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Dimensional Contraction

M. M. Rahman1 and T. Siikonen2

Helsinki University of Technology, Department of Mechanical Engineering,

Laboratory of Applied Thermodynamics, Sähkömiehentie 4, FIN-02015 HUT

Finland

Abstract — The relaminarization of a fully turbulent flat plate boundary layer subjected to a
favorable pressure gradient inside a two-dimensional contraction has been carried out numer-
ically. Two low-Reynolds number isotropick-~� models are employed in the simulation. The
simulated fluid flow and turbulence characteristics are compared with the experiment, demon-
strating that the models have good agreement with the data as the flow approaches the laminar
state.
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Introduction
Plane contraction is associated with the hydraulic head box utilized in the paper manufacturing
machine. It is characterized by the presence of a two-dimensional contracting part, mounted
at the end of a step diffuser. In this device the flow is contracted in one direction and hence
pragmatically called as the ”two-dimensional contraction”. The paper manufacturer presum-
ably pays attention to the determination of turbulence characteristics of the flow through this
contraction. The reasoning is that the mechanical properties of the paper may considerably
depend on the turbulence phenomena.

Experiments show that the acceleration through the contraction suppresses the relative tur-
bulence intensities, which have almost no effect on the mean velocity distributions in the con-
traction. The streamwise component of the Reynolds stresses decays on passing through the
contraction, whereas the transverse components grow equally. A reduction in the contraction
angle brings about an increased decay rate of the turbulence. Another phenomenon is the re-
laminarization of turbulent boundary layer subjected to a favorable pressure gradient due to
acceleration in the contraction. Herein the turbulent bursts near the wall disappear, the law of
the wall breaks down and the turbulent intensity shows a tendency to decay. In principle, the
shear stress distribution in the wall region rather than the Reynolds number is the most import-
ant factor for the occurrence of boundary layer relaminarization. The ultimate penalty due to
the relaminarization is a significant reduction in the friction/heat transfer coefficient.

Unambiguously, the flow structure is inherently connected with the industrial application.
Therefore, it can be considered as a test case for the turbulence modeling. However, inadequate
attempt has been made in computing the flow contraction due to the complexity in flow struc-
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ture and unavailability of suitable turbulent models. Unfortunately, the configuration lacks in
sufficient experimental data.

In this study the flow inside a two-dimensional converging channel is simulated at a Reynolds
numberRe � 5:2�104. Particular attention is paid to the relaminarization in the boundary layer
of a flat plate, positioned at the centerline of the contraction. Two low-Reynolds number linear
k-~� models, namely the original Chien (OCH) model [2] and the modified Chien (MCH)
model [3] participate in the simulation. Computed velocity profiles and turbulent intensities
are compared with the experimental data of Ref. [4].

Turbulence Modeling
The two-dimensional Reynolds-averaged Navier-Stokes (RANS) equations, including the equa-
tions for the kinetic energyk and dissipation~�, can be written in the following form:
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Here� is the density andp is the pressure. The total energy is defined as
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wheree is the specific internal energy and~V = u~i+ v~j is the velocity . The viscous fluxes are
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and the viscous stress tensor can be given as
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where� is the laminar viscosity and�uiuj are the Reynolds stresses modeled using Boussinesq
approximation. The heat flux is calculated from
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Figure 1: Computational grid for contracting channel.

where�T is the coefficient of turbulent viscosity,� and�T are the laminar and turbulent thermal
conductivity coefficients,Pr andPrT represent the laminar and turbulent Prandtl numbers, and
T andcp imply the temperature and specific heat at constant pressure, respectively. Clearly, the
turbulent part of the total heat-flux is estimated using Boussinesq approximation. The diffusion
of turbulence is modeled as
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where�k and�� are the appropriate empirical constants. The source termQ for the k and~�
equations can be written as
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where� = ~� +D and the turbulent production termP = �uiuj(@ui=@xj). The eddy viscosity
and other variables are evaluated as
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whereu� is the friction velocity,yn is the normal distance from the wall and� represents the
kinematic viscosity. The turbulence time scaleTt prevents the singularity atyn = 0 in the
dissipation equation.

TheMCH model defines the near-wall damping functionf� as a function ofR�

f� = 1� exp(�0:01R� � 0:0068R3
�)

R� = yn=
q
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where
p
� Tt is the Taylor microscale. The quantitiesEk andE� in Eq. (8) are known as

cross-diffusion terms evaluated as [Rahman and Siikonen, 2000]
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where the constantsCk = 0:5 andC� = �2Ck. Table1 summarizes functions and constants for
different turbulence models.
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Table 1: Functions and constants.
Model D ~�w-B.C. C�1 C�2 PrT �k �� C�

OCH 2�
k

y2n

@~�

@yn
= 0 1:44 1:92 0:9 1:0 1:3 0:09

MCH 2�
k

y2n

@~�

@yn
= 0 1:44 1:92 0:9 1:0 1:3 0:09

Model f� f2 f3 Ek E�

OCH 1:0� e�0:0115y
+

1:0� 0:22e�(RT =6)
2

e�0:5y
+

0:0 0:0

MCH Eq:(10) 1:0 e�(Ry=80)2 Eq:(11) Eq:(11)

Solution Method

A cell-centered finite-volume scheme together with an artificial compressibility approach is
employed to solve the flow equations [5]. In the artificial compressibility method, the artificial
compressibility is principally added to the derivative of density with respect to the pressure,
influencing not only the continuity equation but also the other equations. The energy equation
is not decoupled from the system of equations, facilitating a uniform treatment for both the
primitive and conservative variables. A fully upwinded second-order spatial differencing is
applied to approximate the convective terms. Roe’s damping term [6] is used to calculate
the flux on the cell face. A diagonally dominant alternating direction implicit (DDADI) time
integration method [7] is applied for the iterative solution of the discretized equations. A
multigrid method is utilized for the acceleration of convergence [8]. The basic implementation
of the artificial compressibility method and associated features can be obtained [5, 9].

Results and Discussion

The reference velocity isUref = 3:0m=s with an upstream turbulence intensityTu = 4:5%,

defined asTu =
q

2
3
k=Uref . The contraction inlet profiles for all dependent variables are

generated by solving the models, invoking fully developed flow withRe = UrefLref=� �
5:2 � 104, whereLref is the reference length at the contraction inlet. The contraction ratio
C = Uout=Uref with a half angle of9:16 become approximately13. A 288 � 96 nonuniform
grid having heavily clustered near the solid wall is used for the computations. The representative
structured grid is displayed in Fig. 1. Two low-Reynolds number lineark-~� models, namely the
OCH [2] andMCH [3] models are used in the simulations. Computed velocity profiles and
turbulent intensities are compared with the experimental data [4]. All quantities shown below
are normalized by the local maximum velocity corresponding to the position concerned.

Figure exhibits the mean velocity profiles at six representative positions. As is observed, the
velocity defect in the outer region decreases in the presence of favorable pressure gradients. In
addition, the boundary layer thickness continues to decrease as the flow develops downstream.
The thickness of the last profile is approximately1=20 of that of the initial profile, indicating
that the boundary layer approaches a laminar state.

Figure deals with the turbulence intensities at different downstream stations. It is evident
upon investigation that predictions of the models are somewhat on a lower level than the data
show at some positions. The agreement is better in the laminar region rather than in the turbulent
region.
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Figure 2: Velocity profiles at selected locations.

Conclusions

The characteristic of a initially turbulent boundary layer inside a two-dimensional contraction
is numerically studied. The boundary layer thickness decreases with increasing distance from
the contraction inlet and reaches about1=20 of that of the initial profile at the laminar region.
Comprehensive comparisons conclude that the turbulent models maintain good correspondence
with the experiments as the flow approaches the laminar state.



6

Figure 3: Kinetic energy profiles at selected locations.
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