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Recently, state-of-the-art automatic speech recognition systems are used in various
industries all over the world. Most of them are using a customized version of
speech recognition system. The need for different versions arise due to different
speech commands, lexicon, language and distinct work environment. It is essential
for a speech recognizer to provide accurate and precise outputs in every working
environment. However, the performance of a speech recognizer degrades quickly
when noise intermingles with a work environment and also when out-of-vocabulary
(OOV) words are spoken to the speech recognizer.

This thesis consists of three different tasks which improve an automatic speech
recognition application for mobile devices. The three tasks include building of a
new acoustic model, improving the current voice activity detection and garbage
modelling of OOV words.

In this thesis, firstly, a Finnish acoustic model is trained for a company called
Devoca Oy. The training data was recorded from different warehouse environments
to improve the real-world speech recognition accuracy. Secondly, the Gammatone
and Gabor features are extracted from the input speech frame to improve the
voice activity detection (VAD). These features are applied to the VAD decision
module of Pocketsphinx and a new neural-network classifier, to be classified as
speech or non-speech. Lastly, a garbage model is developed for the OOV words.
This model recognizes the words from outside the grammar and marks them as
unknown on the application interface.

This thesis evaluates the success of these three tasks with Finnish audio database
and reports the overall improvement in the word error rate.

Keywords: Voice activity detection, Garbage modelling, Out of vocabulary, Neu-
ral network classifier
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Chapter 1

1 Introduction

In recent years, plenty of high-quality research and experiments have been conducted
in the field of automatic speech recognition (ASR) technology, which certainly improve
and provide the stability to the speech recognition systems. The ASR systems have
become extremely important as they can perform precise recognition in real-world
applications. The recent advancement in ASR technology enables the human to
have effective and meaningful interaction or conversation with machines in a more
natural way. Despite all the good work being done recently, the present day ASR
systems still have some persistent challenges which can degrade their accuracy and
performance during their use in adverse environmental conditions.

One of the most important challenges for an ASR system is to work fairly in a
non-stationary noisy environment. When the level of background noise increases,
most of the voice activity detection (VAD) algorithms fail as the classification of
speech and noise becomes almost impossible. In order to tackle this issue, an efficient
VAD algorithm is required which can differentiate between speech and noise to make
an ASR more robust even in difficult environments. Many VAD algorithms have
been developed so far, as a result of continuous and hard work done in this field of
ASR systems. Most of the developed algorithms have different feature extraction
techniques and decision mechanism. The recent trend is to extract multiple features
from a speech signal and feed them to the decision module to classify between speech
and non speech [3, 4, 5].

Another notable challenge for an ASR system is to identify every possible word,
sequence of words and even out of vocabulary (OOV) words which belong to different
topics. A comprehensive language model, trained and adapted from a very generic
subject corpus can accomplish this task by assigning correct and reasonable probabil-
ities to the word sequences during the speech decoding process. The generic language
model can perform reasonably well for a large vocabulary speech recognition systems
deployed on large servers with many available resources. However, it is not an ideal
approach to use generic language model adapted from universal subject corpus for
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embedded ASR applications like dictation and programs searching by voice, which
usually employ a limited vocabulary. Since these mobile applications can work much
better and faster if the customized grammar is used and also most of the embedded
platforms have not much available resources (i.e. CPUs) and computational com-
plexity for searching word sequences might grow.

The work around for such a customized-vocabulary ASR system is the garbage
modelling for OOV words. The basic idea behind garbage modelling is to find human
produced non-words and broken words. Additionally, it can also be used to identify
the words from outside the vocabulary. Once the word is recognized as unknown,
the application should be able to notify the user and again ask for a correct input.
The other task is the consistent working of an acoustic model for male and female
speakers of every age. This can be handled by incorporating more speech data (with
equal amount of male and female voices) during the training of an acoustic model.

1.1 Objectives of the work

The main objective of this thesis work is to bring an advancement in a speech recog-
nition product owned by a Finnish company specialized in industrial ASR solutions.
Improvement of the speech recognition product consists of three tasks which include
the building of a new acoustic model, improvement of the current VAD module and
the garbage modelling of OOV words that contributes towards improving an existing
ASR system. The first task is to train an acoustic model by using CMU-Sphinx
toolkit which works better for both male and female voices. Also the acoustic model
should be able to work fairly in noisy environment. The second task is to replace an
existing VAD module with a new and efficient VAD module which works better in
all noisy environments. The final task is to develop a new garbage model to handle
OOV words and non-words. This module will play its role when any unknown or
new word is spoken to the system by rejecting that particular word.

1.2 Target audience

This thesis is mainly relevant for the master’s students and developers who want to
build a new acoustic model in their own language by using the CMU-Sphinx toolkit
and also wish to improve the accuracy of their automatic speech recognition mobile
applications by using the efficient voice activity detection and garbage modelling
algorithms explained in this work.
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1.3 Thesis breakdown

The thesis has been organized in the following manner. Chapter 2 gives an insight on
the basics or fundamentals of speech and discusses the automatic speech recognition
in detail. It also explains an open-source ASR engine i.e. CMU-Sphinx speech recog-
nition toolkit. In Chapter 3, small vocabulary system is presented which embeds
the developed ASR application. Chapter 4 illustrates the training and building of
acoustic models in detail. In Chapter 5, different VAD algorithms and techniques are
presented, and one of them is implemented in the mobile ASR application. Chapter
6 discusses the garbage modelling for OOV and non words. Chapter 7 concludes the
important findings of this thesis work and also provides some recommendations for
the future work.
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Chapter 2

2 Background of Speech Recognition

This thesis discusses the problems mentioned in Chapter 1 in detail and provides
respective solutions for a mobile based ASR application. Before proceeding to the
solutions of the highlighted problems, the theory behind the basics of speech and
ASR process is provided in this chapter.

2.1 Fundamentals of speech

Speech is an effective way of communicating ideas between humans. It is not a
straightforward phenomenon as it is anticipated by most of the people. It is rather a
complex process having dynamic structure which makes it difficult to distinguish
between speech signal and its associated undesired noise [6]. Spoken language mainly
comprises of sentences which are made up of words. Words consist of letters which
produce some specific sounds. These sentences carry some meaning which the speaker
tries to convey. When the speech reaches another person, the signal is received by the
ear and transmitted to the recipient’s brain for processing the message and decoding
it. This is a fairly simple linguistic description and everyone can understand the
structure. The Figure 1 shows the entire mechanism from speech production to
speech perception by the humans. The message is made within the speaker’s brain
and the human vocal system converts the sequence of words into the speech signal
waveform that is transferred via a noisy communication channel. On the listener
side, When the speech signal is sensed by the human auditory system the listener’s
brain starts decoding the speech signal and recognizes the words sequence. [1]

The spoken language is composed of sounds which are defined as phones. Most
of the languages follow the western style of writing and arrange letters from left to
right to form words and eventually sentences. The text written in this pattern is
called transcription, the term that will be used throughout this thesis. Whereas in
order to constitute the speech, phones are arranged in such a manner that they follow
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Figure 1: Human Speech Communication [1]

each other in time. This arrangement is universally applicable to all the languages
either eastern or western. Strictly speaking, a phoneme is used instead of phone
which is a more suitable representation of this class of sounds. Phone is merely an
acoustic realization of phoneme which is the smallest unit of speech that contains
meaning.

Phones are usually unique but in some cases they may vary depending upon the
situation they are in. When phones are considered in reference to transition from
one to another usually contain more information as compared to mere phones. They
are referred to as diphones. As [7] explains, American English contains almost 50
phones and 2000 diphones. Those diphones are relatively distinct and occur fewer
times than that of phones. Similar conclusions can be drawn for other languages such
as Finnish. The context in which the phones occur often affects the meaning and
pronunciation of phones, so it can be termed as a triphone i.e. a phone considered
in a contextual scenario. As a simple example, when o is placed with d and m as
its following phones and t as its preceding phone in both cases, "tod" and "tom"
sound significantly different in their respective cases. The in-depth details of how
humans produce and perceive speech require a separate discussion and those syntactic
and linguistic level technicalities are not included within this thesis.

2.2 Automatic speech recognition

This section introduces the Automatic Speech Recognition (ASR) in detail along
with its history and core processes.

2.2.1 History
In its early days, the ASR technology was restricted to government or military
use. The field of speech recognition has shown promise and found various exciting
applications in the everyday use, since when the first recognizer was built in 1950
[8]. Figure 2 from [2] shows the evolution of speech recognition technologies over the
course of past seven decades. The use for automatic speech recognition applications
has grown from simple to complex.
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Figure 2: Milestones in Speech Recognition [2]

Most of the speech recognition systems developed in 1960 were able to recognize small
vocabularies i.e. between 10 to 100 isolated words based on phonetic based properties
of speech. Technologies developed and implemented during that time include filter-
bank analysis, time-normalization methods [2]. One decade later, new systems were
developed to recognize medium-sized vocabularies using template-based methods.
The technologies used during that time were pattern recognition models and pattern
clustering methods for speaker-independent recognizers. In its essence, these methods
were very limited due to its inefficiency to handle large-sized vocabulary because build-
ing a separate template for each of those words required large number of computations.

Transition of speech recognition systems from the template-based approach to
the framework of statistical methods and Hidden Markov models (HMMs) happened
in early 1980s. HMM with stochastic language model enabled the speech recognition
systems to recognize thousands of connected words. In 1990s, due to the introduction
of statistical language models [9] large vocabulary systems were created for the
continuous speech recognition. In 2000s, the integration of full semantics model and
text-to-speech synthesis system with the very large vocabulary system happened,
which enabled the spoken dialog systems with multiple input-output approaches.

Also in recent years, the development of Artificial Neural Networks (ANN) [10, 11]
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is the most illustrious milestone in this field so far. Initially, it was successfully used
for the simpler speech recognition tasks like phoneme classification and isolated word
recognition. After that ANNs techniques were successfully used for large-vocabulary
continuous speech recognition systems. Currently, a lot of research work is being
conducted in this field as it shows really good and promising results.

2.2.2 Overview
In simple words, speech recognition can be described as a process of transcribing the
spoken language into the textual form by recognition system. In scientific terms, it is
not a simple task. A speech recognition system consists of a number of building blocks
which are a fruit of decades of research and are necessary for its proper functioning.

The schematic diagram of a typical ASR system is given in Figure 3. This con-
ventional structure of an ASR includes two statistical models i.e. acoustic model and
language model. Acoustic model provides the output on the basis of acoustical prop-
erties of the input speech signal. The speech signal is not directly fed to the acoustic
model. Its useful and relevant characteristics are extracted using different feature
extracting techniques and provided to the acoustic model for scoring. Language
model has all the information about the legitimate and allowed words and provides
the probability of words occurring together. Lexicon provides the phonetic-level
pronunciation of all words present in the dictionary. Decoder utilizes the probabilities
provided by the models and gives the transcription for the speech signal.

Figure 3: Schematic diagram of an ASR system
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The essence of the problem for the system in statistical terms is finding the most
likely word sequence W when a system has some observations O obtained from the
given speech signal. This is an optimization problem and Bayes’ formula can be used
for solving this problem [12];

Ŵ = arg max
W

P (W |O) (2.1)

P (W |O) = P (O|W )P (W )
P (O) (2.2)

Here P(O) is the observation probability, which is equal for all the hypotheses and
therefore, can be omitted in the search.

Ŵ = arg max
W

P (O|W )P (W ) (2.3)

whereas, P (O|W ) is given by the acoustic model and P (W ) by language model. To
obtain these, the task become of finding the optimal models that provide the best
probabilities and hypotheses. These will be discussed in a rather detailed manner in
the sections that follow.

2.2.3 Speech parametrization

When a human listens to someone’s speech, he quickly processes the whole signal
and respond to it appropriately. It all happens so quickly that one can hardly ever
notice the functioning that human brain has to go through. In short, after hearing
the speech human brain searches through all the content, discards the unnecessary
information and only processes the information that is useful. As the next step, it
generates a suitable response and vocal tract converts that response into speech that
reaches the ear of another human. When this generated speech reaches the listener’s
brain, the same process starts all over again and conversation continue to happen at
a remarkably fast pace in even in the most ordinary of situations. The process of
searching the signal is only concentrated on the desired information by ignoring the
irrelevant information and this all happens naturally in brain. But when it comes to
a system, the same does not hold true and some methods have to be incorporated
which focus only on the essence of the speech and discard the irrelevant parts of
signal. This set of methods is known as feature extraction and is the counterpart
of what human brain does to almost all of the signals it processes.

Feature extraction can be regarded as a pre-processing step to the actual speech
recognition task. It aims to compress the audio signal data into a less heavy and
processable signal that is concise and easy to process. This signal consist of the
features that preserve the original signal information and do not contain any noise
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and background interferences. Speech is a non-stationary signal [13, 14] since it
encompasses a variety of factors that affect its consistency. On a very minute level,
speech can be treated as a stationary signal for a very short period of time e.g. 10
ms. These short-time windows are converted to their respective spectrum for further
processing since time domain is not a suitable platform for processing. Frequency
domain, on the other hand maps different parts of speech into separate spectral
components known as formants whose spectrogram is clearly visible to human eye
as well, whereas time domain signal is complex because words are indistinguishably
merged with each other in the waveform.

One of the most popular features is Mel-frequency Cepstral coefficient (MFCC)
[15, 16, 17]which is obtained by processing the transformed signal with Mel filter-bank.
These features are very significant since they are obtained by processing the signal
on a scale that considers the frequencies that are most important to humans [18].
Afterwards, compression and a Discrete Cosine transform (DCT) is applied to the
obtained signal and resultant signal is decorrelated. The extraction of MFCC features
is shown in the Figure 4.

The high-frequency bands of speech signal suppresses during the process of hu-
man sound production [18]. Pre-emphasis technique is used to compensate these
bands and flatten the speech spectrum. Pre-emphasis filter boosts the speech signal
spectrum by 20 dB per decade [19]. In order to achieve this, signal is passed through
a Finite Impulse Response filter as described below by the equation 2.4, where the
range of values for apre is [−1.0,−0.4] taken from [19].

Hpre(z) = 1 + apre(k)z−k (2.4)

Figure 4: MFCC feature extraction process
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In order to process the speech signal, it is important that it should be stationary
instead of slow-time varying signal. So the stationary nature can be achieved by
dividing the speech signal into sequence of frames, where each frame can be treated
as an independent feature vector with stationary properties. Usually, the frame
size is kept at 25ms with a frame shift of 10ms. Windowing of each frame is re-
quired in order to reduce or eliminate the discontinuities present at the edges. If
this process is not accomplished than these irregularities can be observed as high
frequency component in the Fourier transform [20]. The most commonly used win-
dow is the Hamming window which is described in equation 2.5 below taken from [21].

w(n) = 0.54− 0.46 ∗ cos2Πn
N

; n = 0, 1, ..., N − 1 (2.5)

After the windowing process, the samples from each frame are converted from
the time to the frequency domain. This conversion is achieved by using the Fast
fourier transform (FFT). The next step is to bend or warp the speech spectrum
with the Mel-Frequency scale, so that the frequency resolution can be adapted to
the human ear properties [22]. This process relates to the Mel-Filterbanks stage
where these banks are formed on a Mel-Frequency scale. These Mel-Filterbanks are
set of overlapping triangular bandpass filters which get multiply with the spectrum,
resulting in the amount of energy for each filter bank and the coefficients of each filter
summed up [23]. Also in order to get the loudness realization of the human auditory
system, logarithmic energy is calculated from the time domain which represents the
energy of each frame. The final step is to apply the discrete cosine transformation
(DCT) to the log-spectral energy and obtain the desired output i.e. Mel Frequency
Cepstral Coefficients.

2.2.4 Acoustic Modelling

Acoustic model is the next building block in automatic speech recognition systems.
P (O|W ) illustrates the acoustic model equation 2.2. Acoustic model is used to model
the acoustic features given the set of underlying words. More precisely this model
defines a statistical framework for the feature vector sequence. Speech is a highly
complex signal and individual classes of sound or their corresponding feature vectors
are highly correlated with each other, thus cannot be treated as isolated units. For
this reason, acoustic model should be able to account for these temporal dependencies.
In order to handle these dependencies, Hidden Markov Model (HMM) has been a
popular choice in speech recognition community.

Generally, an acoustic model is estimated by speech utterances and their respec-
tive transcriptions. This training is discussed in more detail in Chapter 4. The
acoustic model is trained by using a set of parametric word models with parameters
θ. It is assumed that the observation vector sequence corresponding to a word is
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Figure 5: Inter-state transition diagram of a typical Hidden Markov model

possibly generated by a Markov chain or Markov model.

A Markov chain assumes Markov property and is used to model a random variable
sequence. This sequence is generally represented by discrete time states. The Markov
property confirms that the next state’s distribution only depends upon current state.
At time step t, it can jump from one state to another in two successive states, e.g.
current state i and next state j, and transition probabilities aij govern these
inter-state transitions. Emission distributions bi(xt) generate the output symbol
xt. These symbols are usually vectors consisting of continuous variables. Provided a
sequence of T states qT1 , HMM defines a distribution over a respective observation
vector sequence xT1 . Emission distributions bq(x) and transition probabilities aij
affect this distribution as

p(xT1 |qT1 ) =
T−1∏
t=0

aqtqt+1bqt(xt) (2.6)

The state sequence q responsible for generating the output sequence is unknown
which provides the notation Hidden in the Hidden Markov model. A Hidden Markov
model mainly comprises of a discrete 1st order Markov chain, different states con-
nected using transition probabilities and their corresponding emission distributions.
Figure 5 represents a typical left-to-right HMM with its states and their respective
associated probabilities which is commonly used for acoustic modelling. When the
acoustic model is trained, the main aim of the training process is to obtain the
probabilities aij and distributions bi that maximize the likelihood p(x|q) for training
corpus. This problem is solved by using Baum-Welch algorithm [24]. The emission
distributions are modelled using Gaussian Mixture Models (GMM). The parameter
that encompasses probabilities aij and GMM parameters should be selected so as to
maximize the likelihood of training data given the model. This estimation is termed
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as Maximum Likelihood estimation (MLE). Baum-Welch algorithm determines these
parameters. Artificial Neural Networks (ANN) have become a more recent and
advanced method for acoustic modelling [25]. For a given observation xt, deep neural
networks are trained to estimate the posterior p(xt|qt) for the context-dependent
state qt of HMM and the probability p(qt|xt) is derived from this estimation.

2.2.5 Language Modelling

According to the Figure 3 , language models are the next building block of a typical
ASR system. The mere acoustic properties of the signal are insufficient and there is a
need to incorporate the knowledge of language into the recognizer. Acoustic models
cover the language aspect to some extent but recognizer needs deeper knowledge
about the language in question. Since 1980s, mainly statistical language models have
been used [9]. Their main purpose is to enhance the performance of various speech
recognition applications [26], but in general speech recognition cases, the language
models provide the system with the knowledge of linguistic structure. Statistical
language modelling creates the models that estimate the prior probabilities associated
with word strings. In particular, speech recognition employs these models in order
to obtain the best estimate of the word sequence probability P (W ).

Table 1: Probabilities of different combinations in a trigram

sulku auki ota 0.153434
kerro laatikko ota 0.3424913
kerro laatikko sulku 0.8336139
työ valmis sulku 0.905149

This estimate is calculated based on the knowledge of the word frequency and
context statistics and system is able to determine which word is more probable to
appear after a particular sequence. Context is a very important element to consider,
since many word combinations may acoustically exist but the grammatical structure
of the language may not allow all of those e.g. "it is reigning cats and dogs"
is likely to appear in acoustic model output but the only allowed combination is
"it is raining cats and dogs". This means that the language model should
prevent the incorrect combinations from being hypothesized using the knowledge
of grammar. The confusion occurs when the vocabulary size is large and numerous
combinations of different words are possible. The task of language model here is
to prioritize those and assign highest probabilities to those combinations which are
most likely to occur. Table 1 explains this case, as it assigns the highest probabilities
to different sequences in descending order. Language model also assigns some small
probabilities as a result of smoothing, to those word sequences that are unlikely to
occur or do not exist in the language. Using basic rules of probability, language
model’s word probability can be sequentially decomposed [27] in formal mathematical
terms as
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P (W ) =
N∏

i=1
P (wi|w1,w2, ...,wi−1) (2.7)

The aim of the model is to provide the word sequence probability that maximizes
the equation 2.2. The expression in equation 2.7 symbolizes the N-gram language
models which consider the N-1 previous words. Using this model, one can calculate
the ML estimates of different N-grams [28]

PML(wn|w1, ...wn−1) = C(w1, w2, ..., wn)
C(w1, w2, ..., wn−1) (2.8)

For a trigram model equation 2.8 reduces to

PML(wi|wi−2, wi−1) = C(wi−2, wi−1, wi)
C(wi−2, wi−1) (2.9)

The maximum likelihood estimate in the equation 2.8 above assigns zero probabil-
ities to the sequences that do not exist in the training data. This leads to problems
in speech recognition process, for the word sequences with zero probability cannot
be recognized in this case. Different smoothing techniques are are used for assigning
some probability to these unseen N-grams [29] but are out of the scope of this thesis.

It may seem a good idea to estimate higher N-grams e.g. five-gram, since there
are quite many words in some sequences which influence immediate neighbouring as
well as distant words. As a quick example, consider a phrase "for the night is
dark and full of –-". The word "night" is pivotal here and affects the choice
of word at the ending of the sequence and one of its likely continuation is "terror",
even though "research articles", "animals" or "ideas" are likely to appear
after "full of". If this contextual effect of words on distant words is considered, a
price has to be paid which is the complexity of N-grams for increasing values of N.

2.2.6 Decoding

The most important block of an ASR system is the decoder. This part is an actual
responsible for recognizing or transcribing the input speech. It takes the input
probabilities from both acoustic and language model and combine them to get the
most probable word sequence as described in equation 2.3. When the number of
words increase in the speech utterance, the search space of the decoder for the possible
word sequences grows exponentially [30]. The decoder should provide the best search
path and the search should be efficient. So this can be achieved by restricting the
search to the most probable and likely path by using the pruning, which eliminates
the unlikely hypotheses. Most of the decoders use Viterbi algorithm for the searches
[30, 31]. In reality, the decoder carries multiple partial search hypotheses where each
of these hypothesis is considered as a token. These tokens are propagated in the
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transition network structure or a graph with the permitted word sequences along
with corresponding HMM sequences [32].

2.2.7 Evaluation of ASR performance

A common method to assess the performance of speech recognition compares the
transcription generated by the recognizer to the original one which is known at the
beginning of the process and to calculate the word error rate (WER). Assume that
the original evaluation transcription consists of Wr words in total. The number of
substitutions WS, insertions WI and deletions WD are taken into the account, which
are performed by the recognizer to calculate the output hypothesis. These counts are
used to compute the most commonly used performance evaluation metric, referred
to as word error rate (WER) [33, 34, 35], given as

WER = WS + WD + WI

Wr

∗ 100% (2.10)

This metric is widely used in speech systems community and this thesis also uses this
measure for performance evaluation of the recognition or training tasks. The smaller
the WER, better is the accuracy of the task. In theory, WER can be higher than
100% when the number of erroneous words combined is larger than the total number
of words in original transcription. In order to understand, consider the following
example which is of a shorter utterance but a compound word.

ref: geopolitical ****** **** website
hyp: geo political web site
eval:S I I S

For these two compound words forming a short utterance, if recognizer somehow
recognizes the above mentioned hypothesis, the output WER is

2 + 0 + 2
2 ∗ 100% = 200% (2.11)

This may seem unfair to obtain an error rate of 200%, but this is the principle of
WER. In this case, a more suitable choice of performance criterion is letter error
rate (LER). This is the same method of calculation, but on the letters instead of
whole words.

ref: g e o * p o l i t i c a l w e b * s i t e
hyp: g e o - p o l i t i c a l w e b - s i t e
eval: I I

For the same recognition results, the LER is



15

0 + 0 + 2
19 ∗ 100% = 10.5% (2.12)

Although LER might seem more effective than WER in this case, unfortunately
it does not hold true for entire languages especially when simple mappings from
phones to letters or vice versa, do not exist.

Neither of WER and LER is an absolutely perfect measure to evaluate the perfor-
mance. Both of these are not descriptive enough to estimate what exactly was wrong
in the recognition. For WER, a mis-recognized letter may yield an incorrect word and
consequently higher error rate, but the correctly recognized words will be error free.
For LER, a slight change in letter recognition might not increase the overall error
rate, but the meaning of the output word changes altogether. Grammatical structure
of the concerned language and compound nature of words can help to decide which
metric to choose for the performance evaluation of the system. For example, Finnish
language contains long compound words, which means that a minor mistake in letter
recognition might produce higher WER but less LER, whereas the case is different
for English language. In some cases, both of these are considered and their relative
improvement can also be taken into account. In this thesis, only WER is considered
to evaluate the speech recognition performance.

2.3 CMU-Sphinx toolkit

CMU-Sphinx is a famous toolkit for speech recognition purposes developed at Carnegie
Mellon University. This toolkit includes number of speech recognizers i.e. Sphinx-3,
Pocketsphinx, Sphinx-4 and acoustic model trainer i.e. Sphinxtrain. According to
[36] the CMU-Sphinx toolkit has different packages and which one to use depends
on the nature of the application.

• Sphinxtrain: Acoustic model training tool developed in C language.

• Pocketsphinx: Lightweight speech recognizer with all libraries written in C
language.

• Sphinxbase: Provides libraries to Pocketsphinx and Sphinxtrain written in C
language.

• Sphinx-4 : It is modern speech recognizer build completely in Java.
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Chapter 3

3 Small Vocabulary Automatic Speech Recog-
nition System

The three main objectives of this thesis as discussed in Chapter 1 are, to create an
acoustic model, modify the voice activity detection and create the garbage model
for out-of-vocabulary words. These tasks are done for a company having off-line
pocketsphinx speech recognition engine for the embedded devices i.e. smart phones
and tablets. Since the speech recognition process needs to be done on a mobile
device, so the vocabulary has to be limited. In other words, it can be said that the
system is a small-vocabulary-speech-recognition (SVSR) system. Figure 6 shows the

Figure 6: System architecture of TalknLabel
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system architecture of the product TalknLabel of the company called Devoca having
small vocabulary of 100 - 150 words including digits, names and special characters.
The two essential parts of this product are recognizer and synthesizer. For the other
products of the company, they are not using the speech synthesizer module but the
recognition techniques will remain the same. Pocketsphinx speech engine has two
recognition modes and it also has the ability to switches between them. One of
the mode only operates for recognizing the special keywords its also called partial
recognition. Second mode is known as full recognition mode and able to recognize all
the words included in the grammar. Once the speech is recognized by the decoder,
then the recognition is stopped and TTS module will play the audio to output the
result. This is necessary as currently, there is no mechanism implemented to separate
the TTS audio from recording audio. Once the TTS activity is over, the recognition
process resumes from its last stage. As shown in the Figure 6 recognition engine
is working on an android platform, so the good recognition speed is desired. This
means that apart from the correctness of text result, the time taken by the speech
recognizer to recognize and deliver the output should be acceptable by the end-user.
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Chapter 4

4 Acoustic Model Training

4.1 Introduction
Acoustic model is a mathematical model which consists of the statistical properties
of speech that create individual words. Acoustic models are trained with the help of
efficient training algorithms and techniques which require diversified training data
to create the statistical representations for each sound unit (i.e. phoneme) present
in language and also to obtain the best solution for the model parameters. These
statistical models are defined with the help of Hidden-Markov-Models (HMMs) [37]
as explained in section 2.2.4 of Chapter 2. In order to train the noise-robust acoustic
model for a particular language, large and dynamic speech corpus is required. Speech
corpus consists of audio recordings of different speakers and their respective detailed
transcriptions.

As mentioned in section 2.1 of Chapter 2, speech has a lot of variations in itself
but to train the better acoustic model besides speech, the environmental conditions
also need to be taken into account while recording the speech audio. The reason
behind incorporating the environment variations is to keep the training data more
closer to the real-world data for better speech recognition accuracy. CMUSphinx
provides number of good-quality acoustic models and they can be downloaded from
the CMUSphinx’s subversion repository [38] for free. Most of the small and large
vocabulary applications can use these already available acoustic models, but there are
some applications where these models cannot be used if a specific model is required
for the small vocabulary application to match the recognition conditions. New spoken
language can also be an issue i.e. application demanding Finnish AM, can also leads
to train the new acoustic model. An acoustic model can be trained easily by using
the CMUSphinx’s trainer i.e. Sphinxtrain, provided that the plenty of training data
is available.
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4.1.1 Model types
During the training of an acoustic model, mixture of Gaussians are used to estimate
the score of each frame extracted from the speech signal. CMU-Sphinx supports
three different types of parameters tying between Gaussian mixture models and
consequently leads to three different types of the acoustic models namely Contin-
uous model, Semi-continuous model and Phonetically tied mixture model (PTM)
[39, 40, 41, 42]. Semi-continuous model works best when the amount of training
data is limited. It can be considered as a special type of continuous model with tied
Gaussian mixtures having reduced number of parameters and the computational
complexity. The number of Gaussians in the continuous model are approximately
150∗103 and frame can be estimated by using the mixture of these Gaussians, whereas
the number of Gaussians in semi-continuous models are just 700. Similarly, the PTM
model uses 5 ∗ 103 Gaussians.

Acoustic model behaviour in terms of recognition accuracy and processing time
can be explained with the above mentioned Gaussian mixtures. Continuous model is
more accurate and precise than the other remaining models, since each senone in
this model has it’s own set of Gaussians [43]. Due to the large number of mixtures,
the computational complexity to estimate the score for each frame is quite high in
continuous model and for this very reason, this model cannot be used in mobile
applications. On the other hand, semi-continuous models are very fast because
of lesser Gaussian mixtures and light weight due to the data compression, which
of-course affects its recognition accuracy. PTM model provides the golden middle
between these two extremes which means it is considerably faster than continuous
model and provides better recognition accuracy than semi-continuous model. PTM
model can also be used in mobile applications.

4.1.2 Model format
Acoustic models build from Sphinxtrain is basically a folder having different files,
which are listed below.

• feat.params: This file defines the different parameters for static and dynamic
features extraction. It also provide the information about the model type along
with other information.

• mdef : This is a model definition file and its function is to provide a particular
numerical identity to each state of all HMMs, which are going to be trained.

• means: This file defines the means of all Gaussians in an ascii format.

• variances: This file defines the variances of all Gaussians in an ascii format.

• noisedict: This is a dictionary file having all kinds of noises or filler words
which are there in the speech corpora.
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• mixture_weights: This file contains the weights provided to every Gaussian
mixture for all the senones present in the model.

• transition_matrices: This file contains the information related to each HMM
state transition topologies and probabilities in model.

• sendump: This file contains the compressed and quantized Gaussian mixture
weights for all the senones present in the model. This file can be used if
mixture_weights file is not available.

4.2 Speech database
The Devocan database is comprised of Finnish audio recordings and their transcrip-
tions. The provided data was collected from different speakers including both males
and females during the data collection campaign conducted by the Devoca Oy.
Native speakers as well as non-native Finnish speakers participated in that campaign.
During the data collection process more than 150 Finnish speakers took the part and
each speaker had to read the provided text for almost 10 minutes. Each utterance
had been stored with the sampling rate of 16 KHz, having Bit depth of 16 bits along
with the Microsoft waveform file format (MS WAV ).

4.2.1 Database division
Database is divided into three datasets namely “Training”, “Evaluation” and “Testing”
datasets. The training dataset is comprised of recordings obtained from 143 speakers.
Table 2 explicitly shows the composition of training dataset.

Table 2: Training Dataset

Gender Native
Speakers

Non-Native
Speakers

Male 77 8
Female 50 8

The training dataset consists of approximately 24 hours of speech data. The
evaluation dataset contains the recordings obtained from 10 speakers, whose speech
data is not included in the training dataset. This data contains almost 90 minutes of
speech. This dataset is prepared to evaluate the performance of the Finnish acoustic
model built from the training dataset. In other words, this data helps to understand
that how better is the acoustic model working for the speakers not present in the
training data. In total, there are 577 utterances in the evaluation set containing
6289 words. Table 3 shows the statistics of evaluation set in terms of male and female
speakers.

Another dataset called testing set is created by selecting 5 utterances from each
speaker included in the training database. These selected recordings are not included
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Table 3: Evaluation Dataset

Gender Native
Speakers

Non-Native
Speakers

Male 4 1
Female 3 2

in the training database. So, the testing dataset contains 828 utterances having
10100 words. This set contains 2 hours of speech.

4.2.2 Aligning speech data
The actual speech data and their respective transcriptions provided by Devoca was
in the raw form and cannot be used directly to build and evaluate the acoustic
model. So, the large speech recordings were cut into thousands of small recordings
by using Sphinx-4 Aligner and bash scripting. It is a known fact that during the
recordings some variations may arise in the speech data in the form of coughing,
fumbling, repetition of words and non-words. These factors are not handled in the
transcriptions initially, which cause the difference between recorded speech data
and the original transcription. These factors can generate the errors during the
acoustic model training process. In order to remove such erroneous points from the
transcriptions, Sphinx-4 aligner is used which specifies the time (both starting and
ending time) for each words from the transcriptions against the speech audio. It also
has the ability to insert or remove a word in the transcribed output. The aligned
output of some random utterance by Sphinx-4 aligner is shown below.

seuraava [17380:18030]
kahdeksantoista [18660:19500]
tuote [19510:20050]

- soita
+ toista [20090:20650]

The start and end time of a word can be seen in the square bracket separated
by colon. The - sign shows that this word soita is existing in the transcript but
not present in the speech file. Similarly, the + sign shows that the word toista is
not in the transcript but present in the speech file and its start and end time is also
provided by the aligner.

Once the aligned output is obtained, now the bash scripting can be done to split
the long audio recording into many small audio clips, where each audio clip can have
atleast 5 words. Besides splitting the long audio, bash script can also generate the
correct transcription files and user ID files for small audio clips based on the aligner
output.
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4.2.3 Transcriptions and FileIds
Transcription file is just a simple text file with contains the transcription of each
audio file included in a dataset. Each dataset has its own transcription file. The
format of transcription file is given below.

<s> yksi nolla kaksi kolme </s> (utt1)
<s> viisitoista kaksitoista kolmetoista </s> (utt2)

It can seen that each line starts with <s>and ends with </s>, with the utter-
ance file name in parenthesis. File name should be provided without any extension
and folder path. Similarly, Fileids is also a text file which contains the folder path of
the recordings. The format of Filedis is given below.

speaker_1/utt1
speaker_2/utt2

4.3 Training
As discussed in section 4.1, the core purpose for training an acoustic model is to find
the most optimal parameters for HMMs. Figure 7 from [44] shows the overall generic
flow for training an acoustic model. The training process for an acoustic model
essentially means that four important parameters namely, transition probabilities,
emission probabilities, initial probabilities and total number of HMM states have
to be computed. These parameters are represented by the set (A,B,Π, Q) [45]. Q
represents the total number of HMM states in the model which is set by hand in the
beginning of the process and remains unchanged during this process.

The first phase in training is the estimation of features (mfc) file from the available
speech recordings and their transcriptions. Then, as the next step is based on the
initially assumed probabilities, the hidden Markov models are initialized to start
the procedure. The actual estimation is focused on the parameter set Λ = (A,B)
[45]. The most commonly used method for calculating these parameters is maximum
likelihood estimation (MLE). This method consists of maximization of the likelihood
function L(Λ|X) as follows;

Λ′ = arg max
Λ

L(Λ|X) = arg max
Λ

∑
Y ∈Θ

m∏
t=1

by(t)(xt)ay(t),y(t+1) (4.1)

Here X represents the training corpora as a sequence of observation vectors
such that X = (x1,x2,x3, ...,xm), Λ and Λ′ the initial and updated parameter sets
respectively, and Θ the set of all allowed HMM paths in the acoustic model. Y is
the sequence of states for all HMM states associated with the set Θ.
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In essence, the training corpora X symbolize the actual transcription utterances
for the training speech data. The parameter set Λ is roughly initialized in the
beginning of the training process and the re-estimation of this set takes place in such
a manner as to exhibit consistency with the maximization solution presented in the
equation 4.1. Using Baum-Welch algorithm, the transition probabilities are updated
in the maximization step as:

âi,j =
∑
r

1
Lr

∑Mr−1
t=1 αri (t)ai,jbj(xrt+1)βrj (t+ 1)∑
r

1
Lr

∑Tr−1
t=1 αri (t)ai,jβrj (t)

(4.2)

whereas ai,j and bj are initializing parameters before re-estimation and are used
in forward-backward process in BW algorithm. For any given HMM state, α and
β represent the forward and backward probabilities respectively. Then the next
step of the process is to compute the emission probabilities for a particular GMM
which consist of estimating the set (ω,µ,Σ) [45]. Using BW algorithm for maximum
likelihood estimation yields:

ωq,i =
∑R
r=1

∑Tr
t=1 γ

r
q,i(t)∑R

r=1
∑Tr
t=1 γ

r
q (t)

(4.3)

µ′q,i =
∑R
r=1

∑T
t=1 γ

r
q,i(t)xrt∑R

r=1
∑Tr
t=1 γ

r
q,i(t)

(4.4)

Σ′q,i =
∑R
r=1

∑Tr
t=1 γ

r
q,i(t)(xrt − µ′q,i)(xrt − µ′q,i)T∑R
r=1

∑Tr
t=1 γ

r
q,i(t)

(4.5)

Here, R is the total number of observation sequences and t is the time of the
respective observation sequence, hence all the paths start from t = 0 and end at
t = R. The state q belongs to the set Q which defines the number of all the states
and i is the instantaneous component of the Gaussian mixture. γrq,i(t) is the state
occupancy of state q for the ith component of Gaussian mixture at time t for rth
observation sequence. These parameters (A,B) are repeatedly re-estimated until the
function L(Λ|X) reaches the point where it converges to its local maximum and are
maximized as governed by equation 4.1.

Training of an acoustic model by using Sphinxtrain is quite an easy task provided
that all the data is available. But the procedures actually happening behind the
training process are very complex. Several modules are executed during the training
course [46]. Module 000 and 00 compute the feature files for all the audio files
present in the training data. They also check the duplication of words in the
dictionary and make sure that all the words present in the transcription file have
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Figure 7: Block diagram of AM Training

phonetic representation in the dictionary. Module 05.vector_quantize generates
the common model for acoustic features without differentiating the phones. In
module 10.falign_ci_hmm and 11.force_align, forced alignment algorithms and
techniques are applied to train the context independent models. The next module is
20.ci_hmm which train the context independent models i.e. all single phones are
trained without reference to their context. In module 30.cd_hmm_untied, models
are trained for each triphone. This means that the phones are now trained with
reference to their context. The next modules are 40.buildtrees and 45.prunetree,
where decision trees are used to decode the HMM states of all triphones and to
cluster the triphones with similar states. After the creation of decision trees, these
are pruned to create the global acoustic units known as senones. In the last module
50.cd_hmm_tied senone or tied state models are trained to generate the final
version of the acoustic model.
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4.4 Experiments and Results
Two different types of acoustic models are trained from the Devocan database namely
PTM and Semi-continuous model. As discussed in 4.2.1, evaluation and testing
datasets are used to evaluate the accuracy of the two newly trained acoustic models.
Table 4 shows the word error rates (WERs) of these datasets, when tested with the
new models having 3k senones. So, by looking at the WERs it can be said that
PTM model is having better recognition accuracy than semi-continuous model. The
table is showing the averaged WERs of all speakers from the evaluation and testing
datasets.

Table 4: WER of PTM & Semi-Cont. Models

Datasets PTM Model
(WER)

Semi-Continuous
Model (WER)

Evaluation data 4.34% 4.87%
Testing data 4.3% 4.9%

It is interesting to see the recognition accuracy (in terms of WERs) of the acoustic
model for males and females separately. Table 5 and 6 shows such results.

Table 5: WER for Male speakers

Evaluation data PTM Model
(WER)

Semi-Continuous
Model (WER)

5 male speakers 4.55% 5.27%

Table 6: WER for Female speakers

Evaluation data PTM Model
(WER)

Semi-Continuous
Model (WER)

5 female speakers 4.14% 4.51%

The WER for female dataset is better than male evaluation dataset. The reason
for that is the speech data of females included in the evaluation dataset is recorded
in slightly less noisy environment than that of males. Figure 8 shows the WERs
for male and female speakers individually. From the bar graph it can be seen that
the two male speakers have WER roughly 11% which explains the high background
noises. Therefore, the averagedWER for male speakers is higher than female speakers.

The new acoustic models i.e. PTM and Semi-Continuous model, work good
when evaluated against the test datasets. However, when checked in the real-word
testing PTM model is quite slow in terms of giving the output text as compared
to the semi-continuous model. Since these acoustic models are used in the mobile
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Figure 8: Word Error Rate of Speakers

applications, where the memory resources are limited, so the PTM model is not a
good option as it contains 5000 Gaussians which add extra computational complexity
during the decoding process. So due to the recognition speed issue, semi-continuous
model is considered for the Devoca’s mobile applications namely Talk’n’Label and
Talk’n’Pick.

4.4.1 Model comparison
The word error rates for the new semi-continuous model are almost as low as PTM’s,
when evaluated against the different sets of test data. There is also a need to compare
the performance of this new acoustic model with the Devoca’s old acoustic model
in terms of recognition accuracy. The old acoustic model of the Devoca is semi-
continuous model with 4k senones. Table 7 shows the results, which are obtained
by using the same test datasets with the old acoustic model. It shows that the
recognition accuracy of old acoustic model is not good as compared to the newly
trained semi-continuous model.

Table 7: WER using Old acoustic model

Datasets Old Semi-Continuous
Model (WER)

Evaluation data 10.94%
Testing data 13%
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Chapter 5

5 Voice Activity Detection

5.1 Introduction

Voice activity detection (VAD) is an essential step in various speech related applica-
tions like speech coding, speaker recognition and automatic speech recognition which
can significantly improve the performance of these applications. In simple words, it
is defined as the problem of distinguishing speech part from the input signal which
can consists of noise, speech and non-speech segments. The non-speech segments
consist of coughs, sneezes and breathe sounds. The basic functionality of VAD is to
remove the signal segments which contain nothing but noise and non-speech and this
activity of removing signal is known as frame dropping in the context of automatic
speech recognition [45].

The classification of speech/non-speech becomes an issue when the background
noise of the working environment increases. Many VAD algorithms are proposed and
implemented so far by the researchers to detect speech from a noisy signal. Figure 9
shows the block diagram of a VAD system. Firstly, the speech signal is divided in
to sequence of frames where each frame having duration of 20 to 40 ms. Secondly,
the noise reduction mechanism is applied on the frames to minimize the noise and
improve the signal to noise ratio (SNR) of the signal. Thirdly, the useful features are
extracted from the frames and then related to a threshold limit and finally the VAD
decision is calculated. If the value of extracted features exceed from the estimated
threshold value than VAD output is 1 otherwise 0.

The core modules of any VAD system are ‘feature extraction’ module and ‘VAD
decision’ module which can also be seen in the Figure 9. There are different feature
extraction techniques such as Mel-Frequency Cepstral Co-efficient (MFCC), Power
Normalized Cepstral Co-efficient (PNCC), Perceptual Linear Prediction (PLP) and
each of them have associated benefits and drawbacks. Similarly multiple methods for
speech/non-speech decision are available such as energy based classifier and neural
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Figure 9: Block diagram of a VAD System

network classifier. In the following sections of this chapter, these two modules will
be discussed in more detail.

5.2 Current implementation in Pocketsphinx
The current voice activity detection module of Pocketsphinx is implemented by
combining different algorithms together. There is always a need to carefully tune
the VAD parameters in order to achieve good performance and operate reliably in
different noisy environments.

Figure 10 shows the nearest possible VAD implementation in Pocketsphinx /
Sphinxbase. In Pocketsphinx, MFCC features are extracted from the input frames.
Once the computation of features are done, than these feature vectors are fed to the
noise estimation module which removes the silences present in the signal and also
minimizes the noise. After the noise estimation step, the VAD decision is made for
the feature frame by computing the overall signal-to-noise ratio and if the computed
value is greater than the pre-setted VAD threshold than the frame contains the
speech content. Similarly, if the value is lesser than the VAD threshold, it is treated
as non-speech frame. The last step is the VAD hanging-over mechanism, which is
implemented to increase the positive alarms and reduce the false alarms.
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The noise estimation module implemented for Pocketsphinx’s VAD is important
and adopted from [47, 48]. Figure 10 also shows the components present in the noise
estimation module. In this module, firstly, the “medium-time power” is calculated
having the duration of 50 - 120 ms along with short-time Fourier analysis to Figure-
out the parameters indicating environmental de-gradation. This approach provides
the ability to respond to the speech signals changing rapidly. Secondly, the noise is
minimized from the frame. The frame having background noise contains the high
frequency spectrum, which can be suppressed by passing the frame through low pass
filter. Thirdly, the temporal masking technique is applied on the frame, which is
very useful for the reverberant environments. Lastly, the spectral weight-smoothing
is performed, to remove the spectrum non-linearities.

The VAD hangover module keeps the track of VAD state and is also responsible
to make the state’s transition from speech to silence and silence to speech. The state
transition from silence to speech will only occur if 10 speech frames are detected
continuously. Similarly, for the transition of speech to silence state, the continuous
50 non-speech frames are required. These values for the state transitions can be
tuned depending on the environmental conditions.

Figure 10: VAD implementation in Pocketsphinx
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5.3 New feature extraction techniques
As discussed earlier, the feature extraction is an important part of VAD system and
different extraction techniques are available which can be used with the Pocketsphinx’s
VAD classifier to obtain the new VAD algorithm. In order to improve the voice
activity detection of Pocketsphinx, two new features are extracted besides MFCC,
namely Gammatone Frequency Cepstral Coefficients (GFCC) [49, 3] and Gabor
features [50, 3]. These two features are tested with the existing VAD classifier of the
Pocketsphinx as well as with the newly implemented classifier. Following subsections
will explain these new features in detail.

5.3.1 Gammatone frequency cepstral coefficients (GFCC)
features

GFCC is a FFT based feature extraction technique. These features are similar to
MFCC, but employing Gammatone-filterbanks and equivalent rectangular bandwidth
(ERB) scale instead of Mel-filterbanks. GFCC features are also referred as auditory
features, since gammatone filterbanks represents the nearest possible filter response
of human ear cochlea [51]. The procedure for the extraction of simple GFCC features
is summarised as follows.

1. Pre-emphasis and Windowing: Just like MFCC, pre-emphasis is also per-
formed on the input speech signal for smoothing the speech spectrum as dis-
cussed in section 2.2.3 of Chapter 2. The transfer function of the pre-emphasis
filter is given by the equation 2.4 where the default value of apre is -0.97. After
the implementation of pre-emphasis, windowing is performed by dividing the
speech signal into the sequences of frames. The frame size of 25ms and the
frame shift of 10ms is considered for the GFCC features. Than each frame is
passed through the Hamming window as discussed in equation 2.5 to reduce
the spectral irregularities present at the frame edges.

2. Discrete fourier transform: The next step after windowing is to take the
spectral response of each frame by taking the fast Fourier transform (FFT).
As a result of FFT, a 512 point FFT spectrum of each frame is obtained.

3. Gammatone filter-banks: The next step is to pass the spectral response of
each frame through the Gammatone filter-banks which consists of a series of
bandpass filters. Equation 5.1 describes the impulse response of the gammatone
filterbanks [51].

g(i, t) = tk−1e−2πBt ∗ cos(2πfit) (5.1)

Here, t represents the time, k is the order of the filter and B is the rectangular
bandwidth which increases with the increase in center frequency f. In other
words, the center frequencies are distributed on the equivalent rectangular
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Figure 11: Frequency response of Gammatone filterbanks

bandwidth (ERB) scale equally. The range of center frequencies is typically
from 50 Hz to 8000 Hz and can be defined by the equation 5.2 [52, 53, 54].

fc = −228.7 + (fmax + 228.7)e− wn
9.26 (5.2)

where, fmax is the maximum frequency and w presents the overlapping spacing.
The frequency response of the Gammatone filter-banks can be seen in the
Figure 11. The benefit of using Gammatone filter-banks with ERB scale is
that the finer resolution can be achieved at the lower frequencies where most
of the speech is concentrated.

4. Cubic root compression and Discrete cosine transform: The next step
is the non-linear rectification and the loudness-compression of the magnitude
of filter’s output which is performed by taking the cubic root operation [50].
After the compression, discrete cosine transform is applied to the frame to
decorrelate the components of the features which are correlated due to the
neighbouring filter channels. The coefficients obtain as the result of DCT are
known as Gammatone frequency cepstral coefficients (GFCC).
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Figure 12: Flowchart for extracting GFCC features

The Figure 12 shows the block diagram of the GFCC features as explained above.
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5.3.2 Gabor features
Apart from GFCC, another new feature called Gabor feature is also extracted from
the speech signal. Gabor features extract spectro-temporal cue from the input speech
signals to increase the robustness of speech recognition. These new features are
obtained by passing the log-Mel spectrogram from the number of two dimensional
Gabor filters organized in a filter-bank [55]. Gabor filters simultaneously perform
the spectral and temporal processing of the spectrogram.

Initially, just like other feature extraction techniques, the pre-emphasis and
windowing operations are applied on the input speech signal and then the logarithmic
Mel spectrogram is obtained by passing each frame through the 23 channelled Mel
filter-bank and performing the logarithmic compression. After this, the 2D-Gabor
filters organized in a filter-bank are convolved with the log-Mel spectrogram to extract
the spectro-temporal patterns. Finally, the representative channels are selected by
the critical sampling of filtered log-Mel spectrogram. The purpose of selecting these
representative channels is to restrict the systematic correlation of feature dimensions
[56]. These channels are combined and yield the Gabor features. The most important
component of Gabor feature extraction technique is the 2D-Gabor filter banks which
are discussed bellow in more detail.

Gabor filters
Figure 13 shows the 2D-Gabor filter bank having 14 filters arranged by spectro-
temporal modulation frequencies. The values of temporal modulation frequencies
(ωn) are 0 and 0.6193 Hz, whereas the range of spectral modulation frequencies (ωk)
is considered between 0.1841 and 1.5708 cycles

Mel−band . Each 2D Gabor filter is just the
product of complex sinusoidal carrier function having modulation frequencies ωn and
ωk and the Hanning envelope function [57, 55].

g(n, k) = s(n, k) ∗ h(n, k) (5.3)

The complex sinusoid carrier function and the Hanning envelope function are
described below by the equation 5.4 and 5.5.

s(n, k) = exp(iωn(n− n0) + iωk(k − k0)) (5.4)

h(i, t) = 0.5− 0.5cos(2π(n− n0)
ωn + 1 )cos(2π(k − k0)

ωk + 1 ) (5.5)

The DC removal technique is also applied on the filters that are placed near to
the edges of the spectrogram. The reason behind this is these filters do not occur
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Figure 13: The real components of 2D-Gabor filter bank: 14 filters

completely within the boundaries of the spectrogram. So it is done by subtracting
the normalized filter envelope function from the filter’s function.

Representative frequency channels
One known issue is that the output of 2D-Gabor filter banks i.e. filtered log-Mel
spectrogram cannot be used directly due to the high dimensionality and the pres-
ence of correlation between the output of adjacent filters. The filtered features
have dimensions 23 (frequency − channels) x 14 (Gaborfilters). The selection of
representative frequency channels is done in such a way that all the 23 frequency
channels are selected for the filters with lowest spectral magnitude and for the filters
with high magnitude only the central frequency channel is selected. This selection
scheme of the features is quite handy as it decorrelates the feature vectors and the
filtered output is reduced to only 110 dimensions which are considered as the Gabor
features.
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5.4 New VAD classifier
In this thesis, a pre-trained three-layered i.e. input layer, hidden layer and output
layer, MLP classifier from [3] is used. This MLP classifier is trained with the labelled
speech/non-speech training data. The duration of speech data to train this MLP
classifier is only 30 hours. This three-layer MLP is trained on the combined input
stream of GFCC and Gabor features. For the classification of input signal as speech
or non-speech, the newly extracted features explained in the previous section of this
chapter are fed to the MLP classifier. The dimension of GFCC feature vectors is 64
(filters) per frame and for the Gabor features it has 110 dimensions. So the linear
combination of these two feature streams will provide the combined feature vectors
with 174 dimensions. After combining the features, normalization is performed and
the normalized feature vector is provided to the MLP classifier for the VAD decision.

This three-layer neural network works in reverse-direction and update the weights
and find the error accordingly. The combined features are applied to the input layer
and weights are calculated and updated there. The error vector is calculated at the
output layer. If there is any error found, then it is back-propagated to the input
layer. All these steps are performed iteratively and at the end VAD decision is made
for the extracted features. Figure 14 shows the structure of the new VAD classifier
used to evaluate the newly extracted features.

Figure 14: New VAD Classifier
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5.5 Experiments and Results
In this section, the results will be discussed which are obtained by experimenting the
new feature extraction techniques with the current VAD and the newly implemented
VAD classifier in Pocketsphinx. The default feature extraction process implemented
in the Pocketsphinx is extracting MFCC features. The results obtained by using
MFCC features for the speech recognition are already discussed in the section 4.4 of
Chapter 4. Experiments are conducted in such a way that the new features are used
individually and together with the current VAD classifier. Three different datasets i.e.
Dataset 1, 2 and 3, are used to evaluate the performance of these features. Dataset 1
consists of the evaluation data and Dataset 2 contains the testing data as discussed
in Chapter 4. The dataset 1 comprises of the speech of 10 speakers i.e. 5 male and 5
female speakers. The total duration of speech in dataset 1 is 90 minutes. The dataset
2 contains data from the speakers having speech in the acoustic model. The total
duration of speech in dataset 2 is 2 hours. The dataset 1 and 2 contains the Finnish
speech and the level of background noise is high. For dataset 3 an exception is made
as it contains English speech, recorded from 5 different English native speakers. The
duration of speech in this set is 50 minutes. The level of background noise is also kept
low as compared to the other datasets. Table 8 shows the results of new features and
just for the reference and comparison purposes, MFCC results are also reported.

Table 8: % WER by using existing VAD

Features Dataset 1 Dataset 2 Dataset 3
MFCC 4.87 5.28 6.56
GFCC 4.57 4.85 6.35
Gabor 4.70 5.05 6.50

MFCC + GFCC + Gabor 4.55 4.82 6.34

The results (WERs) obtained from the GFCC, Gabor and combined features are
better than the conventional MFCC features. The combination of three features i.e.
MFCC, GFCC and Gabor, when used with the existing VAD of the Pocketsphinx is
producing the best results. The results obtained from the new VAD classifier are
listed below in Table 9. Since, the three-layer MLP classifier is trained by using
the combined features i.e. GFCC and Gabor, so only the combination of these new
features is used with it.

Table 9: % WER by using new VAD classifier

Combined features Dataset 1 Dataset 2 Dataset 3
GFCC + Gabor 4.78 5.07 5.02

For dataset 1 and 2, results of the new VAD classifier are not better than the old
one, but for dataset 3, the WER is reduced. The main reason behind the improved
result is the similarity of evaluation data with the MLP training data. So the new
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VAD classifier works better when the speech data matches more with the training
data of MLP classifier. After obtaining all these results, the decision has to be made
for the best feature extraction technique and VAD classifier. The decision criteria
is simply the recognition accuracy and the overall speech recognition speed. The
recognition accuracy is already listed in Tables 8 and 9. The recognition speed
indicates, how much of the CPU time is taken to complete the speech recognition
process. For the extraction of Gabor features, 2D convolution is required for each filter
from the filter-bank with log-Mel spectrogram. For this reason, the computational
complexity increases and CPU takes more time for processing. Since the speech
recognition engine is used on the Android platform, so the recognition speed is also
of same importance as that of recognition accuracy. GFCC features stand on these
limitations and provide the better performance than Gabor and combined features.
The accuracy of the GFCC is much better than that of MFCC. So for these two
reasons, GFCC features are used with the existing VAD classifier. Table 10 shows the
averaged false recognitions which occurred when GFCC and MFCC features are used
with the current VAD classifier. The false recognitions show the number of falsely
recognized words which the recognizer incorrectly substituted against the correct word.

Table 10: Averaged False alarms for evaluation dataset

Features False Recognition
GFCC 21.2
MFCC 29.8

Figure 15 shows the individual statistics of the speakers in terms of false recogni-
tions present in the evaulation data. The VAD output of three randomly selected
utterances from the evaluation data is also shown in the Figures 16, 17 and 18. In
these figures, the reference utterance can be seen along with the two different outputs
of speech recognizer i.e. one with the MFCC and other one with GFCC. For the
comparison of these two features, the log Mel spectrogram is obtained from the
speech signal. The yellow parts of the spectrogram are indicating the speech regions
and the rest are non-speech. Also for the better visibility, the positive VAD ouput i.e.
1, is scaled to 10. It can been that GFCC is providing better results than MFCC.
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Figure 15: Comparison between GFCC and MFCC in terms of False Recognition
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Figure 16: VAD output for utterance 1

The output of recognizer, when MFCC is used with current VAD classifier:

neljä seitsämän yksi nolla ota rennosti plus tunnus puolipilkku seit-
sämäntoista tehty

The output of recognizer, when GFCC is used with current VAD classifier:

neljä seitsämän yksi nolla ota rennosti uusi tunnus puolipilkku seit-
sämäntoista tehty
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Figure 17: VAD output for utterance 2

The output of recognizer, when MFCC is used with current VAD classifier:

vaihda kuusitoista cecilia seitsämän yksi uusi_työ kymmenen sulku_auki

The output of recognizer, when GFCC is used with current VAD classifier:

vaihda kuusitoista cecilia seitsämän kaksi uusi_työ kymmenen sulku_auki
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Figure 18: VAD output for utterance 3

The output of recognizer, when MFCC is used with current VAD classifier:

eemeli määrä työ kolme kertomerkki vaihda kuusitoista tulosta doku-
mentit

The output of recognizer, when GFCC is used with current VAD classifier:

eemeli määrä kolme kertomerkki vaihda kuusitoista tulosta dokumen-
tit
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Chapter 6

6 Garbage Modelling for Out-Of-Vocabulary
Words

6.1 Introduction
One of the most important part of any speech recognition application is the detection
of words and sometimes utterances which are out of the vocabulary. The OOV words
can also contain distorted and non-words. Distorted words are the mispronounced
words and non-words have no meaningful definition. The presence of such words
or sounds in the input speech signal can have adverse effect on the performance
of any speech recognition engine. Most of the ASR applications have limited and
customized vocabularies which are used on the embedded platforms such as mobiles
and tablets. Such applications continuously remain in the listening mode and keep
processing the speech data. This is also a known fact that the speakers can speak
many words which are unknown to the ASR engine, while using the speech recogni-
tion applications on mobile devices. These unknown words can really decrease the
recognition performance by extending the errors into the adjacent words and thus
increasing the overall WER.

The OOV words can be encountered when it comes to both, the small and large
vocabulary ASR applications, as the vocabulary of any language is not fixed and is
constantly changing. However, the magnitude of this problem can vary and according
to [58] it depends on the vocabulary size and the similarity between the training
corpus and the testing corpus. If the amount of words in a particular vocabulary is
more than 60 thousands and the mismatch between the training and testing corpora
is negligible than the WER due to the OOV words could be just a fraction of a
percent. Similarly, for the scenario where the number of words in a vocabulary is just
a few hundreds or thousands and the mismatch between the training and evaluation
corpora is big, than the WER due to the OOV words could be more than 50%. It is
also interesting to know, what usually happens when any OOV word is spoken to the
speech recognition engine. The recognizer will take that speech signal and hypothesize
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a similar sounding word from the vocabulary. One similar example can be seen below.

Utterance fed to the recognizer: yksi kaksi kolme soita

Utterance hypothesized by recognizer: yksi kaksi kolmetoista

Here the OOV word is soita and the recognizer gave the similar sounding out-
put kolmetoista in place of kolme soita. In this utterance, though the OOV word
is only one, but the WER is 50%, and can be explained with the help of three factors
as mentioned in [58]. The first factor is the miss-recognition of word soita since
it is from outside the vocabulary. The second factor is the miss-recognition of the
neighbouring word i.e. kolme. The third factor is hard recognition of out-of-domain
utterances, which is more observable when the application is using large vocabulary
continuous speech recognition system.

Various attempts have been made earlier to tackle the problem of OOV words.
Some of these approaches are vocabulary growth, confidence measure and filler
models. The vocabulary size matters when it comes to the detection of OOV words.
If the vocabulary size is increased by adding more domain related words, than WER
introduced due to the OOV words can be decreased but not eliminated. The major
drawbacks for this approach is the persistence of OOV words (i.e. still unknown words
can be detected after the growth of vocabulary) and the computational complexity
to search the in-vocabulary word increases, which make the overall recognition quite
a slow process.

The other approach is the measurement of the confidence score for the recognized
word by using posterior probabilities associated to the hypothesized words [59, 60].
Some threshold can be decided and if the confidence score of a word is lesser than the
threshold, it can be rejected. The last approach is most commonly used to handle
OOV words and called filler models [61]. These filler models can be used in parallel
to the language models and can absorb the OOV words.

In the next section, a new technique is discussed for which the base is provided
by the above mentioned approaches, to tackle the problem of handling OOV words.
The garbage model is implemented in the Pocketsphinx, useful for the small vo-
cabulary systems. Experiments and results shall also be presented in the later section.
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6.2 Garbage modelling technique
In this section, an important technique called generic word model or phone loop
model, is discussed for creating the garbage model for OOV words [58, 62, 63]. This
technique employs parallel branch for recognizing the OOV words in addition to the
standard word-recognizer branch. This additional branch uses subword network to
recognize the subword sequence for an OOV word. The subwords can be phones or
syllables.

6.2.1 Generic word model
The two distinct characteristics of the generic word model are the lexicon and lan-
guage model. The lexicon has two set of vocabularies. The first set contains the
phonetic definition of in-vocabulary words and the second set consists of the OOV
words. The size of the In-Vocabulary lexicon can range from hundred to several
thousand. The size of the out-vocabulary lexicon depends on the efficiency and
performance of the recognizer i.e. if the number of words are high, the efficiency of
recognition search is degraded due to the additional complexity added to the search
space.

Just like lexicon, language model also consists of two different language models.
For the In-vocabulary words, the standard n-gram model is used and the second
model is a subword language model which is only utilized when OOV word is en-
countered. The framework for the generic word model is shown in the Figure 19.
Each search network i.e. In-vocabulary and out-vocabulary, is having its own lexicon
and language model.

The In-vocabulary search network is the standard word based recognizer and the
out-vocabulary search network is an addition to the system which recognizes the
sequence of subwords. For In-vocabulary search network, the finite-state transducer
(FST) representation of the search space for recognizing the best search path can be
described as equation 6.1 [62]. Where P is the scored phonetic graph, L is the word

Figure 19: Framework of generic word model
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lexicon and G is the language model.

S = P . L . G (6.1)

For the out-vocabulary search network, a simple phonetic-based recognizer is
considered. The vocabulary of this recognizer is made up of phones which can easily
cover all possible unknown or OOV words. It also has an advantage for small size.
Similarly, the search space for this network can be described by equation 6.2, where
Gp represents the phone-level n-gram language model.

S = P . Gp (6.2)

In order to facilitate the recognition of OOV words, these two search branches
are combined in parallel, where they compete with each other for the best search
path to recognize the words or subwords. The transition from In-vocabulary search
network to the out-vocabulary search network for the best path is done on the
basis of threshold called OOV threshold. The value of threshold is decided on
the basis of probability assigned to OOV word by the standard recognizer. After
obtaining the hypotheses from the two search networks, the search spaces are merged.

The FST representation of combined search networks is given by equation 6.3. The
union sign i.e. ∪ represents that the choice can be made between the In-vocabulary
and out-vocabulary search networks during the recognition. The ∗ represents the
closure operation on FST, which means that the output result can consists of both
search spaces or one of the search space. If no OOV word is present in the input signal,
than the search space for In-vocabulary network is only considered and vice-versa.

S = P . (L ∪ Lp . Gp)∗ . G (6.3)

Figure 20 shows the highlighted best search path for the utterance yksi kaksi
kolme tyhjä.

Figure 20: Best search path
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In Pocketsphinx, the garbage model for OOV words is not implemented. But it
has the functionality of performing phone-based recognition. So the changes have
been made in Pocketsphinx to use the phone-based recognition in parallel with the
word-based recognition by setting the proper threshold for the phoneme insertion
penalty. After the introduction of garbage model in Pocketsphinx, the utterance
containing any word outside the grammar will be considered garbage as a whole and
return UNKNOWN.

6.3 Experiments and Results
In this section, the results will be discussed which are obtained by testing the newly
implemented garbage model in Pocketsphinx. The datasets used to evaluate the
performance of new acoustic models and the VAD module cannot be used directly,
since it do not contain any OOV words. In order to use the evaluation dataset, some
of the words present in the speech data are removed from the grammar and lexicon
to make them unknown to the system. For this purpose, 100 random utterances were
selected from the evaluation data and out of these selected utterances, 53 utterances
consist of In-vocabulary words and the remaining 47 utterances consist of words from
inside and outside the vocabulary. This subset of evaluation data is evaluated with
different values of garbage phone insertion threshold. Table 11 shows the results
obtained from the selected dataset.

Table 11: Results from the subset of evaluation data for evaluating garbage model

Garbage Phone
Insertion Threshold Correct IV False IV Correct OOV False OOV

1e-50 45 20 27 8
1e-40 44 15 32 9
1e-30 37 7 40 16
1e-20 37 5 42 16
1e-10 32 3 44 21

It can be seen that, the correct recognition of OOV utterances is improving with
the increase of insertion threshold for the garbage phones. Also with the increase of
this threshold, most of the In-vocabulary utterances are recognized as OOV, which is
not desired. So the appropriate value of threshold has to be selected by fulfilling two
conditions. The first condition is the good rejection accuracy and second one is the
overall good recognition accuracy. The threshold of 1e− 20 seems to be that value.
Figure 21 shows the rejection accuracy and overall recognition accuracy against the
garbage phone insertion threshold. The rejection accuracy is just the percentage of
utterances that are recognized correctly as out of vocabulary. The overall accuracy
is also interesting which explains the percentage of utterances correctly classified as
In-vocabulary and out-of-vocabulary. If the value of threshold is kept on increasing
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Figure 21: Rejection accuracy for the different values of garbage phone insertion
threshold

than every utterance will be identified as out of vocabulary.

The live test was also conducted for measuring the accuracy of the garbage model
implementation. Different speakers i.e. both native and non-native, participated in
the experiment. Each speaker has to speak 93 different utterances. The composition of
these utterances is made in such a way that 39 utterances consist of only In-vocabulary
words, 45 utterances are composed of only OOV words and 9 utterances contain
both In-vocabulary and OOV words. The value of phone insertion threshold is 1e−15.

The Table 12 shows the results obtained from all speakers during the live test. 37
utterances out of 39 are correctly recognized as In-vocabulary and only 2 utterances
are miss-recognized as OOV. The rejection of utterances containing only unknown
words is also good. On average 37.5 utterances are recognized by the garbage model
and 16.5 utterances are considered from inside the vocabulary.

Table 12: Results from the live test for evaluating garbage model
Correct IV False IV Correct OOV False OOV
37 utterances 16.5 utterances 37.5 utterances 2 utterances

The Table 13 shows the overall accuracy of the recognizer along with the rejection
accuracy by rejecting the OOV words. The rejection accuracy and overall accuracy
can be improved by tuning the threshold for the garbage phone insertion penalty.
The range of the threshold for better results should be kept between 1e − 15 and
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1e− 30. This value of threshold can vary for different environments depending on
the background noises.

Table 13: Rejection accuracy
Rejection Acuracy Overall Accuracy

70% 80%

For garbage modelling, the quality of detection can also be expressed in two
parameters namely true positive alarms and false positive alarms. The true positive
alarm (TPA) can be considered as a ratio of the total count of correctly recognized
OOV words to the total number of OOV words. The false positive alarm (FPA)
is the ratio of the count of wrongly hypothesized OOV words to the total count of
In-vocabulary words. The relation between the TPA and FPA can express in the
receiver operation characteristics (ROC) curve. Figure 22 shows such ROC curve
for OOV detections obtained from the live test. If the obtained curve is closer to
the diagonal, the false alarm rate would be higher which indicates the overall poor
recognition accuracy and vice-versa.
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Figure 22: ROC curve for OOV words
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Chapter 7

7 Conclusion

In this master thesis, three different tasks are implemented to increase the accuracy
of a speech recognition engine. For the first task, a Finnish acoustic model is trained.
The data required to train and evaluate the acoustic model is provided by Devoca
Oy. Speech data is recorded from the warehouse environment of different companies,
and the motive behind this approach is to incorporate more noise in the training
data. Sphinxtrain from CMU Sphinx toolkit is used to train the acoustic model.
Two different acoustic models i.e. Semi-continuous and PTM, are created. In terms
of recognition accuracy, PTM model outperforms the semi-continuous model. Both
AMs are evaluated on two different datasets and for each dataset the WER of PTM
model is less than for the semi-continuous model. Besides the recognition accuracy,
the recognizer’s speed is also considered. When both new AMs are tested on the
mobile platform, the PTM model appeared to be quite slow as compared to the
semi-continuous model. So the trade-off has to make between the accuracy and speed
and finally the semi-continuous is selected. In future, PTM model can be considered
but require more experiments.

For the second task, new feature extraction techniques are considered and imple-
mented for the speech activity detection in the Pocketsphinx. Currently, the MFCC
features are extracted from the speech signal by default. The new features namely
GFCC and Gabor features are extracted in addition to MFCC. These new features
are fed to the current VAD classifier of the Pocketsphinx, individually and together.
The results have shown that all the new features are more robust to noisy conditions,
since the WER obtained by using the MFCC feature is more as compared to the other
features. In addition to these experiments, GFCC and Gabor features are combined
and fed to the three-layered MLP classifier, which classify the input signal into speech
or non-speech by giving 0 or 1 respectively. This new classifier showed some good
results, but for some datasets the current classifier worked better. The best result, in
terms of low WER, is obtained by providing the combined features (GFCC, Gabor
and MFCC) to the Pocketsphinx’s VAD classifier. However, the Gabor features have
introduced a lot of computational complexity, which slowed down the entire speech
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recognition process. So again, the decision is made to use the GFCC features with
the VAD classifier of Pocketsphinx. In future, the current VAD classifier can be re-
placed by the deep neural network (DNN) classifier trained from the multiple features.

For the third task, a garbage model is implemented in the Pocketsphinx to handle
the unknown or OOV words. The technique considered and implemented for this
task is employing a new search network in parallel to the standard word-based search
network. This new search network can recognize the OOV words by expanding them
into their acoustical definition i.e. phoneme based recognition. During the decoding
process, the recognizer can switch between the two search networks and the end result
can be the combination of both search branches. The implementation of this generic
word model produced best results and detected 70% of the OOV words. Garbage
model also works equally good for the detection of non-words and rejects them as
well. Of-course, this OOV words detection can be improved by tuning the threshold
for phone insertion penalty. In future the Garbage model can be implemented along
with the confidence measure in Pocketsphinx to increase the overall accuracy as
discussed in [64] and also neural network based garbage system can be implemented
to detect OOV words [65].
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