
Emulation of IoT Devices

Alli Mäkinen

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 21.11.2016

Thesis supervisors:

Prof. Raimo Kantola

Thesis advisor:

DI Jaime Jiménez

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Alli Mäkinen

Title: Emulation of IoT Devices

Date: 21.11.2016 Language: English Number of pages: 10+69

Department of Communications and Networking

Professorship: Internet Technologies

Supervisor: Prof. Raimo Kantola

Advisor: DI Jaime Jiménez
Internet of Things (IoT) connects real life objects to the Internet. In this concept,
devices, such as sensors and actuators, control the physical environment generating
a large amount of data that can be used in applications and services. As they
are typically constrained in memory and power, lightweight implementations
are needed. Moreover, the number of Internet-connected devices is continually
growing and thus, the technical solutions need to be scalable too. This introduces
a problem; managing such a large amount of devices as well as testing the different
IoT scenarios may be cumbersome with existing physical testbeds, which require a
lot of configuring and lack scalability.

This thesis proposes the design and implementation of emulated virtual devices
using IoT specific protocols and data models, such as CoAP, LWM2M and IPSO
objects. As device management is an important aspect of IoT, these devices are
implemented to communicate with the management server through LWM2M
interfaces in addition to communicating with each other. The emulated devices
consist of virtual sensors and actuators represented as IPSO objects, which can
be used to sense the simulated environment or control it with simple operations.
Moreover, two use cases are defined and presented to create appropriate device
logic. The virtualization of the devices is implemented by using Docker containers.
They enable scaling to hundreds of devices, which is a key feature of the emulator.

The design of the emualor follows CoAP and LWM2M specifications, which define
the set of necessary functionalities and rules for the implementation. At the end
of this thesis, the emulator is evaluated by comparing it to the initial design
requirements along with scalability and bandwidth usage tests. Finally, future
work for improving the emulator is presented.

Keywords: Internet of Things, CoAP, LWM2M, IPSO objects, emulation, virtual
devices, device management

aalto-yliopisto
sähkötekniikan korkeakoulu

diplomityön
tiivistelmä

Tekijä: Alli Mäkinen

Työn nimi: IoT-laitteiden Emulaatio

Päivämäärä: 21.11.2016 Kieli: Englanti Sivumäärä: 10+69

Tietoliikenne- ja Tietoverkkotekniikan laitos

Professuuri: Internet Teknologiat

Työn valvoja: Prof. Raimo Kantola

Työn ohjaaja: Jaime Jiménez

Internet-verkko on nopeasti laajentunut laitteisiin, jotka voivat mitata ja ohjata
ympäristöään Internet-yhteyden välityksellä muodostaen Esineiden Internetin
(eng. Internet of Things, IoT). Tällaisilla laitteilla, kuten sensoreilla, on yleensä
rajallisesti muistia, tehoa ja kapasiteettia tiedonkäsittelyyn. Tästä syystä onkin
tärkeää, että ne ovat tekniseltä toteutukseltaan mahdollisimman kevyitä. Lisäksi
IoT-laitteiden määrä kasvaa jatkuvasti, mikä tarkoittaa sitä, että teknisten
toteutusten on oltava myös skaalautuvia. Valtavan laitemäärän hallinta sekä
erilaisten IoT-skenaarioiden testaaminen on kuitenkin hyvin vaivalloista fyysisessä
testiympäristössä, erityisesti heikon skaalautuvuuden takia.

Tämä diplomityö esittää ja toteuttaa ratkaisuksi emulaattorin, jolla voi emuloida
useita virtuaalisia laitteita käyttäen IoT-protokollia ja datamalleja, kuten CoAP-
ja LWM2M-protokollia sekä IPSO-objekteja. Koska laitehallinta on olennainen
osa IoT-konseptia, virtuaaliset laitteet on toteutettu niin, että ne voivat paitsi
kommunikoida keskenään, niitä voi myös hallita hallintapalvelimen kautta
LWM2M-operaatioita käyttäen. Laitteet koostuvat virtuaalisista sensoreista ja
kytkimistä, joita mallinnetaan IPSO-objekteilla. Niiden avulla dataa voidaan
kerätä ja lähettää simuloidussa ympäristössä. Lisäksi, työssä esitellään kaksi
testitapausta, joihin toteutettu laitelogiikka pohjautuu. Virtualisointi tapahtuu
Docker-platformin avulla, joka mahdollistaa skaalaamisen satoihin laitteisiin.

Emulaattorin toteutus pohjautuu CoAP- ja LWM2M-standardeihin, jotka määr-
rittävät sallitut toiminnallisuudet ja operaatiot. Diplomityön lopussa emulaattori
arvioidaan toteutuneiden suunnitteluvaatimusten sekä tehtyjen skaalautuvuustes-
tien ja taajuuskaistan käyttöä tarkastelevien testien perusteella.

Avainsanat: Internet of Things, CoAP, LWM2M, IPSO objects

iv

Preface

This thesis is conducted at NomadicLab, Oy L M Ericsson AB. This work has been
the most challenging and largest academic work in my life, but then again, the most
motivating and rewarding.

Firstly, I would like to thank Professor Raimo Kantola for accepting to be my
supervisor for the thesis. I appreciate his comments and academic experience, which
pushed me forward in the writing process.

Secondly, I would like to thank my thesis advisor, Jaime Jiménez from NomadicLab
for his encouraging support, insights about the topic and useful feedback. He had
always time to answer my questions and advise me. His helpful comments guided
me through the whole process.

I would also like to thank all my colleagues from NomadicLab for their help and
an enjoyable working environment. I also appreciate the support of my friends and
family.

Jorvas, 21.11.2016

v

Contents

Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations viii

List of figures ix

List of tables x

1 Introduction 1

1.1 Objectives . 2

1.2 Structure of thesis . 2

2 Background 3

2.1 Internet of Things . 4

2.2 The Web . 6

2.2.1 REST . 7

2.2.2 HTTP . 9

2.3 Communication protocols for IoT . 11

2.3.1 CoAP . 11

2.3.2 LWM2M . 16

2.4 Virtualization . 21

2.4.1 Cloud of Things . 21

2.4.2 Docker . 22

2.4.3 Greenhouse . 23

vi

3 Design 25

3.1 Requirements . 25

3.2 Use cases . 26

3.2.1 Simple IoT devices . 27

3.2.2 Fuel injection system . 30

3.2.3 Architecture . 32

4 Implementation 34

4.1 Software & hardware . 34

4.1.1 Coap-Node . 35

4.1.2 Leshan . 37

4.1.3 Hardware . 38

4.2 The implementation of IoT devices 39

4.2.1 Object initialization . 40

4.2.2 Communication logic . 40

4.2.3 Virtualization . 44

5 Evaluation 48

5.1 Test environment . 48

5.2 Evaluation of functionalities . 48

5.2.1 Fulfillment of functional requirements 49

5.2.2 Remaining issues . 50

5.3 Evaluation of scalability . 51

5.3.1 Reproducibility . 51

5.3.2 Memory usage . 53

5.3.3 Bandwidth usage . 53

5.3.4 Optimization . 56

6 Conclusions 59

vii

References 62

viii

Abbreviations

ACL Access Control List
AJAX Asynchronous JavaScript And XML
API Application Programming Interface
CoAP Constrained Application Protocol
CoRE Constrained RESTful Environments
DTLS Datagram Transport Layer Security
ECM Engine Control Module
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
IPSO IP for Smart Objects
ITU International Telecommunication Union
LLN Low Power and Lossy Networks
LWM2M Lightweight Machine-to-Machine
M2M Machine-to-Machine
OMA Open Mobile Alliance
REST Representational State Transfer
TCP Transmission Control Protocol
UDP User Datagram Protocol
URI Uniform Resource Identifier
WWW World Wide Web
6LowPAN IPv6 over Low power Wireless Personal Area Networks

ix

List of figures

2.1 IoT stack. 6

2.2 HTTP message structure. 10

2.3 Example of HTTP request and response. 11

2.4 CoAP message format. 13

2.5 Examples of CoAP CON and NON messages. 13

2.6 The architecture of LWM2M. 17

2.7 The object model of LWM2M. 19

2.8 The architecture of full virtual machine (a) and Docker container (b). 23

3.1 Fuel injection system. [47] . 31

3.2 The composite IPSO object with linked objects. 32

3.3 Architecture of the first use case. 33

3.4 Architecture of the second use case. 33

4.1 User interface of Leshan demo server. 39

4.2 Networking of Docker. 46

5.1 Statistics about memory usage of containers from docker stat. 53

5.2 The current bandwidth usage of docker0 from iftop. 54

5.3 Traffic load from WireShark with 10 devices. 55

5.4 Lengths of CoAP packets measured with Wireshark. 56

5.5 Protocol hierarchy . 56

5.6 Load average of the system over 1000s. 57

x

List of tables

2.1 Data elements . 9

2.2 CoAP response codes . 14

2.3 Mapping between LWM2M and CoAP operations 18

3.1 Design requirements . 27

3.2 IPSO temperature . 29

3.3 IPSO objects & corresponding real sensors 32

4.1 Reference values for ECM . 43

5.1 Fulfillment of functional requirements 49

5.2 Results of scalability test 1 . 52

5.3 Peak bandwidth usage of docker0 interface. 54

5.4 Results of scalability test 2 . 58

1 Introduction

While the term Internet of Things (IoT) is relatively new, the concept is not; machine-
to-machine (M2M) solutions have been around for several decades enabling devices,
such as sensors and actuators, to be connected to one another and communicate on
closed purpose-built networks. The IoT, however, is a broader concept referring to
the use of general Internet Protocol (IP) based technologies and standards, which
allow devices to connect directly to the Internet. In this vision things, that is, devices
in the physical environment become smart enough to be able to communicate and
process the data independently, without human intervention. Moreover, they can be
remotely managed and monitored, which is another important aspect of IoT.

Such connected devices typically have limited computing power, memory and battery
life, which sets technical limitations to the IoT implementations; they need to be as
lightweight as possible and data transmission needs to be as minimal and compact as
possible. For these reasons, for example Constrained Application Protocol (CoAP)
was designed. It is an application layer solution enabling devices to communicate
over the Internet. It follows simple design principles, well-known from World Wide
Web (WWW or web), and defines a compact message structure making it suitable for
constrained environments. For device management, Lightweight Machine-to-Machine
(LWM2M) protocol provides means to monitor multiple constrained devices via
lightweight interfaces. It builds upon CoAP and enables interoperability between
sensors or actuators and software applications by using a standard data model,
LWM2M objects. Based on this model, IPSO Alliance has further defined a set of
general purpose objects, which represent common types of sensors and actuators.

As the number of IoT devices is expected to grow to billions, also the scalability
of the technical solutions used in devices need to be considered. However, setting
up physical testbeds and devices may be cumbersome and time-consuming, when
it comes to testing IoT scenarios with hundreds, or even thousands of devices. For
these reasons, testbeds with virtual devices could be useful. This thesis presents an
emulation of IoT devices, which is appropriate for testing purposes. Emulation here
refers to creating a system that behaves like real physical devices using the exact
same protocol stack underneath. The virtual devices communicate using simulated
data, which is either randomly generated within certain limits or generated using

CHAPTER 1 INTRODUCTION
2

public data sources. Also in this context, an IoT device means a device, which
consists of one or more sensors and actuators.

1.1 Objectives

In the beginning of this thesis, there were not sufficient IoT test devices with logic
available at Ericsson and existing testbeds were rather cumbersome in terms of
configuring and setting them up. The objective of this thesis is to provide general
understanding of IoT and create a testbed of emulated devices using a full CoAP
stack with LWM2M and IPSO objects on top of it. The emulator should simplify
and ease up IoT related testing, provide devices with logic and enable scaling the
amount of devices.

These devices are managed by LWM2M server, which interacts with the devices
through LWM2M interfaces. IPSO objects are used to represent the common sensors
and actuators and organize the data into a set of resources that can be read, written
or executed. The implementation of the emulator will follow predefined design
requirements and create device logic based on two use cases: emulation of several
simple IoT devices and emulation of a single complex system.

1.2 Structure of thesis

This Master’s thesis consists of 6 chapters. Chapter 2 provides background infor-
mation and theory relevant to the topic, describing common design principles, the
most important protocols for IoT as well as the concept of virtualization. In Chapter
3, the design of the practical implementation is presented including requirements
for the work and use cases. Chapter 4 deals with the actual implementation. It
presents the relevant programming libraries, device logic and the tools used, such as
Docker. Chapter 5 is about evaluation of the work and analyzing the scalability of
the emulator based on several tests. Finally, conclusions in Chapter 6 summarize
the thesis presenting the most important findings.

2 Background

Internet of Things (IoT) and Machine-to-Machine (M2M) communication form the
basis of the “future Internet”, where small devices with limited processing power,
memory and battery, often called smart devices or smart objects, identify and
control devices in the physical realm over the internet. [1] [2] The current trend of
“anything that benefits from being connected will be connected” reflects well the fast
development around the concept, but the realization of IoT is still in the making,
both in technology and business perspective.

In general, Internet of Things can be approached with three different views: Internet-
oriented (middleware), things oriented (sensors and actuators) and semantic oriented
(knowledge).While the Internet-oriented approach looks for the means to integrate
the heterogeneous devices and support interoperability within the applications,
the starting point of the semantic view is on the services enabled by the new
communication technologies. This thesis work focuses on the things oriented view,
which emphasizes the active role of smart objects and particularly, the interaction
and management of them. Above all, IoT is realized in the application domain,
where these different approaches intersect. [3]

The IoT architecture is primarily characterized by openness, multipurpose and end-
to-end interoperability contributing the use of open standards and development of
new lightweight protocols, especially in the application layer [1]. These factors are
shifting the M2M industry from highly fragmented vertical domains to more abstract
horizontal domain, meaning that the customized, vendor-specific solutions aren’t valid
anymore. It is common that different services have specific requirements and needs,
which favors the development of customized solutions. However, such systems usually
have inconsistent communications layers and Application Programming Interfaces
(APIs), which don’t support cross-application integration. Creating a horizontal
domain means sharing the common infrastructure and network elements, which
brings new challenges for IoT. As vertical application requirements will still exist,
support for the horizontal links requires the connectivity and information flow to be
invisible to all applications. [4] [5]

This chapter provides background information required to understand the basic

3

CHAPTER 2 BACKGROUND
4

concepts of IoT and virtualization. IoT heavily relies on the fundamentals of web,
which are therefore explained in the beginning of this chapter. Next, the most
important communication protocols for IoT, CoAP and LWM2M are introduced.
Finally the concept Cloud of Things is explained along with the different virtualization
tools, such as Docker and Greenhouse that are also used in the implementation.

2.1 Internet of Things

International Telecommunication Union (ITU) defines IoT as “a global infrastructure
for the information society, enabling advanced services by interconnecting (physical
and virtual) things based on existing and evolving interoperable information and
communication technologies” [6]. It highlights both, IoT’s commercial and tech-
nological aspects. In technological point of view things, such as embedded sensor
devices, communicate and share data over wired or wireless IP-based networks, the
Internet. Especially, IPv6 has made it possible to feasibly connect myriads of devices
by providing a large address space and features, such as IP mobility, which were not
part of the original design of IPv4 [7]. In addition, IoT extends things into existing
World Wide Web, adopting the well-known concepts of web and RESTful design
principles. Smart objects typically have constraints on energy, bandwidth, memory
and computing power, which has also motivated the development of new lightweight
and compact protocols and standards, such as CoAP and LWM2M. In commercial
point of view, IoT enables new kinds of services by utilizing the mass of generated
data. For example, remote management and control of devices offer possibilities in
maintenance business.

The decreasing costs and energy consumption of semiconductor components, in-
creasing computing capabilities of sensors and actuators as well as the rise of cloud
computing, and widespread adoption of Internet Protocol (IP) have driven the tech-
nological development of IoT [1][9]. Moreover, this development has led to a change
of traffic patterns; IoT devices exchange near real-time data in numerous, compact
messages instead of bulk data. [10]. The new networks consisting of devices with
limited resources are called Low Power and Lossy Networks (LLN). For example
6LowPAN [11] introduced by IETF is a low cost communication network, which makes
use of small packet size and low bandwidth and hence, allow wireless connectivity in
applications with limited power.

Though IoT provides a lot of possibilities, its applicability is ultimately dependent
on the service requirements and the capabilities of the devices. For example, secu-

CHAPTER 2 BACKGROUND
5

rity requirements, low battery life or low processing power of the devices may set
restrictions to IoT applications. Thus, for different use cases, it may be useful to
classify constrained devices based on their capabilities and identify IoT workflow to
understand better the possible challenges. For example, in RFC7228, such devices
have been divided into three classes; class 0 devices are the most constrained, roughly
having much less than 10 KiB RAM and less than 100 KiB Flash, while class 2
devices are the least constrained having about 50 KiB RAM and 250 KiB Flash.
This leaves class 1 devices in between. [2] Regardless of the device class, a simple
IoT work flow of a device in general can be described with three stages [8]:

1. Sensing: smart devices collect data from the environment, for example about
temperature.

2. Action: smart devices process the received data and trigger an action.

3. Feedback: smart devices provide feedback of the current status or action to
the management server or other devices.

For class 0 devices, actions, such as updating configurations or storing the security
information need to be very simple and minimal, whereas more capable devices can
handle larger data packets and maintain a larger database. In terms of security, it
is relevant to ask, who can access the management server, does the data need to
be encrypted or what kind of actions are allowed for devices to trigger. Reliability
and reachability requirements also effect on the protocol choices and depend on the
device capabilities.

IoT stack

The IoT stack used in this thesis is illustrated in Figure 2.1. It consists of standardized
protocols, APIs, data models and the sensor application. Network connectivity
between devices is provided by common physical and data link layer protocols, for
example Ethernet, Wifi or 802.15.4, which is especially intended for wireless network
of low-power devices. IoT utilizes the ubiquitous IP protocols, IPv4 and IPv6, for
routing along with the 6LowPan, created by IETF for constrained environments.
[12][13]

The scalability of web has promoted RESTful design of IoT applications suggesting
the use of widely deployed Hypertext Transfer Protocol (HTTP). However, HTTP
over Transmission Control Protocol (TCP) is too heavy to use with the power and
memory limited devices in most cases and thus, IETF has developed a more compact

CHAPTER 2 BACKGROUND
6

protocol CoAP, which communicates over User Datagram Protocol (UDP) by default.
[13] LWM2M protocol together with IPSO object model provides a lightweight,
universal interface for IoT architecture. The application software running on sensors
and actuators relies on the full-stack. [12]

Figure 2.1: IoT stack.

2.2 The Web

One approach to realize IoT is to reuse the existing web technologies and standards
and extend them to cover the network of constrained devices [14]. This Web of
Things -approach facilitates the integration of devices with the Web considerably,
since mapping traffic between the common web and emerging IoT protocols doesn’t
require any complex procedures making the development easier and faster.

Web focuses on resources and content, and uses URI-based addressing scheme [15].
The resource-oriented view seems appropriate also in constrained IoT environments,
where organizing and handling resources require careful planning and optimizing.
Adopting the similar media types and addressing format further unifies the web and
IoT. To understand better the emerging IoT technologies and their benefits, it is
important to take a look first at the key concepts of web, namely RESTful design
and HTTP, which are explained in the next sections in more detail.

CHAPTER 2 BACKGROUND
7

2.2.1 REST

Fielding [16] defines Representational State Transfer (REST) as a architectural style,
which provides design principles for distributed hypermedia systems. It introduces a
set of constraints that aim for scalability, component independence and efficiency.
In particular, the REST architecture is based on the client-server model, which
separates the tasks of issuing requests (client) and providing services (server). Having
two separate roles simplifies the implementation of components, but also improves
portability, since components can be developed independently.

Fielding used REST to design HTTP/1.1 and URIs, making it one of the corner-
stones of web. Hence, it has been a natural step to adopt the RESTful architecture
for IoT as well, which has resulted in designing CoAP, a mere redesign of HTTP.
Nevertheless, while the principles of REST have remained the same, CoAP has taken
things further and extended the HTTP semantics. In HTTP, the endpoints have
very distinct tasks: a client, for example a web browser, sends requests, while a
server, for example a computer hosting a web site, provides resources accordingly.
In CoAP on the other hand, the endpoints operate in both roles; for example a
smart device acts as a client when registering with a resource directory, but fulfills
a server role when providing sensor data [17]. Moreover, CoAP has changed the
weight of the roles. HTTP server carries greater role in processing, storing and
delivering the data than HTTP client, but CoAP turns the roles around. The CoAP
requests are more complex in a sense that the client often needs to process data
of its own resource database, whereas the request handling by CoAP server is sim-
ple; resources are easily accessed from device’s own database with predefined methods.

Design constraints

One of the fundamentals of the REST architecture is the stateless nature of commu-
nication between the components, which removes the need for an awareness of the
overall component topology. That is, the session state is kept mostly on the client.
Each request must be self-descriptive, containing all information needed to under-
stand the request. In addition to the improved visibility of the system, the stateless
constraint increases scalability, since the server will not occupy resources for long. As
a trade-off, the repetitive data increases, decreasing network performance. [16] IoT
systems benefit from the stateless constraint, since it lowers memory requirements of
servers, which typically are constrained and need to handle a large amount of clients
[17].

CHAPTER 2 BACKGROUND
8

REST also induces a cache constraint and a layered design, where independent,
hierarchical layers restrict the knowledge of each component to a single layer. In
other words, a client cannot see beyond the server it is connected to, which simplifies
the overall architecture. Focus is also on a uniform interface between the components,
which is optimal for common cases of web and encourages independent development
of services.[16] This type of design is suitable for IoT systems; not only is it simple,
but also already well-known from the use with HTTP. Hence, the integration of web
services and IoT becomes easier.

Data elements

In relation to hypermedia systems, one of the most important aspects of REST is
the concept of data elements (Table 2.1). They form a common base for RESTful
application design and provide mutual language between the client and server, which
promotes interoperability. At its core, the information is organized as set of resources,
which can be retrieved, created, deleted or modified and each resource is identified,
referenced and accessed through a global unique resource identifier (URI). HTTP
and CoAP URIs have a common structure, which is shown below with the definitions
of the components [18][19].

• Scheme creates a namespace for resources. For example “http” or “coap”.

• Authority identifies an entity, such as the server "www.example.org" in the
current scheme. It is an IP address or a host name, with which the server can
be reached, followed by an optional transport layer port number. In case of
coap scheme, the default port 5683 is assumed if no port is given.

• Path identifies a resource within the scope of URI’s host and port. Path
segments are separated by a slash (“/”) character. For example “/over/there”
or “/rd-lookup”.

CHAPTER 2 BACKGROUND
9

• Query contains a sequence of arguments to parameterize the resource fur-
ther. The component begins with the question mark (“?”) character and the
arguments are separated by the ampersand (“&”) character. For example
“?ep=endpoint<=lifetime”.

• Fragment refers to some part of the resource, such as a section in an HTML
document. It is separated by the hash (“#”) character. For example “#nose”.
It is relevant for HTTP, but not for CoAP.

Components of the network exchange representations of the resources, such as HTML
documents or JSON templates, in order to be able to interpret the state of the
resources and perform actions on them. This introduces yet another important data
element for hypertext-driven communications, a media type. Media type describes
the data format of representation, that is, a set of rules for data encoding/decoding.
It is sent in the “Accept” or “Content-Format/Content-Type” options field of the
HTTP or CoAP header. As HTML is a typical media type for HTTP, for example
JSON or TLV is typical for CoAP. The structure of the representation is specified
by the representation format, which can be link or form. [21] Links are typically
used in navigating among resources, while forms are used to change a resource state.
For example CoAP resource discovery requests are sent in link-format with target
attributes and more specific read requests are sent in form-format with GET method
and a description of Content-Format. Finally, components need to define the meaning
of the received requests and responses and process them by using control data. [16]

Table 2.1: Data elements
Data Element Examples

Resource Target of hypertext reference
Resource identifier URL, URN
Representation HTML document, JPEG image
Representation metadata Media type, Representation format
Resource metadata Source link
Control data Cache-control

2.2.2 HTTP

The Hypertext Transfer Protocol (HTTP) [24] is a widely deployed stateless, appli-
cation layer protocol for distributed hypermedia systems, which has been used for

CHAPTER 2 BACKGROUND
10

web transfer since 1990. It follows a REST based request/response model building
on resources, URIs, media types and methods, which make different kind of requests
and functionalities possible. They include for example retrieval, search and editing
of resources.

HTTP provides reliable data transfer, which is usually implemented over TCP/IP
connections, but other protocols may also be used. The default TCP port is 80.
HTTP communication takes place between the user agent (client) and a server,
which hosts the requested resource, but different intermediates, such as proxies or
gateways may be involved. HTTP connection is persistent by default meaning that
only one TCP connection is established and used to carry out requests and responses.
Connection can be secured by using encryption provided by TLS protocol [25] or its
predecessor SSL [26].

Messaging model

There are two types of messages, requests and responses, to transfer entities, that is
payload. In general they consist of start-line, message headers, empty line indicating
the end of headers and possible message-body that carries entity-body. The headers
in turn consist of general-header, request-header, response-header and entity-header
fields. The message structure is shown in Figure 2.2. General header fields are
relevant for both requests and responses. For example “Connection” field is used to
signal the closing of TCP connection, which by default would otherwise remain open.
Entity header fields, such as “Content-Type” provide information about the present
entity-body. [24]

Figure 2.2: HTTP message structure.

As a client sends a request to the server, the message always includes the method
to be applied on the target resource, the identification of the target resource (URI)
and the protocol version within the start-line called a Request-Line. In addition,
a request message may contain header fields, which provide additional information

CHAPTER 2 BACKGROUND
11

about the request or client. For example, “Host” and “Accept” fields can be used to
specify the target host and acceptable data format. Server responds with a message,
which starts with a Status-Line containing the protocol version, status code and its
textual presentation. Also the response message may have header fields that provide
additional information about the server or the requested resource, such as ’Location”
to redirect the request to another location than the one indicated in the request-URI.
An example of HTTP request and response is shown in Figure 2.3. [24]

Figure 2.3: Example of HTTP request and response.

2.3 Communication protocols for IoT

IoT devices may communicate over the web using for example HTTP, but the
constraint environment sets limitations. That is why CoAP was developed. It is
basically a redesign of HTTP, but in a more appropriate form for constrained devices.
CoAP uses lighter transfer mechanisms and has a shrinked header with less options.
It also provides M2M-specific features, such as resource observation, which is relevant
in IoT scenarios, where devices need to have up-to-date knowledge on the latest value
of a specific resource. In this thesis CoAP is used on the emulation of IoT devices,
LWM2M protocol on top of it. LWM2M provides a management and communication
interface and a data model for smart objects. Its several APIs are used to define for
example device, location, connectivity and server information. In addition, IPSO
Alliance has defined a model for a set of smart objects, which can be used to represent
the actual sensors and actuators in a device.

2.3.1 CoAP

The Constrained Application Protocol (CoAP), defined in [19], is a lightweight REST-
ful web transfer protocol designed for constrained devices and networks, especially
M2M applications. CoAP provides the basic concepts of web, such as URIs and

CHAPTER 2 BACKGROUND
12

Internet media types, while defines specialized features for M2M, for example low
overhead, multicast support and built-in resource discovery.

CoAP utilizes a request/response model between application endpoints like HTTP,
but as a distinction CoAP messages are exchanged asynchronously between the
endpoints over UDP by default. HTTP is a synchronous protocol in a sense that
client issuing a request waits for the corresponding response, before continuing
execution of other tasks. CoAP on the other hand can handle multiple simultaneous
requests independently, thus performing more efficiently. In web though, the use
of AJAX, a set of web development techniques, has enabled asynchronous HTTP
requests [20].

UDP provides more lightweight data transfer than for example connection oriented
TCP having no built-in reliability mechanism. TCP provides reliability and handles
ordering of messages and tracking connections, which makes it more heavyweight.
Nevertheless, recently there has been work in progress about using CoAP over TCP
[27] in environments, where for example UDP based protocols may not be well
received. Also in less constrained environments with only a limited amount of devices,
TCP connections can easily be handled despite the possible decrease of efficiency. In
fact, in the near future, TCP may be as relevant solution as UDP. In addition to
the current, mandatory UDP binding, CoAP supports SMS option as well. [19] [23]

CoAP also provides few security modes: no security, key-based (PreSharedKey &
RawPublicKey) and certificate-based security. In a secure mode, Datagram Transport
Layer Security (DTLS) [28] over UDP is used to secure the end-to-end communication
channel. [19] [23]

Messaging model

CoAP requests and responses are carried in binary format messages (Figure 2.4).
CoAP message format starts with a compact, fixed-size 4-byte header, which consists
of CoAP version number (2-bit), message type indicator (2-bit), token length (4-bit),
message code (8-bit) and message ID (16-bit). The header is followed by a variable-
length token value, which is used to match requests to responses, and further by
optional sequence of options and payload marker indicating the end of options and a
start of payload that takes up the rest of the datagram. [19]

There are four types of CoAP messages: Confirmable (CON), Non-Confimable (NON),
Acknowledgement (ACK) and Reset (RST). Reliability is provided by marking a
message as Confirmable. CON messages are retransmitted at exponentially increasing

CHAPTER 2 BACKGROUND
13

Figure 2.4: CoAP message format.

time intervals (back-off) until the recipient responds with acknowledgement message
with the same message ID (for duplicate detection) or timeout is reached. The
payload of the response is typically piggypacked in ACK message, but ACK may be
empty if response is not immediately available. In this case, a separate response is
sent later. If recipient cannot process CON message, it sends Reset message instead
of ACK. On the contrary, a message that doesn’t require reliability is marked as
Non-Confirmable. NON message is sent with a message ID, but not acknowledged.
Instead, the response is sent in a new NON message. Example of Client/Server
communication is shown in Figure 2.5. [19]

Figure 2.5: Examples of CoAP CON and NON messages.

CHAPTER 2 BACKGROUND
14

Methods and response codes

CoAP requests sent by the client and responses sent by the server are carried in CoAP
messages, which include either a Method Code or a Response Code, respectively.
CoAP makes use of GET, PUT, POST, and DELETE methods in a similar manner
to HTTP. The GET method retrieves a representation for the information that
currently corresponds to the request URI. The POST method requests that the
representation enclosed in the request is processed. Depending on the target resource,
POST request usually results in a new resource being created or the target resource
being updated. The PUT method requests that the resource in question is updated or
created with the enclosed representation. The representation data format is specified
by the media type and the possible content coding. The DELETE method requests
that the resource identified by the request URI is deleted. [19]

Also most of the Response Codes resemble the Status Codes of HTTP with few
exceptions. The numbering is slightly modified though, for example HTTP 404 “Not
Found” is written as 4.04 in CoAP. [24] [19] CoAP supports three classes of response
codes defined in Table 2.2.

Table 2.2: CoAP response codes
Code Description

2.xx Success This class indicates that the request was successfully received,
understood and accepted.

4.xx Client Error This class is intended for cases in which the client seems to
have erred.

5.xx Server Error This class indicates to cases in which the server is aware that
it has erred or is incapable of performing the request

Resource discovery

CoAP uses the "coap" and "coaps" URI schemes for identifying CoAP resources
and providing means of locating the resource. One important feature of CoAP is
the resource discovery, which provides information of all public resources offered by
endpoints. This is particularly useful in M2M environments, where devices need to
communicate with each other without human-intervention. For this purpose CoAP
endpoints support the Constrained RESTful Environments (CoRE) Link Format of
discoverable resources, described in [29]. The resource discovery provided by HTTP
is generally called "Web Discovery", while description of relations between resources

CHAPTER 2 BACKGROUND
15

is called "Web Linking". CoRE Link Format extends the “Web Linking” with specific
M2M attributes including for example resource type “rt” attribute and interface
description “if” attribute. The former one is a application specific description of
a resource, for example “outdoor-temperature” or “kitchen-light”. The latter one
describes the interface used to interact with the resource. It may be an URI, URN
or a name, for example “sensor”.

CoAP can employ an entity called Resource Directory (RD) [30], which hosts the
description of resources and a well-known resource path as a default entry point
for the RD and allows lookups on resources. Performing a GET request to the
well-known interface returns all available links in CoRE Link Format. The structure
of a CoAP URI for resource discovery is:

coap://example.com:5683/.well-known/core

In addition, this interface supports filtering on link format attributes using query
strings. For example a request GET /.well-known/core?rt=outdoor-temperature
would return links that match that particular resource type. Nevertheless, server is
not required to support filtering. Resource discovery can be performed either with
unicast (one-to-one) or multicast (one-to-many) transmission.

Observation

The state of a resource may change over time, which can be undesirable for a client
that is interested in the current representation of the resource. This has motivated
the development of mechanism for a CoAP client to observe a resource on CoAP
server [31]. According to the specification, the client can request that a representation
of a resource is updated by the server periodically until client is no more interested
in it.

The minimum and maximum time between the coming updates, notifications, are
configurable and choosing the values is an important design matter in IoT applications.
For example, for monitoring of public waste management system, one notification per
hour may be enough [32], while monitoring presence in a room should be frequent, if
the change in state is supposed to trigger an immediate action. The time interval
has a significant effect on traffic load in the network.

This observer design pattern consists of two components called subject, which is a
resource in the CoAP namespace, and observer, which is a CoAP client interested
in the current representation of the resource. Observer registers its interest by
sending an extended GET request to the server. When the state of resource changes,

CHAPTER 2 BACKGROUND
16

server sends notification, that is, an additional CoAP response with the updated
representation of the resource to the clients in the list of observers.

2.3.2 LWM2M

LWM2M is a an open industry standard, which provides a compact communica-
tion interface and a data model enabling remote device management and service
enablement of embedded IoT devices and resources [12]. It defines APIs for example
for security, connectivity monitoring, firmware upgrade and software management.
Open Mobile Alliance (OMA) designed the application layer protocol especially
for constrained environments; it utilizes CoAP as an underlaying communication
protocol and simple object model for organizing data. Moreover, the RESTful design
of LWM2M is appealing to software developers, which makes LWM2M a potential
solution for emerging IoT systems [23].

The architecture of LWM2M consists of three components: LWM2M client, LWM2M
server and LWM2M bootstrap server. In essence, LWM2M client is a client soft-
ware running on a M2M/IoT device, and LWM2M server is a server software on a
M2M/IoT management and service platform. [23] Typically, the LWM2M server is
located in data center and hosted by for example M2M Service Provider or Network
Service Provider [12]. It is important to acknowledge that both, LWM2M client and
server have the roles of CoAP client and server. The LWM2M architecture without
bootstrap server is shown in Figure 2.6.

Interfaces

The communication mechanism between the components relies on four logical inter-
faces: 1) Bootstrap, 2) Registration, 3) Device management & Service Enablement
and 4) Information Reporting. Table 2.3 shows the mapping between all the LWM2M
operations and CoAP operations and the direction of communication. Uplink means
direction from the LWM2M client to the LWM2M server, while Downlink refers to
direction from the LWM2M server to the LWM2M client. CoAP requests are always
issued by the CoAP client, whereas responses come from the CoAP server.

Bootstrap Interface is used to enable the connection between LWM2M client and
LWM2M server(s). The provisioned information between the components can be
categorized into two types: LWM2M Server Bootstrap Information and LWM2M
Bootstrap Server Bootstrap Information. Bootstrapping may be performed in four
different modes: Factory Bootstrap, Bootstrap from Smartcard, Client Initiated or

CHAPTER 2 BACKGROUND
17

Figure 2.6: The architecture of LWM2M.

Server Initiated Bootstrap. [33]

Registration Interface is used by the LWM2M client to register with LWM2M server(s),
maintain registration and deregister from LWM2M server. During registration, the
client sends “Register” operation, which provides the server the information required
to contact the client and maintain the session. For example, each client must provide
a unique client name, which is stored by the server. Also the list of client supported
objects and existing object instances is forwarded. After registration, the client
performs either periodically or on request, an “Update” operation to update its
registration information. Finally when client wants to discontinue to use the services
of LWM2M server, “Deregister” operation is triggered. [33]

Device management and service enablement Interface is used by the LWM2M server
to access and act upon LWM2M client object instances and resources. The pos-
sible operations include “Create”, “Read”, “Write”, “Execute”, “Delete”, “Write
Attributes” and “Discover”. These operations allow the server to perform several
actions on the resources, such as create, retrieve, update or configure resources. [33]

Information Reporting Interface is used by the LWM2M server to observe changes
on a resource of LWM2M client and receive notifications of new values. This is im-
plemented by sending “Observe” request to the LWM2M client, after which LWM2M

CHAPTER 2 BACKGROUND
18

client performs “Notify” operation to inform the server of the new resource values.
Observation ends, when server sends “Cancel Observation” request. [33]

Table 2.3: Mapping between LWM2M and CoAP operations
LWM2M Operation CoAP Operation Direction
Request Bootstrap req: POST /bs?ep=ClientName

rsp: 2.04 Changed
Uplink

Register req POST /rd?ep=ClientName<=8600&lwm2m=1&b=u
rsp: 2.01 Created

Uplink

Update req: PUT /rd/AkTr0mE9v6?lt=12000&b=u
rsp: 2.04 Changed

Uplink

Deregister req: DELETE /rd/AkTr0mE9v6
rsp: 2.02 Deleted

Uplink

Read req: GET /3303/0/5700
rsp: 2.05 Content

Downlink

Discover req: GET /3303/0/5700
Accept: application/link-format
rsp: 2.05 Content

Downlink

Write req: PUT /3303/0/5700
rsp: 2.04 Changed

Downlink

Write Attributes req: PUT /1/0/0?pmin=10&pmax=60<=12000
rsp: 2.04 Changed

Downlink

Execute req: POST /3/0/1
rsp: 2.04 Changed

Downlink

Create Req: POST /3303/1
rsp: 2.01 Created

Downlink

Delete Req: DELETE /3303/0/5700
rsp: 2.02 Deleted

Downlink

Observation req: GET /3303/0/5700 Observe: 0
rsp 2.05 Observe: 1

Downlink

Cancel Observation Reset message
req: GET /3303/0/5700 Observe: 1
rsp: 2.05 Content

Downlink

Notify rsp: 2.04 Changed Observe: 2
rsp: 2.04 Changed Observe: 3 ...

Uplink

CHAPTER 2 BACKGROUND
19

Object model

LWM2M introduces a simple object model, where available information on LWM2M
client is constructed as resources, and resources are organized logically into objects.
Moreover, objects or resources may have multiple instances. The structure is illus-
trated in Figure 2.7. Each object and resources within are addressed using URIs,
which consist of unique identifiers, for example:

• “3/0/1”: identifies the “model number” resource of the "device" object

• “3/0”: identifies the whole “device” object instance

Objects and resources must support at least one operation (read/write/execute/cre-
ate/delete). In addition, LWM2M provides an access control mechanism per object
instance allowing different servers to have different access rights upon objects and
resources. This is realized by using Access Control Lists (ACLs) on access control
object identifiers. [33]

Figure 2.7: The object model of LWM2M.

LWM2M defines an initial set of management objects, which are defined below [34]:

• Security: handles the security data between the LWM2M server and the client.
One object instance should contain information about the bootstrap server.

• Server: provides the data and functions related to the management server.

• Access Control: defines the access rights of the LWM2M server. Access
control object instances contain ACLs that determine the allowed operations
on a given object instance.

CHAPTER 2 BACKGROUND
20

• Device: LWM2M server can query the device specific information via this
object. It also provides device reboot and factory reset operations.

• Firmware: defines resources, which are needed for firmware updates. It enables
for example installation of firmware packages.

• Location: provides information about the current location of the device, such
as latitude and longitude.

• Connectivity monitoring: defines resources, such as "Link Quality" and
"Router IP Address", which assist in monitoring the status of a network con-
nection.

• Connection statistics: provides statistical information about an existing
network connection, for example about transmitted or received data.

IPSO Objects

IPSO Alliance has defined a set of general purpose smart objects, which represent
common sensors and actuators. They ensure high level interoperability on the
application layer by exposing a universal interface for devices and servers without the
need to change the underlaying application logic. This object model is designed to
operate on top of any RESTful protocols, and is based on OMA LWM2M specification.
[35] [36] The object model consists of four parts described below.

Object representation follows OMA LWM2M object model, where objects and
resources are structured into URI path components: Object Type ID/ Object Instance
ID/ Resource Type ID. Object Type ID specifies a measurement point, for example
a temperature sensor, whereas Object Instance ID represents a single instance of an
measurement point. Object may have several resources, that is, properties such as
current temperature value, which have their own Resource Type ID. For example
3304/0/5601 represents a humidity sensor (ID 3304) and its maximum measured
value (ID 5601). [35]
Data types that the resources can be defined to be include string, integer, float,
boolean, opaque, time and objlnk, which are defined in OMA LWM2M specification.
[35]
Operations supported by IPSO Objects also origin from OMA LWM2M specification.
They include Read, Write, Execute, Create, Delete, Set and Discover depending on
the target, which can be object, instance, resource or attribute. [35]
Data formats for transferring resource information include Plain Text, CoRE Link

CHAPTER 2 BACKGROUND
21

Format, Opaque, TLV, JSON and CBOR. In terms of media types for example
text/plain, application/cbor, application/json, application/tlv and application/link-
format are supported. [35]

2.4 Virtualization

This section discusses virtualization in terms of utilizing the concept in real IoT
scenarios and utilizing it in the implementation part of this thesis. As the data
generated by IoT devices increses, storing and processing it locally becomes difficult
in real life scenarios. Cloud computing provides means to lighten the processing load
of constrained devices. For implementing the testbed of virtual devices in this thesis,
tools that enable building the whole virtual environment are needed. For example
Docker is such a tool that can be used to create appropriate runtime environment
for the applications. First, the concept of Cloud of Things, which combines IoT
and cloud computing, is introduced. Next, tools called Docker and Greenhouse are
presented in more detail.

2.4.1 Cloud of Things

Ericsson estimated in 2016 that the number of connected devices in total is expected
to be around 28 billion by 2021, of which close to 16 billion will be related to IoT
[39]. Thus, it is clear that the amount of data IoT generates is going to be vast and
storing it locally is not possible anymore. Moreover, the data needs to be processed
to a more suitable form for services, which can’t be managed in constrained IoT
devices. This makes the importance of cloud computing evident. Aaza et al. (2014)
refers to integrating IoT with cloud computing as Cloud of Things. [37]

Cloud computing provides virtual pool of computing resources and data to devices
over the Internet. It is a dynamic environment that manages and allocates resources
automatically and process data into more relevant form for different services. [38]
User only needs to have a working Internet-connection to be able to utilize such
services without any concern about the maintenance. Cloud computing presents
different types of services, such as Software as a Service (SaaS) and Platform as a
Service (PaaS). SaaS provides the user an access to an application on pay-as-you-go
basis, whereas PaaS refers to renting a platform, which contains all the required
resources needed to build applications. [37]

Though Cloud of Things has a lot of potential benefits enabling enhanced services, it

CHAPTER 2 BACKGROUND
22

also has several issues related to for example protocol support, energy consumption
and security. IoT may utilize different protocols, such as ZigBee or 6LowPan,
depending on the environment and sensors used. Interoperability would require
support for these protocols on a gateway device. Therefore, one of the suggested
solutions is mapping the standardized protocols on a gateway. [37] In relation to
energy issues, the operations of sensors and actuators as well as the connectivity
with the cloud may consume a lot of energy, which becomes a problem, when billions
of devices are connected to the network. For example new compression techniques
and more efficient encoding/decoding methods improve energy efficiency as well as
optimizing the use of resources on the cloud side. [37] Moving the IoT applications
towards the cloud also brings security concerns due to for example lacking knowledge
of the real location of data and trust in service providers. [38] These are the issues
that still need to be addressed and solved before fully utilizinbg the Cloud of Things
concept.

2.4.2 Docker

As the implementation of emulated devices is based on having only virtual components,
a tool called Docker is utilized. It is an open platform, which enables distributed
applications to run seamlessly regardless of the environment. Docker containers
package the application with all the necessary runtime dependencies, system tools
and libraries, and isolate it from other applications and the underlying infrastructure.
That is, they guarantee that the applications run always in the same way. Containers
are compatible with all major distributions of Linux and Microsoft Windows and
operate on top of any infrastructure; any computer or cloud will do. [40] With Docker,
we can create a separate container for each of the emulated devices. This way, each
device will have their own system resources and a unique IP address.

In the core of the technology is the Docker Engine, that controls containers and
images. In essence, image is a layered filesystem, which shares common files, and
container is an instance of an image. Containers running on a single host machine
share the kernel of the operating system and hence, use less memory (RAM) and
start instantly. [41] Docker improves portability and scalability. Applications can
be deployed fast, since the environmental and infrastructural constraints can be
circumvented easily. In addition, Docker enables running several containers without
consuming much space and memory of the host machine. [40]

CHAPTER 2 BACKGROUND
23

Docker versus full virtual machine

Full virtual machine, or system VM, provides a complete system environment includ-
ing the quest operating system along with the application and required binaries and
libraries. It has its own set of system resources allocated and does minimal sharing.
VM provides quest OS an access to virtualized hardware resources. While the system
isolation is more thorough, full VM is much heavier than Docker. [42]

In contrast to VM, Docker containers share the kernel of the host OS and run as
isolated processes in user space. Containers running the same OS image share the size
of the image. Thus, docker can easily run hundreds or even thousands of containers
simultaneously. The architectural difference is visualized in Figure 2.8. All in all, VM
provides full isolation and guaranteed resources, while Docker provides less isolation,
but lightweight platform for multiple simultaneous containers. [40]

(a) (b)

Figure 2.8: The architecture of full virtual machine (a) and Docker con-
tainer (b).

2.4.3 Greenhouse

Greenhouse is a DevOps tool suite by Ericsson (currently internal use only), which
provides custom functionality to existing platforms, for example configuration man-
agement or automatic proxy handling. It is based on service choreography rather
than service orchestration [44]. Service choreography is a decentralized form of
service composition, which has a global perspective. It tracks message sequences
between multiple endpoints instead of actions by a single party. Service orchestration

CHAPTER 2 BACKGROUND
24

is a centralized model, where a single business process, orchestrator, control the
interaction of multiple services. [43]

The Greenhouse architecture consists of four components: Bitverse, Facehugger,
Farmer and Web-UI. Greenhouse creates decentralized peer-to-peer (p2p) network of
containers, to which it injects its management processes to manage the application.
The architectural components are discussed briefly below [44].

• Facehugger: a tool to inject Greenhouse functionality to existing docker
container. User chooses, which tools are activated.

• Farmer: a gateway to support the different underlying platforms, such as
Docker or Apcera. It consists of a daemon process (Farmerdaemon) and an
executable (Farmer CLI).

• Bitwerse: a Distributed Hash Table (DHT) which handles state synchroniza-
tion and messaging between distributed components. It implements two kinds
of nodes: supernodes, which manage routing in bitverse network and edgenodes,
which are integrated in clients and support sending messages to other clients.

• Web-UI: a web-based user interface that visualizes the system.

As mentioned above, Greenhouse functionality is based on a set of tools, which can
be independently activated. In this thesis work, the relevant tools are Jekyll and
Tesla. Jekyll coordinates the running containers by starting and stopping them as
appropriate. Tesla is used to find dependent containers in the network, connecting for
example, the LWM2M clients to the LWM2M server. This is done by determining the
polarity of the component: positive polarity (+) means the container is a “producer”
(eg. LWM2M server) and a negative polarity (-) means the container is a “consumer”
(eg. LWM2M client). Tesla automatically resolves mapping between virtual and
physical ports and determines the IP address of the host machine, making it possible
to run several identical containers on the same machine.

3 Design

In this thesis, an IoT device consists of one or more virtual sensors, which harvest
information from the simulated environment and convey it to the management server
or virtual actuators, which act like a switch being able to change the status of the
device and inform the management server about it. The emulation of such devices
is implemented by creating a LWM2M client software, which utilizes random data
and is able to perform several basic functions through LWM2M and IPSO objects.
As examples of IoT use cases, we present several simple IoT devices communicating
with the management server and with each other, and a single complex system
communicating with the management server.

This chapter defines the design requirements for the LWM2M clients and presents
the use cases in more detail. Also the chosen IPSO objects and the architecture of
the use cases are discussed.

3.1 Requirements

One of the goals of this thesis is to implement several virtual devices, LWM2M
clients, which can be managed by the LWM2M server and communicate directly with
each other. There is a set of client specific requirements stemmed from the LWM2M
specification, but also more general scalability requirements, all of which are listed
in Table 3.1 with the indication of their importance in the implementation.

In general, the most important client specific functionalities are LWM2M client’s
ability to register, read, write and execute resources of single-instance objects and
deregister. Single-instance object refers to an object, which is allowed to have only
one instance, while multi-instance object may have several different instances. The
division between single-instance and multi-instance objects is made here, since they
support different data formats; single-instance objects may be dealt with for example
plain text, whereas multi-instance objects must support JSON and/or TLV format.
As important as communication between LWM2M server and client is, also the direct
communication between LWM2M clients is important in real IoT scenarios, where
devices need to be able to communicate without human intervention.

25

CHAPTER 3 DESIGN
26

In addition, there are several requirements regarding scalability. For example repro-
ducibility, memory usage and bandwidth usage of the devices (docker containers) are
important factors in the implementation. LWM2M server should be able to handle
hundreds of simultaneous devices, which send periodically data to the network. As
the number of connected devices increases, the bandwidth and memory usage may
become a problem, if not taken into account in the implementation.

3.2 Use cases

The implementation part involves two use cases: emulation of several simple devices
and emulation of one complex system consisting of multiple sensors and actuators.
In the former case, four different virtual devices, a weather observer, a radiator,
a presence detector and a light controller are connected to a network. A weather
observer and a radiator together control a room temperature, while a presence
detector and a light controller manage the status of the lights depending on the
occupancy of the room. This use case is chosen, because it demonstrates simple IoT
scenarios showing the basic use of common sensors and actuators. Moreover, it is
an appropriate and realistic use case for scalability testing. For example buildings
usually have several lights and radiators that could be controlled by IoT.

The second use case presents a complex system, engine fuel injection system of a
car, which consists of multiple virtual sensors and actuators. The heart of every
modern car is a engine control module (ECM), a microcontroller, which controls
several engine operations for the engine to run efficiently and economically. Its main
tasks include control of fuel injection and fuel ignition. The focus of this use case
is on the fuel injection. ECM receives information from different sensors, such as
throttle position, cramshaft speed, coolant temperature and mass air flow sensors in
real time and adjusts the time fuel injectors are open. Fuel injectors are basically
ON/OFF switches, which open and close the injector valves accordingly. ECM also
needs to check that the fuel is pumped at the correct pressure and make corrections
if necessary. This use case shows, how a complex systems may be modeled and
managed in IoT.

CHAPTER 3 DESIGN
27

Table 3.1: Design requirements
Functionality Description Importance

Registration/
Deregistration

LWM2M client is able to register/deregister
to/from the management server.

High

Resource initialization LWM2M client is able to initialize objects and
resources.

High

Single-instance support:
read/write/execute

LWM2M client is able to read, write and
execute resources of single-instance objects.

High

Multi-instance support:
read/write/execute

LWM2M client is able to read, write and
execute resources of multi-instance object and
read the whole instance.

Medium

Create/Delete LWM2M client is able to create and delete
object instances.

Medium

Observe/Notify LWM2M client supports observe/notify
concept.

High

JSON/TLV format LWM2M client supports JSON and/or TLV
format required for handling multi-instance
objects.

High

Device-to-Device
communication

LWM2M clients are able to communicate di-
rectly to each other.

High

Reproducibility LWM2M server should be able to handle
hundreds of simultaneous clients.

High

Memory Usage LWM2M client should consume as little mem-
ory as possible

High

Bandwidth Usage LWM2M client should generate small
amounts of traffic in nearly real time instead
of bulk data.

Medium

3.2.1 Simple IoT devices

This use case includes four devices: a weather observer, a radiator, a presence detector
and a light controller. A weather observer simply provides temperature readings
utilizing either random data or an OpenWeatherMap data source to get current

CHAPTER 3 DESIGN
28

weather data from real weather stations. It has a programmable target temperature
value for the room to which it compares the current temperature and if necessary,
sends a control message to a radiator. A radiator switches its status to ON or OFF
based on the control message. A presence detector observes occupancy of a room
and sends a control message to a light controller, when its status is changed. A light
controller turns the lights ON or OFF based on the control message.

For the emulation of these simple devices, IPSO temperature, humidity, light control,
presence, set point and general actuator objects were chosen. They represent very
common types of sensors and actuators, which enable remote data measurement (e.g.
temperature sensor) and control (e.g. light control actuator) and thus, are appropriate
targets for emulation purposes. A weather observer consists of a temperature and
humidity sensors, a radiator consists of a general ON/OFF and a set point actuators,
a presence detector comprises of a presence sensor and a light controller comprises of
a light control actuator.

Temperature and humidity sensors can report current temperature/humidity values,
minimum/maximum measured values and the range used, while the light control
actuator can control a light source, such as a LED by allowing the light to be turned
ON and OFF and for example setting dimmer between 0-100% and counting the
time the device has been on. A general actuator is very much similar. A presence
sensor can report the current state of itself and count the number of “active” states
detected. Set point actuator allows setting a specific target value. As an example, a
temperature sensor and its resources are described in Table 3.2.

OpenWeatherMap

OpenWeatherMap [45] is an open data source, which is utilized in the weather
observer. Data is collected from thousands of remote sensors of over 40 000 weather
stations all around the world. User can access the current weather data of over 200
000 cities. In the implementation, the data from Helsinki weather station is used.
It is provided in JSON, XML or HTML format through APIs. An example of API
respond in JSON format:

CHAPTER 3 DESIGN
29

1 {
2 "coord": {"lon":145.77,"lat":-16.92},
3 "weather":[{"id":803,"main":"clouds","description":"brokenclouds","icon":"04n"}],
4 "base":"cmc stations",
5 "main": {"temp":293.25,"pressure":1019,"humidity":83,"temp_min":289.82,"temp_max":295.37},
6 "wind":{"speed":5.1,"deg":150},
7 "clouds":{"all":75},
8 "rain":{"3h":3},
9 "dt":1435658272,

10 "sys": {
"type":1,"id":8166,"message":0.0166,"country":"AU","sunrise":1435610796,"sunset":1435650870},

11 "id":2172797,"name":"Cairns",
12 "cod":200
13 }

Usage of the data source requires an API key, which is acquired by registering to
the service. In addition, integrating the API to the implementation requires using a
small abstraction layer, for example node-openweathermap [46] can be utilized for
that.

Table 3.2: IPSO temperature
Object Name ID Instances Object URN
Temperature Sensor 3303 Multiple urn:oma:lwm2m:ext:3303

Resource ID Oper. Mandatory Type Units Description
Sensor Value 5700 R Mandatory Float Defined by

“Units” resource
Current measured
sensor value

Min Measured
Value

5601 R Optional Float Defined by
“Units” resource

The minimum value
measured by the sen-
sor since power ON

MaxMeasured
Value

5602 R Optional Float Defined by
“Units” resource

The maximum value
measured by the sen-
sor since power ON

Min Range
Value

5603 R Optional Float Defined by
“Units” resource

The minimum value
that can be measured

Max Range
Value

5604 R Optional Float Defined by
“Units” resource

The maximum value
that can be measured

Sensor Units 5701 R Optional String Measurement units
definition e.g. “Cel”
for celsius

Reset Min and
MaxMeasured
Values

5605 E Optional String Reset the min and
max measured values
to current value

CHAPTER 3 DESIGN
30

3.2.2 Fuel injection system

Fuel injection system is a complex system consisting of multiple parts, which ensure
the fuel is used efficiently. In essence, fuel is pumped from the fuel tank to the engine
under pressure and finally to the cylinders. In modern cars the fuel injection system
is electronical: the operation is controlled entirely by a microprocessor, a miniatur
computer called ECM. The system also uses indirect injection, where injectors spray
fuel into an inlet valve rather than directly to combustion chamber to feed cylinders.
This way the fuel mixes properly with air. [47]

Different operating conditions require different fuel/air mix and different amount of
fuel. In order to control these factors, ECM monitors several sensors. It compares
the sensor values to the predefined factory values and based on that determines the
correct amount of fuel needed. The Figure 3.1 illustrates the fuel injection system
and its components. This use case models the following sensors and actuators:

• Throttle Position Sensor (TPS): signals the throttle position, which is
dependent on the position of a gas pedal. As the pedal is stepped on and
off, the throttle is opened and closed accordingly letting correct amount of air
flow to the engine. Computer uses this information to determine the required
amount of fuel. [49]

• Mass Airflow (MAF) sensor: signals the air mass entering the engine. The
information is needed to calculate the correct amount of fuel needed. [50]

• Engine Coolant Temperature (ECT) sensor: measures the internal tem-
perature of the engine and signals the temperature changes to the ECM. The
information is needed for the ECM to determine if the engine is cold, warm or
overheating. [51]

• Crankshaft speed sensor: measures the rotational speed of the crankshaft.
This information is also used to control fuel injection. Higher the engine speed,
the more fuel is needed. [52]

• Fuel pressure sensor: measures the pressure of fuel in the rail. The pressure
drop is signaled to the ECM, which restorates the pressure by controlling the
pump valve. [47]

• Fuel pump valve: is an ON/OFF switch controlled by ECM. It is used to
set the correct fuel pressure. [47]

CHAPTER 3 DESIGN
31

• Fuel injector: is an On/OFF switch controlled by ECM. Injectors are opened
and closed to feed the cylinders with a correct amount of fuel. [47]

Figure 3.1: Fuel injection system. [47]

A complex device or system can be modeled with a IPSO composite object, which
of resources are links to other objects. In a constraint environment a composite
object may be a lighter solution than a large nested object in a sense that it enables
observation of only linked object instances instead of the full object. Thus, it saves
bandwidth. [35] Here, we chose IPSO 4000 ObjectInstanceHandler, which represent
a common composite object. The Table 3.3 shows the chosen linked IPSO objects
and the corresponding real sensors. In reality, ECM contains both analog and
digital inputs and outputs. Typically the sensors output a voltage value, which is
proportional to the real measurement value. ECM digitize the data from analog
sensors and calculates engine settings based on the voltage inputs. [53] The composite
object with links is illustrated in Figure 3.2.

CHAPTER 3 DESIGN
32

Table 3.3: IPSO objects & corresponding real sensors
IPSO Object Real Sensor/Actuator
IPSO 3303 Temperature ECT Sensor
IPSO 3316 Voltage Throttle Position Sensor
IPSO 3316 Rate Mass Airflow Sensor
IPSO 3346 Rate Crankshaft Speed Sensor
IPSO 3323 Pressure Fuel Pressure Sensor
IPSO 3306 Actuator Fuel Injector
IPSO 3306 Actuator Pump Valve

Figure 3.2: The composite IPSO object with linked objects.

3.2.3 Architecture

The overall architecture of the first use case consists of five components: LWM2M
server and four LWM2M clients: weather observer, radiator, presence detector and
light controller. The architecture is shown in Figure 3.3. All devices are connected
to and managed by the LWM2M server, which maintains a registry of the available
resources. In addition, a weather observer and a radiator as well as a presence
detector and a light controller are communicating directly with each other.

CHAPTER 3 DESIGN
33

Figure 3.3: Architecture of the first use case.

The architecture of the second use case is illustrated in Figure 3.4. The LWM2M
server communicates with the fuel injection system operated by the ECM. ECM
receives information from coolant temperature, throttle position, pressure, mass
airflow and crankshaft speed sensors, and based on the current values sends commands
to fuel pump valve to control the fuel pressure and fuel injector to control the amount
of fuel injected into the cylinders.

Figure 3.4: Architecture of the second use case.

4 Implementation

The implementation part of this thesis is about creating an emulator of virtual IoT
devices in terms of two use cases: emulation of several simple devices and emulation
of a single complex system.

The LWM2M client software applications created for virtual devices are implemented
with nodejs, which is a software platform for networking applications written in
JavaScript. It is an appropriate choice for the implementation, because of its
asynchronous nature; it uses asynchronous events and non-blocking I/O making
it very efficient. Except for network and file events, nodejs applications are run
single-threaded [55]. On the server side, Java based Leshan project is used. It
provides a simple demo LWM2M server, which is utilized in this implementation.

The emulator is purposefully implemented in a virtual environment, where no physical
devices are needed. The virtual testbed is created using Docker, for which appropriate
configurations files need to be created. We also utilize docker-compose tool and
Greenhouse tool presented in Chapter 2 to be able to run multi-container applications
and visualize the IoT scenarios.

This chapter presents first the software and hardware requirements for the implemen-
tation. Then, the actual implementation of the virtual IoT devices within the context
of the use cases is described, including the object initialization, the communication
logic and the virtualization.

4.1 Software & hardware

This section presents the software and hardware required for the implementation.
In terms of software, the virtual devices are implemented by writing applications in
JavaScript for the nodejs platform. The applications define the objects representing
the virtual sensors and actuators and all the functionalities of the devices. One of the
main software library used in the implementation is JavaScript written coap-node,
which provides all the basic functionalities required for the LWM2M clients. The
LWM2M server used is a Java written Leshan demo server, which supports basic
server side functionalities and is easy to set up, serving well the emulation purposes.

34

CHAPTER 4 IMPLEMENTATION
35

The hardware requirements for the implementation are minimal.

4.1.1 Coap-Node

Coap-node [56], is a simple open-source node.js implementation of LWM2M for
M2M/IoT client devices under MIT license. The module supports CoAP protocol
along with the IPSO model of smart objects consisting of several APIs, which handle
the client/server interaction through LWM2M interfaces. The implementation is
primarily designed to work with node-shepherd [58] based server. However, in this
thesis work the Leshan based server was chosen to manage LWM2M clients, because
of its more advanced capabilities. This has required making some adjustments to
the client side in order to be compatible with the Leshan sever.

The core of the module relies on node-coap [57], another open-source project, which
is a CoAP client/server library written for node.js. It implements the fundamentals
of CoAP -defined communication, including the CoAP message header, message
types, options, request/response codes and retransmission methods. Coap-node also
utilizes node.js smartobject module [59] for organizing resources on device.

While the work is still in progress, the library already implements several basic func-
tionalities related to LWM2M client Registration, Information Reporting and Device
Management and Service Enablement Interfaces, such as registration/deregistration
procedure, support for basic read/write/execute methods, resource initialization,
resource discovery/lookup interface, observation and write attributes method [56].
Nevertheless it is still missing the bootstrap interface and the following capabilities:

• TLV encoding/decoding

• Support for Create/Delete methods

• DTLS security over UDP packets

The missing TLV encoding/decoding is not a critical problem for the implementation,
since JSON format is supported and can be used to encode/decode data objects and
multi-instance resources instead. Create and Delete methods are relevant function-
alities of LWM2M, but do not have high priority in the implementation. There is
currently no proper DTLS implementations for nodejs, which is why security features
are ignored in this implementation and “no security” -mode is used instead. In reality,
the security issues are an important part of real IoT implementations, but here the

CHAPTER 4 IMPLEMENTATION
36

focus is mostly on the device logic.

Resource planning

The simplistic way of resource planning is one of the key benefits of the coap-node
module. Since it follows the LWM2M and IPSO specifications, it is easy to initialize
the basic objects, such as a standard Device Object or IPSO temperature sensor,
and their resources by using the hierarchical object structure and predefined IDs.
Depending on the target resource, one needs to determine the allowed operations
(read/write/execute) in order to be able to handle the LWM2M server requests and
responses correctly. For example, initializing resources ’Sensor Value’ and ’Unit’ of a
temperature sensor may look like this:

cnode.initResrc(3303, 0,

5700: {

read: function (cb) {

var tempVal = gpio.read(’gpio0’);

cb(null, tempVal);

}

},

5701:’Cel’

});

In this case the sensor value (ID 5700) is initialized with the read method and the
unit (ID 5701) is initialized as a primitive value. [56]

Adjustments and improvements

The library has been slightly modified during this thesis work to support the Leshan
server instead of the “default” coap-sheperd server. Also in the beginning of this
thesis work the library didn’t support Create operation, which was implemented.
The edits to the source files coap-node.js/reqHandler.js are the following:

• Function CoapNode.prototype._updateNetInfo() is used to find network in-
formation of the client, such as IP address, MAC address and port num-
ber. However, inside a Docker container the network module can’t find
any active networks and the registration fails. Thus, a new function net-
work.get_interfaces_list(callback) is added to find the network information
inside a container.

CHAPTER 4 IMPLEMENTATION
37

• Function CoapNode.prototype.register(ip, port, callback) is used to register
the LWM2M client to the server. Before the registration request is sent to
the server, location path should be modified to self.locationPath = ’/rd/’ +
rsp.headers[’Location-Path’], where rd refers to the resource directory. Without
rd in the path, the server can’t find the client and registration fails. In addition,
function startMultiListener(self, callback) needs to be called inside register
function (see also point 5).

• The library supports JSON-format, but before it can be used and inter-
preted by the server correctly, it needs to be registered with the function
coap.registerFormat(’application/json’, 1543), which has been added to the
library.

• To support Create operation, function CoapNode.prototype.createInst(oid, iid,
value, callback) was implemented. It takes the target object ID, instance ID and
resources wrapped in an object as parameters and creates a new object instance
with defined resources. Also a corresponding request handler was created with
a function serverCreateHandler(cn, req, rsp), where cn is the CoapNode object,
req is the request from the LWM2M server and rsp is the response, which is
sent to the server in the end. The request handler first decodes the JSON
formatted payload and then initializes the new object instance with the given
resources.

• In the implementation, multicast functionality is very important. Hence,
a function CoapNode.prototype.multicast(path, method, value, callback) was
created. It takes the object path (eg. /3303/0/5700), method (eg. PUT) and
value (payload) as parameters and creates a multicast request. Also a function
startMultiListener(cn, callback) was created to make the LWM2M clients to
listen the multicast address.

4.1.2 Leshan

Leshan is a java based Lightweight M2M implementation under Eclipse Public License,
which provides libraries for LWM2M client and server. The development started
in 2013 by Sierra Wireless, but continued as Eclipse project in 2014. Leshan relies
on Califormium project for CoAP and Scandium project for DTLS implementation,
which cover the basic functionalities of CoAP and security with Pre-Shared-Key,

CHAPTER 4 IMPLEMENTATION
38

Raw-Public-Key and X.509 options. In addition, it supports LWM2M and IPSO
objects. [61]

Leshan project currently includes features, such as client initiated bootstrap, regis-
tration/deregistration, capability to read, write, execute, create, delete and observe
objects and TLV/JSON encoding/decoding. The server also implements Client
Registry, which stores all the registered clients, and Security Registry, which stores
the required security information. The registered clients are assigned a unique client
ID, which is used to identify the clients. [60]

Server demonstration

The project also includes a ready-to-use server demo, which is utilized in this thesis.
The demo server can handle read/write/execute operations along with the observation
requests in several data formats. It contains a simple web UI, which manages user
commands, visualizes the communication between the client and server and shows
CoAP messages. [60] The web UI is illustrated in Figure 4.1.

The demo server and LWM2M in general do not support resource discovery/lookup
interface, which sets some limitations to the implementation. With resource discovery,
devices could find all the public resources in a quite easy way, which would be useful
for the device-to-device communication. The lookup interface enables making queries
about specific resources or endpoints. This limitation is overcome by using CoAP
multicast, but it is a waste of bandwidth, especially in this emulator implementation,
where multicast message is sent to all endpoints.

4.1.3 Hardware

The hardware requirements of the implementation are minimal. Basically any
computer with sufficient system resources (memory, disk space, processing power)
should be enough for the implementation. Also Internet-connection is required. We
use Dell-laptop with 64-bit Ubuntu 14.04 LTS operating system and Intel i7-series
processor. In Chapter 5, we analyze more the operation of containers in terms of
for example reproducibility and memory usage of them, which effect on hardware
requirements.

CHAPTER 4 IMPLEMENTATION
39

Figure 4.1: User interface of Leshan demo server.

4.2 The implementation of IoT devices

The implementation of the virtual devices is divided into three categories: object
initialization, communication logic and virtualization. The first part is about imple-
menting the IPSO and LWM2M objects chosen to represent the sensors and actuators
and manage them. The data read from the sensors or written to the actuators is
accessed and organized through these objects, which is why resource planning is very
important. Nevertheless, the most important aspect of the implementation is the
creation of device logic. While the devices are virtual, they are supposed to act as
real ones with the desirable functionalities. The communication logic includes for
example realizing the actions taken on the executable resources and planning the
operational chains between the devices, that is, how the actions of one device effects
other devices and trigger another action. The third part is about virtualizing all the
components of the emulator by dockerizing them (enable use of Docker) and using
for example Greenhouse tools. The next sections describe the object initialization,
the communication logic and the virtualization of the two use cases presented in
chapter 3 in more detail.

CHAPTER 4 IMPLEMENTATION
40

4.2.1 Object initialization

All devices are set up by initializing first the needed LWM2M and IPSO objects and
resources. The LWM2M objects are the same regardless of the device type, while
the IPSO objects and their resources are chosen based on the specific application
type. All resources can be defined as readable, writable or executable in accordance
with the LWM2M and IPSO specifications. For example, sensor values are readable,
while the status of actuators is readable and writable. Executable resources trigger
an action, which usually involves separate function calls.

From the set of default LWM2M objects Security, Server, Device, Location and
Connection monitoring objects were chosen to demonstrate the basic management
features IoT devices may have. From the security object only the resource 0, Server
URI, is initialized, since the current implementation doesn’t support any security
mechanisms. Server object enables for example defining the lifetime value of a device
and triggering a device update, whereas Device object provides means to reset and
reboot the device. Location and Connection Monitoring objects provide information
on current device location and networking, such as IP addresses of the device and
gateway.

The basic IPSO objects can be easily initialized, but the composite object used for
the fuel control system is more difficult. It introduces a new data type, “Objlnk”,
which is an object link used to refer to an instance of a given object [33]. Since object
link is relatively new data type, the LWM2M libraries used in the implementation
do not currently support that. Also, the IPSO Alliance has not yet validated any
official composite objects, nor resources for the input links. Thus, we register a new
composite object with ID 4000 and resources with IDs 7100-7106 to the LWM2M
server. The input link resources support “String” as a data type instead of "Objlnk"
and contain a link in the form of objectID/instanceID pointing to the sensors and
actuators relevant for the use case. Now, when the user reads a resource of a composite
object from the LWM2M server, the device will respond back with the instance of
the linked object by redirecting the GET message to it.

4.2.2 Communication logic

The communication methods, functionalities and the operation process of the devices
are referred to here as communication logic. The communication logic of the devices
varies a bit depending on the use case and for that reason the different use cases are

CHAPTER 4 IMPLEMENTATION
41

addressed here separately.

In general, the LWM2M functionalities of the devices are always the same regardless
of the use case. As the LWM2M client software applications start running, the
virtual devices first register to the LWM2M server with predefined IP address and
CoAP default port, after which they are ready to communicate with the server and
other devices available on the same network. The termination of the process will
cause the device to issue a deregister operation. This is done by sending specific
signals to the process. The SIGINT is a "program interrupt" signal, which is sent
when the user inputs CTRL+C command. This terminates process running on
localhost. In the implementation this signal triggers the device to send deregister
request to the LWM2M server, after which the server responds back. Then the
process is finally terminated. When the same command is used for the process
running inside a container, the SIGTERM signal is forwarded to the process. It is a
genric termination signal, which asks the process to terminate in a polite way. The
deregistration procedure is the same as with SIGINT. Only, when docker-compose
tool is used, the process is killed before device has time to send a deregistration
request, which is not an appropriate way to disconnect the device. [62]

Use case 1: simple IoT devices

The first use case is about an emulation of simple virtual IoT devices presented in
Chapter 3. All the devices are connected to the LWM2M server and managed by
it. For the devices to be able to communicate with each other, they need to first
discover each other’s available resources. The CoAP specification provides means
for this with resource discovery and lookup operations; device can send a GET
message to the resource directory with a URI of well-known/core and receive links
to all available resources or a device can query specific information of another device.
However, Leshan server and the LWM2M protocol in general do not support these
functionalities, which is why CoAP multicast is used instead.

After registering to the LWM2M server, devices are ready to communicate with it. A
weather observer has two modes: random data mode and real weather data mode. If
the previous one is used, the temperature data is randomly generated between values
0 and 30. If the latter mode is used, an openweathermap data source, presented in
Chapter 3, is used. Whenever the current temperature value is read by the LWM2M
server, a weather observer compares it to the set target value and if necessary, sends
a PUT /3306/0/5700 message with a value ’1’ or ’0’ to CoAP multicast address
224.0.1.187. The set target value is 15 celsius by default. If the temperature value is

CHAPTER 4 IMPLEMENTATION
42

above it, weather observer demands the radiator to be turned OFF (value ’0’) and in
the opposite situation to be turned ON (value ’1’). In the case, where temperature
hasn’t changed much, no multicast message is sent. A radiator device receiving
this message changes its status to ON or OFF based on the control message of the
weather observer.

The communication logic between the presence detector and a light controller is
similar. The status of a presence detector randomly varies between ’true’ and ’false’
to simulate the scenarios, where the room is occupied with people or is empty.
Whenever the status is read by the LWM2M server, the detector will command the
light controller to turn the lights ON or OFF by multicasting a PUT /3311/0/5850
message with a value ’1’ or ’0’ respectively. For example, if the status of the presence
detector has changed from false to true, detector will send value ’1’ to the light
controller, requesting the lights to be turned ON.

Use case 2: fuel injection system

The second use case is an emulation of a complex engine fuel injection system, which
consists of several sensors and actuators described in Chapter 3. The system is
connected to the LWM2M server and managed by it. Here, the focus in on the
communication logic inside a complex system.

In a real fuel injection system, ECM receives a lot of information from several sensors
in real time and based on the input values, determines the amount of fuel needed. It
then sends commands to different actuators that control the fuel injection. Typically,
the sensors convert the measurement units, such as celsius, into volts for the ECM to
understand the input signals. ECM has reference values programmed in the factory
and it compares them to the input signals to determine the fuel need in different
scenarios. The reference values for different scenarios are gathered in Table 4.1 [53]
[50] [51] [52] [54].

For simplicity the reference values are rounded. Also the logic of how the different
values are effecting the fuel amount is modeled in a very simple way. The idea is to
just show that the measurement values increase/decrease about in proportion and
these changes together have an effect on the fuel amount. For each sensor, there are
three categories of values (see Table 4.1), each of which adds a certain amount of
time for injectors to stay open. Based on this assumption, we create the following
rules:

CHAPTER 4 IMPLEMENTATION
43

Table 4.1: Reference values for ECM
Sensor Quantity Reference values
Coolant Temperature Sensor Temperature Cold: 0 – 10 C

Warm: 10 – 70 C
Hot: 70 – 100 C

Throttle Position Sensor Voltage Close: 0,5 – 2,0 V
Semi-open: 2,0 – 3,0 V
Open: 3,0 – 5,0 V

Mass Airflow Sensor GPS (grams per
second)

Idle: 0 – 15 g/s
Throttle: 15 – 100g/s
Full-throttle: 100 – 160g/s

Crankshaft Speed Sensor Rotational speed Idle: 0 – 600 rpm
Throttle: 600 – 4000 rpm
Full-throttle: 4000 – 5000 rpm

Fuel Pressure Sensor Pressure 30 – 80 psi

• ECT: +3s (Cold), +2s (Warm), +1s (Hot)

• TPS: +3s (Open), +2s (Semi-open), +1s (Closed)

• MAS: +2s (Full-throttle), +1s (Throttle), -2s (Idle)

• CSS: +3s (Full-throttle), +2s (Throttle), +1s (Idle)

Thus, for example starting a car with cold engine and accelerating with open throttle
adds 3 seconds to the injection time, while the idle speed of crankshaft adds only 1
second to the injection time. The airmass has a bit different effect; a rich air-fuel
mixture (too much air) adds 2 seconds to the injection time, while a lean mixture
(too little air) decreases 2 seconds the injection time. Mixture in between adds 1
second to the injection time. In reality the logic is much more complex and for
example the air-fuel mixture is maintained by controlling the throttle opening not
only manually (driver presses gas pedal), but via throttle controller.

Since the focus of this use case is not on the real operation of a fuel injection system,
but on modeling a complex system with IPSO objects in context of IoT, the logic
can be very simple and plain. We assume a somewhat linear relation between the
different sensor values; as throttle opens, also the engine speed, coolant temperature
and airmass increase and the other way around. To simulate the data, we use a
linear function:

CHAPTER 4 IMPLEMENTATION
44

y=kx/10, where k is randomly generated slope [1,5], x is time in seconds.

The resulted y is a percentage value, which is multiplied by the maximum sensor
value to get the “current” sensor value. When 100% is reached the time t is restarted.
After reading all the values from different sensors, ECM determines the amount of
fuel needed by calculating the fuel injection time and sends a control message to
the fuel injector to open and finally close after the time calculated expires. The fuel
pressure sensor and pressure control valve are needed to constantly maintain the
correct pressure in the fuel track. If the pressure drops, ECM sends message to the
control valve to close it. In this implementation, the amount of pressure is randomly
generated between values [20,90], where the normal pressure is between 30-80 psi.

The values of sensors and actuators can be read from the LWM2M server by issuing
a read request to the composite object’s resources. When these resources are read or
written, the request is redirected to the actual sensor object, e.g. temperature object
3303/0 or voltage object 3316/0, and the response contains the sensor data behind
the link.

4.2.3 Virtualization

Since the sensors and actuators are not real devices, we can utilize the benefits of
virtualization, which enables us to scale the amount of devices and use the emulator
regardless of the host machine’s operating system and cumbersome, physical testbeds.
One can simply use any computer with installed Docker. Greenhouse tool provides
some special features, which visualize the implementation a bit better, but it is not
an essential part of the emulator.

Testbed for virtual devices

We create the testbed for virtual devices by using Docker. This requires understanding
the networking of Docker more deeply. Docker automatically creates a docker0
network interface on the host system and a subnet 172.17.0.0/16 with the gateway
address of 172.17.0.1. For each running container, it allocates an IP address from
its address pool and a MAC address. Docker also creates the iptables NAT rules
on the docker host, which can be used by the containers to connect to the outside
world. An example below shows the “bridge” network, which represents the docker0
network and information of two running containers. [63] [64]

CHAPTER 4 IMPLEMENTATION
45

1 {[
2 {
3 "Name": "bridge",
4 "Id": "f7ab26d71dbd6f557852c7156ae0574bbf62c42f539b50c8ebde0f728a253b6f",
5 "Scope": "local",
6 "Driver": "bridge",
7 "IPAM": {
8 "Driver": "default",
9 "Config": [

10 {
11 "Subnet": "172.17.0.1/16",
12 "Gateway": "172.17.0.1"
13 }
14]
15 },
16 "Containers": {
17 "3386a527aa08b37ea9232cbcace2d2458d49f44bb05a6b775fba7ddd40d8f92c": {
18 "EndpointID": "647c12443e91faf0fd508b6edfe59c30b642abb60dfab890b4bdccee38750bc1",
19 "MacAddress": "02:42:ac:11:00:02",
20 "IPv4Address": "172.17.0.2/16",
21 "IPv6Address": ""
22 }
23 }
24 }
25]

If all the components are run in Docker containers and there is no need for communi-
cating with the external networks, the networking is very straightforward. If on the
other hand, containers need to be reachable from the outside world, appropriate ports
must be exposed and mapped correctly. For example the LWM2M and Web servers
running in containers need to expose UDP port 5683 and TCP port, such as 8080,
if clients running outside the host machine need to interact with the LWM2M and
Web servers. Each public service needs to have a different port. In case of exposing
LWM2M server to the host network, the container port 5683 can be mapped to the
host port 5683 if it is available. Now any machine on the host network should be able
to access it. The communication goes through docker0 interface. It is also possible to
run the clients inside containers and the server on localhost. In this case, the server
needs to be started at the docker gateway address, to which the clients connect. The
Figure 4.2 illustrates the networking between containers and the outside world. [64]

Dockerizing the devices involves creating appropriate Dockerfiles for configuration and
building the Docker images based on them. The application also needs a package.json
file, which defines all the required library dependencies and the start script. Each
device has its own Dockerfile, which contains a set of instructions for building the
docker environment. In this implementation we build the Docker images of virtual

CHAPTER 4 IMPLEMENTATION
46

Figure 4.2: Networking of Docker.

devices upon the base image called ’node:4.6’. It is one of the official Docker images,
which can be used to build the nodejs platform. Dockerfile also includes instructions
to install the dependencies according to package.json file and expose ports if necessary.
For virtualizing the Leshan demo server, we use an official leshan-docker image, which
builds minimal runtime environment for the java server to run properly. After images
are created, the containers can be run. By default, the process inside a container is
started in foreground mode meaning that the console is attached to the standard
input, output and error of the process.

Furthermore, we want to use docker-compose [65], which is a tool for running multi-
container Docker applications. In other words, we can run all the different devices
and server in their own containers simultaneously within one tool with one command.
Using docker-compose requires creating a yml-file, which defines the different “ser-
vices” with the information about how they are built, which ports are exposed and
what are the dependencies between the services. With docker-compose the amount
of devices can easily be scaled with the scale command. We use this functionality to
test the scalability of the application.

Visualization of the implementation

The implementation can be visualized using Greenhouse tool. Particularly, we utilize
a Jekyll and Tesla add-ons described in Chapter 2. The setup requires creating an
appspec.json and task.json files. The former one defines the components we are using
including component IDs, correct task files and the amount of instances we want to
create. The latter one defines for example the used Docker image with Greenhouse

CHAPTER 4 IMPLEMENTATION
47

configurations, tools and polarity of the component, which determines the layout of
the connection links between the components. Each device has its own task file.

5 Evaluation

This chapter presents the test environment and evaluates the implemented emulator
in terms of functionalities and scalability. Evaluation of functionalities includes
discussion on, how well the design requirements presented in Chapter 3 were fulfilled
and what are the remaining issues. Evaluation of scalability is about testing the
reproducibility, bandwidth and memory usage of the implementation and presenting
the findings. In addition, the implementation is further optimized to improve the
scalability.

5.1 Test environment

The use cases are executed in a simple test environment, which consists of one host
machine and a WiFi connection. The host machine used is a laptop with 64-bit
Ubuntu 14.04 LTS operating system, Intel R© CoreTM i7-4800MQ processor (2.70
GHz x 8) and 15,6 GiB memory. Each virtual component of the emulator is run in a
separate docker container in the same network. We use the local WiFi connection
with the speed of 1000 Mb/s.

The use cases are executed by starting first the LWM2M server in a container or on
localhost, and then running the created docker images for virtual devices relevant
for each use case. After the components are up and running, the user can play with
the emulator by reading, writing or executing resources through a Leshan web user
interface on a browser.

5.2 Evaluation of functionalities

In this section, the functionalities of the implementation are evaluated in terms of
the design requirements described in Chapter 3. The focus is on the execution of
the two use cases and how the design requirements are fulfilled in those in the test
environment. Also the remaining issues of the implementation are briefly covered.

48

CHAPTER 5 EVALUATION
49

5.2.1 Fulfillment of functional requirements

The fulfillment of functional requirements is evaluated in Table 5.1. Each functionality
is then descirbed in more detail in terms of how they are implemented or why the
functionality is still missing.

Table 5.1: Fulfillment of functional requirements
#number Functionality Fulfillment
1 Registration/Deregistration Yes
2 Resource initialization Yes
3 Read/Write/Execute Yes
4 Create/Delete Yes/No
5 Observe/Notify Yes
6 JSON/TLV format Yes/No
7 Device-to-Device communicatione Yes

1. The implemented devices are able to register and deregister according to the
LWM2M specification. As the device applications are started, they send a
POST message with the required query parameters, such as endpoint name
and default lifetime value to the LWM2M server. Respectively, they send a
DELETE message to the LWM2M server, when the applications are terminated.

2. Resource initialization is implemented as it is defined in the coap-node library.
Both LWM2M objects and IPSO objects are supported. The implementation
is only lacking of initialization of resource instances, which is a less important
feature.

3. Reading, writing and executing resources of both single-instance and multi-
instance objects are implemented. Also reading the whole object instance, that
is, multiple resources at once, is supported. Use of JSON requires registering
the correct data format to the server.

4. Create functionality is partly implemented. It works only with the JSON data
format. Depending on the Leshan version, TLV format may be required and in
that case, it will not work. Delete functionality is not implemented because of
the limited time.

5. Devices are able to observe resources and object instances and send notifications
to the LWM2M server. The implementation requires that notifications are sent

CHAPTER 5 EVALUATION
50

as confirmable messages, which may not be the optimal solution in all cases,
since it creates more traffic.

6. JSON format is supported by adding minor modifications to the coap-node
library and registering the format correctly as mentioned before.

7. Devices are able to communicate with each other by sending multicast messages.
Multicast is an appropriate solution, when reliability is not required. Multicast
messages are noncorfimable messages, which sets some limits to what can be
multicasted.

5.2.2 Remaining issues

The emulator still has some issues and unsupported functionalities, which could be
later added to the implementation. Here, we list some features, which still require
development and would improve the operation of the emulator:

• TLV/CBOR data format

• Objlnk data type

• Create/Delete methods

• Resource Discovery/Lookup Interface

• Observation between devices

• DTLS support

Binary formats, such as TLV and CBOR are very useful for IoT communications,
since they reduce the size of the transmitted data. TLV is one of the basic data
formats supported by Leshan server. The CBOR format defined in [66] is even more
compact and should be considered to implement. Also Objlnk data type is needed
for the composite objects. As TLV format is supported, also the implemented Create
method should work fine. Delete method would be useful to remove resources and
objects.

The emulator would benefit mostly from the CoAP resource discovery and lookup
functionalities. Devices would discover each other’s available resources easier than
using multicast. However, these functionalities are not part of the LWM2M spec-
ification, which focuses only on the management side. Nevertheless, for example

CHAPTER 5 EVALUATION
51

IETF draft [67] suggests that these CoAP functionalities should be added to the
LWM2M. Currently, lookup functionality can be added by implementing another
resource directory, which can be used alongside with the LWM2M server for lookup
purposes. In the implementation of the emulator, devices do not directly observe
each other’s resources, but instead they send data (via multicast), when observation
is started from the LWM2M server.

Obviously, security is an important aspect in real life IoT scenarios. Thus, imple-
menting the DTLS support would be mandatory at some point.

5.3 Evaluation of scalability

In this section, the scalability of the emulator is evaluated in terms reproducibility,
memory usage and bandwidth usage of the virtual devices (containers). Also the
packets and protocols are analyzed. Finally, based on the issues found in the
scalability tests, the emulator is optimized to improve scalability further.

5.3.1 Reproducibility

The scalability tests related to reproducibility of the containers are made by using
docker-compose tool with scale option. The test scenario builds around one weather
observer and presence detector, and several radiators and light controllers connecting
to the LWM2M server. We chose to have only one weather observer and presence
detector, since they are the ones sending multicast messages and thus, stressing the
network mostly. Real life situations could involve a building with many radiators,
which get information from one “central” weather observer and a big hall with
multiple lights that are controlled based on the information provided by the presence
detector.

The test is executed by trying first to connect 50 devices, from which one is a presence
detector, one is a weather observer and half of the rest devices are radiators and
half light controllers. With this kind of logic, the number of devices is increased to
100, 150, 200 and so on. We also use two different loads; load0 is created by having
only one device of each type sending periodically (observing a resource) data to
the network and load1 is created by having at least half of all the devices sending
periodically data to the network. The results of the test are collected to Table 5.2.

As we can see from the Table 5.2, the maximum amount of devices the system can

CHAPTER 5 EVALUATION
52

Table 5.2: Results of scalability test 1
Number of Connected Clients Successful Registration & Communication

load0 load1
50 OK OK
100 OK OK
150 OK OK
200 OK OK
250 OK OK
300 OK OK
350 OK OK
400 OK OK (1 exit)
450 OK OK (4 exit)
500 OK X
550 OK X
600 OK X
650 X X
700 X X

Load0 = One device of each type communicating periodically (observing a resource)
Load1 = At least half of the devices connected communicating periodically.

maintain in the network with load0 was 600. With a larger number, the docker-
compose crashed or the devices dropped from the network unexpectedly. When the
test was repeated with the load1, the maximum amount of devices was decreased to
450. A few devices were dropped from the network, but otherwise the emulator was
working as expected.

A minor issue noticed already during the test was that the amount of devices actually
connected to the LWM2M server did not always match the number of launched devices.
For example, when 200 devices were launched, only 197 devices were connected. This
problem relates to the naming procedure of the devices. We use a method, where the
device name consists of a string, such as “radiator”, and an integer number between
1 and 10000. However, the LWM2M demands that the endpoint name is unique,
which may not hold in our case. If multiple devices try to use the same endpoint
name, the latest one overwrites the previous one. Increasing the maximum inte-
ger number to 50000 improved the situation, but names are still not absolutely unique.

CHAPTER 5 EVALUATION
53

5.3.2 Memory usage

Memory usage of the containers is also a notable factor in the scalability of the
emulator. The default memory limit of the containers is 15.58 GiB. We measured
the memory usage of containers running the device applications by using docker stats
command. It displays live stream of containers resource usage statistics. The Figure
5.1 shows the statistics about memory usage.

Figure 5.1: Statistics about memory usage of containers from docker stat.

From the Figure 5.1 we can see that the containers of the devices were actually
using about 15-19 MiB memory, which is significantly much and the percentage of
the memory usage was very low. The device applications are relatively simple and
lightweight and hence, they shouldn’t consume that much memory. The Leshan
server running inside a container was using about 195 MiB memory. It is clearly
much heavier applications and thus, needs more memory to run properly.

5.3.3 Bandwidth usage

In addition to evaluating reproducibility and memory usage, we analyze the scala-
bility by measuring network parameters, such as bandwidth usage of the devices,
and investigate further the data packets. To measure the traffic, we run LWM2M
server on localhost and devices inside docker containers. This way, we can monitor
the incoming and outgoing traffic of docker0 interface with the gateway address of
172.17.0.1. The information of bandwidth usage and packets can be used to analyze
the scalability of the emulator.

We use applications, such as iftop [68] and wireshark [69] to monitor the traffic in
real time. The former one measures current bandwidth usage per interface and per
connection (pair of hosts). The latter one provides a lot of information for example
about the packets and protocols, and also useful statistics from the traffic, such as
graphs of current traffic load.

CHAPTER 5 EVALUATION
54

With iftop we measured the peak data on docker0 interface over 40 seconds time
interval in four scenarios: 4, 10, 15 and 20 devices sending and receiving data
periodically. The Figure 5.2 is an example of iftop interface showing the scenario
with 10 devices. The peak values of bandwidth usage at the bottom of the figure
are measurements over a 40 seconds interval, while the data rates at which traffic is
sent and received are measured over 2, 10 and 40 seconds. The results from iftop are
gathered in Table 5.3. It shows the peak traffic separately for sending and receiving
data (Tx, Rx) and the total values.

Figure 5.2: The current bandwidth usage of docker0 from iftop.

Table 5.3: Peak bandwidth usage of docker0 interface.
Number of Devices Tx (peak) Rx (peak) Total (peak)
4 384 bits 744 bits 1.128 kbits
10 768 bits 1.23 kbits 1.998 kbits
15 1.12 kbits 1.73 kbits 2.85 kbits
20 1.38 kbits 2.05 kbits 3.43 kbits

From the Table 5.3 we can see that the peak bandwidth usage increases quite evenly,
when the number of devices grows. Even though we had only the maximum of
20 devices in the test generating quite small amounts of traffic, we can say that
increasing the number of devices effects on the performance of the network. As
the IoT devices hog the bandwidth, there is not so much left for other services and

CHAPTER 5 EVALUATION
55

devices. In the scalability test with hundreds of devices, the emulator seemed to slow
down a bit. Obviously the influence is bigger in a network, which bandwidth is more
limited.

From WireShark we got a graph of the current traffic load in bits/s as shown in
Figure 5.3. It illustrates the traffic pattern; instead of continuous data flow with
bulk data, IoT devices sent several small packets at certain times, while otherwise
being idle. This may cause somewhat unpredictable bandwidth usage. This is a
typical characteristics of IoT traffic, which sets some new requirements for the future
networks. Especially, when there are hundreds of devices transferring data, the peak
values may increase relatively high at times.

Figure 5.3: Traffic load from WireShark with 10 devices.

Packets and protocol stack

By investigating the traffic more closely, we can confirm that IoT devices indeed
generate numerous amount of small packets instead of bulk data and follow the IoT
protocol stack. From the Figure 5.4 we can see that the length of all CoAP packets
transmitted are in the range of 40-79 bytes.

According to CoAP specification [19] CoAP packet should fit in a single IP packet
to avoid fragmentation, which in turn causes decrease in performance. For IPv4 the
minimum value for maximum transmission unit (MTU) is 576 bytes, whereas IPv6
has MTU of 1280 bytes. If there is no information about the size of headers, good
upper bounds are 1152 bytes for message size and 1024 bytes for payload size. The
packet size could be even less to avoid the possible fragmentation of lower layers,
which may have their own MTU limits.

The Figure 5.5 shows the protocol stack. Thus, we can confirm that the data is
transmitted correctly using the protocols described in this thesis. We can see from the
figure that the data is wrapped in CoAP packets and UDP is used for transmission

CHAPTER 5 EVALUATION
56

Figure 5.4: Lengths of CoAP packets measured with Wireshark.

underneath on top of IPv4.

Figure 5.5: Protocol hierarchy

5.3.4 Optimization

The maximum number of devices connected successfully to the server was expected
to be much larger. For that reason, the implementation of the emulator was further
investigated and optimized to improve the scalability. The number of containers that
can be run simultaneously depends on several factors. For example, the configurations
of containers, applications running inside containers and the system resources have
an effect on the reproducibility of the containers. Some issues of the emulator
implementation discovered related to the docker image size, the memory usage of
containers and system load.

The easiest means to optimize the emulator was to change the base image used in
the Dockerfiles of devices. As the devices require the nodejs platform, we still use the
node base image, but a different version called node:slim. It implements the minimal
requirements needed to run nodejs applications. This way, the docker image size was

CHAPTER 5 EVALUATION
57

reduced from about 670 MB to 230 MB. The memory usage of the containers was
even a more notable factor in the scalability of the emulator as noticed before. The
emulator was optimized by limiting the memory usage of containers to 4 MB (the
minimum amount of memory to allocate in Docker), which seemed to be suitable for
devices.

As the scalability test was repeated, we chose to use a tool called dstat at the
background to measure a load average of the system. Load average is a useful
performance metric, which indicates the overall amount of computational work
performed by the system. It includes all the processes and threads waiting for
resources (I/O, networking etc.). Tool dstat shows three values for load average,
which refer to the system operation over the past one, five and fifteen minutes. We
focus on the 1-minute load average. As we have an 8-core CPU the upper-bound
for the system load average is 8. If the number exceeds it, the system is overloaded.
This may result in unstable and unpredictable behavior of the system. The Figure
5.6 shows the 1-minute load average measured over interval of 1000 seconds with
600 devices trying to register to the LWM2M server simultaneously and being idle
afterwards.

Figure 5.6: Load average of the system over 1000s.

The Figure 5.6 shows that the load average rises extremely high (peak over 200),
when the devices start to register to the server. As we try to connect hundreds
of devices at the same time, the system load doesn’t spread over time much, but
peaks sharply instead. This was the main problem in the scalability tests and for
this reason a script was written to launch 100 devices at the time and then wait 15
seconds before launching another 100 devices until the desired number is reached.

CHAPTER 5 EVALUATION
58

Another problem stemmed from the multicast. As stated before, multicast wastes
the bandwidth and stresses the network unnecessarily, which was also confirmed by
the scalability tests. Having over 600 devices registered, from which two of them are
sending multicast messages regularly, caused the load average to jump high, whenever
multicast was triggered. This is because we have only one multicast group, meaning
that the multicast message is sent to all endpoints in the network, which generates a
lot of traffic. This also explains, why devices sometimes dropped from the network at
a random time. The unstable behavior of the system resulted in errors. The unicast
messages didn’t have notable effect on the system load. The unicast message is only
sent to one endpoint, which keeps the traffic load very minimal. For this reason, only
the maximum number of registered clients without any load was measured in the
second scalability test. The results of second scalability test after optimization are
in Table 5.4.

Table 5.4: Results of scalability test 2
Number of Connected Clients Successful Registration
700 OK
800 OK
900 OK
1000 OK
1100 X

The Table 5.4 shows that we managed to launch the maximum of 1000 clients without
any errors. Nevertheless, the actual amount of connected clients was 980 in that
case partly due to naming procedure explained before and parly due to the still
large system load. Communication and network I/O operations across around 1000
processes cause contention. If we would like to have better results, we would need
to increse the sleep time in the script and eventually, more capable hardware. The
amount of available system resources and system limitations are not completely
clear. Docker uses a number of resources to run a container, on top of which the
actual applications are run. The system also typically have some default limitations
regarding of the number of processes allowed, kernel parameters et cetera.

6 Conclusions

Before this thesis work, it was recognized at Ericsson that testing and prototyping in
the area of Internet of Things could benefit greatly from a testbed, where hundreds
or even thousands of virtual sensors and actuators could be run, generate data and
communicate with other components on the network. As a solution, this thesis
presents an emulator of virtual IoT devices, which can be used as a testbed. It
implements a full CoAP stack with LWM2M management interface on top of it.

In this thesis, we first introduced the IoT concept, which enables smart objects,
such as sensors, to identify and control devices in the physical environment over the
Internet. As such small devices are typically constrained in terms of CPU, memory
and power, lightweight solutions are needed. IoT heavily relies on the fundamentals of
web, which is why we presented RESTful architecture and HTTP along with the IoT
communication protocols, CoAP and LWM2M, which are designed for constrained
environments. CoAP provides minimal overhead and compact message structure, and
thus, is preferred over HTTP in IoT. LWM2M provides simple interfaces allowing
management and monitoring of IoT devices. IPSO objects also introduced in the
work, were used in the implementation to represent the sensors and actuators. Finally,
the virtualization tools, such as Docker were discussed. Docker is a platform enabling
applications to run seamlessly regardless of the environment. It was used to virtualize
the emulator.

Moreover, we have defined a set of design requirements for the emulator. In terms
of functionalities, the emulator needs to support basic operations of LWM2M, such
as registration, read, write, execute and obseve/notify. In terms of scalability, the
most significant requirement relates to reproducibility of the virtual devices. The
implemeted emulator was based on two use cases: emulation of several simple devices
and emulation of a complex system. The former one was about representing simple
sensors and actuators of devices called weather observer, radiator, presence detector
and light controller with IPSO objects, while the latter one modeled a complex fuel
injection system in a efficient way by means of a composite IPSO object.

The software applications for the virtual devices, that is the LWM2M clients, were
implemented in node.js utilizing software libraries, such as coap-node. As the

59

CHAPTER 6 CONCLUSIONS
60

LWM2M server we used a java based Leshan demo server. Achieving interoperability
between the client and server side implementaions as well as adding new features to
clients required making adjustments to the existing libraries and introducing new
functions. The Leshan server allows monitoring and managing the devices. After the
devices have registered to the server, their sensor/actuator resources can be read,
written, executed and observed. The devices can also communicate directly using
CoAP multicast.

In the evaluation part we confirmed that the emulator of virtual devices did support
the basic LWM2M operations. Some of the remaining issues were the missing
bootrstrap interface, security features and certain data formats, such as binary TLV
format that are necessary in real IoT scenarios. The scalability tests revealed the
limits of the emulator performnace: the memory usage of the Docker containers was
vast, and starting over 600 devices simultaneously couldn’t be managed with the
exisiting implementation. For that reason, the emulator was optimized by limiting
the memory usage of containers to 4 Mbytes and writing a script that allows starting
the containers in steps with 100 devices at a time. This improved the performańce
by increasing the maximum number of registered devices close to 1000. However,
they were managable only with unicast messages. Multicast messages caused the
system load to exeed the limit resulting in unstable performance. We also measured
bandwidth usage and packet lengths in the network, which met the expectations;
traffic generated by the virtual IoT devices was an uneven flow of small messages
that caused only small peaks in the bandwidth usage at times.

As a conclusion, the implemented emulator provides a reasonably scalable testbed
for testing different IoT scenarios, protocols and device management with virtual
devices and generating IoT traffic.

Future work

As this thesis provides a simple emulator of virtual IoT devices with basic CoAP
and LWM2M features, there are a lot ways to develop it further. Some of the ideas
are presented below:

• Security: In real IoT senarios, security modes should be provided. The future
work could be implementing the DTLS layer for securing the UDP transmission.

• Emulated Environment: Currently the data generated by the virtual devices is
only simulated random data. In future, the physical environment, from where
the real sensors collect data, could be emulated. This would require for example

CHAPTER 6 CONCLUSIONS
61

creating an environment object that mimics the real environment and from
where the virtual sensors read the data.

• Resource Discovery/Lookup Interface: Instead of using multicast for device-
to-device communication, it would be more efficient to use resource discovery
to find resources in the network or lookup interface that allows querying for
certain resources from resource directory.

References

[1] Höller, J., Tsiatsis, V., Mulligan, C., Avesand, S. et al. (2014) From Machine-
to-Machine to the Internet of Things: Introduction to a New Age of Intelligence.
UK: Elsevier.

[2] Ersue, M. & Keranen, A. (2014) Terminology for Constrained-Node Networks,
RFC 7228. Available from: https://tools.ietf.org/html/rfc7228.

[3] Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. (2015) The Internet of
Things (IoT): A Vision, Architectural Elements, and Future Directions.

[4] Chase, J. (2013) The Evolution of the Internet of Things, White Paper.

[5] Minerva, R., Biru, A. & Rotondi, D. (2015) Towards a definition of the Internet
of Things (IoT), IEEE.

[6] International Telecommunication Union (2012) Series Y: Global Information
Infrastructure, InternetProtocol Aspects and Next-generation Networks, Recom-
mendation ITU-T Y.2060.

[7] Jara, A.J., Ladid, L. & Skarmeta, A. (n.d.) "The Internet of Everything through
IPv6: An Analysis of Challenges, Solutions and Opportunities". Journal of
Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications,
4 (3): 97-118.

[8] Khan, R., Khan, U.K., Zaheer, R. & Khan, S. (2012) ’Future Internet: The
Internet of Things Architecture, Possible Applications and Key Challenges’. In:
Proceedings of the 10th International Conference on Frontiers of Information
Technology.; Islamabad, Pakistan: December 2012.

[9] Rose, K., Eldridge, S. & Chapin, L./Internet Society (2015) The Internet of
Things: an Overview.

[10] Kovatsch, M., Lanter, M. & Shelby, Z. (2014) ’Californium: Scalable Cloud
Services for the Internet of Things with CoAP’. In: Proceedings of the 4th
International Conference on the Internet of Things; Cambridge, MA, USA:
October 2014.

[11] Kushalnagar, N., Montenegro, G. & Schumacher, C. (2007) IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions,

62

https://tools.ietf.org/html/rfc7228

Problem Statement, and Goals, RFC 4919. Available from: https://tools.
ietf.org/html/rfc4919.

[12] Rao, S., Chendanda, D., Deshpande, C. & Lakkundi, V. (2015) ’Implementing
LWM2M in Constrained IoT Devices’. In: Proceedings of Wireless Sensors
(ICWiSe) IEEE Conference; Malaysia: August 2015.

[13] Vermesan, O., Friess, P. & Guillemin, P. et al. (n.d.) Internet of Things
Strategic Research Roadmap.

[14] Laine, M. (n.d.) RESTful Web Services for the Internet of Things. Avail-
able from: http://media.tkk.fi/webservices/personnel/markku_laine/
restful_web_services_for_the_internet_of_things.pdf.

[15] Jiménez, J. (2015) Introduction to IPSO Objects. Available
from: https://github.com/jaimejim/iot-playground/blob/master/
Documentation/IPSO/IPSO_Intro_IOTSHOK.pdf

[16] Fielding, T. (2000) Architectural Styles and the Design of Network-based Software
Architectures. PhD Dissertation. Irvine: University of California [published].

[17] Keränen, A. & Kovatsch, M. (2015) RESTful Design for Internet of Things
Systems, draft-keranen-t2trg-rest-iot-00. Available from: https://tools.ietf.
org/html/draft-keranen-t2trg-rest-iot-00.

[18] Berners-Lee, T., Fielding, R. & Masinter, L. (2005) Uniform Resource Identifier
(URI): Generic Syntax, RFC 3986. Available from: https://tools.ietf.org/
html/rfc3986.

[19] Shelby, Z., Hartke, K. & Bormann, C. (2014) The Constained Application
Protocol (CoAP), RFC 7252. Available from: https://tools.ietf.org/html/
rfc7252.

[20] Garrett J.J (2005) Ajax: A New Approach to Web Appli-
cations. Available from: http://adaptivepath.org/ideas/
ajax-new-approach-web-applications/. [Accessed on 10.10.2016]

[21] Hartke, K. (2015) CoRE Application Descriptions, draft-hartke-
core-apps-01. Available from: https://tools.ietf.org/html/
draft-hartke-core-apps-01.

63

https://tools.ietf.org/html/rfc4919
https://tools.ietf.org/html/rfc4919
http://media.tkk.fi/webservices/personnel/markku_laine/restful_web_services_for_the_internet_of_things.pdf
http://media.tkk.fi/webservices/personnel/markku_laine/restful_web_services_for_the_internet_of_things.pdf
https://github.com/jaimejim/iot-playground/blob/master/Documentation/IPSO/IPSO_Intro_IOTSHOK.pdf
https://github.com/jaimejim/iot-playground/blob/master/Documentation/IPSO/IPSO_Intro_IOTSHOK.pdf
https://tools.ietf.org/html/draft-keranen-t2trg-rest-iot-00
https://tools.ietf.org/html/draft-keranen-t2trg-rest-iot-00
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
 https://tools.ietf.org/html/rfc7252
 https://tools.ietf.org/html/rfc7252
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://tools.ietf.org/html/draft-hartke-core-apps-01
https://tools.ietf.org/html/draft-hartke-core-apps-01

[22] Shelby Z. (2012) Constrained RESTful Environments (CoRE) Link Format,
RFC 6690. Available from: https://tools.ietf.org/html/rfc6690.

[23] Klas, G., Rodermund, F., Shelby, Z., Akhouri, S. & Höller, J. (2014)
“Lightweight M2M”: Enabling Device Management and Applications for the
Internet of Things, White Paper.

[24] Fielding, R., J. Gettys, J., Mogul, J. et al. (1999) Hypertext Transfer
Protocol – HTTP/1.1, RFC 2616. Available from: http://www.rfc-base.org/
txt/rfc-2616.txt.

[25] Dierks, T. & Rescorla, E. (2008) The Transport Layer Security (TLS) Proto-
col Version 1.2, RFC 5246. Available from: https://tools.ietf.org/html/
rfc5246.

[26] Freier, A., Karlton, P. & Kocher, P. (2011) The Secure Sockets Layer (SSL)
Protocol Version 3.0, RFC 6101. Available from: https://tools.ietf.org/
html/rfc6101.

[27] Bormann, C., Lemay, S., Tschofenig, H. et al. (2016) CoAP (Con-
strained Application Protocol) over TCP, TLS, and WebSockets, draft-
ietf-core-coap-tcp-tls-04. Available from: https://tools.ietf.org/html/
draft-ietf-core-coap-tcp-tls-04.

[28] Rescorla, E. & Modadugu, N. (2006) Datagram Transport Layer Security, RFC
4347. Available from: https://tools.ietf.org/html/rfc4347.

[29] Shelby, Z. (2012) Constrained RESTful Environments (CoRE) Link Format,
RFC 6690. Available from: https://tools.ietf.org/html/rfc6690.

[30] Shelby, Z., Koster, M. & Bormann, C. (2016). CoRE Resource Directory,
draft-ietf-core-resource-directory-09. Available from: https://tools.ietf.
org/html/draft-ietf-core-resource-directory-09

[31] Hartke, K. (2015) Observing Resources in the Constrained Application Protocol
(CoAP), RFC 7641. Available from: https://tools.ietf.org/html/rfc7641.

[32] ETSI (2011) Electromagnetic compatibilityand Radio spectrum Matters (ERM);
System Reference document (SRdoc): Spectrum Requirements for Short Range
Device, Metropolitan Mesh Machine Networks (M3N) and Smart Metering (SM)
applications, ETSI TR 103 055 V1.1.1

64

https://tools.ietf.org/html/rfc6690
http://www.rfc-base.org/txt/rfc-2616.txt
http://www.rfc-base.org/txt/rfc-2616.txt
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/draft-ietf-core-coap-tcp-tls-04
https://tools.ietf.org/html/draft-ietf-core-coap-tcp-tls-04
https://tools.ietf.org/html/rfc4347
https://tools.ietf.org/html/rfc6690
https://tools.ietf.org/html/draft-ietf-core-resource-directory-09
https://tools.ietf.org/html/draft-ietf-core-resource-directory-09
https://tools.ietf.org/html/rfc7641

[33] Open Mobile Alliance (OMA) (2016) Lightweight Machine to Machine Technical
Specification.

[34] Open Mobile Alliance (n.d.) OMNA Lightweight M2M (LWM2M)
Object & Resource Registry. Available from: http://technical.
openmobilealliance.org/Technical/technical-information/omna/
lightweight-m2m-lwm2m-object-registry [Accessed on 7.9.2016]

[35] Jimenez, J., Koster, M. & Tschofenig, H. (2016) ’IPSO Smart Objects’. In:
Position paper for the IOT Semantic Interoperability Workshop; San Jose, USA:
17-18 March 2016.

[36] Internet Protocol for Smart Objects (IPSO) Alliance. (2014) IPSO Smart Object
Guideline.

[37] Aazam, M., Hung, P.P. & Huh, E-N. (2014) ’Cloud of Things: Integrating
Internet of Things with Cloud Computing and the Issues Involved’. In: Proceed-
ings of International Bhurban Conference on Applied Sciences & Technology;
Islamabad, Pakistan: January 2014.

[38] Botta, A., De Donato, W., Persico, V. et al. (2016) ’Integration of Cloud
computing and Internet of Things: A survey’. Future Generation Computer
Systems 56: 684-700.

[39] Ericsson (2016) Ericsson Mobility Report, June, 2016. Available from: https://
www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
[Accessed on 15.10.2016]

[40] Docker Inc. (2016) What is Docker?. Available from: https://www.docker.
com/what-docker#/VM. [Accessed on 31.7.2016]

[41] Docker Inc. (2016) Learn about images & containers. Available from: https:
//docs.docker.com/engine/getstarted/step_two/. [Accessed on 31.7.2016]

[42] (2005) Smith, J.E. & Nair, R. (2005) ’The Architecture of Virtual Machines’.
Computer [Online], 38 (5): 32-38. Available from: https://www.ece.cmu.edu/
~ece845/sp11/docs/smith-vm-overview.pdf. [Accessed on 2.8.2016]

[43] Peltz, C. (2003) ’Web Services Orchestration and Coreography’. Computer [On-
line], 36 (10): 46-52. Available from: http://bbs.w3china.org/dragonstar/
papers/Peltz_COMP2003Oct.pdf. [Accessed on 2.8.2016]

65

http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
https://www.docker.com/what-docker#/VM
https://www.docker.com/what-docker#/VM
https://docs.docker.com/engine/getstarted/step_two/
https://docs.docker.com/engine/getstarted/step_two/
https://www.ece.cmu.edu/~ece845/sp11/docs/smith-vm-overview.pdf
https://www.ece.cmu.edu/~ece845/sp11/docs/smith-vm-overview.pdf
http://bbs.w3china.org/dragonstar/papers/Peltz_COMP2003Oct.pdf
http://bbs.w3china.org/dragonstar/papers/Peltz_COMP2003Oct.pdf

[44] Ericsson (2016). Greenhouse – Ericsson Open Wiki. [unpublic document]

[45] OpenWeatherMap, Inc.(2016) Current weather data Available from: https:
//openweathermap.org/current [Accessed on 20.7.2016]

[46] Basir (2015) node-openweathermap. Available from: https://github.com/
baslr/node-openweathermap. [Accessed on 20.7.2016]

[47] How a Car Works. (2016) How Fuel injection System
Works. Available from: http://www.howacarworks.com/basics/
how-a-fuel-injection-system-works [Accessed on 9.8.2016]

[48] Desarkar, M. S., Sarkar M., Agarwal, P. et al. (n.d.) Case study of de-
sign of an Engine Control Unit. Available from: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.95.4330&rep=rep1&type=pdf [Accessed
on 9.8.2016]

[49] AA1Car Auto Diagnosis Repair Help. (n.d.) Engine Throttle Position Sen-
sor Available from: http://www.aa1car.com/library/tps_sensors.htm [Ac-
cessed on 10.8.2016]

[50] AA1Car Auto Diagnosis Repair Help. (n.d.) Mass Airflow MAF Sensors Avail-
able from: http://www.aa1car.com/library/maf_sensors.htm [Accessed on
10.8.2016]

[51] AA1Car Auto Diagnosis Repair Help. (n.d.) Engine Coolant Sensors Available
from: http://www.aa1car.com/library/coolant_sensors.htm [Accessed on
11.8.2016]

[52] AA1Car Auto Diagnosis Repair Help. (n.d.) Crankshaft & Camshaft Position
Sensors Available from: http://www.aa1car.com/library/crank_sensors.
htm [Accessed on 10.8.2016]

[53] Delphi TechSource (2005) Typical ECM/PCM Inputs. Available from:
http://go.delphi.com/CS/documents/DPSS_Documents/Education/en-us/
Education_English_10989.pdf

[54] AA1Car Auto Diagnosis Repair Help. (n.d.) Diagnose Fuel Pump Available
from: http://www.aa1car.com/library/fuel_pump_diagnose.htm [Accessed
on 15.8.2016]

66

https://openweathermap.org/current
https://openweathermap.org/current
https://github.com/baslr/node-openweathermap
https://github.com/baslr/node-openweathermap
http://www.howacarworks.com/basics/how-a-fuel-injection-system-works
http://www.howacarworks.com/basics/how-a-fuel-injection-system-works
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.4330&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.4330&rep=rep1&type=pdf
http://www.aa1car.com/library/tps_sensors.htm
http://www.aa1car.com/library/maf_sensors.htm
http://www.aa1car.com/library/coolant_sensors.htm
http://www.aa1car.com/library/crank_sensors.htm
http://www.aa1car.com/library/crank_sensors.htm
http://go.delphi.com/CS/documents/DPSS_Documents/Education/en-us/Education_English_10989.pdf
http://go.delphi.com/CS/documents/DPSS_Documents/Education/en-us/Education_English_10989.pdf
http://www.aa1car.com/library/fuel_pump_diagnose.htm

[55] Docker Inc. (2016) node, Official repository Available from: https://hub.
docker.com/_/node/

[56] PeterEB (2016) coap-node. Available from: https://github.com/PeterEB/
coap-node. [Accessed on 31.7.2016]

[57] Collina, M. (2014) node-coap Available from: https://github.com/mcollina/
node-coap. [Accessed on 31.7.2016]

[58] PeterEB (2016) node-shepherd Available from: https://github.com/PeterEB/
coap-shepherd. [Accessed on 4.8.2016]

[59] PeterEB (2016) textitsmartobject Available from: https://github.com/
PeterEB/smartobject.. [Accessed on 5.8.2016]

[60] Eclipse (2014) Leshan. Available from: https://github.com/eclipse/leshan.
[Accessed on 6.8.2016]

[61] Eclipse Foundation (2015) textitLeshan. Available from: https://eclipse.
org/leshan/. [Accessed on 6.8.2016]

[62] Free Software Foundation, Inc. (n.d.) The GNU C Library. Avail-
able from: http://www.gnu.org/software/libc/manual/html_node/index.
html#SEC_Contents. [Accessed on 20.11.2016]

[63] Li, G.C. (2016) Networking your docker containers using docker0
bridge Available from: https://developer.ibm.com/recipes/tutorials/
networking-your-docker-containers-using-docker0-bridge/ [Accessed
on 21.11.2016]

[64] Docker Inc. (2016) Docker container networking Available from: https://docs.
docker.com/engine/userguide/networking/ [Accessed on 21.11.2016]

[65] Docker Inc. (2016) Docker Compose Available from: https://docs.docker.
com/compose/ [Accessed on 20.11.2016]

[66] Bormann, C. & Hoffman, P. (2013) Concise Binary Object Representation
(CBOR), RFC 7049. Available from: https://tools.ietf.org/html/rfc7049

[67] Jimenez, J. (2016) CoAP functionality expected in a LWM2M system, draft-
jimenez-t2trg-coap-functionality-lwm2m-00. Available from: https://tools.
ietf.org/html/draft-jimenez-t2trg-coap-functionality-lwm2m-00

67

https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://github.com/PeterEB/coap-node
https://github.com/PeterEB/coap-node
https://github.com/mcollina/node-coap
https://github.com/mcollina/node-coap
https://github.com/PeterEB/coap-shepherd
https://github.com/PeterEB/coap-shepherd
https://github.com/PeterEB/smartobject.
https://github.com/PeterEB/smartobject.
https://github.com/eclipse/leshan
https://eclipse.org/leshan/
https://eclipse.org/leshan/
http://www.gnu.org/software/libc/manual/html_node/index.html#SEC_Contents
http://www.gnu.org/software/libc/manual/html_node/index.html#SEC_Contents
https://developer.ibm.com/recipes/tutorials/networking-your-docker-containers-using-docker0-bridge/
https://developer.ibm.com/recipes/tutorials/networking-your-docker-containers-using-docker0-bridge/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/draft-jimenez-t2trg-coap-functionality-lwm2m-00
https://tools.ietf.org/html/draft-jimenez-t2trg-coap-functionality-lwm2m-00

[68] Linux man page. (2010) iftop - display bandwidth usage on an interface by host
Available from: https://linux.die.net/man/8/iftop [Accessed on 8.10.2016]

[69] Wireshark Foundation (n.d.) WireShark Available from: https://www.
wireshark.org/ [Accessed on 8.10.2016]

68

https://linux.die.net/man/8/iftop
https://www.wireshark.org/
https://www.wireshark.org/

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	List of figures
	List of tables
	Introduction
	Objectives
	Structure of thesis

	Background
	Internet of Things
	The Web
	REST
	HTTP

	Communication protocols for IoT
	CoAP
	LWM2M

	Virtualization
	Cloud of Things
	Docker
	Greenhouse

	Design
	Requirements
	Use cases
	Simple IoT devices
	Fuel injection system
	Architecture

	Implementation
	Software & hardware
	Coap-Node
	Leshan
	Hardware

	The implementation of IoT devices
	Object initialization
	Communication logic
	Virtualization

	Evaluation
	Test environment
	Evaluation of functionalities
	Fulfillment of functional requirements
	Remaining issues

	Evaluation of scalability
	Reproducibility
	Memory usage
	Bandwidth usage
	Optimization

	Conclusions
	References

