
Helsinki University of Technology
CFD-group / Laboratory of Applied Thermodynamics

MEMO No CFD/TERMO-6-95 DATE: December 17, 1995

TITLE

Automatic CFD input decomposition for massively parallel systems

AUTHOR(S)
Esa Salminen

ABSTRACT

This memorandum describes a computer program which divides CFD grids into smaller blocks and
updates the boundary condition information and the flow solver control data accordingly. The pro-
gram is designed to be used in conjunction with FINFLO flow solver.

MAIN RESULT

Computer program divp3d

PAGES
22

KEY WORDS
CFD input, massively parallel systems

APPROVED BY

Timo Siikonen December 17, 1995

CONTENTS

Contents

1 Introduction 1

2 Grid splitting 2

3 Boundary condition patch splitting 3

4 Solver control data 6

5 Sample runs 7

6 Concluding remarks 9

A Sample run I/O - fictive grid 10

B Sample run I/O - delta wing 13

Printed January 15, 1997 Page i

1 INTRODUCTION

1 Introduction

Numerical flow simulations on massively parallel systems require computation domain decomposi-
tion. In simple cases this can be done by hand, but when the complexity of the simulation model
increases, decomposition must be automated.

This memorandum describes a computer program which divides CFD grids into smaller blocks
and updates the boundary condition information and the flow solver control data accordingly. The
program is designed to be used in conjunction with FINFLO flow solver. FINFLO accepts grid files
in multi-block PLOT3D format.

The program can be used in two different modes. In the manual mode, the user specifies ex-
plicitly the division nodes for each block and each coordinate direction. In the automatic mode, the
user specifies only the desired sub-block edge length and the program tries to extract this size blocks
from the original grid.

The program has been written in FORTRAN-77 and consists of 3400 lines. The program was
compiled and tested on a Silicon Graphics Indigo2 running IRIX 5.3.

Printed January 15, 1997 Page 1

2 GRID SPLITTING

2 Grid splitting

A very simple algorithm is used in the automatic grid splitting mode. The splitting strategy is as
follows: If the block edge dimension is smaller than the desired one, no cutting will take place. If
the block edge dimension is larger than the desired one, but smaller than twice the desired size, a
cutting line from middle of the block face will be chosen. (This could be improved by trying to leave
the larger block on the solid wall side. This would improve the behavior of turbulence models). If
the block edge dimension is larger than twice the desired size, but cannot be equally distributed, the
smaller block will be cut from middle of the original block, i.e. the block next to the possible solid
wall is always as large as possible.

The block is always fully cut, both in the manual mode and in the automatic mode. In the manual
mode the block boundaries (i=1, i=imax, j=1, j=jmax, k=1, k=kmax) are automatically included into
the cutting point arrays. User can omit these points, but giving them does not make any harm either.

The order of the extracted blocks is the same as the order of the cells in the grid, i.e., the sub-
block cutter runs fastest in the I-direction, then in the J-direction and slowest in the K-direction.

In the current version the whole grid is first read in and then splitted. It would be possible to
handle the grid block by block as well. This modification may be needed for systems with limited
main memory.

Printed January 15, 1997 Page 2

3 BOUNDARY CONDITION PATCH SPLITTING

3 Boundary condition patch splitting

The boundary condition patch splitting is a complex task in comparison to the grid block splitting.
This is true especially in cases where two connected blocks will not be cut at the same locations.
That is why the algorithm divides the boundary patches using cutting lines from both blocks. First
the limits of the new boundary condition pathes will be computed. As a separate step, the connec-
tivity information will be updated. Connectivity means here also cyclic and sliding mesh boundary
conditions.

According to the FINFLO’s naming and numeration conventions the block faces are numbered
as shown in Fig. 1.

K

J

I
1

4

2

3

5

6

Fig. 1: FINFLO’s numeration of block faces.

A do-loop for determining boundaries for a splitted BC patch is shown below. The additional
cutting lines from the connected patches increase the complexity of the loop. Arrays IPTS(),
JPTS(), and KPTS() contain cutting lines. Arrays IPTR(), JPTR(), and KPTR() contain the
original cutting lines, i.e. the cutting lines only from the current block.

IB = ICON(2,IP) ! Current block number
JC = 0
DO I=1,IB-1
JC = JC + LMAX(I)*MMAX(I)*NMAX(I)

ENDDO

IF(ICON(3,IP) .EQ. 1) THEN ! Face No. 1
II = 1
KK = 1
DO K=2,KPTS(1,IB)
IF(KPTR(KK+1,IB) .EQ. KPTS(K,IB)) KK = KK + 1
JJ = 1
DO J=2,JPTS(1,IB)
IF(KPTR(JJ+1,IB) .EQ. KPTS(J,IB)) JJ = JJ + 1
JB = JC + (KK-2)*LMAX(IB)*MMAX(IB)+(JJ-2)*LMAX(IB)+II
IXLO = MAX0(ICON(4,IP),JPTS(J, IB))
IXUP = MIN0(ICON(5,IP),JPTS(J+1,IB)-1)
IYLO = MAX0(ICON(6,IP),KPTS(K, IB))
IYUP = MIN0(ICON(7,IP),KPTS(K+1,IB)-1)
IF(IXUP-IXLO .GE. 0 .AND. IYUP-IYLO .GE. 0) THEN

IXLO = IXLO - JPTR(JJ,IB) + 1
IXUP = IXUP - JPTR(JJ,IB) + 1
IYLO = IYLO - KPTR(KK,IB) + 1
IYUP = IYUP - KPTR(KK,IB) + 1
JNBCS = JNBCS + 1
JCON(1,JNBCS) = ICON(1,IP)
JCON(2,JNBCS) = JB

Printed January 15, 1997 Page 3

3 BOUNDARY CONDITION PATCH SPLITTING

KPTS(2,IB)

K

KPTS(3,IB)
555555555555555
555555555555555
555555555555555
555555555555555
555555555555555
555555555555555
555555555555555
555555555555555
555555555555555

KPTS(4,IB) KPTS(5,IB)

JPTS(2,IB)

JPTS(3,IB)

JPTS(4,IB)

J

Face 1

Fig. 2: BC patch splitting.

JCON(3,JNBCS) = ICON(3,IP)
JCON(4,JNBCS) = IXLO
JCON(5,JNBCS) = IXUP
JCON(6,JNBCS) = IYLO
JCON(7,JNBCS) = IYUP
JCON(8,JNBCS) = 0
JCON(9,JNBCS) = 0
JCON(10,JNBCS) = 0
IF(ICON(1,IP) .EQ. 6) THEN
DO L=1,9
BBB(L,JNBCS) = AAA(L,IP) ! Cyclicity matrix

ENDDO
ENDIF
IF(ICON(1,IP) .EQ. 3 .OR. ICON(1,IP) .EQ. 5) THEN
BOUNDG(JNBCS) = BOUNDF(IP) ! INL/OUT file name

ENDIF
ENDIF

ENDDO
ENDDO

ENDIF

C ... Faces 2, 3, 4, 5, and 6 accordingly

The most challencing task in the BC patch splitting process is the determination of the additional
cutting lines from connected patches. When we calculate these lines, we must consider which faces
are connected and what is the orientation between the blocks. An additional difficulty comes from
the relative position of the blocks. Since there are six faces on both blocks and four possible orien-
tations, we have 6� 6� 4 = 144 combinations. The right case can be found by computing a magic
number

MAGIC = IORI+(JFACE-1)*4+(IFACE-1)*24+1,
where the face numbers can have values from one to six and the orientation can have values from

zero to three.
The cutting point arrays are merged in the subroutine AP. The right arrays and the right order

of the arrays are established in the subroutine call. The parameters IR and JR define if the cutting
point distributions must be reversed or not. The last two parameters M and N determine the relative
position of the connected patches.

IB = ICON(2,IP) ! block number
IFACE = ICON(3,IP) ! face number
JB = ICON(2,JP) ! block number - connected block

Printed January 15, 1997 Page 4

3 BOUNDARY CONDITION PATCH SPLITTING

JFACE = ICON(3,JP) ! face number - connected block

IF(IORI .EQ. 0) THEN
IR = 0
JR = 0

ELSEIF(IORI .EQ. 1) THEN
IF(IFACE .EQ. 1 .OR. IFACE .EQ. 3 .OR. IFACE .EQ. 5) THEN
IR = 0
JR = 1

ELSE
IR = 1
JR = 0

ENDIF
ELSEIF(IORI .EQ. 2) THEN
IR = 1
JR = 1

ELSEIF(IORI .EQ. 3) THEN
IF(IFACE .EQ. 1 .OR. IFACE .EQ. 3 .OR. IFACE .EQ. 5) THEN
IR = 1
JR = 0

ELSE
IR = 0
JR = 1

ENDIF
ENDIF

IF(MOD(IFACE+JFACE+IORI,2) .EQ. 0) THEN
M = ICON(6,JP) - ICON(4,IP)
N = ICON(4,JP) - ICON(6,IP)
IF(IR .EQ. 1) M = ICON(7,JP) + ICON(4,IP)
IF(JR .EQ. 1) N = ICON(5,JP) + ICON(6,IP)

ELSE
M = ICON(4,JP) - ICON(4,IP)
N = ICON(6,JP) - ICON(6,IP)
IF(IR .EQ. 1) M = ICON(5,JP) + ICON(4,IP)
IF(JR .EQ. 1) N = ICON(7,JP) + ICON(6,IP)

ENDIF

MAGIC = IORI+(JFACE-1)*4+(IFACE-1)*24+1

GOTO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
& 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,
& 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,
& 58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,
& 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,
& 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,
& 109,110,111,112,113,114,115,116,117,118,119,120,121,
& 122,123,124,125,126,127,128,129,130,131,132,133,134,
& 135,136,137,138,139,140,141,142,143,144),MAGIC

1 CONTINUE
CALL AP(JPTS(1,IB),KPTS(1,IB),KPTS(1,JB),JPTS(1,JB),0,0,M,N)
RETURN

2 CONTINUE
CALL AP(JPTS(1,IB),KPTS(1,IB),JPTS(1,JB),KPTS(1,JB),0,1,M,N)
RETURN

3 CONTINUE
CALL AP(JPTS(1,IB),KPTS(1,IB),KPTS(1,JB),JPTS(1,JB),1,1,M,N)
RETURN

4 CONTINUE
CALL AP(JPTS(1,IB),KPTS(1,IB),JPTS(1,JB),KPTS(1,JB),1,0,M,N)
RETURN

.

.

.

143 CONTINUE
CALL AP(IPTS(1,IB),JPTS(1,IB),JPTS(1,JB),IPTS(1,JB),1,1,M,N)
RETURN

144 CONTINUE
CALL AP(IPTS(1,IB),JPTS(1,IB),IPTS(1,JB),JPTS(1,JB),0,1,M,N)
RETURN

Printed January 15, 1997 Page 5

4 SOLVER CONTROL DATA

4 Solver control data

FINFLO’s control file can be divided into two parts. The upper part contains general information like
iteration control, Courant numbers, Reynolds number, Mach number, etc. The lower part contains
information specific for each grid block.

In the input decomposition process the upper part is kept unchanged. In the block specific part
the number of blocks and the block dimensions are updated and all other information is copied from
original blocks to the corresponding extracted sub-blocks. The only parameter that requires slightly
more attention, is the number of multi-grid levels. Since the block is divided, the number of available
multi-grid levels is probable smaller than in the original block. The number of multigrid-levels is
obtained by

read(13,*) mgrid ! MGRID from the original INPUT file
do mg = 1,5
if(mod(idmn(l),2**(mg-1)) .eq. 0 .and.

& mod(jdmn(l),2**(mg-1)) .eq. 0 .and.
& mod(kdmn(l),2**(mg-1)) .eq. 0) mgn = mg

enddo
mgrid = min0(mgrid,mgn)

A typical FINFLO control file is shown below.

Ahlstrom impeller (Viscous flow; New BC; Wall 4 ROT)
1 2 1 0 | IOLD LEVEL ITURB NSCAL

/afrodite/tmp/kpelkone/finflo/ahlviscous/reunaehdot/AHL_KITKA.GRID
/afrodite/tmp/kpelkone/finflo/ahlviscous/reunaehdot/AHL_KITKA.BC
’ROE’ ’YES’ ’NO’ ’NO’ ’NO’ | IFLX RESTART STRESC FULLFC SOURC
’NO’ ’NO’ ’NO’ | TIMEC COORC PRESC
2.5 2.5 1.e-8 64368. 1.0 | CFL-NUMBERS DROLIM TMAX DT1
1305 100 5000 | ICMAX KPRINT MPRINT
0.000 0.000 00.0 0.0 | RMACH ALPHA BETA ROTAT
0. 0.72 0.90 | RE PRANDTLIN LUVUT(PR;PRT)
1 ’YES’ | ISTATE DEFAULT PERF.GAS
288.15 1.2249 85.07 | FRSTEM FRSDEN FRSVEL
0.001 0.01 5000. | TURBFRS RMUFRS TURLIM
0.001 1.00 0.1 0.2 5. | TURBINI RMUINI CMGK CMGEPS CSIMPS
0 0 0 0 | JRDIF JRDIS JRPRE JRIMP
0.1 1. | CC1 CC2

0.176521 1.00 1.0 | AREF CHLREF (initialisointi) GRILEN
0. 0. 0. 0. -1. | XMOM YMOM ZMOM REFPRE DIFPRE
3 2 0 | NUMBER OF BLOCKS NOF INLETS/OUTLETS
48 112 48 -1 -1 -1 111 10 | IMAX JMAX KMAX INTER(IJK) LAMIN BLOCK 1
106 1 24 49 113 49 0 | IT IL IK IDI1 IDI2 IDI3 MOV
2 1 48 1 112 1 48 | MGRID MIB MIT MJB MJT MKB MKT
-115.8288 2 | OMEGA IROTVE
48 2 48 -1 -1 -1 111 10 | IMAX JMAX KMAX INTER(IJK) LAMIN BLOCK 2
00 3 08 49 3 49 0 | IT IL IK IDI1 IDI2 IDI3 MOV
1 1 48 1 2 1 48 | MGRID MIB MIT MJB MJT MKB MKT
-115.8288 2 | OMEGA IROTVE
48 2 48 -1 -1 -1 111 10 | IMAX JMAX KMAX INTER(IJK) LAMIN BLOCK 3
00 1 26 49 3 49 0 | IT IL IK IDI1 IDI2 IDI3 MOV
1 1 48 1 2 1 48 | MGRID MIB MIT MJB MJT MKB MKT
-115.8288 2 | OMEGA IROTVE

When handling the control file, the program assumes that the comments at the end of the input
lines do not start earlier than at the 36th column.

Printed January 15, 1997 Page 6

5 SAMPLE RUNS

5 Sample runs

This first example illustrates program’s capability to handle complex connections between blocks.
This two-block grid is purely fictive and does not present any reasonable CFD geometry. The original
grid and the splitted grid are shown in Fig. 3.

Note that in order to increase the complexity of the splitting task, the larger block is rotated about
the y-axis so that its K-direction coincides with the smaller block’s I-direction.

J

J

K

K
I

y

z

x

1

2 J

J

K

K
I

1 2

3

4

New block boundaries

Fig. 3: Original two-block grid and the splitted four-block grid.

Both blocks will be divided in the K-direction at one location. In the larger block this location is
the 9th node and in the smaller block the 3rd node. However, due to the rotation of the larger block,
these cuttings are not parallel but perpenticularly crossing. Further, the 9th node in the larger block’s
K-direction coincides with the 5th node in the smaller block’s I-direction and the smaller block’s
3rd node in theK-direction coincides with the larger block’s 5th node in the I-direction. This is why
the connective patch on both blocks must be divided into four pieces. A screen copy of the program
run, the original BC data file, and the decomposed BC data file are shown in appendix A.

Printed January 15, 1997 Page 7

5 SAMPLE RUNS

This second example illustrates program usage in automatic mode. The grid used in this test is a
one-block O-O type 128� 64� 64 delta wing. The grid is shown in Fig. 4.

Fig. 4: Delta wing. (2nd finest grid level, symmetry plane grid drawn only partly.)

In the first run we give 32 as a desired sub-block edge length. The grid size is ideal for this type
of partitioning. As a result we get sixteen 32 � 32 � 32 blocks. In the second run we give 48 as a
desired sub-block edge length. Now the program fails to extract any 48� 48� 48 blocks but gives
eight 48� 32� 32 blocks and four 32� 32� 32 blocks.

Screen copies from both runs, the original BC data file, and the decomposed BC data files are
shown in appendix B.

Printed January 15, 1997 Page 8

6 CONCLUDING REMARKS

6 Concluding remarks

A CFD input decomposition software has been written. The current version can handle correctly
typical FINFLO inputs. However, there is still room for improvements.

The program should write a log how the grid was splitted so that after completing the flow
simulation, the grid and the flow solution could be merged into the original form.

The automatic grid block splitting algorithm could be improved. It is probable, however, that the
manual mode will be sufficient for most applications in the near future. During the testing process
it was seen that the grid was easy to split using the manual mode even in cases where the desired
number of blocks was several hundreds.

Overlapping grid blocks may need some special treatment in the future. This will be seen as
soon as Chimera type grids become more common in FINFLO simulations.

Splitting of a sliding mesh patch in the circumferential direction is not allowed. This limitation is
not implemented in program’s current version. Therefore, it is recommended that all grids containing
sliding patches should be splitted using program’s manual mode.

Handling of boundary value files, i.e. special files used in conjunction with INLET- and OUTLET-
blocks, should be implemented.

Printed January 15, 1997 Page 9

Appendix A SAMPLE RUN I/O - FICTIVE GRID

A Sample run I/O - fictive grid

Sample run screen copy - fictive grid
POSEIDON> divp3d

**
**

DIVP3D Version 1.0 Nov, 1995 running on POSEIDON

**
**

Please enter the input grid file name:
RUBIK.GRID

Please enter the input boundary condition file name:
RUBIK.BC

Please enter the original INPUT file name:
INPUT

Please enter the output grid file name:
SPLITTED.GRID

File already exists! What do you want to do?
= 1 : Re-enter filename
= 2 : Overwrite existing file

2

Please enter the output boundary condition file name:
SPLITTED.BC

File already exists! What do you want to do?
= 1 : Re-enter filename
= 2 : Overwrite existing file

2

Please enter file name for the updated INPUT:
SPLITTED.INPUT

File already exists! What do you want to do?
= 1 : Re-enter filename
= 2 : Overwrite existing file

2

DIVP3D: STARTING GRID:

Number of grid blocks NB = 2

IDMN(1) = 9, JDMN(1) = 9, KDMN(1) = 9
IDMN(2) = 9, JDMN(2) = 9, KDMN(2) = 17

DIVP3D: Reading original BC data: RUBIK.BC

DIVP3D: Boundary conditions include INL and/or OUT.

MANUAL MODE (=0) OR AUTOMATIC MODE (=1) ?
0

Block No. 1
Dimensions of this block are (NI,NJ,NK) = 9 9 9
Give the cutting points (nodes) for i-direction
1 9
Give the cutting points (nodes) for j-direction
1 9
Give the cutting points (nodes) for k-direction
1 3 9

Block No. 2
Dimensions of this block are (NI,NJ,NK) = 9 9 17
Give the cutting points (nodes) for i-direction
1 9
Give the cutting points (nodes) for j-direction
1 9

Printed January 15, 1997 Page 10

Appendix A SAMPLE RUN I/O - FICTIVE GRID

Give the cutting points (nodes) for k-direction
1 9 17

DIVP3D: DIVIDED GRID:

Number of grid blocks NC = 4

IDMN(1) = 9, JDMN(1) = 9, KDMN(1) = 3
IDMN(2) = 9, JDMN(2) = 9, KDMN(2) = 7
IDMN(3) = 9, JDMN(3) = 9, KDMN(3) = 9
IDMN(4) = 9, JDMN(4) = 9, KDMN(4) = 9

DIVP3D: Starting grid NNODE = 2106
DIVP3D: Target grid NNODE = 2268

DIVP3D: Requesting 52488 bytes of memory

DIVP3D: Memory successfully allocated ...

DIVP3D: Reading original grid: RUBIK.GRID

DIVP3D: Writing splitted grid: SPLITTED.GRID

DIVP3D: Writing splitted BC data: SPLITTED.BC

DIVP3D: Reading the original INPUT: INPUT
... and writing the splitted INPUT: SPLITTED.INPUT

POSEIDON>

Original BC data - fictive grid
Two-block test grid
2
------------------------------ BLOCK 1 --------------------------------
8 8 8
1 1
SOL
2 1
SOL
3 1
SOL
4 1
SOL
5 1
CON 1 8 1 8 2 2 2
6 1
SOL
------------------------------ BLOCK 2 --------------------------------
8 8 16
1 1
SOL
2 3
SOL 1 8 1 4
CON 1 8 5 12 1 5 1
SOL 1 8 13 16
3 1
INL inlet.dat
4 1
MIR
5 1
EXT
6 1
SOL

Printed January 15, 1997 Page 11

Appendix A SAMPLE RUN I/O - FICTIVE GRID

Splitted BC data - fictive grid
Two-block test grid - decomposed
4

-------- Block No. 1 --------
8 8 2

1 1
SOL 1 8 1 2
2 1
SOL 1 8 1 2
3 1
SOL 1 8 1 8
4 1
SOL 1 8 1 2
5 2
CON 1 4 1 2 3 2 3
CON 5 8 1 2 4 2 2
6 1
CON 1 8 1 8 2 3 1
-------- Block No. 2 --------
8 8 6

1 1
SOL 1 8 1 6
2 1
SOL 1 8 1 6
3 1
CON 1 8 1 8 1 6 1
4 1
SOL 1 8 1 6
5 2
CON 1 4 1 6 3 2 2
CON 5 8 1 6 4 2 1
6 1
SOL 1 8 1 8
-------- Block No. 3 --------
8 8 8

1 1
SOL 1 8 1 8
2 3
SOL 1 8 1 4
CON 1 6 5 8 2 5 1
CON 7 8 5 8 1 5 1
3 1
INL inlet.dat
4 1
MIR 1 8 1 8
5 1
EXT 1 8 1 8
6 1
CON 1 8 1 8 4 3 1
-------- Block No. 4 --------
8 8 8

1 1
SOL 1 8 1 8
2 3
CON 1 6 1 4 2 5 2
CON 7 8 1 4 1 5 2
SOL 1 8 5 8
3 1
CON 1 8 1 8 3 6 1
4 1
MIR 1 8 1 8
5 1
EXT 1 8 1 8
6 1
SOL 1 8 1 8

Printed January 15, 1997 Page 12

Appendix B SAMPLE RUN I/O - DELTA WING

B Sample run I/O - delta wing

Sample run screen copy - delta wing - desired block edge length 32
POSEIDON> ../finflonkehitys/divp3d

**
**

DIVP3D Version 1.0 Nov, 1995 running on POSEIDON

**
**

Please enter the input grid file name:
DELTA.GRID

Please enter the input boundary condition file name:
DELTA.BC

Please enter the original INPUT file name:
INPUT

Please enter the output grid file name:
SPLITTED.GRID

File already exists! What do you want to do?
= 1 : Re-enter filename
= 2 : Overwrite existing file

2

Please enter the output boundary condition file name:
SPLITTED.BC

File already exists! What do you want to do?
= 1 : Re-enter filename
= 2 : Overwrite existing file

2

Please enter file name for the updated INPUT:
SPLITTED.INPUT

File already exists! What do you want to do?
= 1 : Re-enter filename
= 2 : Overwrite existing file

2

DIVP3D: STARTING GRID:

Number of grid blocks NB = 1

IDMN(1) = 129, JDMN(1) = 65, KDMN(1) = 65

DIVP3D: Reading original BC data: DELTA.BC

MANUAL MODE (=0) OR AUTOMATIC MODE (=1) ?
1

Desired sub-block edge length ?
32

DIVP3D: DIVIDED GRID:

Number of grid blocks NC = 16

IDMN(1) = 33, JDMN(1) = 33, KDMN(1) = 33
IDMN(2) = 33, JDMN(2) = 33, KDMN(2) = 33
IDMN(3) = 33, JDMN(3) = 33, KDMN(3) = 33
IDMN(4) = 33, JDMN(4) = 33, KDMN(4) = 33
IDMN(5) = 33, JDMN(5) = 33, KDMN(5) = 33
IDMN(6) = 33, JDMN(6) = 33, KDMN(6) = 33
IDMN(7) = 33, JDMN(7) = 33, KDMN(7) = 33
IDMN(8) = 33, JDMN(8) = 33, KDMN(8) = 33
IDMN(9) = 33, JDMN(9) = 33, KDMN(9) = 33

Printed January 15, 1997 Page 13

Appendix B SAMPLE RUN I/O - DELTA WING

IDMN(10) = 33, JDMN(10) = 33, KDMN(10) = 33
IDMN(11) = 33, JDMN(11) = 33, KDMN(11) = 33
IDMN(12) = 33, JDMN(12) = 33, KDMN(12) = 33
IDMN(13) = 33, JDMN(13) = 33, KDMN(13) = 33
IDMN(14) = 33, JDMN(14) = 33, KDMN(14) = 33
IDMN(15) = 33, JDMN(15) = 33, KDMN(15) = 33
IDMN(16) = 33, JDMN(16) = 33, KDMN(16) = 33

DIVP3D: Starting grid NNODE = 545025
DIVP3D: Target grid NNODE = 574992

DIVP3D: Requesting 13440204 bytes of memory

DIVP3D: Memory successfully allocated ...

DIVP3D: Reading original grid: DELTA.GRID

DIVP3D: Writing splitted grid: SPLITTED.GRID

DIVP3D: Writing splitted BC data: SPLITTED.BC

DIVP3D: Reading the original INPUT: INPUT
... and writing the splitted INPUT: SPLITTED.INPUT

Printed January 15, 1997 Page 14

Appendix B SAMPLE RUN I/O - DELTA WING

Sample run screen copy - delta wing - desired block edge length 48
POSEIDON> ../finflonkehitys/divp3d

**
**

DIVP3D Version 1.0 Nov, 1995 running on POSEIDON

**
**

Please enter the input grid file name:
DELTA.GRID

Please enter the input boundary condition file name:
DELTA.BC

Please enter the original INPUT file name:
INPUT

Please enter the output grid file name:
SPLITTED.GRID

File already exists! What do you want to do?
= 1 : Re-enter filename
= 2 : Overwrite existing file

2

Please enter the output boundary condition file name:
SPLITTED.BC

File already exists! What do you want to do?
= 1 : Re-enter filename
= 2 : Overwrite existing file

2

Please enter file name for the updated INPUT:
SPLITTED.INPUT

File already exists! What do you want to do?
= 1 : Re-enter filename
= 2 : Overwrite existing file

2

DIVP3D: STARTING GRID:

Number of grid blocks NB = 1

IDMN(1) = 129, JDMN(1) = 65, KDMN(1) = 65

DIVP3D: Reading original BC data: DELTA.BC

MANUAL MODE (=0) OR AUTOMATIC MODE (=1) ?
1

Desired sub-block edge length ?
48

DIVP3D: DIVIDED GRID:

Number of grid blocks NC = 12

IDMN(1) = 49, JDMN(1) = 33, KDMN(1) = 33
IDMN(2) = 33, JDMN(2) = 33, KDMN(2) = 33
IDMN(3) = 49, JDMN(3) = 33, KDMN(3) = 33
IDMN(4) = 49, JDMN(4) = 33, KDMN(4) = 33
IDMN(5) = 33, JDMN(5) = 33, KDMN(5) = 33
IDMN(6) = 49, JDMN(6) = 33, KDMN(6) = 33
IDMN(7) = 49, JDMN(7) = 33, KDMN(7) = 33
IDMN(8) = 33, JDMN(8) = 33, KDMN(8) = 33
IDMN(9) = 49, JDMN(9) = 33, KDMN(9) = 33
IDMN(10) = 49, JDMN(10) = 33, KDMN(10) = 33
IDMN(11) = 33, JDMN(11) = 33, KDMN(11) = 33
IDMN(12) = 49, JDMN(12) = 33, KDMN(12) = 33

Printed January 15, 1997 Page 15

Appendix B SAMPLE RUN I/O - DELTA WING

DIVP3D: Starting grid NNODE = 545025
DIVP3D: Target grid NNODE = 570636

DIVP3D: Requesting 13387932 bytes of memory

DIVP3D: Memory successfully allocated ...

DIVP3D: Reading original grid: DELTA.GRID

DIVP3D: Writing splitted grid: SPLITTED.GRID

DIVP3D: Writing splitted BC data: SPLITTED.BC

DIVP3D: Reading the original INPUT: INPUT
... and writing the splitted INPUT: SPLITTED.INPUT

POSEIDON>

Original BC data - delta wing
Delta wing
1
------------------------------ 1. blokki ------------------------------
128 64 64
1 1
CON 1 1 1 1 1 4 1
2 1
SOL
3 1
MIR
4 1
CON 1 1 1 1 1 1 1
5 1
EXT
6 2
CON 1 64 1 64 1 6 2
CON 65 128 1 64 1 6 1

Printed January 15, 1997 Page 16

Appendix B SAMPLE RUN I/O - DELTA WING

Splitted BC data - delta wing - desired block edge length 32
Delta wing - decomposed
16
-------- Block No. 1 --------
32 32 32
1 1
CON 1 32 1 32 4 4 1
2 1
SOL 1 32 1 32
3 1
MIR 1 32 1 32
4 1
CON 1 32 1 32 2 1 1
5 1
CON 1 32 1 32 5 2 1
6 1
CON 1 32 1 32 9 3 1
-------- Block No. 2 --------
32 32 32
1 1
CON 1 32 1 32 1 4 1
2 1
SOL 1 32 1 32
3 1
MIR 1 32 1 32
4 1
CON 1 32 1 32 3 1 1
5 1
CON 1 32 1 32 6 2 1
6 1
CON 1 32 1 32 10 3 1
-------- Block No. 3 --------
32 32 32
1 1
CON 1 32 1 32 2 4 1
2 1
SOL 1 32 1 32
3 1
MIR 1 32 1 32
4 1
CON 1 32 1 32 4 1 1
5 1
CON 1 32 1 32 7 2 1
6 1
CON 1 32 1 32 11 3 1
-------- Block No. 4 --------
32 32 32
1 1
CON 1 32 1 32 3 4 1
2 1
SOL 1 32 1 32
3 1
MIR 1 32 1 32
4 1
CON 1 32 1 32 1 1 1
5 1
CON 1 32 1 32 8 2 1
6 1
CON 1 32 1 32 12 3 1
-------- Block No. 5 --------
32 32 32
1 1
CON 1 32 1 32 8 4 1
2 1
CON 1 32 1 32 1 5 1
3 1
MIR 1 32 1 32
4 1
CON 1 32 1 32 6 1 1
5 1
EXT 1 32 1 32
6 1
CON 1 32 1 32 13 3 1
-------- Block No. 6 --------
32 32 32
1 1
CON 1 32 1 32 5 4 1
2 1
CON 1 32 1 32 2 5 1
3 1

Printed January 15, 1997 Page 17

Appendix B SAMPLE RUN I/O - DELTA WING

MIR 1 32 1 32
4 1
CON 1 32 1 32 7 1 1
5 1
EXT 1 32 1 32
6 1
CON 1 32 1 32 14 3 1
-------- Block No. 7 --------
32 32 32
1 1
CON 1 32 1 32 6 4 1
2 1
CON 1 32 1 32 3 5 1
3 1
MIR 1 32 1 32
4 1
CON 1 32 1 32 8 1 1
5 1
EXT 1 32 1 32
6 1
CON 1 32 1 32 15 3 1
-------- Block No. 8 --------
32 32 32
1 1
CON 1 32 1 32 7 4 1
2 1
CON 1 32 1 32 4 5 1
3 1
MIR 1 32 1 32
4 1
CON 1 32 1 32 5 1 1
5 1
EXT 1 32 1 32
6 1
CON 1 32 1 32 16 3 1
-------- Block No. 9 --------
32 32 32
1 1
CON 1 32 1 32 12 4 1
2 1
SOL 1 32 1 32
3 1
CON 1 32 1 32 1 6 1
4 1
CON 1 32 1 32 10 1 1
5 1
CON 1 32 1 32 13 2 1
6 1
CON 1 32 1 32 12 6 1
-------- Block No. 10 --------
32 32 32
1 1
CON 1 32 1 32 9 4 1
2 1
SOL 1 32 1 32
3 1
CON 1 32 1 32 2 6 1
4 1
CON 1 32 1 32 11 1 1
5 1
CON 1 32 1 32 14 2 1
6 1
CON 1 32 1 32 11 6 1
-------- Block No. 11 --------
32 32 32
1 1
CON 1 32 1 32 10 4 1
2 1
SOL 1 32 1 32
3 1
CON 1 32 1 32 3 6 1
4 1
CON 1 32 1 32 12 1 1
5 1
CON 1 32 1 32 15 2 1
6 1
CON 1 32 1 32 10 6 1
-------- Block No. 12 --------
32 32 32
1 1
CON 1 32 1 32 11 4 1

Printed January 15, 1997 Page 18

Appendix B SAMPLE RUN I/O - DELTA WING

2 1
SOL 1 32 1 32
3 1
CON 1 32 1 32 4 6 1
4 1
CON 1 32 1 32 9 1 1
5 1
CON 1 32 1 32 16 2 1
6 1
CON 1 32 1 32 9 6 1
-------- Block No. 13 --------
32 32 32
1 1
CON 1 32 1 32 16 4 1
2 1
CON 1 32 1 32 9 5 1
3 1
CON 1 32 1 32 5 6 1
4 1
CON 1 32 1 32 14 1 1
5 1
EXT 1 32 1 32
6 1
CON 1 32 1 32 16 6 1
-------- Block No. 14 --------
32 32 32
1 1
CON 1 32 1 32 13 4 1
2 1
CON 1 32 1 32 10 5 1
3 1
CON 1 32 1 32 6 6 1
4 1
CON 1 32 1 32 15 1 1
5 1
EXT 1 32 1 32
6 1
CON 1 32 1 32 15 6 1
-------- Block No. 15 --------
32 32 32
1 1
CON 1 32 1 32 14 4 1
2 1
CON 1 32 1 32 11 5 1
3 1
CON 1 32 1 32 7 6 1
4 1
CON 1 32 1 32 16 1 1
5 1
EXT 1 32 1 32
6 1
CON 1 32 1 32 14 6 1
-------- Block No. 16 --------
32 32 32
1 1
CON 1 32 1 32 15 4 1
2 1
CON 1 32 1 32 12 5 1
3 1
CON 1 32 1 32 8 6 1
4 1
CON 1 32 1 32 13 1 1
5 1
EXT 1 32 1 32
6 1
CON 1 32 1 32 13 6 1

Printed January 15, 1997 Page 19

Appendix B SAMPLE RUN I/O - DELTA WING

Splitted BC data - delta wing - desired block edge length 48
Delta wing - decomposed
12
-------- Block No. 1 --------
48 32 32
1 1
CON 1 32 1 32 3 4 1
2 1
SOL 1 48 1 32
3 1
MIR 1 48 1 32
4 1
CON 1 32 1 32 2 1 1
5 1
CON 1 48 1 32 4 2 1
6 1
CON 1 48 1 32 7 3 1
-------- Block No. 2 --------
32 32 32
1 1
CON 1 32 1 32 1 4 1
2 1
SOL 1 32 1 32
3 1
MIR 1 32 1 32
4 1
CON 1 32 1 32 3 1 1
5 1
CON 1 32 1 32 5 2 1
6 1
CON 1 32 1 32 8 3 1
-------- Block No. 3 --------
48 32 32
1 1
CON 1 32 1 32 2 4 1
2 1
SOL 1 48 1 32
3 1
MIR 1 48 1 32
4 1
CON 1 32 1 32 1 1 1
5 1
CON 1 48 1 32 6 2 1
6 1
CON 1 48 1 32 9 3 1
-------- Block No. 4 --------
48 32 32
1 1
CON 1 32 1 32 6 4 1
2 1
CON 1 48 1 32 1 5 1
3 1
MIR 1 48 1 32
4 1
CON 1 32 1 32 5 1 1
5 1
EXT 1 48 1 32
6 1
CON 1 48 1 32 10 3 1
-------- Block No. 5 --------
32 32 32
1 1
CON 1 32 1 32 4 4 1
2 1
CON 1 32 1 32 2 5 1
3 1
MIR 1 32 1 32
4 1
CON 1 32 1 32 6 1 1
5 1
EXT 1 32 1 32
6 1
CON 1 32 1 32 11 3 1
-------- Block No. 6 --------
48 32 32
1 1
CON 1 32 1 32 5 4 1
2 1
CON 1 48 1 32 3 5 1
3 1

Printed January 15, 1997 Page 20

Appendix B SAMPLE RUN I/O - DELTA WING

MIR 1 48 1 32
4 1
CON 1 32 1 32 4 1 1
5 1
EXT 1 48 1 32
6 1
CON 1 48 1 32 12 3 1
-------- Block No. 7 --------
48 32 32
1 1
CON 1 32 1 32 9 4 1
2 1
SOL 1 48 1 32
3 1
CON 1 48 1 32 1 6 1
4 1
CON 1 32 1 32 8 1 1
5 1
CON 1 48 1 32 10 2 1
6 1
CON 1 48 1 32 9 6 1
-------- Block No. 8 --------
32 32 32
1 1
CON 1 32 1 32 7 4 1
2 1
SOL 1 32 1 32
3 1
CON 1 32 1 32 2 6 1
4 1
CON 1 32 1 32 9 1 1
5 1
CON 1 32 1 32 11 2 1
6 2
CON 1 16 1 32 8 6 2
CON 17 32 1 32 8 6 1
-------- Block No. 9 --------
48 32 32
1 1
CON 1 32 1 32 8 4 1
2 1
SOL 1 48 1 32
3 1
CON 1 48 1 32 3 6 1
4 1
CON 1 32 1 32 7 1 1
5 1
CON 1 48 1 32 12 2 1
6 1
CON 1 48 1 32 7 6 1
-------- Block No. 10 --------
48 32 32
1 1
CON 1 32 1 32 12 4 1
2 1
CON 1 48 1 32 7 5 1
3 1
CON 1 48 1 32 4 6 1
4 1
CON 1 32 1 32 11 1 1
5 1
EXT 1 48 1 32
6 1
CON 1 48 1 32 12 6 1
-------- Block No. 11 --------
32 32 32
1 1
CON 1 32 1 32 10 4 1
2 1
CON 1 32 1 32 8 5 1
3 1
CON 1 32 1 32 5 6 1
4 1
CON 1 32 1 32 12 1 1
5 1
EXT 1 32 1 32
6 2
CON 1 16 1 32 11 6 2
CON 17 32 1 32 11 6 1
-------- Block No. 12 --------
48 32 32

Printed January 15, 1997 Page 21

Appendix B SAMPLE RUN I/O - DELTA WING

1 1
CON 1 32 1 32 11 4 1
2 1
CON 1 48 1 32 9 5 1
3 1
CON 1 48 1 32 6 6 1
4 1
CON 1 32 1 32 10 1 1
5 1
EXT 1 48 1 32
6 1
CON 1 48 1 32 10 6 1

Printed January 15, 1997 Page 22

