
Aalto University School of Engineering
CFD-group/ Department of Applied Mechanics

MEMO No CFD/MECHA-23-2012 DATE: November 15, 2012

TITLE

The Effect of Free-Stream Turbulence Parameters on the SST k−ω Turbulence
Model on a Flow over a Flat Plate

AUTHOR(S)

Juhaveikko Ala-Juusela and Timo Siikonen

ABSTRACT

An assessment of the SST k−ω turbulence model is made using different free-
stream values for k and ω. A flow over a flat plate at high Reynolds numbers
is used as a test case.

MAIN RESULT

A modification to reduce the effect of free-stream turbulence quantities on the
SST k−ω turbulence model is tested. It is found out that the method in some
situations removed the effect of the free-stream values, but is not as effective
at high Reynolds numbers.

PAGES

24

KEY WORDS
A flat-plate flow, CFD, turbulence, SST k − ω, a high-Reynolds number flow

APPROVED BY

Timo Siikonen November 15, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80722372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This page intentionally left blank



Contents

1 Introduction 5

2 Flow Equations 5

3 SST k − ω RANS-model 7

3.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Computational Domain and Grid 10

5 Results 10

5.1 Air (Re = 1.3 · 108) . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.2 Free Stream and Boundary Layer . . . . . . . . . . . . . 13

5.2 Water (Re = 1 · 109) . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Free Stream and Boundary Layer . . . . . . . . . . . . . 19

6 Conclusions 23



This page intentionally left blank



5

1 Introduction

In a recent study [1] it was shown that some values of the free-stream tur-
bulence caused a friction factor to behave in a peculiar way, when the SST
k −ω turbulence model [2, 3, 4] is used. A similar behavior has taken place in
aerodynamic simulations. Usually the SST model works fine, but occasionally
either no turbulence is generated or the result is clearly non-physical. This is
the case, when the free-stream values are given via input. The default values
have worked in a number of simulations made during the past years, but there
are different suggestions for them [2, 5].

In a previous study [6] the effect of the free stream values on the SST
k − ω turbulence model was studied by simulating two different cases, a flow
over an ogive cylinder and over the Onera M6 wing. Two modifications to the
implemented SST k − ω model were suggested, and the first one was applied.
In the present study the same modification is further tested at high Reynolds
numbers by simulating a flow over a 200 m long flat plate. Different free stream
values are used in two cases, an air flow at a speed of 10 m/s and a water flow
at a speed of 5 m/s. Corresponding Reynolds numbers are 1.29 ·108 and 1 ·109.

In a following, the turbulence model is firstly described, then simulation
cases and grids are introduced. Finally, the results of the simulations are
presented.

2 Flow Equations

A low-Reynolds number approach is used in FINFLO. The Reynolds-averaged
Navier-Stokes equations, and the equations for the kinetic energy (k) and spe-
cific dissipation (ω) of turbulence can be written in the following form

∂U

∂t
+

∂(F − Fv)

∂x
+

∂(G − Gv)

∂y
+

∂(H − Hv)

∂z
= Q (1)

where the unknowns are U = (ρ, ρu, ρv, ρw, E, ρk, ρω)T . The inviscid fluxes
are
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(2)

where ρ is the density, the velocity vector by using Cartesian components is
~V = u~i + v~j + w~k, p is the pressure, k is the turbulent kinetic energy and ω
its dissipation, and the total energy E is defined as
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E = ρe +
ρ~V · ~V

2
+ ρk (3)

where e is the specific internal energy. The viscous fluxes are
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(4)

Here the stress tensor, τij , includes laminar and turbulent components. The
fluid is assumed to be Newtonian and, therefore, the laminar stresses are mod-
elled by using Stokes hypothesis. The Reynolds stresses ρu′′

i u
′′

j are included in
the stress tensor τij .

τij = µ

[

∂uj

∂xi

+
∂ui

∂xj

− 2

3
(∇ · ~V )δij

]

− ρu′′

i u
′′

j +
2

3
ρkδij (5)

For the Reynolds stresses, Boussinesq’s approximation

− ρu′′

i u
′′

j = µT

[

∂uj

∂xi

+
∂ui

∂xj

− 2

3
(∇ · ~V )δij

]

− 2

3
ρkδij (6)

is utilized in RANS simulations. Here µT is a turbulent viscosity coefficient,
which is calculated by using a turbulence model, and δij is the Kronecker’s
delta. In the momentum and energy equations, the kinetic energy contribution
2/3ρkδij has been connected with pressure and appears in the convective fluxes,
whereas the diffusive part is connected with the viscous fluxes. The viscous
stresses contains a laminar and a turbulent parts. The heat flux can be written
as

~q = −(λ + λT )∇T = −
(

µ
cp

Pr
+ µT

cp

PrT

)

∇T (7)

where λ is a molecular and λT a turbulent thermal conductivity coefficient and
Pr is a laminar and PrT a turbulent Prandtl number, and cp is a specific heat
at constant pressure. The diffusion of turbulence variables is modelled as
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µk∇k =
(

µ +
µT

σk

)

∇k (8)

µω∇ω =
(

µ +
µT

σω

)

∇ω (9)

where σk and σω are turbulent Schmidt numbers of k and ω, respectively.
Density is obtained from an equation of state ρ = ρ(p, T ) Since the case for the
ogive cylinder is incompressible, pressure differences p − p0 are solved instead
of pressure. The components of the source term Q are non-zero in possible
buoyancy terms and in turbulence model equations.

In the present study both preconditioning and pressure correction methods
are used to determine the pressure. The solution method applied is presented
in [7], and the pressure correction method used is described in [8]. As com-
pared to the traditional pressure correction methods, the basic difference of
the present method is that all the residuals are calculated simultaneously and
only once during an iteration cycle. The complexity of the coupled implicit
solution is avoided by manipulating the explicit residuals. Since the same ex-
plicit stage is used as in preconditioning, the pressure correction can be used
as a parallel solution method for the preconditioning.

3 SST k − ω RANS-model

3.1 Basic Model

The model equations using an implicit summation over j-index are

ρ
∂k

∂t
+ ρuj

∂k

∂xj

= P − β∗ρkω (10)

+
∂

∂xj

[

(µ +
µT

σk

)
∂k

∂xj

]

ρ
∂ω

∂t
+ ρuj

∂ω

∂xj

=
γρ

µT

P − βρω2 (11)

+
∂

∂xj

[

(µ +
µT

σω

)
∂ω

∂xj

]

+ 2ρ
1 − F1

σω2ω

∂k

∂xj

∂ω

∂xj

The model coefficients in Eqs. (10) and (11) are obtained from

(σk σω β)T = F1 (σk σω β)T

1
+ (1 − F1) (σk σω β)T

2
(12)

with the following values

σk1 = 1.176 σω1 = 2.0 β1 = 0.075

σk2 = 1.0 σω2 = 1.168 β2 = 0.0828
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Coefficients κ and β∗ have constant values of 0.41 and 0.09. Coefficient γ is
calculated from

γ =
β

β∗
− κ2

σω

√
β∗

(13)

Term P in Eqs. (10) and (11) is the production of turbulent kinetic energy
and calculated using the Boussinesq approximation from Eq. (6). The last
term in the ω-equation originates from the transformed ǫ-equation and it is
called a cross-diffusion term. The switching function which governs the choice
between the ω- and the ǫ-equations is

F1 = tanh (Γ4) (14)

where

Γ = min

(

max

(
√

k

β∗ωd
;
500ν

ωd2

)

;
4ρσω2k

CDkωd2

)

(15)

The first term is a turbulent length scale divided with the distance from the
walls (d). This ratio is around 2.5 in a logarithmic layer and approaches zero in
an outer layer. The second term has a value of ≥ 1 only in a viscous sublayer.
The meaning of the third term is to ensure stable behaviour of F1 when the
value of ω in the free stream is small. It utilizes a parameter

CDkω = max

(

2ρ

σω2ω

∂k

∂xj

∂ω

∂xj

; CDkω min

)

(16)

which is a lower limit of the cross diffusion term. The main purpose of the
switching function is to limit the use of the k − ω model into the boundary
layer region. The switch may be a weak point in the model, but it seems to
work at least in cases of external flows.

Free-stream boundary conditions are also applied as lower limits for k and
ω in FINFLO. These limits, especially too high a value for ω∞, may lead to
troubles on the outer edege of the boundary layer. The original suggestions
are [2]:

u∞

Lref

< ω∞ < 10
u∞

Lref

10−5u2
∞

ReLref

< k∞ <
0.1u2

∞

ReLref

(17)

In FINFLO the lower limit has been chosen for ω∞, whereas the multiplier in
the second condition is 10−3. This indicates that uT∞/µ∞ = 10−3 and k∞ =
u2
∞

/ReLref
. Thus at high Reynolds numbers the turbulence level approaches

zero and ω∞ also has a low value, while the eddy viscosity remains constant.
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Another variant for the free stream values has been given by Spalart and
Rumsey [5]:

ω∞ =
5u∞

Lref

k = 10−6u2
∞

(18)

The corresponding eddy viscosity is µT∞/µ∞ = 10−6ReLref
/5. At a high

Reynolds number this results in a huge eddy viscosity, whereas the turbulence
level is reasonably low.

3.2 Modifications

On the basis of the sample calculations it was decided to change the rela-
tionships between the turbulence quantities. A goal was that the free-stream
conditions could be given more freely. As a first trial the turbulence produc-
tion terms are changed. In the simulations where unphysical solutions have
been obtained, the free-stream value of ω has been large. A simple and well
known trick to remove the effect of free-stream ω∞ is to add a corresponding
production on the right hand side of Eq. (10)

β∗ρ∞k∞ω∞

This is called a SST-sust model [5]. As a result the free-stream turbulence
never dies out as is the case without this term. In practice the evident decay
is prevented by specifying a lower limit, i.e. the ’free-stream’ value for the
kinetic energy of turbulence. (In spite of the correction term this limitation is
applied in order to ensure a realizability of the model).

For the ω-equation a corresponding term is needed on the right-hand side
of Eq. (11)

βρ∞ω2
∞

With these corrections k and ω behave realistically in the free stream and the
possibly large value of ω∞ does not disturb the outer boundary layer. However,
the turbulent viscosity remains unaffected and has a value specified via input.
It is also possible to modify the equation for the eddy viscosity. In the SST
model this is calculated from

µT =
a1ρk

max (a1ω, SF2)
(19)

where a1 = 0.31 is Bradshaw’s constant, S =
√

2SijSij is the absolute value of
a strain rate tensor

Sij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

(20)

and function F2 is calculated from

F2 = tanh (Γ2
2) (21)
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where

Γ2 = max

(

2
√

k

β∗ωd
;
500ν

ωd2

)

(22)

A second method for removing the effect of a large background value of
ω can be based on a modification of the viscosity formula. For a free stream
a suitable value for a maximum ω∞ can be found on the basis of validation
calculations. Since function F2 is small outside the boundary layer, the eddy
viscosity can be approximated as

µT,∞ =
ρ∞k∞

ω0 + ω∞

(23)

Since k∞ and µT,∞ are given via input and the lower limit for ω∞ has the
specified default value, parameter ω0 can be solved. This parameter is applied
throughout the computational domain, but only in connection with Eq. (19)
and its influence is small in viscous regions. Thus a combination of µT,∞ and
k∞ does not lead to a large value of ω∞, which seems to be the main cause of
troubles with the SST-model.

4 Computational Domain and Grid

The modifications are tested with a simple flat-plate geometry at two high
Reynolds numbers. The flat plate is 200 m long and the height of the grid is
5 m. The first cell height is 1.5 · 10−4 m. After that the ratio between the
neighboring cells is ∆yn+1/∆yn = 1.1 in a wall normal direction, ∆yn+1/∆yn =
1.08 for the first 50 m in a streamwise direction and ∆yn+1/∆yn ≈ 1.00 after
that. The resulting grid size is 160 × 96.

A uniform velocity distribution is given as an inlet condition. The pres-
sure is extrapolated from the computational domain. At the lower boundary
symmetry conditions are applied before the flat plate. At the flat plate the
velocities and the kinetic energy of the turbulence are set to zero. Pressure
is given and zero gradients are assumed at the outlet and on the boundary
parallel to the plate. Temperature is constant along the plate.

5 Results

Two cases are simulated, one using air as a fluid and another using water. Free
stream velocity is 10 m/s with air and 5 m/s with water. Reynolds numbers
are Re = 1.3 · 108 and Re = 109, respectively. The simulations were started on
the third grid level and the result was interpolated on the finer levels until the
first level was reached. Two multigrid levels are used to accelerate convergence.
A third-order upwind biased discretization is used in the calculation of the
convective fluxes. A Courant number is CFL = 3 in all cases.
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5.1 Air (Re = 1.3 · 108)

Four different sets of free stream turbulence values are utilized in simulations.
In ’Case 1’ values suggested in Ref. [5], k∞ = 1·10−6U2

∞
and ω∞ = 5U∞/Lref are

applied. These yield to a turbulence intensity and turbulent viscosity values
of Tu = 0.0008165 and µT/µ = 26.1437, respectively. In ’Case 2’ and ’Case 3’
these values are Tu = 0.001 and µT /µ = 0.01. In ’Case 4’ the default values
computed by the solver are applied resulting in of Tu = 2.25568 · 10−6 and
µT /µ = 0.001. In Case 2 the first modification described is used and in Case
3 the original model is applied. Free stream values for turbulence is presented
in Table 1.

Table. 1: Free stream values.

k∞ ω∞ µT /µ Tu
Case 1 0.0001 0.2976970 26.1437 0.0008165
Case 2 0.00015 1167.425 0.01 0.001
Case 3 0.00015 1167.425 0.01 0.001
Case 4 7.6318 · 10−10 0.0594 0.001 2.25568 · 10−6

5.1.1 Convergence

The convergence histories for the Case 1 and Case 2 are shown in Figs. 1 -
4. The density residual is converged within 100 cycles, but the momentum
residual in x-direction needs nearly 3 000 cycles and over 5 000 cycles with
modification 1. The budgets of turbulent kinetic energy are on a totally differ-
ent level between the cases as well as the budgets of dissipation of the turbulent
kinetic energy.
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Fig. 1: Convergence history of ||∆ρ||2. Case 1 on the left and Case 2 on the right.
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Fig. 2: Convergence history of ||∆ρu||2. Case 1 on the left and Case 2 on the right.
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Fig. 3: Convergence history of the budget of the kinetic energy of turbulence. Case
1 on the left and Case 2 on the right.
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Fig. 4: Convergence history the budget of dissipation of turbulent kinetic energy.
Case 1 on the left and Case 2 on the right.
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5.1.2 Free Stream and Boundary Layer

Universal boundary layer parameters, friction factor Cf , pressure coefficient
Cp, boundary layer thickness δ99 defined as a height where the velocity is 99 %
of the free stream velocity, displacement thickness δ∗99, momentum thickness θ
and shape factor H , are shown in Figs. 5 - 7. The displacement thickness, the
momentum thickness and the shape function are defined as

δ∗99 =
∫ δ99

0

(

1 − u(y)

Ue

)

dy (24)

θ =
∫ δ99

0

u(y)

Ue

(

1 − u(y)

Ue

)

dy (25)

H =
δ∗99
θ

(26)

where Ue ≡ u∞ is the velocity at the edge of the boundary layer.
There are significant differences between cases, so that in Cases 1 and 4 the

values are similar and Cases 2 and 3 differ from those. Usually Case 2 is closer
to Cases 1 and 4 than Case 3, which is calculated without the modification. An
exception is pressure coefficient, where Case 2 is oscillating after the location
Rex = 4 · 107.
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Fig. 5: Friction coefficient (left) and pressure coefficient(right along the plate.)

Velocity profiles in a half-logarithmic scale are shown in Figs. 8 and 9.
Again, Cases 1 and 4 are quite similar but there is a small difference between
those and Cases 2 and 3 already at Rex = 6.5 · 105. The difference is growing
larger into the downstream direction of the plate.

Profiles of the turbulent kinetic energy are shown in Figs. 10 and 11 and
dimensionless turbulent viscosity in Figs. 12 and 13, both in a logarithmic
scale. Turbulent kinetic energy of Case 2 differs a lot from the others in the
boundary layer, while Case 3 turns to a laminar solution. Turbulent viscosity
profiles are quite similar for Cases 1 and 4 in the boundary layer, Case 1 is
clearly different in the free stream region.
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Fig. 6: Boundary layer thickness (left) and displacement thickness (right) along
the plate.
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Fig. 7: Momentum thickness (left) and shape factor (right) along the plate.
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Fig. 8: Velocity distributions at locations Rex = 6.5 · 105 and Rex = 6.5 · 106.
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Fig. 9: Velocity distributions at locations Rex = 6.5 · 107 and Rex = 1.3 · 108.
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Fig. 10: Distributions of the turbulent kinetic energy at locations Rex = 6.5 · 105

and Rex = 6.5 · 106.
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Fig. 11: Distributions of the turbulent kinetic energy at locations Rex = 6.5 · 107

and Rex = 1.3 · 108.
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Fig. 12: Distributions the turbulent viscosity at locations Rex = 6.5 · 105 and
Rex = 6.5 · 106.
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Fig. 13: Distributions the turbulent viscosity at locations Rex = 6.5 · 107 and
Rex = 1.3 · 108.
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Fig. 14: Distributions of specific dissipation rate ω at locations Rex = 6.5 ·105 and
Rex = 6.5 · 106.
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Fig. 15: Distributions of specific dissipation rate ω at locations Rex = 6.5 ·107 and
Rex = 1.3 · 108.

5.2 Water (Re = 1 · 109)

With water a very high Reynolds number is obtained. As in simulations with
air, four different sets of the free stream turbulence values are utilized in
simulations. In ’Case 1’ values suggested in Ref. [5], k∞ = 1 · 10−6U2

∞
and

ω∞ = 5U∞/Lref are applied. These yield to a turbulence intensity and turbu-
lent viscosity values of Tu = 0.0008165 and µT /µ = 208.55, respectively. In
’Case 2’ and ’Case 3’ these values are Tu = 0.001 and µT/µ = 0.1. In ’Case 4’
these values are computed by the solver resulting values Tu = 4.086 · 10−7

and µT /µ = 0.001. As in the simulation with air, in Case 2 the modification
described (Eq. 19) is applied. Free stream values for turbulence are presented
in Table 2.

Table. 2: Free stream values.

k∞ ω∞ µT /µ Tu
Case 1 0.000025 119.67 208.55 0.0008165
Case 2 0.0000375 1167.425 0.1 0.001
Case 3 0.0000375 374345.4 0.1 0.001
Case 4 2.504 · 10−11 25.0 0.001 4.086 · 10−7

5.2.1 Convergence

The convergence histories for the Case 1 and Case 2 are shown in Figs. 16 -
19. The convergence in these cases is comparable to corresponding simulations
with air, although the convergence is now a bit slower as a consequence of the
higher Reynolds number.
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Fig. 16: Convergence history of ||∆ρ||2. Case 1 on the left and Case 2 on the right.
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Fig. 17: Convergence history of ||∆ρu||2. Case 1 on the left and Case 2 on the
right.
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Fig. 18: Convergence history of the budget of the kinetic energy of turbulence.
Case 1 on the left and Case 2 on the right.
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Fig. 19: Convergence history the budget of dissipation of turbulent kinetic energy.
Case 1 on the left and Case 2 on the right.

5.2.2 Free Stream and Boundary Layer

The boundary layer parameters, friction factor Cf , pressure coefficient Cp,
boundary layer thickness δ99, displacement thickness δ∗99, momentum thickness
θ and shape factor H , are shown in Figs. 20 - 22. Again there are significant
differences between cases, so that in Cases 1 and 4 the values are similar and
Cases 2 and 3 differ from those. There is also significant difference between
Cases 2 and 3.
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Fig. 20: Friction coefficient (left) and pressure coefficient(right along the plate.)

Velocity profiles in a half-logarithmic scale are shown in Figs. 23 and 24.
The velocity distributions are well aligned at a distance of 1m (Rex = 5 · 105)
after the entrance, but as with air differences are growing larger downstream
the plate.

Profiles of the turbulent kinetic energy are shown in Figs. 25 and 26 and
dimensionless turbulent viscosity in Figs. 27 and 28, both in a logarithmic
scale.
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Fig. 21: Boundary layer thickness (left) and displacement thickness (right) along
the plate.
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Fig. 22: Momentum thickness (left) and shape factor (right) along the plate.

Turbulent kinetic energy of Case 3 differs a lot from the others in the
boundary layer, since Case 3, i.e. the model with no modifications, turns
out to be almost laminar. In a free stream area Cases 1 and 2 are similar.
Turbulent viscosity profiles are quite similar for Cases 1 and 4 in the boundary
layer, again Case 1 is clearly different in the free stream area.
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Fig. 23: Velocity distributions at locations Rex = 5 · 106 and Rex = 5 · 107.
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Fig. 24: Velocity distributions at locations Rex = 5 · 108 and Rex = 109.
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Fig. 25: Distributions of the turbulent kinetic energy at locations Rex = 5 · 106

and Rex = 5 · 107.
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Fig. 26: Distributions of the turbulent kinetic energy at locations Rex = 5 · 108

and Rex = 109.
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Fig. 27: Distributions the turbulent viscosity at locations Rex = 5 · 106 and
Rex = 5 · 107.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.0001 0.001  0.01  0.1  1  10  100  1000  10000

y
[m

]

µt/µ

Spalart Ramsey
Mod. 1

No mod.
Default

 0.001

 0.01

 0.1

 1

 0.0001 0.001  0.01  0.1  1  10  100  1000  10000

y
[m

]

µt/µ

Spalart Ramsey
Mod. 1

No mod.
Default

Fig. 28: Distributions the turbulent viscosity at locations Rex = 5 · 108 and
Rex = 109.
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Fig. 29: Distributions of specific dissipation rate ω at locations Rex = 5 · 106 and
Rex = 5 · 107.
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Fig. 30: Distributions of specific dissipation rate ω at locations Rex = 5 · 108 and
Rex = 109.

6 Conclusions

In some simulations it has been found out that the free-stream values for the
turbulence quantities may significantly effect the flow solution, as the SST
k − ω model is applied. The original default values usually work well, but the
turbulence intensity may have unphysically low a value. The values suggested
by Spalart and Rumsey also give sensible results, but result in a high value for
the eddy viscosity in a free stream.

Two modifications have been suggested in order to cure the problem and
the first one has been tested at high Reynolds numbers. Although the SST-
sust model seemed to improve the situation in cases like an ogive cylinder and
Onera M6 wing, the present study shows that some values still cause problems
in simulations of a high-Reynolds-number flow over a flat plate. There is some
improvement in the results as Rex is sufficiently low, but as Rex is increased
finally the friction factor drops and the velocity profile becomes unphysical.
It should be noted that this concerns situations, where the free-stream values
are not given according to the recommendations.

In a boundary layer both the values suggested by Spalart and Rumsey and
the default values give very similar results provided that the recommended
free-stream values are applied. However, in the free-stream the eddy viscosity
differs a lot. The default values of the code, i.e. the original ones seem to
give the best results in all situations. However, the turbulence intesity that is
applied e.g. transition modeling [9, 10] should be specified case by case, not
according to the applied default values. This leaves the question about the
free-stream values still open.
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