

Aalto University
School of Science
Master’s Programme in ICT Innovation

Pouya Samadi Khah

Performance Modeling of the OpenStack
Controller

Master’s Thesis

Espoo, August 30, 2016

Supervisor: Jukka K. Nurminen, Aalto University, Finland
Mihhail Matskin, KTH University, Sweden

Instructor: Fetahi Wuhib, Ericsson Research, Kista, Sweden

Abstract

Aalto University
School of Science
Degree Programme in Computer Science
and Engineering
Master’s Programme in ICT Innovation

ABSTRACT OF THE MASTER’S
THESIS

Author: Pouya Samadi Khah

Title: Performance Modeling of the OpenStack Controller

Number of pages: 51 Date: 2016-08-30 Language: English

Major: Distributed Systems and Services

Supervisor: Jukka K. Nurminen, : Mihhail Matskin

Advisor: Fetahi Wuhib

OpenStack is currently the most popular open source platform for Infrastructure as a
Service (IaaS) clouds. OpenStack lets users deploy virtual machines and other instances,
which handle different tasks for managing a cloud environment on the fly. A lot of
cloud platform offerings, including the Ericsson Cloud System, are based on
OpenStack. Despite the popularity of OpenStack, there is currently a limited
understanding of how much resource is consumed/needed by components of OpenStack
under different operating conditions such as number of compute nodes, number of
running VMs, the number of users and the rate of requests to the various services.
The master thesis attempts to model the resource demand of the various components of
OpenStack in function of different operating condition, identify correlations and
evaluate how accurate the predictions are. For this purpose, a physical OpenStack is
setup with one strong controller node and eight compute nodes. All the experiments and
measurements were on virtual OpenStack components on top of the main physical one.
In conclusion, a simple model is generated for idle behavior of OpenStack, starting and
stopping a Virtual Machine (VM) API calls which predicts the total CPU utilization
based on the number of Compute Nodes and VMs.

Keywords: compute node, CPU Utilization, Idle Experiment, OpenStack
Controller, and Per API Call.

Performance Modeling of OpenStack Controller

 3

Declaration

This thesis is an account of research undertaken between January 2015 and August 2015 at

Ericsson Research AB, Kistagången 21, Stockholm, Sweden. I hereby certify that I have written

this thesis independently and have only used the specified sources as indicated in the

bibliography.

Pouya Samadi Khah

Stockholm, August 2016

Performance Modeling of OpenStack Controller

 4

Acknowledgement

I would like to thank and express my deepest appreciation to my supervisor Fetahi

Wuhib and my manager Azimeh Sefidcon, who gave me this opportunity to work in

Ericsson and guided me throughout this work. I, not only, learned from them technically,

but their knowledge and experience has helped me progress professionally. I would

also like to thank my supervisor Mihhail Matskin and examiner Anne Håkansson from

the KTH Royal Institute of Technology and my supervisor from Aalto University Jukka K.

Nurminen. Their reviews, comments and feedback have helped me write this thesis

report in the most professional way possible.

Most importantly, none of this would have been possible without the love and patience

of my family. My family, to whom this thesis is dedicated to, has been a constant source

of love, concern, support and strength all these years. I would also like to explicitly

thank to my brother, Kaveh for being one my most significant sources of support. I

couldn’t have accomplished anything without him.

Tack så mycket and Kiitos!

Pouya Samadi Khah

Stockholm, August 2016

Performance Modeling of OpenStack Controller

 5

Abbreviations

AWS Amazon Web Service

DHCP Dynamic Host Configuration Protocol
GPL General Public License

IaaS Infrastructure as a Service
PaaS Platform as a Service

SaaS Software as a Service
SSE Sum squared error

VM Virtual Machine

Performance Modeling of OpenStack Controller

 6

Table of Contents

Abstract .. 2	
Declaration ... 3	
Acknowledgement ... 4	
Abbreviations ... 5	
Table of Contents .. 6	
Figures ... 8	
Introduction .. 9	

1.1	 Problem Statement .. 9	
1.2	 Goals ... 9	
1.3	 Objectives .. 9	
1.4	 Project Plan ... 9	

1.4.1	 Study and Investigation .. 10	
1.4.2	 Measurement Collection and Analysis .. 10	
1.4.3	 Developing the Model ... 10	

1.5	 Methodology .. 10	
1.6	 Risks, Consequences and Ethics .. 10	
1.7	 Thesis Outline ... 11	
1.8	 Author’s Contribution ... 11	

2	 Cloud Computing and OpenStack .. 12	
2.1	 Cloud computing ... 12	

2.1.1	 Deployment Models .. 12	
2.1.2	 Service Models ... 12	

2.2	 Different Cloud Solutions ... 13	
2.3	 OpenStack ... 13	

2.3.1	 History ... 13	
2.4	 OpenStack Versions .. 15	
2.5	 OpenStack Architecture .. 15	

2.5.1	 OpenStack Services ... 16	
2.6	 OpenStack Deployments ... 17	

2.6.1	 All-in-one deployment ... 18	
2.6.2	 3+N deployment ... 18	
2.6.3	 N+M deployment .. 18	

2.7	 Dimensioning OpenStack .. 19	
2.7.1	 Dimensioning Computing Nodes .. 19	
2.7.2	 Dimensioning Controller Nodes .. 20	

3	 Experimental Setup .. 22	
3.1	 OpenStack Fuel ... 22	
3.2	 OpenStack on OpenStack ... 22	
3.3	 OpenStack Juno configurations .. 23	
3.4	 Monitoring .. 24	
3.5	 Developing the Model .. 25	
3.6	 Idle Experiments .. 26	

Performance Modeling of OpenStack Controller

 7

3.6.1	 Idle Experiment 1 ... 27	
3.6.2	 Idle Experiment 2 ... 28	
3.6.3	 Idle Experiment 3 ... 28	
3.6.4	 Idle Experiment 4 ... 29	
3.6.5	 Comparison and Conclusion ... 30	

3.7	 Per API call Experiments ... 35	
3.7.1	 Per API Experiment 1 ... 35	
3.7.2	 Per API Experiment 2 ... 39	

4	 Analysis and Evaluation of results ... 43	
5	 Conclusion and Future work .. 47	
References .. 49	

Performance Modeling of OpenStack Controller

 8

Figures

	
Figure 1, Cloud Service Models [32] .. 13	
Figure 2, Simplified OpenStack Architecture [33] ... 16	
Figure 3, OpenStack Deployment [4] ... 18	
Figure 4, OpenStack Fuel Architecture [13] ... 22	
Figure 5, OpenStack Juno setup .. 24	
Figure 6, CPU total usage percentage (per second) .. 30	
Figure 7, Physical Memory usage (Average per second) ... 31	
Figure 8, Disk Memory usage (Average per second) ... 31	
Figure 9, (a) Network I/O receive KB/second, (b) Disk I/O read KB/second 32	
Figure 10, Top process usage comparison with no VMs .. 33	
Figure 11, Top process usage comparison with 100 VMs .. 34	
Figure 12, Top process usage comparison with single compute node .. 34	
Figure 13, Top process usage comparison with ten compute nodes ... 35	
Figure 14, CPU Usage Per API Call With 0 VMs .. 36	
Figure 15, Top process usage comparison with 0 VMs based on Create VMs 37	
Figure 16, Top process usage comparison with 0 VMs based on deleting VMs 37	
Figure 17, Top process usage comparison with 0 VMs based on attach volumes to VMs 38	
Figure 18, Top process usage comparison with 0 VMs based on detach volumes from VMs 38	
Figure 19, Top process usage comparison with 0 VMs based on deleting Volumes 39	
Figure 20, Usage Per API Call with 100 VMs .. 40	
Figure 21, Top process usage comparison with 100 VMs based on attach volumes to VMs 40	
Figure 22, Top process usage comparison with 100 VMs based on deleted VMs 41	
Figure 23, Top process usage comparison with 100 VMs based on attach volumes to VMs 41	
Figure 24, Top process usage comparison with 100 VMs based on detach volumes from VMs . 42	
Figure 25, Top process usage comparison with 100 VMs based on deleted Volumes 42	
Figure 26, Idle experiments for modeling ... 44	
Figure 27, Start VM API call experiments for modeling .. 45	
Figure 28, Stop VM API call experiments for modeling .. 46	

Performance Modeling of OpenStack Controller

 9

Introduction

The following section(s) provides an in depth view on the background of the approach, the

existing problems, their proposed solution and the limitations faced during the course of this

Master Thesis project.

1.1 Problem Statement

OpenStack continues to gain momentum in the market and is now a serious contender as more

companies move from evaluation to deployment. One of the key signs of an emerging

technology that is on the cusp of widespread technology is the participation of incumbent

vendors. Ericsson Cloud Research is also using OpenStack infrastructure for their cloud system.

However, there is a limited understanding of how much CPU is consumed or needed by

components of OpenStack under different operating conditions such as number of Compute

Nodes, number of running VMs, the number of users and the rate of requests to the various

services.

1.2 Goals
The goal of this thesis is to model the CPU utilization of the OpenStack Controller Node in three

states.

1.3 Objectives
The objective of this thesis is to study and measure OpenStack CPU consumption in three states.

The first state is when the OpenStack cloud system is in the idle phase. Starting and stopping

virtual machines API calls are the other phases, which have the most impact on CPU utilization

of the OpenStack. This model calculates the CPU utilization based on the number of VMs and

number of Compute Nodes. Within this model it is possible to predict the CPU resource

consumption of the OpenStack setting based on specific number of VMS and Compute Nodes.

1.4 Project Plan
This thesis consists of 3 main work items.

Performance Modeling of OpenStack Controller

 10

1.4.1 Study and Investigation
The first task in this work item involves study of the various approaches that can be employed

for performance modeling of software systems and selecting the appropriate one. The second

item involves study of the OpenStack cloud management platform; its architecture, its

components, etc.

1.4.2 Measurement Collection and Analysis
The OpenStack environment is provided by Ericsson Research, which gave me the possibility to

run OpenStack under different operating conditions and collect measurement data. The physical

server contained eight compute nodes and one controller node. It is worth mentioning that all the

experiments were on virtual OpenStack environments, which were deployed on physical

OpenStack cloud.

1.4.3 Developing the Model
This activity involves developing the model. It takes as input the test-bed measurement results

and produces an analytical model that can predict the resource demand of the various OpenStack

components under different operating conditions. Using this model, it should also be possible to

propose possible configurations for an OpenStack controller given an envelop operating

condition for a specific cloud deployment.

1.5 Methodology
The thesis used quantitative data for the research findings, which is part of experimental research

method [20]. As for quantitative research, I ran OpenStack based on different conditions based

on OpenStack state. In each state several experiments are done to get how OpenStack reacts on

those scenarios. The most important variable that is been studied was CPU consumption. After

collecting data, I execute statistical analysis method experiment results. Finally, I implemented

my model based on the data with curve fitting method.

1.6 Risks, Consequences and Ethics
This new approach of modeling requires immaculate procedure, which is involved in design,

development and implementation due to the big data process and high amount of intermediate

variables, hence it requires of fine optimization, based on the available resources. The project

Performance Modeling of OpenStack Controller

 11

had limited access to physical computer nodes; therefore, the virtual OpenStack infrastructure is

being used for the whole data analyses. The amount of work for development and improvement

of the project overpasses the limited time of this thesis job; therefore, it has been decided to

adjust additional degree of simplification to the model, which has been lead to results with

somewhat compromises.

Besides that, one of the most important ethics in working at Ericsson company is that they have

confidential data and it is important to keep in mind all the time which parts of the data are legal

to publish and which part need to remain confidential.

1.7 Thesis Outline
Chapter 2 gives background information about cloud computing and in-depth information about

OpenStack. Chapter 3 refers to measurement collection and analyses. An environment in which

OpenStack can be deployed is provided. Then the OpenStack undertakes in different operating

conditions in order to collect measurement data. Chapter 4 is discussions of current limitations of

the scheduler in different methods to overcome those conclude the thesis. There is a deep

discussion in how the model can predict the amount of resources needed for optimized CPU

utilization or the other way around. The final chapter is related to future work and

recommendations.

1.8 Author’s Contribution
Pouya Samadi Khah has done all work during the duration of this Master Thesis project. In case

of occurrence of any problem, it was solved with consultation of my advisors in Ericsson and

also from support forums online.

Performance Modeling of OpenStack Controller

 12

2 Cloud Computing and OpenStack

2.1 Cloud computing
Cloud computing is a term used for delivering on-demand computing services over the Internet

[1]. It also refers to application as a service as well as hardware and software in data centers

which provide these services.

2.1.1 Deployment Models
Cloud computing deployment models based on cloud locations can be divided into four groups:

Public, private, community and hybrid cloud [2]. If the cloud, which is known as hardware and

software data centers, used as a pay-for-use basis, it is called public cloud. Private cloud refers to

the internal data centers, which are not public for general use. A community cloud is multi-tenant

infrastructure, which is shared among several organizations that is governed, managed and

secured commonly by all the participating organizations or a third party managed service

provider. A hybrid cloud contains both private and public cloud services. Usually in hybrid

approach, a business might run on private cloud, but rely on a public cloud to accommodate

spikes in usage.

2.1.2 Service Models
Cloud computing service models are classified into three groups: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [3]. In IaaS there is a

basic cloud service structure consisting of virtual machines, block storage, firewalls, load

balancers and networking services are provided. The PaaS provides a platform for developers to

implement applications over the Internet. SaaS is an on-demand software service, which is a way

of delivering applications over the Internet as a service. In SaaS, there is no need of installing

applications. The access is remotely via the Internet. It is shown in the figure 1, how different

services are placed in based on their visibility to the end users.

Performance Modeling of OpenStack Controller

 13

Figure 1, Cloud Service Models [32]

2.2 Different Cloud Solutions

There are a variety of different open-source cloud platforms, including Amazon Web Service

(AWS) EC2, Microsoft Azure, Eucalyptus, OpenNebula, and OpenStack [5]. AWS EC2 [25] is a

web service that provides a resizable compute capacity in the cloud in order to create a scalable

cloud computing but the main difference compare to OpenStack is that it has an on-demand

pricing model in contrast with, OpenStack which is open source and free. Eucalyptus project is

released under a different license than the others, which has the GNU General Public License

version 3 (GPLv3) [8], whereas OpenStack, OpenNebula and Cloudstack have Apache License

version 2 [9, 10] and they are open-source. It is worth mentioning that OpenStack has the largest

population and it is the most active open-source project compare to the others [15].

2.3 OpenStack
2.3.1 History

OpenStack is an open-source Infrastructure as a Service (IaaS), which is aimed for creating and

managing large groups of virtual machines and data centers [4]. Originally in 2010, OpenStack

SaaS

PaaS

IaaS V
al

ue
 V

is
ib

lit
y

to
 e

nd
 u

se
rs

 End Users

Application
developers

Networks
Architects

Performance Modeling of OpenStack Controller

 14

was a joint effort of Rackspace and NASA. The first release had just key components of Nova

and Swift. Nova is the main component of IaaS, manages and controls compute nodes of the

OpenStack environment and Swift is an unstructured redundant storage system

 Additional components have been added in consecutive releases in table1 all the release dates

and version [19] are shown. Today, the community consists of a significant number of

individuals and companies, including Ericsson, IBM, Dell, Canonical, Red Hat, and Cisco.

Table 1, OpenStack releases [21]

Series Status Releases Date
Liberty Under development Due Oct 15, 2015

Kilo Current stable release, security-supported 2015.1.0 Apr 30, 2015
Juno Security-supported 2014.2.3 Apr 13, 2015

2014.2.2 Feb 5, 2015
2014.2.1 Dec 5, 2014
2014.2 Oct 16, 2014

Icehouse Security-supported 2014.1.5 Jun 19, 2015
2014.1.4 Mar 12, 2015
2014.1.3 Oct 2, 2014
2014.1.2 Aug 8, 2014
2014.1.1 Jun 9, 2014
2014.1 Apr 17, 2014

Havana EOL 2013.2.4 Sep 22, 2014
2013.2.3 Apr 03, 2014
2013.2.2 Feb 13, 2014
2013.2.1 Dec 16, 2013
2013.2 Oct 17, 2013

Grizzly EOL 2013.1.5 Mar 20, 2014
2013.1.4 Oct 17, 2013
2013.1.3 Aug 8, 2013
2013.1.2 Jun 6, 2013
2013.1.1 May 9, 2013
2013.1 Apr 4, 2013

Folsom EOL 2012.2.4 Apr 11, 2013
2012.2.3 Jan 31, 2013
2012.2.2 Dec 13, 2012
2012.2.1 Nov 29, 2012
2012.2 Sep 27, 2012

Essex EOL 2012.1.3 Oct 12, 2012

Performance Modeling of OpenStack Controller

 15

2012.1.2 Aug 10, 2012
2012.1.1 Jun 22, 2012
2012.1 Apr 5, 2012

Diablo EOL 2011.3.1 Jan 19, 2012
2011.3 Sep 22, 2011

Cactus Deprecated 2011.2 Apr 15, 2011
Bexar Deprecated 2011.1 Feb 3, 2011
Austin Deprecated 2010.1 Oct 21, 2010

OpenStack has three main advantages, which should be taken into consideration. First of all, it is

highly scalable, which gives the user to store and Compute petabytes of data in distributed

systems fashion. It is also compatible and flexible with different virtualization solutions such as

KVM, LXC, QEMU, UML, Xen and XenServer [6].

2.4 OpenStack Versions
OpenStack has several versions. The first version, which is called Austin, is launched in October

2010. In my thesis, I used the OpenStack Juno version, which is released October 2014 and

finalized in February 2015. OpenStack Juno is the stable and secure-supported version of

OpenStack. The OpenStack versions are announced every six months [14].

2.5 OpenStack Architecture
In the figure below, it is shown that how different OpenStack services are communicating with

each other [7].

Performance Modeling of OpenStack Controller

 16

Figure 2, Simplified OpenStack Architecture [33]

2.5.1 OpenStack Services

Compute (Nova)

OpenStack Nova, which is the main component of IaaS, manages and controls compute nodes of

the OpenStack environment.

Networking (Neutron)

Neutron is a system for managing and controlling network systems and IP addresses. In addition,

it provides an API interface to configure network settings as a service.

Dashboard (Horizon)

Performance Modeling of OpenStack Controller

 17

Dashboard (Horizon) provides a graphical user interface in order to interact with OpenStack

underlying services. The main purpose is to access, providing, and automate cloud-based

resources such as launching instances, configuring IP addresses.

Object Storage (Swift)

Swift is an unstructured redundant storage system. Objects are written in multiple files in

different disks in order to insure the integrity over the clusters.

Block Storage (Cinder)

Cinder provides persistent block-storage devices.

Identity Service (Keystone)

Keystone provides mapping system between users and OpenStack services. It is used for

authentication and authorization.

Image Service (Glance)

Glance stores and retrieves data from disks and server images.

Telemetry (Ceilometer)

Ceilometer monitors and measures the OpenStack for statistics.

Orchestration (Heat)

Heat is used for orchestrating multiple composite cloud applications using templates

Database Service (Trov)

Trov is a Database as a service system for both relational and no relational databases [7].

2.6 OpenStack Deployments
OpenStack is based on distributed design. In other words, different OpenStack services can run

on a highly distributed setting with a little restriction. Thus, the deployment architecture can

Performance Modeling of OpenStack Controller

 18

range from all-in-one to multi-node deployments. In general, there are two kind of nodes for

OpenStack setting, compute nodes which host and run Virtual Machines (VMs) and controller

nodes which run all the other services to support the VMs. Different OpenStack deployment

techniques are demonstrated in figure 3.

2.6.1 All-in-one deployment
In this architecture both controller and Compute services are running in the same server. As an

example, DevStack [21] use this architecture for the cloud deployment.

2.6.2 3+N deployment
The most common deployment architecture for multi-scale OpenStack services which also

OpenStack recommends to use [24]. In these deployments, there is one node dedicated for

networks and another node for storage and the third node for the remaining OpenStack services.

Besides that, one or more compute nodes are used to do the computation part of the cloud

infrastructure.

2.6.3 N+M deployment
It is the extended version of 3+N deployment where you could have N controller nodes and M

compute nodes. This structure is used when there is need for clustering and high availability

among OpenStack services.

Figure 3, OpenStack Deployment [4]

3 + N

Network

Storage

Others

…

N + M

…

…

All-in-one
Server

Controller
Service

Compute
Service

Performance Modeling of OpenStack Controller

 19

2.7 Dimensioning OpenStack
There are several OpenStack deployment architectures which each of them has a unique way of

scalability and dimensioning. In general, there are two ways to dimension the OpenStack, based

on the compute nodes, and Controller nodes.

2.7.1 Dimensioning Computing Nodes
To do the dimensioning of compute nodes, you need to have a good knowledge of the load that

you expect on the cloud. In each OpenStack system you can choose between one or more flavors

[18] to use for your compute nodes. Flavors are basically virtual hardware templates defining

sizes for RAM, disk, and the number of cores. In the table2, it is shown that based on the

different flavors, how many VMs is expected to run on one compute node.

The first thing to consider in dimensioning compute nodes is trying to estimate the total amount

of resource that is going to be consumed by the VMs. To calculate it, you need to multiply the

number of VMs by the amount of resource for each flavor and sum it up for the all the flavors.

Table 2, Dimensioning OpenStack compute nodes

Flavor RAM (MB) Disk (GB) Cores #VMs
m1.tiny 512 1 1 30
m1.small 2048 20 1 30
m1.medium 4096 40 2 10
m1.large 8192 80 4 10
m1.xlarge 16384 60 8 5
Total 281600 2630 160
OC Ratio 1.5 1 2
HW Spec 16384 256 20
Number of the
compute nodes

11.45 10.27 4

Max number of the Compute Nodes: 12

Another important fact to take into calculation is the overcommitting ratio, which demonstrates

how many resources a compute node reports to the scheduler. For example, if you have a server

with 20 cores and an over-commit ratio of 2, the compute node will report as if it has 40 CPU

cores. This is very helpful to have a high utilization OpenStack system. Thus, once you have the

Performance Modeling of OpenStack Controller

 20

over-commit ratio and the total amount of resources then you can choose one server type. As an

example, which is shown in Table 2, the server with 16384MB of RAM and 256 GB of hard disk

is chosen, thus, to calculate the expected numbers of compute nodes the following formula is

used:

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒!"#$% = 𝑀𝑎𝑥 (!"#$!!"#$%&'"#
 !!!"#$% ∗ !!!"#

 , !"!"!!"#$%&'"#
 !!!"#$% ∗ !!!"#$

 , !"#$!!"#$%&'"#
 !!!"#$% ∗ !!!"#$%

)

So the result is 𝐶𝑜𝑚𝑝𝑢𝑡𝑒!"#$% = 𝑀𝑎𝑥 (!"#$%%
!.!∗!"#$%

, !"#$
!∗!"#

, !"#
!∗!"

) = 11.4583333 ≅ 12

Selecting the suitable VM type also depends on scheduler algorithms. By default, the OpenStack

scheduler [18] tries to balance the memory load on the compute nodes. For instance, if the cloud

is utilized up to 80%, all the servers are utilized up to 80% and if the OpenStack wants to start a

large instance that requires more than 20% of the capacity, cannot do with the current settings

due to the fact that all the servers will be busy. The solution is either adding more compute

nodes to the cloud platform or changing the OpenStack scheduler behavior. The OpenStack

scheduling should fill the nodes before moving to the next node instead of trying to balance the

load.

2.7.2 Dimensioning Controller Nodes
The load of the OpenStack controller depends on many facts except the load of the VMs. It

depends on deployment architecture, the plugins that are used, the number of compute nodes, the

configuration of services, number of objects (VMs, routers, networks...), and also how frequent

users are interacting with the cloud.

2.7.2.1 Dimensioning Controller Nodes approaches
It is a challenge to come up with a generic guideline to the dimension OpenStack controller. One

of the approaches to overcome this challenge is to overprovision [28] the resources that are in the

controller node that you may not need to use them. Besides that, in large VM deployments, the

overprovisioning strategy leads to significant under-utilization of the resources.

Another way to address this problem is oversubscription your resources at a cost which is

increasing the likelihood of overload or alternatively one or more VMs do not have the resources

to complete a task without encountering performance degradation.

The Ericsson Research Team in OpenStack Summit May 2015, based on my contribution,

proposed two approaches to dimension OpenStack cloud [26]. The first approach is to initially

Performance Modeling of OpenStack Controller

 21

deploy the OpenStack cloud first and then measure the resource consumption based on the

different scenarios. It is preferable to deploy in a test environment in order to test different

parameters before to deploy in actual production environment.

The second approach, which is the main contribution of this thesis, is that to develop a model to

estimate how much the resource will be consumed and then use this model as an input for the

HW dimensioning accordingly.

There are three environments to study and analyze OpenStack deployment. If there is a direct

access to the physical servers and nodes, the deployment can be executed in the physical

environment. The advantage of this environment is that the results of the experiments will be

highly accurate. However, it is usually difficult to access to the physical server production line

and there is always a limitation of resources to use. The alternative environment is the emulated

one, which is a virtualized environment. The problem is that the results will not be as accurate as

the physical environment; however, it is highly scalable and flexible in terms of experiments.

The other approach is to use the simulated environment. Although they are highly flexible, there

are no good simulators for OpenStack today.

Performance Modeling of OpenStack Controller

 22

3 Experimental Setup

3.1 OpenStack Fuel
To install OpenStack on the physical layer, I used OpenStack Fuel [13], which is an open-source

management tool with a GUI to deploy OpenStack platforms. The main advantage of OpenStack

Fuel is bringing simplicity, error prone process of deploying and configuring different

OpenStack Services. In the figure below you can see the architecture of Fuel. The key

components are UI, Nailgun, Cobbler and Mcollective agents. The UI part is basically a

JavaScript page which uses bootstrap and backbone underneath. The Nailgun is the main part of

the Fuel, which creates Rest API and data management. Cobbler is used for providing services.

Mcollective agent gives the opportunity to execute specific tasks like hardware cleaning.

Figure 4, OpenStack Fuel Architecture [13]

3.2 OpenStack on OpenStack
Installing OpenStack is not an easy task to do even with OpenStack Fuel. First of all, it needs a

physical hardware to install the under-cloud and then install and configure the suitable

distribution approach. There are lots of steps to put into consideration in installing one

Performance Modeling of OpenStack Controller

 23

OpenStack. Taking into mind that experimenting different OpenStack configurations consumes

huge amount of hardware devices, which makes it near impossible to work on fast and parallel.

To overcome this obstacle, making an emulated environment is a possible solution. To do that,

the OpenStack platform should be deployed on the main OpenStack platform, which is installed

on the physical layers [11].

The key advantages of OpenStack on OpenStack are:

→ Scalability

→ Integration

→ Decreasing drive installation and maintenance costs

→ Encapsulate the installation and upgrade process

→ Common API and infrastructure for above and below cloud [12]

3.3 OpenStack Juno configurations
This section explains about the main components of the OpenStack infrastructure, which is going

to be used in my measurements and experimentations. The latest version of the OpenStack by the

time of my research was OpenStack Juno.

 The main tasks of the core components are described below:

• Controller Node:

It is the main part of the OpenStack, which controls and configures the Service nodes and

compute nodes. The controller is connected to two separate networks, which one of them

is for networking and the other one is for managing the service node. All the OpenStack

services are becoming executable by connecting to the controller node. As it is shown in

the figure above, it can be accessed via public IP address [16].

• Service Node:

It is also kind of a controller node, which provides networking services (L3 routing,

dhcp) and also provides the disks for the block storage service.

• Compute Node:

The computation part is based on this unit. The Compute Node is not needed to connect

to a public IP address, as it is not need to be accessible directly to monitor. However,

within the Controller Node, Compute Node is accessible [16].

Performance Modeling of OpenStack Controller

 24

In the figure 3, there is a snapshot of a virtual OpenStack Juno setup. All the three main nodes

connected to management layer and network layer. However, the controller node and service

node are connected to the public network in order to access directly to them from outside.

Figure 5, OpenStack Juno setup

3.4 Monitoring
The Monitoring program was written as a part of the scalability of OpenStack projects during the

summer of 2014 at Ericsson [17]. The program is to be used to receive performance metrics on

running processes and system utilization (CPU, memory, disk and network) in different setups.

In this specific project, the program is to be used as a way to get a better understanding of how

different OpenStack setups affect system performance.

The program is written in python and uses the psutil [27] library, a cross-platform library for

retrieving information on running processes and system utilization. The program can be used

either as a module or as a running application on a server. The program monitors the system for a

period of time set by the user and writes the collected information to a database. There are two

main files: monitor.py and root.py.

Performance Modeling of OpenStack Controller

 25

The Monitoring section does the sampling and uses the psutil library to collect the necessary

information. It also contains a function that parses the collected data and writes it to a database.

To start the monitoring, it can be called as a function or can be used as an application. The

program has successfully been used with Pecan, a Python web framework. This way, the

program can be started and configured remotely when monitoring a system. By visiting the URL

of the served application the monitoring can be started and stopped:

http://DATABASE_IP_ADDRESS:8080/start_monitor?duration=20&scenario_key='Test-1'

http://DATABASE_IP_ADDRESS:8080/stop_monitoring

To sum up, the monitor.py program can be used for monitoring system in different setups and is

a proper tool for collecting system utilization metrics. Some testing can be done to improve the

performance of the program and make the usage easier. For my experiments, the monitoring

program was on run automatically on service node.

3.5 Developing the Model
If there are number of unknowns, for example, the number of VMs or the frequency of user

interaction with the cloud, it is difficult to try and evaluate all the possible combinations of the

different settings. To overcome this problem, developing a model for the resource consumption

is a suitable solution. This model can be used as a tool to predict the amount of resource

consumption at different parameters.

The model in general should be a function that can map the state of the cloud deployment to the

consumption of various resources. The state of the cloud can be the amount of physical resources

(compute nodes, storage nodes, HW, routers, etc.), objects (VMs, volumes, routers, networks,

tenants, users) and user interface patterns (APIs, rate of calls, sequence of calls). The output

should be the consumption indicator of the resources such as CPU, RAM, disk IO. The

consumption is calculated based on two main phases. The first phase is about analyzing the

resource consumption of OpenStack components is in the idle phase. This will let to study the

processes that are consuming the resources frequently. The second phase is about the impact of

Performance Modeling of OpenStack Controller

 26

API calls on resource consumption. The sum of resource consumption of the idle phase and all

the API calls is the output. Thus, the simplified version, which is used in this thesis, is:

 𝑅 = 𝑅!"#$ 𝐶,𝑉 + 𝜆! 𝑅! 𝐶,𝑉!"#
• Resources(R): CPU, Network I/O, Disk I/O, etc.
• State: # VMs (V), # compute nodes (C), set of APIs (A), rate of calls to APIs (λ)
• Idle: There is no API call is going to the system
• Estimate Ridle: run deployment with varying values for C and V, measure the resource consumption on

the controller
• Estimate Ra: measure resource consumption during periods where call to API a is made subtract the

idle resource consumption

To use this model, the first step is to choose what are the resources you want to take it to

account. CPU can be a good example for this model. The next step is to choose the state

variables for this model such as number of VMs, number of compute nodes, set of OpenStack

API calls and the rate of calling them. In order to complete the model, you need to have an

estimation of the idle resource utilization and resource utilization per API call.

To ease the OpenStack installation process, I create a set of scripts, which are automating the

whole process. The scripts are installing all the needed packages for the installation and also

configure the networks between the core components of OpenStack, which are the Controller

node, Service node, and compute node and then execute the experiments based on user or

OpenStack’s input.

We divided our experiments in two parts: Idle part and per API calls part.

3.6 Idle Experiments
In Idle experiments, it is assumed that no APIs of OpenStack services are called from the outside

of the OpenStack setup. The aim is to look how the resources in the controller are affected based

on number of Compute Nodes and VMs in a certain period of time. Therefore, four different

scenarios are done with different settings based on Compute Nodes and VMs. Each scenario is

experimented five times in order to get less error-prone results. The following resources are

evaluated in these experiments:

• CPU total usage percentage (per second): It shows CPU utilization in percentage

format

Performance Modeling of OpenStack Controller

 27

• Average Physical Memory usage: It shows average usage of physical memory in a

certain period of time

• Average disk usage per second: It shows average usage of disk in a certain period of

time

• Disk I/O read kb/second: It shows the ratio of reads in disk I/O

• Disk I/O write kb/second: It shows the ratio of writes in disk I/O

• Network I/O send kb/second: It shows the ratio of sending bytes in network I/O

• Network I/O receive kb/second: It shows the ratio of receiving bytes in network I/O

It is also worth mentioning that all the plots indicate the 95% confidence interval. The evaluation

of idle experiments is divided based on four different scenarios.

3.6.1 Idle Experiment 1

Table 3 shows the OpenStack settings for the Idle Experiment with zero VM and single compute

node. The result for this scenario shows that CPU usage is average 16.73 % in the idle mode.

There is no reading from Disk in the idle experiments. Besides that, Network I/O packets are

relatively small. However, there is a considerable physical memory usage.

Table 3. OpenStack settings in Idle Experiment 1
Features
Controller Node: 4 cores Service Node: 4 cores
Compute Node: 12 cores Number of Compute Nodes: 1
Number of Virtual Machines: 0 Measurement length: 4000

seconds

Table 4. Idle Experiment 1 Results
CPU total usage percentage (per second) 16.73%
Average Physical Memory usage 3318.798 MB
Average disk usage per second 134.827 B
Disk I/O read kb/second 0
Disk I/O write kb/second 1.206 MB
Network I/O send kb/second 57.897 KB
Network I/O receive kb/second 59.218 KB

Performance Modeling of OpenStack Controller

 28

3.6.2 Idle Experiment 2
In the idle experiment 2, 100 VMs is started to see how will they impact the resource

consumption in the idle mode. Table 5 shows the detailed settings for the Idle Experiment with

100 VMs and single compute node.

Table 5. OpenStack settings in Idle Experiment 2
Features
Controller Node: 4 cores Service Node: 4 cores
Compute Node: 12 cores Number of Compute Nodes: 1
Number of Virtual Machines: 100 Measurement length: 4000 seconds

Table 6 shows that the CPU consumption is increased by 2 percent compare to the experiment

without VMs. Besides that, it was expected to get similar results for physical memory usage, disk

usage, and Disk I/O read, since VMs are not affecting them. The small difference is because of

the noise. However, in theory the difference should be zero. In addition, network I/O ratio is also

increased because of the connections that VMs created.

Table 6. Idle Experiment 2 Results
CPU total usage percentage (per second) 19.77%
Average Physical Memory usage 3294.201 MB
Average disk usage per second 243.022 B
Disk I/O read kb/second 0.00306 KB
Disk I/O write kb/second 1287 KB
Network I/O send kb/second 139.208 KB
Network I/O receive kb/second 141.868 KB

3.6.3 Idle Experiment 3
For the Idle experiment 3, the number of service nodes increased to 12 in order to handle 10

computes nodes. In this experiment, there is no VM. It is expected to get more impact on

resource consumptions compare to scenario 1 with one single Compute Node and 0 VMs. Table

7 shows the OpenStack settings for the Idle Experiment with 0 VMs and 10 compute node.

Performance Modeling of OpenStack Controller

 29

Table 7. OpenStack settings in Idle Experiment 3
Features
Controller Node: 4 cores Service Node: 12 cores
Compute Node: 4 cores Number of Compute Nodes: 10
Number of Virtual Machines: 0 Measurement length: 4000

seconds

The results show that CPU usage is increased compare to the scenario one. Besides that, disk I/O

ratio is also more than scenario one, because of the number of Compute Nodes.

Table 8. Idle Experiment 3 Results
CPU total usage percentage (per second) 18.17%
Average Physical Memory usage 3445.190 MB
Average disk usage per second 822.220 B
Disk I/O read kb/second 0
Disk I/O write kb/second 1794 KB
Network I/O send kb/second 218.962 KB
Network I/O receive kb/second 229.328 KB

3.6.4 Idle Experiment 4
In the last idle experiment scenario compare to the previous one 100 VMs got started. Table 10

shows the OpenStack settings for the Idle Experiment with 100 VMs and 10 compute nodes.

Table 9. OpenStack settings in Idle Experiment 4
Features
Controller Node: 4 cores Service Node: 12 cores
Compute Node: 4 cores Number of Compute Nodes: 10
Number of Virtual Machines: 100 Measurement length: 4000

seconds

This scenario’s result has the most CPU usage compared to the previous ones since it has more

VMs than scenario 3 and more compute nodes than scenario 2. In addition, the Disk I/O write is

also more than the other scenarios

Table 10. Idle Experiment 4 Results
CPU total usage percentage (per second) 24.39%
Average Physical Memory usage 3465.184 MB
Average disk usage per second 943.781 B

Performance Modeling of OpenStack Controller

 30

Disk I/O read kb/second 0
Disk I/O write kb/second 1871 KB
Network I/O send kb/second 304.976 KB
Network I/O receive kb/second 306.674 KB

3.6.5 Comparison and Conclusion

We compared the results of four experiments based on the mentioned parameters. The following

figures are showing the differences of the scenarios based on each resource. Each scenario is

distinguished based on the number of Compute Nodes and VMs which is shown like (C,V)

where C is number of compute nodes and V is number of VMs.

According to the figure 6, with an increase in VMs the CPU consumption at the controller node

increases. Besides that, the number of compute nodes also affects the CPU usage. The two

experiments with 10 compute nodes have slightly more CPU usage than the other two.

Figure 6, CPU total usage percentage (per second)

In the figure 7, it is clarified that creating VMs does not affect the physical memory usage of the

Controller node. However, the more compute node OpenStack setup has, more physical memory

usage it will produce.

Performance Modeling of OpenStack Controller

 31

Figure 7, Physical Memory usage (Average per second)

As it is demonstrated in figure 8, both number of compute nodes and number of VMs affect

average disk memory usage per second. In addition, the number of compute nodes has more

impact on the memory usage ratio than VMs.

Figure 8, Disk Memory usage (Average per second)

In general, for Disk I/O services, which are shown in figure 9, single compute node has more

ratio than 10 compute nodes. When the OpenStack setup get 100 VMs, the ratio of disk I/O reads

Performance Modeling of OpenStack Controller

 32

per second get close to zero. However, in write, send and receive, the ratio increases compare to

the state without any VMs.

 (a) (b)

 (c) (d)

Figure 9, (a) Network I/O receive KB/second, (b) Disk I/O read KB/second
(c) Network I/O send KB/second, (d) Disk I/O write KB/second

3.6.5 Comparison based on consuming processes

In addition to the previous experiments, the top consuming processes are extracted from each

experiment for comparing the scenarios. Here is the list of top eight consuming processes:

1) nova-conductor [18]: It implements a new layer on top of the nova-compute, which enables

OpenStack to access the database without using the compute nodes.

2) nova-api: It sends and receives API calls from end users.

3) mysqld: It is the main program that runs MySQL server.

4) mongod: It is the key process of MongoDB (NoSQL DB) system.

5) cinder-api: It is getting the API requests and send them to cinder-volume in order to interact

with block storage service

Performance Modeling of OpenStack Controller

 33

6) ceilometer-column: It is a telemetry collector, which runs on central management server(s).

7) ceilometer-agent: It is an agent, which handles the ceilometer operations

8) beam.smp: It is RabbitMQ which is an open source message oriented middleware.

 In figure 10, there is a comparison between one compute node and 10 compute nodes with or

without VMs. It is understandable from the figure 10 that nova_conductor, beam.smp and

mysqld are more in 10 compute nodes than single compute node. The reason is that each

compute node has a metadata overhead, which sends to the controller. Thus, as the number of

computing nodes increases, the overhead data will increase too.

Figure 10, Top process usage comparison with no VMs

For the next comparison, which is shown in figure 11, 100 VMs are started. Similar to the

previous comparison nova-conductor, beam.smp mysqld are more in the setting with 10 compute

nodes than in single compute node. In theory, the number of compute nodes is expected to be

independent from other processes like ceilometer ones in theory. However, because of noise and

OpenStack’s unsteady behavior in idle mode, changing the number of compute nodes affects the

processes.

Performance Modeling of OpenStack Controller

 34

Figure 11, Top process usage comparison with 100 VMs

I also compared each OpenStack set-up individually based on their number of VMs. From Figure

12 and 13, it can be concluded that the process usage is increased by number of VMs. Therefore

the two scenarios with 100 VMs have more process usage than the once without Virtual

Machines.

Figure 12, Top process usage comparison with single compute node

Performance Modeling of OpenStack Controller

 35

Figure 13, Top process usage comparison with ten compute nodes

3.7 Per API call Experiments
In this set of experiments, OpenStack is monitored based on different API calls. We collect the

data by monitoring the API calls after calling them for a specific period of time. After collecting

the data, the idle part got extracted to get the pure and accurate information regarding the effect

of API calls on the CPU.

There are several API calls to measure, due to the limited time and scope of the thesis, it was

impractical to measure and experiment all of them. Thus, I focused on working the most

important API calls, which are creating or starting a VM, deleting or stopping a VM.

3.7.1 Per API Experiment 1

Table 11 shows the OpenStack settings for the Per API Experiment with 0 VMs for two different

settings with single compute node and 10 compute nodes.

In the Experiment 1, it is shown how the CPU usage got affected via different API calls. The Top

5 API calls which have the most effect on the CPU usage are: Create VMs, Attach Volumes to

Performance Modeling of OpenStack Controller

 36

VMs, Detach Volumes from VMs, Delete VMs and Delete Volumes (Figure 14). Other API calls

didn’t have considerable effect on CPU consumption. It is also demonstrated in figure 14 that

API calls have more effect on CPU consumption in Scenario 2 with 10 compute nodes than with

single compute node.

Table 11. Per API Experiment 1
Scenario 1 (1, 0) Features
Controller Node: 4 cores Service Node: 4 cores
Compute Node: 4 cores Number of Compute Nodes: 1
Number of Virtual Machines: 0 Measurement length: 30 seconds

Scenario 2 (10, 0) Features
Controller Node: 4 cores Service Node: 12 cores
Compute Node: 12 cores Number of Compute Nodes: 10
Number of Virtual Machines: 0 Measurement length: 30 seconds

Figure 14, CPU Usage Per API Call With 0 VMs

To get a better understanding of the API calls, I also extract the resource consumption of the top

processes in each API calls, which are demonstrated in Figures from 15 to 19.

Therefore, as it is demonstrated in figure 15 for create-VM API call, nova-conductor and

neutron-server processes are the two main with the highest consumption.

Performance Modeling of OpenStack Controller

 37

Figure 15, Top process usage comparison with 0 VMs based on Create VMs

As it is shown in figure 16, for stopping or deleting a VM, similar to creating a VM nova-

conductor plays an important role in resource consumption. However, in deleting VM,

ceilometer-coll is also consuming a significant part of the whole delete-vm API call resource.

Figure 16, Top process usage comparison with 0 VMs based on deleting VMs

As it is shown in figure 17, attach volume to VM API call involves cinder, ceilometer and nova
processes the most.

Performance Modeling of OpenStack Controller

 38

Figure 17, Top process usage comparison with 0 VMs based on attach volumes to VMs

In addition, for detaching volume from VM same OpenStack components consume the most,

which is shown in figure 18.

Figure 18, Top process usage comparison with 0 VMs based on detach volumes from VMs

In figure 19, there are some negative numbers, which in theory they are wrong, but as the

experiments have some errors, they appeared in the results. The reason is that OpenStack is not

stable in idle phase. Therefore, on the time of measuring OpenStack behavior in idle phase, some

processes periodically consume resources, which may not have been appeared on the time of the

API call measurements.

Performance Modeling of OpenStack Controller

 39

Figure 19, Top process usage comparison with 0 VMs based on deleting Volumes

3.7.2 Per API Experiment 2
Table 12 shows the OpenStack settings for the Per API Experiment with 0 VMs and 10 compute

nodes.

Table 12. Per API Experiment 2
Scenario 3 (1, 100) Features
Controller Node: 4 cores Service Node: 4 cores
Compute Node: 4 cores Number of Compute Nodes: 1
Number of Virtual Machines: 100 Measurement length: 30 seconds

Scenario 4 (10, 100) Features
Controller Node: 4 cores Service Node: 12 cores
Compute Node: 12 cores Number of Compute Nodes: 10
Number of Virtual Machines: 100 Measurement length: 30 seconds

Experiment 2 is similar to the previous experiment with the difference of number of VMs in the

OpenStack setting. The Top 5 API calls which have the most effect on CPU usage are: Create

Performance Modeling of OpenStack Controller

 40

VMs, Attach Volumes to VMs, Detach Volumes from VMs, Delete VMs and Delete Volumes

(Figure 20)

Figure 20, Usage Per API Call with 100 VMs

Similar to the previous experiment, the comparisons of the top processes, which consume most

in each API calls, are shown in Figures from 21 to 25.

In figure 21, it shows how Creating a VM API affects different processes in CPU consumption.

Neutron-server and nova-conductor are the two most consuming resources. As it is shown in

figure 21, the scenario 4 processes are higher than scenario3 ones because of the number of

VMs.

Figure 21, Top process usage comparison with 100 VMs based on attach volumes to VMs

For deleting a VM, nova-conductor has the highest impact on resource consumption. Similar to

create a VM API call, number of compute nodes also increases the resource consumption.

Performance Modeling of OpenStack Controller

 41

Figure 22, Top process usage comparison with 100 VMs based on deleted VMs

As it is shown in figure 23 and figure 24, results for attach and detach volume API calls are not

quite what are expected in theory. All the processes of scenario 4 should have more impact than

scenario 3. However, due to the noise and complicated behavior of OpenStack, the results are not

accurate.

Figure 23, Top process usage comparison with 100 VMs based on attach volumes to VMs

Performance Modeling of OpenStack Controller

 42

Figure 24, Top process usage comparison with 100 VMs based on detach volumes from VMs

For delete volumes API that is shown in figure 25, ceilometer and nova components have the

most impact in CPU utilization.

Figure 25, Top process usage comparison with 100 VMs based on deleted Volumes

Performance Modeling of OpenStack Controller

 43

4 Analysis and Evaluation of results

In the evaluation section, we use the data from the experiments to analyze and model the results.

The idle approach to get the optimum results from the experiments is to run as many experiments

as possible for different values of compute nodes and VMs and then measure how much the idle

resource utilization changes in each scenario and also measure how much each API call of

interest consumes when it is being called. In the end, when you have the assumption data points,

you can do the curve fitting and get a function to estimate the resource consumption. However,

due to the limitation of thesis scope, the evaluation and modeling is based on simple scenarios

that are described in previous section.

Thus, after experimenting with different API calls, I decided to measure the start VM and stop

VM API calls since they have larger impact on resource utilization and also it is easier to detect

them. However, other API resource were masked under the noise of the OpenStack processes, so

they didn’t get included in the measurements

The experiments are measured on 3+n OpenStack Deployment. The results are shown in figure

26, 27 and 28. In figure 26, it shows that how much resource has been consumed when the

system is in idle mode. Thus, as it is been shown, the resource utilization increases as number of

VMs and compute nodes increase. In theory, it is expected to have linear correlation between

idle resource consumption, VMs, and compute nodes, but due to the error, it has a slight curve.

Therefore, the mathematical curve fitting [29] approach has been applied for the graphs for better

understanding the behavior. Therefore, to calculate the curve fitting, MATLAB’s curve-fitting

library [30] is used.

After doing the curve fitting on the idle experiments the approximated linear curve is formulated

as:

𝑰𝒅𝒍𝒆 𝑪,𝑽 = 0.00779 ∗ 𝑪 + 0.0007699 ∗ 𝑽+ 0.1224

 C : # of Compute Nodes

 V : # of Virtual Machines

This curve is illustrated in a 3D format in the figure 26. For Idle phase the linear model is used

because the results had linear behavior. One of the ways to choose the model is to check the sum

Performance Modeling of OpenStack Controller

 44

of squared errors of prediction (SSE) [31], which shows the accuracy of the model. The SSE for

the linear model was 0.03119, which is close to zero. If the SSE is more than one, the linear

model for this experiment wouldn’t be suitable.

Figure 26, Idle experiments for modeling

 For starting a VM API call, the curve fitting approach provides the second-degree formulation

as follows, since it had more complicated behavior and linear model was not a suitable model for

that because of high error. The SSE for the linear model is 3.075, however, for the polynomial

model is 0.0002639. After doing the curve fitting on the idle experiments, the result is:

𝑺𝒕𝒂𝒓𝒕𝑽𝑴 𝑪,𝑽 = 𝟐.𝟑𝟗𝟕+ 𝟎.𝟎𝟕𝟗𝟐 ∗ 𝑪 − 𝟎.𝟎𝟎𝟑𝟗𝟔 ∗ V − 𝟎.𝟎𝟎𝟎𝟓𝟒𝟑𝟓 ∗ 𝑪𝟐 + 𝟒.𝟖𝟐𝟑𝒆−𝟓 ∗ 𝑪 ∗ 𝑽
+ 𝟕.𝟒𝑒−6 ∗ 𝑽𝟐

 C : # of Compute Nodes

 V : # of Virtual Machines

Where in figure 27 it shows that how much resource has been consumed when the Start VM API
is called.

Performance Modeling of OpenStack Controller

 45

Figure 27, Start VM API call experiments for modeling

For stopping VM, the best model was a polynomial model with the second-degree formulation.

However, due to the noise the results are not highly accurate and it had a considerable error,

which was 0.9803. To get more accurate results, more experiments were needed to measure, but

because of the thesis scope and time limit, it didn’t happen. Therefore, the final model after

curve fitting is:

𝑺𝒕𝒐𝒑𝑽𝑴 𝑪,𝑽 = −1.127 + 0.05721 ∗ 𝑪 + 0.01556 ∗ V + 0.0002112 ∗ 𝑪𝟐 + 𝟒. 445𝒆!𝟓 ∗ 𝑪 ∗ 𝑽
+ 1.5𝑒!! ∗ 𝑽𝟐

 C : # of Compute Nodes

 V : # of Virtual Machines

Therefore, in figure 28 it shows that how much resource has been consumed when the Stop VM
API is called.

Performance Modeling of OpenStack Controller

 46

Figure 28, Stop VM API call experiments for modeling

Thus, for the idle approach we have relatively solid model and results because of linear method

and low SSE. For Start VM and Stop VM scenarios, polynomial curve fitting approach is more

suitable because of low SSE. In order to get more accurate results, the number of scenarios and

experiments should increase.

5 Conclusion and Future work

The purpose of this Master thesis project is to model the CPU resource utilization in OpenStack

Controller. For this purpose, a lot of research has been made to find a way to calculate the

resource consumption and create a model out of it. To be able to tackle the problem, after careful

study of setup and installation of Open Stack Juno on Virtual environment, the relevant

parameters of the main component has been changed and the output has been monitored in

details. The CPU resource consumption has been selected to model due to the less noise

measures comparing other outputs. It has been found out that starting and stopping VM has the

highest effect on CPU resource consumption. The CPU resource consumption has been selected

to model due to the less noise measures comparing other outputs. It has been found out that

starting and stopping VM has the highest effect on CPU resource consumption. Among those,

starting and stopping the VM had the highest effect on CPU consumption. Therefore, more

experiments were done to measure them in different OpenStack settings. At the final stage of this

work, a mathematical model of curve fitting with MATLAB both linear and nonlinear has been

proposed for the CPU resource consumption behavior based aggregated data

The model takes as input the test-bed measurement results and produces an analytical model that

can predict the resource demand of the various OpenStack components under different operating

conditions. With the help of this model, it is possible also to have different configurations given

an envelope operating condition for a specific cloud deployment. Many different approaches to

utilize the resource consumption have been studied as a part of technical background to model

the Controller node of OpenStack and then predict the needed resources such as number of VMs

and number of compute nodes based on the model.

6 This approach is still a very simplified solution to predict OpenStack controller resources, due to

the limited resources of this thesis work to a specific OpenStack configuration. Besides that, the

level of possible errors of the experiment based on VMs instead of real instruments should also

take in to the account of this work. Although there are some test cases where the system does not

seem to give correct results or show a False Positive, it is safe to say that the overall

performance of the application is acceptable in Idle, StartVm and StopVM API calls scenarios.

The naive answer to the question "how accurate the prediction of the model is?” is “it can be

Performance Modeling of OpenStack Controller

 48

better”. Of course there is always room for more improvement. If in some way the limitations of

the system such as a relatively small dataset can be removed the efficiency would increase by

several times.

Considering this Master thesis project a proof of concept, there is a lot to be discussed at part of

the Future work and improvements. For now, the model is just created based on some small

experiments and is not tested. One of the future works can be focused on testing and improving

the model. The model should be self-trained based on experiments. In addition to that, the

experiments should also be executed in the physical environment.

Performance Modeling of OpenStack Controller

 49

References

[1] Furht, Borivoje, and Armando Escalante. Handbook of cloud computing. Vol. 3. New York:
Springer, 2010.

 [2] Armbrust, Michael, et al. "A view of cloud computing." Communications of the ACM 53.4
(2010): 50-58.

[3] Sehgal A. Introduction to OpenStack. Running a Cloud Computing Infrastructure with
OpenStack, University of Luxembourg. 2012.

[4] Jackson K, Bunch C, Sigler E. OpenStack cloud computing cookbook. Packet Publishing
Ltd; 2015 Aug 19.

[5] Sefraoui O, Aissaoui M, Eleuldj M. OpenStack: toward an open-source solution for cloud
computing. International Journal of Computer Applications. 2012 Jan 1;55(3).

[6] Takako,P., Estcio,G., Kelner,J., Sadok,D. (2010) . A Survey on Open-source Cloud
Computing Solutions.WCGA - 8th Workshop on Clouds, Grids and Applications.Gramado:28
May, 3-16. Teyssier,S. (2010).

[7] Rosado T, Bernardino J. An overview of openstack architecture. InProceedings of the 18th
International Database Engineering & Applications Symposium 2014 Jul 7 (pp. 366-367). ACM.

[8] Kumar R, Gupta N, Charu S, Jain K, Jangir SK. Open source solution for cloud computing
platform using OpenStack. International Journal of Computer Science and Mobile Computing.
2014 May;3(5):89-98.

[9] Song Y, Kang J. Analysis of Immersive Media Platforms focus in OpenStack. International
Journal of Advancements in Computing Technology. 2013 Sep 1;5(13):452.

[10] Toraldo G. OpenNebula 3 Cloud Computing. Packt Publishing Ltd; 2012.

[11] Nasim R, Kassler AJ. Deploying openstack: Virtual infrastructure or dedicated hardware.
InComputer Software and Applications Conference Workshops (COMPSACW), 2014 IEEE 38th
International 2014 Jul 21 (pp. 84-89). IEEE.

[12] Beloglazov A, Buyya R. OpenStack Neat: a framework for dynamic and energy-efficient
consolidation of virtual machines in OpenStack clouds. Concurrency and Computation: Practice
and Experience. 2015 Apr 10;27(5):1310-33.

Performance Modeling of OpenStack Controller

 50

[13] Sobeslav V, Komarek A. Opensource automation in cloud computing. InProceedings of the
4th International Conference on Computer Engineering and Networks 2015 (pp. 805-812).
Springer International Publishing.

[14] García ÁL, del Castillo EF, Fernández PO. ooi: OpenStack OCCI interface. SoftwareX.
2016 Jan 22.

[15] Lei, Qing, Yingtao Jiang, and Mei Yang. "Evaluating Open IaaS Cloud Platforms Based
upon NIST Cloud Computing Reference Model." Computational Science and Engineering
(CSE), 2014 IEEE 17th International Conference on. IEEE, 2014.

[16] Nasim, Robayet, and Andreas J. Kassler. "Deploying openstack: Virtual infrastructure or
dedicated hardware." Computer Software and Applications Conference Workshops
(COMPSACW), 2014 IEEE 38th International. IEEE, 2014.

[17] Ericsson Research, Kista, Stockholm, Sweden

[18] Jackson K, Bunch C, Sigler E. OpenStack cloud computing cookbook. Packt Publishing
Ltd; 2015 Aug 19.

[19] Yamato Y, Katsuragi S, Nagao S, Miura N. Software Maintenance Evaluation of Agile
Software Development Method Based on OpenStack. IEICE TRANSACTIONS on Information
and Systems. 2015 Jul 1;98(7):1377-80.

[20] Anne Håkansson, Portal of Research Methods and Methodologies for Research Projects and
Degree Projects. WORLDCOMP'13 - The 2013 World Congress in Computer Science,
Computer Engineering, and Applied Computing, 22-25 July, 2013 Las Vegas, Nevada; USA

[21] García ÁL, del Castillo EF, Fernández PO. ooi: OpenStack OCCI interface. SoftwareX.
2016 Jan 22.

[22] Fifield T, Fleming D, Gentle A, Hochstein L, Proulx J, Toews E, Topjian J. OpenStack
Operations Guide. " O'Reilly Media, Inc."; 2014 Apr 24.

[23] Mell, Peter, and Tim Grance. "The NIST definition of cloud computing." (2011).

[24] Plouffe J, Davis SH, Vasilevsky AD, Thomas III BJ, Noyes SS, Hazel T, inventors; Oracle
International Corporation, assignee. Distributed virtual machine monitor for managing multiple
virtual resources across multiple physical nodes. United States patent US 8,776,050. 2014 Jul 8.

[25] Gong S, Sim KM. CB-Cloudle and cloud crawlers. InSoftware Engineering and Service
Science (ICSESS), 2014 5th IEEE International Conference on 2014 Jun 27 (pp. 9-12). IEEE.

Performance Modeling of OpenStack Controller

 51

[26] Wuhib F, Yanggratoke R, Stadler R. Allocating compute and network resources under
management objectives in large-scale clouds. Journal of Network and Systems Management.
2015 Jan 1;23(1):111-36.

[27] Cernak J, Cernakova E, Kocan M. Performance testing of distributed computational
resources in the software development phase.

[28] Iyer EK, Krishnan A, Sareen G, Panda T. Analysis of dissatisfiers that inhibit cloud
computing adoption across multiple customer segments. InProceedings of the European
Conference on Information Management & Evaluation 2013 May 13 (pp. 145-152).

[29] Lancaster, Peter, and Kestutis Salkauskas. Curve and surface fitting. Academic press, 1986.

[30] Schulz MN, Landström J, Hubbard RE. MTSA—A Matlab program to fit thermal shift data.
Analytical biochemistry. 2013 Feb 1;433(1):43-7.

[31] Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. John
Wiley & Sons; 2015 Jun 29.

[32] OpenStack document, http://docs.openstack.org/icehouse/training-guides/content/operator-
getting-started.html

[33] Sefraoui O, Aissaoui M, Eleuldj M. OpenStack: toward an open-source solution for cloud
computing. International Journal of Computer Applications. 2012 Jan 1;55(3).

