
tecture suggests a speed layer for offering the view for the most recent data
[21]. Essentially the speed layer offers the same functionality as the batch
layer just with the difference that the real time layer only looks at the most
recent data. By most recent data we refer to the data that has not yet been
processed by the batch layer. Lets say if our batch layer would run once a day,
all data collected after the latest batch run will be most recent data handled
by the speed layer.

The speed layer functionality also differs a little from the batch layer.
Whereas the batch layer always recalculates everything from the scratch, the
speed layer tries to optimize this process by updating its view on the data
[21]. For example if we want to calculate certain events in the log data, the
speed layer would keep a count of how many times the event occurred and
each time the same event occurs again the real time layer would increment
the event count. Both the application logic and database are more compli-
cated on the speed layer than in the batch layer. However there is also less
data to be handled and the results of the speed layer are only temporary [21].
Therefore possible bugs in this layer have less effect on the system.

The final step when calculating the feature from the data is to merge the
result from the speed layer and the result from the batch layer. How this is
handled depends from the query and other implementation details. In our
example of event count this would mean that we query the count for all pre-
vious events from the batch layer and then sum it to the sum of all recent
events from the speed layer. The sum will then be our total event count.

Depending on the use case, the results of the layers however do not need to
be necessary merged but the layers can serve separate purposes. In addition
to our case of calculating features, the Lambda Architecture can be applied
for example for creating dashboards on data [16]. That means that the batch
layer can offer a view on history of the data for example an average over the
history of events and the speed layer can offer a view on the most recent data
for example average of the events for the previous day. The speed layer can
also be used for example reacting events in the data in real-time and the batch
layer for providing statistical overview on the data [31].

The Lambda Architecture can be implemented in various ways, as the
Lambda Architecture does not take a side on implementation details of a sys-
tem. In this theses we will implement the Lambda Architecture using Ama-
zon components. In addition to the architecture presented here, our pipeline
will also need to contain the integration to Amazon Machine Learning service.
Our pipeline will be introduced detailed in Chapter 4.4.

CHAPTER 3. METHODS 26

It is essential to notice that the Lupapiste service and the other circum-
stances will evolve over time and that will effect to the accuracy of our pre-
dictions. In a long term our pipeline should also update our machine learning
model with new training data. For simplicity we will however in this Master’s
Theses concentrate on the real time prediction pipeline.

Chapter 4

Implementation

4.1 Data preprocessing

We will use two different data sets in our research: the Lupapiste usage logs
and the operational data from the Lupapiste -database. Both of these data
sets have been taken from production environment and they contain data
from the past three years.

The log data contains a log entry for each action a user has taken in the
user interface. For example each time a user fills a field in an application
form a log entry is created. Each log entry contains the time stamp of the
log entry, user name and role, the application id and action name and target.
The completed list of features with descriptions is shown in Table 4.1.

The original logging data also includes the target field user entered data.
However, since this sort of data might contain confidential information such
as applicants names or social security numbers, we will filter out this data
already in this phase. In the context of public sector storing and transfer-
ring peoples personal data is usually restricted by law1. By leaving out this
sort of confidential data, we can freely upload our data to third party service
provider such as Amazon.

The operational data in turn contains one row for each application. Each
row tells the application current status, create date, submit date, possible
canceled date and verdict date. The description of the operational data is
shown in Table 4.2. The operational data is fetched from the Lupapiste -
database in JSON-format. Since the JSON-format is unpractical for further
data analyses, we will convert the data to CSV-format by using scripting lan-
guages.

Both of the data sets, log data and operational data contain the appli-

1http://www.tietosuoja.fi/en/index/rekisterinpitajalle.html

27

CHAPTER 4. IMPLEMENTATION 28

Column Type Description
datetime datetime The time and date of the log event
role categorical author or applicant
user name text The user name
application id text The unique application id
municipality text The municipality code
action categorical The action user was taking. For

example uploading an attach-
ment.

target categorical The target of the action. For ex-
ample the type of the attachment.

Table 4.1: Lupapiste service usage logs

cation id, which makes it possible to perform a join on the data sets. That
means we will create a complete new data set, containing information from
both of the data sets. In the following chapters we will use this method to
utilize data from both of the data sets.

4.2 Explorative data analyses

Our log data set contains lots of information about the application and the
application filling process. It is likely that not all the data will be signifi-
cant thinking of our target. We will next go through our data and derive the
significant features.

Processing time

We start our analyses by defining our target. We aim to predict the time that
has gone from the point a user submitted the application to the time the ver-
dict was given. Both of these time stamps are already as such available in the
application operational data so we will create this new feature by subtracting
the submit time from the verdict time. We will call this time from now on a
processing time. At this point we will need to filter out all applications that
have not yet been given a verdict, since we can not calculate the processing
time for them.

CHAPTER 4. IMPLEMENTATION 29

Column Type Description
applicationId text The unique application id
municipalityId text The unique municipality id
operationId category The application type. E.g. House
createdDate datetime The date application was created
submittedDate datetime The date application was submit-

ted
verdictGivenDate datetime The date verdict was given
canceledDate datetime The date the application was can-

celed
state category The application status, which is

one of the following: open, sub-
mitted, sent, complementNeeded,
canceled, appealed, verdictGiven,
constructionStarted, closed, ex-
tinct

lat number The latitude of the application
target location

long category The longitude of the application
target location

Table 4.2: Operational data from Lupapiste -database

CHAPTER 4. IMPLEMENTATION 30

Figure 4.1: The histogram of applications per municipalities. Majority of the
municipalities have less than few hundred applications altogether

Filtering the data

Our first assumption is that the municipality where the application is cre-
ated would have effect on the processing time. The municipality is directly
available in the operational data set for each application so we can simply
add it to our feature set. When we examine the data, we however notice that
there is big variation in adaption of the service over municipalities. Out of
78 registered municipalities in the service more than half have less than one
hundred applications ever submitted (Fig. 4.1). Since we are worried that
municipalities with less than a few hundred applications are not comparable
with municipalities with thousands of applications, we filter out all but the
five biggest municipalities in terms of the applications.

Next we plot the applications of the five biggest municipalities and their
processing times in a box plot manner (Fig. 4.2). The plot box presents
the majority (≈ 60%) of the data in a box, with a line at the median and
”whiskers” for the values out side this range. From the plot we can try to
figure out the distribution of the processing times per municipality and the

CHAPTER 4. IMPLEMENTATION 31

correlation between municipality and processing time.
The plot however is not really informative, since the processing times are

distributed over a big range and the majority of the values are pushed to bot-
tom of the picture. It seems that while the majority of the applications go
under 1 ∗ 107 seconds (four months), there are some applications that might
even take years. We assume these being big complex construction projects
operated by the public or the private sector such as a shopping center or a
municipality hospital. It is not easy to see any difference between municipal-
ities in this plot.

We decide to simplify our problem by filtering applications by application
type. We assume that different types of applications go through very differ-
ent processes and therefore their processing times are not really comparable.
Different applications types might be effected by the same variables in dif-
ferent ways which would make our model relatively complicated. To avoid
this, we filter applications so that we only leave house (”pientalo”) -types of
applications to the data. We choose this application type, since it is the most
popular application type among our applications.

It is good to notice though, that by limiting our applications to the house
applications and to the five biggest municipalities, we significantly cut our
data set and might effect the quality of our machine learning model. Each of
municipalities selected here has however 100-500 house -applications, so we
consider that being enough for building a linear regression model. We filter
the applications by application type and then plot the applications in the
similar manner as before to Figure 4.3.

In Figure 4.3 we can finally clearly see the correlation between munici-
pality and processing time. The municipalities with code B and code F seem
to generally have clearly longer processing times than other municipalities.
With municipality B, the fastest processing times go to similar numbers than
the processing times of municipality E, however the average of times is clearly
above of the times of municipality E.

Filling time

The next assumption we have, is that the filling time of the application would
have effect on the processing time. We assume that the applicants who take
longer to write their applications would write better applications than people
writing their applications fast. We form the filling time by taking the start
time of the application and subtracting if from the submit time of the appli-
cation. We add the filling time to data which has been filtered as described
in previously. We plot the processing time as the function of the filling time
(Fig. 4.4).

CHAPTER 4. IMPLEMENTATION 32

Figure 4.2: The processing times per municipality

Figure 4.3: The processing times (time to verdict) per municipality with
house -type of applications

CHAPTER 4. IMPLEMENTATION 33

If there is any correlation between the filling time and verdict time, it
is not visible from Figure 4.4. What makes examining the data difficult, is
that most of the data is packed to lower left corner of the picture, since few
extreme values force axes to widths that are too wide for most of the data.
These extreme values not only make the plot difficult to read, but also might
pose a challenge to our linear regression model. To solve this problem, we
take a base hundred logarithm from the processing time and the filling time
and plot the values again (Fig. 4.5).

With the logarithmic function, we are able to get the values to spread over
wider area, which makes the figure more readable. However still no strong
correlation between the filling time and the processing time is visible. The
only thing visible in the picture is the correlation between the municipality
time to the processing time, which was already spotted earlier. The feature
does not seem to have correlation with the target based on this research, nev-
ertheless we will test it in a later phase with the Amazon Machine Learning
service.

Application month

Our next assumption is that the month of the creation date of the application
would have correlation to the processing time. We have the assumption that
some months are slower, since during holiday season there will be less people
working in municipalities. We add the creation month of the application to
the data and plot the data in the box plot manner to Figure 4.6. From the
Figure we can see that the longest processing times are at summer and at the
beginning of the year, however the correlation does not seem to be strong. It
seems that the house applications being complex construction processes they
depend on many external variables and do not depend strongly on time of
the year.

Running month and applications per month

Next we come up with two additional assumptions from the data. We assume
that the running month starting from the beginning of the Lupapiste service
lifetime would have an effect to the processing time. We assume that over the
time municipalities become more fluent in handling the applications, which
makes the processing times faster. Our other assumptions is that amount of
applications per month might effect the processing times. We assume that in
the month, where there is lots of applications the processing times might be
slower than in the months where there is less applications.

CHAPTER 4. IMPLEMENTATION 34

Figure 4.4: The processing times (time to verdict) as seconds per filling times
as seconds. Municipalities separated with color.

Figure 4.5: The base hundred logarithm of processing times (time to verdict)
per filling times. Municipalities separated with color.

CHAPTER 4. IMPLEMENTATION 35

Figure 4.6: The processing times (logarithmic values) distribution over start
months presented as box plot

We create Figure 4.7 to examine our assumptions. From the figure there
is no clear trend to be seen in the development of processing times over time.
However with some municipalities we can see a correlation with the amount
of applications per month and the processing times. Especially with munici-
pality E there is clearly a peak both in applications per month and processing
times between the months 30 (06/2015) and 35 (11/2015). It is however diffi-
cult to say whether one feature caused a peak in the other or are both peaks
caused by same external variable. We will however take the applications per
month as a feature to our data set to test it with Amazon in the next phase.

Action count

So far our assumptions have mostly derived from the operational data. We
will next take a closer look at the log data. Our assumption is that the big-
ger amount of log events would result in faster processing times. We assume
that the more people edited their applications the better the application qual-
ity would be. We plot the processing time per application log action count
(Fig. 4.8). We filter out all the log events that happened after the submit.

In Figure 4.8 we see correlation between the log event count and the pro-
cessing time but different from what we expected. The more log events there

CHAPTER 4. IMPLEMENTATION 36

Figure 4.7: The processing times per running month (the month starting from
Lupapiste -release month) and the amount of applications per month.

CHAPTER 4. IMPLEMENTATION 37

are the longer are the processing times. For a reference we also try out dif-
ferent types of log events. We plot the processing time as a function of the
amount of events related to uploading attachments and the processing time
as a function of actions that are related to updating the competence infor-
mation of the lead designer of the process (Fig. 4.9). In both of these we see
similar correlation between the action count and processing time as with the
log event count. It seems that the more complicated the application is the
more log events is spans and the longer it takes to process.

4.3 Machine learning model

After we have come up with promising features from the data, we will build
our linear regression model with Amazon Machine Learning service. We will
first upload our data set to Amazon S3 bucket. Then we create a machine
learning model from the data using the Amazon Machine Learning service.

The service user interface guides us through the process. The service asks
us to define the types for our features (numerical, categorical, binary or text).
We will mark the municipality and month as categorical features and others
as numerical features. The service also asks us to define the target feature.
For all our experiments in this Chapter, we will use the processing time as
the target feature.

The Amazon Machine Learning service does not give much freedom for
customizing the machine learning methods. The only available algorithm is
the linear regression algorithm. For advanced users there is the possibility
to customize some of the algorithm parameters: number of passes over data
and regularization type and amount. Tuning the regularization type might
become useful with data sets with significant amount of features, so it is not
likely to be useful with our data. The number of passes might be something
we would benefit about, since it might be useful especially with smaller data
sets. This one however will increase the time and costs of building the model
and it is not likely to make big difference with our data. So with following
cases we will go with the default parameters.

Once we are happy with all the settings, we will ask Amazon to build a
model based on the data. With our data volumes of hundreds of rows of data
the service takes about two-three minutes to create the model. After creating
the model, we will examine its performance. The service will evaluate the
model performance using the evaluation set we define. We will randomly split
our data to training and evaluation data so that it uses 70% of the data for
training the model and 30% data for evaluating the model.

For evaluating the model the service will calculate predictions for the eval-

CHAPTER 4. IMPLEMENTATION 38

Figure 4.8: The processing time per action count

Figure 4.9: The processing times per attachment count

Figure 4.10: The processing times per competence info updates

CHAPTER 4. IMPLEMENTATION 39

uation data set using the model built with the training data set and then
calculate the RMSE for the predictions. The service will then in a similar
manner calculate a baseline RMSE using a baseline prediction model, which
simply uses the average of all values as prediction. By comparing our RMSE
to the baseline RMSE we can get some idea how well does our model perform.
However, we should not rely too much on this comparison, since even though
our solution would be better than the baseline solution, it might still not be
enough good for any practical uses cases.

We will build the model feature by feature, so that we can verify our fea-
tures and assumptions from the data simultaneously. We start with a feature
set that has only the processing time and municipality for each applications.
The Machine Learning service builds the linear regression model and gives an
RMSE-value 3 552 120 seconds (41 days). To understand this error we need
to examine our data little more. From Figure 4.3 we get a idea of the distribu-
tion of the verdict times. The median values are around 0.5∗107 = 5 000 000
(57 days). That means, that RMSE of our model is about 70% of the me-
dian value meaning that for most of our data the error would be 70% of the
value. That means that when the real processing time is 57 days the predic-
tion might be anything between 16 - 98 days. It is easy to understand that
this prediction is not accurate enough for any practical use. The prediction
is even slightly worse than the simple baseline solution that would be 3 544
602 seconds.

We continue to develop our model by adding the next feature, filling time
to the model. By adding this feature, we are able to improve our model
slightly and we get a RMSE 3 502 038s (40 days). The error goes down by 10
hours compared to previous error. For comparison we also build a model that
only has the filling time and the target. With this model the results are worse
than the baseline. Seems that the filling time only has effect on processing
time, when the information is combined with municipality. In Figure 4.11, we
see the processing times per filling times per each municipality. As we see,
for some municipalities the processing times seem to have more correlation
with filling times (B, F), whereas for other municipalities the values are more
scattered. Therefore it seems natural that these features must be combined
to bring up reasonable results.

Next thing we do is adding the start month to the feature set. The RMSE
is slightly greater than with previous features combination as shown in Ta-
ble 4.3. It questionable if start month brings any value to our model. We will
however keep the start month with us in the following experiments to find out
whether it would improve our model in some other feature combinations.

Next we add the applications per month feature to the feature set. By
including this feature we are able to get our RMSE down by about 10 hours

CHAPTER 4. IMPLEMENTATION 40

Figure 4.11: The processing times (logarithmic values) per filling time per
municipality

CHAPTER 4. IMPLEMENTATION 41

Features RMSE (s) Difference (s)
baseline 3 544 602 0
municipality 3 552 120 -7
filling time 3 821 804 - 277
municipality, filling time 3 502 038 42 563
municipality, filling time,
start month

3 506 041 38 560

municipality, filling time,
per month

3 480 556 64 045

municipality, filling time,
start month, per month

3 461 313 83 288

municipality, filling
time, start month,
per month, action
count

3 458 713 85 888

municipality, filling time,
action count

3 502 739 41 862

Table 4.3: RMSE:s with different feature sets

compared to feature set only containing municipality and filling time. It seems
that the applications per month has correlation with our target. When we
however add the start month to the feature set we are able to get even smaller
RMSE than with only per month -feature (Table 4.3). It seems that the start
month feature alone can not improve our model but when combined with the
applications per month feature it improves our model.

Finally we add the log event count as one of the features in the model. We
run it together with all other features introduced earlier in this Chapter. We
are able to get small improvement to our model. We try out a different combi-
nation of features and drop out the start month and the per month. Without
those features the RMSE grows significantly (Table 4.3). It seems that the
action count might bring some improvement to our model, but only combined
with other information such as start month or applications per month.

Our final results are presented in Table 4.3. In the table the feature set
and the RMSE and the difference to the baseline RMSE are presented. When
examining the results we notice that even the best results are only one day
better than the baseline. After all our model is still not much use in real
production environment. It is however good to keep in mind that our sce-
nario is relatively challenging and there is no quarantine that even the best
possible solution out of this data would be significantly better than our cur-

CHAPTER 4. IMPLEMENTATION 42

rent solution. We will continue our implementation and discuss about further
possibilities to improve the model in Chapter 5.

In Chapter 4.4 we will implement the pipeline for predictions. For show
case we will choose features municipality, the filling time and the action count
for our model. By using these three features we can show how feature data
is collected and discuss about the structure of our pipeline.

4.4 Pipeline implementation

Once we have the model in the Amazon Machine Learning service we want to
integrate it to the Lupapiste service to show the real time predictions in the
user interface. The goal is to show to the user the prediction of the application
process real time after user has submitted his application.

As stated in Chapter 3.3 we suggest the Lambda Architecture for han-
dling the real time predictions. We will here discuss the implementation of
the speed, the batch and the serving layers. We will leave out the function-
ality of updating the machine learning model since it is not necessary for a
minimum implementation of the pipeline. If wanted, the model can be up-
dated manually following the same process as described in Chapter 4.3. How-
ever given that the current model has the data from past three years, model
update needs to be considered earliest after several months.

We will set up the components on the Amazon cloud environment and test
the latency of our predictions and the overall suitability of this pipeline to our
problem. We will setup the pipeline in the separate test environment. That
means we will not get an experience from running the pipeline in real produc-
tion environment and can not therefore confirm the scalabily of our pipeline
in production use. We will however learn about setting up the pipeline and
discuss about the implementation of it.

To understand the design of our pipeline we will go through our require-
ments detailed. Once user submits the application we want to offer a predic-
tion for the user based on his application. Amazon Machine Learning service
offers a real time prediction endpoint for requesting the prediction. However
as explained in the previous chapters about selecting the features and build-
ing the model, some of our features are not directly available in our data but
they must be derived from the data to the features. We want to use the count
of log events for the application as one of the features. To achieve that we
should go through the log files on a server each times we want to show a pre-
diction to the user. The log files are together several gigabytes and alone
reading the files to memory will cause a latency, not to talk about reading
through files and fetching the information we want.

CHAPTER 4. IMPLEMENTATION 43

To avoid latency and possible errors while grepping and reading the log
files we will need to go for more intelligent solution. We will index our log
data to Amazon Relational Database (RDS). Any relational database from
any provider would work here, but we will use only Amazon components when
building this pipeline to offer smooth communication between components
and to take the advance of the cloud environment. In addition to relational
database Amazon offers also several non-relational database solutions, which
are specifically designed for fast data access. However the relational database
is suitable choice for us, since the relational databases are designed to aggre-
gate operations such as count, which is our use case here.

The relational database is the speed layer of the Lambda architecture.
Our speed layer design differs slightly from the suggested design in Chap-
ter 3.3. In the Lambda Architecture the speed layer supposedly contains ap-
plication logic constantly updating the view on the data. In our solution we
constantly query the data from our database. This is trade off between com-
plexity and scalability. Our solution is not the highly scalable but it is simple
and therefore less prone for errors and it works as long as the database size
does not grow too much.

To get the log data to our relational database we will need to modify the
Lupapiste service code. We will edit the code so that it pushes each log event
to our relational database immediately after the log event is created. The
advantage of method is that we have full control over when the log event is
indexed to our database. The downside is however that we need to modify
and maintain the code of the Lupapiste service. We will discuss about alter-
native implementation solutions in Chapter 5. In Chapter 4.1 we described
the two data sets: log data and operational data. When saving the event to
our relational database we can do the merge already while pushing the log
event to the database. That means that we attach the operational data to
each log row while pushing the event the to database. In similar way than
described in Chapter 4.1 we will for information security reasons need to filter
the data by omitting the data user inputted to the field.

When pushing a log entry to the real time layer database we will also push
the log entry to the master database (Fig. 4.12). The master database is part
of the batch layer which calculates the view to all of the data and updates the
serving layer. Once the batch process has finished, we can remove the data
from real time layer database. That way the queries to the real time database
stay relative fast, as the database stays small. The master database will stay
unmodified and no data will ever be removed from there.

The schema of the log data table both in the real time and master databases
is presented in Listing 4.1. As we see the schema contains both the features
from the operational data and from the log data as described earlier. We also

CHAPTER 4. IMPLEMENTATION 44

see that there are several fields in the schema that are not part of our machine
learning model for instance longitude, latitude or canceled date. It would not
be necessary to save them to the database. We will however also save them
both to the real time database and master database in case we later want im-
prove or develop our machine learning model further and would also be need
any of these fields as features. By saving all the data already now there will
not be later a need for further modifications of Lupapiste service code or this
schema.

Listing 4.1: The schema for log data -table

CREATE TABLE l o g da ta (
datet ime timestamp ,
a p p l i c a t i o n I d varchar (40) ,
use r varchar (40) ,
role varchar (40) ,
action varchar (40) ,
t a r g e t varchar (200) ,
mun i c ipa l i t y Id varchar (40) ,
s t a t e varchar (40) ,
ope ra t i on Id varchar (100) ,
submittedDate timestamp ,
sentDate timestamp ,
verdictGivenDate timestamp ,
cance ledDate timestamp ,
i sCance l ed boolean ,
lon varchar (40) ,
l a t varchar (40)

) ;

Overall the process of offering the real time prediction to user is described
in Figure 4.12. In the right upper corner we have the Lupapiste service. The
arrow from Lupapiste to real time database describes the log data flow from
the Lupapiste to the real time database and to the master database. The
merge symbol describes the phase where log data is enriched with the oper-
ational data before pushing it to the databases.

Further in Figure 4.12 the arrow from the Lupapiste component to the
Lambda component is the request for the real-time prediction, triggered by
the user submitting the application. The Lambda component here is an in-
stance of Amazon Lambda service. Amazon Lambda service is a service pro-
vided by Amazon and it should not be confused with the Lambda architecture
described in Chapter 3.3. Lambda service is stateless computing platform,
which runs Python, Java or JavaScript -code that programmer offers. The

CHAPTER 4. IMPLEMENTATION 45

Figure 4.12: The data pipeline system architecture diagram

CHAPTER 4. IMPLEMENTATION 46

code is configured to run on events such as a new data entry in a database
or as in our case configured to run on API-calls via Amazon API Gateway.
After running the code the Lambda will clean the running environment and
shut itself down until the next event. The programmer of the service does
not need to set up the server or container for the code to run, but Lambda
will handle all of these automatically.

The call to Lambda goes through Amazon API Gateway component that
triggers the Amazon Lambda component. The API Gateway wakes up the
Lambda component and delivers the request from the Lupapiste service to the
Lambda. The API Gateway will also return the response from the Lambda
service to the Lupapiste service acting as a proxy to the Lambda.

The Lambda contains the business logic of our pipeline. The whole Lambda
-code can be viewed in Appendix A. After being invoked the Lambda will read
the request body transmitted from the Lupapiste service. The body contains
the application id, start date, submit date and municipality of the applica-
tion in JSON-format as shown in Listing 4.2. All of this data is stored as
such in the Lupapiste service database. That means we can easily query this
data from the database when making the request for the prediction in the
Lupapiste service.

Listing 4.2: Request Body from Lupapiste to API Gateway

{
” a p p l i c a t i o n I d ” : ”LP−710−2016−00288”,
” mun i c ipa l i ty ” : ”018” ,
” s t a r t t i m e ” : ”2016−01−25 11 : 50 : 09 . 570000” ,
” submit t ime ” : ”2016−02−18 13 :31 : 38 . 434000”
}

The Lambda component will make a query to the real time database to
read how many log items there are for given application id. Latest here we see
why it is crucial to update the real time database immediately after the log
event. If our log events are not updated to the database this query will bring
smaller result than the actual count of the log events and therefore give biased
prediction to our application processing time. After that Lambda queries the
serving layer to get the history view on the data. Finally Lambda combines
these results by summing the log event counts from the real time database
and serving layer for a total event count.

The other features in our chosen model are the filling time and the munic-
ipality. The municipality of the application is provided in the request so no
further actions are needed to get this value. The filling time can be calculated
be subtracting the start time from the submit time provided in the request.
After collecting the features we will fetch the real time prediction from the

CHAPTER 4. IMPLEMENTATION 47

Amazon Machine Learning service. After that we return the prediction to
the Lupapiste, which shows the prediction in the user interface.

The arrow from the master database to the MapReduce describes our
batch layer functionality. The MapReduce component is a Hadoop instance
that runs in Amazon cloud. It takes in our data and aggregates the data in a
similar manner than in the speed layer. It reads in all enriched log data from
the master database and calculates the application count for each application
by grouping the log events by the application id. For configuring the Hadoop
to execute the described functionality we use Apache Pig script language. Pig
script language will let us write our logic using SQL like queries, which will
be run distributed in the Hadoop instance [27]. Our Pig script for configuring
the Hadoop instance can be seen in Appendix B.

After finishing the batch process the Hadoop instance writes the results
to text files in Amazon S3 bucket. To get data to our serving layer, we need
to import data from text files to our serving layer which is essentially a key-
value database in Amazon cloud. In this process we use Amazon pipeline
components that are specifically designed for converting data between text
files and database. For our serving layer we use Amazon Dynamo database.
Amazon Dynamo database offers a simple key-value interface, where objects
can be fetched by their corresponding key. By design the Dynamo database
emphases availability over the data consistency, making it highly available
data storage [10]. This provides us fast and easy access to our data in the
serving layer.

The part missing from the architecture diagram is the logic which trig-
gers the batch process and empties the real time layer. These are however
implementation specific questions and not performance critical in a similar
manner than the speed layer. Therefore we will not go to the implementa-
tion of those components. Essentially these can be handled with Amazon
pipeline components.

Overall our pipeline performance is satisfying. We are able to get our pre-
dictions in few seconds even when the real time database, which is the perfor-
mance wise potentially the biggest bottle neck, has 50 000 rows. Overall set-
ting up and configuring all the components was relatively easy and overall the
architecture is easy to maintain, as very little custom or ad hoc components
are needed. We will discuss further about our data pipeline in Chapter 5.

Chapter 5

Discussion

Overall our data pipeline performed well and was relatively easy to set up.
The Amazon Machine Learning service turned out to be a good solution con-
cerning to our pipeline. Instead of building a complicated service with ma-
chine learning libraries and several data processing solutions, we got a ready
build machine learning service. That made building the real time predictions
pipeline significantly easier. Also the Lambda Architecture supported well
our goal of building a real time pipeline. The pipeline separated the fast real
time layer from the slow, big data batches, offering a fast but robust setup
for real time predictions.

Our pipeline offers high scalability for requesting predictions. The Lambda
component handling the requests scales almost limitless. As no state informa-
tion is required for the Lambda component, several Lambda components can
easily run simultaneously. The Amazon Machine Learning service promises
to deliver up to 200 predictions per second, which makes it possible for us to
serve up 200 people submitting their applications simultaneously. Our serv-
ing layer, Amazon Dynamo database also offers fast access on the history
view of the data. According to Amazon, even up to 20 000 simultaneously
read operations are allowed.

However the amount of connections to the relational database components
of our pipeline is limited. Depending from the price category, the maximum
amount of connections is limited to hundreds or to thousands of concurrent
connections. Unlike other components in the pipeline the relational databases
need to handle random write operations, as the log data is written to the
database, as user fills in his application. That makes the relational databases
a potential bottle neck of our pipeline. If the amount of connections exceeds
the maximum amount allowed by Amazon, it would lead to possible delays
in the process or even in data loss.

To avoid this bottle neck in our pipeline a service specialized for handling

48

CHAPTER 5. DISCUSSION 49

fast data streams such as Apache Kafka could be used to read in the log events
[1]. Essentially the Kafka system reads in stream of events and stores them in
internal queue which applications subscribe to consume the events [18]. An
application subscribing Kafka event queue could then read events from the
queue and process and write the data for example on key-value pair database
to offer the real time view on the data. An other application subscribing the
events could then handle writing data to the master database. This way we
could avoid possible bottlenecks caused by the relational databases. How-
ever as we did not test our pipeline in real production environment, we did
not have possibility to experiment with this matter. We will therefore leave
scaling the log event writing for further research.

Other matter to discuss about in our pipeline design is, that it requires
modifications to the existing Lupapiste -code. The modifications to the ser-
vice code need be maintained over the service lifetime and if requirements for
the pipeline evolve the code needs to be updated. This requires extra work
and might lead to errors and bugs in the system. To avoid modifying the code
we could have used a specific log aggregation tool to read and index the log
files from the server. Actually the Lupapiste service already has a Splunk log
aggregation tool configured and running. We could have run queries over the
data using the Splunk tool instead of using a relational database for index-
ing the log data. The flaw of this approach is however that we do not have
direct control on when the Splunk indexes the log data. If the data is not in-
dexed immediately after the log event, that might cause possible bias in our
predictions. Therefore our solution turned out to be fluent for our case.

Building the machine learning model with the Amazon Machine Learn-
ing service also had its challenges. Despite of our efforts and logical reason-
ing even our best feature combination gave predictions which were only one
day better than the baseline. There are however many factors that can ex-
plain our results. According to Lupapiste service specialists from Solita, the
biggest factor effecting the application processing time is the personnel. For
example the overall work situation of personnel handling the applications has
great impact on the processing times. The work situation of the personnel is
however not directly available in our data. We tried to tackle this by using
the applications per month as one of the features in our model, however with
no significant success. It seems that the personnel handling the applications
are also involved in several other tasks which are non-related to Lupapiste
service and therefore not available in our data.

Other factor related to the personnel is people being away from work.
Naturally this is difficult to predict since people might be away from work due
sick leave or due other non-predictable causes. We tried to take this factor
into account by selecting the month of the application to one of the features.

CHAPTER 5. DISCUSSION 50

We assumed that some months might be slower due holiday seasons. We were
able to get some improvement to the model with this feature, but again no
significant change. In addition to holidays and overall workload there are also
many other things about personnel that might effect the application process-
ing time which are just not available in our data. These could be for example
changes in the personnel, the personnel competence and habits.

One more circumstance noted by the Lupapiste specialist as one of the
reason to delayed processing times is the quality of the attachments. The at-
tachments might not simply be at the level what is expected and do not show
the information what is needed. The quality of the attachments is however
obviously not visible in the log data, so can not be used as feature. Other
thing pointed by the specialists was that the quality of the answers in any
point of the application is generally poor and that effects the processing time.
Due information security reasons as stated before this user inputted content
had to be filtered out for our experiments. Given that Amazon is trusted
cloud provider by many public sector instances in US it might not be impos-
sible to negotiate possibility to upload the user inputted content to Amazon
cloud environment1. Especially it might have been possible to upload the
data to cloud environment, if we would have kept the data in the area of Eu-
ropean Union. That is possible due Amazon offering several regions for its
services, some of them being located in the area of European Union. It is
however good to notice that even though we would have included the user
inputted text to our data, analyzing free text is not trivial and would have
required additional methods and research.

Adding comprehensive logging data or utilizing various data sets for ex-
ample data from the human resources systems of the municipalities might
have improved our model. Also adding some information about the attach-
ments might have given us more insight to the predictions. However it is good
to notice that in any case our scenario is challenging. By only utilizing the in-
formation that is available the moment user submits the application we limit
ourselves a lot. For example if we would wait until the moment one of the
personnel assigns the application for himself we could use that information
as part of the prediction and possible improve our predictions. However then
we would needed to give up the real time aspect from our predictions.

Other factor we can discuss in our predictions quality is the Amazon Ma-
chine Learning service. Many ways Amazon Machine Learning service turned
out to be suitable for our problem. The usage and adaption of the service
turned out to be really straightforward and the performance of the real time
predictions turned out to be fast. However in the machine learning point

1https://aws.amazon.com/compliance/resources/

CHAPTER 5. DISCUSSION 51

of view the service was limited to one algorithm, linear regression. If the
service would have offered other machine learning algorithms it would have
been possible to explore with different methods and possible get better pre-
dictions quality. Also for experimenting with the data the service turned out
be relatively ungraceful. The service utilized surprisingly little automation in
this matter. For example when wanting to try different sorts of combination
of features user had to upload all different feature combinations manually.
By adding a relatively simple feature that automatically trains and evalu-
ates different feature combinations from feature set would have dramatically
improved the service usability. Also chance to train a linear regression model
locally using tools such as Matlab or R and to upload that model to Amazon
Machine Learning service would have been an interesting possibility.

The prices of the Machine learning service were relatively decent for our
needs. As doing this research in December 2016, machine learning model
building costed 0.42$/hour. The real time predictions costed 0.0001$ per
one prediction. With our volumes of data that would mean few dollars per
day. Other costs for the pipeline come from the Lambda component, the
MapReduce component, the API Gateway and the databases, from which the
databases are the most expensive components in the system prices moving
between 10-500$ per month depending the size of the database and other de-
sign details. With our data volumes our pipeline solution would cost around
100-400$ per month.

As for further research we have few proposals for improving the predic-
tions quality. We would suggest combining more data sets for the predictive
model for example data sets from other municipality systems. The other data
sets might be able to give insight on the missing factors such as personnel
work situation. They might also provide complete new inside about construc-
tion related circumstances in the municipality area. In addition to different
data sets, also different research methods could be applied. It might be useful
to interview municipality personnel about the matters they think effect the
most the application process. It might also be interesting to observe the mu-
nicipality personnel at work through typical working week. That would give
a good insight on where does the processing time of the application actually
go.

For further research we also suggests researching some other promising
prediction targets. For example it might be possible to create a machine
learning model that would predict whether the application will be rejected
or accepted after the process and tell, which are the factors effecting this.
This model could then be used to warn user about whether his application
will be accepted or not and give user the information needed to correct the
application to the state that it will be accepted. This would however require

CHAPTER 5. DISCUSSION 52

enriching the data with the information about whether the application was
accepted or not, as this information is not available in our data set.

For further research regarding the pipeline, we suggest testing the pipeline
in production or in simulated production environment. Essential would be to
test how does the pipeline scale under heavy write operations and how fast
do the predictions serve when the databases have extensive amount of data.
Based on these tests, design improvements could be suggested for the pipeline
such duplicating certain components in the pipeline or replacing some bottle
neck components with complete new design decisions.

Chapter 6

Conclusions

The objective of this thesis was to bring real time predictions to the Lupapiste
Web service. The aim was to show user her/his application processing time
meaning the time from the point she/he submits the application to the point
when municipality gives a verdict about the application. In contrast to most
of the previous research, we applied supervised learning method to the Web
context. The goal was to learn about Amazon Machine Learning service and
about the challenges of building a real time prediction pipeline and discuss
about the right architecture choice for the pipeline.

We built a linear regression model based on Lupapiste log and operational
data using Amazon Machine Learning service. For information security rea-
sons, we filtered out all the user inputted content from the log data. We chose
the features to the model based on explorative data analyses. We learned that
the filling time, the municipality, the application month and the applications
per month have effect on application processing time. We also learned that
the action count in the log files probably has some correlation with the pro-
cessing time. We were able to build a model which performed better than
a baseline solution, still however relatively poorly. Our model was one day
better than the baseline solution. We discussed that the cause for this might
have been that not all factors that effect the processing time are available in
our data. These sort of factors would have been information about the per-
sonnel, their overall work situation and holidays and information about the
application attachments. We also pointed out that filtering the data so that
all user inputted content was left out also probably effected our prediction
accuracy.

For improving the predictions we suggest further research where the Lupa-
piste dataset could be combined with some other datasets from other munic-
ipality systems. We also suggest experimenting with different research meth-
ods for example interviewing the municipality personnel to get clearer picture

53

CHAPTER 6. CONCLUSIONS 54

of what is the internal process of processing applications in the municipality.
We considered Amazon Machine Learning service a good choice concern-

ing our pipeline. The service was easy to start using and to integrate to our
pipeline. Using a ready built machine learning service simplified our pipeline
design. The service also had sufficient performance considering the real time
predictions. However from machine learning point of view the service turned
out to be relative simple. The service had only one available algorithm for
building the predictive machine learning model: linear regression. It would
have been interesting to explore with different machine learning methods.
Also even though advertised for exploring the data, the service user interface
did not really serve that purpose.

We built the real time analytics pipeline using Amazon components. We
built the pipeline by the guidelines of the Lambda Architecture. The archi-
tecture worked well to our problem and building the pipeline was relatively
easy as many of the Amazon components supported our needs directly and
were easy to set up. We did not, however, test our solution in production so
no real performance data from production is available nor production ready
solution. This was left for further research. We considered the price of all
needed pipeline components decent.

We learned that the pipeline design depends heavily on the nature of the
data, for example, which features need to be collected for predictions. To
summarize we could say that the biggest lesson from this Thesis is that it is
essential to study the data before starting to build a pipeline around it. Lots
of efforts and money might be lost in pipeline design and implementation if
at the end no real machine learning model can be built from the data or the
design does not meet the actual requirements. Even if some decent predic-
tions would be built without any analytics of the data, it is unlikely that any
company would want to invest this sort of service or show any predictions to
the users in the long run, if there is really no understanding about what the
predictions are based on.

Bibliography

[1] 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelli-
gence (WI) and Intelligent Agent Technologies (IAT), Warsaw, Poland,
August 11-14, 2014 - Volume III (2014), IEEE Computer Society.

[2] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R. H., Konwinski, A., Lee, G., Patterson, D. A., Rabkin, A.,
Stoica, I., and Zaharia, M. A view of cloud computing. Commun.
ACM 53, 4 (2010), 50–58.

[3] Banerjee, P., Shenoy, U. N., Choudhary, A. N., Hauck, S.,
Bachmann, C., Haldar, M., Joisha, P. G., Jones, A. K.,
Kanhere, A., Nayak, A., Periyacheri, S., Walkden, M., and
Zaretsky, D. A MATLAB compiler for distributed, heterogeneous,
reconfigurable computing systems. In 8th IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2000), 17-19 April
2000, Napa Valley, CA, Proceedings (2000), IEEE Computer Society,
pp. 39–48.

[4] Borges, J., and Levene, M. Data mining of user navigation pat-
terns. In Web Usage Analysis and User Profiling, International WE-
BKDD’99 Workshop, San Diego, California, USA, August 15, 1999, Re-
vised Papers (1999), B. M. Masand and M. Spiliopoulou, Eds., vol. 1836
of Lecture Notes in Computer Science, Springer, pp. 92–111.

[5] Borthakur, D., Gray, J., Sarma, J. S., Muthukkaruppan, K.,
Spiegelberg, N., Kuang, H., Ranganathan, K., Molkov, D.,
Menon, A., Rash, S., Schmidt, R., and Aiyer, A. S. Apache
Hadoop goes realtime at Facebook. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011 (2011), T. K. Sellis, R. J. Miller,
A. Kementsietsidis, and Y. Velegrakis, Eds., ACM, pp. 1071–1080.

55

BIBLIOGRAPHY 56

[6] Cattell, R. Scalable SQL and NoSQL data stores. SIGMOD Record
39, 4 (2010), 12–27.

[7] Daruru, S., Marin, N. M., Walker, M., and Ghosh, J. Perva-
sive parallelism in data mining: Dataflow solution to co-clustering large
and sparse netflix data. In Proceedings of the 15th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, Paris,
France, June 28 - July 1, 2009 (2009), J. F. E. IV, F. Fogelman-Soulié,
P. A. Flach, and M. J. Zaki, Eds., ACM, pp. 1115–1124.

[8] Davidson, J., Liebald, B., Liu, J., Nandy, P., Vleet, T. V.,
Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B.,
and Sampath, D. The YouTube video recommendation system. In
Proceedings of the 2010 ACM Conference on Recommender Systems,
RecSys 2010, Barcelona, Spain, September 26-30, 2010 (2010), X. Am-
atriain, M. Torrens, P. Resnick, and M. Zanker, Eds., ACM, pp. 293–296.

[9] Dean, J., and Ghemawat, S. Mapreduce: Simplified data processing
on large clusters. In 6th Symposium on Operating System Design and
Implementation (OSDI 2004), San Francisco, California, USA, Decem-
ber 6-8, 2004 (2004), pp. 137–150.

[10] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall,
P., and Vogels, W. Dynamo: Amazon’s highly available key-value
store. In Proceedings of the 21st ACM Symposium on Operating Systems
Principles 2007, SOSP 2007, Stevenson, Washington, USA, October
14-17, 2007 (2007), T. C. Bressoud and M. F. Kaashoek, Eds., ACM,
pp. 205–220.

[11] Eirinaki, M., and Vazirgiannis, M. Web mining for Web person-
alization. ACM Trans. Internet Techn. 3, 1 (2003), 1–27.

[12] Fan, W., and Bifet, A. Mining Big Data: Current status, and fore-
cast to the future. SIGKDD Explorations 14, 2 (2012), 1–5.

[13] Ghoting, A., Krishnamurthy, R., Pednault, E. P. D., Rein-
wald, B., Sindhwani, V., Tatikonda, S., Tian, Y., and
Vaithyanathan, S. SystemML: Declarative machine learning on
MapReduce. In Proceedings of the 27th International Conference on
Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany
(2011), pp. 231–242.

BIBLIOGRAPHY 57

[14] Guy, I., Zwerdling, N., Ronen, I., Carmel, D., and Uziel, E.
Social media recommendation based on people and tags. In Proceeding
of the 33rd International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR 2010, Geneva, Switzerland,
July 19-23, 2010 (2010), F. Crestani, S. Marchand-Maillet, H. Chen,
E. N. Efthimiadis, and J. Savoy, Eds., ACM, pp. 194–201.

[15] James, G., Witten, D., Hastie, T., and Tibshirani, R. An
introduction to statistical learning, vol. 6. Springer, 2013.

[16] Kiran, M., Murphy, P., Monga, I., Dugan, J., and Baveja,
S. S. Lambda Architecture for cost-effective batch and speed Big data
processing. In 2015 IEEE International Conference on Big Data, Big
Data 2015, Santa Clara, CA, USA, October 29 - November 1, 2015
(2015), IEEE, pp. 2785–2792.

[17] Koren, Y., Bell, R. M., and Volinsky, C. Matrix factorization
techniques for recommender systems. IEEE Computer 42, 8 (2009), 30–
37.

[18] Kreps, J., Narkhede, N., Rao, J., et al. Kafka: A distributed
messaging system for log processing. In Proceedings of the NetDB
(2011), pp. 1–7.

[19] Lin, J. J., and Kolcz, A. Large-scale machine learning at Twit-
ter. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24,
2012 (2012), K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and
A. Fuxman, Eds., ACM, pp. 793–804.

[20] Linden, G., Smith, B., and York, J. Amazon.com recommenda-
tions: Item-to-item collaborative filtering. IEEE Internet Computing 7,
1 (2003), 76–80.

[21] Marz, N., and Warren, J. Big Data: Principles and Best Practices
of Scalable Realtime Data Systems, 1st ed. Manning Publications Co.,
Greenwich, CT, USA, 2015.

[22] Mobasher, B., Cooley, R., and Srivastava, J. Creating adap-
tive Web sites through usage-based clustering of URLs. In Knowledge
and Data Engineering Exchange, 1999. (KDEX ’99) Proceedings. 1999
Workshop on (1999), pp. 19–25.

BIBLIOGRAPHY 58

[23] Mobasher, B., Dai, H., Luo, T., and Nakagawa, M. Effective
personalization based on association rule discovery from Web usage data.
In 3rd International Workshop on Web Information and Data Manage-
ment (WIDM 2001), Friday, 9 November 2001, In Conjunction with
ACM CIKM 2001, Doubletree Hotel Atlanta-Buckhead, Atlanta, Geor-
gia, USA. ACM, 2001 (2001), R. H. L. Chiang and E. Lim, Eds., ACM,
pp. 9–15.

[24] Montgomery, D. C., Peck, E. A., and Vining, G. G. Introduc-
tion to linear regression analysis. John Wiley & Sons, 2015.

[25] Mulvenna, M. D., Anand, S. S., and Büchner, A. G. Personal-
ization on the net using Web mining: Introduction. Commun. ACM 43,
8 (2000), 122–125.

[26] Nasraoui, O., and Petenes, C. An intelligent Web recommendation
engine based on fuzzy approximate reasoning. In The 12th IEEE Inter-
national Conference on Fuzzy Systems, FUZZ-IEEE 2003, St. Louis,
Missouri, USA, 25-28 May 2003 (2003), IEEE, pp. 1116–1121.

[27] Olston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. Pig latin: A not-so-foreign language for data process-
ing. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008 (2008), J. T. Wang, Ed., ACM, pp. 1099–1110.

[28] Sparks, E. R., Talwalkar, A., Smith, V., Kottalam, J., Pan,
X., Gonzalez, J. E., Franklin, M. J., Jordan, M. I., and
Kraska, T. MLI: An API for distributed machine learning. In 2013
IEEE 13th International Conference on Data Mining, Dallas, TX, USA,
December 7-10, 2013 (2013), H. Xiong, G. Karypis, B. M. Thuraising-
ham, D. J. Cook, and X. Wu, Eds., IEEE Computer Society, pp. 1187–
1192.

[29] Sumbaly, R., Kreps, J., and Shah, S. The Big Data ecosystem at
LinkedIn. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2013, New York, NY, USA,
June 22-27, 2013 (2013), K. A. Ross, D. Srivastava, and D. Papadias,
Eds., ACM, pp. 1125–1134.

[30] Venkataraman, S., Bodzsar, E., Roy, I., AuYoung, A.,
and Schreiber, R. S. Presto: Distributed machine learning and
graph processing with sparse matrices. In Eighth Eurosys Conference

BIBLIOGRAPHY 59

2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013 (2013),
Z. Hanzálek, H. Härtig, M. Castro, and M. F. Kaashoek, Eds., ACM,
pp. 197–210.

[31] Villari, M., Celesti, A., Fazio, M., and Puliafito, A. Alljoyn
lambda: An architecture for the management of smart environments in
IoT. In International Conference on Smart Computing, SMARTCOMP
Workshops 2014, Hong Kong, November 5, 2014 (2014), IEEE, pp. 9–
14.

[32] Weisberg, S. Applied linear regression, vol. 528. John Wiley & Sons,
2005.

[33] Witten, I. H., and Frank, E. Data Mining: Practical Machine
Learning Tools and Techniques, Second Edition (Morgan Kaufmann Se-
ries in Data Management Systems). Morgan Kaufmann, 2005.

Appendix A

The AWS-Lambda function code
in Python

Listing A.1: The Lambda -function

import psycopg2
import boto3
from datet ime import datet ime

def lambda handler (event , context) :
print event
try :

conn = psycopg2 . connect (”dbname=’ po s tg r e s ’ user
= ’ ’ host =’ l u p a p i s t e l o g d b p s q l . cgrw7ecd7cn4 . eu
−west−1. rds . amazonaws . com ’ password = ’ ’”)

except :
raise RuntimeError (”Can not connect to db”)

cur = conn . cu r so r ()
cur . execute (”””SELECT COUNT(a p p l i c a t i o n I d) FROM

l o g d a t a WHERE a p p l i c a t i o n I d = %s GROUP BY
a p p l i c a t i o n I d ””” , (event [” a p p l i c a t i o n I d ”] ,))

count ob j = cur . f e t c h a l l () ;
i f not count ob j or len (count ob j) != 1 or len (

count ob j [0]) != 1 :
raise RuntimeError (”Data base returned

something unexcepted ”)
count = count obj [0] [0]

60

APPENDIX A. THE AWS-LAMBDA FUNCTION CODE IN PYTHON61

dynamodb = boto3 . r e s ou r c e (’dynamodb ’)
t ab l e = dynamodb . Table (’ a p p l i c a t i o n s ’)
item = tab l e . ge t i t em (Key={” id ” : event [”

a p p l i c a t i o n I d ”] })
batch count = item [”Item”] [” count ”]
count = int (count) + int (batch count)

submit t ime = datet ime . s t rpt ime (event [” submit t ime ”
] , ’%Y−%m−%d %H:%M:%S.% f ’)

s t a r t t i m e = datet ime . s t rpt ime (event [” s t a r t t i m e ”] ,
’%Y−%m−%d %H:%M:%S.% f ’)

f i l l i n g t i m e = (submit t ime − s t a r t t i m e) .
t o t a l s e c o n d s ()

mun i c ipa l i ty = event [” mun i c ipa l i ty ”]
c l i e n t = boto3 . c l i e n t (’ machine learn ing ’)
re sponse = c l i e n t . p r e d i c t (

MLModelId=’ml−EIvVGmXBdBt ’ ,
Record={

” mun i c ipa l i ty ” : munic ipa l i ty ,
” act ion−count ” : str (count) ,
” f i l l i n g −time ” : str (f i l l i n g t i m e) ,
” opera t i on ” : ” p i e n t a l o ” } ,

PredictEndpoint=’ https : // r ea l t ime .
machine learn ing . eu−west−1.amazonaws . com ’

)
return re sponse

Appendix B

The Hadoop Pig script

Listing B.1: Pig script to calculated amount of log events per application

−− Load l o g data rows
l o g da ta = LOAD ’ l og da ta ’ USING PigStorage (’ ; ’) AS (

datetime , app l i c a t i on Id , i s In foReques t , operat ion ,
munic ipa l i ty Id , userId , role , action , t a r g e t) ;

−− Se l e c t a p p l i c a t i o n i d s
a p p l i c a t i o n i d s = FOREACH log da ta GENERATE a p p l i c a t i o n I d ;

−− Group rows by a pp l i c a t i o n id
grouped by id = GROUP a p p l i c a t i o n i d s BY a p p l i c a t i o n I d ;

−− Ca l cu l a t e rows per a pp l i c a t i o n
l o g e v e n t c o u n t s = FOREACH grouped by id GENERATE group as

id , COUNT(a p p l i c a t i o n i d s) AS eventCount ;

−− Join o r i g i n a l data l o g e v en t c oun t s
j o i n ed = join l o g e v e n t c o u n t s by id , l og da ta by

a p p l i c a t i o n I d ;

−− Se l e c t f e a t u r e s
a p p l i c a t i o n s w i t h e v e n t c o u n t s = fo r each j o in ed generate

app l i c a t i on Id , eventCount , mun i c ipa l i t y Id ;

−− Save r e s u l t s
STORE a p p l i c a t i o n s w i t h e v e n t c o u n t s INTO ’ / r e s u l t s /grouped

’ USING PigStorage () ;

62

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Structure of the thesis

	2 Background
	2.1 Machine learning in Web services
	2.2 Statistical machine learning
	2.3 Amazon Machine Learning service
	2.4 Lupapiste service

	3 Methods
	3.1 Linear regression
	3.2 Feature selection
	3.3 Lambda Architecture

	4 Implementation
	4.1 Data preprocessing
	4.2 Explorative data analyses
	4.3 Machine learning model
	4.4 Pipeline implementation

	5 Discussion
	6 Conclusions
	A The AWS-Lambda function code in Python
	B The Hadoop Pig script

