
Aalto University
School of Science
Master’s Programme in Computer, Communication and Information Sciences

Markku Riekkinen

Integrating Stratum and A+ Functional-
ities in Moodle:
Architecture and Evaluation

Master’s Thesis
Espoo, December 1, 2016

Supervisor: Docent Tomi Janhunen
Advisor: Docent Tommi Junttila

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80723248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aalto University
School of Science
Master’s Programme in Computer, Communication and In-
formation Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Markku Riekkinen
Title:
Integrating Stratum and A+ Functionalities in Moodle: Architecture and Evalu-
ation
Date: December 1, 2016 Pages: viii + 67
Major: Computer Science Code: SCI3042
Supervisor: Docent Tomi Janhunen
Advisor: Docent Tommi Junttila
Automated assessment within electronic learning (e-learning) uses computers for
the grading of students’ solutions to course assignments, which releases teachers
from the burden of manually assessing the submissions and leaves them time for
developing other course and teaching activities. The goal of this thesis was to
modernize Stratum, an old platform for deploying arbitrary assignments that are
automatically assessed and may also be randomly generated in order to provide
personalized assignments for each student. The purpose of the modernization was
to improve the maintainability and usability of the platform, while retaining its
existing core functionality and in particular, its seamless integration in Moodle,
a widely used e-learning platform that is also used as the official, university-wide
platform at Aalto University, where it is known as MyCourses.

This thesis presents alternative approaches for the modernization and identifies
the most suitable one for implementation. The selected approach involves another
platform, A+, that outsources the implementation of assignments to external
exercise services. In this thesis project, a new Moodle plugin was implemented
that replicates A+ functionality so that both A+ and Moodle may utilize the
same exercise services and function as a front end to courses with automatically
assessed assignments. Furthermore, the exercise service framework used with A+,
known as the MOOC grader, was extended to support personalized assignments.
The new Moodle plugin was named Astra.

The new platform implemented in this thesis project realizes the requirements
set for the modernization of Stratum. Assignments implemented for Stratum
may be ported with feasible effort to the new platform as exercise services. In
addition, the new platform replicates enough of the A+ functionality so that a
typical course may freely select either Moodle or A+ as its front end without
further modifications.
Keywords: e-learning, automated assessment, computer-aided assess-

ment, software platform, Moodle plugin
Language: English

ii



Aalto-yliopisto
Perustieteiden korkeakoulu
Tieto-, tietoliikenne ja informaatiotekniikan maisteriohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Markku Riekkinen
Työn nimi:
Stratumin ja A+:n toiminnallisuuksien integrointi Moodleen: arkkitehtuuri ja
evaluointi
Päiväys: 1. joulukuuta 2016 Sivumäärä: viii + 67
Pääaine: Computer Science Koodi: SCI3042
Valvoja: Dosentti Tomi Janhunen
Ohjaaja: Dosentti Tommi Junttila
Automaattinen harjoitustehtävien arviointi on sähköisen oppimisen (e-
oppiminen) osa, jossa tietokoneohjelma arvostelee opiskelijan tekemän tehtävän
ratkaisun. Tällöin opettajan ei tarvitse käyttää aikaa tehtävien arvosteluun käsin
ja aikaa voi käyttää enemmän muun opetuksen kehittämiseen. Tämän diplomi-
työn tavoitteena oli uudistaa vanha Stratum-järjestelmä, joka on alusta auto-
maattisesti arvioitavien tehtävien toteuttamiseen. Lisäksi Stratumilla voi toteut-
taa satunnaisesti luotavia tehtäviä, jolloin jokaiselle opiskelijalle tarjotaan henki-
lökohtainen tehtävä. Uudistustyön tarkoituksena oli parantaa Stratumin ylläpi-
dettävyyttä ja käytettävyyttä kuitenkaan menettämättä aiempaa ydintoiminnal-
lisuutta. Erityisesti Stratumin saumaton integraatio Moodlessa haluttiin säilyt-
tää. Moodle on laajasti käytetty sähköisen oppimisen alusta, jota käytetään myös
Aalto-yliopistossa: kyseinen alusta tunnetaan Aallossa nimellä MyCourses.

Tämä diplomityö esittelee vaihtoehtoja uudistustyön toteuttamiseksi ja valitsee
niistä parhaan vaihtoehdon. Valittu vaihtoehto viittaa myös erääseen toiseen
alustaan, A+:aan, joka ulkoistaa automaattisesti arvioitavien tehtävien toteu-
tuksen ulkopuolisiksi palveluiksi. Tässä diplomityössä toteutettiin uusi Moodle-
liitännäinen, joka toistaa A+:n toiminnallisuutta siten, että Moodle voi käyttää
samoja tehtäväpalveluja kuin A+ automaattista arviointia varten, jolloin opiske-
lijat näkevät ja palauttavat tehtävät Moodlessa. Lisäksi tässä työssä laajennettiin
A+:n käyttämää tehtäväpalvelujen ohjelmistokehystä, “MOOC graderiä”, jotta se
voi tukea henkilökohtaisia tehtäviä kuten Stratum. Uusi Moodle-liitännäinen ni-
mettiin Astraksi.

Tässä työssä toteutettu uusi alusta saavuttaa uudistustyölle asetetut tavoitteet.
Stratumiin toteutetut vanhat tehtävät on mahdollista siirtää uudelle alustalle
kohtuullisella vaivalla. Lisäksi uusi alusta muistuttaa riittävästi A+:aa, jotta tyy-
pilliset kurssit voivat valita vapaasti, kumpaa alustaa ne käyttävät kurssialustana
ja käyttöliittymänä, Moodlea vai A+:aa.
Asiasanat: e-oppiminen, automaattinen arviointi, tietokoneavusteinen

arviointi, ohjelmistoalusta, Moodle-liitännäinen
Kieli: Englanti

iii



Acknowledgements

I thank my supervisor, Docent Tomi Janhunen, and my advisor, Docent
Tommi Junttila, for their never-ending support and guidance throughout
this thesis project and the preceding work. I started working under their
supervision in the development of the Stratum computerized learning envi-
ronment already in 2013, and it continued until the beginning of this thesis
project, which replaces the old Stratum with a new and improved platform.
I am very grateful for these years and the exciting tasks I have been allowed
to undertake.

I thank Professor Petteri Kaski and the Aalto Online Learning (A!OLE)
project for funding this thesis project. I thank the development team of
the A+ platform in the Learning + Technology group for their advice in
designing the new platform developed in this thesis project. Particularly, I
thank Teemu Lehtinen from the A+ team for his insight in the development
of the MOOC grader framework; he also greatly contributed to the design of
the algorithm for the regeneration of exercises.

I wish to thank Professor Pekka Orponen for suggesting the name, Astra,
for the front-end component of the new platform. The name reflects that the
new platform is influenced by both A+ and Stratum, and it continues the
tradition of using Latin words as names. Finally, I thank my family for their
support.

Per aspera ad Astra.

Espoo, December 1, 2016

Markku Riekkinen

iv



Abbreviations and Acronyms

AMD Asynchronous Module Definition
API Application Programming Interface
CSS Cascading Style Sheets
DBMS Database Management System
DVD Digital Versatile Disc
e-learning electronic learning
ER Entity-Relationship (model)
FK Foreign Key (in databases)
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IP Internet Protocol
JSAV JavaScript Algorithm Visualization Library
JSON JavaScript Object Notation
LCMS Learning Content Management System
LMS Learning Management System
LTI Learning Tools Interoperability
MOOC Massive Open Online Course
ORM Object-Relational Mapping
PDF Portable Document Format
PHP PHP: Hypertext Preprocessor
PK Primary Key (in databases)
QTI Question and Test Interoperability
REST Representational State Transfer
RST reStructured Text
SaaS Software as a Service
SCORM Sharable Content Object Reference Model
SQL Structured Query Language
STACK System for Teaching and Assessment using a Com-

puter algebra Kernel
SVG Scalable Vector Graphics

v



URL Uniform Resource Locator
U.S. the United States (of America)
VLE Virtual Learning Environment
xAPI Experience API
XML Extensible Markup Language
YAML YAML Ain’t Markup Language

vi



Contents

Abbreviations and Acronyms v

1 Introduction 1
1.1 Goals and Requirements . . . . . . . . . . . . . . . . . . . . . 7
1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 8

2 E-learning Platforms 9
2.1 Open Standards for E-learning Platforms . . . . . . . . . . . . 9
2.2 A+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 A+ Content Structure and Grading Semantics . . . . . 11
2.2.2 A+ Grader Protocol . . . . . . . . . . . . . . . . . . . 12
2.2.3 MOOC Grader Exercise Service Framework . . . . . . 13

2.3 Moodle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Other Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Modernizing Stratum 18
3.1 Stratum Computerized Learning Environment . . . . . . . . . 18

3.1.1 Problems of Stratum . . . . . . . . . . . . . . . . . . . 19
3.2 Alternative Approaches for Modernization . . . . . . . . . . . 21

3.2.1 Common Changes in the A+ Grader Protocol and MOOC
Grader Exercise Service Framework . . . . . . . . . . . 21

3.2.2 Alternative 1: Independent Stratum . . . . . . . . . . . 22
3.2.3 Alternative 2: New Moodle Interface in A+ . . . . . . 23
3.2.4 Alternative 3: Moodle Replicates A+ . . . . . . . . . . 24

3.3 Justifications for the Selected Approach . . . . . . . . . . . . . 24

4 Implementation 26
4.1 Features of the New Platform . . . . . . . . . . . . . . . . . . 26
4.2 Astra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Code Organization . . . . . . . . . . . . . . . . . . . . 33

vii



4.2.3 Database Schema . . . . . . . . . . . . . . . . . . . . . 37
4.3 Upgraded MOOC Grader Exercise Service Framework . . . . . 42
4.4 Example: Accepting and Assessing a Submission . . . . . . . . 45

5 Evaluation 48
5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Platform (In)dependence . . . . . . . . . . . . . . . . . . . . . 54
5.3 Moodle versus A+ . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusions 58
6.1 Prospects for Future Work . . . . . . . . . . . . . . . . . . . . 59

viii



Chapter 1

Introduction

Technology is changing the ways how people learn. Technical tools have
been employed in the classroom long before the availability of electronic
computers: for example, slide rule was used to compute multiplications and
divisions in mathematics. E-learning (electronic learning) refers to the use
of computers or electronic devices, such as smartphones, in learning, educa-
tion, or training; the learning material or education program is delivered to
the learner by electronic means [46]. Nowadays, it is common to utilize the
Internet and the World Wide Web in delivering e-learning but other elec-
tronic methods could also be used, such as Digital Versatile Discs (DVD).
E-learning is not restricted to just delivering traditional learning material in
an electronic format, such as printed textbooks converted into digital text-
books, but may also utilize the full possibilities of the modern technology: for
example, interactive multimedia presentation in a web page embedded seam-
lessly in the middle of the written narrative, or highly specialized educational
software used in the laboratory work of a science class.

E-learning is changing the methods of teaching in all levels of educa-
tion, from primary schools to higher education and corporate training. Tra-
ditional instruction refers to teacher-centric face-to-face classroom learning
while technology-rich instruction enhances traditional instruction with elec-
tronic and software tools, digital textbooks, and web-based content [45, p. 6].
Technology-rich instruction still emphasizes teacher-centric learning in the
classroom. Blended learning refers to the combination of classroom learning
and e-learning so that e-learning is an integral component of the educa-
tion program: a part of content and instruction is delivered online and the
students are given some control over time, place, progression path and/or
pace; a part of the learning takes place in a supervised classroom [45, pp.
3–4]. Blended learning emphasizes that e-learning is used in part to deliver
content and instruction as well as to provide some form of student control,

1



CHAPTER 1. INTRODUCTION 2

while traditional or technology-rich instruction do not provide the student
control and e-learning is at most another tool used in the teacher-centric
classroom. Distance learning refers to the delivery of education program to
students separated by a distance; the program and content are prepared by
a teacher or an institution, but the students and the teacher do not gather
in the same physical location, such as classroom [31]. Historically, distance
learning was delivered via mail, radio, and television, but today the Inter-
net and thus e-learning are dominating distance learning [31]. Asynchronous
distance learning allows students to set their own pace for studying whereas
synchronous distance learning follows the schedule set by the teacher [31].
Synchronous distance learning may utilize video conferences or virtual class-
rooms to provide teaching sessions similar to physical classroom learning.
Ideally, when a course is delivered as distance learning, the student is able
to complete the whole course from home, but due to practical matters, final
exams are sometimes only organized on-site at the institution [31]. Potential
problems in online assessment include verifying a student’s identity online or
verifying that the student is taking the exam alone without help.

Massive open online courses (MOOC) are a form of distance learning that
emerged in 2008 [31] and have since then gained millions of participants in
total [22]. These kinds of courses are open to everyone and thus may have
thousands of participants simultaneously [31]. Signing up to MOOCs online
is easy and not every participant actually completes the course: even less
than 10 % complete the course on average [29]. The courses may be offered
free of charge or with a small fee; sometimes payment is only required if the
student wants to receive a certificate for completing the course [9]. Due to
the large scale, MOOCs provide limited interaction between the participants
and the instructors. Instead, they may encourage the students to participate
in online discussions with each other and assignments are assessed either
automatically (quizzes, programming assignments) or by peer review (open
essays) [12, pp. 45–46]. Institutions, including highly-ranked universities,
often offer their MOOCs through a provider, such as Coursera, edX, and
Udacity [22]. The providers supply tools and infrastructure for creating and
publishing MOOCs as well as visibility in the web. The institutions may gain
publicity and attract new students by organizing MOOCs.

E-learning has grown rapidly in the past decade. The number of students
that signed up to a MOOC doubled in 2015 compared to the previous year
and reached 35 million [44]. According to a study in 2005, most or nearly
all universities at that time were already utilizing a type of a centralized
e-learning platform commonly referred to as learning management system
(LMS) [17, p. 182]. In 2014, 99 % of institutions had an LMS and 85 % of
faculty were using it, 56 % on a daily basis [15].



CHAPTER 1. INTRODUCTION 3

Learning management system is a software application for managing and
delivering online courses. Some support a broad definition for LMS that is
not limited to just the management aspect, while others like to differentiate
LMS, learning content management system (LCMS), and virtual learning en-
vironment (VLE). In that case, LMS concentrates on the management and
delivery of courses whereas LCMS is used to create content and learning mod-
ules that are imported to the LMS. Virtual learning environment emphasizes
the learning activity: students read study material in the VLE, engage in
interactive modules, such as answering quizzes, submitting assignments, and
receiving assessment. In practice, these terms are partially overlapping and
many well-known e-learning platforms call themselves LMSs even though
they merge much of this functionality in the same software. This thesis also
prefers the broad definition for LMS. Moodle and Blackboard are examples
of such feature-rich learning management systems. These systems have a
number of features, including but not limited to

• dissemination of electronic teaching material, such as lecture slides, to
students;

• integrated, graphical tool for building lessons: web pages that contain
text, multimedia, quizzes, and assignments;

• assignments that students submit their solutions to and the teacher
grades them with an integrated tool that supports rubrics and anno-
tating the submission directly with comments;

• gradebook that gathers the student’s grades in one place;

• discussion forums; and

• calendar of course schedule and deadlines.

Aalto University has a long history with e-learning. The university-wide
LMS before 2015 was the Noppa system: a simple LMS that did not have
much interactive functionality from a student’s perspective. Noppa listed
the course syllabus and schedule, and teachers added instructions, lecture
slides, and assignment descriptions to the course site. The system did not
support assignment submissions nor discussion forums, thus teachers had
to use other systems or email for those needs. Noppa was replaced by a
Moodle-based platform namedMyCourses in autumn 2015. MyCourses has
the interactive features missing from Noppa and as Moodle is an extensible
platform that supports plugins, the functionality of MyCourses can be further
expanded with Moodle plugins.



CHAPTER 1. INTRODUCTION 4

A number of novel e-learning systems for various purposes have been
developed at Aalto University. TRAKLA2 is a platform for interactive
algorithm simulation exercises [34]. In TRAKLA2, the student “executes”
steps of the algorithm by visually manipulating data structures and the sys-
tem checks if the student is progressing correctly and provides feedback [34].
While the front end of TRAKLA2 is implemented as a Java applet [34], the
newer JSAV (JavaScript Algorithm Visualization) library is implemented
in JavaScript [33]. Hence, using JSAV does not require any web browser
plugins like TRAKLA2 does: all modern browsers support JSAV natively
and deploying the exercises to students is easier [33]. The JSAV library
supports animated slideshows in addition to TRAKLA2-style exercises [33].
Rubyric is a system for rubric-based assessment [11]. Students submit their
assignment solutions to Rubyric and the teacher evaluates the submissions
and writes textual feedback using a rubric prepared for the assignment. The
teacher saves time as the prepared rubric includes common feedback phrases,
thus the teacher may only select suitable phrases and write additional more
specific feedback when necessary. Goblin is a system for automatic assess-
ment of programming assignments [21]. Goblin compares the outputs of
the student’s submitted program and the model solution prepared by the
teacher1. The submission is scored based on how well the output matches
that of the model solution in predetermined scenarios; the input data may
be randomized. Mathematics courses have utilized STACK system (System
for Teaching and Assessment using a Computer algebra Kernel) for provid-
ing automatically assessed, mathematical exercises. The STACK system was
originally developed by Christopher Sangwin [43], however, a Master’s the-
sis at Aalto University built new modifications and updates to STACK [19].
A+ is a service-oriented learning management system that is particularly
designed to operate with highly specialized, external systems that provide,
for instance, automatically assessed exercises or visualizations [32]. Stratum
is a modular, computerized learning environment that assesses assignments
automatically using assignment packages installed in the system [38]. In addi-
tion to automated assessment, Stratum can randomly generate personalized
assignments so that each student receives a different version of an assign-
ment. A teacher may also set a maximum number of allowed submissions to
an assignment and optionally force the assignment to regenerate when the
student reaches the limit, i.e., the student starts over with a new, different
assignment.

1To be more precise, Goblin is a course management system that operates with EX-
PACA (Experimental XML-based Program for Automatic Code Assessment) framework
which is responsible for the automated assessment.



CHAPTER 1. INTRODUCTION 5

A few of the previously mentioned e-learning systems emphasize auto-
mated assessment of the student’s work, in particular A+ and Stratum. One
major reason that initially triggered the development of automated assess-
ment systems was the substantial increase in the number of students enrolled
in information technology and telecommunications degree programmes in
Finland in the late 1990s [28]. Automated assessment is profoundly different
from manual assessment conducted by a teacher. Automated assessment has
several advantages:

• Teachers do not spend time assessing submissions manually, which
leaves them time to develop other parts of the teaching [38, p. 12].

• Automated systems easily scale to large numbers of students, even
thousands. Doing the same work manually could require infeasible
amounts of working hours, especially if the assignments are personal-
ized to each student [34, p. 268].

• Automated systems can be made available via the Internet at any time
of the day and in any location with an Internet connection. Students
may choose to work at any time and place that best suits them [28, 34].

• Automated systems can provide immediate feedback to the student
and the student may correct her errors and learn from them [34, pp.
267–268].

• Automated systems are objective and consistent [20, p. 26]: they do
not discriminate or favor any students and they are not prone to human
errors (excluding possible software bugs).

• Automated systems may reduce the need for contact learning, that is,
students ask less questions from the teachers or assistants when they
are using an automated assessment system [39]. Thus, teachers have
more time to support struggling students. Alternatively, the contact
learning sessions could concentrate on more advanced topics since the
students can study the basics independently with the help from the
automated system.

• Rudimentary automated checking can ensure that submissions follow
the required format, which is helpful even when the assignment is as-
sessed mostly manually. The students are less likely to forget some of
the required files or to submit programs that fail to compile. [8]



CHAPTER 1. INTRODUCTION 6

• Automated systems can integrate monitoring of the student’s perfor-
mance and progression. Such automated analytics can reveal which
students are struggling or start working too late, enabling the teacher
to take appropriate action. [16]

There are also some disadvantages in automated assessment:

• Automatic assessment may encourage students to submit repeatedly
with small changes until the solution receives full points using kind of
a trial-and-error approach. This behaviour may be hindered by lim-
iting the number of available submissions, or by increasing the delay
between the submission and the release of the automated feedback to
the student. Another approach is to provide rewards (“achievement
badges”) to students for submitting a high-quality solution in the first
attempt. [18]

• Developing the automated system and assignments requires time and
effort initially. The software system also requires maintenance after
deployment.

• Developing automated graders can be very challenging, depending on
the nature of the assignment. In computer science, programming as-
signments are typically automated, whereas automating open essay
questions is still not a fully realized field.

• Software platforms for automated assessment add some restrictions on
the format and content of the assignment due to design decisions and
limitations of the software system. If the teacher assesses submissions
manually, the only restriction on the format of the assignment is basi-
cally what the teacher is willing to do.

• Automated systems may not give as high-quality feedback to students
as humans, depending on the system. It is challenging to design au-
tomated systems that could analyze the student’s errors and identify
misconceptions. [20, p. 28]

• If all students complete the same, identical assignment, copying solu-
tions from other students is easy (plagiarism) [28]. Automated pla-
giarism detection tools could be integrated in the assessment system
in order to detect dishonest students. Another approach is to use an
assessment system that can personalize assignments for each student.
Thus, copying solutions from others is rendered useless since everyone
has a slightly different version of the assignment [28].



CHAPTER 1. INTRODUCTION 7

1.1 Goals and Requirements

The Stratum computerized learning environment was originally developed
as part of a Master’s thesis project in 2006. However, the architecture of
Stratum has recently become a source of problems that complicates further
development of the system. Stratum and its problems are covered in de-
tail in Section 3.1. The goal of this thesis is to modernize Stratum so that
the system matches current needs better and may be further developed with
feasible effort. Additionally, as Aalto University is currently using Moodle
(MyCourses) as the university-wide learning management system, the mod-
ernized Stratum must be able to embed Stratum assignments in Moodle so
that students can access the assignments directly from the Moodle course
instead of a separate, external web site.

The requirements for the modernization of Stratum are as follows:

1. Improve the maintainability of the system and possibility for further
development of new features. This implies improving the quality of the
source code, e.g., by restructuring software architecture, code organi-
zation, and reusability.

2. Improve the usability of the system for both students and teachers.

3. Assignment packages implemented for Stratum must be portable to the
new system with reasonable effort.

4. The new system must support the same basic functionality as Stratum,
and in particular, the automatic grading and generation of personalized
assignments. Regeneration of the assignments must also be supported,
i.e., generating the assignment again for a student after she has sub-
mitted too many solutions.

5. The new system must support embedding assignments in Moodle (My-
Courses) so that students can access assignments directly from a Moo-
dle course.

In order to realize the modernization of Stratum, this thesis shall research
other existing e-learning platforms that potentially support automated as-
sessment of assignments and make alternative plans for the implementation
of the modernization. The most promising alternative is selected as the basis
for the real implementation.



CHAPTER 1. INTRODUCTION 8

1.2 Structure of the Thesis

This chapter discussed e-learning and automated assessment in general as
well as the goals and requirements of this thesis. Chapter 2 describes known
e-learning platforms, particularly A+ and Moodle that are relevant to this
work. Chapter 3 details Stratum computerized learning environment and ex-
plains its problems, which constitute the starting point for this thesis and the
motivation for the modernization process. Furthermore, Chapter 3 presents
alternative approaches for the modernization of Stratum and identifies the
best alternative. Chapter 4 addresses the implementation of the modern-
ized platform, and Chapter 5 evaluates the solution and the realization of
the requirements. Finally, Chapter 6 concludes the work and presents some
prospects for future work.



Chapter 2

E-learning Platforms

Having introduced e-learning and goals for this thesis in the previous chapter,
this chapter describes known e-learning platforms, especially A+ and Moodle
as they are relevant to this thesis. Other known platforms are also introduced
briefly. Section 2.1 begins by describing open standards in e-learning as many
platforms utilize some of the standards. Section 2.2 details A+ with its
architecture and grader protocol, while Section 2.3 covers Moodle, the most
widely used open source learning management system. Finally, Section 2.4
addresses other platforms. The next chapter discusses another e-learning
platform, Stratum computerized learning environment, and how this thesis
modernizes it.

2.1 Open Standards for E-learning Platforms

Open standards improve the interoperability of different systems and enable
transferring learning content between systems. Otherwise, the transition
from a platform to another one could be practically impossible if there is too
much valuable content stored in the original system that can not be copied
without manual labour. Moreover, the functionality of a non-interoperable
platform can not be easily extended by using other external systems when
the platform is missing necessary features. In other words, open standards
reduce the phenomenon called vendor lock-in.

Learning Tools Interoperability (LTI) is a specification developed
by IMS Global Learning Consortium that enables integrating rich learning
applications (Tools) to platforms such as learning management systems (Tool
Consumers). The Tools are delivered by remote systems (Tool Providers) via
the web [24]. The LTI specification has different versions that vary in their
feature set and complexity. The version 1.0 only enables launching Tools: the

9



CHAPTER 2. E-LEARNING PLATFORMS 10

user starts from the Tool Consumer (LMS) and clicks a link that redirects
her to the Tool Provider. The user authentication is handled by LTI so
that the transition to the external tool is fluent for the user. The version
1.1 enables the Tool Provider to return an outcome (grade) of the student’s
work back to the Tool Consumer. This supports, for example, tools that
provide assignments with automated assessment. The version 2.0 is much
more complicated and supports web applications that require interoperable
communication between the systems for the whole life cycle of the Tool.
Version 1.2 is a simplified version of 2.0 with some features removed. [47]

IMS Question and Test Interoperability (QTI) is a standard for
assessment items and tests, including quizzes and summative tests. Tests in
QTI format may be exchanged between systems without losing content [25].
The IMS Common Cartridge specifications form a set of standards for
packaging learning content so that it may be exchanged between systems and
imported to a compliant platform (LMS). Common Cartridge incorporates
parts of QTI and LTI [23].

The Sharable Content Object Reference Model (SCORM) is an-
other standard for packaging learning content. The SCORM standard defines
a run-time environment with an application programming interface (API)
that enables communication between the content package and the platform
(LMS) [7]. The SCORM package may, for example, store grades in the under-
lying platform using the API. Experience API (xAPI, also called Tin Can
API) is a newer API that enables sharing data about human performance
and activities in a fine-grained micro level [6]. The SCORM and xAPI stan-
dards are developed by the Advanced Distributed Learning Initiative, a U.S.
government program.

2.2 A+

The A+ platform is a service-oriented learning management system that uti-
lizes external exercise services to provide course content, both static study
material and exercises. The following description of A+ is based on [32].
Exercises in A+ are usually automatically assessed, as the A+ platform
was particularly developed to have common infrastructure and front end for
courses that deploy automatically assessed exercises or visualizations, such
as most programming courses at Aalto University. The platform manages
user authentication and authorization, stores submissions and their grad-
ing results (feedback and points), manages course configuration and setup,
provides course monitoring (student progress and statistics) and web user
interfaces for students and teachers. Additionally, A+ provides a REST API



CHAPTER 2. E-LEARNING PLATFORMS 11

(Representational State Transfer, Application Programming Interface) that
allows other authorized systems to access the data stored in A+ over a net-
work connection. The REST API enables the integration of other specialized
systems to A+ that could, for example, compute final grades in a different
way than A+, or run statistical experiments with the student data. Imple-
menting these other systems inside A+ would complicate the implementation
of A+ and the features would only be useful to some courses.

As the A+ platform is responsible for providing common infrastructure
for courses, exercise services concentrate on delivering study material (called
chapters) and exercise descriptions to A+ for users to view, in addition to
grading submissions to exercises. The exercise description could be just text
but it could also be delivered in the form of a visual tool that the student
uses to complete and submit the exercise, for example TRAKLA2 or JSAV
algorithm visualization exercises. The exercise services are simplified accord-
ingly since they need not manage user accounts or permanent data storage
that A+ already takes care of. The A+ platform communicates with exercise
services using an HTTP-based (Hypertext Transfer Protocol) grader proto-
col, which additionally allows other systems besides A+ to access the same
exercises using the protocol, or the usage of the same exercises in multiple
A+ courses. [32]

The A+ platform is quite lightweight compared to other well-known learn-
ing management systems, such as Moodle. While A+ does not have, for
example, built-in discussion forums, it supports LTI 1.0 protocol which may
be used to link the user from the A+ site to an external site that provides
functionality missing from A+. For example, some A+ courses have utilized
Piazza1 as the discussion forum for asking questions. Due to the LTI proto-
col, students can transition from the A+ site to Piazza without a separate
login procedure. Furthermore, A+ does not have a built-in calendar but
the course schedule can be exported in iCalendar format to other calendar
software.

2.2.1 A+ Content Structure and Grading Semantics

The A+ platform divides the content in a course to exercise rounds. A round
has opening and closing times and consists of learning objects. Learning
objects are either chapters or exercises. Chapters provide study material
and have no grading associated with them, while exercises accept submissions
that are assessed and thus receive points and feedback. Each exercise has a
limit of maximum available points set by the teacher and may have minimum

1Piazza web site contains a product description: https://piazza.com/

https://piazza.com/


CHAPTER 2. E-LEARNING PLATFORMS 12

Figure 2.1: Retrieval of exercise description. Image source: [32]

required points that students should earn to pass. Furthermore, the teacher
may limit the number of submissions that a student may make in an exercise.
Exercise rounds may also have minimum required points that students should
earn in total in the exercises of the round.

The platform also has categories in addition to exercise rounds and learn-
ing objects. Each learning object belongs to a category. The category com-
putes a total sum of the points a student has earned in the exercises of
the category across all rounds. The teacher may set the number of points
required to pass to categories as well.

A+ supports group submissions in addition to normal individual submis-
sions. In a group submission, students form a group and the group submits
one solution to an exercise; all group members gain credit for the group sub-
mission. The teacher defines the minimum and maximum allowed group sizes
for each exercise.

2.2.2 A+ Grader Protocol

As explained in [32], the A+ grader protocol has two features: retrieving
exercise descriptions from the exercise service and sending submissions to
the exercise service for assessment. Exercise descriptions are retrieved from
an exercise-specific service URL (Uniform Resource Locator) set in the A+
configuration. When a student opens the exercise page in A+, the plat-
form retrieves the exercise description from the exercise service by sending
an HTTP GET request to the service URL. The exercise service responds
with an HTML (Hypertext Markup Language) document that contains the
instructions to the student and usually a form for submitting a solution.
Figure 2.1 illustrates the retrieval in the protocol.

For assessing submissions, the A+ grader protocol supports both syn-
chronous and asynchronous exercises. Synchronous exercises are assessed
during a single HTTP request and are only suitable to exercises that can be
assessed in a short execution time, such as multiple choice questions or small
programming exercises. This limitation stems from the nature of HTTP: the



CHAPTER 2. E-LEARNING PLATFORMS 13

Figure 2.2: Submission for assessment. Image source: [32]

user must wait for the HTTP response to finish before the feedback page
loads, and the exercise service server can only manage a limited number
of concurrent HTTP requests. Figure 2.2 illustrates the protocol for syn-
chronous assessment. When the assessment requires more execution time, it
should be handled asynchronously. In asynchronous assessment, the exercise
service needs to send the grading results to A+ once the grading has been
finished. Initially, when the exercise service receives a new submission, it
responds to the HTTP POST request by only acknowledging that the sub-
mission is accepted for grading. Hence, when A+ sends a submission to the
exercise service for grading, it also passes an HTTP GET parameter “sub-
mission URL” that the exercise service can send the results to by HTTP
POST. The A+ platform encodes a submission identifier into the submission
URL so that when the platform receives the new grading results, it updates
the correct submission in the database. Additionally, the submission URL
is signed so that A+ can validate the grading results before accepting them.
The platform also checks that the request originates from the exercise service.
Thus, students may not cheat by sending HTTP requests to A+ awarding
full points to a submission.

2.2.3 MOOC Grader Exercise Service Framework

The A+ platform is accompanied by an exercise service framework called
MOOC grader [3]. The MOOC grader provides common functionality needed
in exercise services so that it is fast and easy to add new exercises: typically,
one needs to only write a small configuration file, a grader program for as-
sessing submissions, and the exercise description. Multiple choice questions
can be created with just a configuration file that lists the questions, choices,
and correct answers. The MOOC grader is designed to be scalable so that
it may run exercise services for large courses (i.e., MOOCs). Hence, the sys-
tem supports distributing the workload of multiple submissions to multiple
servers.

The MOOC grader implements the exercise service side of the A+ grader
protocol and provides a queuing mechanism for temporary storage of submis-



CHAPTER 2. E-LEARNING PLATFORMS 14

sions to asynchronous exercises. Submissions are dequeued and the grader
is started when it is ready (typically, there is a limitation on the number of
concurrent executions). The MOOC grader provides a sandbox environment
for graders that allows safe execution of arbitrary code, which is particu-
larly necessary in programming exercises. Sandboxed execution prevents the
student’s submitted code from compromising the server or accessing the net-
work.

A teacher writes a course configuration file in MOOC grader that lists the
exercises in the course with their deadlines, maximum available points, min-
imum required points, and other settings. The A+ platform can import the
course configuration from the MOOC grader and thus setting up the course
in A+ requires no effort once the course has been prepared in the MOOC
grader. The Git version control system is supported so that course files can
be installed and updated in the MOOC grader using Git operations. Basi-
cally, a teacher may change course files, for example, a faulty grader, during
the course and push the changes to a private repository and consequently,
the MOOC grader automatically updates the files from the repository.

2.3 Moodle

Moodle [37] is a free, open source, online learning management system (LMS)
or virtual learning environment (VLE). Moodle allows teachers to create
courses with static and interactive content and assignments. Moodle is ex-
tensible: plugins can modify and add new functionality to Moodle, while
themes change the visual outlook of the site. Activities and resources are the
core concepts in a Moodle course. Activities are interactive components, for
example, forums in which students participate in discussions or assignments
to which students submit solutions. Resources are static material provided by
the teacher, for example, a handout as a PDF (Portable Document Format)
file.

Moodle plugins are categorized by types: the type defines the purpose of
the plugin and which areas in Moodle it modifies or extends. Moodle has
approximately 40 different plugin types [36]. For example, activity modules
define activities that may be added to courses and plagiarism plugins define
services that process submissions from students in order to detect plagia-
rism. Block plugins define widgets that may be added to sidebars in Moodle
course pages. Moodle calls those widgets blocks and they are often used to
provide navigation or to display information about recent events or actions,
such as the headings of the latest announcements the teacher has posted in
the announcements forum. Moodle plugins directory is a repository of open



CHAPTER 2. E-LEARNING PLATFORMS 15

source plugins developed by the community. A member of the Moodle core
development team must approve a plugin before it is accepted to the plugins
directory and thus hosted on the official Moodle site2. Moodle and its plu-
gins are written in the PHP (PHP: Hypertext Preprocessor) programming
language.

MyCourses3 is a Moodle-based platform taken into use at Aalto Uni-
versity in 2015. MyCourses has workspaces for all courses held at Aalto, and
it is typically used in everyday course work: news announcements, course
brochures and schedules, discussion forums, publishing handouts and lecture
material, and accepting submissions to assignments. MyCourses is currently
the main online teaching platform at Aalto. It is used particularly for blended
learning as most courses involve classroom teaching, i.e., lectures and tuto-
rials. Materials for lectures, instructions for self-studying, and assignments
can be published in MyCourses.

2.4 Other Platforms

Besides Moodle, there are several other learning management systems widely
used in the world that implement similar functionality as Moodle. Some
systems are open source, like Moodle, whereas many are proprietary. Open
source systems include Sakai and ATutor, while proprietary systems include
Blackboard, Canvas, D2L Brightspace, and Itslearning, to mention a few.
These systems are next examined briefly. The list does not include all the
platforms in the world, but a few of the currently interesting ones. All of
these systems support basic LMS functionality, which includes publication
of study material, assignments, announcements and news, discussion forums
and chat, gradebook to collect all course grades in one place, as well as tests
and quizzes in which multiple choice questions are automatically assessed.

Sakai [42] is particularly aimed at the higher education sector and the
developers of Sakai work in the higher education sector themselves. Sakai
project was started in 2004 when four U.S. universities with an organization
called Jasig decided to collaborate in order to combine their different learning
platforms into an integrated suite of open source software. They aimed at
“providing a compelling alternative to proprietary learning systems” [42].
The new Sakai version 11 utilizes responsive web design and thus the web
site works well on both mobile and desktop displays. The lesson tool in Sakai
allows the teacher to build pages that contain text, media, and quizzes. Sakai
supports project work sites that enable student groups and other user groups

2Moodle plugins directory: https://moodle.org/plugins/
3https://mycourses.aalto.fi/

https://moodle.org/plugins/
https://mycourses.aalto.fi/


CHAPTER 2. E-LEARNING PLATFORMS 16

to “coordinate project administration, share resources, schedule activities,
develop collaborative work products and track progress towards completion”
[42]. Furthermore, Sakai supports IMS standards Common Cartridge and
LTI and aims to meet all international accessibility standards.

ATutor [10] is characterized by its support of accessibility standards.
All functionality is accessible with just a keyboard without a mouse and
works well with screen readers, hence even blind users may administer the
system and create content. ATutor is bundled with AContent, which is a tool
for developing content packages in standard formats, including IMS Content
Packaging, QTI, and Common Cartridge. The content packages may be
imported to any learning management systems that support the standards,
not only ATutor. The development of ATutor is no longer very active but
minor bug fixes are still released4.

Blackboard Learn [13] is a learning management system developed by
Blackboard Inc. In addition to common LMS features, Blackboard Learn
offers plagiarism prevention through SafeAssign. Furthermore, the system is
accompanied by a mobile application that students may use to access course
content, assignments, and grades. The mobile application supplements the
main desktop web user interface. Blackboard Learn integrates with other
Blackboard software products that support, for example, learning analytics
and statistics in order to keep track of the students’ progress and retention,
or virtual classes and video conferencing easily accessible with a web browser.
The mobile application also allows users to join virtual classes. Blackboard
Learn may be customized with plugins that are called “Building Blocks”.
Building Blocks extend the functionality of the system by utilizing the APIs
Blackboard offers and they are implemented as Java web applications.

Canvas [26] is an LMS that is only delivered as Software as a Service
(SaaS) from the cloud. It is developed by Instructure Inc. The web user
interface is supplemented by mobile applications that support most of the
basic functionality. Canvas advertises its high usability, user satisfaction, and
features that save the teacher’s time. For example, SpeedGrader tool allows
the teacher to view a student submitted document and grade it in the same
page. In particular, the teacher may annotate the document with comments,
highlights, and freehand drawings. Grading rubrics are also supported. Can-
vas provides teachers graphic analytics about student performance in the
course. In a classroom, the teacher may start polls to quickly test the stu-
dents’ understanding; the students respond using their own mobile devices.
Canvas supports the LTI protocol and has open APIs so that custom tools
may integrate with the system or extract data.

4ATutor 2.2.2 was released on 1st July 2016.



CHAPTER 2. E-LEARNING PLATFORMS 17

Brightspace [14] is a SaaS-only LMS from D2L Corporation. The web
user interface of Brightspace is accompanied by two mobile applications:
one is used to deliver current notifications about deadlines and events, the
other enables students to download documents from the course workspace for
reading in the mobile device. Brightspace follows web accessibility standards
and supports the LTI protocol. Teachers may track student performance
with built-in analytics tools and they are notified about at-risk students who
are likely dropping out from the course.

Itslearning [27] is an LMS from Itslearning AS, a Norwegian company.
Itslearning is deployed only as SaaS. Itslearning assignments easily support
peer reviewing amongst students. Personalized learning in Itslearning allows
teachers and students to design personal learning goals, tailoring study mate-
rial to individual needs. A mobile application provides students notifications
about deadlines and new assessments. Itslearning has open APIs that enable
the integration of custom extensions.

To summarize, the learning management systems covered in this chapter
are strikingly similar. The A+ platform stands out with its emphasis on ex-
ternal automated assessment systems. On the other hand, it does not support
other common LMS functionality, such as discussion forums, but A+ is not
trying to compete against Moodle or other well-established LMSs. Moodle
and the other platforms have the same basic functionality, though there are
differences in the details of the basic features. Moreover, some systems try
to differentiate themselves with additional features, such as course analytics,
mobile applications, or enhanced usability. Accessibility or interoperability
standards, such as IMS LTI, are also highlighted by some systems. Most
systems try to attract users with their modern, graphical user interfaces.
When one needs to select one of these platforms, the needs of the institution
should be carefully considered and reflected on the features offered by each
system in a fine-grained detail. The costs should also be considered: running
open source systems on-site entails operational costs and commercial SaaS
solutions require licensing costs.



Chapter 3

Modernizing Stratum

This chapter describes Stratum computerized learning environment and its
problems in detail that lead to the need for modernizing Stratum. Section 3.1
starts by introducing Stratum and Section 3.1.1 addresses its problems. This
chapter then progresses to different alternative approaches for the modern-
ization in Section 3.2 and to the selection of one alternative in Section 3.3.

3.1 Stratum Computerized Learning Environ-
ment

The Stratum computerized learning environment was developed in a Master’s
thesis project in 2006 [38]. The system had already existed before that, but
it was rewritten and modularized in 2006. Additionally, the development
continued until 2015. In 2009, a new web interface was developed in PHP
that enables students to submit solutions in a web browser [48]. Preceding
the project reported in this thesis, the author started the development of new
features in 2013. The new features from 2013–2015 include, for example, a
teacher’s web user interface for inspecting assignment submissions, as well as
Shibboleth single sign-on authentication [40].

As explained in [38], Stratum can create randomized or personalized as-
signments to students and grade submissions automatically. Stratum pro-
vides common infrastructure for all courses, while the functionality of specific
assignments (generation and grading) is implemented in separate assignment
packages. The assignment packages must conform to a specific interface so
that they can operate with Stratum. The interface consists of two Bash
scripts, one for generation and the other for grading, that Stratum executes
with certain arguments, for example the file path to the student’s submission
and personal directory.

18



CHAPTER 3. MODERNIZING STRATUM 19

The structure of Stratum is described in [38]: it consists of the kernel,
course instance directories, and the assignment packages. In addition, Stra-
tum depends on third-party software, for example Apache HTTP server for
the web interface. The kernel implements the functionality of the infras-
tructure and the command-line interface for teachers. The kernel is written
in the Python and Bash languages. The course instance directories, stored
outside the kernel in the file system, store the data of a course, for exam-
ple students and their submissions. The course instance also contains the
assignment packages used in the course as well as the web templates of the
course.

The common infrastructure provided by Stratum includes the following
features [38, 40]:

• accepting and storing submissions;

• grading submissions using the grader program in the assignment pack-
age;

• storing the grading results, i.e., points and feedback;

• generating new assignments for a student using the generator program
in the assignment package;

• regenerating an assignment for a student after she has submitted too
many times if the teacher has enabled regeneration;

• allowing teachers to inspect, regrade, or manually grade submissions;
and

• displaying statistics about submissions to the teacher.

Students access the Stratum assignments from a course web page in a
Stratum server or from a Moodle course page, as explained in [40, 41]: Stra-
tum is accompanied by a Moodle plugin that is installed in a Moodle site
and Stratum itself has an HTTP interface that the Moodle plugin uses to
connect to Stratum. With the Moodle plugin, students see Stratum assign-
ments embedded in a Moodle course even though the automated assessment
is performed outside Moodle in the Stratum server [40, 41].

3.1.1 Problems of Stratum

The goal for this thesis was to modernize Stratum. Stratum has multiple
issues that justify such need for modernization. These issues are identified
in the following analysis.



CHAPTER 3. MODERNIZING STRATUM 20

First, the web architecture of Stratum is clunky. The core of Stratum
is implemented in Python and Bash, while the web component is written in
PHP and depends on an HTTP server, such as Apache, to run the PHP code.
The PHP code must query the Stratum core for all Stratum functionality
and user data, which is implemented by executing subprocesses. This makes
developing the web interface awkward for the following reasons. The Python
code must implement executable programs for all functionality used by the
web interface and this implies building a command-line interface for each
feature required by the web interface. The Python code can only send user
data to PHP through the standard output stream of the subprocess, which
implies a textual format for the data in contrast with the more complex
data structures available in Python. If whole Stratum were implemented in
Python, these problems would not exist.

Second, the web user interface of Stratum is too simplistic and its usability
could be improved. Due to the web architecture, it is difficult to add new
content to the Stratum web pages, which hinders the development to improve
usability.

Third, Stratum does not employ an HTML template engine. Instead,
it writes personalized web pages for each student separately and stores the
HTML files in the file system. Using a template engine could simplify the
implementation.

Fourth, some parts in the Stratum kernel are implemented in Bash for
historical reasons. The Bash components could be implemented in Python
like the rest of the kernel. It would improve the interoperability of the code
components since Bash can only execute Python code via subprocesses, which
leads to the same problems as in the web interface. In addition, file permis-
sions in the operating system may complicate the execution of subprocesses.
Stratum has been deployed in a way that uses the user accounts of the op-
erating system to separate the web server process and data from different
courses as an additional layer of protection. In order to enable the necessary
subprocesses, the file system permissions have to be set carefully; otherwise,
the system malfunctions.

Fifth, some parts in the Stratum kernel could be rewritten and reorga-
nized in order to improve code reusability and to avoid duplicating similar
functionality in many parts of the code.

Finally, Stratum does not use a (relational) database management system
(DBMS). Instead, all of the course and user data are stored in files in the
file system. Most of the course and user data could be stored in a database,
excluding the contents of submitted files. Using a relational database and
object-relational mapping (ORM) middleware could simplify the code and
accelerate development time.



CHAPTER 3. MODERNIZING STRATUM 21

3.2 Alternative Approaches for Modernization

In the following, we present three different, alternative approaches for the
modernization of Stratum. Only one of the approaches is actually selected
for implementation. All three alternative approaches utilize both A+ and
Moodle, either simultaneously or by offering different alternative user inter-
faces. Requirement 5 in Section 1.1 demands that a Moodle interface be
included, while A+ is included because many courses at Aalto University
have already been built on A+ and many other courses are moving towards
A+ in their e-learning arrangements. Therefore, interoperability with A+ is
desirable.

3.2.1 Common Changes in the A+ Grader Protocol and
MOOC Grader Exercise Service Framework

All alternative approaches share a need to modify the A+ grader protocol in
order to support personalized exercises, which is formalized as Requirement 4.
As the A+ platform is not responsible for producing exercises or exercise
descriptions to users, but exercise services are, it is natural that the exercise
service is responsible for storing data needed in personalized exercises. Hence,
the A+ grader protocol must provide a unique identifier of the user (student)
both when the exercise description is retrieved and when a new submission
is sent for grading. Thus, the exercise service may deliver the personalized
exercise to each user and grade submissions accordingly. Additionally, in
order to support the regeneration of an exercise, the A+ grader protocol
must provide the ordinal number of the submission being graded so that the
exercise service may change the exercise for a user if the user submits more
times than a set threshold. When retrieving the exercise description, the
ordinal number must be incremented by one from the previous submission so
that the state of the exercise description matches the state of the grader when
the next new submission is graded. That is, when retrieving the description,
the ordinal number is the same as for the submission that the student makes
after reading the description.

Alternatives 2 and 3 utilize exercise services in the same fashion as A+.
The MOOC grader exercise service framework needs to be updated to sup-
port personalized exercises. A personalized exercise has a number of different
instances that in practice are files stored in the file system. A course must de-
fine an exercise generator program similarly to grader programs. The genera-
tor is executed offline before the start of the course so that sufficiently many
exercise instances have been created before students access them. Offline



CHAPTER 3. MODERNIZING STRATUM 22

A+ New Stratum Moodle

- stores submissions and 
results
- sends submissions to 
Stratum for assessment

one mode active at a time

A+ mode Moodle mode

- exercise service to A+
- grades submissions

- stores submissions
and results
- grades submissions

- lightweight Moodle plugin
- retrieves content from
Stratum for display
- sends submissions to
Stratum for storage and
assessment

A+ grader protocol Stratum-Moodle protocol

User interface User interface

Figure 3.1: Alternative 1: Independent Stratum

generation is used because the generation may require a lot of time and the
student should not need to wait while opening the exercise description. Long
generation times could also cause timeouts in the HTTP connection. The
generated exercise instance files are made available to exercise description
templates and grader programs so that students receive their personalized
exercise descriptions and their submissions are graded accordingly.

3.2.2 Alternative 1: Independent Stratum

The first alternative, illustrated in Figure 3.1, uses the architecture of old
Stratum as a baseline. The implementation source code is rewritten to im-
prove the quality of the code (addressing Requirement 1 from Section 1.1).
The new implementation uses a modern web development framework, such
as Django1, in order to ease the development and to avoid repeating the web
architecture problems of old Stratum.

The new system has two interfaces that also affect the operation mode:
the system can operate as an exercise service to A+ or as an independent
system that has a user interface embedded in Moodle by using a lightweight
Moodle plugin (a plugin similar to the one for old Stratum). When A+ is
used as the front end, it stores the submissions and their results and sends the
submissions to new Stratum for grading using the A+ grader protocol. When
the lightweight Moodle plugin is used as the front end, new Stratum must
store submissions and their results as well as grade submissions. The Moodle
plugin only displays a student’s submissions and their results by retrieving the
data from Stratum and also forwards new submissions to Stratum for storage
and grading. The Moodle plugin communicates with Stratum using a simple
HTTP-based protocol created for this purpose. A course may not use both
interfaces (A+ and Moodle) simultaneously since there is no synchronization
of the data stored in the two systems (A+ and new Stratum).

1https://www.djangoproject.com/

https://www.djangoproject.com/


CHAPTER 3. MODERNIZING STRATUM 23

Moodle A+ A+ exercise service

- lightweight Moodle plugin
- retrieves content from A+
for display
- sends submissions to A+
for storage and assessment

- stores submissions and
results

- grades submissions

A+ REST API A+ grader
protocol

User interface User interface

Figure 3.2: Alternative 2: New Moodle Interface in A+

Requirement 2 concerning usability is addressed in the user interfaces
of A+ and the Moodle plugin. The A+ platform already has a modern
user interface and the Moodle plugin integrates seamlessly into the familiar
Moodle environment.

The A+ grader protocol needs to be changed as described in Section 3.2.1
in order to support personalized exercises as stated by Requirement 4. The
protocol between Moodle and Stratum is designed with the requirements in
mind. The exercise service framework of the MOOC grader is not utilized in
this alternative. New Stratum may use mostly the same assignment package
interface as old Stratum, thus old assignment packages do not require heavy
changes and Requirement 3 is satisfied. The assignment package grader could
write points granted for the submission into the standard output stream
instead of a file since new Stratum stores data in a relational database instead
of recording such information into files.

3.2.3 Alternative 2: New Moodle Interface in A+

The second alternative, illustrated in Figure 3.2, emphasizes A+ more than
the first alternative: A+ is either used directly as a front end or as an
intermediary to a lightweight Moodle plugin. If Moodle is used as the front
end, the Moodle plugin communicates with A+ so that the plugin retrieves
content needed in the user interface from A+ and sends submissions to A+
for storage and grading. The A+ platform stores the submissions and grading
results and forwards the submissions to an exercise service for assessment. To
support the Moodle plugin, the REST API in A+ needs to be expanded so
that Moodle can access exercise descriptions, submission results, and course
exercise configurations from A+ and submit new solutions to A+ for storage
and grading. (The A+ REST API did not support all of these requirements
when this Master’s thesis project was started. The REST API has since then
been under heavy development for other reasons than Moodle integration.)



CHAPTER 3. MODERNIZING STRATUM 24

Moodle Exercise service A+

- Moodle plugin replicates
A+ functionality
- stores submissions and
results

- grades submissions - stores submissions and
results

A+ grader
protocol

A+ grader
protocol

User interface User interface

Figure 3.3: Alternative 3: Moodle Replicates A+

The changes given in Section 3.2.1 are needed in order to support per-
sonalized exercises. In this alternative, the old Stratum is not utilized as a
component in the system besides the assignment packages that are ported to
the MOOC grader format so that they can be run in an exercise service. Re-
quirement 3 is satisfied as the porting is estimated to be feasible: the MOOC
grader can run arbitrary grader programs as subprocesses similarly to Stra-
tum. Requirement 1 is realized by abandoning the old Stratum code base
and relying on A+. User interfaces of the Moodle plugin and A+ address
Requirement 2.

3.2.4 Alternative 3: Moodle Replicates A+

The final alternative, illustrated in Figure 3.3, treats A+ and Moodle equally:
Moodle plugin implements the same functionality that A+ has and thus
Moodle communicates directly with exercise services using the same grader
protocol as A+. Moodle and A+ do not connect to each other via a network,
hence there is no synchronization between them. A particular course may use
only one front end at a time, Moodle or A+. The front-end system is respon-
sible for storing submissions and results as well as forwarding submissions to
an exercise service for assessment using the grader protocol.

The changes in Section 3.2.1 apply to this alternative as well in order
to realize Requirement 4 concerning personalized exercises. The assignment
packages of old Stratum are ported to the MOOC grader format. Require-
ments 1, 2, and 3 are satisfied in the same fashion as in Alternative 2.

3.3 Justifications for the Selected Approach

The selected alternative actually implemented in this thesis is the third one.
Alternative 3 supports both A+ and Moodle as front ends and utilizes the
same grader protocol in both cases. This allows the same exercise services



CHAPTER 3. MODERNIZING STRATUM 25

to operate with both A+ and Moodle even simultaneously, even though a
single course may utilize only one front-end system at a time. The MOOC
grader exercise service framework and the grader protocol are extended as
explained in Section 3.2.1 in order to support personalized exercises. This
implies that using personalized exercises is not tied to a specific front-end
system as long as the front end implements the updated grader protocol.

The first alternative is not chosen due to two reasons. First, the A+ and
Moodle modes utilize different protocols and second, new Stratum would have
to implement A+ functionality (storing submissions and results) to operate
with Moodle, while that functionality would not be required with A+. This
approach seems too complicated and redundant.

The second alternative is inappropriate because using the new Moodle
interface in A+ would turn A+ into an intermediary that stores data and
forwards submissions to an exercise service for assessment. However, A+
is already a complete platform that manages courses and their exercises as
well as provides a sound web user interface. In general, Moodle is also a
complete platform for managing courses and their content. Having Moodle
as a lightweight front end to A+ that acts as a database and a router to
exercise services does not seem to be a sensible solution in the long run. Each
submission would consume more network bandwidth than in Alternative 3
because there is an additional hop in the network, and moreover, Moodle
would need to query A+ each time a student views her results in Moodle.
The overall system could perform slower than in Alternative 3 due to the
dependence on the network and the large software stacks in Moodle and A+:
each request requires accessing the database and processing the data in both
Moodle and A+. Even though Moodle does not store the submissions, it
still reads user data and course configuration from its database. Finally,
Alternative 2 does not match the role that A+ was originally created for,
which is to use A+ as a platform and a front end to courses that need
specialized tools for automatically assessed exercises and for other kinds of
exercises, such as algorithm visualizations [32]. The REST API in A+ is
available so that it is possible to integrate other specialized systems to A+
that depend on the data in A+ [32]. Alternative 2 would utilize A+ and its
REST API in a way that does not match their original goals.



Chapter 4

Implementation

This chapter describes the design and implementation of the new, modernized
e-learning platform based on the approach selected in the previous chapter.
The new platform consists of a new Moodle plugin named Astra and the
upgraded MOOC grader framework. The name Astra reflects that it is based
on A+ and Stratum. The Astra plugin is compatible with MyCourses and
any other Moodle installation. This chapter begins with a high-level view
of the features of the new platform in Section 4.1. Section 4.2 describes the
implementation of Astra and Section 4.3 covers the MOOC grader. Finally,
Section 4.4 illustrates the most crucial functionality of the platform by an
example: accepting and assessing submissions.

4.1 Features of the New Platform

Moodle takes the role of A+ via a new Moodle plugin named Astra and
replicates necessary functionality from A+. In order to ensure that the As-
tra plugin is compatible with A+ and the MOOC grader, it follows the same
content structure and grading semantics as A+. That is to say, Astra orga-
nizes learning objects, either chapters or exercises, into exercise rounds and
each learning object also belongs to a category that organizes learning ob-
jects in the course and computes the course total points. Like A+, the plugin
displays exercise descriptions to students retrieved from an exercise service
using the A+ grader protocol. It accepts and stores submissions to exercises
and sends them to the exercise service for assessment. Both synchronous and
asynchronous exercises are supported, i.e., the exercise service may either as-
sess the submission immediately or enqueue a task for execution at a later
time. Astra uses the extended version of the grader protocol.

To summarize, the Astra plugin includes the following basic features that

26



CHAPTER 4. IMPLEMENTATION 27

closely follow the functionality of A+:

• organization of content: exercise rounds, exercises, chapters, and cate-
gories;

• display of exercise descriptions;

• acceptance and storage of submissions to exercises;

• extended A+ grader protocol used to communicate with exercise ser-
vices;

• presentation of feedback and results for graded submissions; and

• limitation of submissions based on the deadline of the round and the
number of submissions allowed in the exercise.

Furthermore, like A+, Astra has multiple features for teachers specifi-
cally. Teachers may give personal exceptions to students if it is necessary for
some students to exceed the limitations of the deadline or the number of sub-
missions allowed, for example due to a sick leave. Astra supports importing
course configuration from the MOOC grader so that setting up the course
in Moodle requires no effort. Teachers may also manually set up the course
configuration in Astra, however, the automatic setup based on the MOOC
grader configuration is preferred because manual changes in the configuration
performed in the Astra user interface are not automatically transferred to the
configuration file in the MOOC grader server. Teachers may export all of
the course data related to Astra exercises and download it to their computers
for further processing1: the students’ results in the exercises are available in
a machine-readable JSON (JavaScript Object Notation) format and could
be used to compute final grades in the course, while the content submitted
in the exercises is also available if the teacher wishes to run some kinds of
batch jobs on all the submissions. The submitted content includes files and
other data entered in forms, e.g., in text fields and checkboxes. Teachers
may browse the submissions received in exercises and inspect their contents;
moreover, they may modify the assessment and add feedback in addition to
the machine-generated feedback. Students receive Moodle messages about
new manual assessments; the message notifications are also sent by email if
the user has enabled it in her messaging settings. Astra can automatically
grant non-editing teacher privileges to course assistants if their student num-
bers are listed in the MOOC grader configuration. Assistants require the

1The A+ platform supports the export of course data as well, however, in a different
format from Astra and the user interface is still under development at the time of writing.



CHAPTER 4. IMPLEMENTATION 28

privileges for inspecting and manually assessing submissions in the course.
Finally, teachers may easily send a large batch of submissions to the exercise
service for new assessments if, for example, there has been an error in the
grader. The teachers’ functionalities in the Astra plugin are summarized as
follows:

• deadline and submission limit deviations (personal extensions in spe-
cific exercises);

• automatic course setup from the MOOC grader configuration;

• manual configuration of exercise rounds, learning objects, and cate-
gories;

• export of course data: results and submitted form contents in JSON
format, and submitted files in a ZIP archive;

• listing and inspecting submissions;

• manual assessment: feedback to a submission from a teacher with Moo-
dle notifications to the student about new feedback; and

• mass regrading: sending a batch of submissions to the exercise service
for new assessments.

The upgraded MOOC grader exercise service framework has naturally all
of the previous features that it had before this thesis project was started.
To summarize, the MOOC grader provides a platform for exercise services:
a course only needs to implement its own grader programs and write a con-
figuration file to have a fully functioning exercise service. The course con-
figuration can be imported to Astra or A+ from the MOOC grader so that
it is easy to set up the front-end system. In this thesis project, the MOOC
grader was extended to support personalized exercises. A personalized ex-
ercise requires a generator program that can generate one instance of the
exercise, which is stored in files in the file system. The teacher or a server
administrator generates a number of exercise instances before the start of
the course by running a new command called pregenerate_exercises in
the command-line of the MOOC grader server. When a student opens an
exercise description, she is connected to one exercise instance. If the exercise
is configured to regenerate the instance after a student has submitted too
many solutions (the threshold is also set in the configuration), the student’s
instance is switched to another one.



CHAPTER 4. IMPLEMENTATION 29

Figure 4.1: A course page in MyCourses. It shows the Astra setup block
in the bottom left corner and a few exercise round activities numbered from
one to seven.

4.2 Astra

Astra, the Moodle plugin that replicates A+ functionality, is implemented as
an activity module plugin. This means that the plugin is displayed in a Moo-
dle course in the same way as other activities, such as forums. Additionally,
the module plugin is bundled with a small block plugin that adds a small
link box to the sidebar of a course. The box is only visible to teachers as the
links point to administrative functionalities. The administrative functions
are implemented in the module plugin, however, the block plugin is needed



CHAPTER 4. IMPLEMENTATION 30

Figure 4.2: Astra exercise round page in MyCourses (without course naviga-
tion bars). The course staff column is not shown to students.

to provide teachers easy access to the functions from the Moodle course page.
Figure 4.1 illustrates a course page in MyCourses with the Astra setup block
and a few Astra activities, exercise rounds numbered from one to seven. This
example course is based on the course Principles of Algorithmic Techniques
at Aalto University.

One Astra activity instance represents one exercise round. This implies
that the Moodle course page lists one activity for each round. This was
deemed a better design than having each exercise as a separate activity since
the number of exercises could be high. Opening an activity shows an overview
of the round with the user’s total points and a list of the learning objects
in the round. Individual learning objects open in new pages. Figure 4.2
presents the exercise round page in MyCourses: this page opens when the
user clicks one Astra activity in the course page. The student has earned
points in one of the three exercises in the round.

4.2.1 Architecture

Figure 4.3 illustrates the high-level components of the Astra plugin. The
components in the bottom, database and Moodle APIs, form the core of the
plugin as they are utilized by almost all functionality, in particular by all
of the crucial functionality. The user interface is placed at the top as other
components do not depend on it.

Relational database stores all the data of the plugin and is thus a cru-
cial component. Moodle provides database-agnostic APIs for defining the



CHAPTER 4. IMPLEMENTATION 31

User interface
Output API
Mustache templates
AMD JavaScript
CSS, Bootstrap 3
Forms API

Assessment
Receiving and storing submissions
A+ grader protocol

Teachers' functionalities
Automatic setup
Edit course
Inspect submission, regrading and
    manual assessment
Mass regrading
Export course data
Deadline and submission limit
    deviations

Database
Schema definition API
Data manipulation API

Moodle APIs
Access
Backup
Calendar
File
Gradebook
Message
Activity reports & recent activity

Astra

Figure 4.3: Components of the Astra plugin.

database schema and manipulating the stored data, in other words, the
database APIs hide differences in the database management systems sup-
ported by Moodle so that plugins may operate on any database system.
Astra defines tables for storing the configuration of exercise rounds, learning
objects, and categories. Submissions as well as deadline and submission limit
deviations are also stored in their own tables. In practice a Moodle plugin
uses the database via APIs, however, the importance of the database justifies
distinguishing it from the other Moodle APIs.

Astra utilizes several Moodle APIs. Access API is used for access con-
trol based on Moodle user accounts and capabilities required to perform
tasks. Backup API makes backups of course content that can be restored or
copied to other Moodle courses. Calendar API sets events to the Moodle cal-
endar, which the plugin uses for exercise round deadlines. File API is used to
store files that students submit to exercises. The plugin implements the API
used by Moodle activity reports and the recent activity block so that they
can take submissions to Astra exercises into account. The recent activity
block shows new updates in the course since a user’s last login, in this case
new submissions and newly received asynchronous assessment results. The
Moodle gradebook shows a student’s grades in one location, hence the plugin
fills in the student’s best grades for each exercise and round to the gradebook.
Message API is used to send messages to students when a teacher or assistant
has given feedback to their submission (additional feedback to the machine-



CHAPTER 4. IMPLEMENTATION 32

generated feedback) and/or changed the points of the submission. Users may
choose in their messaging preferences whether message notifications are also
sent by email.

The assessment of submissions is a crucial component in the system. It
consists of receiving and storing the submissions as well as sending them to
an exercise service for assessment. The plugin communicates with exercise
services using the A+ grader protocol. Submissions have different states
when they are being assessed: firstly, they are initialized when they are
received, secondly, they are waiting when they have been sent to the exercise
service but not yet been assessed, and finally, they are ready when Astra has
received the assessment. The submission is set to an error state if the exercise
service fails to assess the submission normally. Submissions in the error state
are counted as normal submissions when the number of submissions is limited
because the submissions should eventually be regraded and thus transitioned
to the ready state. Astra does not start regrading automatically, hence the
teacher must do it manually once the issues in the exercise service have been
resolved. Individual submissions can be regraded from the inspection page
and the mass regrading function may regrade all submissions in the error
state.

Teachers’ functionalities cover operations available to teachers used to
set up and manage courses. The operations access and modify the database,
as they may change course configuration and the assessment of submissions.
These functionalities correspond to the features for teachers introduced in
Section 4.1.

The user interface consists of several subcomponents. Templates define
the content of web pages (HTML) and utilize JavaScript modules written
in AMD (Asynchronous Module Definition) format [1], which is supported
by Moodle. The templates use Mustache template engine [5] as it is the
only template engine Moodle supports. Furthermore, the plugin defines ren-
derable classes as part of the Moodle Output API. The classes prepare the
rendering context for the templates, that is, set values to template variables.
The plugin also uses CSS (Cascading Style Sheets) to define the layout of
the web pages. Particularly, the plugin includes Bootstrap 3 framework [2]
as it is also used in A+ and the MOOC grader, which implies that it is sim-
pler to replicate a similar user interface when the plugin uses Bootstrap 3 as
well. Moreover, the HTML fragments that originate from the MOOC grader
(i.e., exercise descriptions and feedback) use Bootstrap 3 components and
the plugin must be able to display them. Astra includes only selected com-
ponents of the Bootstrap framework because a common base theme in the
Moodle core called “Bootstrap Base” also uses Bootstrap, but unfortunately
the old version 2. The plugin tries to avoid conflicts between the different



CHAPTER 4. IMPLEMENTATION 33

Bootstrap versions; it does not use any JavaScript modules from Bootstrap 3
but instead uses the modules from the version 2. Finally, forms in the user
interface are defined and output using Moodle Forms API.

4.2.2 Code Organization

Figure 4.4 on page 34 presents the organization of the source code of the As-
tra plugin, that is, how the source code is organized into files and directories
in the file system. The figure shows the directory structure and some files;
most files are not shown to avoid unnecessary detail since the directories
already convey the high-level structure. The Astra codebase contains ap-
proximately 15 thousand lines of code, including comments and white space.
The organization is explained in more detail in the following. Some parts
refer to the Moodle cache: updating the cache in production servers requires
increasing the version number of the plugin (in version.php). In a devel-
opment server, the caches can also be forced to clear and rebuild. Many
parts are directly related to Moodle APIs or the structure that Moodle ex-
pects from an activity module plugin: the relevant sections in the Moodle
developer documentation [37] should be studied to understand the APIs.

• amd: front-end JavaScript code as AMD modules, i.e., the format ex-
pected by Moodle. Minified JavaScript modules are located in the
build directory, whereas the original source is in the src directory.
Moodle caches the minified modules. Most modules are derived from
the A+ source code with no or minor changes in the functionality.
The modules are also wrapped in the AMD structure since the original
JavaScript code in the A+ platform does not employ AMD modules.
• assets: CSS style definitions for the front end, including the Twit-

ter Bootstrap 3 framework and some CSS rules derived from A+ (in
main.css). There are a few CSS rules that resolve conflicts between
the Bootstrap 3 rules and the rules from the MyCourses theme as well
as the default Moodle theme (“Clean theme”).
• async: PHP scripts that receive asynchronous assessment from an exer-

cise service. They are part of the A+ grader protocol implementation.
• backup: implementation of the Moodle Backup API.
• classes: PHP class definitions that support class autoloading (no re-

quire/include statements needed to use the classes). Moodle sets the
class autoloading for this directory and expects that subdirectories cor-
respond to PHP namespaces.

– autosetup: implementation of the automatic setup of course ex-
ercises based on the MOOC grader course configuration. The



CHAPTER 4. IMPLEMENTATION 34

astra

amd

assets

async

backup

classes

autosetup

event

export

form

output

protocol

summary

task

urls

*.php (classes for database objects)

db

install.xml
...

lang

pix

teachers

templates

tests

view.php, lib.php, mod_form.php, version.php, ...

Figure 4.4: Organization of the source code of the Astra plugin.



CHAPTER 4. IMPLEMENTATION 35

class parses the JSON-formatted configuration and updates the
database accordingly: it creates new objects or modifies exist-
ing ones. The MOOC grader configurations for exercise rounds,
learning objects, and categories have unique keys that identify the
objects so that existing objects may be updated in the database.

– event: event classes that are a part of the Moodle Event 2 API
and used to add entries to the Moodle logs. Moodle caches the
event classes.

– export: implementation of the export of course data in the teach-
ers’ functionalities. These classes gather course-wide data about
the students’ results and submissions, process them, and output
the collective data in a structured format.

– form: form classes for the user interface that use the Moodle
Forms API. The forms define the fields of the form and the vali-
dation of the input.

– output: part of the Moodle Output API; these classes define the
values of the template variables for rendering Mustache HTML
templates. The renderer class defines which template file is used
to render instances of the output classes.

– protocol: implementation of the A+ grader protocol. The re-
mote page class issues the HTTP requests to exercise services and
parses the responses. The requests are sent using the PHP client
URL library.

– summary: classes that collect an overview of a user’s status and
points in exercises using a minimal amount of database queries.
The data collected by the classes is used in the user interface, more
precisely in the output classes, for instance in the exercise round
page.

– task: classes for the Moodle Task API, which is used to execute
potentially long-running tasks in the background. Astra has only
one task, which is used for the mass regrading of submissions.

– urls: class that defines the URLs of the Astra plugin in one place;
the URLs correspond to the file paths of PHP scripts. If a file path
must be changed, updating the reference to the URL in other parts
of the code requires only updating the file path in this class.

– Classes directly under the classes directory represent the database
relations defined by Astra, for instance, exercise rounds and learn-
ing objects. One instance of a class corresponds to a tuple (row)
in the database. The classes are used to access and modify tuples
in the database and they also implement the Moodle Gradebook
and Calendar APIs.



CHAPTER 4. IMPLEMENTATION 36

• db: a directory that holds files that are used by many Moodle APIs
particularly during the installation and upgrade of the plugin.

– access.php: defines capabilities that are used in access control
with the Moodle Access API. A page or function of the plugin may
require that the user has a certain capability in order to proceed,
otherwise the access is denied.

– install.php: installation procedure for the plugin that is exe-
cuted after installing the database tables. Uses the Moodle Up-
grade API.

– install.xml: defines the database schema of the plugin. The API
in Moodle for defining database schemas in a database-agnostic
way is called XMLDB.

– messages.php: declares message providers and types for the Moo-
dle Message API. Astra declares only one message provider for the
notification about new manual assessment and feedback in a sub-
mission.

– uninstall.php: uninstallation procedure that is executed before
Moodle deletes the database tables of the plugin.

– upgrade.php: upgrade procedure for modifying the database schema.
This is needed if the database schema is changed after the plugin
has been deployed and installed in production servers.

• lang: defines strings for the user interface with the Moodle String API.
Moodle caches the strings. The strings may be localized to several
languages, although Astra includes only English strings. Each string
includes a key and the actual string content; the plugin retrieves strings
using the key and Moodle selects the language according to the user’s
preferences.
• pix: icon for the Moodle activity that is displayed in the course page.
• teachers: PHP scripts for the teachers’ functionalities described ear-

lier. The scripts are mostly part of the front end for the functionalities,
while the back end is implemented in the classes directory.
• templates: Mustache HTML templates that are a part of the Moodle

Output API. Most of the Astra-specific components in the user inter-
face are defined in the templates. The majority of the templates are
derived from A+ templates. However, A+ as a Django application
utilizes a different template language than the Mustache language in
Moodle, hence the templates from A+ must be manually converted to
the Mustache format.
• tests: unit tests based on the Moodle Testing API, which is built on

the PHPUnit framework.



CHAPTER 4. IMPLEMENTATION 37

• Most of the PHP scripts directly under the astra directory corre-
spond to pages in the user interface. For example, exercise.php and
submission.php are used for the exercise description and submission
feedback pages, respectively.
• view.php: required by Moodle and used to display one instance of the

activity. Astra uses the page to present an overview of the exercise
round.
• lib.php: defines functions that Moodle requires from all activity mod-

ule plugins.
• index.php: Moodle expects this script to list all instances of the ac-

tivity in the course. Astra utilizes it to show an overview of the course:
all exercise rounds, exercises, and categories with the user’s current
points.
• mod_form.php: defines a form that is used to create or edit activity

instances, in this case exercise rounds. Required by Moodle. It is
not recommended to add exercise round activities in the same way as
Moodle activities are normally added to a course, which would be from
the “add activity” menu in the course front page with editing mode
turned on. Since categories and learning objects can only be added in
the teachers’ administrative pages, accessed from the Astra setup block,
it is recommended to modify exercise rounds from the same place.
• version.php: defines the version number of the plugin and its de-

pendencies on other plugins and the Moodle platform. Required by
Moodle.

4.2.3 Database Schema

Moodle utilizes a relational database and provides a database-agnostic API
for defining the database schema of a plugin: for installation, the schema is
defined in XML format, and for post-installation upgrades, the modifications
for the schema must be defined in PHP code using the Moodle Upgrade API.
This section presents the database schema of the Astra plugin. Since most
of the Astra functionality is based on the A+ platform, the schema has
similarities with that of A+. However, there are also differences because the
platforms are not identical.

Figure 4.5 on page 38 illustrates the entity-relationship (ER) model of the
Astra plugin. While there are several different notations for ER diagrams,
the notation described in [49, pp. 120–151] is used in this thesis. However,
there are some caveats. First, only a few of the attributes for each entity
set are shown in the diagram so that it is more readable and fits on a single
page. Second, since not all attributes are shown in the diagram, keys are



CHAPTER 4. IMPLEMENTATION 38

Figure 4.5: Entity-Relationship diagram for the Astra plugin.



CHAPTER 4. IMPLEMENTATION 39

not denoted either. Third, the diagram uses a different arrowhead than
[49] for referential integrity constraints: the original source uses a rounded
arrowhead for many-one relationships from E to F that require that the
entity in F related to an entity in E exists, but the diagram uses a sharp,
open arrowhead instead. The many-one relationships without any referential
integrity constraint (“at most one entity”) use the same black arrowhead as
the source. Finally, the diagram excludes an entity set for certain course
configuration options for space reasons.

The ER diagram in Figure 4.5 presents the relationships between the
different types of content supported by Astra. A course consists of exercise
rounds that have their own opening and closing times. A round belongs
to a course that must exist in the database (the used arrowhead implies
referential integrity). A round consists of learning objects that each have
their own service URLs and names. The learning objects have an attribute
order so that they may be displayed in the correct order in the user interface.
The objects may be optionally organized into a hierarchy so that an object
has child objects that are listed under the parent object. Learning objects are
either exercises or chapters. There are no “plain learning objects” in Astra
that would be counted as learning objects but would not have a subtype,
exercise or chapter. When a chapter page embeds exercises, the exercise
objects must be set as children to the chapter object. Each learning object
also belongs to a category, while each category belongs to a course. The
Astra plugin does not model courses as the Moodle core already does that.

Submissions store the time of reception and eventually the results of the
assessment. A submission is made by a single user to a single exercise.
Deviations are either deadline deviations or submission limit deviations, i.e.,
they extend the deadline by a certain time or the maximum allowed number
of submissions, respectively. A deviation ties one user and exercise to the
deviation rule, and a user may have only one deviation rule of a subtype active
in one exercise. The deviation subtypes, deadline and submission limit, do
not exclude each other regarding the referential integrity constraint, i.e., a
user could have one deviation rule of both types in the same exercise.

Moodle has a few restrictions on the relational database schema. Even
though Moodle supports defining foreign keys (FK) in the XML schema,
Moodle ignores referential integrity constraints in the database and hence,
the database management system does not verify whether the data violates
such constraints. Each relation must have an id attribute as the primary key
(PK) even if other attributes could form the primary key. The id attribute
is an integer and incremented serially. The name of each relation must begin
with the name of the plugin in lowercase. For other plugin types than activity
modules, the names would also include the plugin type. The main relation



CHAPTER 4. IMPLEMENTATION 40

of the plugin must be named astra, based on the plugin name, and it must
store the instances of the activity. Since Astra represents exercise rounds as
activities in Moodle, the relation astra stores the exercise rounds. The main
relation in an activity module is expected to have certain other attributes
as well: course is a foreign key to the course relation defined in Moodle
core, name defines a name for the activity instance, timemodified holds a
timestamp of the last modification, intro and introformat store a description
of the activity instance and its format code (usually HTML), and finally,
if grading is involved, attribute grade stores the maximum grade for the
activity. In the case of Astra, storing the maximum available points of an
exercise round is redundant since the maximum points depend directly on
the sum of the maximum points in the exercises of the round. However,
rounds store the maximum points in order to comply with Moodle.

Figure 4.6 on page 41 illustrates the actual database schema of the Astra
plugin, i.e., the defined relations. The conversion from the ER diagram is
rather straightforward: entity sets become relations and many-one relation-
ships become foreign keys in the relations. The arrows in the figure only
visualize the connections between the relations through the foreign keys: the
arrowheads have no special meaning in contrast to the ER diagram. Learning
objects are defined in several tables: each object has a tuple in the relation
astra_lobjects and in one of the subtypes, chapters or exercises. The com-
mon attributes to all learning objects are stored in the parent relation; there
are several of such attributes and this arrangement avoids repeating the at-
tributes in each subtype relation. It is also possible to add new learning
object subtypes as new relations. On the other hand, the relations for de-
viations do not use a parent relation to store the common attributes: there
are only two of them, submitter and exerciseid. Therefore, both relations for
deviations include all attributes that are required for that kind of a deviation
rule.

The schema in Figure 4.6 includes some attributes that have not been
explained yet. The relation astra has status so that an exercise round may
be hidden from students or set to a maintenance state even if the round has
opened according to the opening time. Categories and learning objects may
also be hidden. Attribute remotekey matches the keys in the MOOC grader
course configuration. Exercise rounds have attributes latesbmsallowed, lates-
bmsdl, and latesbmspenalty for the configuration of late submissions: rounds
may accept submissions after the closing time until a separate late submis-
sion deadline. Late submissions may be penalized by reducing a percentage
of the points. The relation for chapters has attribute generatetoc so that an
automatically generated table of contents of the round may be enabled or
disabled. The relation for exercises has gradeitemnumber that is used with



CHAPTER 4. IMPLEMENTATION 41

Figure 4.6: Database schema for the Astra plugin.



CHAPTER 4. IMPLEMENTATION 42

the Moodle gradebook. The exercises of a round have separate grade items in
the gradebook, but they all belong to the same activity instance (the round),
hence the exercises need separate item numbers. The item numbers must
remain unchanged after the initial creation, therefore they are not based on
the ordinal numbers of the learning objects. Exercises also have an option
for limiting the maximum accepted file size of submissions. Furthermore, the
teacher may limit in which exercises the assistants of the course may inspect
and manually assess submissions, assuming the assistants are non-editing
teachers in the Moodle course. This provides finer-grained control over what
the assistants are allowed to do. Submissions have attribute hash for storing
a random string that can not be guessed. It is used in asynchronous assess-
ment so that only the exercise service may post grading results to Astra. A
submission’s status is the state of the submission: initialized, waiting, ready,
or error. Submissions also store the original points and maximum points used
by the grader (servicepoints, servicemaxpoints) before they are scaled to the
maximum points used in the front end. Attribute submissiondata stores the
content of the submission (i.e., data entered in a form), excluding files, and
gradingdata stores potential additional data about the grading. Finally, the
relation astra_course_settings is used for course-wide configuration. It was
excluded from the ER diagram. Attribute configurl saves the URL used in the
automatic course setup based on the MOOC grader configuration. Attributes
modulenumbering and contentnumbering store the numbering schemes used
for exercise rounds and learning objects, respectively, while sectionnum is
used for the Moodle course section in which activity instances are located.
The MOOC grader does not currently employ any kind of API keys for re-
stricting access, however, the attribute was left in the database in case it
could become useful at some point.

4.3 Upgraded MOOC Grader Exercise Service
Framework

The MOOC grader is upgraded to support personalized exercises. A person-
alized exercise must define a generator program that generates new instances,
which are in practice arbitrary sets of files. The files may, for example, con-
tain data or program source code that is given to students in the exercise
description or they may contain hidden data used by the grader, such as a
seed for a random number generator or the correct answer. Each instance
should have the same uniform structure, i.e., the same number of files with
the same names, but the contents of the files may vary. When the MOOC



CHAPTER 4. IMPLEMENTATION 43

grader executes the generator, it is given the path to a directory in which
one new instance should be generated as an argument. The generator could
create the instance randomly, but if the generator should be able to repeat
the same instances at another time, the random number generator could
be instantiated with the path argument given to the generator program so
that each instance can be generated deterministically. The teacher, or a
server administrator that has access to the server, creates a number of ex-
ercise instances before the start of the course via a new Django manage.py
command “pregenerate_exercises” which executes the actual generator
program multiple times (the amount of instances is given as an argument).
Creating the exercise instances is simple for those that are familiar with the
command line. Since the command is part of a Django application, it starts
from the manage.py script, but otherwise the teacher need not know the
Django framework. Each student is assigned an instance, which is explained
in detail later. The MOOC grader is able to identify users with the upgraded
A+ grader protocol.

The exercise description (an HTML document) that a student sees in
the front end is defined as a template in the MOOC grader. The MOOC
grader has default templates that may be used if it is sufficient to fill in
some exercise-specific content via configuration options. A course may also
define its own templates for each exercise. The exercise description templates
may use generated instance files so that the description may include any
necessary data that the student needs to solve a personalized instance of the
exercise. New template variables allow displaying the contents of the exercise
instance files in the exercise description. If it is more appropriate to have
the student download the instance file instead of embedding the file content
in the description, new template variables also allow adding download links
to the instance files. The teacher controls which files may be downloaded in
the exercise configuration.

As with the exercise description templates, the assessment process may
utilize any generated exercise instance files. The instance files may be copied
to the grading sandbox and used during the grading. Assessment (of asyn-
chronous exercises particularly) is configured in the MOOC grader by giving
a sequence of actions: the most common actions are the prepare action, which
is used copy files to the grading sandbox, and the sandbox action, which is
used to run grader programs in the sandbox. The prepare action is extended
so that it has options to copy the generated instance files to the sandbox as
well as files from the personal directory of the user. The personal directory
is an optional feature that may store user-specific files between grader execu-
tions (i.e., different submissions). There is a separate action for copying files
from the grader sandbox to the personal directory. It is recommended that



CHAPTER 4. IMPLEMENTATION 44

Algorithm 4.1 Assignment of an exercise instance to a user.
function select_exercise_instance(submission_number, userid,
exercise)

. The submission ordinal number starts from 1.
. A personalized exercise has a number of generated instances.

N ← number of generated exercise instances
if exercise uses regeneration then

regen_limit← exercise.max_submissions_before_regeneration
instances← list of integers from 0 to N − 1
rand← Random(userid) . Initialize seed
rand.shuffle(instances) . Shuffle the list
idx← trunc((submission_number − 1)/regen_limit) mod N
instance← instances[idx]

else
instance← userid mod N

end if
return instance

end function

exercises are designed to depend only on the generated instance files so that
references to the personal directory can be avoided altogether. Using the
personal directory complicates the grading and makes it more error-prone
since the personal directory stores a state across all submissions and it may
be modified by any grader execution on any of the submissions. Moreover,
the same submission could be regraded multiple times.

In personalized exercises, each student is assigned one exercise instance
based on the student’s user identifier and the number of available instances.
The MOOC grader does not store the mapping of users to instances since
it can always be computed when needed; the upgraded A+ grader protocol
supplies the user identifier. If the teacher has enabled regeneration in a
personalized exercise, the student’s assigned instance is switched to another
one once the student has submitted as many solutions as the set threshold.
Pseudo-code for the assignment of personalized exercise instances and the
regeneration is given in Algorithm 4.1. When regenerating, the instance is
switched in a way that cycles through all possible instances before repeating
previously seen instances and the cycles are different to different students.
This ensures that students may not easily predict to which instance they are
assigned. The cycling of instances is implemented with a random-number
generator that is initialized with a seed based on the user identifier. This
makes the random number generation deterministic and different to each



CHAPTER 4. IMPLEMENTATION 45

1. Student opens 
exercise page

Moodle with Astra plugin

Database
exercises
learning objects
submissions
users

A+ grader protocol
implementation

service URL
submission count
user identifier

MOOC grader
2. HTTP GET service URL 
with parameters uid and
submission ordinal number

View types
stdasync.acceptFiles

Templates
defaults for view types
exercise-specific templates

Configuration
course & 
exercise config
in text files

Personalized
generated 
instance files

3. HTTP response
HTML document
exercise description
with submission form

4. Response to 
student:
exercise page 
with embedded 
description

Figure 4.7: Retrieval of exercise description.

user. The random-number generator is used to shuffle the list of all instances
so that each student receives a different cycle of the instances. The shuffling
must be deterministic for each user so that they are guaranteed to cycle
through all possible instances before repeating previous instances.

4.4 Example: Accepting and Assessing a Sub-
mission

This section illustrates the functionality of the whole system, including both
the Astra plugin and the MOOC grader, when a student submits a new
solution for assessment. The example begins with the student opening the
exercise page in Moodle, which is illustrated in Figure 4.7. In this example,
the exercise is asynchronous as well as personalized and the student prepares
a submission in a file. First, the student opens the exercise page in Moodle
(part 1 in the figure). Moodle reads exercise configuration and user data from
the database, in particular the service URL of the exercise, the user’s identi-
fier, and her current submission count. Moodle begins retrieving the exercise
description from the exercise service by using the A+ grader protocol. The
exercise service runs on the MOOC grader platform. Moodle sends an HTTP
GET request to the MOOC grader with parameters that specify the user’s
identifier (uid) and the ordinal number for the next submission (2). The ordi-
nal number is needed if the exercise uses regeneration and it is incremented
by one from the current submission count so that the exercise description
matches the state of the grader for the next submission. Only the most rel-
evant parameters of the grader protocol are highlighted here. The MOOC
grader receives the HTTP GET request and determines the course and ex-
ercise from the service URL. It reads the course and exercise configurations
and observes the view type and template of the exercise as well as that the



CHAPTER 4. IMPLEMENTATION 46

1. Student 
submits the form
HTTP POST

Moodle with Astra plugin

Database
exercises
learning objects
submissions
users

A+ grader protocol
implementation

File API
stores files

2. Check that the student is 
allowed to submit.
If yes, store the submission.

3. HTTP POST service URL
with parameters 
submission URL, uid, 
ordinal number, and the 
submitted file

MOOC grader

View types
stdasync.acceptFiles

Personalized
generated 
instance files

Configuration
course & 
exercise config
in text files

4. Received a submission to 
asynchronous exercise, 
enqueue a grading task

Queue for async tasks
task saves exercise key, 
submission URL, submission 
directory, uid, and ordinal 
number

6. Later: dequeue task and 
run its actions

7. Execute grader
in the sandbox
output: points & feedback

Sandbox

5. HTTP response
initial feedback: 
submission waiting in the 
queue

8. HTTP POST submission URL
with parameters points and 
feedback9. Store the grading 

results of the submission

10. Student 
refreshes the 
submission 
feedback page 
and sees new 
results

Figure 4.8: Assessment of a new submission.

exercise is personalized. View types define the functionality of an exercise in
the MOOC grader. This example uses a view type that expects submissions
in the form of files and the submissions are assessed asynchronously. The
MOOC grader renders the exercise description template, taking into account
the generated files of the exercise instance since the exercise is personalized.
It responds to the HTTP request with an HTML document that contains the
exercise description and a submission form (3). Moodle receives the exercise
description with the form and embeds them into the exercise page that also
includes other standard components of a Moodle page, such as navigation.
The student receives the exercise page in the HTTP response to her original
HTTP request for opening the exercise page (4).

The student views the exercise description and completes her solution
by modifying a file on her computer. For example, the exercise could be
a programming task and the student writes program source code to a file.
Figure 4.8 illustrates the submission and assessment. The student is ready to
submit her solution: she selects the file in the submission form on the exer-
cise page and submits the solution to Moodle (part 1 in the figure). Moodle
checks that the student is allowed to make new submissions to the exer-
cise: the exercise round may have a deadline and the exercise may limit the
number of allowed submissions (2). The submission is accepted and Moodle
stores it in the database; the submitted file is handled by Moodle File API.
Moodle sends the submission to the MOOC grader for assessment by issuing
an HTTP POST request to the service URL of the exercise (3). The exercise
configuration and user data are read from the database. The POST request
includes parameters: submission URL to which the MOOC grader may asyn-



CHAPTER 4. IMPLEMENTATION 47

chronously send grading results, user’s identifier, the ordinal number of the
submission, and the submitted file itself. The MOOC grader receives the sub-
mission and reads the course and exercise configurations. The service URL
identifies the exercise. The view type of the exercise, “acceptFiles”, causes the
MOOC grader to store the submitted file in the file system and to enqueue
a grading task to the queue of asynchronous tasks (4). The MOOC grader
responds to the HTTP request with initial feedback stating that the submis-
sion will be graded at a later time (5). At some point, the MOOC grader
dequeues the grading task (6). The task contains the data needed to assess
the submission: the exercise, the submission URL, the path of the directory
holding the submitted file, the user identifier, and the ordinal number of the
submission. The MOOC grader executes the grading actions specified in the
exercise configuration: in this case, the prepare action copies the grader pro-
gram and the personalized instance files to the submission directory, which
is then copied to the sandbox and the grader is executed safely. The grader
outputs the points and feedback for the submission (7). The MOOC grader
deletes the submission directory and sends an HTTP POST request to the
submission URL with the points and the feedback (8). Moodle receives the
grading results and verifies that they originated from the exercise service by
checking the IP (Internet Protocol) address. Moodle updates the submis-
sion in the database with the new points and feedback; the submission URL
identifies the submission (9). The student may refresh submission feedback
page at some time and view the new feedback and points for the submission
(10).



Chapter 5

Evaluation

This chapter evaluates the new e-learning platform that consists of the Moo-
dle plugin, Astra, and the upgraded MOOC grader framework. Section 5.1
begins by assessing the new platform against the requirements set for the
project. Section 5.2 estimates whether the new system is dependent on other
platforms and how easily this level of integration could be transferred to
other platforms. Finally, Section 5.3 discusses the relationship and differ-
ences between Moodle and A+.

5.1 Requirements

The requirements for this thesis project were set in Section 1.1. This section
evaluates the realization of each requirement. Requirement 1 addresses
the maintainability of the platform as well as its flexibility for future devel-
opment. The new platform does not employ any code from the old Stratum
infrastructure, hence no code quality issues are directly transferred from the
old platform to the new one. The new platform consists of two components,
Astra and the MOOC grader. First of all, the underlying platforms, Moodle
and Python Django web framework for the MOOC grader, are open source
and in active development. There is no sign of end of life for the underlying
platforms, although previously released versions reach end of life eventually
as new versions surpass them. The MOOC grader has a clean, modular im-
plementation and the upgrade for personalized exercises is implemented as a
new module. The architecture of the Astra plugin is largely determined by
the underlying Moodle framework. The implementation aims at using object-
oriented programming when possible and organizing code into modules. Not
all Moodle APIs support object-oriented programming, particularly the older
APIs do not. Moodle and PHP do not provide a good way for avoiding the

48



CHAPTER 5. EVALUATION 49

repetition of initialization procedures in PHP scripts that correspond to web
pages in the user interface. Such initializations include setting up arguments
(usually HTTP GET query parameters), Moodle navigation items for the
user interface, and querying the database for necessary tuples. The Moodle
Data manipulation API for accessing records in the database is rudimentary:
there is no object-relational mapping and the Moodle API supports only
simple queries that, for example, retrieve records from a single table with
a filter that compares the equivalence between a column value and a given
argument. Any more complex query must be written in SQL (Structured
Query Language), which arguably makes the code harder to read.

The usage of the Bootstrap front-end framework introduced unexpected
issues that affect the quality of the code by a small amount. The A+ platform
and the MOOC grader utilize Bootstrap 3, hence the Astra plugin uses it as
well to retain compatibility. However, Moodle default themes as well as the
MyCourses theme extend a base theme that is dependent on the outdated
version 2 of Bootstrap. In order to avoid conflicts between the Bootstrap
versions, Astra includes only a subset of the CSS rules in Bootstrap 3 and
uses JavaScript from the Bootstrap version 2 in the Moodle core. In addition,
Astra includes a little less than 20 CSS rules for fixing visual defects in
the user interface that are caused by conflicts between the CSS rules from
multiple sources. Since Astra partially includes the Bootstrap 3 framework, it
may be sometimes necessary to upgrade the Bootstrap version, i.e., download
the latest version from the Bootstrap web site. The web site has a tool for
selecting the components included in the download, which also includes a
configuration file that lists the selected components; hence, upgrading the
partial Bootstrap framework in Astra is simple.

The development of the Moodle plugin requires knowledge of Moodle, its
plugin architecture, APIs, and relational databases as well as knowledge of
the A+ architecture and grading protocol. The Moodle developer documen-
tation usually provides sufficient information about the APIs, however, it
is sometimes necessary to study the Moodle source code. To conclude, the
MOOC grader fully realizes Requirement 1, while the Astra plugin has some
issues in this regard, however, they are related to the Moodle platform and
cannot be completely resolved. Thus, Requirement 1 is realized.

Requirement 2 concerns the usability of the system. From a student’s
perspective, all course content is integrated in Moodle seamlessly in the nor-
mal user interface. Students should be accustomed to interacting with Moo-
dle courses and activities, therefore they find Astra exercise round activities
as easily in the Moodle course. Furthermore, students can view their grades
in the Moodle gradebook as with any other graded activity. Key elements
in the Astra user interface have been replicated from A+, such as the view



CHAPTER 5. EVALUATION 50

of an exercise round with the current points (shown in Figure 4.2), or the
layout of the exercise description page that has a dropdown menu for all the
submissions and information boxes in the sidebar about the deadline and
other metadata. The content of the exercise description is exercise-specific
and originates from the exercise service, hence its usability is out of scope for
this thesis, which concentrates on the platform, not the exercises themselves.
One problem in the user interface is that it does not highlight the index pages
of activities well. In general, activity modules must have an index page that
lists the instances of the activity in the course. Astra uses the index page
to show an overview of all exercise rounds with the points similarly to the
page of a single round. The Moodle course pages do not have links to the
index pages by default unless the course has enabled the standard “Activities
block”. Even with the block enabled, the links are easily missed in the side-
bar of the page. The teacher could manually add a link to the index page
somewhere in the main content of the course page so that students find it
more easily.

From a teacher’s perspective, most of the Astra user interface is again
replicated from A+. The A+ user interface has been found to be functional
and Astra utilizes it as a baseline rather than creating something new for
the same use cases. The replicated pages include, for example, the pages for
inspecting and manually assessing submissions. Teachers need to manually
add the Astra setup block to the Moodle course once at the beginning of a
course in order to reach the Astra setup pages easily. Setting up the exercises
in Moodle is effortless if the exercise service utilizes the MOOC grader as the
teacher only needs to enter a URL to run the automatic setup of the course.

Usability from a teacher’s perspective is not limited to just the Astra
plugin as the teacher needs to set up the exercise services as well, typically
in the MOOC grader. The MOOC grader does not have a user interface
for creating course content; instead, teachers write text files that define the
configuration. The configuration files could be created directly in the MOOC
grader server, or more preferably, in a Git repository so that the course may
be updated via Git operations. For example, if the central Git repository is
in a Gitlab server, the teacher may set a webhook in Gitlab so that Gitlab
notifies the MOOC grader when new updates are pushed to Gitlab. The Git
manager in the MOOC grader then pulls the updates from Gitlab. Using
Git is convenient for teachers that have already previously learned Git, and
it simultaneously provides version control of the course. The course con-
figuration files have their own structure that the teacher must study from
the MOOC grader documentation. Generally, the configuration consists of
key-value pairs: the required keys and accepted values are listed in the doc-
umentation. Furthermore, teachers need to develop graders for the exercises



CHAPTER 5. EVALUATION 51

of the course, i.e., the programs that grade a submission automatically and
generate feedback for it. The creation of new exercises requires programming
skills as the MOOC grader can not create new grader programs by itself. In
order to test the graders during their development, a teacher may install the
MOOC grader in her computer and submit solutions directly to it without
going through the hassle of installing the actual front-end system (Moodle or
A+). Finally, teachers may create the content for chapters (learning objects
with study material) in the MOOC grader as well. Chapters can be written
directly in HTML or in RST (reStructured Text) format that is compiled to
HTML afterwards. The latter is more human-readable as it has less syntactic
markup cluttering the content. Embedding exercises into chapters requires
a small amount of special markup.

To conclude, the user interface of the Astra plugin is more polished than
the rudimentary web user interface of the old Stratum platform. For teach-
ers, the Stratum Moodle plugin has a similar automatic setup feature as
Astra. The course configuration in the MOOC grader is based on files like in
Stratum, though the YAML-based (YAML Ain’t Markup Language) format
in the MOOC grader is more human-readable. When developing grader pro-
grams, testing them is easier in the MOOC grader as the MOOC grader can
be easily installed in a personal computer, whereas Stratum can not be sep-
arated from its whole software stack, that is to say, making test submissions
from a web browser requires web server software with a PHP interpreter in
addition to Stratum. Teachers require some technical skills to utilize the
MOOC grader effectively, however, if they are to program graders them-
selves, writing configuration files or using Git should be simple compared to
that. Thus, the new platform has improved the usability of the system for
both students and teachers, and Requirement 2 is realized. Admittedly, the
platform has not undergone any formal usability testing because it does not
fit into the scope of the thesis.

Requirement 3 demands that assignment packages from Stratum must
be portable to the new platform with reasonable effort, while Require-
ment 4 addresses the support for the same basic functionality that Stratum
has and, in particular, personalized exercises. The porting of Stratum assign-
ment packages, i.e., grader and generator programs, is interleaved with the
support of personalized exercises. The assessment and generation of person-
alized exercises (or assessment of normal exercises) are implemented in the
upgraded MOOC grader framework. The MOOC grader sets few limitations
on the structure of the grader or generator programs: they may be imple-
mented in any programming language and the invocation of the program
may include command-line arguments set in the course configuration. Stra-
tum requires that the programs are written in Bash, though the Bash scripts



CHAPTER 5. EVALUATION 52

may invoke other subprocesses. Stratum also allows setting arguments in
the configuration. Grader programs in the MOOC grader must output the
points and feedback of the assessment by printing them to the standard out-
put stream, whereas Stratum expects them to be written to files. Stratum
also allows the grader to produce additional files that are stored in the stu-
dent’s personal directory, so that the home page of the student could link to
them. These files could be, for instance, generated images that complement
the textual feedback. The MOOC grader does not currently support such
additional files in the feedback. The upgraded MOOC grader supports per-
sonal directories for students in which the grader could store files, however,
the directory is not accessible from the web, which would be required when a
feedback HTML page links to generated images. The MOOC grader is able
to disseminate files to the web, but currently the grader programs may not
add or modify such files in the server that could be disseminated to the web.
However, teachers using Stratum have rarely utilized such additional files in
the feedback and hence, the feature has low priority.

The MOOC grader supports generator programs that create one exercise
instance in a given directory. The instance may consist of several files and the
files are never modified after creation. In Stratum, the generators likewise
create one instance at a time but store it directly in the student’s personal
directory in the file system. In contrast to the MOOC grader, the generated
files in Stratum are expected to consist of one file that is displayed to the
student and additional hidden files for the grader. The grader programs may
modify the generated files, but usually they do not. The upgraded MOOC
grader includes a possibility to store personal files for a student after grading
a submission, and the personal files may be utilized in subsequent assessments
of submissions. The use of the personal directory is discouraged, however,
as it was implemented in case it is challenging to port some Stratum assign-
ments to the MOOC grader by only utilizing the initially generated exercise
instance files. Furthermore, the MOOC grader supports the regeneration of
an exercise by switching the instance assigned to the student to another one.
The MOOC grader generates all exercise instances beforehand, while Stra-
tum executes the generator at the time when a student’s assignment must
be regenerated. The outcome is the same, thus regeneration is supported in
the MOOC grader.

The course Principles of Algorithmic Techniques (PAT) was the first one
that was ported from the old Stratum to the MOOC grader. The porting
was easily accomplished, as it only required the creation of new configuration
files for the MOOC grader and small modifications in one Python script that
is used to start all graders in the course. The modification concerned the
part that outputs the feedback and points for the submission: they must



CHAPTER 5. EVALUATION 53

be printed to the standard output stream instead of writing to files. The
porting of PAT was straightforward because the graders for all exercises share
a uniform structure and they are thus started by the same script that is also
responsible for outputting the results. In addition, there were no hidden
dependencies on the old Stratum platform, such as a grader program that
assumes that the file paths given in arguments follow a specific pattern used
in Stratum. We conclude that Stratum assignment packages are portable to
the MOOC grader format with reasonable effort and that Requirement 3 is
fully realized. Likewise, the upgraded MOOC grader supports the grading
and generation of personalized assignments, as well as their regeneration.
The support of other basic Stratum functionality in the new platform is
discussed next.

The features of the Stratum infrastructure that are not directly related
to the assignment packages are implemented in Moodle in the Astra plu-
gin. Most of the Stratum functionalities are supported by Astra in a similar
or identical fashion. Astra accepts and stores students’ submissions, sends
them to an exercise service (the MOOC grader) for assessment, and stores the
grading results. Astra provides the user interface for students for completing
the exercises, and the user interface for teachers to inspect, regrade, or man-
ually assess submissions. However, Stratum can collect overall statistics of a
course and present them in a table. The statistics include for example, the
average number of submissions and the average points in each exercise. Astra
does not have identical statistics, though a teacher may browse through a
list of submissions in an exercise and view the submissions and their results.
A teacher may also export course data in Astra and process the data with
self-written scripts. Advanced processing of course statistics could be imple-
mented in Astra in the future. The statistics feature in Stratum was rarely
used and hence implementing a similar feature in Astra had a low priority.
Furthermore, Stratum has a feature that keeps track of students that sub-
mit before a bonus deadline that is separate from the normal deadline. The
teacher may reward such students by some means, such as additional exam
points; Stratum does not add any bonus points to any assessments. The
bonus feature is not implemented in Astra since it was seldom utilized in
Stratum. A teacher may again process the exported course data from Astra
in order to compute bonus, if necessary. To summarize, Astra supports the
same relevant functionality as Stratum and thus Requirement 4 is realized.

Requirement 5 states that the new platform must enable students to
access assignments directly from Moodle. This is obviously realized by the
Astra plugin. The upgraded MOOC grader supports both Astra and the
A+ platform as front-end systems. Astra integrates seamlessly into Moodle
and a student can hardly notice that the exercises originate from an external



CHAPTER 5. EVALUATION 54

service. If an exercise description has links to images or archives of base code
that are disseminated from the exercise service (which is supported by the
MOOC grader), then the student may see from the links that they refer to
another system. The exercise services are responsible for exercise descriptions
in the A+ architecture, hence Astra or A+ as the front-end system is not
supposed to store parts of the exercise description, such as images. Therefore,
storing and disseminating such files from the exercise service is in accordance
with the architecture even though it reveals to the student that the exercise
is not completely hosted in Moodle.

5.2 Platform (In)dependence

Aalto University decided to a deploy the Moodle-based MyCourses platform
as the official university-wide learning management system (LMS) in 2015.
The decision triggered the search for means to embed Stratum assignments
in MyCourses, which resulted in the first Moodle plugin for the old Stratum
platform. The experiences with the Moodle plugin guided the modernization
of Stratum, the project reported in this thesis. Integration with Moodle
was set as a requirement for the modernization due to MyCourses and the
positive outcomes with the first Moodle plugin. However, MyCourses might
not permanently remain as the official LMS at Aalto. It is hard to predict
how long MyCourses will remain in use and what kind of platform could be
taken into use after it.

The new system implemented in this thesis project replicates the over-
all architecture from the A+ platform: the front-end system is responsible
for the common infrastructure and the implementation of the exercises is
outsourced to exercise services. The exercise services are simplified since
they may concentrate exclusively on the assessment of submissions (and the
generation of personalized exercises). The front end communicates with the
exercise service using the A+ grader protocol. The MOOC grader frame-
work provides the infrastructure for exercise services, including for example
the implementation of the grader protocol, which further simplifies the im-
plementation of exercises. Exercises built on the MOOC grader framework
may operate with any front-end system that implements the grader protocol,
hence the exercises are independent of the platform used as the front end.

The Astra plugin integrates A+ style exercises in Moodle in such a way
that the user does not notice any difference between accessing normal Moodle
content and Astra exercises: the Astra exercises are seamlessly embedded in
Moodle like any other Moodle content and the user is oblivious of the dis-
tributed architecture of the platform. The platform leaves an impression



CHAPTER 5. EVALUATION 55

that the exercises are implemented inside Moodle even though they reside in
an external exercise service1. This is the high degree of integration that the
Astra plugin implements in Moodle. Astra is not a stand-alone system: it
can not operate without Moodle. The implementation of Astra shows that
it is thoroughly dependent on Moodle: Astra is built on Moodle APIs and
structured around requirements that Moodle sets for plugins. Reimplement-
ing Astra without any Moodle dependencies would be an arduous task. Of
course, the A+ platform is already an independent, stand-alone system that
operates on its own without any other LMS, such as Moodle.

Should Aalto University decide to replace MyCourses with a different
platform, possibly with another well-known LMS besides Moodle, the inte-
gration of Astra exercises in the new platform requires that the new platform
implements the A+ grader protocol and other necessary functionality, such
as the storage of submissions and grading results. The new platform should
also provide the user interface for students and teachers: students access
exercises and submit their solutions, while teachers manage the course and
monitor the students’ work. The replication of all A+ functionality is a
non-trivial task, as this thesis project shows, though depending on the needs
of the target audience, it is not necessary to replicate all of the A+ func-
tionality with every detail. The A+ grader protocol is the crucial component
that is required to retain compatibility with exercise services. Otherwise, the
new platform does not have to strictly comply with the A+ implementation.
It could even be possible to separate some of the functionality: the front-
end system could communicate with exercise services using the A+ grader
protocol, but outsource the storage of submitted files to another system that
co-operates with the front-end system. This example merely shows that there
is room for different kinds of approaches in implementing A+ functionality
in a new platform. Currently, there is no sign of Aalto planning to switch
MyCourses to some other platform, hence we assume that the Astra plugin
could be in active use in MyCourses for at least a few years.

5.3 Moodle versus A+

The Astra plugin does not implement all features of the A+ platform. Group
submissions are supported by A+: students may submit as a group to an

1Section 5.1 noted under Requirement 5 that a student may see links in an exercise
description that refer to the exercise service. Even in that case, it is irrelevant from which
server the student is downloading a file, such as an archive of base code, when the link to
the file is in the exercise description that the student views in Moodle. The student does
not need to navigate outside the exercise description in order to download the file.



CHAPTER 5. EVALUATION 56

exercise and each group member receives the points and feedback for the
submission. Astra does not support groups: students submit to exercises
only individually. Support for group submissions could be implemented in
the future. The A+ platform has a REST API for accessing course data over
a network, whereas Astra has none. The teacher may export course data in
Astra from the user interface; the same data could be offered through a REST
API, but it has not yet been implemented. Moodle has APIs that support the
development of REST APIs in plugins, which should ease the development.
Finally, A+ supports the version 1.0 of the LTI protocol as a tool consumer,
which may be used to, for instance, link to external discussion forums, such
as Piazza. The Astra plugin has no support for LTI, however, the official
Moodle release includes a separate activity module that supports the LTI
version 2.0 (as a tool consumer). Furthermore, there is another third-party
plugin for Moodle that functions as an LTI tool provider [4]. Therefore,
adding LTI support directly to the Astra plugin seems unnecessary since
Moodle already supports it outside Astra.

The Astra plugin is separate from the A+ platform: the two platforms
do not communicate nor co-operate together in any way. Astra is developed
independently, even though it aims at replicating core functionality from A+
so that it is compatible with A+ and particularly the exercise services. The
ultimate goal is that a course could select either one of the front-end systems
and it would work correctly without any special adaptations. However, as the
platforms evolve on their own, there is a risk that they become progressively
different and separated from each other. At any rate, the two platforms do
not directly benefit from each other concerning the development effort: if a
feature is modified in A+ or a new feature is implemented, similar updates
need to be developed in the Astra plugin. Moodle and A+ are implemented
with thoroughly different web server technologies, hence program source code
can not be directly copied from one system to the other. There are now
two systems that offer similar features, however, both require considerable
development effort: the overall required development effort has been doubled.
If all efforts were targeted at a single platform, it would progress faster and
have more features.

The A+ platform is built with Django, a modern web development frame-
work in Python, while Moodle is built with PHP. As a programming lan-
guage, PHP has problems that hinder development, whereas Python and
Django provide a more advanced framework for web development. For ex-
ample, Django has an object-relational mapper that enables the developer to
access the database via Python classes, whereas the database API in Moodle
is low-level and forces the developer to manually write database queries for
any non-trivial query that does more than just retrieves records from a single



CHAPTER 5. EVALUATION 57

table. Python and Django generally offer a higher-level abstraction to web
development that accelerates the development, whereas PHP and Moodle
provide a lower-level abstraction that impedes the development.

Chapter 3 sketched three alternative approaches for the modernization of
the Stratum platform. The selected approach was to replicate A+ function-
ality in Moodle, which separates the two platforms, A+ and Moodle, leading
to increased development effort even though the platforms aim at providing
similar or identical functionality. Chapter 3 presented Alternative 2 that pur-
sued a lightweight Moodle plugin similar to the one for Stratum. The devel-
opment effort of such a plugin is smaller than that of Astra. The lightweight
Moodle plugin in Alternative 2 provides only a user interface and instead of
replicating all A+ functionality in Moodle, it outsources the functionality to
A+ by using the A+ REST API. Implementing a client for a REST API is
simpler than natively implementing the same A+ functionality in Moodle. In
Alternative 2, the Moodle plugin may also benefit from new updates in the
A+ platform as the new functionality could be available in Moodle by just
updating the REST API. Alternative 2 eases the Moodle plugin development
and concentrates the development effort mostly on one platform, A+.



Chapter 6

Conclusions

E-learning encompasses any kind of learning or education that is delivered
to the learner electronically by using computers or other devices. This the-
sis concentrates on the field of automated assessment within e-learning, i.e.,
the use of computers to automatically grade a learner’s solution for a given
exercise. A few such automated assessment tools have already been devel-
oped at Aalto University, for instance, for programming exercises and visual
algorithm simulations. Stratum and A+ are platforms for running arbitrary
automatically assessed exercises. They provide common infrastructure that
is typically needed in all courses so that implementing new exercises requires
only the development of grader programs, writing the exercise descriptions
(instructions to students), and other materials to students if necessary, such
as base code for programming exercises. Stratum also supports the gener-
ation of randomized or personalized exercises. The A+ platform is newer
than Stratum and utilizes modern web technologies. Many courses at Aalto
have started to use A+, while Stratum has fallen behind with regard to its
technical implementation. However, Stratum supports embedding assign-
ments in Moodle via a Moodle plugin developed for that purpose, which is
important since Aalto University has started to use a Moodle-based learning
management system, named MyCourses.

The main goal of this thesis project was to modernize Stratum so that the
quality of the code and the feasibility for further development are improved,
while still preserving the support for embedding exercises in Moodle. Three
alternative approaches were presented for the modernization: the selected
approach was to replicate A+ functionality in Moodle so that Moodle func-
tions as a front end to exercise services external to Moodle. The exercise
services implement the functionality of specific exercises and they are com-
patible with both Moodle and A+. The front-end system, Moodle or A+,
is responsible for the storage of course data, such as submissions and their

58



CHAPTER 6. CONCLUSIONS 59

results, and the user interface for both students and teachers. In addition,
the existing exercise service framework, known as the MOOC grader, was
extended in this thesis project to support the generation and assessment of
personalized exercises. Therefore, the new platform developed in this the-
sis project that replaces the old Stratum consists of a new Moodle plugin,
named Astra, and the upgraded MOOC grader framework.

The new platform is separate from the old Stratum as the old code base
was not reused. However, the new platform implements similar functionality
so that courses may be ported from Stratum to the new platform. Stra-
tum assignment packages are ported to grader and generator programs in
the MOOC grader, while Astra provides the user interface and teachers’ ad-
ministrative functionalities, such as manual assessment of submissions. The
teacher defines the course configuration in the MOOC grader, which may be
easily imported to Astra for the setup of the Moodle course. Furthermore,
Astra replicates enough of the A+ functionality so that a typical course could
be easily transferred from the A+ platform to Moodle without complications.

In summary, the new platform fulfills the requirements set for the mod-
ernization of Stratum: old courses may be ported from Stratum with feasible
effort, the quality of the new implementation is higher than that of Stratum,
the usability has been improved compared to Stratum, and Astra embeds
exercises seamlessly in Moodle so that students can hardly notice that the
exercises originate from an external service. Each requirement is realized
at least adequately well and the new platform is stable for production use,
i.e., real courses. In addition, the implementation of the exercises has been
separated from the front-end system into exercise services. Should Aalto
University decide to replace MyCourses with another learning management
system, it is possible to embed the exercises in the new system by creating a
plugin that connects to the exercise services using the same grader protocol.

6.1 Prospects for Future Work

There are some features in A+ that are not currently supported by Astra.
Such features could be implemented in the future: they include at least group
submissions and a REST API. Group submissions would allow students to
form groups and submit solutions together if the teacher has enabled groups
in the exercise. The implementation must take into account that

1. students may have different groups in different exercises,

2. the group should be formed before opening the exercise page (retrieving
it from the exercise service) since the exercise may be personalized for



CHAPTER 6. CONCLUSIONS 60

an individual or a group,

3. all group members must be able to view the submission and earn points
from it, and

4. possible deviations should be considered: what if only one group mem-
ber has an extended deadline, then what is the deadline for the group?

Students should probably be restricted to one group per exercise, in which
case switching the group for the exercise is disallowed after the student has
submitted once alone or in a group. Switching groups after submitting could
be abused if a group decides to share its complete solution with others by
forming new groups with other students.

Implementing a REST API in a Moodle plugin is straightforward. Astra
already has a feature for exporting course data, thus the data needed in
the REST API is available. The plugin must define a web service using
Moodle APIs, which concern for example, the expected arguments, return
values, and their types as well as access control restrictions of the web service
[35]. Moodle manages such common procedures once the plugin has declared
its web service functions. The implementation of the actual web service
functionality can be compact (i.e., few lines of code), especially when the
implementation is based on functions already implemented elsewhere in the
plugin.

Section 5.1 discussed code quality issues in the use of the Bootstrap front-
end framework. As long as the Moodle core utilizes the outdated version 2
of Bootstrap and using Bootstrap is required due to the MOOC grader, it is
impossible to circumvent the issues completely. However, if the Moodle core
is updated to utilize Bootstrap 3, the Astra plugin should no longer need
to include its own version of Bootstrap and the extra CSS rules that were
used to fix visual defects could be removed. Furthermore, there are likely
possibilities for improving the user interface and the usability of the Astra
plugin since the system has never undergone any usability testing and we
have not yet had much experience with the system in real courses.

Section 5.1 also stated that the MOOC grader does not support graders
that generate additional files, such as images, to complement the textual
HTML feedback. Currently, there is no location accessible to the web in
which the grader could store additional files during the assessment of a sub-
mission. The HTML feedback can only contain text; images can be added by
linking to images that have been stored in the web beforehand, and by client-
side JavaScript code that creates the image at runtime (e.g., from Base64-
encoded [30] image data that the grader embedded in the HTML document),



CHAPTER 6. CONCLUSIONS 61

an inelegant workaround. Images in the Scalable Vector Graphics (SVG) for-
mat are an exception since they are stored in a textual XML format and
modern web browsers can render them, hence they can be naturally em-
bedded in the HTML feedback. The MOOC grader could be upgraded to
support additional files in the feedback. As the grader programs are usually
executed in a sandbox, they can not directly create files in a permanently
stored directory. A new grading action could be defined for the exercise con-
figuration file that moves files from the sandbox directory to a web-accessible
directory and, in addition, the grader must be able to form URLs to the new
files so that they may be embedded in the HTML feedback.

The Astra plugin could be improved by adding support for statistics and
learning analytics. Their purpose is to provide information about student
performance to the teacher, for instance, the number of submissions students
perform on average in an exercise and how close to the deadline they start
working. The teacher could use such information in the development of the
course and, particularly, the teacher could base decisions on real evidence
instead of guessing or collecting feedback from the students afterwards.

The MOOC grader supports synchronization from a Git repository: when
a developer modifies the course files and pushes the update into a Git server,
the MOOC grader can update itself automatically by pulling the update from
the Git server. However, if the course settings are modified, for example, the
maximum points of an exercise are changed, the Astra plugin does not update
the settings automatically. Instead, the teacher must visit the Moodle course
page and run the automatic course setup in the Astra settings. This step
could be potentially removed in the future so that when the MOOC grader
updates itself from Git, it connects to Astra and instructs it to download the
new course configuration and make changes accordingly.

Teachers are recommended to utilize the MOOC grader for building ex-
ercise services, in which case they create a course configuration file and even-
tually import the configuration to Moodle with the automatic setup. The
Astra plugin also allows the modification of the configuration in the Astra
user interface, however, the changes are not transferred to the MOOC grader.
If the teacher modifies the configuration in Astra and then runs the auto-
matic setup again, the modifications made in Astra are lost and replaced by
the configuration in the MOOC grader. This problem would not occur if the
configurations in Astra and the MOOC grader were automatically synchro-
nized with each other. This matter is related to the Git synchronization in
the MOOC grader discussed earlier since it modifies the configuration there.
When the teacher modifies the settings in Astra, Astra could connect to the
MOOC grader and upload the modifications, after which the MOOC grader
would save them in the configuration file. However, this introduces a new



CHAPTER 6. CONCLUSIONS 62

issue: should the MOOC grader automatically commit changes it receives
from Astra to Git? If not, there would be Git merge conflicts when new up-
dates are pushed to the course Git repository and the MOOC grader tries to
pull them. This synchronization issue could be avoided by using another ap-
proach: when a teacher manually modifies the configuration in Astra, Astra
does not connect to the MOOC grader and update the configuration there,
but it saves the manual modifications separately. When the configuration
is updated in Astra by the automatic setup, Astra can ask the user if the
previously set manual modifications should be reapplied.

If exercises are personalized, the generated instances must be created
before the start of the course in the MOOC grader. Currently, the generation
requires access to the command line in the server, which could be problematic
for teachers that are not familiar with the command line. Furthermore,
the administration of the server is not necessarily the responsibility of the
teacher, thus mainly the administrator should have access to the command
line. If the generation of the exercise instances could be started from a web
user interface, the command line access would no longer be required and
the teachers could generate the instances easily at their own discretion. At
this stage, the MOOC grader has a simplistic web user interface for some
testing and administrative purposes, and its user authorization is based on a
predefined list of accepted client IP addresses. If the functionality of the web
user interface is extended, one should consider whether the access control
model is too simplistic and restricting. Another approach for the creation of
the exercise instances is that what if a teacher prefers to create the instances
on her own computer and to upload them to the server (instead of running
the generator in the server)? In that case, the MOOC grader should be able
to copy the instances from the course directory into the correct paths when
the course files are updated by Git.



Bibliography

[1] Asynchronous Module Definition API. https://github.com/amdjs/
amdjs-api. [Online; accessed 22-September-2016].

[2] Bootstrap — the world’s most popular mobile-first and responsive
front-end framework. http://getbootstrap.com/. [Online; accessed 22-
September-2016].

[3] MOOC grader source code. https://github.com/Aalto-LeTech/
mooc-grader. [Online; accessed 10-August-2016].

[4] Moodle plugins directory: LTI Provider. https://moodle.org/plugins/
local_ltiprovider. [Online; accessed 25-September-2016].

[5] A Mustache implementation in PHP. https://github.com/bobthecow/
mustache.php. [Online; accessed 22-September-2016].

[6] Advanced Distributed Learning Initiative. Ex-
perience API. https://www.adlnet.gov/adl-research/
performance-tracking-analysis/experience-api/. [Online; accessed
14-August-2016].

[7] Advanced Distributed Learning Initiative. SCORM. https:
//www.adlnet.gov/adl-research/scorm/. [Online; accessed 14-August-
2016].

[8] Ala-Mutka, K., and Järvinen, H.-M. Assessment process for pro-
gramming assignments. In IEEE 14th International Conference on Ad-
vanced Learning Technologies (2004), IEEE Computer Society, pp. 181–
185.

[9] Anders, G. Coursera flirts with diplomas: Online ’specialization’
is $250. http://www.forbes.com/sites/georgeanders/2014/01/21/
coursera-flirts-with-diplomas-online-specialization-is-250/
#1ad4308e6d85, January 2014. [Online; accessed 9-August-2016].

63

https://github.com/amdjs/amdjs-api
https://github.com/amdjs/amdjs-api
http://getbootstrap.com/
https://github.com/Aalto-LeTech/mooc-grader
https://github.com/Aalto-LeTech/mooc-grader
https://moodle.org/plugins/local_ltiprovider
https://moodle.org/plugins/local_ltiprovider
https://github.com/bobthecow/mustache.php
https://github.com/bobthecow/mustache.php
https://www.adlnet.gov/adl-research/performance-tracking-analysis/experience-api/
https://www.adlnet.gov/adl-research/performance-tracking-analysis/experience-api/
https://www.adlnet.gov/adl-research/scorm/
https://www.adlnet.gov/adl-research/scorm/
http://www.forbes.com/sites/georgeanders/2014/01/21/coursera-flirts-with-diplomas-online-specialization-is-250/#1ad4308e6d85
http://www.forbes.com/sites/georgeanders/2014/01/21/coursera-flirts-with-diplomas-online-specialization-is-250/#1ad4308e6d85
http://www.forbes.com/sites/georgeanders/2014/01/21/coursera-flirts-with-diplomas-online-specialization-is-250/#1ad4308e6d85


BIBLIOGRAPHY 64

[10] ATutor. ATutor learning management tools. http://www.atutor.ca/.
[Online; accessed 3-August-2016].

[11] Auvinen, T. Rubyric. In Proceedings of the 11th Koli Calling Inter-
national Conference on Computing Education Research (2011), ACM,
pp. 102–106.

[12] Bali, M. MOOC pedagogy: gleaning good practice from existing
MOOCs. Journal of Online Learning and Teaching 10, 1 (2014), 44–
55.

[13] Blackboard, Inc. Blackboard Learn. http://www.blackboard.com/
learning-management-system/blackboard-learn.aspx. [Online; accessed
3-August-2016].

[14] D2L Corporation. Brightspace learning environment. https://www.
d2l.com/products/learning-environment/. [Online; accessed 3-August-
2016].

[15] Dahlstrom, E., Brooks, D. C., and Bichsel, J. The current
ecosystem of learning management systems in higher education: Stu-
dent, faculty, and IT perspectives. Research report. Louisville, CO:
ECAR, September 2014. Available from http://www.educause.edu/ecar.

[16] Douce, C., Livingstone, D., and Orwell, J. Automatic test-
based assessment of programming: A review. Journal on Educational
Resources in Computing (JERIC) 5, 3 (2005).

[17] Elgort, I. E-learning adoption: Bridging the chasm. In Proceedings
of ASCILITE (2005), pp. 181–185.

[18] Hakulinen, L., Auvinen, T., and Korhonen, A. Empirical study
on the effect of achievement badges in TRAKLA2 online learning en-
vironment. In Learning and Teaching in Computing and Engineering
(LaTiCE), 2013 (2013), IEEE, pp. 47–54.

[19] Harjula, M. Mathematics exercise system with automatic assessment.
Master’s thesis, Helsinki University of Technology, 2008.

[20] Helminen, J. Jype – an education-oriented integrated program visu-
alization, visual debugging, and programming exercise tool for Python.
Master’s thesis, Helsinki University of Technology, 2009.

http://www.atutor.ca/
http://www.blackboard.com/learning-management-system/blackboard-learn.aspx
http://www.blackboard.com/learning-management-system/blackboard-learn.aspx
https://www.d2l.com/products/learning-environment/
https://www.d2l.com/products/learning-environment/
http://www.educause.edu/ecar


BIBLIOGRAPHY 65

[21] Hiisilä, A. Kurssinhallintajärjestelmä ohjelmoinnin perusopetuksen
avuksi (Course Management System for basic courses in programming).
Master’s thesis, Helsinki University of Technology, 2005.

[22] ICEF Monitor. Mooc enrolment surpassed 35
million in 2015. http://monitor.icef.com/2016/01/
mooc-enrolment-surpassed-35-million-in-2015/, January 2016.
[Online; accessed 9-August-2016].

[23] IMS Global Learning Consortium. Common Cartridge back-
ground. https://www.imsglobal.org/activity/common-cartridge. [On-
line; accessed 14-August-2016].

[24] IMS Global Learning Consortium. Learning Tools In-
teroperability background. https://www.imsglobal.org/activity/
learning-tools-interoperability. [Online; accessed 14-August-2016].

[25] IMS Global Learning Consortium. Question and Test Interop-
erability and Accessible Portable Item Protocol background. https:
//www.imsglobal.org/activity/qtiapip. [Online; accessed 14-August-
2016].

[26] Instructure, Inc. Canvas learning management system. https://
www.canvaslms.com/. [Online; accessed 3-August-2016].

[27] Itslearning AS. Itslearning learning platform. http://www.
itslearning.eu/. [Online; accessed 3-August-2016].

[28] Janhunen, T., Jussila, T., Järvisalo, M., and Oikarinen,
E. Teaching Smullyan’s analytic tableaux in a scalable learning en-
vironment. In Kolin Kolistelut/Koli Calling. Proceedings of the Fourth
Finnish/Baltic Sea Conference on Computer Science Education (2004),
pp. 85–94.

[29] Jordan, K. Initial trends in enrolment and completion of massive
open online courses. The International Review of Research in Open and
Distance Learning 15, 1 (2014).

[30] Josefsson, S. The Base16, Base32, and Base64 data encodings. RFC
4648, RFC Editor, October 2006.

[31] Kaplan, A. M., and Haenlein, M. Higher education and the dig-
ital revolution: About MOOCs, SPOCs, social media, and the Cookie
Monster. Business Horizons 59, 4 (2016), 441–450.

http://monitor.icef.com/2016/01/mooc-enrolment-surpassed-35-million-in-2015/
http://monitor.icef.com/2016/01/mooc-enrolment-surpassed-35-million-in-2015/
https://www.imsglobal.org/activity/common-cartridge
https://www.imsglobal.org/activity/learning-tools-interoperability
https://www.imsglobal.org/activity/learning-tools-interoperability
https://www.imsglobal.org/activity/qtiapip
https://www.imsglobal.org/activity/qtiapip
https://www.canvaslms.com/
https://www.canvaslms.com/
http://www.itslearning.eu/
http://www.itslearning.eu/


BIBLIOGRAPHY 66

[32] Karavirta, V., Ihantola, P., and Koskinen, T. Service-oriented
approach to improve interoperability of e-learning systems. In 13th IEEE
International Conference on Advanced Learning Technologies (ICALT)
(2013), IEEE, pp. 341–345.

[33] Karavirta, V., and Shaffer, C. A. JSAV: The JavaScript Al-
gorithm Visualization Library. In Proceedings of the 18th ACM confer-
ence on Innovation and technology in computer science education (2013),
ACM, pp. 159–164.

[34] Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Sep-
pälä, O., and Silvasti, P. Visual algorithm simulation exercise sys-
tem with automatic assessment: TRAKLA2. Informatics in Education
3, 2 (2004), 267–288.

[35] Moodle community. Web services API. https://docs.moodle.org/
dev/Web_services_API. [Online; accessed 27-October-2016].

[36] Moodle community. Moodle plugin types. https://docs.moodle.
org/dev/Plugin_types, 2016. [Online; accessed 2-August-2016].

[37] Moodle Pty Ltd. Moodle — open-source learning platform. https:
//moodle.org/, 2016. [Online; accessed 4-August-2016].

[38] Nykopp, J. STRATUM – Yleiskäyttöinen automaattinen koneisharjoi-
tusjärjestelmä. Master’s thesis, Helsinki University of Technology, 2006.

[39] Odekirk-Hash, E., and Zachary, J. L. Automated feedback on
programs means students need less help from teachers. In Proceedings
of the thirty-second SIGCSE technical symposium on Computer Science
Education (2001), ACM, pp. 55–59.

[40] Riekkinen, M. New features of Stratum. Dept. of Computer Science,
Aalto University, December 2015. Technical memorandum.

[41] Riekkinen, M. Stratum MyCourses-Moodle plugin guide for teachers.
Dept. of Computer Science, Aalto University, December 2015. Technical
memorandum.

[42] Sakai project. Sakai. https://sakaiproject.org/. [Online; accessed
2-August-2016].

[43] Sangwin, C. J., and Grove, M. STACK: addressing the needs of
the “neglected learners”. In Proceedings of the Web Advanced Learning
Technologies Conference and Exhibition, WebALT (2006), pp. 81–96.

https://docs.moodle.org/dev/Web_services_API
https://docs.moodle.org/dev/Web_services_API
https://docs.moodle.org/dev/Plugin_types
https://docs.moodle.org/dev/Plugin_types
https://moodle.org/
https://moodle.org/
https://sakaiproject.org/


BIBLIOGRAPHY 67

[44] Shah, D. By the numbers: MOOCS in 2015. Class Central, https:
//www.class-central.com/report/moocs-2015-stats/, December 2015.
[Online; accessed 10-August-2016].

[45] Staker, H., and Horn, M. B. Classifying K-12 blended
learning. Tech. rep., Innosight Institute, May 2012. Available
online: http://www.innosightinstitute.org/innosight/wp-content/
uploads/2012/05/Classifying-K-12-blended-learning2.pdf.

[46] Stockley, D. E-learning definition and explanation (elearning,
online training, online learning). http://www.derekstockley.com.au/
elearning-definition.html, 2003. [Online; accessed 6-July-2016].

[47] Tibbetts, J. LTI2 introduction. https://www.imsglobal.org/
lti-v2-introduction. [Online; accessed 14-August-2016].

[48] Tukiainen, N. Raportti. Dept. of Information and Computer Science,
Helsinki University of Technology (now Aalto University), August 2009.
Technical memorandum about the new web interface in Stratum.

[49] Ullman, J. D., and Widom, J. A First Course in Database Systems:
Pearson New International Edition, 3 ed. Pearson Education Limited,
2014.

https://www.class-central.com/report/moocs-2015-stats/
https://www.class-central.com/report/moocs-2015-stats/
http://www.innosightinstitute.org/innosight/wp-content/uploads/2012/05/Classifying-K-12-blended-learning2.pdf
http://www.innosightinstitute.org/innosight/wp-content/uploads/2012/05/Classifying-K-12-blended-learning2.pdf
http://www.derekstockley.com.au/elearning-definition.html
http://www.derekstockley.com.au/elearning-definition.html
https://www.imsglobal.org/lti-v2-introduction
https://www.imsglobal.org/lti-v2-introduction

	Cover page
	Acknowledgements
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Goals and Requirements
	1.2 Structure of the Thesis

	2 E-learning Platforms
	2.1 Open Standards for E-learning Platforms
	2.2 A+
	2.2.1 A+ Content Structure and Grading Semantics
	2.2.2 A+ Grader Protocol
	2.2.3 MOOC Grader Exercise Service Framework

	2.3 Moodle
	2.4 Other Platforms

	3 Modernizing Stratum
	3.1 Stratum Computerized Learning Environment
	3.1.1 Problems of Stratum

	3.2 Alternative Approaches for Modernization
	3.2.1 Common Changes in the A+ Grader Protocol and MOOC Grader Exercise Service Framework
	3.2.2 Alternative 1: Independent Stratum
	3.2.3 Alternative 2: New Moodle Interface in A+
	3.2.4 Alternative 3: Moodle Replicates A+

	3.3 Justifications for the Selected Approach

	4 Implementation
	4.1 Features of the New Platform
	4.2 Astra
	4.2.1 Architecture
	4.2.2 Code Organization
	4.2.3 Database Schema

	4.3 Upgraded MOOC Grader Exercise Service Framework
	4.4 Example: Accepting and Assessing a Submission

	5 Evaluation
	5.1 Requirements
	5.2 Platform (In)dependence
	5.3 Moodle versus A+

	6 Conclusions
	6.1 Prospects for Future Work


