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1 General Description

A �nite-volume CFD program FINFLO for complex three-dimensional geo-
metries was used in the calculations. The program utilizes Cartesian velocity
components in a cell-centred approach. The discretized equations are integ-
rated in time by applying an implicit method. A multigrid V-cycle is applied
for the acceleration of convergence. The main features of the numerical meth-
ods are described in [1].

2 Methods

2.1 Convection Scheme

In the evaluation of the inviscid 
uxes, upwinding is used. For a spatial discret-
ization a MUSCL-type scheme to approximate advective volume-face 
uxes is
applied. The scheme is based on a second-order upwinding in i-direction (in
the 
ow direction) and a third-order upwind-biased in j- and k-directions.
Roe's 
ux splitting [2] is employed in the calculation of 
uxes.

2.2 Turbulence Models

Four di�erent low-Reynolds number turbulence models were tested:

� k � � model of Chien [3] (CH)

� k � � model of Chien with a rotational correction (CHR)

� explicit ARSM of Gatski et al. [4] (GS)

� RSM of Speziale et al. [5] (SSG)

The �rst one is a classical low-Reynolds-number k � � model (CH), the
second one is Chien's k� � model with rotational correction (CHR), the third
one is an explicit algebraic Reynolds stress model (GS), and the fourth one is
a full Reynolds stress closure (SSG).

k � � Models

In general, models based on the solution of k- and �-equations can be written
as
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Table. 1: Functions and constants.
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Table 1 summarizes functions and constants for di�erent turbulence models
applied in this study. The production of turbulent kinetic energy P is written
without additional modeling
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where Reynolds stresses �� gu00
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j are modeled in the CH model by using the
Boussinesq approximation
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With the explicit ARSM model of Gatski and Speziale [4] (GS) the Reyn-
olds stresses are given by
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is the mean vorticity tensor. In Eq. (9) � and � are strain rate invariants
de�ned by
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Above �1, �2, �3, �4 and �5 are the constants that assume the values from [6]

�1 = (
4

3
� C2)g=2 �2 = (2� C3)

2g2=4 �3 = (2� C4)
2g2=4

�4 = (2� C4)g=2 �5 = (2� C3)g g = 1:=(C1=2 + C5 � 1) (12)

and the pressure-strain-correlation model of Speziale et al. [5] is used

C1 = 6:8 C2 = 0:36 C3 = 1:25
C4 = 0:4 C5 = 1:88 (13)

Rotational Correction

Chien's k� � model was tested also with rotation correction. In the correction
used the dissipation equation was modi�ed so that the function f2 is replaced
by

f2 = (1� Cc)
�
1:0� 0:22e�Re2

T
=36
�

(14)

where the term Cc has been added to account for Coriolis e�ects [7]. That
term equals to �0:2Ri. The Richardson number Ri is calculated from

Ri = �! (s� !) (15)

where the ! and s are nondimensional vorticity and strain rate [8]. The factor
�0:2 is an empirically chosen constant.

Reynolds Stress Model

The Reynolds-stress model (RSM) can be written in the following form
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where Pij, �ij, Dij and �ijare the production term, the pressure-strain term,
the di�usion term and the dissipation term, respectively.

The production term is exact, whereas the turbulent di�usion, the pres-
sure strain and the dissipation rate must be modeled. In this work the high-
Reynolds number modeling is developed by Speziale, Sarkar and Gatski (here-
after referred as SSG) [5]. The low-Reynolds number modeling is based on
Shima's work [9]. The connection of the low and high Reynolds number re-
gions is done in a similar way as in [10]. In both cases the dissipation transport
equation is based on Chien's k � � model [3]. More details can be found from
Rautaheimo et al. [11].

3 Results

3.1 Mesh

Only one deswirl channel is modeled. The grid is divided into three blocks, the
�rst block is at the U-bend, the second one is an O-type grid over a deswirl
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Fig. 1: Computational grid.

cascade, and the third one is after the cascade. The grid can be seen in Fig. 1
and the dimensions in Table 2. The height of the �rst row of cells is 6�10�6m.
As nondimensional distances this is on the average y+ � 1 but on the leading
edge y+ has a maximum value of 6 in a very small area. Values of y+ are
shown in Fig. 2.

3.2 Boundary Conditions

The return channel has calculated only for AAB operation point in present
work. Calculation begins at station 5. The velocities were interpolated from
measurement points to the computational grid. Because measurement grid
was quite a coarse the mass 
ow rate was not achieved with AAB operation
point. Because of this the inlet velocities were multiplied by a factor of 1:0476.
For turbulence quantities the 10% turbulence intensity was assumed and the
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Table. 2: Dimensions of the grid.

Block i j k �

1 64 32 64 131 072
2 192 32 64 393 216
3 64 32 64 131 072
Total 655 360

Table. 3: Convergence of the test cases.

Model CFL Multigrid levels Iteration cycles L2 level

Chien 2:0 4 1 200 5 � 10�8
Chien rot 2:0 3 1 500 5 � 10�7
GS 2:0 3 3 000 2 � 10�6
SSG 2:0 4 1 200 2 � 10�7

dissipation was assigned so that nondimensional turbulence viscosity (�T=�)
was 100 in order to get fully turbulent in
ow. Using these boundary conditions
a small jump in the calculated values takes place after the inlet. A more
detailed study could be done with the inlet turbulence pro�les, but present
simple method seems to work well. For Reynolds stresses isotropic 
ow is
considered and the shear stresses are assumed to be zero. At the out
ow slot
the static pressure is �xed and zero gradient is assumed for the rest of the
variables. To avoid errors from the outlet, station 8 was eight grid cells before
the out
ow slot.

3.3 Convergence and Turn-Around Time

Convergence criterion was based on the L2 norms of the u-momentum resid-
uals. Convergence parameters are shown in Table 3, where L2 is the norm of
the u-momentum residual. The CH and SSG models have satisfactory conver-
gence behaviour. In the GS model the solution had small oscillation in front of
the deswirl cascade, but the integrated values did not oscillate. The CHR res-
ult oscillates at both bends. In Fig. 3 the L2 norm of u-momentum residuals
are shown. From this �gure it can be seen that the CH model has the best
convergence rate. Also the CHR has good convergence at the beginning of the
calculation, but after 400 iteration cycles the solution became oscillatory.

Computation was performed with the SGI Origin2000. The maximum
memory required was 350 Mbytes for the two equation models and 570 Mbytes
for RSM. The code was run in a parallel mode with two processors [12]. Com-
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Fig. 2: Value of y+ in the �rst grid point.

putational time was 45 seconds per cycle with the k� � model, 46 seconds per
cycle with ARSM and 90 seconds with the full RSM.

The grid was made in 10 hours and routines to interpolate the boundary
conditions in a required format took about 6 hours. Computation of one test
case took less than 24 hours. This could be reduced to 8 hours with a more
e�cient parallelization strategy and 5 parallel nodes.

3.4 Global Parameters

Global parameters are shown in Table 4, where _minlet, _moutlet, ��iViki and
��iVi�i are values for 1=14 of the whole channel. Variables ��iViki and ��iVi�i
are calculated over the whole computational domain, where Vi is a volume of
a computational cell.

From the calculated mass 
ows _minlet and _moutlet it is seen that computa-
tions are practically converged. Small di�erences come from numerics. The
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Fig. 3: L2 norm of u-momentum residuals.

Table. 4: Global parameters.

_minlet _moutlet �p0 ��iViki ��iVi�i
(kg/s) (kg/s) (N=m2) 10�3 (J) (W)

Exp. 0:02204 0:02204 1977 - -
CH 0:02204 0:02217 730 4:51 7:67
CHR 0:02204 0:02231 3000 25:8 15:5
GS 0:02203 0:02231 760 4:00 8:83
SSG 0:02204 0:02233 880 4:10 8:42

total pressure drop is quite small in comparison with the pressure level, and
it seems that numerical errors may have some e�ect in the calculation of �p0.
Experimental values are taken by averaging the total pressures at stations 5
and 8. Total pressures are averaged by using mass 
ow weighting. Variables
��iViki and ��iVi�i show the turbulence level predicted by di�erent turbulence
models. If the total pressure drop is compared with turbulence parameters the
relation is clearly visible. The di�erence between the SSG and GS models
may be because the low-Reynolds number version of SSG model generally
overpredicts the skin friction. One reason for the higher total pressure drop
of the experimental data can be explained if the walls are not hydrodynam-
ically smooth. The CHR model overpredicts the total pressure drop as well
as the turbulence level in comparison with the experimental data and other
calculations.
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Fig. 4: Location of stations 6 and 8 and di�erent pitch percents.

3.5 Calculated Pro�les at Di�erent Stations

Station 6

Measurement stations can be seen in Fig. 4. Pro�les for the meridional and
tangential velocities are shown at station 6 in Figs. 5 and 6. The SSG and
GS models seem to predict the 
ow better than the simpler CH and CHR
models. For example the tangential velocity at blade pitch 60% (Fig. 6)
contains a peek close to the hub that is predicted by the SSG model. Also the
GS model predicts the peek, but it is smaller. The CH and CHR models do
not seem to predict this phenomena. All turbulence models have di�culties
at the shroud at the pitch values 20%, 50%, 60% and 80%. They underpredict
the meridional velocities and overpredict the tangential velocities. The size of
the separation bubble is seen from the meridional velocities in Fig. 5. The
SSG model predicts the strength and the size of the bubble well. The CH and
CHR models do not have separation bubble at all at this station.

Pitch Averaged Values at Stations 6 and 8

Pitch averaged values are shown in Figs. 7 and 8. The computed results
are averaged using �ve values at the same points, where the measurements
(20, 40, 50, 60 and 80 percents of pitch) have been done. In this way the
computed and measured averaged values were considered to be the same. Since
no experimental data was available, the turbulence quantities are averaged over
the whole domain. Meridional and tangential velocities are predicted well near
the hub with the SSG model. Again the velocities next to the shroud are not
well predicted by any of the turbulence models.

It can be seen that the CHR model predicts the highest turbulence level at
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Fig. 5: Meridional velocity at the blade pitches of 20, 40, 50, 60 and 80 percents

from the hub to the shroud (station 6).

Fig. 6: Tangential velocity at the blade pitches of 20, 40, 50, 60 and 80 percents

from the hub to the shroud (station 6).
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Fig. 7: Pitch averaged �, k, Ma, meridional and tangential velocities and turbulent

viscosity from the hub to the shroud at station 6.

Fig. 8: Pitch averaged �, k, Ma, meridional and tangential velocities and turbulent
viscosity from the hub to the shroud at station 8.
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both stations. At station 6 it predicts the 
ow �eld quite well, but at station 8
it is far from the experiments. It can be concluded that the rotative correction
in a suggested form does not work properly in the present case.

3.6 Particle Traces at the Center of the Channel

Particle traces have been drawn at the center of the channel in Fig. 9. The
CH model does not predict the separation after the U-bend. The CHR model
predicts the separation but it seems to take place too early and it also reat-
taches too early. The GS and SSG models have separation bubbles just after
the bend.

4 Discussion

The anisotropic models GS and SSG seem to behave better than the Boussinesq
approximation based CH and CHR models. This is due to the curvature of the

ow case which causes di�culties for isotropic models. Rotational correction is
ad hoc in nature and it has been optimized by the present authors for Johnston
rotating channel [13] and applied successfully for a pump. In this case it does
not work, but a similar tuned correction could be built for this case also.

The GS model gives similar results to those of the SSG model but it has
problems with stability. The SSG converges surprisingly well in this case. The
overall computational work is equal to that of the GS model, because the GS
model needs more iteration cycles. As expected the simple CH model has the
best convergence rate.

No model predicts correctly the total pressure drop �p0. Although the
SSG model gives a better total pressure drop than the GS model, this could be
because of the present low-Reynolds number corrections generally overpredict
the skin friction. More detailed comparison of 
ow variables along to the
channel should be done.

Surface stream lines give some interesting small details about the simulated

ow �eld (Figures are in the appendix). At the leading edge of the vane
separation occurs on the pressure side with the CHR, GS and SSG models. The
CH model does not predict this feature. In the CHR and GS models the shape
of the separation bubble is quite similar. In the SSG model the separation
bubble is very small and close to the leading edge. Also at the trailing edge
(a small �gure on the right hand side) the shape of the separation region is
predicted di�erently by the turbulence models. The GS model predicts the
largest separation region, the CHR and CH models predict quite the same
sized separation bubbles but with the SSG model 
ow remain attached. When
using the CHR model, the 
ow separates at the bend after the cascade. This
and other results con�rm that the CHR model does not work well in this case.

In complex geometries with streamline curvature, 3D e�ects and 
ow sep-
arations cannot be simulated by standard k� � models. This is due to the iso-
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Fig. 9: Particle traces in the center of channel (CH, CHR, GS and SSG).
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tropic Boussinesq-approximation and also the history e�ect of di�erent Reyn-
olds stresses. That is why in the present work anisotropic models behave
better. The best results are achieved by the SSG model although there are
certain features that are systematically ill-predicted by all turbulence models.
Also the GS model gives satisfactory results for some details not captured by
the basic CH model.
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