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Heat transfer equations have been used in the process of designing the multilevel system in 
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El tópico principal del Trabajo de Fin de Master es el desarrollo de un sistema multinivel de 

muestras para analizadores de gases, en el que un analizador puede medir la composición del 

gas producido en gasificación o combustión, en tres diferentes niveles de un reactor de lecho 

fluidizado circulante. En este trabajo se usaron dos analizadores que fueron el Dx-4000 

GASMET analizador de gas y Siemens ULTRAMAT 23 analizador de gas. 

El sistema multinivel de muestras consiste de tres niveles diferentes, los cuales son 

conectados al reactor por tuberías de acero. Además, hay válvulas solenoides que con un 
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parámetro más importante en el diseño de dicho sistema, ya que tenía que ser el mínimo 

posible para evitar algunos problemas de reacciones químicas y contaminación del gas en el 

sistema.  

Finalmente, los regímenes transitorio y permanente (tiempo de residencia) para tomar buenas 
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Nomenclature 

Symbols 

C(t) Concentration of a trace respect to the time 

Co(t) Initial concentration 

cp Specific heat capatity 

D Diameter of the pipe 

ɛ Emissivity of the material 

E(t) Residence time distribution function 

hi Convection coefficient inside of the pipe 

ho Convention coefficient outside of the pipe 

hrad Equivalent radiation coefficient 

k Thermal conductivity of the material 

ṁ Mass flow of gas 

ΔN Increase in the amount of injected trace 

No Initial amount of injected trace 

NuD Nusselt number 

Pr Prantdl number 

Q Heat released from the gas 

q’ Heat released from the gas per meter of pipe 

𝑅𝑒𝐷
 Reynolds number 

ri Internal radius of the pipe 

ro External radius of the pipe 

ε Stefan-Boltzmann constant 



T Temperature 

Δt Step time 

Υ Volumetric flow 

 

Operators 

𝑑

𝑑𝑡
 Derivate with respect to variable t 

∫ 𝑑𝑡
∞

0

 Integrate with respect to variable t 

 

Abbreviations 

APC 

BFB 

Air pollution control 

Bubbling fluidized bed 

CFB Circulating fluidized bed 

ER Equivalent ratio 

FM Flow meter 

FT-IR Fourier transform infrared spectrometer 

HX Heat exchange 

IGCC Integrated gasification combined cycle 

IR Infrared spectrometer 

LCV Lower calorific value 

NCV Net calorific value 

PH Preheater connected to the riser 

PH2 Sand-lock preheater 



PVC Polyvinyl chloride 

RH Riser heating elements 

SRF Solid recovered fuel 

VF Ball valve controlling the fuel flow 

VI Valve controlling the inlet gas 

VPS 
Valve controlling the gas flow to the sand-

lock and the aeration 
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1 Introduction 

Gasification is a relatively old technology, which was invented already at the end of the 18th 

Century and used mainly to produce town gas from coal during the 19th Century (Basu, 2006). 

Gasification refers to a group of different thermochemical processes that convert solid or liquid 

fuels into a synthesis gas (syngas). The used air in gasification is less than the theoretically 

needed stoichiometric air for complete combustion of the fuel. 

This process occurs in reactors called gasifiers, where different fuels such as coal, biomass, and 

petroleum coke are converted into a combustible gas (syngas). It is a mixture of different gases, 

mainly CO and H2 with other gases like CO2, CH4, H2S, HCl, etc. The composition of the gas 

depends on the system and operational parameters (type of gasifier, temperature, raw material, 

pressure,…)(Williams, 2013). 

There are different types of gasifiers categorize based on some characteristics of the reactors 

like gasification medium (air, oxygen or steam) or how the gas and fuel contact each other (Basu, 

2006). If categorized by how the gas and fuel contact each other, there are 4 types of gasifier:  

1. Entrained bed. 

2. Fluidized bed (Bubbling or Circulating). 

3. Spouted bed. 

4. Fixed or moving bed (Basu, 2006). 

 

Figure 1.1 shows examples of some these of gasifiers. 
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Figure 1.1 Different types of gasifier (Basu, 2006). 

In a fluidized bed the fuel is mixed with the air in a hot bed of granular solids like sand; these 

reactors are used very frequently in gasification of biomass (Basu, 2006). Within this type of 

reactors, there are two different reactors that are fluidized bed gasifiers: 

1. Bubbling fluidized bed gasifier (BFB). 

2. Circulating fluidized bed gasifier (CFB). 

 

The main difference between them is that the bubbling fluidized bed (BFB) cannot achieve a 

high solid circulation, while circulating fluidized bed (CFB) has an excellent heat and mass 

transfer and longer residence time (Basu, 2006). 
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The working principle of the circulating fluidized bed reactor (CFB) is that upward flow of air 

makes the solids suspended. Operating the CFB in the turbulent regime ensures high heat and 

mass transfer. This kind of reactors can be used in many applications like production of bio-gas, 

production of liquid transportation fuels (Siedlecki et al., 2011), treatment of waste and 

production of heat and electricity, etc. Figure 1.2 shows an example of a circulating fluidized 

bed reactor and Table 1.1 shows for typical operational conditions of this type of reactors. 

 

Figure 1.2 Circulating fluidized bed gasifier (ANDRITZ, 2016). 

 

Table 1.1 Typical operational conditions for circulating fluidized bed gasifiers in commercial use (Grace, 2003). 

Parameters Accepted Values 

Superficial gas velocity (m/s) 2-12 

Net solids flux through the riser (kg/m2s) 10-1000 

Temperature (°C) 20-950 

Pressure (kPa) 100-2000 

Mean particle diameter (μm) 50-500 

Overall riser height (m) 15-40 
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Gasification offers some advantages over direct combustion. For example the gas flow in 

gasification is less than in the direct combustion of the fuel, since the amount of required oxygen 

in the gasification is less than the stoichiometric oxygen. Gasification thus needs smaller 

equipment, which results in lower capital costs (Basu, 2006). 

Another advantage is that the end product gas from gasification has more applications than the 

direct combustion of the fuel. For example the syngas can be used to generate electricity or 

thermal energy in power plants, produce methanol, ammonia or other products in chemical or 

industrial processes. 

In addition, because syngas can be produced from biomass, it means that a great amount of 

waste from cities, industries, forests, etc, can be treated. This could solve a big problem for 

emerging countries like China or India, so gasification is a good process to take advantage of 

such waste, in a better way for the environment instead of disposing the waste in landfills. 

Syngas from gasification can be burnt directly in boilers in order to produce heat or it can also 

be cleaned in order to prevent corrosion and problems with tar. After the cleaning, it can be used 

in turbines or internal combustion engines to generate electricity and the gas could also be 

upgraded to e.g. liquid fuels through fuel synthesis (Williams, 2013), with the quality 

requirements shown in Table 1.2. 

Table 1.2 Gas quality of raw producer gas from atmospheric, air blown biomass gasifier (Laurence and Ashenafi 2011). 

Component Unit Ic engine Gas turbine Methanol synthesis 

Particles mg/Nm3 <50 <30 <0,02 

Particle size μm <10 <5  

Tar mg/Nm3 <100  <0,1 

Alkali mg/Nm3  0,24  

NH3 mg/Nm3   <0,1 

H2S& COS mg/Nm3   <1 

Cl mg/Nm3   <0,1 

CO2 Vol. % No limit No limit <12 

 

Shown the importance of gasification and combustion nowadays, there are many studies and 

research on gasification and combustion in order to understand these processes better and to be 

able to improve this. Some studies like (Yang, 2008) tried to understand the different 

physiochemical processes in gasification and see what happens with the composition of the 

syngas if some parameters such as temperature, pressure, fuel, etc, are changed in the reactor. 

Others such as (Gómez-Barea and Leckner, 2010) studied different numerical models to 

estimate how the physiochemical processes change if the parameters of the reactor are modified, 

so the composition of the syngas will also change and with numerical models this composition 

can be estimated too. 
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On the other hand in comparison with the others, (Niu et al., 2008) developed a multilevel 

sampling system for gas analysers. With this system, instead of estimating with numerical 

models or studying the gas composition in only one place of the reactor, (Niu et al., 2008) could 

study the gas composition in different levels and understand better the physiochemical processes 

in each level of the reactor. In this study, the gas is treated and cleaned until it arrives to the gas 

analyser, because some substances like tar has to be removed and in this way avoid that the 

system will be damaged.  

(Nakamura et al., 2016); (Phuphuakrat et al., 2011) and (García-Labiano et al., 2016) explained 

different methods to remove dangerous substances like tar from gas flow. (Phuphuakrat et al., 

2011) studied the difference to use absorbents like diesel, biodiesel, vegetable oil and engine oil 

instead of water in scrubbers. The result was that vegetable oil is the best option for tar removal, 

and so (Nakamura et al., 2016) describes the use of oil scrubbers as they have a high tar removal 

efficiency. However, (García-Labiano et al., 2016) describes the use of filters instead of 

scrubbers to remove tar. Nevertheless, their efficiency is lower than the efficiency of scrubbers 

and they have some clogging problems as well. 

A multilevel sampling system for gas analyser is developed in this thesis, which permits the gas 

composition from three different levels in the gasifier to be analysed with only one gas analyser. 

In this way, the different physiochemical reactions, which take place inside of the reactor, can 

be better understood. Besides, the treatment system of the gas is carefully designed in order to 

protect the system from unwanted substances like tar. Another of the objective of this work is 

to design the system so that the gas flow remains as short time as possible in the system, and 

avoid problems like contamination of the gas or even that the physicochemical reactions 

continue to occur in the treatment system. 

 

1.1 Objectives 

The main objective of this Master’s Thesis is to develop a multilevel gas analysis system for a 

pilot scale circulating fluidized bed reactor. Only one gas analyser is used  in the multilevel 

sampling system to analyse the gas composition, however measurement data is collected from 

3 different vertical levels. 

 

2 Literature Review 

2.1 Physicochemical Processes in Combustion and Gasification in 
Fluidized Beds 

When the gasification process of a fuel takes place, there are 4 different physicochemical 

processes, which take place in different levels of the reactor: drying, pyrolysis (devolatilization), 

combustion and reduction or gasification. These processes occur within different temperature 

ranges inside of the gasifier (Basu, 2006): 
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Drying     (<150°C). 

Pyrolysis (devolatilization)   (150-700°C). 

Combustion     (700-1500°C). 

Reduction or gasification  (800-1100°C). 

Drying, pyrolysis and reduction are endothermic processes, which absorb heat provided by 

combustion (exothermic process). 

Knowing what happens in each level helps to understand the different gasification and 

combustion reactions (Basu, 2006), that take place in the reactor and the final gas composition, 

since it depends on which reactions are favoured in the gasification process: 

Water-gas reaction. 

𝐶(𝑠) + 𝐻2𝑂 = 𝐻2 + 𝐶𝑂                               − 131,38 
𝐾𝐽

𝑚𝑜𝑙 𝐶
 

Boudouard reaction. 

𝐶(𝑠) + 𝐶𝑂2 = 2𝐶𝑂                                        − 172,58 
𝐾𝐽

𝑚𝑜𝑙 𝐶
 

 

Shift reaction. 

𝐶𝑂 + 𝐻2𝑂 = 𝐻2 + 𝐶𝑂2                                            − 41,98
𝐾𝐽

𝑚𝑜𝑙 𝐶 
 

Methanation. 

𝐶 + 2𝐻2 = 𝐶𝐻4 + 𝐶𝑂                                + 74,9
𝐾𝐽

𝑚𝑜𝑙 𝐶
 

 

Since the understanding of different processes in gasification and combustion is very important, 

several articles have been published about chemical reactions involved in gasification (Yang, 
2008);(Gómez-Barea and Leckner, 2010); (Niu et al., 2008). According to (Yang, 2008), there 

are 3 different physicochemical processes or zones inside of the reactor: 
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Oxidation zone. 

Reduction zone. 

Destructive distillation or dry zone. 

In the oxidation zone the oxygen reacts with the fuel (combustion) and produces a great amount 

of heat that is absorbed by the endothermic reactions in the other zones. When the oxygen is 

consumed, then the reduction reactions take place in the reactor and they produce mainly CO 

and H2. Later the gas begins to flow into the destructive distillation or dry zone, where some 

cracking and dry processes occur. 

In addition, (Yang, 2008) analysed the effect of different parameters such as temperature, 

pressure, type of coal, the length and cross section of the riser over each physicochemical 

process and the gas composition. For example, when the temperature in the reactor drops, the 

amount of CO decreases, while the amount of CH4, H2 and CO2 increase. The effect of the 

temperature is shown in Figure 2.1. 

 

Figure 2.1 The temperatures in 3 and 10 min respectively after steam supply (Yang, 2008). 

This happens because when the temperature drops gradually, the following reaction (reduction 

zone) becomes weaker: 

𝐶 + 𝐻2𝑂 = 𝐶𝑂 +  𝐻2                                                 − 131,5
𝑘𝐽

𝑚𝑜𝑙 𝐶
 

 

However, other reactions that produce CH4, H2 and CO2 are favoured.  
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Gómez-Barea and Leckner (2010) studied the physicochemical processes and the gas 

composition in biomass gasification. They simulated and did numerical modelling in order to 

predict the gas composition in different levels of a reactor.  For this reason (Gómez-Barea and 

Leckner, 2010) developed a numerical model from conservation equations in order to predict 

what happen inside of the reactor. For fluidization modelling, they predicted the distribution of 

gas species in different levels of the reactor, their results are shown in Figure 2.2. 

 

Figure 2.2 Distribution of the concentrations of CH4, CO and H2 over the cross-section of a CFBG with 0.5 m square cross-
section burning sewage sludge (Petersen and Werther 2005). 
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Figure 2.2 shows that the formation of CH4, CO and H2 are different in each level of the reactor. 

H2 is formed almost in all levels of the reactor, while for example the CH4 is almost completely 

produced at the bottom of the reactor. It occurs because the reactions and the favoured conditions 

for generating CH4 are mainly located at bottom of the reactor. 

However, although (Yang, 2008) and (Gómez-Barea and Leckner, 2010) tried to understand the 

different reactions in the reactor, none of these articles analysed the gas composition in different 

levels of the reactor. For example (Yang, 2008) analysed the gas down-streams of the cyclone 

and not in different levels of the reactor.  

On the other hand, (Gómez-Barea and Leckner, 2010) developed and improved numerical 

models that predict the gas composition in the different physicochemical processes of the 

gasification, but their work did not study the gas composition in different levels of the reactor, 

it was only a prediction. 

Because of the importance of the analysis of the gas composition in different levels of the 

reactor, in the next chapters, the different methods and types of gas analysers used to measure 

and analyse the gas composition in a reactor are explained. How to protect these systems from 

dangerous substances like tar and some important parameters like residence time, which have 

to be taken into consideration in gas analyser systems is also explained. 

 

2.2 Operation Principles of Gas Analysers 

Analysis of the gas composition of the flue gases in combustion or the final products of 

gasification has a high importance, since it can help to understand how the system is working 

and it can give us ideas how to improve the system or the process. There are different methods 

and equipment available on the market to analyse the gas composition. These equipment are 

called gas analysers and some of them and their working principles are going to be explained in 

this chapter. 

There are two different methods to measure and analyse the gas composition in a reactor: 

continuously (on-line) or through discrete samples taken from the syngas flow. However in both 

methods, the gas should be cleaned from tar, particles and other substances using filters or 

scrubbers before it goes into a gas analyser (Reed and Das, 1988). 

The on-line gas analyser systems are continuously measuring the gas composition that otherwise 

would not be possible with discrete samples, since the sample gas analyser system requires time 

to measure the gas composition (Reed and Das, 1988). On the other hand, the discrete samples 

measuring can be very useful, for example in the case that a company wants to analyse the 

sample in a laboratory with better conditions and equipment than in the reactor place. 

Although, the type of gas analyser can be the same in both methods, the on-line and the discrete 

samples measuring, there are different types of gas analysers on the market such as infrared 

absorption (IR), electrochemical analysers, etc (Reed and Das, 1988). 
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One of the most common used gas analysers is the infrared absorption (IR) gas analyser. The 

working principle of this type of gas analyser is that when the infrared radiation pass although 

the sample gas, some of the radiation is absorbed by the gas molecules (GASMET, 1997a). This 

absorbed radiation can be seen as a decrease in the intensity of some wavelengths in the 

spectrum of the transmitted infrared radiation. If the infrared absorption spectrum is studied, it 

is possible to know which wavelengths have been absorbed and which gas has made this. As an 

example, Figure 2.3 shows the absorbance spectrum of CH4 (GASMET, 1997a). 

 

Figure 2.3 Absorbance spectrum of CH4 (GASMET 1997). 

One important operational parameter for gas analysers is the time-scales or sampling frequency. 

It is important because if the gas analyser analyses the gas compositions lower than the gas 

composition changes in reality, the obtained results will be inaccurate. This is due to the fact 

that the higher sample frequency is, more data is acquired and more accurate are the final results. 

Figure 2.4 shows the measured amount of CO in a gas with two different gas analyser (Siemens 

ULTRAMAT and Dx-4000 GASMET). 
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Figure 2.4 Amount of CO with two different gas analyser. 

In Figure 2.4, it is possible to see that the results from both analysers, FT-IR and ULTRAMAR 

are very close. However, there are some differences due to the different sample frequency of 

each analyser. So when a gas analyser has to be chosen for a new project, the sample frequency 

is one of the most important properties to be taken into account. 

Normally, the gas sampling point is located at the top of gasifier, since in this part of the reactor, 

the gas has been cleaned of particles. However, if other experiments have to be done for 

understanding what happens in different levels of the reactor, the gas sampling point has to be 

located in other places. (Niu et al., 2008) have developed some ideas, which permit to analyse 

the gas composition in different levels. The work obtained by (Niu et al., 2008) detailed local 

measurements of the gas composition in order to clarify the different reactions and mechanisms 

occurring in gasification or combustion. For this, the researchers developed a system that permit 

to take samples of the gas in different levels of the reactor. One example of such a system is 

shown in Figure 2.5. 
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Figure 2.5 The gas pre-treatment system (Niu et al. 2008). 

In this design, the samples of the gas are firstly cooled and cleaned with different filters, 

desiccators and a condenser to remove the particles, tar and water before the gas is analysed in 

mass spectrometry. This is an important step, since if these substances are not removed, the 

analyser could be damaged. 

However, the previous work did not take into consideration the residence time of the gas in the 

cooling and cleaning system. It is a very important parameter because if the gas remains longer 

time, it could be contaminated with metals or other substances in the analyser system, as well 

the physicochemical reaction could further react through the sampling system. So the longer the 

gas remains in the pre-treatment, less reliable results of the gas composition will be obtained. 

Another important thing to know is that the delay (residence time) between when the gas is 

taken from the reactor and when the gas is analysed in the gas analyser is not taken into account 

in (Niu et al., 2008). It could pose a big problem, since it is impossible to know when the 

analysed gas was inside of the reactor and how much time the gas was in the gas analyser system. 

An example is shown in Figure 2.5, in which the gas was inside of the reactor at 13:00:00, and 

the residence time (delay) of the gas in the sampling system was 10 seconds. 

For this reason, if the residence time or delay that the gas is in the gas sampling system is known, 

it is possible to know when each taken measurement of the gas composition was inside of the 

gasifier. So if the residence time is very short, it means that likely the measurements are closer 

to the real situation inside of the reactor than if the gas remains for too long time in the gas 

sampling system (long residence time). 

Because of the importance of the residence time and the protection of the system, how to protect 

the gas analyser system from unwanted substances like tar and the importance to know the 

residence time in the gas analyser system will be explained in the next chapters. 
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2.3 Pre-Treatment of the Gas Samples 

Whether the gas is sampled continuously or discretely, the gas analysers have to be always 

protected from substances such as tar, particles and liquid water that are produced in 

gasification. 

Tar is a substance produced in gasification or pyrolysis that consists of several hundreds of 

hydrocarbons and aromatic compounds. The most important ones are shown in Table 2.1. Apart 

from other problems, one of the main problems related to when the tar dew point is reached, tar 

condensates resulting in clogging of fuel lines, filters, engines and gas analysers. The amount 

of tar produced in gasification processes depends on the conditions inside of the reactor, the fuel 

and the type of gasifier. In an updraft gasifier 10–15 g/Nm3 of tar is normally formed (Nakamura 

et al., 2016) and in the case of the gasification plant in Lahti 7-12 g/Nm3 is formed (Kurkela et 

al., 2003). Table 2.1 shows one classification of tar composition. 

Table 2.1 Classification of tar based on molecular weight (Wolfesberger et al., 2009). 

Tar 

class 
Class name Property 

Representative 

compounds 

1 
GC-

Undetectable 

Very heavy tars, cannot be 

detected by GC 
- 

2 
Heterocyclic 

aromatics 

Tars containing hetero atoms, 

highly water soluble compounds 

Pyridine; phenol; cresols; 

quinolone; isoquinoline; 

dibenzophenol 

3 

Light 

aromatic (one 

ring) 

Usually light hydrocarbons with 

single ring; do not pose a problem 

regarding condensability and 

solubility 

Toluene; ethylbenzene; 

xylenes; styrene 

4 

Light PAH 

compounds 

(two to three 

rings) 

Two and three rings compounds; 

condense at low temperature even 

at very low concentration 

Idene; naphthalene; 

methylnaphthalene; 

biphenyl; acenaphalene; 

fluorine; phenanthrene; 

anthracene 

5 

Heavy PAH 

compounds 

(four to seven 

rings) 

Larger than three rings; these 

components condense at high-

temperature at low concentration 

Fluoranthene; pyrene; 

chrysene; perylene: 

coronene 

 

There are many available technologies to remove tar, which can be divided into primary and 

secondary methods.  
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Primary methods are: thermal cracking, catalytic cracking and plasma gasification (Nakamura 

et al., 2016). Some of these methods, which use catalysts like Ni, remove tar with a high 

efficiency, over 98-99%. However, these primary methods have some disadvantages such as 

higher initial and running costs because of high temperature, short life of the catalysts and 

difficult construction of adapted reactors (Nakamura et al., 2016). 

Secondary methods use scrubbers, filters and centrifuges. Such equipment are easier to 

commercialize because of their low initial and operational costs (Nakamura et al., 2016). In the 

case of scrubbers, there is a problem if water is used, since tar is soluble in water requiring 

expensive water treatment units (Nakamura et al., 2016). For this reason the use of scrubbers 

with oil is one alternative to water, since oil is non-polar, unlike tar, thus tar is not soluble in oil 

(Nakamura et al., 2016).  

Besides (Phuphuakrat et al., 2011) studied the efficiency of removing tar with different 

substances, and the results were from highest to lowest efficiency in tar removal: 

Diesel fuel → vegetable oil → biodiesel fuel →  engine oil → water. 

Figure 2.6 shows the scrubber used in (Phuphuakrat et al., 2011) and its connection to the tar 

removal system. 
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Figure 2.6 (a) Detail of the scrubber used for tar absorption study and (b) schematic diagram of the experimental setup 
(Phuphuakrat et al., 2011). 

However, in this study an increase in gravimetric tar was observed for diesel fuel and biodiesel 

fuel absorbents because they evaporate easily. Therefore vegetable oil is the best option in 

scrubbers to remove tar in gasification systems (Phuphuakrat et al., 2011). Table 2.2 shows the 

tar removal efficiency with different absorbents, while Figure 2.7 shows the gravimetric tar of 

these absorbents used for the tar removal. 

 



 

 

16 

 

Table 2.2 Absorption efficiencies of tar components by different absorbents (%) (Phuphuakrat et al., 2011). 

 

 

Water Diesel fuel Biodiesel fuel Vegetable oil Engine oil 

Benzene (C6H6) 24,1 77,0 86,1 77,6 61,7 

Toluene (C7H8) 22,5 63,2 94,7 91,1 82,3 

Xylene (C8H10) 22,1 730,1* 97,8 96,4 90,7 

Styrene (C8H8) 23,5 57,7 98,1 97,1 91,1 

Phenol (C6H6O) 92,8 111,1* 99,9 99,7 97,7 

Indene (C9H8) 28,2 97,9 97,2 97,6 88,7 

Naphthalene (C10H8) 38,9 97,4 90,3 93,5 76,2 

* Higher than 100% because of the evaporation of the absorbent. 

 

 

Figure 2.7 Concentration of gravimetric tar in the tar trap using different absorbents (Phuphuakrat et al., 2011). 

Apart from scrubbers, there are other components that are used to protect gas analysers, engines, 

or any equipment installed down-stream of the reactor. For example filters are also used for tar 

and particulate matter removal. There are many different types of filters like catalytic filters, 

granular bed filters, ceramic filters, etc. 

Filters can be used directly in the air pollution control (APC) system to remove most of the 

unwanted substances, but they can also be used after scrubbers in order to remove the substances 

that the scrubbers could not remove. In this way, any down-stream equipment of the reactor are 

protected from tar, particles, etc. Figure 2.8 shows a catalytic filter used in (García-Labiano et 

al., 2016) , while Figure 2.9 shows a dual layer granular bed filter used in (Hu et al., 2016). 
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Figure 2.8 Catalytic filter (García-Labiano et al., 2016). 

Removing tar using ceramic filters can be problematic, since sometimes these filters can get 

blocked or clogged and as result, the whole process should be stopped in order to clean or change 

the filters (Bridgwater, 2013). Filters depend on operational conditions, type of reactors and fuel 

used. For example in Lahti, the use of wood instead of SRF reduces the production of tar, 

avoiding the clogging problem of the ceramic filters (Uuskallio, 2014). 
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Figure 2.9 Dual layer granular bed filter (Hu et al., 2016). 

After the gas flow has been cleaned from unwanted substances, the next step is to assure that 

the gas flow will remain in the sampling system as short time as possible, the residence time of 

the gas in the whole system is going to be explained in the next chapter. 

 

2.4 Residence Time in Gas Sampling System 

The residence time is defined as the time that the gas spends in the gas sampling system, which 

includes the equipment and piping between the reactor and the gas analyser. If this time is very 

long the measurements can be inaccurate. It is because some reactions continue in the gas 

analyser system and valuable data can be lost. Besides that, during the time that the gas spends 

inside of the gas analyser system, there is more probability that the gas is contaminated by any 

substance. So the knowledge of the residence time has a big importance in the multilevel 

sampling gas system. 

There are two different methods to measure the residence time and the residence time 

distribution function in deposits, reactors or pipes of gases or liquids: pulse input and step input 

(Fogler, 2006). In the pulse input method, a trace of coloured, radioactive or inert (CO2, N2, etc) 

elements are injected in the reactor or pipe and later the time that the trace remains in the system 

can be measure checking when the concentration of this trace in the system starts to appear in 

the pulse response and until when there is not any trace in the system (Fogler, 2006). The pulse 

injection and the pulse response of the trace are shown in Figure 2.10. 
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Figure 2.10 Pulse input for residence time measurement (Fogler 2006). 

In this method, an amount of tracer N0 is injected in one shot for as short time as possible. Later 

the amount of this tracer is calculated with the concentration of this tracer in the flow with 

Equation 2.1 (Fogler, 2006): 

∆𝑁 = 𝐶(𝑡)𝑣∆𝑡 (2.1) 

Where ∆𝑁 is the increase of the amount of trace with time, 𝑣 is the volumetric flow, 𝐶(𝑡) is the 

concentration of the trace in the flow and ∆𝑡 is the time from the injection of the trace to the 

concentration is measured (Fogler, 2006). If Equation (2.1) is divided by the amount of tracer 

injected N0, it is possible to obtain the residence-time distribution function: 

𝐸(𝑡) =
𝑣 𝐶(𝑡)

𝑁0
 (2.2) 

Finally if Equation (2.1) is derivated and then integrated, combining Equation (2.2), Equation 

(2.3) is obtained. 

𝐸(𝑡) =
𝐶(𝑡)

∫ 𝐶(𝑡) 𝑑𝑡
∞

0

 (2.3) 

Where 𝐶(𝑡) is the concentration of tracer at time and the integral is the area under the C curve, 

as shown in Figure 2.11. 
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Figure 2.11 Concentration of the trace in the flow over time (Fogler, 2006). 

The difference between the step input and the previous method is that the injection of the trace 

remains constant until there is a trace of inert element in the step response. So the residence time 

of the trace can be calculated only with watching the time between when the injection of the 

trace is produced and when the trace appears in the step response (Fogler, 2006). Figure 2.12 

shows an example of this method. 

 

 

Figure 2.12 Step input for residence time measurement (Fogler 2006). 

In the step injection method the concentration of the trace in the flow is constant after the 

injection (Fogler, 2006): 

𝐶𝑜(𝑡) =  0                        𝑡 < 0 

𝐶𝑜(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡          𝑡 ≥ 0 

In this method the residence-time distribution function can be calculated with Equation (2.4) 

(Fogler, 2006). 
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𝐸(𝑡) =
𝑑

𝑑𝑡
[
𝐶(𝑡)

𝐶𝑜
]

𝑠𝑡𝑒𝑝

 (2.4) 

Finally, independently of the method used, the residence time can be calculated from the 

residence-time distribution function in Equation (2.5) (Fogler, 2006): 

𝑡𝑚 =
∫ 𝑡𝐸(𝑡)𝑑𝑡

∞

0

∫ 𝐸(𝑡)𝑑𝑡
∞

0

=
∫ 𝑡𝐸(𝑡)𝑑𝑡

∞

0

1
= ∫ 𝑡𝐸(𝑡)𝑑𝑡

∞

0

 (2.5) 

Overall, the step input method is more accurate than the pulse input (Fogler, 2006) and therefore 

the step input method will be used in this work. 

On the other hand, if only the residence time is known, it is not enough, since the residence time 

measured is composed by two different parts: transitional time and steady time. The transitional 

time is the time within the amount of trace in the response is increasing until this achieves the 

same concentration. However the steady time is the time when the concentration of trace in the 

response is all the time the same, i.e. without any change. 

If this is applied to the step input method, the injection of trace is almost instant, which can be 

seen in Figure 2.12. However in the response it is very clear that at the beginning there is a time 

when the amount of trace is increasing until it is stabilized. This is the transitional time, while 

after the trace is stabilized the steady time follows. Figure 2.13 shows the transitional and steady 

times in the step response. 

 

Figure 2.13 Transitional and steady time in step response. 

 

 

 

Transitional time Steady time 
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This can be applied to sampling lines, since if a valve is installed before the gas analyser and it 

is opened and closed, there is a transitional time and a steady time in the gas flow. Gas analysers 

work during this time, but only data from the steady state is reliable. For this reason it is 

necessary to know how long the steady time takes, because this is the time within the data 

acquired from the gas analyser will be reliable. Figure 2.14 shows the transitional times and the 

steady times when a valve is opened and closed before a gas analyser. 

 

Figure 2.14 Transitional and steady states for one measurement with gas analyser. 

As the measurements are only reliable during the steady state, the reliable data of gas 

composition should be taken from t0 to t1. Therefore, knowing this steady state and the two 

transitional times after t1 and before t0, it is possible to know how long one cycle of measurement 

takes with the gas analyser. 

On the other hand, if instead of measuring only one level in a gasifier, three levels are measured 

with the same gas analyser, it is very important to know how long each level takes. It is so 

because two levels cannot be measured at the same time, i.e. when one has been measured, it is 

possible to start to measure the next one. For this reason, if the time of one cycle of measurement 

in one level is known, it is possible to calculate when the next level can be measured. Figure 

2.15 shows an example of measurements in three different levels with one gas analyser. 

Figure 2.15 Measurements of three levels with one gas analyser. 
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The working principle of the system shown in Figure 2.15 is that at the beginning the valve of 

the first level is opened and when the transitional time in this level ends at t0, the data acquired 

by the gas analyser from this level is reliable until t1. After t1 the valve at the first level is closed 

and at t2 the valve at the second level is opened. On t3 the steady state of the second level starts, 

so the acquired data from the second level is reliable until t4 and in t5 the valve on the third level 

is opened. The process is repeated with the third level, and at t8 if the experiment has not 

finished, this cycle can be done again. 

This process can in principle be done with any number of levels. t8 is in this case the time of the 

cycle necessary to measure all the levels. Knowing the total time that an experiment in the 

gasifier takes, it is possible to calculate how many measurements can be taken in all levels in 

one experiment. Equation 2.6 shows how to calculate this. 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 =
𝑡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝑡8 𝑐𝑦𝑐𝑙𝑒 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
 (2.6) 

 

3 Focus of this Master’s Thesis 

The main objective of this Master’s Thesis is the development of a multilevel gas sampling 

system for gas analyser in circulating fluidized bed reactor, i.e, the sampling of the gas flow can 

be taken in three different vertical levels and analysed with only one gas analyser. 

This permit for future works to study the different physiochemical reactions that are taking place 

in gasification and the concentration of the gasification products in each level. Besides, some 

parameters of the gasification like temperature, particle size distribution, fuel, etc can be varied 

and so it permits to study how change the products or the physiochemical reactions in the 

different levels of the reactor. 

Other of the important objectives of this work is to develop a good treatment system for the gas 

flow. It means that some equipment like oil scrubbers, filters, etc, have to be used in order to 

remove all the unwanted substance from the gas flow like tar, particles, etc. In addition, it 

permits to study the composition of these substances and acquire reliable data for other studies 

or researches. 

On the other hand, this sampling system has to be designed so that the gas remains as less time 

as possible inside of it. This is because some reaction can also be produced in this treatment 

system, so some valuable data could be lost, as well as if the gas remains too long in the system, 

there are more opportunities that it might be contaminated. Besides, knowing residence time, it 

is possible to calculate when the acquired data from the gas analyser is reliable and decide a 

sampling frequency in order to get as maximum as possible samples of the three levels in one 

experiment. 
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4 Experimental Setup 

The main objective of this work is to develop a multilevel sampling system for a gas analyser 

in a circulating fluidized bed reactor. Before this Master’s Thesis the gas was only analysed 

down-stream from the cyclone of the reactor only in one level. However, after this work and 

with the newly built multilevel sampling system the gas could be analysed in three different 

levels of the reactor. It is done in order to understand in a better way how the gas composition 

changes along the riser, and to be able to compare with the gas composition obtained down-

stream from the cyclone. 

In this chapter all the equipment and material (reactor, gas analysers, fuel, etc.) used for the 

experiments and the development of this Master’s Thesis are going to be explained.  

 

4.1 Circulating Fluidized Bed Reactor (CFB). 

The reactor used in this Master’s Thesis is a circulating fluidized bed reactor (CFB). It is located 

in the Department of Mechanical Engineering at Aalto University. The reactor is a pilot scale 

CFB, in which the test conditions are more similar to the conditions found in commercial 

reactors than in lab scale CFBs. Figures 4.1 and 4.2 show the reactor used in this work. 

 

Figure 4.1 Schematic view of the CFB reactor. 

 



 

 

25 

 

 

Figure 4.2 CFB reactor. 

The reactor is an atmospheric reactor, which is made of acid resistant steel (316L) in order to 

resist corrosion. The distribution plates are perforated plates in both the riser and the sand lock. 

The riser is covered by 3 heating element sections of 4,6 kW and its internal diameter is 128 

mm. Besides, there are windows on the three sampling levels for monitoring what is happening 

inside of the riser and other windows in the downcomer and the sand lock.  

Apart from the reactor, there are other needed equipment for the correct work of the reactor. 

There are two pre-heaters, the first one heats the air injected into the riser (LHS 61L PREMIUM, 

LEISTER), whose power is 11 kW. The other pre-heater indirectly heats the air injected into the 

sandlock through a heat exchanger. The pre-heater (CH-6056, LEISTER) has a maximum power 

of 10 kW. Figure 4.3 shows the air pre-heater (LHS 61L PREMIUM, LEISTER). 
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Figure 4.3 Air pre-heater (11 kW). 

At the top of the reactor there is a cyclone that separates the solids, before these are recirculated 

to the sand lock and later to the riser. Figure 4.4 shows the heater for the sand lock. 

 

Figure 4.4 Blower and heater for the sand lock. 

Finally, there is other equipment, for controlling and measuring the air and gas flows like valves, 

rotameters, etc. Table 4.1 shows the normal operating parameters of the system. 

Heater 
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Table 1 Normal running parameters of the system. 

Design parameters CFB 

Temperature, C < 900 

Circular diameter, m 0.128 

Height, m 2.3 

Bed material (sand) 

mean diameter, mm 

0.2 

Residence time of fuel, s 1-2 

Fluidising gas Air 

Distributor plate type perforated 

Numbers of orifices; diameter , mm 141 ; 3 

Reactor construction material ASTM 316 steel 

Superficial gas velocity, m/s ~2 (@ 800C) 

Heating power, riser 3x4,6 kW 

Air preheater, riser 11 kW 

Air preheater, sand lock 10 kW 

 

4.2 Solid Recovered Fuel 

The synthesis gas (syngas) can be produced from many different feedstocks such as coal, 

biomass, solid recovered fuel (SRF), etc. The gasification of coal has been used mostly through 

the history, but other feedstocks like biomass have also been used frequently in the past, 

moreover in the production of tar (Basu 2006). In addition, in emerging countries, where the 

total population is higher than in the industrialized countries, are producing great amounts of 

waste. Therefore, solutions for the treatment of these waste have to be found in countries like 

China, India or Brazil. 

Gasification of SRF is one of the best ways to control the increase of produced waste in these 

countries, since the waste can be used to produce energy and it is always better than waste 

disposal in landfills. Besides, gasification has a higher efficiency than the direct combustion of 

the waste, as the syngas can be used in combined cycles. It also has some advantages regarding 

emissions, since  the amount of gas is smaller than in combustion so that smaller equipment can 

be used for cleaning the gas which in turn leads to less investment costs 

SRF comprises a lot of different waste fractions, however from analysis it is possible to know 

the moisture content, amount of volatile matter and content of fixed carbon and ash (Saeed, 

2015). There are different analysis like ultimate fuel analysis, dry and ash free analysis, dry 

analysis and received analysis. Figure 4.5 shows what is possible to know with each analysis of 

the solid recovered fuel (Saeed, 2015). 
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Figure 4.5 Different analysis of solid waste (Saeed, 2015). 

Knowing the fuel composition is very important because it influences the thermal treatment of 

the fuel, as an example the influence of the moisture content in the lower calorific value (Görner, 

2008). Figure 4.6 shows one example of this effect. 

 

Figure 4.6 Influence of the water in the lower calorific value of solid waste (Görner, 2008). 

In addition, the composition of solid waste is not at the same in all countries, since the waste 

depend on the culture and lifestyle of each country (Görner, 2008). For example Figure 4.7 

shows the difference of combustibles, ash and water content of waste in Europe and Japan. 
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Figure 4.7 Influence of water in lower calorific value of waste (Görner, 2008). 

Although the main objective is the same in all the countries, the use of SRF in gasification or 

combustion to obtain energy, the composition of the waste is not the same and neither are the 

treatment methods. So different regions have different standards regulating the quality and the 

use of SRF. 

SRF have to comply with the specification established by the European Standard CEN/TC 343. 

This standard defines the solid recovered fuels as “prepared fuel from non-hazardous waste to 

be utilized for energy recovery in waste incineration or co-incineration plants, excluding fuels 

that are included in the scope of CEN/TC 335 (solid biofuels)” (Olabarria Uzquiano, 2013). 

This standard sets the following specifications of solid recovered fuels (Olabarria Uzquiano, 

2013): 

1. Terminology.  

2. Fuel specifications and classes.  

3. Quality management system. 

4. Sampling.  

5. Sample reduction.  

6. Physical and mechanical tests.  

7. Chemical tests.  

8. Supplementary tests. 
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According to the standard CEN/TS 15359, the SRFs are grouping into classes based on three 

important parameters:  

1. Net calorific value. 

2. Chlorine content. 

3. Mercury content. 

Each parameter is divided into 5 classes as Table 4.2 shows. 

Table 4.2 Solid recovered fuel classification (CEN/TS 15359). 

Classification 

property 

Statistical 

measure 
Unit 

Classes 

1 2 3 4 5 

Net calorific 

value (NCV) 
Mean MJ/kg (ar) 

≥ 25 ≥ 20 ≥ 15 ≥ 10 ≥ 3 

 

Classification 

property 

Statistical 

measure 
Unit 

Classes 

1 2 3 4 5 

Chlorine (Cl) Mean % (d) ≤ 0,2 ≤ 0,6 ≤ 1 ≤ 1,5 ≤ 3 

 

Classification 

property 

Statistical 

measure 
Unit 

Classes 

1 2 3 4 5 

Mercury (Hg) 
Median 

80th percentile 

Mg/MJ (ar) 

Mg/MJ (ar) 

≤ 0,02 

≤ 0,04 

≤ 0,03 

≤ 0,06 

≤ 0,08 

≤ 0,16 

≤ 0,15 

≤ 0,30 

≤ 0,50 

≤ 1 

 

Gasification of SRF is challenging, since they sometimes have some problems. There are high 

concentrations of Cl or S which can produce contaminants like HCl, H2S, tar, etc. One of the 

most problematic elements in SRF is Cl, which can come from organic waste, like chlorinated 

polymers (PVC) and inorganic waste like salt in food (NaCl). The organic and inorganic Cl 

produces HCl during thermal processes, which is very harmful and corrosive for the 

environment and the gasification system respectively (Berrueco et al., 2015).   
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(Berrueco et al., 2015) tried to study how to reduce the amount of minor contaminants produced 

in the gasification of SRF like HCl, H2S, etc, without changing other gasification performance 

parameters apart from the temperature or the equivalence ratio (ER). The gas composition and 

the amount of contaminants are analysed for different temperatures and equivalence ratios in 

order to find optimal ranges, for operational parameters, regarding efficiency and emissions. For 

example Figure 4.8 shows how the temperature influences the amount of contaminants. 

 

 
Figure 4.8 Effect of the gasification temperature on producer gas composition with ER=0,31 (Berrueco et al. 2015). 

Therefore, studies like this are very important for understanding how to remove or avoid these 

pollutants in gasification of SRF. Besides, it helps to solve the problems with the SRF treatment, 

since it is a cheap fuel that reduces the use of fossil fuels and avoids landfilling (Frankenhaeuser 

et al., 2008). 

For this reason the fuel used in this Master’s Thesis is a SRF of class 3 compound of wood, 

paper and cardboard, plastics and textiles. In addition, it is the same fuel that is used in Lahti 

Energia in gasification process in Kymijärvi II power plant. The fuel composition and properties 

are shown in Table 4.3. 

Table 4.3 Solid recovered fuel composition (Skagersten et al., 2015). 

Moisture, wt% (ar) 16,5 

Ash, wt% (dry) 9,6 

Lower heating value, MJ/kg 

(ar) 17,3 

C, wt% (dry) 51,6 

H, wt% (dry) 6,87 

O, wt% (dry) 37,8* 

N, wt% (dry) 0,48 

S, wt% (dry) 0,21 

Cl, wt% (dry) 0,33 

Ca, wt% (dry) 1,99 

*Calculated by difference taking also some species into account which are not listed in the table. 
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Before feeding the fuel to the reactor, it has to be crushed in order to ensure homogeneity. The 

mill used for this process was Wiley mill type. After that, the fuel is pelletized with a size less 

than 6 mm for avoiding rat holes and plugging in the feeding system. Figure 4.9 shows some 

examples of fuel before and after it is crushed and pelletized. 

  

a)  Solid recovered fuel (SRF) as received.                  b) Solid recovered fuel (SRF) after being crushed 

 

b) Solid recovered fuel pelletized 

Figure 4.9 Solid recovered before and after it is crushed and pelletized. 

Finally, the fuel is fed to the reactor by a screw conveyor, whose flow can be adjusted with a 

frequency converter. The feeding hopper is made of transparent acryl in order to be able to 

monitor the fuel flow with a video camera and estimate the volume flow of the fuel by analyzing 

the video. Figure 4.10 shows the fuel feeding system in the reactor. 
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Figure 4.10 Fuel feeding system. 

 

4.3 Gas Analysers 

There are two gas analysers connected to the reactor: Siemens ULTRAMAT 23 and GASMET 

FT-IR. Both, ULTRAMAT and GASMET take the gas sample down-stream of the cyclone of 

the reactor. After this work, they will be able to be connected to the multilevel sampling system. 

These gas analysers are explained in the chapters 4.3.1 and 4.3.2. 

 

4.3.1 Siemens ULTRAMAT 23 Gas Analyser 
Siemens ULTRAMAT 23 gas analyser is an infrared absorption gas analyser, which contains 

three infrared (IR) active constituents. Besides, it also contains an electrochemical cell for 

measuring the O2. Therefore, this gas analyser can measure gases produced in gasification or 

combustion like CO, CO2, as well as O2, which is a very useful feature (SIEMENS, 2015).  

 

 

Feeding hopper 

Screw feeder 

Motor 
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4.3.2 GASMET Gas Analyser 
The other gas analyser connected to the reactor is the Dx-4000 GASMET gas analyser. This 

analyser is a Fourier transform infrared spectrometer (FT-IR), but in contrast to the gas analyser 

explained in chapter 4.3.1, this analyser cannot analyse O2. This is due to the fact that this 

analyser is an infrared spectrometer but it does not contain any electromechanical cell to 

measure the O2 (GASMET, 1997b). However, the gas analyser was mainly calibrated for 

analysing: H2O, CO2, CO, HCl, CH4, SO2, NO, NO2, N2O and other hydrocarbons like benzene 

C6H6, ethane C2H4, styrene C8H8, ethane C2H6, toluene C7H8, butadiene C4H6, propene C3H6, 

methanol CH4O, formaldehyde CH2O, acetaldehyde C2H4O, a-pinene C10H16, propane C3H8, 

propanol C3H8O and acetone C3H6O.  (Saeed, 2004).  

 
 

5 Multilevel Sampling System for Gas Analyser 

In this chapter all parts of the multilevel sampling system for gas analyser in the reactor are 

explained. The main objective of this work is to build a multilevel sampling system for a gas 

analyser in a circulating fluidized bed reactor (CFB). Figure 5.1 shows a Schematic view of the 

system. 

 

Figure 5.1 Diagram of the system. 

Gas Analyser 

128 mm 
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The multilevel sampling system comprises following components: 

a) Three steel pipes, which are connected to three different levels of the riser. 

b) Ball valves, which open and close the sampling system to the reactor for protection or 

maintenance. 

c) Tar trap, which remove the tar, condensing it in a glass bottle. 

d) Three solenoid valves, which control from what level of the riser the gas is analysed by 

the analyser. 

e) Vitryl pipes, which connect the solenoid valves to the gas analyser. 

f) Support structure, mechanically supporting the sampling system. 

In this chapter, the implementation of different processes and the construction of all parts of 

multilevel sampling system are explained in detail. 

 

 

5.1 Steel Pipes 

In this system, there are three steel pipes that are connected to three different levels of the CFB 

riser and to the solenoid valves that control the gas flow into the gas analyser. The heat transfer 

in these pipes is very important, since the temperature of the gas inside of the reactor is about 

800-850°C and the pressure operated valves can only resist 250°C. Besides, condensation is 

unwanted, so the temperature has to be within a safe range. Therefore, heat transfer is the main 

design criteria for deciding the size and length of these steel pipes. 

Since the heat transfer is the main method to dimension the size and the length of the steel pipes 

of the multilevel sampling system, a model of heat transfer in excel (example in appendix 9.1) 

was made in order to calculate the dimensions of these pipes.  

The first step in this model is to calculate how much heat (Q) has to be released in order to cool 

the gas flow from an initial temperature (T1) to a final temperature (T2). The amount of heat can 

be calculated from Equation 4.1 as follow. 

𝑄 = ṁ ∗ 𝑐𝑝 ∗ (𝑇1 − 𝑇2) (5.1) 

Where: 

Q is the amount of released heat from the gas in the pipe [W] 

ṁ is the mass flow of gas [kg/s], 

cp is the heat capacity of the gas [KJ/KgK], 

T1 is the temperature of the gas at the beginning of the pipe [K], 

T2 is the temperature of the gas at the end of the pipe [K]. 
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To calculate this heat flow, cp has to be calculated first, since it depends on the composition of 

the gas which in the case of gasification is mainly CO, CO2, H2, CH4, etc. The cp of each 

substance can be calculated using Equation (5.2) and the needed coefficients a,b,c and d found 

in (Thermodynamic Department Univeristat Politècnica de València, 2005). 

𝑐𝑝 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 + 𝑑𝑇3       (5.2) 

Based on the volume and mass fraction of the composition of the syngas, the heat capacity (cp) 

of this gas can be calculated.  

There are three different forms of heat transfer: conduction, convection and radiation. In case of 

a pipe, the heat transfer is divided into: 

 

 

- Inside convection, between the gas flow and the inside surface of the pipe. 

- Conduction, through the thickness of the pipe. 

- Outside convection, between the outside surface of the pipe and the ambient air. 

- Radiation, between the outside surface of the pipe and the ambient. 

Figure 5.2 shows a scheme of the equivalent electrical model of the heat transfer. 

 

Figure 5.2 Equivalent electrical model of the heat transfer. 

According to that model, the amount of heat per unit of length (q’) that is released due to the 

difference of temperature can be calculated with the Equation (5.3): 
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𝑞′ =
(𝑇𝑖𝑛𝑠 − 𝑇𝑜𝑢𝑡)

𝑅𝑖𝑐𝑜𝑛𝑣 + 𝑅𝑐𝑜𝑛𝑑 + 𝑅𝑜𝑐𝑜𝑛𝑣+𝑟𝑎𝑑
   (5.3) 

Where: 

q’ is the heat transfer of the gas to the ambient per unit of length [W/m], 

Tins is the temperature of the gas inside of the pipe [K], 

Tout is the temperature outside of the pipe [K], 

Riconv is the resistance to the heat transfer of the convection inside of the pipe [K/mK/W], 

Rcond is the resistance to the heat transfer of the conduction in the material of the pipe 

[K/mK/W], 

Roconv+rad is the resistance to the heat transfer of the convection and radiation outside of the pipe 

[K/mK/W]. 

Selecting a diameter of a pipe in order to calculate the different resistances of heat transfer, it is 

possible to calculate the amount of heat per unit of length. With the results of Equations (5.1) 

and (5.3) the needed length of the steel pipe is calculated with equation (5.4). 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒 =
𝑄

𝑞′
 (5.4) 

Where: 

Q is the heat transfer of the gas to the ambient [W], 

q’ is the heat transfer of the gas to the ambient per unit of length [W/m]. 

 

5.1.1 Convection Inside of the Pipe 
The heat transfer between the gas flow and the inside surface of the pipe is convection. The 

resistance to heat transfer can be calculated with equation (5.5) for convection in pipe flow.(Heat 

Transmission Course Universitat Politècnica de València, 2011a). 

𝑅𝑖𝑛𝑐𝑜𝑛𝑣 =
1

2𝜋𝑟𝑖ℎ𝑖
 (5.5) 

Where: 

ri is the internal radius of the pipe [m], 

hi is the heat transfer coefficient [W/m2K]. 
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The heat transfer coefficient can be calculated with correlation based Equations (5.6) or (5.7) 

depending on whether the gas flow regime is laminar or turbulent (Reynolds number) (Heat 

Transmission Course Universitat Politècnica de València, 2011b). 

𝑙𝑎𝑚𝑖𝑛𝑎𝑟 → 𝑁𝑢𝐷
=

ℎ𝑖𝐷

𝑘
= 4,36 (5.6) 

         𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 → 𝑁𝑢𝐷
= 0,023𝑅𝑒𝐷

0,8𝑃𝑟𝑛 → ℎ𝑖 =
𝑁𝑢𝐷

𝑘

𝐷
 (5.7) 

Where: 

𝑁𝑢𝐷 is the Nusselt number, 

𝑅𝑒𝐷 is the Reynolds number, 

Pr is the Prandlt number, 

hi  is the heat transfer coefficient [W/m2K], 

D the diameter of the pipe [m], 

k the thermal conductivity of the material of the pipe [W/mK]. 

 

5.1.2 Conduction 
After the convection inside of the pipe the heat is transferred through the material of the pipe by 

conduction. The resistance of the conduction is (Heat Transmission Course Universitat 

Politècnica de València, 2011b): 

𝑅𝑐𝑜𝑛𝑑 =
ln (

𝑟𝑜

𝑟𝑖
)

2𝜋𝑘
 

(5.8) 

Where: 

ro is the external radius of the pipe [m], 

ri is the internal radius of the pipe [m], 

k is the thermal conductivity of the material of the pipe [W/mK]. 

 

5.1.3 Convection Outside of the Pipe 
The resistance to the heat transfer outside of the pipe (convection) is shown in Equation (5.9) 

(Heat Transmission Course Universitat Politècnica de València, 2011b). 



 

 

39 

 

𝑅𝑜𝑢𝑡𝑐𝑜𝑛𝑣=

1

2𝜋𝑟𝑜ℎ𝑜
  (5.9) 

Where: 

ro is the external radius of the pipe [m], 

ho is the heat transfer coefficient [W/m2K]. 

The ambient air is moving at low speed (laminar flow) due to the temperature gradient between 

the steel pipe and the ambient air. Equation (5.10) is used to calculate the heat transfer 

coefficient of convection outside of the pipe (Heat Transmission Course Universitat Politècnica 

de València, 2011a). 

𝑁𝑢𝐷 = 𝐶𝑅𝑒𝐷
𝑚𝑃𝑟

1
3 → ℎ𝑜 =

𝑁𝑢𝐷𝑘

𝐷
 (5.10) 

Where: 

𝑁𝑢𝐷 is the Nusselt number, 

𝑅𝑒𝐷 is the Reynolds number, 

Pr is the Prandlt number, 

ho is the heat transfer coefficient [W/m2K], 

D the diameter of the pipe [m], 

k the thermal conductivity of the material of the pipe [W/mK]. 

C and m are constants that depend on the Reynolds number (Heat Transmission Course 

Universitat Politècnica de València, 2011a). 

Table 5.1 Coefficients for equation (5.10) 

𝑹𝒆𝑫
 C m 

0,4 to 4 0,989 0,33 

4 to 40 0,911 0,385 

40 to 4000 0,683 0,466 

4000 to 40000 0,193 0,618 

40000 to 400000 0,027 0,805 
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5.1.4 Radiation 
The last mechanism for heat transfer is radiation between the external surface of the pipe and 

the ambient. The resistance to to heat transfer due to radiation can be calculated with Eq. (5.11) 

(Heat Transmission Course Universitat Politècnica de València, 2011b). 

𝑅𝑟𝑎𝑑=

1

2𝜋𝑟𝑜ℎ𝑟𝑎𝑑
 (5.11) 

Where: 

ro is the external radius of the pipe [m], 

hrad is the heat transfer coefficient of radiation [W/m2K]. 

hrad has been calculated with Equation (5.12) (Heat Transmission Course Universitat Politècnica 

de València, 2011b). 

ℎ𝑟𝑎𝑑 = 𝜎𝜀
(𝑇𝑠𝑢

4 − 𝑇𝑠𝑘𝑦
4 )

(𝑇𝑠𝑢 − 𝑇𝑠𝑘𝑦)
 (5.12) 

Where: 

𝑇𝑠𝑢 is the average temperature of the outside surface of the pipe [K], 

𝑇𝑠𝑘𝑦  is the temperature of the outside ambient, which in this model is equal to the room 

temperature [K], 

ɛ is the emissivity of the material of the pipe, 

σ is the Stefan-Boltzmann constant [W/m2K4]. 

 

5.1.5 Length of the Steel Pipe 
Once all the heat transfer mechanism have been calculated, the amount of heat per unit of length 

exchanged between the gas inside of the pipe and the ambient can be obtained combining Eq. 

(5.5) and (5.8) with (5.9) and (5.11) (Heat Transmission Course Universitat Politècnica de 

València, 2011b). 

𝑞′ =
(𝑇𝑖𝑛𝑠 − 𝑇𝑜𝑢𝑡)

1
2𝜋𝑟𝑖ℎ𝑖

+
ln (

𝑟𝑜

𝑟𝑖
)

2𝜋𝑘
+

1
2𝜋𝑟𝑜(ℎ𝑟𝑎𝑑 + ℎ𝑜)

 
(5.13) 

Finally the length of the steel pipe can be calculated with Equation (5.4). 
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5.1.6 Heat Transfer Experiments 
After creating the model, two experiments have been done in the laboratory without gasification, 

just with fluidization with air. In these experiments the reactor was heated up to a normal 

working temperature of 800-850 °C and a steel pipe was installed in the top of the riser. After 

the air was pumped from the riser into the pipe (4 L/min) equipped with thermocouples the 

temperature of the gas inside of the pipe was measured. The first experiment was made with a 

steel pipe (pipe 1) like in Figure 5.3. 

 

Figure 5.3 Properties of the steel pipe in experiment 1. 

And the second experiment with a pipe (pipe 2) like in Figure 5.4. 

 

Figure 5.4 Properties of the steel pipe in experiment 2. 

The results of temperature in the pipes were: 
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Figure 5.5 Results from experiments in the laboratory. 

The difference between the temperature of the gas inside of the riser and at the beginning of the 

pipe is due to the fin effect, since the connection between the riser and the steel pipe has the 

shape shown in Figure 5.6. The temperature of the gas at the beginning of the pipe is between 

180-190°C, not 850 °C like inside of the riser. 

 

Figure 5.6 Connection between steel pipe and the riser. 

 

5.1.7 Comparison of the Experimental Results and Model Results 
The next step is to check that the heat transfer model works. For that the properties of the pipes 

1 and 2 are introduced in the model. In order to represent real operational conditions, the gas 

composition in the model is air, i.e. in volumetric fraction 21% of O2 and 79% of N2. In addition, 

all the temperatures of the gas at the beginning and end of the pipe and also the outside 

conditions are introduced. 



 

 

43 

 

The results from the model and the results from the experiments are shown in Table 5.2. 

Table 5.2 Comparison between experimental and model results. 

 
Experiment 

(Pipe 1) 
Model  

Results 
Experiment 

(Pipe 2) 
Model 

Results 
T1 (°C) 190 190 190 190 

T2 (°C) 28 28 46 46 

gas flow (L/min) 4 4 4 4 

length of the pipe 
(cm) 

36 36,64 7 32,6 

 

It is possible to see in Table 5.2, that the model works for pipes that are long enough, since for 

very short pipes, the gas flow is undeveloped flow and the equations used in the heat transfer 

model only work for developed flow. Figure 5.7 shows the effect of undeveloped flow on the 

temperature of the gas in short pipes (data taken from experiments). 

 

Figure 5.7 Effect of the undeveloped flow in the gas temperature. 

From Figure 5.8 it is possible to see that the model works for pipe 1, while for pipe 2, which is 

the shortest pipe, the model does not work (undeveloped flow). 
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Figure 5.8 Comparison between models and experiments results. 

 

 

5.1.8 Insulation of the Steel Pipe 
After studying the heat transfer, pipes with a length of 19 cm and an inner diameter of 4 mm are 

installed in the three different levels of the riser. In order to increase the temperature at the end 

of the pipe, the resistance of conduction in the heat transfer of Equation (5.13 has to be increased, 

therefore the pipes were insulated with a 2,5 cm thick of insulator Insulfrax blanket S 128/2,5. 

Figure 5.9 shows the main properties of this insulator. 
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Figure 5.9  Insulfrax S blanket properties (Unifrax, 2009). 

The temperature of the pipe should not exceed 200°C to ensure the mechanical integrity of 

materials like vitryl and because some substances, which have to be removed like tar, 

condensates at temperatures below of 200°C. 

An experiment was done to find out if the temperature of the gas inside the insulated pipes 

would be higher than 200°C. In this experiment, the reactor was heated up and the temperature 

of the pipe was stable over 100°C. Later, the gas flow of the reactor started to flow inside of the 

pipe during 1 hour until the temperature of the pipe was over 220°C. Finally, the gas flow in the 

pipe was stopped and the temperature of the pipe started to decrease again until the stable 

temperature. Figure 5.10 shows the results of this experiment. 
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Figure 5.10 Experimental results of temperature of the insulated pipe when there is gas flow and not. 

According to the results of this experiment, it is possible to say that the steel pipes installed with 

this layer of insulator are good, because it is necessary 1 hour of gas flow inside of the pipe to 

achieve 220°C, while the normal duration of the experiments with fuel in this reactor is 15-30 

min. Therefore, it is never achieved a temperature higher than the safe temperature of 200°C 

and the unwanted substances like tar can condensate in the oil of the scrubbers, as well that the 

vitryl pipes cannot be destroyed for high temperatures. 

Finally, the decision was to install steel pipes with a length of 19 cm in the three different levels 

of the riser. Besides, all of them were covered with 2,5 cm thick insulation, so that the 

temperatures at the end of the pipes and before the tar traps were over 100°C.  

 

5.2 Tar Trap 

After the length of the steel pipe has been chosen and the insulator too, the next equipment in 

the multilevel sampling system is the tar trap. The tar trap is the equipment that removes tar 

from the gas flow in order to avoid clogging. In addition, when the experiment has finished the 

tar can be taken from the trap for analysis of its composition. 

There are different options for tar removal like scrubbers, ceramic filters, catalytic filters, etc. 

However the chosen solution for the tar removal is a scrubber. The tar trap consists of a bottle 

(500 ml) with a liquid absorbent inside, where the gas flow enters into the bottle and flows 

through the absorbent. The gas flow then continues going up to where it is sucked by the gas 

analyser pump through a pipe. The tar is detained in the liquid and after an experiment, the 

absorbent with the tar can be removed from the bottle and analysed. Figure 5.11 shows the bottle 

used as a scrubber in this work. 
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Figure 5.11 Bottle used in this work like scrubber. 

There are many different substances that can be used as absorbents in scrubbers. For example 

(Good et al., 2005) collected tar by condensation and absorption in isopropanol, which was 

found to be the most suitable solvent. In (Good et al., 2005) tar collection is done in 6 impinger 

bottles with isopropanol, in which water and tar are stripped from the process gas by absorption 

in isopropanol. The heat released is removed in an external water bath. Figure 5.12 shows the 

method used in their experiments. 

 

Figure 5.12 Tar collection using isopropanol (Good et al., 2005). 
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According to (Nakamura et al., 2016) and (Phuphuakrat et al., 2011), oil is a good absorbent 

because it is a non-polar substance, so tar is not soluble in oil and it can be separated easily from 

the oil. In water, the results are the opposite because the tar is soluble in water and if it is 

necessary to separate both of them in order to analyse tar, which is very difficult. 

One problem that the oil can cause in the system is that the pressure losses become too high and 

an additional pump has to be installed. However, a test was conducted in order to predict the 

pressure losses in the scrubber. For that the bottle was connected to the gas analyser and its 

pumping unit and filled with different amount of oil. The results from the test are shown in Table 

5.3. 

Table 5.3 Pressure losses experiment with oil scrubber. 

Gas Flow Q (l/min) Oil Volume  (ml) 
1,55 Without bottle 
1,5 0 
1,5 100 
1,5 200 
1,5 300 

1,5-1,45 400 
 

Table 5.3 shows that the changes of the gas flow in the bottle caused by the use of oil scrubbers 

are negligable. Therefore, an additional pump is not needed and the oil scrubbers are going to 

be used for the tar removal in this Master’s Thesis. 

The next equipment  installed in the multilevel sampling system are the pressure and solenoid 

valves that control from which level the gas analyser measures the gas composition. These 

valves are explained in the next chapter. 

 

5.3 Solenoid and Pressure Valves 

After the tar trap there are three pressures valves, which control from what part of the reactor 

the gas is taken for analysis. The valves used in this Master’s Thesis are pressure operated valves 

with a stainless steel body and threaded PN40 ports from the company ASCO (model E298). 

Besides each pressure valve has one solenoid valve also from the company ASCO (model E314) 

that controls when the pressure valve has to open and close.  The main properties of these 

pressure valves are shown in Figure 5.13 and a scheme of the valves is shown in Figure 5.14. 
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Figure 5.13 Properties of the solenoid valves. 

 

Figure5.14 Diagram of the solenoid valves. 

The size of the chosen solenoid valves is a nominal diameter (DN) of 15 mm or ½ inches. The 

maximum temperature that the solenoid valves can resist is 250°C, this was taken into account 

in the heat transfer calculations explained in chapter 4.1, and for this reason these pressure 

valves have been chosen. These valves were suitable as they can withstand flows with humidity. 

The solenoid valves, which control the pressure valves, are shown along with some of their 

properties in Figure 5.15 and Figure 5.16. 
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Figure 5.15 Solenoid valves. 

 

Figure 5.16 Properties of the solenoid valves 

Figure 5.17 shows the connection between the solenoid and pressure valves. The solenoid valves 

are connected by electrical cables to an optocoupler. 
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 Figure 5.17 Solenoid and pressure valves assembled. 

The optocoupler, which was made in house, is connected to a LabVIEW card, and this card is 

connected to a computer.  The optocoupler has 3 LEDs that shows which valve is opened and 

another LED that shows when all the valves are closed. It is possible to control the time that 

each valve is opened or closed with the computer and the electronic control system (optocoupler 

and LabVIEW card).  Figure 5.18 shows the optocoupler and its power supply. 
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Figure 5.18 Optocoupler and power supply of the electronic control system for solenoid valves. 

 

6 Test and Validation 

6.1 Residence Time Test 

After steel pipes, solenoid valves and oil scrubbers have been connected to the reactor, the next 

step is to calculate the residence time of the gas going from the reactor to the gas analyser in 

each level of the multilevel gas sampling system. The residence time should preferably be the 

same in all levels of the sampling system. Therefore, the volume of the three levels should also 

be the same in all the levels. For this reason the length and diameter of each component of the 

three levels are measured and the total volume of each level is calculated. Figure 6.1 shows the 

three different levels of the sampling system. 

a) Level 1 of the multilevel sampling gas system. 
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c) Level 3 of the multilevel gas sampling system. 

The measurements of the length, diameter and the calculated volume using Equation (6.1) in 

each component are shown in Table 6.1. The total volume of each level of the sampling system 

is also shown in Table 6.1. 

𝑉 =
𝐷2 ∗ 𝜋

4
∗ 𝐿                                                                  (6.1) 

 b)  Level 2 of the multilevel gas sampling system. 

Figure 6.1 Levels of the multilevel gas sampling system. 
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Where: 

𝑉 is the volume of the component of the pipe in cm3, 

𝐷 is the diameter of the component of the pipe in cm, 

𝐿 is the length of the component of the pipe in cm. 

Table 6.1 Volume of each component in the three levels and the total volume of the each level in the multilevel gas sampling 
system. 

Level 1    

Component 
Length 

(cm) 
Diameter 

(cm) 
Volume (cm3) 

1 3,86 2,03 12,49 

2 2,14 2,25 8,51 

3 0,53 1,48 0,91 

4 3,87 0,78 1,85 

5 2,53 0,47 0,44 

6 4,07 0,38 0,46 

7 2,35 0,38 0,27 

8 4,1 0,38 0,46 

9 2,59 0,38 0,29 

10 3,95 0,38 0,45 

11 2,44 0,4 0,31 

12 1,93 0,4 0,24 

 34,36  26,69 

 

Level 2    

Component 
Length 

(cm) 
Diameter 

(cm) 
Volume (cm3) 

1 3,86 2,03 12,49 

2 0,13 2,42 0,60 

3 1,27 1,79 3,20 

4 1,15 1,15 1,19 

5 2,26 0,5 0,44 

6 6,16 0,38 0,70 

7 2,59 0,38 0,29 

8 4,66 0,38 0,53 

9 2,35 0,38 0,27 

10 3,96 0,38 0,45 

11 1,68 0,4 0,21 

12 5,12 0,4 0,64 

 35,19  21,02 
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Level 3    

Component 
Length 

(cm) 
Diameter 

(cm) 
Volume (cm3) 

1 3,86 2,03 12,49 

2 0,49 2,42 2,25 

3 0,57 1,83 1,50 

4 0,76 1,51 1,36 

5 3,88 0,89 2,41 

6 0,14 1,15 0,15 

7 2,28 0,47 0,40 

8 4,57 0,38 0,52 

9 2,59 0,38 0,29 

10 6,1 0,38 0,69 

11 2,34 0,38 0,27 

12 3,8 0,38 0,43 

13 0,53 0,4 0,07 

14 0,51 0,4 0,06 

 32,42  22,89 

 

According to Table 6.1, the volume in the three levels is not the same. Therefore plastic pipes 

made of vitryl were installed after the solenoid valves to have the same volume in the three 

levels. Since the level 1 shown in Table 6.1 has the biggest volume, the extra length of plastic 

pipe needed for levels 2 and 3 can be calculated with Equation (6.2). 

𝐿 =
∆𝑉 ∗ 4

𝜋 ∗ 𝐷2
                                                                   (6.2) 

Where: 

𝐿 is the extra length of the plastic pipe in cm, 

∆𝑉is the difference of volume between 2 levels of the sampling system in cm3, 

𝐷 is the diameter of the plastic pipe in cm, in this case is 4 mm. 

The results of the length of the plastic pipes needed in levels 2 and 3 are shown in Table 6.2. 

 

 



 

 

56 

 

Table 6.2 Length needed of plastic pipe in each level in order to ensure the same volume in the three levels of the multilevel 
gas sampling system. 

 Level 1 Level 2 Level 3 

Volume (cm3) 26,69 21,02 22,89 

Difference to level 1 
(cm3) 

- 5,67 3,79 

Extra length needed 
of plastic pipe (cm) 

- 45,1 30,2 

 

According to Table 6.2, level 2 needs a plastic pipe of 45 cm and level 3 of 30 cm longer than 

the pipe on level 1 to ensure equal volume for all levels. 

 

6.1.1 Residence Time Test with CO 
Once that the same volume has been ensured in the three levels of the sampling system, the next 

step is to test that the residence time really is the same in the three levels (step input method, 

chapter 2.4). For that experiments were done with CO. In these experiments the three levels of 

the sampling system were connected to a pressurized CO bottle (225ppm) and to the gas 

analysers. By checking the time that the CO flow takes to arrive to the gas analysers, it is possible 

to estimate the residence time in each level of the sampling system. Figure 6.2 shows how the 

levels where connected in the test to the pressurized CO bottle and the gas analysers. 
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In the first experiment the three levels were connected to a Siemens ULTRAMAT 23 gas 

analyser. The CO flow was controlled and measured all the time in the experiment with a 

rotameter. The flow was 1,5 l/min but with an air rotameter, so first it needs to be converted into 

CO flow with Equation (6.3). 

𝑸𝑪𝑶 =
𝜌𝑎𝑖𝑟 ∗ 𝑄𝑎𝑖𝑟

𝜌𝐶𝑂
=

1,2 ∗ 1,5

1,17
= 𝟏, 𝟓𝟑 𝒍

𝒎𝒊𝒏⁄                              (6.3) 

Where: 

𝑄𝐶𝑂 CO flow in 𝑙/𝑚𝑖𝑛, 

𝜌𝐶𝑂 CO density in 𝑘𝑔/𝑚3 at (20°C and 1 atm), 

𝑄𝑎𝑖𝑟 air flow in 𝑙/𝑚𝑖𝑛, 

𝜌𝑎𝑖𝑟 air density in 𝑘𝑔/𝑚3 at (20°C and 1 atm). 

The flow was air with 225 ppm of CO in it, so the minimal difference in density and therefore 

in gas flow could be neglected. 

 

Figure 6.2 CO Concentration test. 
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In this way CO the flow is very similar to the gas flow in a real test in the reactor. After 

controlling the gas flow, the concentration of CO was measured in the three levels and the 

measured residence time in level 1, 2 and 3 are shown Figure 6.3. 

 

Figure 6.3 Results of the residence time test in ULTRAMAT gas analyser with CO concentration in the three levels of the 
sampling system. 

In Figure 6.3, it is possible to see that the residence time is almost the same in the three levels 

of the sampling system. There is a small difference in the level 3 but it can be solved because 

40 cm extra of plastic pipe was connected in each level in order to adjust the residence time. 

In addition to finding out that the residence time is the same in the three levels of the sampling 

system, it is also possible to deduce the transitional and the delay time in each level. For example 

in Figure 6.4 it is possible to see that with a CO flow of 1,53 l/min, the gas analyser starts to 

detect non zero CO concentration after 21 seconds. Besides, it is possible to see that the 

transitional time is over 75 seconds, i.e, the gas takes 75 seconds to arrive to steady time. 
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Figure 6.4 Transitional, steady and delay time in the three levels of the multilevel gas sampling system. 

The next experiment was to repeat the same test but using the Dx-4000 GASMET gas analyser 

instead of the Siemens ULTRAMAT 23 gas analyser. The CO flow was 1,53 l/min again, and 

the results from this experiment are shown in Figure 6.5. 
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In Figure 6.5 it is possible to see that the maximum concentration of CO is barely over 200 ppm 

instead of 225 ppm (pressurized CO bottle). This is because of the analyser needs to be 

recalibrated, as well the pump of the gas analyser needs to be repaired because the pumping 

problems causes fluctuations in the measurements (Figure 6.5). Nevertheless it does not 

influence the test and results. 

In Figure 6.5, it is possible to see that the residence time was also the same in the three levels 

of the sampling gas system. In this case the delay time was 18 seconds, which is shorter than in 

the case of the other analyser (different internal structure of the gas analyser), where the delay 

time was 20 seconds (Figure 6.4).  

On the other hand, the transitional time is over 140 seconds, while in the other analyser it is only 

80 seconds (Figure 6.4). The transitional, delay and steady time of the gas in this experiment 

with Dx-4000 GASMET gas analyser are shown in Figure 6.6. 
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The delay time with a CO flow of 1,53 l/min was 18 seconds, and the transitional time 140 

seconds. The delay time is very similar in both analysers, Siemens ULTRAMAT 23 and Dx-

4000 GASMET. However the transitional time, and so the time that it takes to reach a steady 

state after the solenoid valve is opened, is longer for the GASMET analyser than the 

ULTRAMAT analyser. Figure 6.7 shows the results of the two experiments together. 
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Figure 6.6 Transitional, steady and delay time in GASMET analyser in the CO concentration test. 
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Finally, it is possible to see that the delay time is almost the same in both analysers, in the case 

of ULTRAMAT analyser is 20 seconds and in GASMET analyser the delay time is 18 seconds. 

However the transitional time is different in each analyser, since in ULTRAMAT analyser the 

transitional time is 80 seconds and in GASMET analyser is over 140 seconds because of the 

internal structure and the working of the analysers are different. 

The next step is to estimate the delay time theoretically in order to check if the volumes 

calculated in chapter 6.1 of each level and the experiments with CO are coherent. The volume 

of the different parts of one level of the sampling gas system is shown in Table 6.3. 

 Steel 
pipe 

Oil 
scrubber 

Solenoid 
valve 

Plastic 
pipe 

Analyser 
heating pipe 

Total Oil 
Total gas 
volume 

Volume 
(cm3) 

26,69 700 12,24 19,17 62,83 820,93 300 520,93 

 

The total volume that the gas can fill is 520 cm3. With Equation (6.4), it is possible to calculate 

the delay time that the gas takes to arrive from the reactor to the gas analyser. 

𝑡 =
𝑉

𝑄
                                                                        (6.4) 
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Where: 

𝑡 is the delay time, 

𝑉  is the volume of the level, 

𝑄 is the volumetric gas flow. 

Finally, with a volumetric gas flow of 1,5 l/min, as in the step input tests, the delay time is: 

𝒕 =
0,52093

1,5
∗ 60 = 𝟐𝟎, 𝟖 𝒔 

The estimated value of the delay time is almost the same than the value obtained from the 

experiments with both gas analysers, Siemens ULTRAMAT 23 and Dx-4000 GASMET (Figure 

6.3 and Figure 6.5). Therefore it is possible to say that the results of the measured volume of the 

levels and the obtained results from the experiments with CO flow are correct. 

 

6.2 Valve Controlling Algorithm 

Based on the results from the experiments the delay time has been estimated, the next step is to 

find out the transitional time that in one level the solenoid valve has to wait to and the analyser 

can start to measures the gas composition reliably from the next level. 

Figure 6.4 and Figure 6.6 show that, the transitional time is over 80 seconds in Siemens 

ULTRAMAT 23 analyser and 140 s in Dx-4000 GASMET. Therefore the transitional time has 

to be over 80, i.e, the solenoid valve can open after 80 s if the ULTRAMAT analyser is 

connected to the multilevel sampling gas system, or 140 s if GASMET analyser is connected. 

Another important point is that after the solenoid valve of one level closes the gas analyser 

continues measuring for 140 s the gas composition of that level in the case of ULTRAMAT 

analyser, as it is shown in Figure 6.8. 
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Figure 6.8 Transitional time in ULTRAMAT gas analyser after close the solenoid valve. 

After these 140 seconds the gas analyser has been cleaned from all the substances from that 

level and it is ready to measure another level. Therefore, the most important is to know if with 

80 seconds of transitional time, the gas analyser is ready to measure one level after it has 

measured another level before. Figure 6.9 shows that a delay time of 80 seconds is enough. 

 

Figure 6.9 Transitional time between 2 levels with ULTRAMAT gas analyser. 

According to Figure 6.9, 80 seconds as transitional time is enough because the amount of 

substance remaining in the system that the gas analyser measures when it is measuring a new 

level is neglectable.  
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In the GASMET analyser case, the gas analyser continues measuring the gas composition from 

the previous level during 114 seconds, as shown in Figure 6.10. 

 

Figure 6.10 Transitional time after close solenoid valve GASMET gas analyser. 

In this case, the transitional time to clean the gas analyser is 114 seconds. Therefore it is not 

necessary to check if the analyser will be ready to start to measure another level, because the 

transitional time to clean the analyser is 114 seconds, while the transitional time to start to 

measure the gas composition is 140 seconds. Figure 6.11 ilustrates an example of this. 

 

Figure 6.11 Transitional time between two levels with GASMET gas analyser. 
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Figure 6.11 shows that the time the analyser needs to be cleaned from the previous level is less 

than the transitional time to start measuring the next level. Therefore, 140 seconds of transitional 

time is the minimum time a valve should be opened. 

In conclusion, the transitional time that the ULTRAMAT analyser has to wait to start to measure 

is 80 seconds, so when a solenoid valve is opened, the gas analyser has to wait 80 seconds to 

start to measure, and when that solenoid valve is closed and another valve from another level is 

opened, the gas analyser needs to wait again other 80 seconds to measure the new level. Figure 

6.12 shows an example of the time needed for the gas analyser takes to start measuring the next 

level reliably. 

 

 

Figure 6.12 Reliable measurements and transitional times of the three levels with ULTRAMAT gas analyser. 

Similarly for the GASMET gas analyser the transitional and delay time that the analyser has to 

wait for analysing the gas composition of another level of the multilevel sampling gas system is 

140 seconds. Figure 6.13 shows an example. 
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Figure 6.13 Reliable measurements and transitional times of the three levels with GASMET gas analyser. 

 

In Figure 6.13 and Figure 6.12, the value of the reliable measurements have been taken when 

the CO concentration reached 95% of the steady state value. 

Overall, the transitional time for Siemens ULTRAMAT 23 gas analyser is 80 seconds at the 

beginning of a real test in the reactor and among different levels of the multilevel sampling gas 

system, while the transitional time for Dx-4000 GASMET gas analyser is 140 seconds. 

 

6.3 Cycles of Measurements with the Sampling Gas System 

Once that the transitional time has been estimated, the next step is to decide how many cycles 

of measurements can be taken with the sampling gas system in one real test in the CFB. 

In chapter 6.2 it was concluded that 80 seconds is the minimum transitional and delay time of 

waiting when changing levels, with the Siemens ULTRAMAT gas analyser and 140 seconds 

with the Dx-4000 GASMET gas analyser. Apart from transitional time, it is also necessary 

additional time for reliable measurements in each level (steady time).  
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The duration of one test in the CFB is 30 min, in the case of ULTRAMAT gas analyser one 

feasible algorithm for the numbers of cycles in each level to control the valves might be as it is 

shown in Figure 6.14. 

In this case, it is possible to do 5 cycles, waiting 80 seconds for transition between levels 

followed by 40 seconds of reliable measurements. Therefore it is necessary to use 120 seconds 

per level, i.e, 360 seconds per cycle. 

For the GASMET gas analyser, a feasible algorithm for controlling the valves is shown in Figure 

6.15. 
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Figure 6.14 Five different cycles of measurements with ULTRAMAT gas analyser in the three levels. 
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In this case, it is possible to do only 3 cycles in each level of the sampling gas system. In each 

level, there are 140 seconds of transitional time, and 60 seconds of steady time when reliable 

measurements are taken with the gas analyser. 

In conclusion, with ULTRAMAT gas analyser it is possible to do 5 cycles of measurements per 

level and with GASMET gas analyser, it is only possible to do 3 cycles because the transitional 

time is longer. The next step is to test the multilevel gas sampling system in a real tests with the 

CFB in order to know if the proposed design in this Master’s Thesis, works correctly. 

 

7 Results and Discussions 

7.1 Combustion Test in the CFB 

Once that all the components of the multilevel sampling gas systems were installed, a real test 

in the CFB was done. This test was conducted to check that the multilevel gas sampling system, 

designed in this thesis, works correctly. 

The test conducted was a combustion test of 30 min, that was carried out in the CFB on 

20/06/2016, in which the fuel feeding took over 17 min. The selection of a combustion test 

instead of a gasification test was because of safety measures, since the multilevel sampling 

system was used for the first time and the gases produced in combustion are less dangerous than 

in gasification. 

14 kg of sand was used such as bed material. It had a Gaussian particle size distribution with a 

mean Sauter mean diameter of 200 µm. The composition of the sand is shown in Table 7.1. 
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Table 7.1 Sand composition (XRF-analysis/ ICP-OES in Oulu). 

Na2O 

(%) 

MgO 

(%) 

Al2O3 

(%) 

SiO2 

(%) 

P2O5 

(%) 

S 

 (%) 

Cl 

(PPM) 

K2O  

(%) 

CaO  

(%) 

0,00 0,00 0,14 2,84 0,00 0,00 498 0,06 0,34 

 

Besides, other parameters for the real test were: 

- Fuel feeding: 2,3 kg/h 

- Superficial gas velocity: 2 m/s 

- Gas flow approx.: 390 l/min 

- Air ratio: 2 

- Riser temperature: 800°C 

The procedure for the test is to first heat up the reactor until 700°C and then feed 1,2 kg of SRF 

(6%-w H2O) into it. During fuel feeding, the screw feeder has to be regulated to keep the air 

ratio as stable as possible. As well, the temperature has to be controlled by adjusting the heating 

power of the riser and the air pre heater. The temperature of the reactor during the test is shown 

in Figure 7.1. 

In Figure 7.1, the variation of temperatures of the three levels of the riser are shown. At 16:50 

the fuel was fed, so the temperature increases from 700°C to 800°C. The fuel feeding was 

stopped at 17:07. According to Figure 7.1 the temperature was more or less stable over 800°C 

during the fuel feeding. 
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7.1.1 Results for the Solenoid Valve Algorithm. 
The solenoid valve algorithm chosen to control the valves was the algorithm explained in 

chapters 6.2 and 6.3. The Dx-4000 GASMET gas analyser was connected to the multilevel 

sampling gas system for the combustion test, the delay and transitional time chosen were 140 

seconds and the steady time (reliable measurements) was 60 seconds per level. Therefore the 

time per level was 200 seconds, and the number of cycles was 3 times per level (30 min) as 

shown in Figure 6.15. 

Figure 7.2 shows the results for the CO2 concentration measured in all levels in the combustion 

test. 

 

Figure 7.2 Working of the multilevel gas sampling system for CO2 from combustion test. 

Figure 7.2 shows that each level is measured during 200 seconds, although not all the data is 

reliable, which depends on the solenoid valve algorithm chosen. Figure 7.3 shows the reliable 

measurements (steady time) of CO2 during the combustion test in each level. 
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Figure 7.3 Reliable measurements of CO2 in each level in a combustion test in CFB. 

According to Figure 7.3, it is possible to see that the algorithm used to open and close the 

solenoid valve is coherent, since when the GASMET gas analyser is measuring one level, the 

gas composition is from this level and there is not any contamination from other levels. In 

addition, in Figure 7.3 it is possible to see that in reliable data of each level the gas composition 

is more or less stable during the measurement. This is a first indication that the multilevel gas 

sampling system designed in this Master’s Thesis works.  

 

7.1.2 Comparison of the Results between ULTRAMAT and GASMET Gas 
Analysers 
The other gas analyser, Siemens ULTRAMAT gas analyser, was connected to the top of the 

CFB in order to compare its measurements with the ones obtained with the GASMET gas 

analyser. Figure 7.4 shows the results of CO2 concentration from both analysers. In the 

GASMET gas analyser case, the results from the three levels are shown together in order to be 

able to compare them with the results obtained with the ULTRAMAT. 
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Figure 7.4 CO2 Concentration from both gas analysers in the combustion test. 

Figure 7.4 shows in spite of both analysers were installed in different points, as well that 

GASMET gas analyser measured the gas composition in three different points, the results from 

both analysers are very similar. The difference at the beginning of the graph is because some 

issue with starting the data logger. The small difference is because each gas analyser is 

connected in a different point of the CFB, this difference means that with the multilevel gas 

sampling system is possible to acquire the small differences of the gasification or combustion 

depending on the place where the gas analyser is connected. This is another indication to say 

that the multilevel gas sampling system works correctly. 

Figure 7.5 shows the CO2 concentration from when both gas analysers were connected to the 

same point, i.e, at the top of the CFB. It was a combustion test conducted on 02/12/2015. 
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Figure 7.5 CO2 Concentration with both analysers in a combustion test on 02/12/2015. 

Figure 7.5 shows that both gas analysers measure almost the same CO2 concentration in the flue 

gases. It means that when the gas analysers are connected to the same point of the reactor, they 

give similar results. However, when they are connected in different point, as well that one of 

them analyses the gas composition in three different points (multilevel gas sampling system), 

the concentration that they analyse is similar but there are some small differences (Figure 7.4).  

 

7.1.3 Comparison of the Results with Older Tests 
Besides of the explained in chapter 7.1.2, if the concentration of some gases of the combustion 

are compared not with the other gas analyser, but with the results from an older combustion test 

using GASMET gas analyser in the top of the reactor, it is possible to see that there are some 

differences as shown Figure 7.6. 
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Figure 7.6 CO2 Concentration of two combustion test, one with multilevel gas sampling system and other without it. 

Figure 7.6 shows differences between the results from two combustion tests, one with 

(20/06/2016) and one without (02/12/2015) the multilevel gas sampling system. The results 

compare in an analogous way to those shown in Figure 7.4 and Figure 7.6. 

7.1.4 Results from the Tar Trap with Oil Scrubbers 
Once that the multilevel gas sampling system had been checked, the tar trap was checked in 

order to know whether it protects the system or not. 

The test on 20/06/2016 was a combustion test not a gasification test. Most of the tar formed 

during a combustion test is oxidized, but there might be some tar in the lower levels of the 

reactor. The decision of conducting a combustion test instead of a gasification test was for safety 

reasons, as explained in chapter 7.1. At the end of the test, it was possible to see that the tar trap 

works, since it retained some solid substances and also some of the bed material of the reactor 

(sand). Figure 7.7 shows the contents of the tar trap of the three different levels after the 

combustion test. 
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 Figure 7.7 Tar trap (oil scrubbers) with retained substances after one combustion test in the reactor. 

In Figure 7.7, it is possible to see that the tar trap on the first level contains a lot of sand. It is 

because in this level the flow of the bed material is higher than in the others two levels.  In the 

tar trap on the second level, there is no sand, but there are other substances in the oil, since the 

color of the oil is whiter than in the other levels. Finally, in the tar trap on the third level, there 

is almost nothing in the oil, since in this level it seems like there are less solid or dangerous 

substances.  

 

8 Conclusions and Future Research 

In conclusion, the multilevel gas sampling systems works and the tar trap retains the unwanted 

and dangerous substances for the gas analyser. Besides, all the electronic control with the 

optocoupler and LabVIEW also works for controlling the solenoid valves, and permits that the 

gas composition is analysed correctly in one level at the same time. In addition, the trend of the 

measurements in this work using the multilevel gas sampling system show the same trend as if 

the gas analyser would be installed on the top of the reactor. The small difference is only due to 

that the gas analyser is connected in other points of the reactor than before of this Master´s 

Thesis. This permits the future studies of how the physicochemical reactions of gasification and 

combustions reacts in different levels of the reactor, in order to improve all the knowledge about 

them. 
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Other objectives such as protection of the gas analyser from unwanted and dangerous substances 

has also been reached as the tar trap works correctly. In addition, the residence time of the gas 

inside of the multilevel system is as short as possible, which was another objectives of this work 

that has been reached. 

Future work could be some combustion and gasification test in order to compare the results of 

the gas composition in the three different levels with the results from previous test, in which the 

gas analyser was connected on the top of the reactor. Besides, it can be done not only with Dx-

4000 GASMET gas analyser, but it can also be done with Siemens ULTRAMAT 23 gas 

analyser. However the only problem of connecting ULTRAMAT gas analyser to the multilevel 

system is that this gas analyser can only analyse CO, CO2 and O2, so some information is lost, 

although in the oxygen case, it can be compared with previous test (GASMET does not measure 

O2). 

On the other hand, not only the results of the gas composition can be compared with previous 

test, but in the same test the results from the analyser connected to the multilevel system can be 

compared with the other gas analyser connected on the top of the reactor. In this way, at least 

the CO and CO2 can be compared among levels and with the results from the other gas analyser. 

It will help to know better what is happening inside of each level of the reactor. 

One thing that can be done in future test or research in the reactor are for example to change the 

duration of reliable measurements in each level. In this work the reliable measurements are 60 

seconds to GASMET analyser and 40 seconds to ULTRAMAT analyser. For example longer 

reliable measurements and less number of cycles per level may be done or the opposite, i.e, 

shorter reliable measurements and more number of cycler per level may be done. With all these 

options a lot of future test might be done and the results could be compared. In addition, not 

only the duration of the reliable data can be changed, but also the order of the levels that the gas 

analyser analyses. In the test on 20/06/2016 explained in chapter 7, the order of measurements 

was first level 3, then level 2 and then level 1, however the sampling level order can be changed 

for future experiments. In this way, making different test it is possible to know what is happening 

at the beginning, during and at the end of combustion or gasification in each different level of 

the reactor and compare the results of this level with what happened in the other levels, for 

example when the fuel starts to be fed. 

For future work and research, the tar trap can also be a source of new information, since the oil 

after a combustion or gasification test can be analysed. With the analysis of the oil from three 

different levels of the reactor, it would be a good way to know more about how the formation 

of tar and other substances, what chemical reactions are related with the formation of these 

substances and how it is possible to avoid the formation of them.  
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Other future work that may be done based on this Master’s Thesis is to change the size of the 

bed material, temperatures of the reactor, type of fuel, superficial velocity of the gas, air factor, 

etc. Changing these parameters, new gasification or combustion test may be done to know how 

these parameters influence the physicochemical reactions and products produced in each level 

of the reactor. 

Lastly, apart from other futures work and research about the reactor, other works may be done 

in the own multilevel gas sampling system. For example, some improvements could be done 

about the residence time, since if other components were used to build the steel pipes or other 

type of solenoid valves or scrubbers were used, the residence time could be reduced.  

Furthermore, other substances could be used in the tar trap instead of oil, because they might 

retain better the unwanted substances in the scrubbers. 

In conclusion, it is possible to say that the work of this Master’s Thesis is the beginning of a lot 

of future works and researches about gasification and combustion processes in the reactor, 

works with both gas analysers and tar traps and also works and researches about a lot of 

improvements in the own multilevel gas sampling system. 
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9. Appendix 

9.1 Model of the Heat Transfer for the Steel Pipes 
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