
AALTO UNIVERSITY
School of Science
Department of Computer Science

Fine-grained Energy Profiling in Mobile Devices

Timo Lilja

Licentiate’s thesis submitted in partial fulfilment of the requirements for
the degree of Licentiate of Science in Technology

Supervisor Eljas Soisalon-Soininen
Instructor Vesa Hirvisalo

Espoo, August 10, 2016

Copyright c© 2016 Timo Lilja

git-commit-id: 5fb0485



Abstract of Licentiate Thesis

Author

Timo Lilja
Title of Thesis

Fine-grained Energy Profiling in Mobile Devices
Abstract

Mobile phones have several use cases such as making a phone call, sending
an SMS, browsing the Internet, or playing a game. Mobile phones are also
equipped with a wide variety of hardware allowing these activities. The
overall energy consumption is easily measurable but it does not explain
how much power is dissipated on particular activities and which devices
are mostly responsible for the consumption. Thus, this thesis defines the
concept of fine-grained energy profiling where the total energy consumed is
broken down into subsystems.

This thesis examines mobile phone power dissipation and energy consump-
tion analysis. It describes how to measure overall total energy consumed by
the device and develops methods that allow breaking down the energy con-
sumption to components or subsystems. Specifically, the tools developed in
this thesis allow studying the energy consumed by the CPU, GPU, display,
WiFi, Cellular 3G and SSD disk. The device studied here is the Nokia N900
Maemo/Linux phone.

This thesis describes a full-system power measurement setup including a fake
battery and DAQ acting as an electric power meter. The thesis also devel-
ops logging tools that monitor the subsystem load and provide a method
for formulating a linear regression model between these two through a set
of microbenchmarks. This model allows estimating the subsystem energy
consumption and total energy consumption based on observed loads of the
subsystems. The model achieved 80% accuracy when compared with mea-
sured total energy consumption to the total power dissipation predicted by
model.

Research Field Keywords

Computer Science Energy, Regression, Phone
Supervising professor Pages

Eljas Soisalon-Soininen vii + 87
Thesis advisor Language

Vesa Hirvisalo English
Thesis examiner Date

Sébastien Lafond August 10, 2016

� The thesis can be read at https://aaltodoc.aalto.fi/handle/123456789/27

https://aaltodoc.aalto.fi/handle/123456789/27


Lisensiaatintutkimuksen
tiivistelmä

Tekija

Timo Lilja
Lisensiaatintutkimuksen nimi

Mobiililaitteiden hienojakoinen energiaprofilointi
Tiivistelmä

Matkapuhelimia voi käyttää moniin tarkoituksiin kuten puheluihin, teks-
tiviestien lähettämiseen, Internet-selailuun tai pelien pelaamiseen. Tämän
mahdollistamiseksi nykyaikaisissa matkapuhelimissa on paljon erilaisia lait-
teistokomponentteja eli alijärjestelmiä. Matkapuhelimen kokonaisvirranku-
lutus on helppo mitata, mutta se ei selitä sitä, kuinka paljon kukin
alijärjestelmä kuluttaa energiaa. Tämän ongelman ratkaisemiseksi tässä
työssä määritellään hienojakoisen energiaprofiloinnin käsite, jonka avulla ko-
konaisenergiankulutus voidaan jakaa alijärjestelmien energiankulutukseksi.

Tässä työssä tutkitaan matkapuhelimen tehon ja energiankulutuksen analy-
sointia. Työssä kehitetään menetelmä matkapuhelimen kokonaisenergianku-
lutuksen mittaamiseen. Lisäksi esitellään menetelmä, jonka avulla energian-
kulutus jyvitetään matkapuhelimen alijärjestelmille. Työssä jyvitys tehdään
seuraaville alijärjestelmille: suoritin (CPU), grafiikkasuoritin (GPU), näyttö,
langaton verkko (WiFi), mobiilidatayhteys (3G) sekä tallennuslevy (SSD).
Laitteena käytettiin Nokia N900 Maemo/Linux -puhelinta.

Työssä esitellään kokonaisenergiankulutuksen mittausjärjestely, joka
sisältää valeakun ja virrankulutusmittarina toimivan DAQ-laitteen. Lisäksi
työssä kehitetään työkalu, jonka avulla matkapuhelimen alijärjestelmien
käyttöastetta voidaan tarkkailla ja tallentaa. Lopuksi työssä esitellään
lineaariseen regressioon perustuva mallinnus, joka mahdollistaa mi-
tatun tehon ja kokonaisenergiankulutuksen jyvittämisen yksittäisille
alijärjestelmäkomponenteille. Työssä kehitetty malli saavutti noin 80 %
selitysasteen, kun mallin ennustamaa tehonkulutusta verrattiin mitattuun
tehonkulutukseen.

Tutkimusala Avainsanat

tietotekniikka energia, regressio, puhelin
Vastuuprofessori Sivumäärä

Eljas Soisalon-Soininen vii + 87
Ohjaaja Kieli

Vesa Hirvisalo englanti
Työn tarkastaja Päiväys

Sébastien Lafond 10. elokuuta 2016

� Luettavissa verkossa https://aaltodoc.aalto.fi/handle/123456789/27

https://aaltodoc.aalto.fi/handle/123456789/27


Contents

1 Introduction 1

1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4

2.1 Energy and Power . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Measuring Electric Power and Energy . . . . . . . . . . . . . . . 5

2.3 Integrated Circuits and Power . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Reducing Static Loss . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Reducing Dynamic Loss . . . . . . . . . . . . . . . . . . . 9

2.4 Radios and Power . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Cellular . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 CPU Power Management . . . . . . . . . . . . . . . . . . 14

2.6.2 Device Power Management . . . . . . . . . . . . . . . . . 15

2.6.3 System Power Management . . . . . . . . . . . . . . . . . 15

3 Related Work 16

3.1 Modeling Power Consumption . . . . . . . . . . . . . . . . . . . . 16

3.2 Full-system Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 OpenMoko . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 PowerTutor . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Statistical Tools 23

iv



CONTENTS v

4.1 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Ordinary Least Squares . . . . . . . . . . . . . . . . . . . 25

4.3 Variable Categorizations . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Segmented Regression . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Power Modeling 28

5.1 Calibration of Subsystems . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Calibrating Full-system Model . . . . . . . . . . . . . . . . . . . 30

5.3 Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Warm-up and Cool-down . . . . . . . . . . . . . . . . . . . . . . 30

5.5 Power Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5.1 Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5.2 Tail States . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5.3 Device Utilization . . . . . . . . . . . . . . . . . . . . . . 32

5.5.4 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . 33

6 Nokia N900 34

6.1 OMAP3430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 Power Management Techniques . . . . . . . . . . . . . . . 34

6.1.2 Power Management Architecture . . . . . . . . . . . . . . 35

6.2 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Power Management . . . . . . . . . . . . . . . . . . . . . 37

6.3 Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.5 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.6 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.7 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.8 Cellular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.9 Solid State Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.10 Battery and Charger . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.11 Other Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 eprof Framework 43

7.1 Measuring Electric Power . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Measuring Device State and Utilization . . . . . . . . . . . . . . 46

7.3 Control Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



CONTENTS vi

7.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.5 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.6 Experiment Sequence Flow . . . . . . . . . . . . . . . . . . . . . 48

8 Results 52

8.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1.1 Idle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1.2 Log Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.1.3 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.1.4 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1.5 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.1.6 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.1.7 Cellular 3G . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1.8 Solid State Disk . . . . . . . . . . . . . . . . . . . . . . . 65

8.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.3 Verification with Microbenchmarks . . . . . . . . . . . . . . . . . 69

8.3.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.3.2 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.3.3 SSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.4 Verification with Applications . . . . . . . . . . . . . . . . . . . . 69

8.4.1 Browser and Radios . . . . . . . . . . . . . . . . . . . . . 70

8.4.2 Angry Birds . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9 Discussion and Conclusion 75

9.1 Measuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.3.1 Idle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.3.2 Log Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.3.3 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.3.4 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.3.5 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.3.6 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.3.7 Cellular 3G . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.3.8 Solid State Disk . . . . . . . . . . . . . . . . . . . . . . . 80

9.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



CONTENTS vii

9.5 Review of Research Questions . . . . . . . . . . . . . . . . . . . . 80

9.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 81

Bibliography 82



Chapter 1

Introduction

Modern mobile phones have a plethora of subsystems that allow them to per-
form various tasks. These subsystems include CPU used for general computing,
various radios such as WiFi or Cellular that are used for external communica-
tion, cameras and sensors used for observing, recording, and adapting to the
environment, and GPS for location services. All of these subsystems consume
energy when they are operated. Each of these subsystems have their individual
and distinct energy consumption characteristics: a modern phone may be able
to last for several hours of messaging but playing a game may drain the battery
in less than an hour. Thus, it is a natural question to ask how much energy
each of these subsystems consume during an operation.

This thesis develops a tool that allows giving individual subsystemwise energy
consumption of a mobile device. The goal is to provide a method that allows
explaining which subsystems are utilized by an application and how much energy
they consume. The thesis studies the Nokia N900 mobile phone and provide a
model that tells how much energy is consumed by the CPU, GPU, display, WiFi,
Cellular 3G, and the solid-state disk subsystems when operating the device.
While this thesis focuses on Nokia N900, most of the methods developed here
are applicable to other platforms too.

1.1 Research Questions

The total energy consumption of a mobile device is the amount of energy drawn
by the device from a battery or some other energy source. The problem of
measuring the total energy consumption involves setting up an electric circuit
that allows measuring the current drawn by a device with sufficient accuracy.

Measuring the subsystemwise energy consumption directly is difficult on most
readily available hardware due to the lack of probe or measurement points
that would allow directly observing the total energy consumed by a subsys-
tem. Thus, this thesis develops an indirect measurement setup, where the total
energy drawn by the entire system is observed and correlated it with individual
subsystem utilizations or loads. Another aspect of subsystem energy consump-
tion measuring is that the utilization and behavior of the subsystem usually

1



CHAPTER 1. INTRODUCTION 2

depends on some external factors (e.g., load) that cannot be observed by di-
rectly measuring the current drawn by the subsystem.

To develop a system that allows providing subsystemwise energy consumption
estimates, the following research problems or questions are considered:

Q1 How to measure the total energy consumed by a mobile device.

Q2 How to measure the utilization of individual subsystems of a mobile device.

Q3 How to break down the total energy consumption to subsystem energy
consumption.

Q4 How to verify that the subsystem energy consumption breakdown is ac-
curate.

1.2 The Solution

This thesis develops a measurement framework called eprof that allows mea-
suring the energy consumption of the system and individual subsystem utiliza-
tion (e.g., CPU load). The total energy consumption is measured by a Data-
Acquisition device (DAQ) acting as a multimeter and a fake battery setup and
the subsystem utilization by a hand-written logging program that uses vari-
ous utilization counters provided by the operating system of the mobile device.
(Questions Q1 and Q2)

To correlate the total energy consumption and individual subsystem utilization,
the thesis uses a linear model that is trained with microbenchmarks that utilize
subsystems individually. Denote these microbenchmarks as the calibration set
of the linear model. (Question Q3)

To verify the linear model’s accuracy, the thesis framework uses another set of
benchmarks that utilize multiple subsystems simultaneously. These benchmarks
are denoted as the verification set. The linear model is used to predict subsystem
and total energy consumption while concurrently measuring the actual power
consumption with the fake battery setup. The thesis compares the actual mea-
sured and predicted energy consumption with a cross-correlation metric as the
accuracy criteria. (Question Q4)

Overview of the research methodology can be seen in Figure 1.1.

1.3 Results

The main contributions of this thesis are a framework for mobile device subsys-
temwise energy consumption breakdown analysis through linear regression and
a concrete application of the framework to Nokia N900 energy consumption
analysis.



CHAPTER 1. INTRODUCTION 3

Power
Subsystem

state and utilization

Measurements

Total Power/Energy
Subsystem

Power and energy

Estimates

MODEL

microbenchmarks

Calibration

microbenchmarks

Verification

Figure 1.1: Overview of the methodology and solution.

1.4 Thesis Outline

The structure of the thesis is the following: Chapter 2 gives an introduction
to power and energy measuring techniques and discusses the energy and power
management in general. Related work is presented in Chapter 3. Mathematical
background for statistics needed in this thesis is presented in Chapter 4. The
Nokia N900 device is described in Chapter 6. These chapters may be omitted
if the reader is familiar with these topics.

The main contributions of the author are in Chapters 5, 7, 8, and 9: Chap-
ter 5 describes how to use the linear models to model subsystemwise energy
consumption. Chapter 7 explains the measurement framework features and its
implementation. Chapter 8 describes the training and verification of the ex-
periment results for the linear model. Discussion, analysis of the results, and
concluding remarks are given in Chapter 9.



Chapter 2

Background

This chapter explains how the concepts of energy and power are related. It also
describes how electric power is measured in general and how energy and power
management is done on integrated circuits and through various radio protocols.

2.1 Energy and Power

Energy and power are concepts often intermixed in a casual conversation, but
they have rigorous physical definitions found in any physics book such as [60].
Energy is a quantity that expresses a physical system’s ability to do work from a
source system into a destination system. We denote this amount of transferred
energy as ∆E. The SI unit of energy and work is joule (J).

Power is the rate at which work is done or energy is being transferred. The SI
unit of power is watt (W). Given a quantity of work ∆E and a time interval
∆t, we define the average power Pav as

Pav =
∆E

∆t
. (2.1)

We define the instantaneous power P as the time derivative of energy:

P = lim
∆t→0

∆E

∆t
=
dE

dt
(2.2)

For the thesis, the focus is on electromagnetic energy. The energy source, the
battery, transfers chemical energy into electrical energy. This energy is consumed
by the destination system, the load. In this case, the load is a mobile phone, an
electric circuit, that transfers electrical energy to various other forms of energy
such as sound, light, radio signals, and—usually unwanted—heat.

To understand energy and power in electric circuits, we need the concepts of
current, resistance, and voltage. See [60] for rigorous definitions. Current is
denoted by I and its SI unit is ampere (A). Voltage or electric potential difference
is usually denoted by ∆V but for brevity we use V . The SI unit of voltage is
volt (V). Resistance is denoted by R and its SI unit is ohm (Ω).

4



CHAPTER 2. BACKGROUND 5

For materials commonly used in electric circuits there is a relation between
voltage, current and resistance called Ohm’s law which states:

V = R · I (2.3)

To define the concept of power for electric circuits, we need to apply Joule’s
law which says that power is the product of voltage and current. We also apply
Ohm’s law from Equation (2.3) to obtain:

P = V I = R · I2 =
V 2

R
. (2.4)

Now, we are ready to define the concepts of instantaneous power, energy and
average power for electric circuits. We are given a circuit that draws current
from a current source (battery) with a time-varying function denoted by I(t).
The instantaneous power is:

P (t) = V · I(t) (2.5)

where V denotes the supply voltage of the circuit.

The total energy E consumed by the system over time interval T is

E =

∫ T ′

0

V · I(t)dt. (2.6)

The average power Pav over T -length time interval is

Pav =
E

T
=

1

T

∫ T

0

V · I(t)dt (2.7)

2.2 Measuring Electric Power and Energy

An ammeter is a measurement instrument that measures the electric current
in a circuit. A voltmeter measures electric voltage between two probe points
in an electric circuit. For the system, a DAQ, a digital voltmeter, that uses an
analog-to-digital converter (ADC) to sample the voltage drop across the probe
points is used. A shunt or sense resistor is connected in series between the
battery and the load. Then the DAQ is used to measure the voltage drop across
the shunt.

The shunt can be placed either high-side or low-side [5]. In high-side current
measurement the shunt is placed between the battery and the load circuit.



CHAPTER 2. BACKGROUND 6

The high-side connection provides the most accurate measurements, since all
current that goes to the load flows through the shunt. The main disadvantage
is that there might be high-common mode voltage across the shunt resistor
which can damage the measurement device [5].

In the low-side connection, the shunt or sense resistor is placed between the load
and ground:

This eliminates the power with high-common mode voltage but measures only
the current that is directly returned to the battery. That is, leakage current to
the chassis or the control circuits cannot be measured.

When the measurements are performed with the DAQ, the sampling period
whose length is T and frequency f is used. Thus, N = f · T readings are
obtained. We denote the set of measured supply and terminal voltages as V [i]
and VBAT[i], 0 ≤ i ≤ N .

Using the formula for instantaneous power from Equation (2.5) we get the for-
mula for measured instantaneous power:

P [i] = VBAT[i]
V [i]

R
.

Here R is the resistance of the shunt resistor.

The formula for total measured energy consumption from Equation (2.6) is

E =
1

f

N∑
i=0

[
VBAT[i]

V [i]

R

]
. (2.8)

When computing the average power Pav we down-sample the signal to a time
interval whose length is M , M < N by taking a running average

Pav[j] =
1

M

(t+1)M∑
i=j·M

[
VBAT[i]

V [i]

R

]
, 0 ≤ j ≤ bN/Mc.

For most of thhe studies, the averaging time interval is set to M = f which
gives:

Pav[t] =
1

f

(t+1)f∑
i=t·f

[
VBAT[i]

V [i]

R

]
, 0 ≤ t ≤ T. (2.9)

This yields one second non-moving average.



CHAPTER 2. BACKGROUND 7

2.3 Integrated Circuits and Power

Integrated circuits (IC) are miniaturized electronic circuits consisting of large
number of transistors that are embedded into a single semi-conducting mate-
rial. Their development began in the 1940s. One of the first patents regarding
integrated circuits was filed in 1959 by Jack Kilby [32], a Texas Instruments
employee.

Integrated circuits are made of transistors that can either switch state or amplify
electric signals. Most of the integrated circuits used in computers and mobile de-
vices use the transistors’ state-switching capability to produce logic from which
central processing units and other computing units can be constructed.

The power dissipation of an integrated circuit can be divided into static loss
and dynamic loss [56]:

Ptotal = Pstatic + Pdynamic.

Static power loss is caused by leakage currents present in the transistors and
wires. These leakages may be caused by transistors’ sub-threshold conduction,
tunneling currents, or leakage through junctions. Static dissipation caused by
leakage can be considered as a product of the supply voltage Vdd and leakage
current Il:

Pstatic = VddIl.

Dynamic power loss is caused by the switching activity of the circuit and short-
circuit currents:

Pdynamic = Pswitching + Pshort.

Switching activity causes power loss by parasitic capacitance present in the inte-
grated circuits. This capacitance is loaded and discharged when the transistors
are active, i.e., switching states. This switching loss can be described with the
formula:

Pswitching = αCV 2
ddf (2.10)

where α indicates the activity of the circuit (how many state switches there are
per time unit), C is the capacitance of the circuit, Vdd is the supply voltage and
f is the operating frequency.

Short-circuit loss occurs when a transistor is switching state and there is a brief
period when the current flows from the voltage supply directly to the ground
before the switching is completed. Short circuit power dissipation Psc can be
modeled with the formula:

Pshort = VddIshort

where Vdd is the supply voltage and Ishort is the short circuit current.

There are various ways to achieve energy consumption saving in integrated
circuits: We can try to minimize the static or leakage loss by choosing a material
with less resistance. Dynamic switching loss can be lowered by lowering the clock
frequency f and the supply voltage Vdd. Dynamic short-circuit loss is lessened
by using better materials [20]. Next we discuss these energy consumption saving
techniques further.



CHAPTER 2. BACKGROUND 8

2.3.1 Reducing Static Loss

Static power loss is always present in the system whether it is idle or active. To
reduce it, we can use better materials that cause less resistance in the circuit
wires and transistors. In addition, if the system is completely idle, we can use
power gating. Power gating reduces the disabled block power dissipation to zero.

Another concept that relates to the power gating is the power saving modes or
PSMs that describe how much of the system is switched off during idle periods.

Power gating requires parts of the system to be completely switched off. Thus,
the state that is in those parts must be stored somewhere. This process is called
state retention and it involves state retention registers that are kept online.
When the system is woken up, the state is read from the retention registers and
restored after which the system becomes fully operational.

Hardware designers must implement necessary functionality in order for the chip
to support power gating. Namely, integrated circuits consist of combinatorial
and sequential logic. Combinatorial logic circuits produce the same state given
the same input while the sequential logic circuits’ output depends on internal
state. This state must be stored into the retention registers.

Power saving modes describe the level in which the system sleeps during an idle
period. The deeper the sleep state, the less power is consumed. The downside is
that the wakeup latency increases when a deeper sleep state is entered. Common
sleep states that can be found from modern hardware include:

wait

• core clock is gated, i.e., activated only when needed

• normal operation is resumed on interrupt

• good for running I/O or other peripheral activity

doze

• core clock is gated

• peripherals can be switched off

• normal operation is resumed on interrupt

state retention

• all clocks are switched off

• external memory in low power self-refresh mode

• peripheral clocks are gated

• voltage can be dropped to minimum

• less power than doze but longer wakeup time

• no need to do data recovery after wakeup

deep sleep

• clocks are gated

• core platform power is gated



CHAPTER 2. BACKGROUND 9

• register data must be saved before deep sleep

hibernate

• whole chip power is gated (switched off)

• operation resume equals cold boot

• data must be saved to external permanent memory

2.3.2 Reducing Dynamic Loss

Dynamic loss is mostly caused by the switching activity of the circuit. If the
system is idle, the clock pulses are still emitted periodically even though no
state switching occurs. Thus, we can save power by switching the clock off in
a process called clock gating. This reduces dynamic power dissipation. The
clock-gated transistors retain their state due to the supply voltage still being
present.

Clock gating is applicable if the system is completely idle. If it is not, we can
reduce the dynamic power dissipation with a technique called dynamic voltage
and frequency scaling or DVFS. From the Equation (2.10) we can see that the
switching loss is quadratic to the supply voltage Vdd and linear to the operating
frequency f . The operating voltage and frequency of an integrated circuit de-
pend on each other and cannot be chosen arbitrarily. Thus, hardware designers
define operating performance points or OPPs that are voltage–frequency pairs
with which the system remains operational.

In DVFS, we have a predefined set of OPPs from which we must choose the
suitable one for the current operation. Usually the OPP is determined so that
some performance goal (high enough voltage/frequency) or power dissipation
budget (low enough voltage/frequency) is met.

DVFS is beneficial if the static power loss is minimal compared to the dynamic
power loss: consider a case where there is a task with a fixed duration. If we half
the frequency, the task will take twice as much time to complete but consumes
less energy as can be seen in the figure below:

Time (s)Time (s)

P
o
w

er
(W

)

P
o
w

er
(W

)

If the idle consumption is not negligible (the light gray boxes in the figures
below), then DVFS does not lead to power savings:



CHAPTER 2. BACKGROUND 10

P
o
w

er
(W

)

P
o
w

er
(W

)

Time (s) Time (s)

2.4 Radios and Power

Radio protocols include various power saving features that are distinct from the
power saving used in CPUs. The basic principle of turning the device off when
it is idle remains the same but due to the nature of radio communication some
power management techniques (e.g., DVFS) do not apply. Here we focus only
on the power management of the WiFi and Cellular devices as they are defined
in their corresponding protocol specifications.

2.4.1 WiFi

WiFi is defined as wireless local network that is based on the Institute of Elec-
trical and Electronic Engineers’ 802.11 Standards. In WiFi there are mobile
stations (STAs) and usually stationary access points (APs) that provide the
connection to the Internet for the mobile station. IEEE Standard for 802.11
defines the power management features of the mobile station [29, Section 11.2].

According to the standard, a mobile station can be in either one of the following
power states: awake: mobile station is fully powered, or doze: mobile station
does no transmit or receive and consumes very little power. There are two power
management modes specified in [29]:

Active Mode In active mode (AM)the mobile station is in the Awake state
and can receive frames at any time. The radio is always on and draws
constant power from the system independent of the bandwidth utilization.

Power Save In Power Save (PS) mode the mobile station listens to Beacon
frames with an interval specified by the remote access point (AP). If the
access point has data for the mobile station, it turns a bit on in the beacon
frame and buffers the data. The mobile station sends a poll request labeled
PS-Poll that allows the AP to send the buffered data.

The mobile station is in doze state and enters the awake state only to listen to
the beacon frames, to receive multicast or broadcast transmissions, to transmit,
or to wait responses for PS-Poll frames.

There is no corresponding buffer on the mobile station when it transmits a
frame to the access point. See Figure 2.1 for overall view of the power saving
operations.

The above description is a simplification of the actual power saving and WiFi
communication. For a detailed explanation on WiFi and power management,
see [48,49]. An analysis of the power saving feature can be found in [13].



CHAPTER 2. BACKGROUND 11

Doze

Awake

AP

STA

Beacon interval

(a) Receiving a beacon

Doze

Awake

AP

STA

Beacon interval

A
c
k

P
S
-P

o
ll

Data

(b) Receiving a frame.

Doze

Awake

AP

STA

A
c
k

Data

(c) Transmitting a frame.

Figure 2.1: WiFi Power Save management. Simplified version.

2.4.2 Cellular

Cellular networks are the most commonly used radio networks for mobile hand-
held devices like phones or tablets. Since their advent there has been a couple
of revisions on the network standards used. For this study, the focus us on
Cellular 3G standard mobile device power management features. Refer to the
explanation given in [50].

A 3G network consists of mobile hand-held devices or phones called User Equip-
ment (UE) which are connected to base stations called Node-Bs via a radio link.
There are many components in 3G architecture which are omitted here. Instead,
the focus is on the radio resource control (RRC) which associates a state ma-
chine for each UE and is the most relevant component with regards to power
dissipation. There are three states in a typical RRC:

IDLE The UE is turned on but can receive and transmit only control data but
no user data.

CELL DCH The UE is turned on and can both send and receive data. The



CHAPTER 2. BACKGROUND 12

UE is usually in a high-power state with a dedicated channel allowing it
to fully utilize the available bandwidth.

CELL FACH The UE is turned on and connected but there is no dedicated
channel allocated. Instead, the UE can transmit data through a shared
low-speed channel. Since it consumes less radio resources than CELL DCH
it yields lower power dissipation.

State transitions can be either promotions or demotions. The state promo-
tions occur when the UE moves from less resource-intensive state into a state
consuming more resources and power. There are two methods for promotions.
Promotions are triggered by network activity, namely the amount of data col-
lected into the upload (UL) and download (DL) queues present in the base
station. Demotions are triggered by timeouts that are controlled by the base
station.

In the first method, the UE is first promoted into lower power CELL FACH state
if there is any data activity, and if the amount of data exceeds the configured
UL/DL queue sizes, into the CELL DCH state. Demotions are done by first
dropping to the CELL FACH state after a timeout and after another timeout
the UE is dropped into the IDLE state:

IDLE FACH

DCH

tx/rx data

Idle n

seconds

Idle m seconds

UL/DL > queue

In the second method, the UE is directly promoted to high power CELL DCH
state if there is any data transfer activity. After a timeout, demotion transfers
UE into lower powered CELL FACH state from which a subsequent timeout
moves the system into IDLE state. There is usually some low data transfer rate
which keeps the UE in the CELL FACH state:

FACH

DCH

IDLE

Idle n

seconds

Idle m seconds

tx/rx data

The third method is to have the system promote to CELL FACH if there is some
data transfer activity, and after exceeding a threshold, promote to CELL DCH.
After a single timeout the system drops directly to IDLE state:



CHAPTER 2. BACKGROUND 13

IDLE FACH

DCH

Idle n

seconds

tx/rx data

UL/DL > queue

2.5 Battery

A battery is an electrochemical cell that converts chemical energy into electrical
energy. The battery is not a simple voltage source even though it is often
modeled as such in circuit analysis. Unlike an ideal voltage source, the battery,
or terminal voltage, depends on the level of charge, the amount of current flowing
through the circuit, and the temperature.

Batteries can be constructed from various materials that have distinct char-
acteristics. Nowadays, the most common battery type for mobile devices is
lithium-ion, or Li-ion. It has an operating voltage of 3.6 volts. The energy
density of a Li-ion battery is 175 Wh/kg or 500 Wh/l [56] which is rather good
when compared to previously popular nickel cadmium battery’s 35 Wh/kg or
70 Wh/l.

The cycle life, i.e., the number of charging times a Li-ion battery can hold is
about 500. A Li-ion battery is considered “dead” if the the battery has dropped
to 80% of its original capacity. Charging a Li-ion battery requires favorable
conditions: the charging current and voltage must be within certain limits.
The temperature of the environment must not be too low or too high. A Li-ion
battery is permanently damaged if its voltage level drops below certain threshold
and may explode if it is overcharged to voltage levels exceeding the maximum.

Most Li-ion batteries are equipped with a Battery Management Unit (BMU)
that protects from overcharging and undercharging of the battery, monitors its
temperature, and prevents short circuits. These BMUs usually have a digital
interface from which the operating system can read battery statistics like voltage
and current levels or charging status.

2.6 Operating Systems

For this discussion, refer to Advanced Configuration and Power Interface [12]
(ACPI) power management standard for hardware and operating systems.

ACPI hardware interfaces are mostly used in the personal computer equipment
or server equipment and not on mobile hardware but the operating system inter-
faces and the terminology is usually present on the mobile devices even though
the low-level hardware implementation of power management is somewhat dif-
ferent.

The operating system’s responsibility is to control the available resources of the



CHAPTER 2. BACKGROUND 14

device. Previously, the resource control was mostly focused on multiplexing
CPU and other peripherals among processes. The goal was to provide secure
access to peripherals in a way that a single process or task could not crash the
entire system. Nowadays the operating system resource control includes the
concept of energy and power management, where the goal is to minimize energy
consumption to provide extended battery life.

To develop an operating system energy and power management system we need
to consider both hardware and software. Most of the hardware-enabled power
saving features are controlled by hardware or BIOS interfaces such as ACPI [12].
Hardware provides a set of idle and active power states with varying level of
performance and power consumption. It is the task of the operating system to
decide which power state is suitable for each situation.

The main idea is to adjust the performance of the subsystems based on work-
loads utilizing these subsystems. An operating system energy and power man-
agement framework usually consists of three components:

• an observer that monitors the load of the system and its resource,

• a controller that performs state transitions (DVFS, gating, idle state
changes),

• a policy that defines how/when these state transitions are performed [56]

State transitions consume time and energy and can involve long wakeup times.
Thus, the policy manager must carefully determine when to perform transitions
given certain performance requirements. Policy managers can be predictive or
stochastic. In predictive policies, the history of the workload is used to deduce
when to perform state transitions. In stochastic policies, a complex statistical
model is used to predict the behavior of the workload which is then used to
make power saving decisions.

2.6.1 CPU Power Management

ACPI standard [12, Chapter 8] defines the CPU power management as a state
machine. A CPU is always in one power state: C0, C1, . . ., or Cn. When the
CPU is active it is in the C0 power state and in one performance state: P0, P1,
. . ., or Pn.

Power states C1, . . ., Cn are processor sleeping states. The higher the sleeping
state, the less power the processor consumes but the wakeup latency from the
sleep state is higher. When the processor is active and in a higher performance
state, the processor provides higher performance but consumes more power.
Usually the higher performance states are implemented through DVFS. See
Section 2.3.2 for similar techniques.

The operating system’s policy management decides, based on the power and
performance requirements, when to move from a power to a performance state
or vice versa.



CHAPTER 2. BACKGROUND 15

2.6.2 Device Power Management

For peripheral devices, the ACPI standard defines the concept of device power
management [12, 3.3] and device power states [12, 2.3]. The overall goal of
standardized interface is to provide the operating system a way to control the
device power management.

The device power states that can be controlled by the operating system are:

D0 device is fully powered
D1 device is not fully operational
D2 device is not fully operational, consumes less than D1
D3hot consumes less energy than D2, preserves device context
D3 device is off, the device context is lost

In addition, devices may implement performance or P -states for active opera-
tion power management similar to that of CPUs. The operating system device
drivers offer interfaces which allow transition between the power states. The
device driver may implement the power management by itself or it can be done
in a centralized manner in the OS kernel.

2.6.3 System Power Management

Full system power management involves controlling the power management of all
the peripherals and the CPU. That is, switching the whole device into deeper
sleep states when the system is not active. ACPI defines the following sleep
states:

S1 low wakeup latency, no context is lost
S2 low wakeup latency, CPU and cache context is lost
S3 low latency wakeup state, all context is lost except system memory
S4 longest wakeup latency sleep state, all devices powered off, context

stored in memory
S5 soft off state, context saved to persistent media, long wakeup la-

tency, requires boot to wake up

Sometimes the sleep states are described with the terminology: ON, STANDBY,
SUSPEND, and HIBERNATE. In ON, the system is not in a sleep state. In
STANDBY, the system is in one of S2–S3 ACPI power states depending on the
implementation. In SUSPEND, the system is in S4 power state, and while in
HIBERNATE, the system is in S5 state. It is typical that the wakeup latency for
STANDBY is less than 1 second, SUSPEND is 3-5 seconds, and HIBERNATE
may have a wakeup latency of up to 30 seconds [40].



Chapter 3

Related Work

This chapter gives a brief survey of literature relevant for the thesis. Especially,
for comparison and discussion purposes, a more detailed overview of two articles
whose work is similar to this thesis is given.

3.1 Modeling Power Consumption

In power modeling, we are trying to understand how a device (e.g., a mobile
phone) consumes energy, especially, how much energy is consumed by a device
or peripheral. Virtually all power models use some set of input variables which
are fed into a model that produces power dissipation or energy consumption
estimates. The choice of input variables, the training of the model, and the
accuracy of produced estimates varies between different approaches. In this
chapter we survey the approaches taken in the literature.

The type of the model describes whether we have a device-specific model or
full-system model. In device-specific models, a single peripheral is studied and
various aspects of it are modeled. For example, a CPU could be modeled so that
we consider different kinds of instructions (arithmetic, control, floating points)
and form a power dissipation model based on the instruction types [24]. In
full-system models we consider the overall power dissipation of the entire device
and ignore the intrinsic of a peripheral.

Device-specific models usually have plenty of input variables for a device whereas
full-system models use only few input variables per device. Naturally, full-
system models are more inaccurate but, on the other hand, incur less over-
head than peripheral-specific models. For examples of device-specific models
for WiFi, see [13, 52, 53, 58], for Bluetooth [37, 44], and for Cellular [50]. CPUs
are studied in [24,30,31,35], GPUs in [21,23,28,41,57], and flash drives in [42,59].

Comparison studies among radio protocols such as WiFi, Cellular, and Blue-
tooth are a widely studied field in the literature as well [14,15,22,27]. Full-system
models are compared in [54].

To provide power dissipation and energy consumption estimates, power dissi-
pation measurements need to be obtained. These can be obtained from the

16



CHAPTER 3. RELATED WORK 17

hardware specifications or by doing measurements. If the measurements are
obtained through specifications, we denote the system as specification-based
such as [14, 16] as opposed to measurement-based. The measurement-based ap-
proaches can be further divided into direct and aggregate measurements. In
direct measurements, the system provides some kind of probe points that allow
measuring the current flow between peripherals, like CPU and WiFi, directly. In
aggregate measurements, some kind of fake battery construction that provides
a measurement point between the battery terminals is used. Naturally, the ag-
gregate measurement system produces single power measurements which have
to somehow break down to subsystems to get peripheral-specific measurements.

The approach of the model can be either sampling-based or event-based. In the
sampling-based approach, we collect state variables that describe the operation
state (e.g., display on/off) or utilization (e.g., CPU load) of a single device by pe-
riodical sampling. For sampling-based approaches, monitoring the performance
counters provided by the hardware has proven to be beneficial [33,36]. In event-
based approaches annotate the system, it is beneficial to collect events that trig-
ger a power change in the system (e.g., turning the radio on/off) and log them
for analysis. According to Bellosa [17], event-based models incur less overhead
and provide better accuracy than the sampling-based approaches. Martins [39]
further argues that peripheral devices should directly expose their power state
changes to make the event-based modeling easier. For an example of a full-
system event-based modeling, see Pathak’s article [47].

In power modeling, input data on various sources have to be collected, namely,
measurements from the power meter and state variables describing the power
states of the peripherals. These various data sources must be combined so that
they are synchronized. One approach is to use time-based synchronization where
both the power meter and the system keep their clocks in sync by calibrating
their clocks through some means, for example, through the Network Time Pro-
tocol (NTP). Another approach is to trigger a predictable power dissipation
spike (e.g., turning the device on/off) for the power measurements and use this
to correlate the power measurements and power state input data. We denote
this as event-correlation synchronization. For an example of an event-correlation
synchronization, see [53].

To provide the estimates, a model which takes the state variables as input and
produces power estimations as output ha to be used. The model usually involves
some form of linear regression and is first trained with a set of microbenchmarks
and later verified with an independent control set. Since most of the devices
have a set of power states, and transitions between these states are inherently
non-linear, a concept of power-state machines is used. Benini [18] describes
a formalism that uses finite-state machines (FSMs) to model power states of
peripherals.

Similar modeling for non-mobile devices has also been studied. For blade server
environments, Economou [25] provides a linear model framework. Sagahy-
roon [55] and Mahesri [38] study power consumption of laptops.

The approach in this thesis is a full-system, sampling-based, time-correlated,
linear model with power state machines and next a survey of the literature that
uses similar approaches is provided.



CHAPTER 3. RELATED WORK 18

3.2 Full-system Modeling

In this section, a survey of two of the most relevant articles to provide contrast
to the work: The first article developed a power model for the OpenMoko Neo
FreeRunner device [19] and the second article describes PowerTutor, an Android
application that allows measuring individual subsystem power dissipation [61].
A brief description of the devices that are studied, measurement setup, applied
methodology and the experiments is provided. Discussion and comparison to
this thesis results is delayded to Chapter 9.

3.2.1 OpenMoko

OpenMoko Neo FreeRunner device was released on June 2008. It is an open
source phone: the software is open and the hardware has specifications and
documentation available for most components. The Android operating system
was used together with a Google Nexus One, and an HTC Dream G1 phones in
the experiments described by Carroll et al. in [19].

Below is the relevant hardware and software of the OpenMoko:

SoC Samsung SS3C244 with ARM 920T 400 MHz
WiFi Accton 3236AQ
Cellular TI Calypso GSM+GPRS
Display Topploy 480×640 TFT
RAM 128 MB
Flash 256 MiB NAND
OS Android 1.5 with Linux 2.6.29 kernel

Carroll’s measurement setup consists of National Instrument PCI-6229 DAQ
acting as the electric power meter. The authors use shunt-resistors attached to
power supply rail probe points present in the OpenMoko circuit board. This
allows them to make direct power measurements of the subsystems. Their setup
consists of a host machine that controls the execution: it interfaces with the
OpenMoko device via SSH, controls the DAQ, and provides synchronization of
the data. The sample rate was 400 ms yielding 2.5 Hz sampling frequency. A
laboratory power supply is used to provide the power.

The authors measure the total power dissipated by the device and the power
dissipated by individual subsystems. They define total power to be the total
power dissipated by the device and the aggregate power as the sum of the power
dissipated by all subsystems. Subsystems need different voltage levels than
what is supplied by the main power source. Thus, regulators are needed to do
the conversion. Since regulators are inefficient, this can cause up to 15-25%
discrepancy between the total and aggregate power.

Carroll’s research method is to make direct measurements on the following sub-
systems: CPU core, RAM, GSM, GPS, Bluetooth, LCD panel and touchscreen,
LCD backlight, WiFi, audio, NAND flash, and SD card. For the Graphics
subsystem, they use subtraction method since it had too many power rails for
direct measurement. The authors have a set of microbenchmarks that is used
to characterize independently individual component power dissipation. A set of



CHAPTER 3. RELATED WORK 19

macrobenchmarks is used to utilize several components at the same time. They
validate their results with indirect measurements for two Android smartphones:
HTC Dream G1 and Google Nexus One.

In the experiments, the authors first measure the baseline power dissipation,
then run the microbenchmarks, and finally the macrobenchmarks. The baseline
power dissipation considers suspend and idle states and the backlight brightness.
In the suspend state, the CPU is idle and the communication processor performs
low-level activity. In the idle state, the system is fully awake but no application
is active. Their measurements yielded the following results (all units are in
milliwatts):

CPU RAM GPU WiFi GSM Audio Rest Total
suspend 13 3 11 6 30 4 4 68.6
idle 38 8 85 8 59 29 2 270

For the display brightness, they had the brightness levels available between 1
and 255. The Android’s brightness control slider allowed them to set the value
between 30 and 255, the centered slider corresponding to the level 143. The
following measurements were obtained:

minimum 7.8 mW
centered 75 mW
maximum 414 mW

The content color had an effect on the power dissipation. The author’s do not
indicate which brightness level setting they were using but noted that a com-
pletely white screen consumed 33.1 mW and a completely black screen consumed
74.2 mW.

The microbenchmarks consist of CPU, Flash storage, and Network. In the CPU
benchmark a part of SPEC CPU2000 benchmarks were run. The authors mea-
sure both CPU and RAM power dissipation considering CPU operating on 100
and 400 MHz. The Linux kernel on-demand frequency scaling was disabled
during the test. The authors’ results indicate that there is considerable dif-
ference based on the operating frequency and whether the running program is
CPU-bound or memory-bound. The following results were obtained (results in
milliwatts):

CPU(100M) RAM(100) CPU(400) RAM(400)
equake 60 10 180 400
vpr 60 20 160 40
gzip 60 30 140 80
crafty 55 55 90 80
mcf 50 70 80 90
idle 40 10 50 10

The flash storage microbenchmark consists of reading and writing for NAND
flash storage. The read benchmark consist of reading a 64 MiB file with random
data to /dev/null in 4 KiB blocks. The write test consist of writing 8 MiB
random data in 4 KiB blocks. The page cache was flushed between each block
write. The following results were obtained:



CHAPTER 3. RELATED WORK 20

NAND CPU RAM
READ 5 80 30
WRITE 5 100 30

In the network microbenchmark, a single file was downloaded with wget. The
file size was 15 MiB for WiFi and 50 KiB for GPRS. The following power
dissipation was measured:

WiFi GSM CPU RAM
WiFi 750 80 95 40
GPRS 10 650 50 10

The macrobenchmarks consist of a set of scenarios that utilized several subsys-
tems at a time: audio playback, video playback, text messaging, phone call,
emailing, and web browsing. We present the web browsing results here since
they are used later when compared with the results. In the web browsing bench-
mark, the authors loaded the web browser and used it to fetch a BBC news site
that was locally mirrored. They used both WiFi and GSM radios and obtained
the following results:

CPU Graphics WiFi GSM LCD Rest
WiFi 50 90 60 90 30 40
GSM 50 90 10 210 30 40

In addition, they considered the backlight brightness with the following levels:
0: 0 mW, 33: 50 mW, 67: 150 mW, and 100: 420 mW.

The authors do not give accuracy estimates for their model or their measure-
ments while they do give the accuracy of their multimeter.

3.2.2 PowerTutor

Zhang et al. discuss online power estimation in their article [61]. They present
a method that allows manual construction of power models, propose a tech-
nique that automates power model creation, and introduce the PowerTutor tool
that provides subsystem power dissipation breakdowns for Android devices. For
the thesis, the relevant part is the manual power model creation which is dis-
cussed further and the rest of the contributions are omitted. The device used is
HTC Dream which is an Android Development Phone (ADP) with the following
specifications:

SoC Qualcomm MSM7201A with ARM11 core
WiFi Texas Instruments WL 1251B chipset
Cellular Qualcomm RTR6285
Display 320×480 pixel TFT capacitive touch screen

The authors use Monsoon FTA22D combined power supply and meter as their
measurement device. It provides a 5 kHz sampling rate. The power measure-
ment trace is collected to a laptop computer. For the experiments, the authors
provide power exerciser programs that cause power dissipation for individual
subsystems and a logging tool that records the relevant state variables.



CHAPTER 3. RELATED WORK 21

The research method is to use multivariate linear regression where the subsys-
tem utilization is correlated with the power dissipation. The model is trained
through a set of microbenchmarks utilizing the devices with varying levels. The
authors call these microbenchmarks as training suites. To include the non-linear
state variables, such as CPU frequency, in their models, the authors use dummy
indicator variables. The components or subsystems the authors model are CPU,
LCD, GPS, WiFi, cellular, and audio. Another set of benchmarks are run to
validate the results. These benchmarks utilize several devices at the same time.
To evaluate the accuracy, the authors use absolute average of the absolute value
of errors: ∣∣∣∣m− pm

∣∣∣∣
where m is the measured power dissipation and p is the power consumption
predicted by the model.

In the experimental section, the microbenchmarks used to train the model and
the macrobenchmarks used to validate the model are presented. In the CPU
microbenchmark the CPU utilization and frequency are the state variables. The
training program controls the CPU frequency and duty cycle. The inferred
model is:

Frequency Model
246 3.42 · CPUload + 121.46 · CPUon mW
385 4.34 · CPUload + 121.46 · CPUon mW

In the LCD experiment, training program switched the backlight on, switched
it off, and changed its brightness in 10 uniformly distributed brightness levels.
The model:

BL 2.40 BLbr

In the WiFi, the underlying power model is rather complex. The observed
system variables are the data rate and the channel rate. Their training program
exchanges packets with a server by varying the delay between packets from 0 to
2 seconds in 0.1 second steps. The channel rate was varied in 11 Mbps, 36 Mbps,
48 Mbps, and 54 Mbps. Interestingly, the authors note that the packet size does
not affect the power dissipation, which they verify by varying the packet size,
nor does the transmission protocol whether it is TCP or UDP.

Their power model consists of four states: ltransit, htransit, low, and high. The
device is in ltransit or htransit states only briefly when it transfers data. The
transition from low to high occurs when more than 15 packets are transmitted,
and the transition from high to low occurs when 8 or less packets are transmitted.
The inferred power model:

State Model
ltransit, htransit 1000 mW
low 20 mW
high 710 mW + [(48− 0.768) · Rchannel]Rdata

where Rchannel is the channel data rate and Rdata is the number of packets
transmitted (sent and received).



CHAPTER 3. RELATED WORK 22

The authors also modeled cellular 3G in their work. The system variables were
UL/DL queue sizes, and state transition timeouts (see Section 2.4.2). The
authors inferred the UL/DL queue sizes by sending a packet from the phone to
a server with varying the packet size from 10 B to 1 KB apparently in 1 byte
increments.

The timeouts were inferred by fetching a 80 kilobyte http file 30 times with
a period that increased from 1 to 29 seconds in one second intervals. They
recorded two round trip times. The first, RTT1, is the time between sending
TCP SYN and receiving the corresponding SYN-ACK. The second, RTT2, is
the time between sending HTTP GET and receiving the first data packet. These
are used to deduce the timeouts for DCH-FACH and FACH-IDLE transitions.
The authors do not consider that the system might have any other promotion
and demotion strategies (see Section 2.4.2). The inferred model:

UL queue 151 bytes
DL queue 119 bytes
DCH → FACH timeout 6 s
FACH → IDLE timeout 4 s

For the validation of the model, the authors used a set of macrobenchmarks that
utilize several subsystems at the same time. According to their measurements,
their absolute average error was less than 10% over all benchmarks.



Chapter 4

Statistical Tools

This chapter describes the statistical tools and gives an overview on the mathe-
matics behind it. Statistical methodology, linear regression analysis, and cross-
correlation are introduced. This chapter follows the description given in [26].

4.1 Regression Analysis

Regression analysis is a technique for modeling the relationship between one
or more dependent variables and one or more independent variables. In single
regression, there is only one independent and one dependent variable. In multiple
regression, the number of independent variables is more than one. Likewise, in
multiple multivariate regression, the number of dependent variables is more than
one. In general regression analysis, there is no assumption on the relationship
(e.g., linear) between the independent variables and the dependent variables.
For this work, multiple regression where there are more than one independent
variable and a single dependent variable is applied. This chapter develops the
notation according to this assumption.

We assume that we have n independent variables:

(x1, . . . , xn).

and we assume that we have a single output variable denoted by y. In order to
infer the model, we have to do calibration. That is, we take k samples of the
dependent variable to form the dependent variable vector denoted by Y

Y = (y1, . . . , yk)

and we also sample k samples of the n independent variables to form the cali-
bration set

{(yi, x1i, . . . , xni)}ki=1.

With this calibration set, we can form the model matrix X whose single row
consists of the independent variables of a sample and whose dimensions are

23



CHAPTER 4. STATISTICAL TOOLS 24

n× k:

X =


x11 x21 · · · xn1

x12 x22 · · · xn2

...
...

...
. . .

...
x1k x2k · · · xnk

 .

In regression analysis, the goal is to find a set of unknown parameters denoted
by B. Here, B is a k-element vector of the form

B = (β1, . . . , βk)

where the elements βi, i ∈ [1, k] are called the regression coefficients. We assume
some known relationship between the function f that relates the X and Y . That
is, we solve the parameters B according to some “goodness criteria” from the
equation

Y ≈ f(X,B) (4.1)

To solve the regression coefficients B, we have to consider the relation between
the number of independent variables n and samples k we take. If k < n,
the system is underdetermined, and there is usually no single solution for the
regression coefficients. If k = n and f is linear, we can find an exact solution for
B by solving the set of linear equations given by Equation (4.1). If k > n the
system is overdetermined, and we cannot find an exact solution for B, thus we
have to choose a “best fit” according to some criteria. If f is non-linear, there
can be none, one, or more than one solution.

If we are given k observations of n unknowns, we denote (n− k) as the degrees
of freedom which describes how much freedom there is to do the fitting; the k
samples are needed to provide the fitting. The (n − k) remaining samples are
used to evaluate the goodness of the fitting.

4.2 Linear Regression

In linear regression, we assume that the function f in Equation (4.1) is linear.
Thus, the model is of the form

yi = β1x1i + · · ·+ βkxni + εi, i = 1, . . . , k

where εi is the error term. The equation can be written equivalently in a matrix
form

Y = Xβ + ε (4.2)

where ε is the error vector. The above equation can be expanded into:
y1

y2

...
yk

 =


x11 x21 · · · xn1

x12 x22 · · · xn2

...
...

...
. . .

...
x1k x2k · · · xnk



β1

β2

...
βn

+


ε1
ε2
...
εn

 (4.3)

For the linear regression to be applicable, the behavior between the independent
and dependent variables must be linear, the sample size must be greater or



CHAPTER 4. STATISTICAL TOOLS 25

equal to the number of unknowns, that is, k > n, and the measurements of the
independent and dependent variables must be error free.

Since Equation (4.2) is over-determined, perfect fitting cannot be done. Thus,
we need to choose some kind of an estimation method with which we can calcu-
late the regression coefficient vector B. Here the ordinary least squares (OLS)
method is presented.

4.2.1 Ordinary Least Squares

In the Ordinary Least Squares (OLS) estimation, we start with Equation (4.2):

Y = Xβ + ε.

The goal is to find an estimate β̂ that minimizes the sum of least squared resid-
uals. That is, we are given k observations and we define the residual of the ith,
1 ≤ i ≤ k observation as

εi = yi −Xiβ

where Xi denotes the ith row of the design matrix X. The sum of the least
squared residuals S is defined as

S(β) =

k∑
i=1

(yi −Xiβ)2 =

k∑
i=1

ε2i = ε2

The ordinary least squares estimate, denoted by β̂, produces minimum value for
the function for the sum of squared residuals S. To see this, observe that

S(β) = ε2 = εT ε = (Y −Xβ)T (Y −Xβ)

= Y TY − 2βXTY + βTXTXβ

Function S(β) is quadratic and S(β) ≥ 0, so we can find the global minimum β̂
by differentiating it with respect to β:

0 =
dS

dβ
(β̂) =

d

dβ

(
Y TY − 2βXTY + βTXTXβ

)∣∣∣∣∣
β=β̂

= −2XTY + 2XTXβ̂

Thus, we find that β̂ satisfies

XTXβ̂ = XTY

Now, assume that XTX is invertible to obtain the least square estimate

β̂ = (XTX)−1XTY

Xβ̂ = X(XTX)−1XTY

= HY

where H = X(XTX)−1XT is the orthogonal projection onto the space spanned
by X. The hat matrix H can be used to compute

• predicted values: Ŷ = Hy = Xβ̂



CHAPTER 4. STATISTICAL TOOLS 26

• residuals: ε̂ = Y −Xβ̂ = Y − Ŷ = (I −H)Y

• residual sum of squares: ε̂T ε̂ = Y T (I −H)(I −H)Y = Y T (I −H)Y

where I denotes the identity matrix.

To explain why β̂ is a good estimate, we must consider the fact that it is a
projection of the independent variable vector Y onto the model space, that is, the
space spanned by X. The geometrical interpretation for the residual vector ε̂ is
the vector difference β̂−Y . In other words, it is the difference between the model
space projection and actual measurement. For more analytical considerations,
β is the maximum likelihood estimate, and according to the Gauss-Markov
theorem it is the best linear unbiased estimate. Any introductory statistical
book such as [26] provides the details.

According to [26], the OLS estimates are a good choice if the errors are uncorre-
lated and have equal variance. Otherwise, other estimation methods should be
considered. For this thesis, without detailed knowledge of the system, it seems
reasonable to assume the preconditions of the OLS to be valid.

4.3 Variable Categorizations

Regression variables can be divided into categorical and quantitative variables.
Categorical variables are variables that have a discrete number of possible values.
If a categorical variable can hold only two values, it is labeled as a binary
variable. If the variable can have more than two values, it is called an ordinal
variable.

Quantitative variables are variables where arithmetical relations can be consid-
ered. Quantitative variables can have a bounded or an unbounded domain. If
the domain is bounded, we denote the variable as an interval. Quantitative
variables can be either discrete or continuous. Discrete quantitative variables
differ from categorical variables in that respect that they have an ordering, and
making arithmetical operations (e.g., taking average) can be done to them while
it does not make sense to take an average of a categorical variable.

Dummy variables are categorical binary variables that are not direct input vari-
ables of the model. Instead, they describe some external event that cannot be
directly measured.

4.4 Segmented Regression

Segmented regression is a concept where the relation between the independent
and dependent variables is piecewise linear. That is, the relation can be de-
scribed with two or more straight lines connecting at unknown breakpoints.
Segmented regression tools infer both the straight line coefficients and the break-
point values. For this thesis, the segmented regression implementation provided
by Muggeo in [43] is used.



CHAPTER 4. STATISTICAL TOOLS 27

4.5 Cross-correlation

For verifying the model accuracy, a metric that allows us to estimate how good
the linear estimation is is needed. For this method, the cross-correlation was
chosen. In cross-correlation, we are given two discrete finite time-series of data
y1, . . . , yn and y′1, . . . , y

′
n, and we calculate the cross correlation r as follows:

r = cross(y, y′) =
1

n− 1
·

∑
i[(yi − y) · (y′i − y′)]√∑
i(yi − y)2

√∑
i(y
′
i − y′)2

,

where y and y′ denote the averages of the corresponding series.



Chapter 5

Power Modeling

In power modeling, the goal is to form a correlation between a subsystem’s
utilization and its power dissipation. A subsystem consists of a set of operating
states that have distinct power dissipation behavior. The device can be in an idle
state such as wait, sleep, or retention (see Section 2.3.1) or an active state that
has some utilization variable. The utilization variable can be binary (subsystem
on/off), limited domain (e.g., CPU load: 0-100%), or unlimited (e.g., number
of packets transferred). In addition, the subsystem can have some active state
power management feature on such as DVFS (see Section 2.3.2) or power and
clock gating (see Section 2.3.1).

All idle and active states are considered as the operating states of the subsys-
tem. Each operating state has its characteristic power dissipation that is either
constant or depends on one or more utilization variables. In power modeling,
assume that the power consumption of a state is linear with regards to the op-
erating or utilization state. Linear regression (see Section 4.2) is used to infer
this relationship.

In this thesis, a measurement setup that allows us to observe the total power
dissipation of the studied device (see Chapter 7) was created. The constructed
power model breaks down the total power consumption into subsystem-specific
power dissipation. To do this, first the model needs to be calibrated with mi-
crobenchmarks that utilize individual subsystems while keeping the other sub-
systems idle. Both the power state of the subsystem and the aggregate power
consumption of the device are recoreded and correlated. This is done to all
subsystems. To verify the model accuracy, another set of benchmarks is used.
These verification benchmarks utilize multiple subsystems and use the model to
predict the total power dissipation by summing the individual subsystem dissi-
pations. This sum is correlated with the measured power dissipation to provide
a goodness of the fit metric.

5.1 Calibration of Subsystems

We begin by first considering how to calibrate the model for a single subsystem.
We are given a set of subsystems C = {CPU,WiFi, cellular, · · · }, and for

28



CHAPTER 5. POWER MODELING 29

each subsystem c ∈ C we have n operating states that have individual power
dissipation characteristics. We define a function u that describes a subsystem
utilization as follows:

ukt(c) =

{
0 device is not in kth utilization state at time t
UkC(t) device is in kth utilization state at time t

(5.1)

Here the operating function UKC (t) domain can be either constant (e.g., 1),
limited domain (e.g., [0,100]), or unlimited domain (e.g., [0,∞]). This domain
depends on the subsystem in question.

We denote the total aggregate power dissipation of the device at time t as Pt(C)
and individual subsystem power dissipation at time t as pt(c), c ∈ C.

Assumption 1 For calibration, we assume that the measured total aggregate
power dissipation Pt(C) equals to the subsystem-specific power dissipation pt(c).
That is,

Pt(C) = pt(c), 0 ≤ t ≤ k

and all the other systems are switched off or their power dissipation is negligible
compared to the systems under test, since the training set stresses heavily the
devices under test and keeps the other systems idle. Thus,

Pt(d) = 0,∀d ∈ C \ c.

When we calibrate the model, we take k samples of the device operating states:

{u1i(c), u2i(c), . . . , uni(c)}ki=1 (5.2)

and k samples of the total power dissipation:

{Pi(C)}ki=0 (5.3)

We use the regression model and notation of Section 4.2. We denote the set of
regression coefficients for the device c by

β1(c), . . . , βn(c)

and the set of error terms
ε1(c), . . . , εn(c)

Now, given Equations (5.2), (5.3), and Assumption 1, we can form the linear
equation similar to that of 4.2:

P (c) = U(c)β(c) + ε(c) (5.4)

or in expanded form:
p1(c)
p2(c)

...
pk(c)

 =


u11(c) · · · un1(c)
u12(c) · · · un2(c)

...
. . .

...
u1k(c) · · · unk(c)



β1(c)
β2(c)

...
βn(c)

+


ε1(c)
ε2(c)

...
εn(c)





CHAPTER 5. POWER MODELING 30

5.2 Calibrating Full-system Model

Now that we have a method to calibrate a single subsystem, we must consider the
interactions between subsystems when performing the calibration: Some devices
cannot be used without utilizing other devices. Thus, when we utilize a single
device that needs another device for its load, we must subtract the consumption
caused by the other subsystem in order to properly calibrate the linear model
for the new subsystem. For example, to utilize the graphics card, we need to
utilize the CPU in order to generate a load for the graphics card (GPU). Thus,
we must first calibrate the model for the CPU, perform the microbenchmark
that utilizes the GPU, subtract the CPU power dissipation, and after that form
the linear model for the GPU device.

For each device c ∈ C, we define a set of nuisance subsystems N(c) ⊆ C \ c.
When measuring the total power dissipation P (C) we define the real power
dissipation P ′ as the difference between the measured total power dissipation
P (C) and subtracted nuisance power dissipation

P ′(c) = P (C)−
∑

d∈N(c)

p(d).

where p(d) denotes the modeled power dissipation of the device d ∈ C. Then
we apply Equation (5.4):

P ′(c) = U(c)β(c) + ε(c).

5.3 Model Verification

To verify the model accuracy, a cross-correlation metric (see Section 4.5) is used.
Since the calibration was done by utilizing only a single subsystem if possible,
one has have to verify that the model gives precise results even when more than
one subsystem is simultaneously active. Thus, another set of benchmarks that
utilize multiple subsystems simultaneously was runm the total power dissipation
of the device was measured, and the model was used to predict the individual
subsystemwise power dissipation p(c), c ∈ C ′, for a subset C ′ ⊂ C. Then the
cross-correlation

cross

[
P (C),

∑
c∈C′

p(c)

]
was calculated and used as the metric for the goodness of the fit.

5.4 Warm-up and Cool-down

A subsystem usually has some time delay before it enters into an operating state.
Likewise, when it leaves the operating state, some delay is exhibited. When the
calibration is performed, these warm-up and cool-down periods must be filtered
out of the measurements. In the system, start first utilizing the subsystem
with a microbenchmark, and wait for a subsystem-specific grace period until



CHAPTER 5. POWER MODELING 31

the system starts the utilization and power dissipation. Similarly, when the
benchmarking ends, stop the measuring, and after another grace period drop
the device utilization. See Section 7.5 for an example of linear fitting and
warm-up/cool-down periods.

Since these transition periods consume little time compared to the constant
utilization periods we ignore them in the model. Some accuracy is lost but the
overall energy consumption accuracy should still be reasonable.

5.5 Power Transitions

All devices can be considered state machines. The simplest model involves only
idle and active states. In addition to the power states, the device has the
concept of power transition between the power states. The simplest model can
be described as a state machine graph:

IDLE ACTIVEP = 0

t1

P = PH

L

Here the device is first in the idle state consuming no power, P = 0. When
the device is utilized with a load L, it moves into a high power state where the
power consumption is P = PH . See also the discussion in Section 2.4 on the
“statefulness” of peripheral subsystems.

5.5.1 Timeouts

Power transitions can be caused by a timeout. This usually occurs when the uti-
lization of a subsystem has ended. Due to the fact that the subsystem utilization
periods tend to cluster, it is beneficial not to switch the device off immediately,
especially if the setup of the device consumes lots of power. This is especially
typical for the 3G modem (see Section 2.4.2).

power

load

T1 T2

L

PH

timeout

Here, the subsystem has utilization L which ends at T1 but the subsystem is not
switched off until at T2 giving the timeout T = T2 − T1. In the above example,



CHAPTER 5. POWER MODELING 32

if it was observed that the load drops at T2, a dummy variable would be set to
the value 1 during the timeout period.

5.5.2 Tail States

If the transition from idle to active state requires a laborious setup and initial-
ization, one can employ some tail state where the system remains somewhat
active but consumes less than in the active state and from which the transition
to the active state is less consuming. These tail states are used in, for example,
Cellular 3G modems, due to the high initial setup time required when moving
from idle to active. A tail state can also involve some power or clock gating
(see Section 2.3.1) which can require data retention to the main memory, for
example.

ACTIVEIDLE

load

P = 0 P = Phigh

TAIL

load

t1
t2

P = Plow

Dummy variables similar to timeouts presented in the previous section are used
to encode transitions to tail states.

5.5.3 Device Utilization

Device utilization can be bounded or unbounded. Bounded utilization is when
the utilization has a limited interval and unbounded when there is no upper
limit for the utilization. For example, CPU utilization has a bounded interval
consumption having the range from 0 to 100 percent, while WiFi card has an
unbounded utilization: the number of packets transferred per second can range
from 0 to ∞1.

power

load

T1 T2

P1

P2

Above is an example of unbounded utilization. The load starts at T1 and in-
creases indefinitely. At T2, a saturation point for power dissipation is reached.
At T1, the power dissipation immediately rises to level P1 and increases linearly

1In practice, there is always an upper limit, however.



CHAPTER 5. POWER MODELING 33

until the saturation point, reaching P2. It is typical for most of the devices
to have a constant power dissipation subsystem and a linearly dependent sub-
system. The constant dissipation is always present when the device is on, and
the linearly dependent subsystem depends on the utilization value. To infer
unbounded utilization with bounded power dissipation segmented regression is
used (see Section 4.4).

5.5.4 Operating Modes

In addition to utilization, the devices can have several operating modes that
have an effect on the power dissipation, e.g., the CPU clock frequency or WiFi
power saving mode. It is typical that these operating modes affect the baseline
and maximum power intake. Thus, these must be considered in the model for
the system when it is inferred.

For example, to encode the operating modes for CPU where we have two operat-
ing frequencies, fL and fH , we could define the utilization functions as follows:

fLkt
=

{
1 CPU frequency is fL at time t
0 otherwise

and a similar definition for fHkt
. Now we define two utilization variables and

two regression coefficients, uLkt
(c) = UkC(t) · fLkt

and uHkt
(c) = UkC(t) · fHkt

.



Chapter 6

Nokia N900

This chapter surveys the Nokia N900 mobile phone hardware subsystems and
relevant power saving features to be used as a reference when validating the
model later. The chapter also provides the power dissipation specifications if
obtainable from the specifications.

Nokia N900 is a smartphone that consists of several subsystems providing access
to phone calls, taking photographs, SMS, navigation, and connecting to the
Internet, among others. In order to achieve this, the phone is equipped with a
global OMAP3 System-on-a-Chip acting as the central processor and a number
of peripherals providing various hardware features such as WiFi, Bluetooth,
Cellular, Display, GPS, FM receiver and transceiver, audio subsystem, flash
eMMC, and NAND for persistent storage, see Figure 6.1.

6.1 OMAP3430

The main component of the Nokia N900 is the Texas Instruments OMAP 3430
System-on-a-Chip (SoC) [3, 10]. It is equipped with several subsystems: ARM
Cortex A8 CPU, PowerVR SGX 530 GPU, and Imaging, Video, and Audio
(IVA) accelerator based on TI C64x VLIW DSP Core. The IVA accelerator can
be used to encode and decode MPEG/H.264 video up to HD resolutions. It
has several I/O interfaces for camera, display, and other sensors. The chip is
manufactured with 65 nm process.

6.1.1 Power Management Techniques

Several OMAP subsystems support DVFS (see Section 2.3.1) to reduce dynamic
power dissipation. In addition, OMAP supports Dynamic Power Switching
(DPS) which allows the subsystem to switch to a lower power higher wakeup-
latency state when the system is waiting for an event. Another similar technique
is Standby Leakage Management (SLM) which switches the system to deeper
sleep states when the system is completely idle. The difference between DPS
and SLM is that DPS is used when the system is active, and DPS requires the
system to predict when a wakeup is going to occur while in SLM the system

34



CHAPTER 6. NOKIA N900 35

K
ey

b
oa

rd

D
is

p
la

y

S
en

so
rs

A
/V

Audio

Battery Charger

Clocks

USB

LED

Vibrator Control

OMAP 3430

TWL4030

W
iF

i

G
P

S

C
el

lu
la

r

F
M

B
lu

et
o
ot

h

eMMC

NAND

Figure 6.1: Nokia N900 overall schematics. This figure is a logical view of the
architecture and does not reflect the physical chip layout.

is completely idle and is only waken up by an external event such as a user
touching the keyboard.

OMAP has two kinds of clocks [11, 4.1.4.1]: interface and functional. The inter-
face clocks are used to synchronize the communication between the subsystems
while the functional clocks are used to synchronize the computation occurring
inside a subsystem. DVFS has an impact on the latter kind of clocks.

6.1.2 Power Management Architecture

OMAP power management architecture is based on domains. There are several
domains that are used to implement clock and power gating (see Sections 2.3.1
and 2.3.2) and the DVFS.

Clock gating minimizes the dynamic power dissipation and is implemented with
a set of clock domains. By gating the clocks of a domain, all switching activity
in the domain is stopped.

Power gating is implemented with power domains [11, 4.1.3.2]. Each power
domain has its own independent power rails which allow toggling the power
supply on or off. In clock gating, the subsystem retains its state indefinitely
but in power gating all state is lost when the supply power is cut. Thus, the
system needs to store the state to some retention registers where it can be
restored when the power-gated subsystem is woken up. To implement this,
OMAP defines power states for each power domain [11, 4.6.1.4]:



CHAPTER 6. NOKIA N900 36

ACTIVE fully operational
INACTIVE clocks are off
RETENTION context is stored in memory
OFF logic is off, clocks are off, no context is stored

OMAP 3430 has several power domains described below. Not all of them im-
plement all power states. That is, for certain power domains, retention state is
not required. The WKUP power domain is always active. Some of the domains
are controllable by the operating system, whereas others are controlled by the
OMAP chip itself.

name explanation control
MPU microprocessor domain HW
IVA2 audio/video DSP HW
NEON SIMD multimedia Co-processor domain HW
CORE interconnect, memory, peripherals, clock HW
SGX GPU SW
DSS low power peripherals SW
CAM camera controller SW
EFUSE eFuses HW
WKUP wakeup domain (always on) HW
USBHOST USB host SW
EMU emulation domain (for debugging) HW
PLL1..5 clock generators HW

Voltage domains [11, 4.10.2] are used to implement dynamic voltage and fre-
quency scaling (DVFS). OMAP implements them by allowing the operating
system to define up to 6 operating performance points (OPPs) which are volt-
age/frequency pairs. There are two freely scalable (OS definable) voltage do-
mains: VDD1 and VDD2. In addition, there are three memory controlled volt-
age domains: VDD3, VDD4, and VDD5. The available domains [11, 4.10.1]
and their operating performance points are:

VDD Domain Available OPPs control
1 CPU OFF/RET/OPP1-6 HW/SW
2 CORE OFF/RET/OPP1-3 HW/SW
3 wakeup Low/Normal/Emulation HW
4 CPU SRAM MEM-OFF/RET/VDD1∈OPP1-5 HW
5 CORE SRAM MEM-OFF/RET/VDD2∈OPP1-3 HW

Controlling of the power and clock gating is done by the Power, Reset, and
Clock Management Module (PRCM) [11, 4.2]. PRCM is divided into two mod-
ules: the Power Reset Manager (PRM) which is responsible for handling the
power domains, voltage domains, subsystem resets, wakeups from sleep states
and subsystem clock source control. The second module is the clock man-
ager (CM) which handles the clock signal generation and distribution through
the clock tree. The interface for the PRCM module is implemented in the
Maemo kernel (Nokia’s vendor-modified Linux kernel) in the file arch/arm/

mach-omap2/prcm.c.

See Figure 6.2 for an overview of available subsystems, power and voltage do-
mains.



CHAPTER 6. NOKIA N900 37

Figure 6.2: OMAP 3430 SoC Subsystems, Power and Voltage domains. (Image
from [11].)

6.2 CPU

The CPU of the Nokia N900 device and its OMAP3430 board is a 32-bit ARM
Cortex A8 with ARM version 7 ISA + Thumb-2TM , Jazelle Java accelerator.
The core includes a NEON extension which is a SIMD coprocessor providing
support for multimedia handling. The CPU has 16 32-bit registers, 16 kB L1
instruction and data cache, and 256 kB unified L2 cache [11, 3.1.2]. The ARM
subsystem is included in the MPU power domain that supports all power states
(OFF, INA, RET, and ACT), and the NEON coprocessor (OFF, ON) has its
own power domain. According to [6], the worst case power dissipation for the
integrated OMAP 3 ARM CPU is 750 mW at 800 MHz.

6.2.1 Power Management

Nokia N900 comes with a Nokia-modified Linux kernel. The kernel provides
the CPU idle and active power management through an interface consisting
of a driver and a policy manager. The driver provides low-level access to the
power management hardware, and the policy manager decides when to transfer
between the operating states. The idle management interface is called cpuidle
and the active (frequency scaling, DVFS) management is cpufreq.

The idle power management [45] low-level driver for the Maemo Linux kernel
is implemented in arch/arm/mach-omap2/cpuidle34xx.c. The driver defines
7 sleep states but the sys/devices/system/cpu/cpu0/cpuidle interface only
reports 4 of them. Here we describe them as reported by the sysfs interface:



CHAPTER 6. NOKIA N900 38

state target residency exit latency MPU CORE BM
C1 5 272 ON ON -
C2 309 286 ON ON +
C3 46507 2001 RET RET +
C4 484329 22779 OFF OFF +

Here target residency indicates the amount of time in microseconds that is
needed to be spent in the state in order to make the transition worthwhile. The
variable exit latency indicates the amount of time in microseconds to bring the
system back into a fully functional state. BM stands for CPUIDLE FLAG CHECK BM

that indicates the DMA or other bus activity is not correctly updated during
the sleep state and the system should perform necessary tasks during wakeup
to make the system consistent. The MPU and CORE columns indicate which
power state the subsystems enter during the sleep state.

The Linux kernel supports various idle policy management algorithms. The idle
power management policy side is not customized by Nokia. The default policy
(or governor in the kernel terminology) for the Maemo kernel is the menu gov-
ernor. The policy implementation is in drivers/cpuidle/governors/menu.c.
According to [45], the menu governor considers various parameters including

• processes’ expected sleep time

• latency requirements

• how much time is spent in previous C-states

• bus activity

and chooses the sleep state that has the maximum power advantage with the
least performance impact.

The active power management has similar two-tier implementation to the idle
power management. The low-level OMAP-specific driver interface is scattered
in various files in arch/arm/mach-omap2 and in the file arch/arm/plat-omap

/cpu-omap.c. The policy side is uncustomized Linux kernel stock on-demand
CPU frequency governor.

The on-demand governor [46] algorithm that decides the operating frequency is
implemented in the file drivers/cpufreq/cpufreq ondemand.c and basically
scales the CPU operating frequency based on the system load.

Naturally, the operating frequencies are a discrete set of values. For the Nokia
N900, the available CPU operating frequencies and their corresponding operat-
ing voltages are:

Frequency (MHz) Core Voltage (V)
250 1.075
500 1.2
550 1.275
600 1.35

The parameters for the cpufreq on-demand governor are accessible through the
sysfs interface: /sys/devices/system/cpu/cpu0/cpufreq/ondemand and are
the following:



CHAPTER 6. NOKIA N900 39

ignore nice load 0
sampling rate 300000 µS (0.3 s)
sampling rate max 150000000 µS (150 s)
sampling rate min 150000 µS (0.150 s)
up threshold 95%

The parameter ignore nice load, if set to 0, indicates that all processes should
be included when counting the CPU load. If it is set to 1, processes running
with a nice value are not counted to the load.

6.3 Interconnect

The interconnect [11, 5.1] is responsible for connecting the subsystems to each
other. It provides access control through configurable firewalls that limit the
access between the subsystems and has a 4-level hierarchy:

L1 internal to CPUs
L2 IVA and MPU domain
L3 chip-level interconnect connects the subsystems
L4 external peripheral interconnect

L3 interconnect [11, 5.2], which is the main bus for the OMAP chip, is in the
CORE power domain and is controlled by PRCM. It has a smart-idle mode
which makes the interconnect go to a sleep mode once all requests have been
served.

6.4 GPU

PowerVR SGX 530 is a programmable GPU with a universal shader model. It
supports DirectX 10.1 and OpenGL ES 2.0. According to [34], the PowerVR
GPU is clocked at 110 MHz on N900.

SGX 530 has its own power domain and it supports the ON and OFF power
states [11, Table 4-26], lacking the support for retention states. The SGX Sub-
system has both the interface and functional clocks [11, 13.2.1.1], both of which
can be gated. The functional clock can be either a division of the interface clock
with ratios 1:3, 1:4, or 1:6 applied. Alternatively, a constant 96 MHz clock can
be issued from the DPLL4 clock generator.

The SGX subsystem supports the following clock gating features [11, 13.2.1.3]

• deep power sleep (all clocks are gated)

• idle (2D and 3D clocks are gated)

• 3D (no clocks are gated)

The driver for the SGX subsystem is located in the drivers/gpu/pvr directory
in the kernel sources. There is support for some dynamic voltage and frequency



CHAPTER 6. NOKIA N900 40

scaling based on the utilization of the device but due to the lack of specification,
it is not clear from the sources whether this scaling is implemented by the OMAP
hardware or the kernel.

6.5 Memory

Nokia N900 has a single 256 MB low-power LPDDR1 RAM chip that is clocked
to 166 MHz [34]. There are no specifications available on the power requirements
of the memory chip.

6.6 Display

Nokia N900 has a Sony ACX565AKM 3.5-inch resistive touch-screen display
with an 800x480 pixel resolution and 16-bit color depth. The display has a
Content Adaptive Backlight Control (CABC) power saving feature that accord-
ing to [34] has four available modes:

• off

• UI

• still-image

• moving-image

The CABC allows reducing the backlight brightness level according to the image
shown. E.g., if the image contains only dark pixels, the backlight brightness can
be lowered. There seems to be no specification for power dissipation available.

The driver for the panel provides access for the backlight brightness through a
sysfs interface and is in drivers/video/omap2/displays/panel-acx565akm.c.

According to [7], the panel power dissipation is 61.13 mW and the typical voltage
and current for backlight are 9.6 V and 15 mA, respectively, yielding a typical
power dissipation of 144 mW.

6.7 WiFi

The WiFi chip-set is a Texas Instruments WL1251 that supports the 802.11b
(1, 2, 5.5, and 11 MB/s) and 802.11g (6, 9, 12, 18, 24, 36, 48, and 54 MB/s)
standards and the following extensions:

• 802.11i WPA2 or RSN security extension

• 802.11d regulatory domain extension

• 802.11k radio resource management extension

• 802.11e QoS extensions



CHAPTER 6. NOKIA N900 41

According to the FCC Compliance Test Reports for the WiFi [1], the Nokia
N900 WiFi module has the following transmit power characteristics:

Mode Rate Power
802.11b 11 Mbps 239 mW (398 mW)
802.11g 6 Mbps 156 mW (260 mW)

The power dissipation in parenthesis indicates the lower limit for the power
dissipation assuming a 60% efficiency ratio of printed surface-mounted WiFi
antenna [34]. See Section 2.4.1 for generic WiFi power saving features.

The kernel driver for the WiFi chip-set is in drivers/net/wireless/wl12xx/

directory.

6.8 Cellular

Nokia N900 has a Nokia-proprietary cellular modem labeled Rapuyama in the
hardware specifications. It supports the 850/900/1800/1900 MHz GSM bands
and the 900/1700/2100 MHz WDCMA bands. The chip supports the 3GPP
Release 5 with WCDMA/HSDPA and GPRS data bearers. The maximum
speeds according to [34] are:

Network Type DL (kB/s) UL (kB/s)
2G GPRS multi-slot class 32 107 64.2
2.5G EDGE class A 296 177.6
3G 3GPP release 5/PS 384 384
3G 3GPP release 5/HSDPA 10000 5800

The chip supports the Dual Transfer Mode (DTM) that allows simultaneous
voice and packet data connection in GSM/EDGE networks. According to [34],
the transmit power is adjustable according to the following table:

Frequency min max Number of steps
GSM 900 MHz 3.2 mW 1800 mW 15
GSM 1800 MHz 1.0 mW 900 mW 16
WCDMA all 0.01 µW 180 mW 75

These adjustments are not user-controllable. See Section 2.4.2 for the generic
Cellular modem power management features.

The FCC Compliance Test Report [2]1 results for the average transmit power
for the cellular networks are:

Frequency Power
GSM 850 437 mW
EGPRS 850 58 mW
GSM 1900 1445 mW
EGPRS 1900 407 mW
WCDMA 1700 166 mW

1This applies to frequencies used in the US but the difference to European frequencies
should not be large.



CHAPTER 6. NOKIA N900 42

6.9 Solid State Disks

Nokia N900 has one NAND and one eMMC chip [34]:

Type NAND eMMC
Manufacturer Numonyx Toshiba
Voltage (read ops) 1.8 V 2.7 V
Maximum Current ? 3.5 mA
SoC bus size 16-bit 8-bit
Size 256 MB 32 GB
Sequential R/W ? 33.38/11.8 MB/s
Random R/W ? 16.7/0.42 kB/s

The 256-MB NAND is formatted with UBIFS file system which is a file system
written specifically for flash drives. The mount point for the NAND flash is /

(root). The 32-GB eMMC is split into three partitions:

file system size mount point
swap 768 MB -
ext3 2 GB /home
VFAT 25 GB /home/user/MyDocs

There is no indication on what is the exact model number for the NAND flash
used in the N900, which makes finding the data sheet and thus deducing the
power draw impossible.

6.10 Battery and Charger

The Nokia N900 has a 1320 mAh 3.7 V Li-Ion battery labeled BL-5J. According
to Nokia, it provides 9 hours of GSM and 5 hours of WCDMA talk time. The
stand-by time is given as 10 days for both GSM and WCDMA.

The charger is labeled AC-10 and it has the following specifications:

Voltage Current
Input AC 100/240 V / 50-60 Hz
Output DC 5.0 V 1200 mA

The charger is connected to Nokia N900 with a micro-USB connector.

6.11 Other Peripherals

Nokia N900 includes several other peripherals: a touch-screen controller, the
TWL4030 Audio and Power Management chip, Flash Torch, Led, USB, A/V
Connector, Accelerometers, Bluetooth, FM Receiver and Transmitter, GPS,
Vibrator, Front and Back Cameras, Ambient Light Sensor, Proximity Sensor,
Keyboard, and Fuel Gauge. These devices were ommitted from the model to
limit the scope of this thesis.



Chapter 7

eprof Framework

This chapter describes the experiment framework, eprof. The framework is
responsible for measuring the power dissipation and device utilization of the
system. This information is collected and used to produce plots or perform
statistical analysis such as linear regression. The framework also provides access
to a serial port present in the Nokia N900 device. In addition, the system has a
software-controlled power switch functionality allowing us to do hard power-offs
during the experiments. This chapter introduces the hardware and software
needed to implement the framework.

7.1 Measuring Electric Power

Figure 7.1: Part of the measurement setup. The control computer, power toggle,
and serial port interface are not shown.

The electric power measurement setup allows measuring the power dissipation
of the device, provides an interfacing capability for connection to the Nokia

43



CHAPTER 7. EPROF FRAMEWORK 44

WiFi
AP

DAQ

PSU

N900

USB + −

Ω

+ −

et
h

eth

Measurement
Computer

Control

Computer

Figure 7.2: eprof overall system architecture. Access Point is labeled as AP
and Ω indicates the shunt-resistor. The serial port interface, power toggle, and
ground connections are omitted from the diagram.

N900, debug serial port, and a software-controlled power switch. The setup can
be seen in Figure 7.1 and the overall architecture of the power measurement
system in Figure 7.2.

The power measurement system consists of the following subsystems:

Nokia N900 Unmodified Nokia N900 running standard Maemo 5.0PR1.3 op-
erating system is used as the test hardware. The following software pack-
ages are installed in order to run the framework: strace, tcpdump, open-
ntpd, bash, python, python-dbus, and cpufrequtils.

DAQ The data-acquisition device is National Instruments NI-USB 6216 DAQ
with the following specifications [8]:

Model USB-6216
Input channels 8 differential/16 single-ended
Input ranges ± 0.2 V, ± 1 V, ± 5 V, ± 10 V
ADC resolution 16 bits
Max sampling rate 400 kS/s
Timing accuracy 50 ppm of sample rate
Timing resolution 50 ns
Sensitivity 4.8 µV @ ± 0.2 V range

10.4 µV @ ± 1 V range
47.2 µV @ ± 5 V range
91.6 µV @ ± 10 V range

For the accuracy, the NI DAQ specifications define the following limits:

range accuracy R=max
±0.2 V 192R+ 50 90 µV
±1 V 152R+ 160 310 µV
±5 V 142R+ 705 1420 µV
±10 V 132R+ 1300 2710 µV



CHAPTER 7. EPROF FRAMEWORK 45

where R is the DAQ multimeter reading. The last column indicates the
absolute error when the measurement reading is on the end of the scale.

The input range ± 0.2 V was chosen for the voltage supply measurements
and ± 5 V for the battery terminal voltage measurements (see Section 2.2).

For the voltage supply measurements, the 16-bit ADC produces a nominal
resolution of 6.4 µV assuming 5% over range, and for the terminal voltage
measurements we get the nominal resolution 160 µV assuming 5% over
range [9, pp. 4-3].

The sampling rate was chosen to be 1000 Hz. We use the differential
ground reference setting with floating signal sources [9, pp 4-24] when
performing both the load and terminal voltage measurements.

PSU Laboratory power supply unit DC-17/32SB-3-ALED was used to provide
4.1 V DC terminal voltage for the test system.

Fake Battery A fake battery setup that fits into the Nokia N900 battery case
allowing to feed current from an external power source. The fake battery
setup allows using a laboratory PSU or normal battery as the power source
but for the tests it was chosen to use only the PSU since it provides a stable
voltage source and allows ignoring the effects of battery draining.

The fake-battery allows connecting the Nokia N900 serial port TX pin
into a serial port but it turned out that the serial port causes considerable
power dissipation (around 200 mW constantly), so it was not used in the
tests. See Figure 7.3 for a picture of the fake battery setup.

The fake-battery is just a connector with no active or passive components.

Shunt-Resistor A shunt-resistor with a 0.1 Ω± 5% resistance was used. The
shunt is connected to the positive/high-side of the current supply (see
Section 2.2).

Power Toggle An IRLZ44N MOSFET transistor that is connected to the DAQ
Digital Output (DO) source and the high current side of the circuit as the
power toggle switch was used. This provides a programmable power switch
for the testing system.

Measurement Computer A laptop that interfaces with the DAQ through a
USB interface and has the receiving side of the fake battery serial port
interface. The computer has openSUSE 11.2 Linux operatins system with
2.6.3.1.14-0.1-desktop kernel and the NI-DAQmx Base 3.4.0 software in-
stalled.

The measurement computer instructs the DAQ to start and stop measure-
ments and logs the measurement samples into a text file.

Control Computer a Dell Optiplex 755 running Debian GNU/Linux 6.0. The
control computer is used to run the tests and perform the analysis of the
results. The use of a separate measurement and control computer is more
of a convenience: all the tests and analysis could as well be done in the
measurement computer.



CHAPTER 7. EPROF FRAMEWORK 46

Access Point Linksys WRT54GL v1.1 wireless router is used as the WiFi Ac-
cess Point for performing the WiFi tests. The AP is connected to a private
network with the Control Computer.

Given the DAQ specifications and the 0.1 Ω±5% shunt-resistor, 4.1 V terminal
voltage, and 1000 Hz sampling rate, the measurements can be done with the
following specifications:

maximum observable power 8.2 W
observable power resolution 0.260 mW
minimum observable signal length 1 ms

The power measurement system produces a time-indexed text file that is stored
on the measurement computer. The measurement system is implemented by
hand-written C code and uses an NI DAQmx Base 3.40 application programming
interface provided by the National Instruments.

7.2 Measuring Device State and Utilization

To formulate a model between the electric power dissipation and subsystem
utilization, both the power and the subsystem operating state (off, on, active,
power saving) and the subsystem utilization need to be observed. For this, it
was chosen to rely on the data provided by the Nokia N900 Linux kernel. A
logging tool called eprof-log was developed. The tools observes the following
system variables:

• system load through /proc/stat

• OMAP3430 subsystem operating modes

• WiFi packets and bytes transferred/received

• cellular packets and bytes transferred/received

• display brightness

• disk sectors read/written

• device operating mode: flight or normal

The logging tool allows a fine-grained configuration of the state variables and
utilization counters that are to be monitored. For example, the tool can be
configured to only log the WiFi utilization. To estimate the baseline overhead,
the tool supports none mode where only a time stamp is periodically written
into a file. In the estimate mode, all system variables relevant to this thesis are
logged into the file.

The device utilization logging system produces a time-indexed text file that is
stored on the Nokia N900 SSD disk. The sampling rate of the tool is set to
1 Hz. The logging tool is implemented in C, and it uses various Nokia Maemo
interfaces to gather the desired information.



CHAPTER 7. EPROF FRAMEWORK 47

7.3 Control Scripts

The experiment framework control scripts are responsible for configuring both
the DAQ and the Nokia N900 utilization measurement systems. The framework
is responsible for setting up the system so that a microbenchmark program
can be executed in the system. This microbenchmark creates workload for an
individual device or subsystem (e.g., CPU) while keeping all other devices idle.
This allows us to study the power behavior of a single device.

The framework allows direct controlling of various subsystems and peripherals
of the Nokia N900 device:

• toggle WiFi on/off

• turn vibrate on/off

• turn FM radio on/off

• toggle cell radio on/off

• switch 2G, 3G, or 2G/3G modes

• take a picture with the front and back cameras

• play videos with the N900 built-in media player

• suspend/wake up OMAP power domains

• turn the loudspeaker on/off and set its volume

• set the CPU frequency

• turn the display on/off and set its brightness

Certain experiments (especially network) require an external server that sends
or receives data. The test scripts allow setting up a server software run in the
measurement computer. Nokia N900 can connect to this server software through
WiFi or cellular connection, The WiFi connection is achieved by having the
measurement computer and N900 share the same WiFi access point, and the
Cellular connection is achieved by connecting the measurement computer to the
Internet and using a cellular data connection.

The major design goal of the test framework is to have support for automatic
non-interactive repeatable batch experiments. After each experiment, the data
is collected from the power measurement (Section 7.1) and utilization (Sec-
tion 7.2) systems for further analysis (Section 7.5). The control scripts are
partly written in C and partly in Python. They rely on the Nokia Maemo
interfaces to perform the activities.

7.4 Synchronization

The experiment framework (Section 7.3) provides both the power and the de-
vice utilization data. The power data is sampled with 1000 Hz and the device



CHAPTER 7. EPROF FRAMEWORK 48

utilization data with 1 Hz. To combine these different frequency signals, we
down-sample the power measurements by taking an average (see Section 2.2)
and combine the signals into a single multivariate time-series.

The test framework produces two sources of time-indexed data: the DAQ mea-
surements and the subsystem utilization data records. There is no global clock
available in the DAQ and N900 setup, and the DAQ system has a buffer and
some latency due to the USB interface connecting the DAQ to the measurement
computer. Thus, for the synchronization NTPD is used both in the N900 and
the measurement computer to make both Nokia N900 and the measurement
computer clocks synchronized. Since the granularity between the samples is 1
second, this coarse-grained synchronization is sufficient.

However, if there was a need for more precise synchronization, the serial port
interface couldbe used as a signal trigger. The framework supports this but
it is not usable since the debug serial port induces a 200 mW constant power
dissipation to the system while the idle consumption without the serial port
enabled is around 50 mW. See also the discussion in Section 3.1.

7.5 Statistical Analysis

Statistical analysis involves calibrating the linear model. After the linear model
has been calibrated, the analysis phase can be used to produce subsystemwise
predictions on how the power is consumed.

Before an experiment is run, there is usually a warm-up period that involves
setting up the system so that the device can be utilized. After the experiment
has been run, there is a cool-down period where the device moves back to an idle
state. When the linear regression analysis is performed, the warm-up and cool-
down periods are not interesting. Thus, these uninteresting transition periods
are filtered out before the actual regression analysis takes place, see Figure 7.4.

The linear regression and prediction are implemented with the R [51] statistical
analysis software.

7.6 Experiment Sequence Flow

Below is a figure describing the sequence flow of an experiment. First, both
the DAQ and N900 clocks are synchronized by the control computer sending a
command that makes them execute ntpdate respectively. Then the DAQ logging
is started after which the experiment is executed.



CHAPTER 7. EPROF FRAMEWORK 49

DAQ N900 NTP

sync

sync

ntpdate

ntpdate

exp(start)

daq log(stop)

daq log(start)

experiment finished [asynchronous]

Control

Computer

Executing the experiment involves the following steps:

• copy workload scripts and binaries into the N900 host

• start the utilization logging

• execute the actual experiment that utilizes a device

• after the experiment is terminated, send the logs back to the control com-
puter asynchronously

After the experiment has been completed, the control computer stops the DAQ
and collects the log from there.

The analysis phase is done offline, and even though it is part of the eprof

framework, it is not part of the automatic batch execution part so it is not
depicted here.



CHAPTER 7. EPROF FRAMEWORK 50

(a) The custom-built fake battery setup with a serial port pin
on the upper left corner.

(b) Nokia N900 backside where the debug pins are visible.
The TX pin for the serial port is on the right bottom pad’s
left upper corner. The bottom pad’s left lower corner is the
RX pin.

(c) Fake battery mounted into a Nokia N900.

Figure 7.3: Fake battery.



CHAPTER 7. EPROF FRAMEWORK 51

0 50 100 150 200 250

0.
0

0.
2

0.
4

Time(s)

P
ow

er
(W

)

0 50 100 150 200 250

0
20

60
10

0

Time(s)

us
er

_m
od

e

●

● ●
●

●●●●
●

●
●

●
●● ●

●●●●
●

●

●

●●●
●

●

●●●

●

●

●

● ●●
●

●●●●
●

●

●
●●●●

●

●

●●●●

●● ●●●
●

●
●

●●●

●

●

0 20 40 60 80 100

0.
0

0.
2

0.
4

user_mode

P
ow

er
 (

W
)

Figure 7.4: An experiment with varying the utilization (middle figure) levels
causes varying power dissipation (upper figure). The framework allows tuning
of the warm-up and cool-down periods so that only the relevant samples (striped
area) are considered when performing the fitting.



Chapter 8

Results

This chapter gives the results of the experiments used to train the linear model.
Both the calibration and the verification set results are given here. Discussion
and analysis of the results is delayed to the next chapter. The experiments were
repeated three times and the results are reported here. All of the experiments
yield piecewise linear models with coefficients, constant variables and the points
where the behavior of the function changes. One of the experiment results
was chosen as the model. The methodology and the experiment framework are
described in Chapters 5 and 7, respectively.

8.1 Calibration

In the calibration phase, the linear model regression coefficients are inferred one
variable at a time. See Section 5.1 for explanation of the methodology.

8.1.1 Idle

In the idle experiment, both the normal and flight mode (all radios off) was
measured. The experiment had 10-second settling periods before starting and
after finishing it. Each operating mode was kept active for 180 seconds, after
which there was a 20-second idle period before the next mode was switched
on. The experiment was repeated three times. The results are presented in
Table 8.1.

Table 8.1: Results for the idle experiment. The units are milliwatts.

#1 #2 #3
flight 18.8 18.7 19.2
normal 39.28 39.7 39.1

From the three repetitions, it is clear that the accuracy of the measurements
is clearly in the range of one milliwatt. Thus, it was assumed that the idle

52



CHAPTER 8. RESULTS 53

consumption is Pidle = 40 mW. The idle consumption is subtracted from further
measurements in order to avoid it to be counted more than once.

8.1.2 Log Overhead

In the logging overhead experiment, the overhead of the logging tool flags none
and estimate (see Section 7.2) was measured.

The experiment had 10-second settling periods before starting and after finishing
it. Each logging mode was kept active for 180 seconds, after which there was a
20-second idle period before the next logging mode was started. The experiment
was repeated three times. The obtained results are presented in Table 8.2.

Table 8.2: Results for the logging overhead experiment. The idle consumption
Pidle = 40 mW is subtracted from the results. The units are milliwatts.

#1 #2 #3
none 5.9 4.5 6.3
estimate 20.4 19.9 20.4

For further benchmarks where the logging tool is used, it was assumed that the
logging overhead is Plog = 20 mW. Thus, the combined overhead of idle and
logging is around Pbaseline = Pidle + Plog = 60 mW, which is subtracted from
the following experiments.

8.1.3 CPU

In the CPU experiment, the kernel CPU frequency governor was switched off
and the CPU frequency was manually locked to each valid value 250 MHz, 500
MHz, 550 MHz, and 600 MHz. The CPU microbenchmark consists of a program
that has a duty cycle corresponding to the desired load level. For each second,
the program executed n instructions based on the clock frequency and slept the
rest of the second so that the load was in the required level. The load was varied
between 0 and 100 in 20 percentage point increments.

The system was kept idle for 5 seconds before and after each experiment. Be-
tween each load level the system was kept idle for 15 seconds. The system was
kept active for 30 seconds on each load level. The frequency was kept constant
while the load was varied. The experiment was repeated three times. When
performing the linear regression, 10 seconds from both ends of the active period
was cut out (see Section 7.5). The results are in Table 8.3 and Figure 8.1.

Table 8.3: The CPU experiment results. The system CPU load is CPUload. The
units are milliwatts.

Frequency #1 #2 #3
250 4.2CPUload 4.2CPUload 4.1CPUload

500 7.4CPUload 7.3CPUload 7.3CPUload

550 8.4CPUload 8.4CPUload 8.3CPUload

600 9.9CPUload 9.8CPUload 9.7CPUload



CHAPTER 8. RESULTS 54

●

● ●

●

●
●●●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●●●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●●

●

●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CPU load

P
ow

er
(W

)

●

●●
●●

●
●

●●●●

●

●

●
●

●
●
●

●

●
●

●

●

●

●●●

●
●

●

●

●

●●

●

●●●●

●

●

●

●
●●●

●

●
● ●

●

●

●

●●●●

●
●
●●●
●

●

●

●

●

●

●●

●

●

●
●
●

●●

●

●
●
●

●

●

●
●

●

●

●

●●●●

●

●●

●

●

●

●●
●

●●
●

●
●
●
●

●
●

●●
●

●
●

●

●●
●

●

●

●

●●●
●

●

●●●

●

●

●

●●

●
●●

●

●
●●●

●

●

●●

●●

●

●●●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●●●●

●

●●

●●●

●

●
●●●

●
●

●

●●●
●
●

●
●

●
●

●

●

●

●

250 Mhz
500 Mhz
550 Mhz
600 Mhz

Figure 8.1: The CPU experiment #1 fitting results.



CHAPTER 8. RESULTS 55

8.1.4 GPU

In the GPU experiment, the PowerVR Insider SDK [4] examples were run and
the power consumption was measured. After which the baseline and CPU power
dissipation were subtracted, and the average power dissipation was calculated.
The method was to observe the overall power consumption and subtract the
CPU power dissipation, and also observe the tail states and manually measure
their duration. See Figure 8.2.

AlphaBlend
AlphaTest

AnisotropicLighting
BasicTnL

BinaryShader
Bloom

Bumpmap
CellShading

ComplexLighting
Coverflow

DisplacementMap
EdgeDetection

FastTnL
FilmTV

Fog
FresnelReflections

IntroducingPFX
IntroducingPOD

IntroducingPVRShell
IntroducingPVRTools

Iridescence
LevelOfDetail

LightMap
Navigation

ParallaxBumpMap
PerturbedUvs

Reflections
Refraction

RenderToTexture
Shaders

ShadowVolume
Skinning
Skybox2

StencilBuffer
Texturing

Water

0.0 0.2 0.4 0.6 0.8
Power(W)

CPU

GPU

Figure 8.2: The GPU experiment results. The examples are from the PowerVR
Insider SDK. The total power dissipation is the sum of both the red and blue
bars. The red bar is the CPU power dissipation deduced from the total power
dissipation. The remaining blue bar indicates the GPU power dissipation. The
yellow line is the average over all experiments. The observed average power
dissipation is 448± 50 mW.

The tail states were deduced by observing the power measurement plot of all
the experiments. Figure 8.3 presents one sample but the rest had similar tail
state behavior. The tail states are presented in Table 8.4.



CHAPTER 8. RESULTS 56

Time

ts
.a

vg

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

avg

Figure 8.3: Running the Alpha Blend example from PowerVR SDK. The tail
states are clearly visible in the Figure.

Table 8.4: The GPU experiment results. GPU ON indicates the GPU being
active as reported by the OMAP driver in the Maemo Linux kernel. The tail
states are not reported as active states by the kernel.

state power (mW) duration
GPU ON 448 -
tail-1 448 3 s
tail-2 266 2 s
tail-3 81.1 5 s



CHAPTER 8. RESULTS 57

8.1.5 Display

In the display experiment, the backlight brightness was varied between 0 and
255 in 25-step increments. The screen displayed Maemo default background.
The state of the display (on or off) was also recorded. The dim timeout of the
screen was set to 40 seconds.

The system was kept idle for 5 seconds before and after the experiment. Between
each brightness level the system was kept idle for 10 seconds. The backlight
was turned on for 40 seconds on each level. The experiment was repeated three
times. When performing the linear regression, 10 seconds was cut from both
ends (see Section 7.5). The results are in Table 8.5 and Figure 8.4.

●

●

●

●
●
●
●
●
●●
●●

●

●

●

●●

●
●
●
●

●●●●●
●●

●
●
●

●

●

●
●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●●

●
●
●

●

●
●
●
●

●

●
●●●

●

●
●
●

●

●

●
●●
●

●

●
●
●
●

●

●

●●
●

●

●
●

●

●

●

●
●●
●
●●
●●

●

●●

●

●
●
●
●

●

●
●

●
●
●
●●

●
●
●
●
●

●

●●●

●
●

●

●
●
●

●

●●●●

●

●●
●
●
●
●●

●
●
●

●

●●●

●

●●●
●
●

●

●
●
●
●

●

●
●●●

●
●●●●

●

●
●●
●

●

●
●
●

●
●
●●●
●
●
●

●
●
●

●

●
●●●
●
●
●●●
●●
●●
●

●

●
●

●
●
●●●
●●

●

●
●
●
●

●●●

●
●

●

●

●

●

0 50 100 150 200

0.
4

0.
5

0.
6

0.
7

0.
8

Brightness

P
ow

er
 (

W
)

Figure 8.4: The results of the display #1 experiment.

Table 8.5: The display experiment results. The Pbaseline and CPU power dissi-
pation has been subtracted. BLbr is in range 0–255 and BLon has the value 0 if
the display is off and 1 if on. The experiment was repeated three times.

N mW
#1 1.9BLbr + 330BLon

#2 1.9BLbr + 330BLon

#3 1.9BLbr + 330BLon



CHAPTER 8. RESULTS 58

8.1.6 WiFi

The WiFi experiment began by first measuring the maximum transfer capacity
between Nokia N900 and a WiFi access point. It was discovered that the max-
imum upload and download rate was ca. 600 KB/s. The WiFi was set to 2.437
GHz frequency and the bit rate was 54 MBit/s.

The setup consists of three experiments: send, receive, and reply. In the send
experiment, a 1024 byte UDP packet was sent from the device into a local
server. In the receive experiment, a 1024 byte packet was sent from the local
server into the phone. In the reply experiment, a 1024 byte was sent to a local
server and immediately echoed back by the server. The observed state variable
was npackets, the number of packets transferred (sent and received) through the
N900 WiFi interface.

The microbenchmark varied the number of packets sent (received) between 1–
10 in 1 pkt/s increments, between 20-100 in 20 pkt/s increments, and between
100–700 in 100 pkt/s increments. The active period lasted 15 seconds, and the
system was kept idle for 10 seconds between the increments. Before doing the
regression fitting, 5 seconds from both ends of the active period was removed
because the experiments had 5 second warm-up and cool-down periods.

The power measurement results here have the baseline and CPU power dissipa-
tion subtracted. The experiment was repeated three times, and for each itera-
tion, the linear model was inferred with segmented regression (see Section 4.4).
Results for the regression are in Tables 8.6 and 8.7. Figures 8.5 and 8.6 show
the measurements and the regression fitting for send and receive experiments;
the reply experiment yielded similar results. There is a lot of variance in the
experiment but when the device only receives packets, the power dissipation is
considerably low.

For the maximum power intake, it was noted that the WiFi device saturated
when receiving ca. 800 pkt/s or receiving and sending 1200 pkt/s which yield
ca. 1 W power dissipation. When receiving more than 400 pkt/s, the device
power dissipation remained constant around 200 mW.

Table 8.6: The inferred models for send and reply experiments. The variable
Twlan indicates the number of packets transferred. The experiment was repeated
three times.

send
#1 #2 #3

1 ≤ Twlan < 4 171Twlan + 19.6 194Twlan − 32.5 189Twlan − 30.3
4 ≤ Twlan ≤ 800 0.4Twlan + 773 0.3Twlan + 762 0.4Twlan + 761
Twlan ≥ 800 1, 000 mW 1, 000 mW 1, 000 mW

reply
#1 #2 #3

1 ≤ Twlan < 8 87Twlan − 13 83Twlan + 19 86Twlan + 11
9 ≤ Twlan ≤ 1200 0.2Twlan + 763 0.2Twlan + 763 0.2Twlan + 766
Twlan ≥ 1200 1, 000 mW 1, 000 mW 1, 000 mW



CHAPTER 8. RESULTS 59

●● ●●●●●

●

●●●
●

●●

●

●●
●●

●

●

●
●●●

●

●●●● ●
●

●●●
●

●●
● ●●●● ●● ●●
●●●● ●

●
●●

●

● ●●●●
●

●

● ●● ●
●

●● ●●
● ●● ●● ●

●
● ●●

●● ●● ●●

●

●●●● ● ●●●

●

● ●
●●

●

● ●●●●
● ●●● ●●●

● ● ●●● ● ●●●

●● ●

●● ●
●●●● ●●●●

●

●
●

●● ●

●

●●● ● ●
● ●

● ● ●●● ●● ●●
●

●

●
●

● ●● ●
● ●●●●●●

●●●

●

● ●●●
●

●
● ●● ●●

● ●●●
●

●

●● ●
●

●
● ●
●

●●
●● ● ●●

●●●●●●●
●
●

●

●●●
●● ●●

● ●● ●● ●● ●● ●
●

● ●●● ● ●●●● ●
●●●●●●

●

●●●● ● ●●● ●●● ●●●● ●●● ●●●

●

●●●●●

●

●● ●

●
●

●
●●●●●●●●● ●●
● ●

●

●
● ●

●●●●●

●

●●●●●

●

●●● ●●
●●●●

● ●

●

●

●

●●●●●●
●

●
●

● ●●

●

●●

●

●●● ●
●

●

●
●
●●●●●● ●●
●●

●

●

●●
●●

●●
●
●●●
●●●●●●●●●

●●

●

●●●

2 4 6 8 10

0.
0

0.
4

0.
8

npackets

P
ow

er
 (

W
)

●● ●

● ●
●

●

●

●

●● ●

●●●●●

●

●

●

●

●

●●●●
●

●●

●

●●
●●

●

●

●
●●●

●

●●●● ●
●

●●●
●

●●
● ●●●●●● ●●
●●●●●

●
●●

●

● ●●●●
●

●

●●●●
●

●● ●●
●●●●●●

●
●●●

●●●●●●

●

●●●●●●●●

●

● ●
●●

●

● ●●●●
●●●● ●●●

●●●●●●●●●

●● ●

●● ●
●●●● ●●●●

●

●
●

●●●

●

●●●●●
● ●

●●●●●●●●●
●

●

●
●

● ●●●
● ●●●●●●

●●●

●

●●●●
●

●

●

● ●●●●
● ●●●

●

●

●●●
●

●
●●
●

●●
●●● ●●

●●●●●●●
●
●

●

●●●
●

●

● ●●
●●● ●●●● ●●●

●
● ●●●● ●●●● ●●

●●●●●●

●

●●● ●

●

●● ●●●●
●●●● ●

●●● ●●●●
●●●● ●●

●

●●●●●

●

●●● ●
●

●

● ●
●

●●● ●●●● ●●●● ●●●
● ●●

●

●
●●●

●●●●●

●
●

●● ●
●

●

●
●

●●● ●●●● ●●●● ●

●

●● ●●●● ●●●
●●●●●

●

●●● ●

●

●●
●

●

●

●
●

●
●

●
● ●●●● ●●●
●

●
●

●●
●

●●●
●

●● ●

●
●

●●●
● ●

●

●

●
●●

●

●
●

●

●
●

●

●
●

●

● ●
●

●

● ●

●

●
●

●
●

●●

●

●●●●
●

●
●

● ●●

●
●

●●

●●

●●
●

● ●
●

●

●
●

●

● ●

●

●●

●

● ●●

●

●●●● ●
●

●

●

●

●●

●
●

●
●

●

●
●

●

●
●●● ●

●
●

●

●

●

●
●

●●●● ●●
●●

●

●

●●
●●

●

●

●
●

●

●
●● ●

●

●

●
●●

●●
●
●●●
●

●

●

●

●

● ●

●

●●●●●●●
●●

●

●

●●

●
●●

●

●●●●

20 40 60 80 100

0.
0

0.
4

0.
8

npackets

P
ow

er
 (

W
)

●

●
● ●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●●●
●●● ●●

●●●

●

●

●●
●

●
●●

●

●

●

● ●● ●
●

●

●

●

●●

●
●

●

●

●
● ●
●

●

●

●
●

●
●

●

●● ●
● ●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●●

●●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

100 200 300 400 500

0.
0

0.
4

0.
8

npackets

P
ow

er
 (

W
)

Figure 8.5: The WiFi receive experiment. The variance is considerably high.

Table 8.7: The inferred model for the receive experiment. The variable Twlan

indicates the number of packets transferred.

#1
1 ≤ Twlan < 55 3.3Twlan + 13
55 ≤ Twlan < 400 0.3Twlan + 154
Twlan ≥ 400 200

#2
1 ≤ Twlan < 85 2.3Twlan + 20
85 ≤ Twlan < 400 0.1Twlan + 190
Twlan ≥ 400 200

#3
1 ≤ Twlan < 23 5.5Twlan + 2.1
23 ≤ Twlan < 400 0.54Twlan + 116
Twlan ≥ 400 200



CHAPTER 8. RESULTS 60

●● ●

●

●● ●● ●

●

●● ●● ●

●

● ●
●
●

●
●
●●●

●●●●● ●●

●

●●

●● ●●

●

●

●●

●●●
●

●

●

●
●

●

●

●
●

●

●●

●

2 4 6 8 10

0.
2

0.
6

1.
0

npackets

P
ow

er
 (

W
)

●● ●

●

●●●● ●

●

●●●● ●

●

●●
●
●

●
●
●●●

●●

●

●●●●● ●
●

●● ●●●

●

●● ●●

●

●●●

●●

●●
●

●●

●

●

●

●

●●

●

●●●

●

●●

●●●
●

●

●

●
●

●

●

●
●

●

●●

●

20 40 60 80 100

0.
2

0.
6

1.
0

npackets

P
ow

er
 (

W
)

●●
●

●●●
●●

●

●●●

●
●

●

●●●
●

●

●

●
●●

●
●

● ●●
● ● ●

●

●● ●●●

●

● ●●●
● ●

●

●● ● ●

100 200 300 400 500

0.
2

0.
6

1.
0

npackets

P
ow

er
 (

W
)

Figure 8.6: The WiFi send experiment. The upper figure shows the power
dissipation from 0 to 10 pkt/s. The middle figure displays the power dissipation
when the transfer rate is from 10 to 100 pkt/s. The bottom figure displays the
power dissipation from 100 pkt/s to 450 pkt/s.



CHAPTER 8. RESULTS 61

8.1.7 Cellular 3G

In the cellular 3G experiment, it was needed to deduce the radio resource con-
trol (RRC) parameters: promotion strategy, demotion strategy, state transition
timeouts, upload and download queue sizes, and the power dissipation in the
relevant operating states. See Section 2.4.2 for an explanation of the 3G operat-
ing states and radio resource control. For inferring the parameters, the method
described in [50] was followed. In this description, denote the Nokia N900 as
the User Equipment (UE).

Promotion strategy To infer the promotion strategy, use substantial delay
in round-trip times of a packet if a state transition occurs. In addition,
assume that when the system has been idle for 30 seconds, it drops to the
IDLE state. The key idea is first to send a small packet and immediately
after that a large packet and measure their round-trip times. The large
packet forces the system to move into the DCH state, while the small
packet may transfer it either to the FACH or DCH state. If the promotion
strategy is two-step, then there is a difference between the round-trip times
of the first and second packet, otherwise not. The length of the packet
has a negligible effect on the overall round-trip time and can be ignored
in this experiment.

A 48-byte packet was sent to a server that echoed it back, and the round-
trip time was recorded (RTT1). Immediately after this, a 1024-byte packet
was sent to a server which echoed it back. Its round-trip time was recorded
(RTT2). The experiment was repeated three times, and between each
iteration, the system was kept idle for 30 seconds in order to force the 3G
to IDLE state.

#1 #2 #3
RTT1 280 ms 684 ms 684 ms
RTT2 917 ms 1963 ms 900 ms

Since the RTT2 is substantially higher than the RTT1, the promotion
occurs by first switching the system to FACH state and after that to DCH
state when there is enough traffic.

Demotion strategy The demotion was inferred by first sending a 1024-byte
packet to a server which echoed a 48-byte packet back. This forces the UE
to enter the DCH state. After this, the system was kept idle for n seconds,
where n varied between 1 and 30 seconds in 1-second increments. Then,
a 48-byte packet was sent, which the server echoed back. Depending on
the demotion strategy, the UE moves either into the DCH or FACH state.
The round-trip time of the latter packet was recorded and plotted as a
function of the idle time in Figure 8.7.

Next, a 1024-byte packet was sent to a server, which echoed a 48-byte
packet back. The UE is now in the DCH state. Once again, the system
was kept idle for n seconds, where n varied between 1 and 30 seconds in
1 second increments. Then, a 1024-byte packet was sent to the server,
which echoed a 48-byte packet back. Now, the UE is in the DCH state.



CHAPTER 8. RESULTS 62

The round-trip times of the latter packet were recorded and the results
are depicted in Figure 8.8 as the function of the idle time.

To infer the demotions strategy, one must consider whether the strategy
is DCH → IDLE or DCH → FACH → IDLE. If the demotion strategy is
DCH→ IDLE, one should see only one level change in Figures 8.7 and 8.8.
If the demotion goes first to FACH and after that to IDLE, there should
be two levels present in the figures.

From the Figure 8.9, it is clearly visible that the demotion strategy is
DCH→ FACH → IDLE. In addition, the difference between round-trip
times between 5 s and 13 s allows deducing the FACH→ DCH promotion
delay.

Timeouts The transition timeout for demotion DCH → FACH and FACH →
IDLE can be seen from both Figures 8.7 and 8.8. Clearly, in the period
1–4 s, UE is in the DCH state, it drops to FACH state when the delays
are in 5–14 s and to IDLE when the delay is 15 seconds or more. Thus,
the timeout for DCH → FACH is 5 seconds, and FACH → IDLE is 10
seconds.

Uplink and downlink queue sizes To infer the queue sizes, a binary search
was used with the FACH → DCH promotion delay as the indicator. The
uplink queue size was 480 bytes and the downlink queue size was 400
bytes.

Power consumption To DCH and FACH state power dissipation was ob-
served from the DAQ measurements. The DCH power dissipation was
found to be 880 mW and FACH to be 380 mW.

A summary of the RRC parameters for Elisa’s network (a Finnish mobile car-
rier):

Network Elisa
promotion strategy IDLE → CELL FACH → CELL DCH
demotion strategy CELL DCH → CELL FACH → IDLE
α: CELL DCH → CELL FACH 5 s
β: CELL FACH → IDLE 10 s
UL queue 480 B
DL queue 400 B
CELL FACH 380 mW
CELL DCH 880 mW



CHAPTER 8. RESULTS 63

ex1
ex2
ex3

max/min

delay (s)

R
T

T
 (

s)

0.
0

0.
2

0.
4

0.
6

0.
8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 8.7: The 3G demotion strategy inferring. The x-axis indicates the num-
ber of seconds slept between sending a 48-byte and a 1024-byte packet. The
y-axis measures the round-trip time of the 1024-byte packet.



CHAPTER 8. RESULTS 64

ex1
ex2
ex3

max/max

delay (s)

R
T

T
 (

s)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 8.8: The 3G demotion strategy inferring. The x-axis indicates the num-
ber of seconds slept between sending the first 1024-byte and the second 1024-
byte packet. The y-axis measures the round-trip time of the latter 1024-byte
packet.

Time (s)

P
ow

er
 (

W
)

30 32 34 36 38 40 42 44 46 48 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

raw
avg

Figure 8.9: The measured power dissipation during the promotion strategy
experiment. From the figure, the promotion strategy IDLE→FACH→DCH is
clearly visible at 32–33 s. The system is in the high-power DCH state between 33
and 37 seconds, and drops to FACH state where it stays for 10 seconds between
38 s and 48 s.



CHAPTER 8. RESULTS 65

8.1.8 Solid State Disk

In the solid state disk experiment, the focus was only on the eMMC solid state
disk that is used for N900 applications (see Section 6.9). The number of sectors
read and written as reported by the kernel was measured. The experiment
consists of two parts: read and write.

In the read experiment, a 35 MB file was sequentially read varying the frequency
of the read system calls. All reads were done in 4096-byte blocks, and the caches
are dropped between each read operation. The microbenchmark issued 1, 10,
20, 30, 40, 50, 100, 500, 800, 1000, and 2000 read operations per second.

The write benchmark consists of writing null data into an initally empty file in
4096-byte blocks. The write operations were varied in in 10, 100, 200, 500, 800,
1000, 3000, 4000, and 5000 operations per second.

The limits for the maximum number of read and write operations were chosen
by examining the maximum number of operations achievable when the caches
were flushed between each read operation and the data was synced between each
write operation. This was done so that it was possible to observe the actual
number of maximum disk operations that could be performed without kernel
cache interference.

The system was kept idle for 5 seconds before and after each experiment. The
system was active for 15 seconds when the disk operations were performed. Be-
tween each level, there was a 10-second cool-down period. The linear regression
inference results are in Table 8.8 for the read experiment and in Table 8.9 for
the write experiment. The standard regression was used for the read experiment
and the segmented regression for the write.

In the read experiment model, assume that the negative coefficient is a measure-
ment error and the proper model is a constant, thus yielding the read consump-
tion to 111 mW. For the write experiment, the maximum power dissipation was
around 600 mW which was reached when there was more than 2100 sectors
written per second.

Table 8.8: The results for the read experiment. The variable RSSD is the number
of sectors read per second.

#1 #2 #3
−0.004RSSD + 110 −0.003RSSD + 110 0.001RSSD + 113



CHAPTER 8. RESULTS 66

Table 8.9: The results for the write experiment. The variable WSSD is the
number of sectors written per second.

#1
1 ≤WSSD < 2069 0.2WSSD + 144
2069 ≤WSSD < 2100 −0.06WSSD + 593
WSSD > 2100 600

#2
1 ≤WSSD < 2069 0.2WSSD + 120
2069 ≤WSSD < 2100 0.004WSSD + 430
WSSD > 2100 600

#3
1 ≤WSSD < 2069 0.2WSSD + 150
2069 ≤WSSD < 2100 0.01WSSD + 430
WSSD > 2100 600



CHAPTER 8. RESULTS 67

8.2 The Model

To construct the model based on experiments presented in Section 8.1, take
the average of three measurements performed for each individual subsystem or
device and use it in the next section to validate the model and measure its ac-
curacy. The GPU experiment was not repeated, thus use the average over all
SDK entries (see Section 8.1.4) as the model. For most of the subsystems, all
repeated experiments gave similar results but there was a rather large discrep-
ancy when performing the receive experiment in the WiFi (Section 8.1.6) and
the write experiment in the SSD (Section 8.1.8). The exact reasons for these
large discrepancies remain unclear but may be caused some other subsystems
remaining active during the measurements. There, we choose one of the inferred
models arbitrarily for WiFi and SSD.

For the WiFi model, it was chosen to use the model inferred in the reply exper-
iment (Table 8.6) if there were packets being transmitted and received. For the
SSD, if there were only reads, use the model inferred in the read experiment
(Table 8.8), otherwise use the model for write (Table 8.9). For other systems,
there is no need to consider the access type of the subsystem when defining the
power model.

The model is given in Table 8.10. The table describes the power dissipation for
each subsystem that is modeled in this work and gives the maximum power the
subsystem can draw. Naturally, not all of the subsystems can be active at the
same time due to the current limitation features of the phone.

From the figure it is obvious that the most power-hungry subsystems are the
cellular modems, display, and the CPU when operating in the high performance
states. On the other hand, the lower performance states reduce their power
dissipation significantly.

Further discussion and analysis of the model is delayed to the next chapter.



CHAPTER 8. RESULTS 68

D
ev

ic
e

S
ta

te
P

re
d

ic
te

d
P

ow
er

C
o
n

su
m

p
ti

o
n

P
a
ra

m
et

er
R

a
n

g
e

M
a
x

P
ow

er

ID
L

E
n

or
m

al
3
9
.3

m
W

3
9
.3

m
W

fl
ig

h
t

1
8
.9

m
W

1
8
.9

m
W

L
O

G
n

on
e

5
.6

m
W

5
.6

m
W

es
ti

m
at

e
2
0
.2

m
W

2
0
.2

m
W

C
P

U

f
=

25
0

M
H

z
4
.1

C
P

U
lo

a
d

m
W

C
P

U
lo

a
d
∈

[0
,1

0
0
]

4
1
0

m
W

f
=

50
0

M
H

z
7
.3
·C

P
U

lo
a
d

m
W

7
3
0

m
W

f
=

55
0

M
H

z
8
.4
·C

P
U

lo
a
d

m
W

8
4
0

m
W

f
=

60
0

M
H

z
9
.8
·C

P
U

lo
a
d

m
W

9
8
0

m
W

G
P

U

G
P

U
O

N
4
4
8

m
W

4
4
8

m
W

ta
il

-1
(3

s)
4
4
8

m
W

4
4
8

m
W

ta
il

-2
(2

s)
2
6
6

m
W

2
6
6

m
W

ta
il

-3
(5

s)
8
1

m
W

8
1

m
W

D
IS

P
L

A
Y

1
.8

9
B

L
b
r

+
3
6
3

B
L

o
n

m
W

B
L

b
r
∈

[0
,2

5
5
]

8
4
5

m
W

B
L

o
n
∈

[0
,1

]

W
IF

I

1
≤

T
w

la
n
<

9
8
5
·T

w
la

n
+

6
m

W
T

w
la

n
>

0
1
0
0
0

m
W

9
≤

T
w

la
n
<

12
00

0.
2
·T

w
la

n
+

7
6
4

m
W

n
≥

12
00

1
0
0
0

m
W

1
≥

T
w

la
n
<

85
2.

3
T

w
la

n
+

2
0

m
W

T
w

la
n

=
0

2
0
0

m
W

85
≤

T
w

la
n
<

40
0

0.
1
T

w
la

n
+

1
9
0

m
W

T
w

la
n
≥

40
0

2
0
0

m
W

C
E

L
L

U
L

A
R

3G
F
A

C
H

3
8
0

m
W

3
8
0

m
W

D
C

H
8
8
0

m
W

8
8
0

m
W

S
S

D

1
≤

R
S
S
D
<

20
00

1
1
0

m
W

R
S
S
D
>

0
,

W
S
S
D

=
0

1
1
0

m
W

1
≤

W
S
S
D
<

20
69

0.
2
·W

S
S
D

+
1
4
4

m
W

W
S
S
D
>

0
6
0
0

m
W

20
69
≤

W
S
S
D
<

2
1
0
0

0.
4
3
·W

S
S
D

+
1
6
4

m
W

W
S
S
D
≥

21
00

6
0
0

m
W

T
ab

le
8.

10
:

T
h

e
su

m
m

a
ry

o
f

th
e

N
o
k
ia

N
9
0
0

p
ow

er
m

o
d

el
.



CHAPTER 8. RESULTS 69

8.3 Verification with Microbenchmarks

In the verification phase, the model’s accuracy is verified by using the calibrated
model to predict the total power dissipation over the time axis and correlate
this with the measured power dissipation provided by the measurement setup.

8.3.1 CPU

In the CPU experiment, three microbenchmarks were run that fully utilized
the CPU: integer, float, and memory. In the integer experiment, a C program
was run that performed a few arithmetic operations in a busy loop. The float
program was analogous to the floating point operations. The memory operation
copied 1 MB of memory in a busy loop from a memory buffer into another. All
experiments were run for 60 seconds with 5 second warm-up and cool-down
periods before and after.

The cross-correlation results are presented below. The experiment was repeated
three times.

#1 #2 #3
integer 0.98 0.95 0.95
float 0.97 0.99 0.99

memory 0.98 0.98 0.96

8.3.2 Network

In the network experiment, a 1 MB file was downloaded from a web server with
the wget command. The file was written to /dev/null. The experiment was run
on both WiFi and 3G radios. The results for the cross-correlation are shown
below. The experiment was repeated three times.

#1 #2 #3
WiFi 0.86 0.94 0.93
3G 0.88 0.94 0.90

8.3.3 SSD

In the SSD experiment, a 1 MB file was downloaded from a web server with the
wget command. The file was downloaded with a WiFi radio and was written to
the eMMC SSD disk. The results for the cross-correlation are presented below.
The experiment was repeated three times.

#1 #2 #3
SSD 0.88 0.95 0.88

8.4 Verification with Applications

This section demonstrates the subsystem breakdowns.



CHAPTER 8. RESULTS 70

8.4.1 Browser and Radios

In this experiment, the Wikipedia article http://en.wikipedia.org/wiki/

Caesar_cipher was downloaded with the Nokia N900 native browser by using
3G and WiFi radios. The measured power dissipation can be seen in Figures 8.10
and 8.11. The variables used for the subsystem power dissipation breakdown
are described in Section 7.2. The correlation of the measured power dissipation
and the consumption estimated by the model is presented in Table 8.11.

Table 8.11: The cross-correlation of the measured and estimated power dissipa-
tion of the browser and radios experiment.

mode #1 #2 #3
3G 0.73 0.72 0.73
WiFi 0.72 0.73 0.72

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80
time

va
lu

e

power

idle

log

cpu

gpu

backlight

wlan

cell3g

cell2g

disk

Figure 8.10: The cellular 3G subsystemwise power breakdown of the browser
and radios experiment. The black line indicates the measured power dissipation.

http://en.wikipedia.org/wiki/Caesar_cipher
http://en.wikipedia.org/wiki/Caesar_cipher


CHAPTER 8. RESULTS 71

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80
time

va
lu

e

power

idle

log

cpu

gpu

backlight

wlan

cell3g

cell2g

disk

Figure 8.11: The subsystemwise power breakdown of the browser and radios ex-
periment using WiFi. The black line indicates the measured power dissipation.



CHAPTER 8. RESULTS 72

8.4.2 Angry Birds

In the Angry Birds experiment, the game was played for 60 seconds and the
system variables were observed and fed to the linear model. The correlation
between the measured and the model’s predicted power dissipation was found
to be 0.75. The results can be seen in Figures 8.12 and 8.13.

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60
Time (s)

P
ow

er
 (

W
)

device

idle

log

cpu

gpu

bl

wlan

cell3g

cell2g

disk

Figure 8.12: The overall power dissipation of playing 60 seconds of the Angry
Birds game. Stacked plot indicates the per-device estimated power dissipation
and the black line the measured power consumption.



CHAPTER 8. RESULTS 73

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

idle
log

cpu
gpu

bl

0 20 40 60
Time (s)

P
ow

er
 (

W
)

Figure 8.13: The per-subsystem predicted plots for playing the Angry Birds
game.



CHAPTER 8. RESULTS 74

8.4.3 Summary

Below is the summary of the verification experiments, which devices they utilize,
and what is the correlation between the measured and the predicted total power
dissipation:

Experiment Devices Correlation

Browser and radios
CPU, 3G 0.73
CPU, WiFi 0.72

Angry Birds CPU, GPU, DISPLAY 0.75



Chapter 9

Discussion and Conclusion

This chapter summarizes the work and offers a critical review of it. It gives
detailed discussion on power modeling in general and the subsystem modeling
in particular. First, the measuring and modeling aspects are discussed, then
each modeled subsystem is reviewed and discussed.

9.1 Measuring

Measuring involves both observing the power dissipated by the device and the
utilization of the subsystems. The overall goal is to explain the connection
between the operating state of the subsystems and their power dissipation.

All measurement systems have a limited accuracy. The DAQ electric power
measurement system’s accuracy is around 0.2 µW (Section 7.1) which is more
than suitable for this work, since even the pure idle consumption with no logging
is around 35 mW (Section 8.1.1).

The sampling rate is another important aspect when performing the measure-
ments. The sampling frequency was chosen to be 1000 Hz and the subsystem
utilization logging to be 1 Hz. These values allow observing power changes that
last longer than 2 ms and subsystem state changes that last more than 2 sec-
onds. It can be argued that having a higher sampling frequency would allow us
observing phenomena whose duration is considerably shorter: at least in radios
and CPUs, state changes occurring in the microsecond range are common. But
having a higher sampling rate causes overhead, especially for the subsystem
logging. At a 1 Hz rate, it has a 24 mW overhead: a 60% increase to the idle
consumption (see Section 8.1.2). Having a higher sampling rate would increase
the logging overhead even more. On the other hand, a lower sampling rate
would decrease the overhead but might hide some interesting events.

The overall goal of this work is to provide overall energy consumption esti-
mates. Overall energy consumption does not care much abourt short duration
power dissipation pulses, thus the 1 Hz subsystem logging sampling rate seems
reasonable since it misses only events that are short duration. The power mea-
surement sampling rate of 1000 Hz, however, is somewhat arbitrary and we

75



CHAPTER 9. DISCUSSION AND CONCLUSION 76

could use higher frequencies. For example, in [61] the authors use 5000 Hz
sampling but give no reasoning behind it.

Another alternative to the sampling-based subsystem logging is to drop it al-
together. Pathak [47] considers a system call tracing based approach, where
all power state changing system calls are traced, and whenever a system call
that has an effect on the power dissipation is used, the event is logged. This
eliminates the need for constant polling and virtually all overhead caused by it.

Synchronization (Section 7.4) is required so that the power measurements and
subsystem utilization logs can be merged together. In this work, it was chosen
to use ntpdate on both the power measurement computer and the Nokia N900
device. This does not achieve a high synchronization accuracy but since we are
operating with rather low sampling rates, namely 1 Hz, this is sufficient.

The DAQ system supports signal-triggered measurements which could be an
alternative form of synchronization, if it were possible to connect a general
purpose I/O pin to the DAQ and use some software as a trigger for the DAQ
to start and stop measuring. This, however, was not done due to the lack
of documentation for the Nokia N900 debug pads (see the middle picture in
Figure 7.3).

The second alternative would be to use direct power measurements. That is, if
the hardware supported probe points between subsystems (e.g. a WiFi chip), we
could insert the power measurement setup there and directly observe the dissi-
pated power. This was the approach taken by Carroll in [19] (see Section 3.2).
Unfortunately, there is no information available on whether the Nokia N900
device has these kind of probe points between the subsystems.

The third alternative would be to utilize some device in a way that it generates
a synchronization pulse in the power measurement signal and use this synchro-
nization point. This is the approach taken by Rice [53]. This would drop the
requirement for doing NTP synchronization before the experiment starts. But
given the rather low frequency subsystem logging sampling rate of 1 Hz, this
was deemed unnecessary.

In general, understanding the power dissipated by a subsystem involves more
than just measuring the current drawn by the subsystem and correlating it with
the load of the subsystem: a subsystem usually consists of several components
that have different power usage characteristics that depend on the operating
state and the load of the system. While direct measurements would allow ob-
serving the current drawn by the subsystem, it would not explain the operating
state and the load-level of the system. Thus, the load and performance state
based logging approach seems reasonable.

9.2 Modeling

The goal was to produce a model that gives the subsystem power dissipation
breakdown given the total power measurements from the battery. Author had
a hypothesis that the relation between the subsystem utilization and the power
dissipation is linear. The experiments seem to support this claim, and the
approach is widely used in the literature [24,25,33,53].



CHAPTER 9. DISCUSSION AND CONCLUSION 77

Virtually all subsystems can be described having a set of operating and idle
states. The idle states involve no operating activity (Section 2.3). To minimize
the subsystem idle power dissipation, the clocks or the whole subsystem power
off can be switched off. This will yield less or no static power dissipation but
causes increased latencies when waking up. It seems reasonable to assume that
all of these sleep states have a constant power dissipation when a subsystem is
operating on the state.

When a subsystem is active, it operates on one of several active power states.
Each active power state or operating performance point (OPP) involves a trade
off between the power dissipation and performance: the more performance is
required, the more power must be fed to the subsystem. In active states, the
subsystems’ electrical components exhibit switching activity that causes dy-
namic power dissipation (Section 2.3.2). The transition between these OPPs
are inherently nonlinear but their duration is short, thus their overall power
dissipation is negligible. While a subsystem is in an OPP, its power dissipation
behavior is essentially linear w.r.t. the subsystem’s load.

For some devices, there is a saturation point after which the power dissipation
does not increase even though the load increases. For example, the WiFi in the
experiments behaves this way. For those, it was chosen to use the segmented
regression (Section 4.4) modeling to infer a segmented linear model explaining
their load and power correlation.

9.3 Calibration

To discuss the calibration phase of the model construction, there are several
things to consider. For each subsystem that was chosen to be modeled, it should
be considered, whether the correct state variables that accurately describe the
power dissipation behavior of the subsystem were chosen. It should also con-
sidered, whether the sampling frequencies are sufficiently high to capture the
behavior of the device, and finally, is the linear model the correct way to model
the behavior of the device.

9.3.1 Idle

In the idle experiment, the system is in an idle mode. Thus, there should be
no switching activity. The study did not include the full-system sleep states
such as the hibernate mode. These were not modeled because with the default
configuration the Nokia N900 does not enter these deeper sleep states.

However, the OMAP in general and the CPU in particular do enter the deep
sleep states (Section 6.2), thus studying these states would yield a more accurate
power model of general use.

Another aspect of the model is to subtract the idle consumption from the other
measured consumption. This is based on the assumption that the idle consump-
tion is always present, and it would be included twice if it was not subtracted
from the measurement before performing the regression. This assumption may
not be entirely valid, which might partly explain the low correlation results in



CHAPTER 9. DISCUSSION AND CONCLUSION 78

the verification experiments (Section 8.3).

9.3.2 Log Overhead

The state variable sampling causes a 60% overhead when compared to the idle
consumption (Section 8.1.2) which is a rather large overhead if this logging
software was to be constantly run, for example, by an end user. Since this was
not the case, and the goal was to do logging and measurements in a laboratory
environment only, this overhead was deemed acceptable.

Further development and power savings could be achieved by optimizing the
logging software so that it does no unnecessary polling or changing it to an
event-based approach such as [47].

9.3.3 CPU

The CPU model considers only the CPU frequency and the load as the input
variables for the model. The type of instructions executed (e.g., logic, control,
memory) altogether were omitted. Isci [30] took the approach of analyzing
the instruction type power dissipation. These kind of inside-CPU models would
yield a better accuracy but would incur larger overheads because it would require
sampling a larger set of utilization counters.

This work does not model the actual behavior of the idle and the active power
management in the Nokia N900 Maemo kernel (Section 6.2) because this would
require accessing the in-kernel process ready queue in a similar fashion that
the Linux kernel’s idle and active power management governors do. Since the
sampling approach used here is userland only, this was deemed unfeasible.

The CPU model differs from the model presented by [61] (Section 3.2). They
have a constant factor present while the one presentd does not. The lack of
the constant coefficient in this work’s model may be caused by Nokia N900’s
OMAP SoC having less idle power dissipation than the Qualcomm SoC used in
their experiments. To verify this claim, more experiments should be performed.

9.3.4 GPU

The GPU is a device with sophisticated power saving features including clock
gating, power gating, and some form of DVFS (Section 6.4) based on the load
of the GPU. Unfortunately, there is no load counter exported by the GPU
driver, thus, forming a similar load-based model between the GPU and the
power dissipation proved to be difficult.

The experiment (Section 8.1.4) demonstrates that the GPU power dissipation is
somewhat constant once the CPU consumption is removed even though the pro-
grams utilizing the GPU vary from simple triangle drawing to complex shader
programs.

Thus, it was decided to model the GPU as a device that has a constant power
dissipation depending only on whether the GPU subsystem is on or off. When
performing the experiments, it was noticed that there are few tail states visible



CHAPTER 9. DISCUSSION AND CONCLUSION 79

in the power measurements. Just by observing these tail states from the graph,
we deduced their duration.

The GPU driver in the Maemo kernel has the functionality to observe the fre-
quency scaling, which would suggest that a more accurate model could be formed
if this GPU clock was exported to userland so that the logging tool could observe
it.

9.3.5 Display

The display experiment clearly demonstrates a linear behavior w.r.t the bright-
ness level (Section 8.1.5). Carroll’s experiment [19] (see Section 3.2) exhibited
a slight non-linear behavior while, Zhang’s [61] has a similar linear model (see
Section 3.2) to the one presented here except they lack the constant coefficient.
This is probably due to the fact that their display device is different from the
one used in Nokia N900.

9.3.6 WiFi

During the WiFi experiment, the maximum power dissipation was 880 mW
when the experiment was transmitting data. Receiving with no transmission
yielded only a 50 mW power dissipation. According to the FCC (Section 6.7)
the maximum radiated power is 239 mW. Based on the results in Section 8.1.6,
this will yield ca. 70% overhead for the chip operation.

The experiments consider only rather low transfer rates. Further study would
be needed to infer the model for all data rates. In addition, the effect of the
WiFi channel was ignored.

Another factor to consider is the CAM and PSM modes (Section 2.4.1) and the
QoS features present in the WiFi chip.

In the receive-only experiment (Figure 8.5), the power usage remained rather
low which is probably due to the WiFi base station buffering the received packets
allowing the WiFi to go to sleep between the packets.

In the both send-only (Figure 8.6) experiments, the power usage first increased
rapidly until it reached a saturation point around the 7 packets/s rate. It seems
that both receiving and receive-with-reply cause similar power usage.

From the figures and analysis, it seems that the packet size does not affect the
power usage. Thus, we consider only the packet transmission frequency and
whether the packets are received only or transmitted in the power model.

9.3.7 Cellular 3G

Cellular 3G has a rather consistent power behavior. It is a simple state machine,
as explained in Section 2.4.2. The long tail states are clearly visible. Inferring
the state machine changes by observing the packet latencies is cumbersome at
best. A better approach would be to instrument the kernel to report the power
state which it is in, and report it to the subsystem logging tool.



CHAPTER 9. DISCUSSION AND CONCLUSION 80

The 3G mobile device transmit power is controlled by the base station and
is varied by factors such as signal strength. The experiments were done in a
stationary location, thus, we expect the model to be imprecise if the device is
moved to some other location. From the experiments (Section 8.1.7), the 3G
operating states are clearly visible and have a constant power dissipation.

9.3.8 Solid State Disk

The experiment focused only on the EMMC disk (Section 6.9). There was no
product bulletin or specifications available for the EMMC disk to verify the
results. Carroll [19] experimented on the EMMC SSD in their experiments and
noticed that a considerable amount of energy is consumed by the RAM and the
CPU subsystems. Since the model presented here considers only the utilization
of the SSD subsystem, it may be possible to improve the accuracy substantially
if RAM and CPU were considered during the calibration.

9.4 Verification

Currently, the OMAP interconnect (Section 6.3) or the memory subsystem (Sec-
tion 6.5) are not modelled. According to [19], they have a considerable impact
on the power dissipation in a wide variety of usage scenarios. Thus, it can be ar-
gued that most of the model inaccuracies visible in the verification experiments
(Section 8.3) may be caused by this.

Another aspect that causes inaccuracy is the 1 Hz sampling rate which masks
very short duration events that can have substantial power draw. This could be
improved by increasing the sampling rate of the logging system but, as discussed
before, this would cause substantial overhead.

The goal was not to provide accurate power breakdowns but instead provide
a method that would allow us to explain which subsystems are utilized by an
application and how much power they consume. Thus, even though ca. 70% co-
efficient of determination was achieved (Section 8.4.3) when performing power
modeling, it can be argued that the total energy consumption modeling is ac-
curate enough to provide the user an understanding of which components are
mostly responsible for the power dissipation. That is, the “guilt” of energy
consumption can be assigned to the correct subsystems with sufficient accuracy.

9.5 Review of Research Questions

The first research question Q1 asked how to measure the power dissipation. The
result is that the custom measurement setup with a fake battery was required.
In the future, it would be beneficial if the device was equipped with a current
or a power measurement hardware allowing direct measurements of the power
dissipated by the subsystems. Ideally, thus the current/power measurement
hardware could be deployed on both the subsystems inside and outside the
SoC.



CHAPTER 9. DISCUSSION AND CONCLUSION 81

The research question Q2 asked how to measure the subsystemwise utilization.
The sampling approach incurred rather large overhead. An event-based or a
kernel-level performance measurement framework would be more applicable and
would incur less overhead. If the system had support for both a hardware power
measurement and a kernel level power awareness, the operating system could
do a better resource allocation and confine the system to given energy budgets
or try to maximize the battery life.

The research question Q3 asked how to do the subsystemwise breakdown of the
power measurements given the total power consumption and the subsystemwise
utilization. As long as the hardware supporting direct subsystemwise power
measurements is missing, the linear regression seems to be a viable method.
Training the model can be done in a laboratory environment, and the results
for power breakdowns can be used on a unmodified mobile hardware. These
kind of products already exist in the market. (See, for example, Android Pow-
erTutor [61].)

The research question Q4 asked how to verify the accuracy of the subsystem
power breakdown. Yet again, as long as there is no direct power measurement
hardware between the subsystems available, statistical methods must be relied
on. That is, train the model with sufficient data and perform enough control
experiments so that the model’s accuracy can be verified.

9.6 Conclusion and Future Work

The goal was to study the methods with which to do power measurements and
provide tools which allow a subsystemwise breakdown of the power usage of a
mobile device. Based on the results, it seems feasible that the subsystemwise
power dissipation can be deduced from the aggregate.

The problem of understanding the subsystem power dissipation involves not only
directly observing the current drawn by the circuitry forming the subsystem but
also observing the operating state and the load of the subsystem.

This thesis provides a further basis for the observation that measuring the total
power dissipation and using a linear model calibrated with microbenchmarks
can be used to provide subsystemwise power dissipation breakdowns. For the
validation of the linear model, a 70% cross-correlation was obtained.

CPU, GPU, display, WiFi, 3G, and SSD subsystems were observed. The mea-
surements indicate that the power dissipation of the individual subsystems vary
greatly based on the type of the system load, e.g., whether the application uses
the network or a graphics card.

In conclusion, it seems reasonable that the system can be used with an appli-
cation, observe the utilization or load of the individual subsystems, and use a
linear model to attribute the total energy consumed by the application.

For future work, there are many aspects to consider. The model considers only
a part of the subsystems present in the Nokia N900 phone. Modeling the rest of
them to understand the overall power dissipation of the device in various usage
scenarios would be reasonable.



CHAPTER 9. DISCUSSION AND CONCLUSION 82

More complex models for the subsystems could also be considered. Namely, it
should considered whether each subsystem should be modeled with more input
variable to provide better accuracy for the model.

Other hardware and software modeling could be considered. This could be done
by introducing new, currently used mobile phone environments like Android or
iOS. In addition, the models could be further developed for tablets and laptop
computers as well.

To minimize the overhead caused by the logging system, an event-based logging
system could be developed. An interesting further study subject would be to
see if this could be done automatically by some form of machine learning.



Bibliography

[1] FCC PART 15 Compliance Test Report (WLAN: 2412.0–2462.0 MHz).
Nokia Corporation. FCC ID: LJPRX-51, IC: 661E-RX51.

[2] FCC PART 22/24/27 Compliance Test Report: Part 1 (Cellular). Nokia
Corporation. FCC ID: LJPRX-51, IC: 661E-RX51.

[3] Nokia Corporation N900 Technical Specifications. http://maemo.nokia.

com/n900/specifications/.

[4] PowerVR Insider SDK. http://www.imgtec.com/powervr/insider/

sdkdownloads/index.asp.

[5] Make Accurate Power Measurements with NI Tools. National Instruments,
2008.

[6] OMAP TM 3 architecture from Texas Instruments opens new horizons for
mobile Internet devices, 2008.

[7] ACX565AKM Data Sheet. Sony, 2009.

[8] NI USB-621x Specifications. National Instruments, 2009.

[9] NI USB-621x User Manual. National Instruments, 2009.

[10] OMAP3 Product Bulletin. Texas Instruments, 2009.

[11] OMAP3430 Technical Reference Manual. Texas Instruments, 2010.

[12] Advanced Configuration and Power Interface Specification Revision 5.0,
2011.

[13] G. Anastasi, M. Conti, E. Gregori, and A. Passarella. 802.11 power-saving
mode for mobile computing in Wi-Fi hotspots: limitations, enhancements
and open issues. Wireless Networks, 14:745–768, 2008.

[14] R. Balani. Energy Consumption Analysis for Bluetooth, WiFi and Cellular
Networks. Technical report, University of California at Los Angeles, 2007.

[15] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy
consumption in mobile phones: a measurement study and implications for
network applications. In Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement , IMC ’09, pp. 280–293. ACM, New York, NY,
USA, 2009.

83

http://maemo.nokia.com/n900/specifications/
http://maemo.nokia.com/n900/specifications/
http://www.imgtec.com/powervr/insider/sdkdownloads/index.asp
http://www.imgtec.com/powervr/insider/sdkdownloads/index.asp


BIBLIOGRAPHY 84

[16] K. Banerjee and E. Agu. PowerSpy: fine-grained software energy profiling
for mobile devices. In Wireless Networks, Communications and Mobile
Computing, 2005 International Conference on, volume 2, pp. 1136 – 1141.
2005.

[17] F. Bellosa. The benefits of event driven energy accounting in power-
sensitive systems. In EW 9: Proceedings of the 9th workshop on ACM
SIGOPS European workshop, pp. 37–42. ACM, New York, NY, USA, 2000.

[18] L. Benini and G. D. Micheli. System-Level Power Optimization: Tech-
niques and Tools. ACM Transactions on Design Automation of Electronic
Systems, 5(2):115–192, 2000.

[19] A. Carroll and G. Heiser. An analysis of power consumption in a smart-
phone. In Proceedings of the 2010 USENIX conference on USENIX annual
technical conference, USENIXATC’10, pp. 21–21. USENIX Association,
Berkeley, CA, USA, 2010.

[20] A. Chandrakasan and R. Brodersen. Minimizing power consumption in
digital CMOS circuits. Proceedings of the IEEE , 83(4):498–523, 1995.

[21] J. Chen, B. Li, Y. Zhang, L. Peng, and J.-K. Peir. Tree structured anal-
ysis on GPU power study. In Computer Design (ICCD), 2011 IEEE 29th
International Conference on. 2011.

[22] J.-C. Chen, K. Sivalingam, P. Agrawal, and S. Kishore. A comparison of
MAC protocols for wireless local networks based on battery power con-
sumption. In INFOCOM ’98. Seventeenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE , vol-
ume 1, pp. 150–157. 1998.

[23] S. Collange, D. Defour, and A. Tisserand. Power Consumption of GPUs
from a Software Perspective. In Proceedings of the 9th International Confer-
ence on Computational Science: Part I , ICCS ’09. Springer-Verlag, Berlin,
Heidelberg, 2009.

[24] G. Contreras and M. Martonosi. Power prediction for Intel XScale proces-
sors using performance monitoring unit events. In Proceedings of the 2005
international symposium on Low power electronics and design, ISLPED
’05, pp. 221–226. ACM, New York, NY, USA, 2005.

[25] D. Economou, S. Rivoire, and C. Kozyrakis. Full-system power analysis and
modeling for server environments. In Workshop on Modeling Benchmarking
and Simulation (MOBS). 2006.

[26] J. J. Faraway. Practical Regression and Anova using R, 2002.

[27] R. Friedman, A. Kogan, and Y. Krivolapov. On power and throughput
tradeoffs of WiFi and Bluetooth in smartphones. In INFOCOM, 2011
Proceedings IEEE , pp. 900–908. 2011.

[28] S. Hong and H. Kim. An integrated GPU power and performance model.
In Proceedings of the 37th annual international symposium on Computer
architecture, ISCA ’10. ACM, 2010.



BIBLIOGRAPHY 85

[29] IEEE. Standard 802.11-2007 Part 11: Wireless LAN MAC and PHY Spec-
ifications.

[30] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End Proces-
sors: Methodology and Empirical Data. In Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 36,
pp. 93–. IEEE Computer Society, Washington, DC, USA, 2003.

[31] R. Joseph and M. Martonosi. Run-time power estimation in high perfor-
mance microprocessors. In Proceedings of the 2001 international symposium
on Low power electronics and design, ISLPED ’01, pp. 135–140. ACM, New
York, NY, USA, 2001.

[32] J. S. Kilby. Miniaturized Electronic Circuits, US Patent 3,138,743, 1964.

[33] Y. Kim, Y. Cho, S. Park, and N. Chang. System-level power estimation us-
ing an on-chip bus performance monitoring unit. In Proceedings of the 2008
IEEE/ACM International Conference on Computer-Aided Design, ICCAD
’08, pp. 149–154. IEEE Press, Piscataway, NJ, USA, 2008.

[34] J. Kurtto. Mapping and improving energy efficiency of the Nokia N900 .
Master’s thesis, University of Helsinki, Department of Computer Science,
2011.

[35] T. Li and L. K. John. Run-time modeling and estimation of operating sys-
tem power consumption. In Proceedings of the 2003 ACM SIGMETRICS
international conference on Measurement and modeling of computer sys-
tems, SIGMETRICS ’03, pp. 160–171. ACM, New York, NY, USA, 2003.

[36] M. Y. Lim, A. Porterfield, and R. Fowler. SoftPower: fine-grain power
estimations using performance counters. In HPDC ’10: Proceedings of
the 19th ACM International Symposium on High Performance Distributed
Computing , pp. 308–311. ACM, New York, NY, USA, 2010.

[37] D. Macii and D. Petri. An Effective Power Consumption Measurement
Procedure for Bluetooth Wireless Modules. Instrumentation and Measure-
ment, IEEE Transactions on, 56(4):1355–1364, 2007.

[38] A. Mahesri and V. Vardhan. Power Consumption Breakdown on a Modern
Laptop. In B. Falsafi and T. N. Vijaykumar, editors, Power-Aware Com-
puter Systems, volume 3471 of Lecture Notes in Computer Science, pp.
165–180. Springer, 2004.

[39] M. Martins and R. Fonseca. The Case for Device Power States. Technical
report, Brown University, 2011.

[40] P. Mochel. Linux Kernel Power Management. In Proceedings of Ottawa
Linux Symposium. 2003.

[41] B. Mochocki, K. Lahiri, and S. Cadambi. Power analysis of mobile 3D
graphics. In Proceedings of the conference on Design, automation and test
in Europe: Proceedings, DATE ’06, pp. 502–507. European Design and
Automation Association, 3001 Leuven, Belgium, 2006.



BIBLIOGRAPHY 86

[42] V. Mohan, S. Gurumurthi, and M. Stan. FlashPower: A detailed power
model for NAND flash memory. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2010 , pp. 502 –507. 2010.

[43] V. M. R. Muggeo. Segmented: An R package to Fit Regression Models
with Broken-Line Relationships. R News, 8(1):20–25, 2008.

[44] L. Negri, M. Sami, D. Macii, and A. Terranegra. FSM-based power model-
ing of wireless protocols: the case of Bluetooth. In Low Power Electronics
and Design, 2004. ISLPED ’04. Proceedings of the 2004 International Sym-
posium on, pp. 369 – 374. 2004.

[45] V. Pallipadi and A. Belay. cpuidle—Do nothing, efficiently. . .. In Proceed-
ings of the Linux Symposium. 2007.

[46] V. Pallipadi and A. Starikovskiy. The Ondemand Governor. In Proceedings
of the Linux Symposium. 2006.

[47] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-grained
power modeling for smartphones using system call tracing. In Proceedings
of the sixth conference on Computer systems, EuroSys ’11, pp. 153–168.
ACM, New York, NY, USA, 2011.

[48] X. Perez-Costa and D. Camps-Mur. IEEE 802.11E QoS and power saving
features overview and analysis of combined performance. Wireless Com-
munications, IEEE , 17(4):88–96, 2010.

[49] X. Perez-Costa, D. Camps-Mur, and T. Sashihara. Analysis of the in-
tegration of IEEE 802.11e capabilities in battery limited mobile devices.
Wireless Communications, IEEE , 12(6):26–32, 2005.

[50] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
Characterizing radio resource allocation for 3G networks. In Proceedings
of the 10th annual conference on Internet measurement , IMC ’10, pp. 137–
150. ACM, New York, NY, USA, 2010.

[51] R Core Team. R: A Language and Environment for Statistical Computing .
R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-
900051-07-0.

[52] E. Rantala, A. Karppanen, S. Granlund, and P. Sarolahti. Modeling en-
ergy efficiency in wireless internet communication. In Proceedings of the
1st ACM workshop on Networking, systems, and applications for mobile
handhelds, MobiHeld ’09, pp. 67–68. ACM, New York, NY, USA, 2009.

[53] A. Rice and S. Hay. Decomposing power measurements for mobile devices.
In Pervasive Computing and Communications (PerCom), 2010 IEEE In-
ternational Conference on, pp. 70–78. 2010.

[54] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A comparison of high-level
full-system power models. In Proceedings of the 2008 conference on Power
aware computing and systems, HotPower’08, pp. 3–3. USENIX Association,
Berkeley, CA, USA, 2008.



BIBLIOGRAPHY 87

[55] A. Sagahyroon. Power Consumption in Handheld Computers. In Circuits
and Systems, 2006. APCCAS 2006. IEEE Asia Pacific Conference on, pp.
1721–1724. 2006.

[56] F. Shearer. Power Management in Mobile Devices. Communications engi-
neering series. Newnes, 2007.

[57] R. Suda and D. Q. Ren. Accurate Measurements and Precise Modeling of
Power Dissipation of CUDA Kernels toward Power Optimized High Per-
formance CPU-GPU Computing. In Parallel and Distributed Computing,
Applications and Technologies, 2009 International Conference on. 2009.

[58] Y. Xiao, P. Savolainen, A. Karppinen, M. Siekkinen, and A. Ylä-Jääski.
Practical Power Modeling of Data Transmission over 802.11g for Wireless
Applications. In Proceedings of the 1st International Conference on Energy-
Efficient Computing and Networking , e-Energy ’10, pp. 75–84. ACM, New
York, NY, USA, 2010.

[59] B. Yoo, Y. Won, J. Choi, S. Yoon, S. Cho, and S. Kang. SSD characteri-
zation: from energy consumption’s perspective. In Proceedings of the 3rd
USENIX conference on Hot topics in storage and file systems, HotStor-
age’11, pp. 3–3. USENIX Association, Berkeley, CA, USA, 2011.

[60] H. D. Young and R. A. Freedman. University Physics. Addison-Wesley
Publishing Compnay, Inc., 9th edition, 1996.

[61] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang. Accurate online power estimation and automatic battery behavior
based power model generation for smartphones. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, CODES/ISSS ’10, pp. 105–114. ACM, New York,
NY, USA, 2010.


	Introduction
	Research Questions
	The Solution
	Results
	Thesis Outline

	Background
	Energy and Power
	Measuring Electric Power and Energy
	Integrated Circuits and Power
	Reducing Static Loss
	Reducing Dynamic Loss

	Radios and Power
	WiFi
	Cellular

	Battery
	Operating Systems
	CPU Power Management
	Device Power Management
	System Power Management


	Related Work
	Modeling Power Consumption
	Full-system Modeling
	OpenMoko
	PowerTutor


	Statistical Tools
	Regression Analysis
	Linear Regression
	Ordinary Least Squares

	Variable Categorizations
	Segmented Regression
	Cross-correlation

	Power Modeling
	Calibration of Subsystems
	Calibrating Full-system Model
	Model Verification
	Warm-up and Cool-down
	Power Transitions
	Timeouts
	Tail States
	Device Utilization
	Operating Modes


	Nokia N900
	OMAP3430
	Power Management Techniques
	Power Management Architecture

	CPU
	Power Management

	Interconnect
	GPU
	Memory
	Display
	WiFi
	Cellular
	Solid State Disks
	Battery and Charger
	Other Peripherals

	eprof Framework
	Measuring Electric Power
	Measuring Device State and Utilization
	Control Scripts
	Synchronization
	Statistical Analysis
	Experiment Sequence Flow

	Results
	Calibration
	Idle
	Log Overhead
	CPU
	GPU
	Display
	WiFi
	Cellular 3G
	Solid State Disk

	The Model
	Verification with Microbenchmarks
	CPU
	Network
	SSD

	Verification with Applications
	Browser and Radios
	Angry Birds
	Summary


	Discussion and Conclusion
	Measuring
	Modeling
	Calibration
	Idle
	Log Overhead
	CPU
	GPU
	Display
	WiFi
	Cellular 3G
	Solid State Disk

	Verification
	Review of Research Questions
	Conclusion and Future Work

	Bibliography

