

Aalto University
School of Science
Master's Programme in ICT Innovation

Taha Kachwala

Managing Data Visualization Pipeline
with Backbone.js and D3.js
Improving overall software efficiency using
Automated Build Pipeline with Gulp

Master's Thesis
Espoo, 10.10.2016

Supervisor: Prof. Petri Vuorimaa
Instructor: Pertti Lounamaa

Aalto University
School of Science
Master's Programme in ICT Innovation

ABSTRACT OF
MASTER'S THESIS

Author: Taha Kachwala
Title:
Managing Data Visualization Pipeline with Backbone.js and D3.js.
Improving overall software efficiency using Automated Build Pipeline with Gulp

Date: 10.10.2016 Pages: 87

Professorship: Digital Media Technology Code: T-111

Supervisor: Prof. Petri Vuorimaa
Instructor: Petri Lounamaa Ph.D. (Economic Systems)

This thesis studies how a Model-View-Controller (MV*) framework can be
integrated into a Data Visualization Pipeline. Specifically, this thesis aims to
cover the challenges related in integrating an MV* framework like Backbone.js
with D3.js, which is a popular JavaScript based visualization library. Additionally,
it also evaluates another sub-topic regarding task runners, which are tools
claiming to automate manual tasks as well as streamlining the build process.

Data Visualization has become an important aspect for many web applications.
Developers need to employ sophisticated mechanisms to provide interactive
visualizations. This requires separation of concerns within the visualization
pipeline which is achieved with the combination of Backbone.js and D3.js.
Evaluation of this methodology indicates that such a combination enables the
application to be more versatile and robust while also improving performance.

In recent years, client-side web applications have become increasingly complex.
A typical web application on average requires between 10-60 external
open-source JavaScript libraries. Application development also requires the use
of several other tools and performing manual tasks. Managing all these libraries
and tools can create a bottleneck, and task-runners like Gulp aim to address
these issues. This thesis implements an Automated Build Pipeline that can
streamline the build process and automates all the manual tasks. The results
prove significant performance and overall efficiency benefits. However, it also
highlights a few serious drawbacks. Moreover, this thesis also covers some of
the best practices employed by skilled front-end web developers.

Keywords: Data Visualization, JavaScript, MVC, Web Application, Gulp

Language: English

1

Acknowledgements

First, I would like to thank my supervisor, professor Petri Vuorimaa, to provide me
guidance throughout my internship and thesis.

Furthermore, I would also like to thank my employer Pajat Solutions to provide me
with a challenging internship and an interesting thesis topic. I would especially like
to thank the CEO Pertti Lounamaa, for providing me with the flexibility and freedom
to make decisions regarding the product development of Poimapper.

Espoo, October 10, 2016

Taha Kachwala

2

Abbreviations & Acronyms

API Application Programming Interface

CSS Cascading Style Sheets

HTML HyperText Markup Language

InfoVis Information Visualization

JS JavaScript or JavaScript file

JSON JavaScript Object Notation

JSP Java Server Pages

MVC, MV* Model View Controller Framework

NPM Node Package Manager

POI Point of Interest

REST Representational State Transfer

SLOC Source Lines of Code

UI User Interface

3

Contents

1. ​Introduction 7
1.1 Motive for the Research 7
1.2 Research Objectives 9
1.3 Target Group 9
1.4 Poimapper 9
1.5 Structure of Thesis 1​0

2. ​Product Description - Poimapper 1​1
2.1 Form Builder 1​2
2.2 Data Viewer 1​3
2.3 Hierarchy Editor 1​5
2.4 Admin and Scheduler 1​5

3. ​Data Visualization and D3.js 1​6
3.1 Definition 1​6
3.2 Branches of Visualization 1​7
3.3 InfoVis 1​8

3.3.1 Attributes of Visualization 1​8
3.3.2 Principles of Visualization 1​8
3.3.3 The Visualization Pipeline 2​7

3.4 Creating Visualizations using D3.js 2​7
3.4.1 Chart Object 2​7
3.4.2 Scalable Vector Graphics (SVG) 28
3.4.3 D3-Scales 29
3.4.4 D3-Axes 3​0
3.4.5 Legends and Tooltips 3​1
3.4.6 Bar Charts 3​1
3.4.7 Pie Charts 3​4

4

3.4.8 Line Charts 3​5
3.4.9 Area Charts 3​5

4. ​Backbone.js - An MV* Framework 37
4.1 Need for MV* Frameworks 37
4.2 Model-View-Controller 38

4.2.1 Model 39
4.2.2 Controller 39
4.2.3 Views 39
4.2.4 Routers 4​0

4.3 More about Backbone.js 4​0
4.3.1 Underscore.js 4​1
4.3.2 Agnostic Templating 4​2
4.3.3 MV* 4​2
4.3.4 Clean HTML 4​6
4.3.5 Extensions 46

5. ​Implementing the Data Visualization Pipeline 47
5.1 Specifications of a Web Report 47
5.2 Architecture of Web Reports Module 48

5.2.1 Models 49
5.2.2 Collections 5​0
5.2.3 Views 5​1

5.3 Adding New Features 5​4

6. ​Automated Build Pipeline using Gulp 55
6.1 Miscellaneous Tools 56

6.1.1 CSS Preprocessors 56
6.1.2 CoffeeScript 56
6.1.3 Bower 59

6.2 Gulp 6​0
6.2.1 Installation and Setup 6​0
6.2.2 Gulp Workflow 6​0
6.2.3 Helper Plugins 6​1
6.2.4 Build Pipeline 64
6.2.6 Gulp Tasks 66

7. ​Evaluation 74
7.1 Evaluation of Data Visualization Pipeline with Backbone.js and D3.js 74

7.1.1 Data-Binding 74
7.1.2 Performance Analysis 75
7.1.3 Loose Coupling and High Cohesion 76

7.2 Evaluation of Automated Build Pipeline using Gulp 77

5

7.2.1 Improved Developer Efficiency 77
7.2.2 Performance Gains using Gulp 77
7.2.3 Page Speed Comparisons 79
7.2.4 Disadvantages of Gulp 79

8. ​Discussion and Conclusion 8​1
8.1 Future Work 8​2

Appendix A 86

6

Chapter 1

Introduction

1.1 Motive for the Research
The client-side applications using JavaScript are becoming increasingly complex.
One factor contributing to this fact is that there are thousands of libraries available
through open-source contributions that help in solving a variety of issues and few
even introducing new ones. These libraries depend on other libraries, and in no
time a web application might become an explosive cocktail that is impossible to
contain. In recent years, Node.js has enabled JavaScript to be used as a
server-side language as well, and some libraries like Browserify propose to write 1

even the front-end applications with server-side Node.js logic. Furthermore, there
are different families of open-source libraries and tools that claim to solve various
problems in various stages of software development cycle. One such such family is
of JavaScript Task Runners. This family consists of several libraries to choose
from, like GRUNT , Gulp , Cake and Broccoli.js . They all claim superiority over 2 3 4 5

others in certain aspects, however the leaders in this race are Grunt and Gulp.
These task runners aim to automate various manual tasks like compiling scripts,
minification, creating build pipelines, testing and several more and help tackle
various issues surrounding JavaScript. Also, a different set of files needs to served
for development and production purposes. They claim to handle all theses tasks
seamlessly and ease the software development cycle, but the question is, is it
really required?

In addition, JavaScript front-end MVCs (Model-View-Controller) is another family of
open-source libraries and tools. They aim to address the logical complexities of the
Web applications. MVCs is a very powerful software architecture concept and have

1 "Browserify." 2013. 8 Sep. 2016 <http://browserify.org/>
2 "Grunt: The JavaScript Task Runner." 2012. 8 Sep. 2016 <http://gruntjs.com/>
3 "gulp.js - the streaming build system." 2013. 8 Sep. 2016 <http://gulpjs.com/>
4 "cake.coffee - CoffeeScript." 2010. 8 Sep. 2016
<http://coffeescript.org/documentation/docs/cake.html>
5 "Broccoli.js - The asset pipeline for ambitious applications." 2014. 8 Sep. 2016
<http://broccolijs.com/>

7

effectively helped solving a variety of issues on server-side programming
languages. Some of the most powerful ones being Spring for Java, Django for 6 7

Python and Express.js for Node. In the past few years, increasing amounts of 8

application logic is being implemented on the client-side rather than on the
server-side . This has led to the development of many front-end JavaScript based 9

MVC frameworks like Backbone.js, Knockout.js, Ember.js, Angular.js and React.js.
They too claim to be superior over others in some or the other aspect, and there
have been several studies comparing the benefits and downsides of using these
frameworks. However, I would like to find out if a MVC can help in tackling the
challenges of Data Visualization, that have become an important aspect for
front-end web applications. I planned to test this idea while I was working as an
intern at Poimapper (see chapter 2). I was given the responsibility to create
interactive Web Reports containing visualizations for different types of data. In the
past, I have created visualizations and dashboards (figure 1.1) using purely
JavaScript with D3.js- A JavaScript based visualization library. However, I soon
realised that handling the entire Visualization Pipeline (see section 3.3.3) with such
a complex set of data is extremely difficult if not impossible by using pure
JavaScript.

6 "22. Web MVC framework - Spring." 2013. 8 Sep. 2016
<http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html>
7 "Django: The Web framework for perfectionists with deadlines." 2011. 8 Sep. 2016
<https://www.djangoproject.com/>
8 "Express - Node.js web application framework." 2015. 8 Sep. 2016 <https://expressjs.com/>
9 Runeberg, Joakim. "To-Do with JavaScript MV*: A study into the differences between
Backbone. js and AngularJS." (2013).

8

1.2 Research Objectives
The main purpose of creating Web Reports for Poimapper is to provide our users
with the answer of a simple question, “What is happening?”. The user can then
dive into more details by interacting with the charts. I knew from my past
experience that the process can become extremely complicated when the logic of
creating charts (Chart Logic) gets intertwined with the actual application logic.
Previously, I have ended in making several flavors of the same type of charts for
different types of interaction instead of reusing the code. It would be interesting to
test if an MV* framework can effectively handle the challenge of separation of
concerns within the Data Visualization Pipeline as described in section 3.3.3.

Furthermore, there are several important practices that also need to be followed to
develop and manage a web application. JavaScript task runners claim to be an
easy to use tool to conveniently implement these practices. Since Poimapper was
missing a task runner, I planned to experiment with Gulp and test if it really helps.

Therefore, to test these hypotheses, I would like to experiment with two most
important families of the JavaScript open-source libraries, namely, Task Runners
and MV* frameworks:

RQ1: Does a JavaScript task runner help improve overall software

efficiency and productivity?
RQ2: Can a MV* framework like Backbone.js help in separation of

concerns within the Data Visualization Pipeline?

1.3 Target Group
The target audiences of this thesis are developers and researchers already familiar
to some concepts of Data Visualization, Model-View-Controller frameworks and
JavaScript. However, I have provided sufficient background for novice JavaScript
developers interested in developing web applications and visualizations with
minimal boilerplate.

1.4 Poimapper
During my internship at Pajat Solutions, I was working on their core product,
Poimapper . Poimapper is a fairly sophisticated product, but to put it simply it is a 10

Mobile data collection platform to cater the needs of on-field teams such as
industrial inspection, facility management, market research, inspections, audit, and
sales reporting. It allows mobile users to collect, share, and visualize geotagged
data in real-time.

10 "Poimapper." 2010. 12 May. 2016 <http://www.poimapper.com/>

9

1.5 Structure of Thesis
Chapter 1 (Introduction) describes the motivation and the problem statement for
this thesis. Chapter 2 (Product Description) briefly introduces the product
(Poimapper.com) to the audience to have a better understanding of subsequent
chapters and decisions taken. Chapter 3 (Data Visualization and D3.js) consists of
a detailed discussion regarding the need for data visualization and crucial
concepts. In chapter 4, I elaborate the need for MV* frameworks and introduce the
concepts of Backbone.js.

Chapter 5 and chapter 6 have detailed discussion and implementations of Data
Visualization Pipeline and Automated Build Pipeline respectively. Chapter 7
(Evaluation) consists of analysis and performance gains using both the pipelines.
Finally, conclusions and implications of the thesis are discussed in chapter 8.

10

Chapter 2

Product Description - Poimapper

As briefly discussed in section 1.4, Poimapper allows its users to collect data 11

through forms. For example, a project manager can create multiple forms and then
assign specific forms to various teams. These teams collect data by filling out
these forms and the data is reported back to the concerned authorities/users.

The main feature of Poimapper is geotagging. This makes Poimapper extremely
efficient tool to be used for on-field studies/teams. It is being currently used by a
chocolate manufacturing company with an aim to provide 100% slave-free
chocolates. To ensure that the chocolates are slave-free, they have to monitor and
inspect these farms from where they buy Cocoa. This requires them to have
multiple inspection teams spread over a few African nations, and are using
Poimapper to manage and process the data collected by them.

Poimapper consists of a Web Application and an iOS and Android app. Currently
mobile apps are only used to fill in form data that are mostly used by teams for
on-field surveys. All other functionalities are provided by the Web app. The prime
aim of Poimapper is simple, users can create forms/surveys and other users can fill
them up. However, in principle the product is fairly sophisticated and complex. It
can be divided into the following main modules.

1. Form Builder: ​To create and edit forms.
2. Data Viewer:​ Users can view the reports of form data collected.
3. Hierarchy Editor: ​To manage locations and hierarchies of geographical

locations. Users can create custom location levels upto four levels such as
Continent -> Country -> State -> District.

4. Admin: Users with higher access rights can allocate roles to other users.
This helps in managing access controls to different types of users.

11 "Poimapper." 2010. 3 Jul. 2016 <http://www.poimapper.com/home/>

11

5. Scheduler: ​Users with higher access rights can allocate particular tasks for
a particular user to a certain form on a specific date. It helps in scheduling
tasks to on field teams.

6. Profile Settings:​ Generic settings for users like changing passwords etc.

Each of these core modules are developed using Backbone.js, which will be
discussed in detail in chapter 4.

2.1 Form Builder
Form Builder is used to create new forms and edit existing form templates.

As seen in figure 2.1, on the left a list of existing forms are shown. A user can
create a form by giving a name. Then by clicking +, Fields/questions can be added.
Poimapper provides plenty of field types which can satisfy most of the survey
needs. Every question can have the following types.

1. Text:​ To enter textual values. eg. Your name, favorite sport.
2. Numerical: ​Questions that require numeric values to be entered. Can be

an Integer or Floating type. eg. Number of people living in a house
3. Boolean: ​Questions that can be answered in Yes or No.
4. Single-Select: Select one option from a list of options (e.g., Select your

age group).
5. Multi-Select: Provides checkboxes to select multiple values from a list of

values.
6. Time of day: ​Enter a specific time.
7. Date:​ Enter a date.

12

8. Label: Just provides a label. Can be used to elaborate specific instructions
or provide some additional information to users while filling up the forms.

9. Dynamic Table: This provides a table where every column can be a
specific question of any other basic type. The user answering the form can
then add multiple instances of these values. For example, while
interviewing workers of a factory, you needs to have their Name, Age and
allocated team. SO for every new worker interviewed, a new row can be
added.

10. Static Table: Similar to Dynamic Table with the only difference that a
predetermined number of rows are available and new rows cannot be
added.

11. Skip Logic​: Provides a way to skip questions if a particular condition is
satisfied. e.g., You might need to avoid asking different set of questions for
male and female.

12. Calculated Values: It is used to derive values from previously answered
questions. Suppose there are two questions that are needed; ​What is the
respondent's birthdate?​ and ​How old will the respondent be in 10 years​ .
The second question can be derived from previously answered question.

13. Sub-Form: Another form can be added as a sub-form. This helps in
creating a generic forms for specific purposes like demographic data, and
then use them as a part in other forms.

14. Lookup Value: This question type provides a way of having extra attributes
within a single select like question and being able to access the attributes
from Calculated Value Questions. The option attributes will not be
visible.This question also enables accessing of values from data collected
in another form.

15. Miscellaneous Fields: Some commonly used fields like email, phone
number, and Digital Signature.

16. Validation Rule: ​To add custom form validation rules.

2.2 Data Viewer
The Data Viewer tab of Poimapper enables users to view the data collected
through forms. It provides users with a set of filters that can be used to filter out
data collected for specific forms, users, locations and date times. The data
collected can be viewed in a Map, Table and through Charts. The ​Image tab shows
a gallery of images that have been uploaded through forms.
The Web Reports module consisting of interactive visualizations has been
developed by me through the course of my internship and is the main subject for
this thesis.

13

Figure 2.2 illustrates the four filters provided. The figure currently has Map and
Table modules active. Whenever a user fills up a form, a POI (Point of Interest) is
created. As seen above the Map represents the geographical location where a
particular POI was collected. The Table view below the Map displays POI's
selected using filters in a table.

The entire page is subdivided and managed by different Backbone Views
(explained in section 4.2.3) that handle everything within their DOM components.

14

FormFilterView handles the filter components provided for Form. MapView and
TableView handle events and interactions for the Map and Table respectively.
There are also few other Views that handle smaller components and are children
of other views. In this thesis, the main discussions will be on ChartView, which
creates Web Reports containing data visualizations. Figure 2.3 illustrates the Web
Reports module created.

2.3 Hierarchy Editor
The Hierarchy Editor is used to set hierarchies among geographical locations. This
helps in knowing where the forms were filled and filter data based on specific
location hierarchies.

As seen from the figure 2.3, upto 4 levels of location hierarchies can be defined by
the user. Their particular locations can be set on the map. In this particular
example location hierarchies are defined as Sub-County → Division → Location →
Sub-Location.

2.4 Admin and Scheduler
The admin tools allow users with roles set as 'Admin' to manage privileges of other
users. It also enables them to create user groups and assigning different form lists
and locations accordingly.
Scheduler is just an helper tool, that enables the managers and admins to assign
data collection tasks to other users.

15

Chapter 3

Data Visualization and D3.js

In recent years, the data generated every day is exceeding the total data
generated from the dawn of civilization up until 2003 (Schmidt, 2010, in press). 12

To convert this data into decisions has become an urgent need for many
corporations and governments around the world, and this has led to many
researchers depend on the field of Data Visualization. The concept of Data
Visualization is not new, and has been around for centuries like using maps for
navigation for long sea voyages. Human eyes and brains have evolved to easily
detect patterns (David McCandless, The beauty of Data Visualization, 2010) and 13

this makes visualization a very effective tools to summarize hundreds or even
thousands of pages of data into a few graphs and plots. The use of correct
visualization techniques can enable decision makers to observe patterns and
connections that matter.

3.1 Definition
Data Visualization is the presentation of data in a pictorial or graphical format. It
enables decision makers to see analytics presented visually, so they can grasp
difficult concepts or identify new patterns. 14

The minimalistic set of requirements for a successful visualizations according to
Kosara (2007, chap. 3), are

1. It is based on (non-visual) data
2. It produces an image
3. The results are readable and recognizable

12 "Eric Schmidt: Every 2 Days We Create As Much ... - TechCrunch." 2010. 15 May. 2016
<http://techcrunch.com/2010/08/04/schmidt-data/>
13 "The beauty of data visualization - David McCandless | TED-Ed." 2012. 15 May. 2016
<http://ed.ted.com/lessons/david-mccandless-the-beauty-of-data-visualization>
14 "Data Visualization: What it is and why matters | SAS." 2014. 15 May. 2016
<http://www.sas.com/en_us/insights/big-data/data-visualization.html>

16

3.2 Branches of Visualization
Data Visualization can further be classified as InfoVis (Information Visualization)
and SciVis (Volume Visualization-VolVis / Medical Visualization-MedVis / Flow
Visualization - FlowVis). InfoVis produces interactive visual representations of
abstract data to make it easier for humans to interpret and enabling them to gain
knowledge about the internal structure of the data and causal relationships within
it. On the other hand, SciVis focusses more on spatial data such as volume
visualization (Wolff et al., 1993), Medical Visualization and Flow Visualization . The
main differences between the InfoVis and SciVis has been summarized in Table
3.1.

InfoVis SciVis (VolVis/MedVis/FlowVis..)

Abstract Data Spatial Data

N-Dimensional and heterogeneous Mostly 2 or 3-dimensional

Data-Types: Numerical, text, images,
multimedia

Data-Types: Scientific, engineering,
biomedical

Source 15 Source 16

Table 3.1

This thesis will be focussing more on InfoVis.

3.3 InfoVis
In the figure 3.1, all the 4 datasets have similar mathematical statistics. If only
given such a dataset without visualization, it will be impossible to figure out the

15 "Discussion on Modal Survey Word Press Poll, Survey & Quiz Plugin ..." 2015. 15 May.
2016 <http://codecanyon.net/item/modal-survey-wordpress-poll-survey-quiz-plugin/
6533863/comments?page=4>
16 "Lyceum." 2006. 15 May. 2016 <http://lyceum-jl.blogspot.com/2006/05/ blog-post_17.html>

17

differences. This is why it is very crucial to have a visualization of such datasets to
easily understand the differences between them.

3.3.1 Attributes of Visualization
Computer-based visualization systems need to provide ​visual representations of
datasets intended to help people carry out some ​task​ more ​effectively​ .

The workshop on Visualizing Biological Data (VIZBI 2011) specifies that an
effective visualization should have the following attributes.

1. A human that requires details from the visualization. There is no need for a
visualization if no one is going to see it.

2. Representation of Data: Perception versus Cognition. Perception deals with
how easily a visualization can be organized and processed by our sensory
organs, especially eyes. Cognition is more about how the perceived data
can generate a thought process in the human brain.This attribute is
explained in further detail by Borkin et al., (2016).

3. An intended task. Visualization should avoid catering to multiple tasks at
once.

4. Measurable definitions of effectiveness. For a particular type of dataset and
a need, some categories of visualization would perform better than the
others. There will also be some tradeoffs.

3.3.2 Principles of Visualization
To create an effective visualization, certain aspects also needs to give special
attention like,

● Visual channel types and ranks
● Categorical color constraints
● power of the plane
● danger of depth
● resolution beats immersion
● eyes beats memory
● validate against the right threat

18

3.3.2.1 Data Types
According to Marschner, S., & Shirley, P. (2015, chap. 27.2), the core aspect of
visualization design is driven by the type of data it needs to address. Is it a table of
numbers, or a set of relations or is it a collection of data points from different
geographical locations?

Let us start by considering a table representing a class of students, where the rows
(items) represent different students and columns (dimensions) contains attributes
such as name, age, student number, height, gender and shirt size. This particular
table describes three different kinds of data types. ​Quantitative​ data type such as
age and height, that are numerical and on which arithmetic calculations can be
done. Secondly, an ​Ordinal​ data type field like shirt sizes like Small, Medium and
Large. Arithmetic calculations cannot be performed on this type of data, but surely
they have a well defined ordering. ​Quantitative and ​Ordinal data types can be
generalised into ​Ordered data types. Finally the third type of data is ​Categorical
data like gender. They do not have an implicit ordering, but they can be
distinguished between types, such as ​Male​ and ​Female.​ Aforementioned
Categorical and ​Ordered data types can be generalized into one super category
which is ​Tabular​ data types.

Another super category of data type is ​Relational data. This type of data consists
of a ​graphs​ or ​networks​ . A graph contains several ​nodes that are connected to
each other by ​links (​edges​). A link between two nodes usually represent a relation
between them. Both nodes and edges can have their own set of attributes. ​Tree​ is
a specific kind of graph, it is typically used to represent hierarchical data.

Finally we have ​Spatial data type. It contains geographical locations and fields of
measurements whose positions are in three-dimensional space such as MRI or CT
scans used for medical purposes. Spatial data-type is one of the most difficult

19

problems of visualization design and falls into the category of ​Volume Visualization
(VolVis).

The above mentioned data types can be summarised into a chart illustrated in
figure 3.2.

Dimension and Item Count
One of the most fundamental aspect of data visualization is the number of
dimensions that need to be visually encoded. Visualization techniques that work for
a low-dimensional dataset with fewer columns will often fail with very
high-dimensional datasets with hundreds of columns. Some data dimensions might
even have hierarchical patterns within them such as a time-series dataset which
might contain a year, month, day, hours, minutes, seconds and even milliseconds
and microseconds.

The number of items also needs to be taken into consideration. A bar chart can
work effectively for a few hundred items, but will fail to deliver any results for
millions of items. There are several reasons for it to happen such as computation
and rendering takes too long; in others it is even a deeper perception problem
where the visual clutter makes the representation impossible to cognitively
analyse, making the visualization useless as explained by Borkin et al., (2013).

Derived Dimensions
Data can also be derived from one type into another as a part of solving the
domain problem. A dataset consisting of temperatures in Celsius, which is a
quantitative data type, can be derived into an ordinal data type like cold, warm or
hot.

3.3.2.2 Visual Encoding

Visual Encoding consists of graphical elements such as ​marks and ​channels as
described by Jacques Bertin, a French cartographer in his paper Semiology of

20

Graphics (1974). Marks use visual channels to convey information. Figure 3.3
indicates different types of marks and channels.

A zero-dimensional mark is a point, a one dimensional mark is a line, a
two-dimensional mark is an area and finally a three-dimensional mark is a volume.
Visual channels such as spatial position, color, texture, size, shape, orientation and
direction encode information. Multiple visual channels can be used on mark to
simultaneously encode different data dimensions.

Figure 3.4 illustrates Hans Rosling's Visualization which became very popular after
his Ted Talk - The best stats you have ever seen. It uses a single mark which is a 17

point with a combination of several channels like horizontal and spatial position,
color, and size to display GDP per capita, CO2 emission levels, geographical
regions, and population respectively. He also used to background as an additional
channel to convey the year.

Visual Channel Characteristics
Whenever a design decision needs to be taken in selecting marks and channels,
the most important characteristics that needs to be considered are
distinguishability, separability and pop out. All channels are not equally
discernable, so many psychological studies have been carried out to measure the
ability of people to make precise distinctions about information encoded by
different visual channels. These abilities depend on whether the data type is
quantitative, ordered, or categorical. Mackinlay (1986) ranked the priority of these
visual channels for the three data types and is shown in the figure 3.5. Theses
rankings are based on parameters like ​Accuracy, discriminability, separability​ and
popout​ .

17 "Hans Rosling: Global population growth, box by box | TED Talk | TED ..." 2014. 18 Aug.
2016 <https://www.ted.com/talks/hans_rosling_on_global_population_growth>

21

As seen from the figure 3.5, spatial position is the most precise visual channel for
all the three types of data and it dominates the human perception of visual
encoding. Therefore, the most important data dimensions should be mapped to
horizontal and vertical spatial positions. However, perception of other channels
differ strongly between types. Length and Angle provide a better cognition over
quantitative data, but provides poor cognition for ordered and categorical data
types. An effective rule to follow is to encode the most important attributes with the
highest ranked channels.

Visual channel rankings

Accuracy

Steven's Power law (2014) proposes the relationship between the intensity of a
particular channel against the perceived sensation by humans. As seen from the
figure 3.6, Electric Current is the strongest. A small change in the intensity of
Electric Current can be easily perceived by a human. Though electric current is not
used for the purposes of visualization, the next contender which is Color Saturation
is the strongest.

22

Discriminability

It is crucial that the data dimensions can be easily discriminated within a channel.
For example, when encoding with line width, there are a limited number of width
steps that can be used. Beyond a particular width, the line will be perceived to be
more of a polygon. Lines in figure 3.7 are easy to discriminate between because
there are only three levels of thickness used.

Color: Luminance, Saturation and Hue

Color can be divided into three sub channels, i.e. ​Luminance, Saturation and hue
as shown in figure 3.8. Hue is a very strong channel to encode categorical data
types, but should be completely avoided for ordered data types. Luminance or
saturation should be preferred for ordered data types because they have an
implicit perceptual ordering.
Quantitative data should be shown using a colormap. An example of colormap is
shown in the Figure 3.9.a. Unfortunately, many software packages contain rainbow
colormaps which uses hue to indicate order. That should be completely avoided
and better alternative would be to use luminance. Figure 3.9.b shows the Bernice
Rogowitz (1995) diagram. Both the images illustrate the elevation from the
sea-level, the only difference is that the one on the left uses rainbow colormap
while the one on the right uses luminance. Zero-crossings can easily be spotted
from the map on the right in figure 3.9.b, rainbow colormap on the left renders it
impossible to spot the difference. The rainbow colormap also creates a false
impression about the structure of the surface topography and ocean depth.

23

Dangers of Depth: 2D vs 3D

When computer-based visualizations began in 1980s, there was a lot of
enthusiasm for 3D representations. However, researchers soon began to
understand the costs of 3D approaches when using abstract datasets (Ware, chp
5, 2008). Human visual system does not really see in 3D, but 2.05D.

The prime issues involved with using 3D are ​Occlusion, Interaction complexity and
Perspective distortion​ . As seen in figure 3.10, because of occlusion, the objects
that are far behind cannot be determined. Even if interaction is provided, it will be
fairly difficult to interact with such a visualization (Carpendale et al., 1996).

Real-world objects do appear smaller when they are far away, however
foreshortening makes direct comparison of object difficult (Tory et al., 2006). This
effect is called perspective distortion. It is easier to judge the heights of familiar
objects in real world based on past experiences, however the same is not true for
visual encoding of abstract data. This makes it difficult to interpret the bar heights
of a 3D bar charts as opposed to 2D bar charts. Figure 3.11 shows Steve Jobs

24

using perspective distortion to his advantage. Apple's share of 19.5% appears to
be much larger than Other's share of 21.2%.

Text Labels and Tooltips

Text in the form of labels and legends is very important factor in creating
visualizations that are useful rather than just being visually appealing. Axes and
tick marks should be labelled and are also helpful tools. Legends should be used
to indicate the meanings of colors whether it is used as discrete or in a continuous
color ramps. In many cases showing all labels at all times would produce a visual
clutter. In such cases interaction techniques like tooltip on hover can be used to
avoid overlap (Luboschik et al., 2008).

25

3.3.3 The Visualization Pipeline

The ​Visualization pipeline describes the stepwise approach for creating visual
representations of the data. Figure 3.13 shows the workflow of the visualization
pipeline (Nielson et al., 1990).

3.3.3.1 Data Acquisition
Data is prepared for visualization. e.g Measurements retrieved from CT/MRI, flow
simulation (Card et al., 1999).

3.3.3.2 Filtering/Enhancement
Data is filtered to select only the portions of the data that need to be visualized.
Steps like applying a smoothing filter (noise suppression), interpolating missing
values, or correcting erroneous measurements should be done during this step.

3.3.3.3 Mapping
Filtered and focussed data is mapped to geometric primitives like points, lines, or
polygons. They are also given attributes like color, position and size.

3.3.3.4 Rendering
Finally the geometric data that is retrieved from the previous step of the pipeline is
transformed into and image data. This may also include other sub-steps like
visibility calculation, illumination, compositing and animation.

For the application described in this thesis, Backbone.js (chapter 4) will be used for
implementing the first two steps of the visualization pipeline i.e. Data Acquisition
and Filtering/Enhancement referred as ​Application Logic​ . D3.js (section 3.4) which
is a JavaScript based data visualization library will handle the Mapping and
Rendering steps to the visualization pipeline referred as ​Chart Logic​ . In my

26

previous projects, I have handled the entire visualization pipeline using only D3
and JavaScript. I have noticed that the application becomes quite complex after
some implementations. That is why, I decided to test a different methodology by
using an MV* framework like Backbone.js along with D3.js.

3.4 Creating Visualizations using D3.js
For building visualizations on the Web, developers and designers have to use
multiple tools simultaneously. HTML is used to create page content, CSS for
design aesthetics, JavaScript for interaction and processing and SVG for vector
graphics. One of the greatest success of Web as a platform is the seamless
cooperation of these technologies together by shared representation of the page
called the document object model. DOM exposes the hierarchical structure of the
page and enables referencing and manipulations (Amr, Tarek el al., 2016).

D3.js is a JavaScript library that exploits all the benefits provided by the DOM to
bring data to life using HTML, CSS and SVG. D3 manages complexities of Web
standards and provides full capabilities to modern browsers by combining powerful
visualization components along with a data-driven approach . 18

There are several other visualization libraries that provide ready-made solutions to
many of the commonly used charts and graphs. Some of popular libraries are
Highcharts, C3, nvd3, and Plotly.js. All these libraries are amazing and create
beautiful visualizations. They are comparatively easier to implement than D3,
because all that is required is to call their API, specify the type of chart and provide
data in the required format. However, they have limited customization and
interactivity. Moreover, implementing customized interactions between different
visualizations cannot be accomplished. Libraries like C3 and nvd3 are themselves
developed using D3 at its core. Therefore, I chose D3 as it imposes relatively lower
restrictions in terms of customizations and provides more freedom.

This thesis will focus more about some chart implementations of D3. To learn more
about working of D3 visit http://d3js.org and refer to Maclean, 2014.

3.4.1 Chart Object
Every JavaScript object has a prototype which is also a JavaScript object. All
JavaScript objects inherit their methods and properties from their prototypes.
Therefore, I created a Chart object that defines all the attributes and methods
required to create different types of Chart Visualization using D3. For every chart
that needs to be created, the ​new keyword is used to create a new instance of the
Chart Object. The following lines of codes create the Chart Object prototype. This
also creates the constructor method that is invoked whenever a new instance of
the Chart Object is initialized like var obj = new Chart();

var​ ​Chart​ ​=​ ​function​ ​(​elId​)​ {

18 "D3.js - Data-Driven Documents." 2015. 24 Aug. 2016 <https://d3js.org/>

27

 ​this​.​margin ​=​ ​{​top​:​ ​10​,​ right​:​ ​10​,​ bottom​:​ ​30​,​ left​:​ ​30​};
 ​this​.​width ​=​ ​this​.​height ​=​ ​0;
 ​this​.​svg ​=​ ​null;
 ​this​.​elId ​=​ elId​;​ ​// HTML element Id where chart needs to be drawn
};

Then the JavaScript's prototype property is used to define new methods to the
Chart Object to extend its functionality. The Chart Object defines of the following
methods.

Chart​.​prototype​.​createSVG ​=​ ​function​(​width​,​ height​,​ margin​){
 ​// Defines a new SVG element for charts to be drawn into
};

Chart​.​prototype​.​appendAxis ​=​ ​function​(​options​){
 ​// Generic method used to draw Axis for Bar, Area and Line charts
};

Chart​.​prototype​.​renderLegend ​=​ ​function​(​options​){
 ​//Generic method for creating legends for charts
};

Chart​.​prototype​.​bar ​=​ ​function​ ​(​data​,​ xLabel​,​ yLabel​,​ numeric​)​ {
 ​// Draws a Bar chart
};

Chart​.​prototype​.​groupedBar ​=​ ​function​ ​(​data​,​ xLabel​,​ yLabel​)​ {
 ​// Draws a Grouped Bar chart
};

Chart​.​prototype​.​pie ​=​ ​function​ ​(​data​)​ {
 ​// Draws a Pie chart
};

Chart​.​prototype​.​line ​=​ ​function​ ​(​data​,​ xLabel​,​ yLabel​,​ time_param​)​ {
 ​// Draws a Line chart
 ​// The time_param specifies type of time-series used
};

Chart​.​prototype​.​area ​=​ ​function​ ​(​data​,​ xLabel​,​ yLabel​,​ time_param​)​ {
 ​// Draws an Area chart
 ​// The time_param specifies type of time-series used
};

3.4.2 Scalable Vector Graphics (SVG)
SVG is a language for describing 2D-graphics and graphical applications in XML
which is then rendered using the SVG viewer. Most modern browsers like Google
Chrome, Mozilla Firefox, Microsoft Edge, Safari and Opera support SVG and can
display them as an images just like PNG, GIF, and JPG.

28

SVG is required by D3, and the following code snippet appends a <svg> tag into
the DOM.

Chart​.​prototype​.​createSVG ​=​ ​function​(​width​,​ height​,​ margin​){
 ​return​ ​this​.​svg ​=​ d3​.​select​(​this​.​elId​).​append​(​"svg"​)

 ​.​attr​({
 width​:​ width ​+​ margin​.​left ​+​ margin​.​right​,​ ​// Width of SVG
 x​:​ ​"0px"​,​ ​// horizontal Position
 y​:​ ​"0px"​,​ ​// vertical Position
 height​:​ height ​+​ margin​.​top ​+​ margin​.​bottom​,​ ​// Height of SVG
 xmlns​:​ ​"http://www.w3.org/2000/svg"​,​ ​// XML namespace
 version​:​ ​"1.1"
 ​})
 ​.​style​(​"font-size"​,​ ​"8px"​);
};

3.4.3 D3-Scales
Every visualization dataset has values within a domain and this can vary
dramatically between different datasets. A dataset specifying number of students
studying in a school might be within thousands, while another containing
population of a nation might be in millions or even billions. Though the domains
can vary drastically, one thing remains constant; the number of pixels available on
the screen. These different domains needs to be mapped onto this output range. If
the dataset always remains consistent, then it can be hard-coded, but for most
practical cases the data changes constantly. This issue is effectively handled by
D3-Scales property that maps the input domain to the output range. Once D3 scale
function is defined by providing it with input domain and output range of pixels, the
scale function can be called by passing the input value and it returns a scaled
output value (Murray, chp 7, 2013).

D3 provides different types of scales such as linear, ordinal, logarithmic, square
root and so on for different datasets. I will be discussing a simple example of linear
scale.

Let's consider a dataset of number of pizzas sold in a store in 6 days that needs to
be mapped into an SVG of maximum height of 300px.

dataset ​=​ ​[​170​,​ ​30​,​ ​245​,​ ​173​,​ ​486​,​ ​395​];
A scale's input domain is a range of possible input data values, in this case it might
be from 0 to 500. A scale's output range is the range of possible output values in
pixels. Out of 300px available, let's keep 100px for margin and labelling, so now
only 200px are available. The output range will therefore be from 0 to 200 pixels.
This is illustrated in figure 3.14.

29

This scale can now be defined in D3 using the following code snippet.

var​ scale ​=​ d3​.​scale​.​linear​()​ ​// Specify type of scale
.​domain​([​0​,​ ​500​])​ ​// Input domain
.​range​([​0​,​ ​200​]);​ ​// Output Range

scale​(​100​);​ ​// Returns 40
scale​(​345​);​ ​// Returns 138
scale​(​422​);​ ​// Returns 168.799999

3.4.4 D3-Axes
It is similar to scales, the only difference being that D3-Axes generates visual
elements like lines, labels and ticks. Axis also needs to be provided with a scale to
operate on (Murray, chp 8, 2013).

The following code snippet defines an axis using the scale defined in section 5.3.

var​ yAxis ​=​ d3​.​svg​.​axis​()
.​scale​(​scale)
.​orient​(​'left')
.​ticks​(​5​);

The orient attribute specifies where the labels needs to appear relative to the axis
itself. Possible orientations for the labels are top and bottom for horizontal axis,
and left and right for vertical axis. The orient attribute needs to be defined
especially when axis needs to be vertical, else the default value is bottom and the
axis will be drawn horizontally. Another attribute is ​ticks​ , which specifies to d3
exactly how many ticks should be shown on the axis. However, the default value is
determined by D3 by making informed judgements based on the defined scale
which in most cases is ideal.
The above code snippet will not generate a visual element on itself. The axis
needs to be called.

svg​.​append​(​"g"​)
 .​attr​(​"class"​,​ ​"axis"​)
 .​attr​(​"transform"​,​ ​"translate(40,20)"​)
 ​.​call​(​yAxis​);

The transform attribute specifies the coordinates of the axis where it should be
placed within the SVG. This will generate an axis shown in figure 3.15.

30

3.4.5 Legends and Tooltips
As described in section 3.3.2.2, legends are good indicators to summarize the use
of different visual channels used in the visualization. One issue while creating the
legends was that for several cases where the text labels had longer strings of
characters, the legend box interfered with the visualization. Therefore a hide and
show functionality was added for the legend as shown in the figure 3.16.

For now all charts use the same type of legend, and therefore I have generalized
the creation of legends in a single method which is called by different charts. The
code used to create the legend box is mentioned in Appendix A.

3.4.6 Bar Charts
Bar charts are good indicators for direct comparison of categorical as well as
ordered data types. To use appropriate visual channel rankings as described in
section 3.3.2.2, categorical datasets should use different hues, while ordered
datasets like ordinal and quantitative should use color saturation and luminance
respectively. Bar charts should be used when a categorical or ordered datasets
needs to mapped against a quantitative dataset. The following figure 3.17 shows
an example of a Bar chart using categorical data. This chart as well as all the
corresponding charts are build using data from Poimapper application.

As seen in the following figure 3.17.a, color coding is done using different hues for
each category. Well on the other hand figure 3.17.b, is using quantitative data and
therefore the difference can be easily compared using color saturation. Also it is a
good practice to sort bar charts of ordered datasets. These bar charts are drawn
using a combination of d3 modules like d3-scales, d3-axes, d3-colors,
d3-selections, d3-Collections and d3-shapes . Code for creating bar chart is 19

available in Appendix A.

19 "d3/API.md at master · d3/d3 · GitHub." 2016. 30 Aug. 2016
<https://github.com/d3/d3/blob/master/API.md>

31

3.4.6.1 Grouped Bar Charts
Grouped bar charts are used to show information about different sub-groups of the
main categories. Figure 3.18 shows an example of grouped bar chart where all the
numerical questions of a Poimapper form are grouped based on regions. Grouped
bar charts require an additional legend as shown in the top right box. This legend
provides information about the colors used by different questions while the X-axis
displays the regions. Refer to Appendix A for the code to create Grouped Bar
chart.

3.4.6.2 Limitations of Bar Charts
Bar charts have several limitations listed as follows.

1. If there are too many domain values to be rendered as bars, the text in
x-axis becomes difficult to read due to smudging.

2. Smudging of text labels can also occur if they have more characters as
seen in figure 3.19.

3. Colors in categorical datasets loses their perceptive value once there are
more than 7-8 different categories in a domain which are rendered with
different colors.

4. Bars with extremely high values will make bars with much smaller values
look invisible. This happens when one value is in millions while another just
in hundreds. The bar showing a value in hundred will be invisible in the
chart. D3 does provide log scales which can solve the problem, but then the
bar itself will lose its cognitive strength. In figure 3.19, the second bar
cannot be seen as it has a value in hundreds while the tallest bar has a
value of 240,000.

32

3.4.6.3 Overcoming Limitations
One way to overcome these limitations is to make sure data is appropriately filtered
so that such conditions do not happen. Such type of data filtering can be handled
by Backbone and that will be discussed in later chapters. Another way to handle
these limitations is by using a very efficient module provided by D3. D3-Brush is a
module that can be used by the user to filter out appropriate sections of the data
after the chart has been rendered. Figure 3.20 shows a grouped bar chart.

There are several bars that cannot be seen in between every group because the
pink bar has a domain value in 30 million. There is another rectangle below the
chart in bluish color. That is a brush box. After applying the brush, the values that
could not be seen before can now be zoomed in and seen. The scaling of X and Y
axis should change as well reflecting the brush selection.

33

3.4.7 Pie Charts
Pie charts is a circular statistical graphic, which is divided into slices to illustrate
numerical proportion. The arc length or area or central angle of each slice in a pie
chart is proportional to the quantity it represents (Spence, 2005). It is good choice
only for categorical datasets where there are fewer than 7-8 categories. It provides
an efficient cognitive value if only a couple of these categories occupy large area in
the circle. Figure 3.21 shows an example of a pie chart.

There are a few variants of pie chart such as 3D pie chart, Doughnut chart (Harris,
Robert L, 1999), exploded pie chart, Polar diagram and Ring Chart. They all rely
on the concept of central angle value being proportional to the quantity. Refer to
Appendix A for the code to generate a Pie chart.

3.4.7.1 Limitations of Pie Chart
One obvious limitation of Pie chart is that they cannot show more than a few
values without having a clutter. Also when there are a lot of values, it becomes
difficult to differentiate colors as well as labelling them becomes a problem.
Furthermore, if few values are exponentially smaller than others, they cannot be
represented.

There are not many ways to overcome the limitations of Pie charts. Filtering of the
data is quintessential to provide good cognitive value. To avoid cluttering of labels,
tooltips can be used as explained in section 3.3.2.2.

34

3.4.8 Line Charts

The primary use of Line chats is to show trends over a period of time such as stock
prices over a period of 2 years. The time units such as years, quarters, months,
weeks, hours and so on is distributed evenly across the horizontal axis. The
magnitude of each data element in the series is represented by its position on the
vertical axis. Multiple series can be represented in a single line chart and this
makes it easy to compare trends. Refer to Appendix A for the code to generate a
Line chart.

3.4.9 Area Charts
Area charts are very similar to line charts. They both require the same type of
dataset i.e. quantitative vs quantitative (continuous and ordered like a time-series).
The only difference is that the area below the plotted line is filled with color as
shown in figure 3.23. Refer to Appendix A for the code to generate an Area chart.

3.4.9.1 Limitations of Area Charts
Area charts suffers from problem of occlusion. Figure 3.24.a shows one such
example that suffers from significant interference in visual channel encoding. The

35

problem of occlusion can be minimized using transparency in different layers as
shown in figure 3.24.b, but it still persists and interferes in visual channel encoding.

One solution to overcome this limitation is to represent area plotted under the line
as a summation of all the values as shown in the figure 3.25. This eliminates the
​occlusion problem.

36

Chapter 4

Backbone.js - An MV* Framework

Backbone.js is a MV* framework, and the next section will elaborate this
framework.
4.1 Need for MV* Frameworks
In recent years JavaScript has become one of the widely used language especially
in context to Web programming. It is the most popular language on Github (see
Figure 4.1). JavaScript enables programmers to implement logic to dynamically
manipulate HTML DOM elements efficiently. Developing simple Web applications
by using JavaScript is easy and along with jQuery , HTML document traversal, 20

handling events, animation, DOM manipulation and Ajax applications become even
more versatile.

However, managing code becomes trickier as the complexity of the Web
application increases. Most JavaScript applications end up becoming entangled

20 "jQuery." 2006. 12 May. 2016 <https://jquery.com/>

37

piles of jQuery selectors and callbacks as everything tries to keep data in sync
between the HTML DOM, client-side logic and server-side data. Therefore, it is
crucial to adapt to a more structural approach to create rich client-side applications
and make the code manageable and easily adaptable. This is where MV*
frameworks such as Backbone.js, Angular.js, Ember.js, and Knockout.js play 21 22 23

an important role. All of these frameworks have some advantages and 24

disadvantages over each other. All of theses frameworks can get the job done,
although choosing the most suitable framework depending on the project
requirements would be helpful in the long run. Shaked (Uri. "Angular vs. Backbone
vs. Ember." ​URL: https://www. airpair. com/js/javascript-framework-comparison​),
provides a detailed comparison between some of these frameworks and is a
recommended read.

4.2 Model-View-Controller
Model-View-Controller (MVC/MV*) is a software architectural pattern for
implementing user interfaces on computers (Coplien, 2014). The software
application is divided into three (or in some cases it can be fewer or more)
interconnected parts, to make projects manageable through different layers of
abstraction and separation of concerns. ​, This also helps to create a unified 25 26

structure between different projects.

21 "Backbone.js." 2011. 12 May. 2016 <http://backbonejs.org/>
22 "AngularJS — Superheroic JavaScript MVW Framework." 2014. 12 May. 2016
<https://angularjs.org/>
23 "Ember.js - A framework for creating ambitious web applications." 2011. 12 May. 2016
<http://emberjs.com/>
24 "Knockout : Home." 2010. 12 May. 2016 <http://knockoutjs.com/>
25 "The DCI Architecture: A New Vision of Object-Oriented Programming." 2009. 14 May.
2016 <http://www.artima.com/articles/dci_vision.html>
26 "08-MVC.pptx." 2014. 14 May. 2016 <http://www.cs.arizona.edu/~mercer/
Presentations/OOPD/08-MVC.pptx>

38

4.2.1 Model
Model stores the data required by the application to run and defines the
application. It can be perceived as the main actors/classes in the application such
as person, or an invoice, or a student. It is a similar concept to an SQL table row 27

or a JAVA class object. A Model contains the data of the application and
depending on the framework being used, it can notify the View or the Controller
when their state changes.

The roles played by Model are as follows,

1. It validates the attributes of the Data.
2. If certain attributes are changed during the process of the application, it

notifies the backend or database or the local storage to persist the model to
the same state.

3. View or controller can subscribe to certain Model or its attributes to reflect
changes.

4. Models can be grouped into a ​Collection in Backbone. Collection can be
perceived to be synonymous with an SQL table or a JAVA ArrayList of
objects. Collections can replicate ​JOINS​ like in SQL between different
models.

4.2.2 Controller
Controller acts as a mediator between the Model and the View components. It
receives the user input from the view and notifies the model, on the contrary, it
receives an update from the Model, and notifies the corresponding View. Many
frameworks like Django (a Python framework) or Backbone.js have included the
concept of a Controller in the View itself, and therefore it is not a completely
separated module. It contains the controlling logic of the application, such as
deciding which Views need to be updated when the state of the Model changes.

The roles played by Controller are as follows,

1. Notify the Model about View change and vice versa.
2. Controls the data flow between the View and the Models.
3. Implement restrictions and access controls if needed
4. Can perform operations of a Router (explained in the following sections).

4.2.3 Views
View module is responsible to present the data contained in the model to the user
and manage user interactions.

The roles played by Views are as follows,

27 Patterns, D. "lecture 10 handout." 2010. <http://s290179663.websitehome.
co.uk/blog/wp-content/uploads/2010/12/lecture-10.pdf>

39

1. Displays an interface to the user.
2. Is responsible for a specific functionality of the application. For example, a

LoginView manages login and logout interactions, MainView displays the
central component of the app, FilterView can provide interactions for
managing filters.

3. It renders the contents of the Model.
4. Updates when it notices a change in the Model.
5. Renders templates, by using JavaScript templating libraries like

Underscore.js or Handlebars.js.

4.2.4 Routers
This is an additional module prominently available in both frontend and backend
frameworks for developing Web applications. In frameworks like SpringMVC (a
JavaEE framework), it is a part of the Controller module servlet. For backend
frameworks, routers are used to decide which View to call when a particular URL
request is made. It also takes care of the types of request such as GET, POST,
PUT, DELETE. In recent years, single page Web applications have become quite
prominent. In such applications, the base url always remains the same and content
updates depending on the user interactions, but users might require linkable,
shareable or bookmarkable URLs for important locations of the app. Until recently,
hash fragments (#page) were used to provide these permalinks. Now, by using
front-end frameworks like Backbone.js, it is possible to use standard URLs (/page)
for the same purpose. Backbone.Router provides methods for routing client-side
pages, and connecting them to actions and events.

Also, in any typical JavaScript application, the communication between the client
and the server is handled using JSON (JavaScript Object Notation) strings. These
JSON strings are exchanged with the help of REST (Representational State
Transfer) or SOAP (Simple Object Access Protocol) based services.

4.3 More about Backbone.js
The reason Backbone.js is used for this thesis is that it is a lightweight MV*
framework and has very little boilerplate to start with. It only relies on one
JavaScript library to run (i.e. Underscore.js). Backbone.js’s code requires only 6KB
to load compared to other available frameworks like AngularJS (46KB + many
more third party libraries) and Ember (40KB). On the downside, Backbone does
not provide structure but instead provides the means for the developer to create
his own structure and therefore leaves many blanks for the developer to fill in, but
this might be advantageous in some cases. Backbone.js is not strict MVC, but
MVC-inspired or MV*.

As mentioned before, Backbone does not have a separate Controller component,
but its functionality has been dispersed between the View and Router components.
The Controller functionality of bridging between the Model and the View has been

40

allocated into other components. Backbone.js has six components namely ​Model,
View, Collections, Events, Routers and ​Sync that are built using JavaScript
objects. These components give developers the possibility for customizations.

The core features of Backbone include:

● Underscore.js
● Agnostic Templating
● MV*
● Clean HTML
● Synchronous events
● REST
● Backbone.Sync
● Extensions
● Deep Linking

The following sections will take a deeper view of Backbone.js features.

4.3.1 Underscore.js
Underscore.js is the only dependency required by Backbone.js and it provides
additional functionality to built-in JavaScript objects without extending them. It has
many useful methods that can help dealing with Collections, Arrays, Objects,
Functions, and a few other utility functions. The main function of Underscore.js for
Backbone is to provide templating framework. This is achieved by Underscore’s
_.template function.

_.template(templateString, [settings]) compiles the JavaScript templates into
functions that can be evaluated for rendering . The following is a simple example 28

of using _.template
_​.​templateSettings ​=​ ​{

 interpolate​:​ ​/\{\{(.+?)\}\}/​g

};

var​ ​template​ ​=​ _​.​template​(​"{{ value }}"​);

template​({​value​:​ ​'My Backbone is Strong'​});

Output ​=>​ ​"My Backbone is Strong"

_.templateSettings changes the default delimiter from <%= ...%> to {{ ...}}, this is
done because the server-side scripting language is JSP that uses the same
delimiter and can create errors. Then using a the _.template a new template is
designed, which when called will replace the field ‘value’ defined within {{ }} tags
with the corresponding parameters passed.

28 "Underscore.js." 2008. 15 Sep. 2016 <http://underscorejs.org/>

41

4.3.2 Agnostic Templating
Though Underscore.js is the default templating engine, it can be switched with
other recommended templating libraries like Mustache.js, Haml-js and Eco.
However, developers have the freedom to choose any other templating library they
prefer. Backbone also allows the use of multiple templating libraries
simultaneously.

4.3.3 MV*
For front-end frameworks, there are several variants of the Model-View-Controller
available. It depends on the concepts used by the framework and its strengths. For
frameworks like Backbone, the ​Controller module is integrated in the ​View itself.
This is an architectural pattern derived from MVC called Model-View-Presenter
(MVP). Therefore, these front-end JavaScript frameworks are generally referred
within the developer community as MV*, where the asterisk* is the REGEX
representation of zero or more.

The structure of Backbone.js can be divided into the following
components/modules:

4.3.3.1 Backbone.Model
Models store all the data required by a JavaScript application and also a large part
of the application logic. Models take care of conversions, validations, computed
properties and access control. 29

For the application this thesis is targeting, the following example code is creating a
Backbone Model for storing chart data.

ChartModel​ ​=​ ​Backbone​.​Model​.​extend {
defaults​:​ {

title​:​ ​null​,​ ​# chart Title
no_of_pois​:​ ​0​,​ ​# Number of Data Points
chart_type​:​ ​"bar"​,​ ​# bar/pie/area/line etc
time_param​:​ ​""​,​ ​# area/line etc
location​: ​null​, ​# if charts needs to be grouped by

locations

chart_variables​:[{​"key"​:​"All year

round"​,​"value"​:​16​},{​"key"​:​"No
response"​,​"value"​:​6​},{​"key"​:​"Seasonal"​,​"value"​:​29​}], ​# Default for blank

data

numeric​:​ ​false,
}

}

unless​ window​.​poimapper? ​#export the following globals
window​.​poimapper ​=​ ​{}

29 "Backbone.js." 2011. 3 Jun. 2016 <http://backbonejs.org/>

42

unless​ window​.​poimapper​.​models?
window​.​poimapper​.​models ​=​ ​{}

window​.​poimapper​.​models​.​ChartModel​ ​=​ ​ChartModel

The Backbone.Model.extend(properties, [classProperties]) method provides the
functionality to create a customized Model class. By using ​extend​ instance
properties (those provided by Backbone to Models) are attached to the model.
Users can optionally specify classProperties of their own to be attached.

The ​defaults​ method is used to provide default values to attributes in case they are
not specified while initializing the Model.

4.3.3.2 Backbone.Collection
This stores an array of models. It provides functionality to sort, filter, aggregate and
use Underscore.js methods over the models.It can also bind “change” events to
notify views when any model changes. Backbone.Views can also listen for “add”
and “remove” events on a Collection.
The following code snippet defines a Collection over the ChartModel defined
previously.

ChartCollection​ ​=​ ​Backbone​.​Collection​.​extend {
model​:​ poimapper​.​models​.​ChartModel

}

4.3.3.3 Backbone.Events
The backbone of Backbone.js are its events. This makes Backbone one of the
most powerful framework available. Backbone supports ​Synchronous events that
can be mixed with any of the other components of Backbone or custom defined
objects and gives them the ability to bind and trigger custom named events.
Following is an example of binding an event to a custom named object.

object​ ​=​ ​{}
_​.​extend ​object​,​ ​Backbone​.​Events
object​.​on ​'alert'​,​ ​(​msg​)​ ​->
 alert ​'Triggered '​ ​+​ msg
 ​return
object​.​trigger ​'alert'​,​ ​'an event'

In the above code snippet, the custom object first extends the Backbone.Events
functionality using Underscore’s _.extend method. Then an event name ‘alert’ is
created on the object. Finally the event is triggered using the trigger() method
extended from Backbone.Events.

There are several useful methods provided by Backbone.Events and some of them
required by this thesis are as follows.

1. on: ​object.on(event, callback, [context])

43

Binds a callback function to an object which is called when an event is fired.
2. Trigger: ​object.trigger(event, [*args])

Triggers callback for a given event.
3. listenTo: ​object.listenTo(other, event, callback)

Tells an object to listen to a particular event on ​other object and fire the
callback​ .

4. add: ​collection.bind('add', callChartTab)
Binds the ​add ​event to ​collection​ . Whenever, a model is added to the
collection, ​callChartTab​ ​method is invoked.

5. remove: ​collection.bind('remove', removeChartTab)
Binds a ​remove ​event to ​collection​ . Whenever, a model is removed from
the collection, ​removeChartTab​ ​method is invoked.

Events enable Backbone to be used also as a Publish-Subscribe Model. This gives
Backbone a loosely-coupled nature that can effortlessly be scaled into larger
applications (Eugster et al., 2003).

4.3.3.4 BackBone.Router
The router is used for routing the applications URL's specified after the hash tags
(#). This calls specific functions that in turn initiate specific views. This also enable
deep linking.

4.3.3.5 Backbone.View
View is the visual representation of the model or collections it has been bound to.
Views give the visual representation to the data and its state. Backbone's Views
can also bind to events, which then might re-render or update some other UI
components depending on the type of events triggered. Views render HTML
through the use of templating libraries discussed before. This thesis will be using
Underscore.js.

ChartPanel​ ​=​ ​Backbone​.​View​.​extend {
tagName​:​ ​"div"​ ​# Div used for this view

events​:​ {
"click button.close_chartPanel"​:​ ​"closeChartPanel"
"click button.delete_chartPanel"​:​ ​"deleteTemplate",
….

}

initialize​:​ ​(​options​)​ ​->
_​.​bindAll ​this​,​'render'​,​'closeChartPanel'​,

'deleteTemplate'​,..
@chartSelectionModel​ ​=​ options​.​chartSelectionModel
@model​.​bind​(​'remove'​,​ ​this​.​unrender)
@chartCollection​ ​=​ ​new​ poimapper​.​ChartCollection​()
@listenTo​(​@chartSelectionModel​, ​'change:locations

change:fromDate change:toDate change:users'​, _​.​debounce​(​@selectionChange​,

1​))
@chartCollection​.​bind ​'add'​,​ ​@appendChart

44

@model​.​on​(​"change:report_title"​,​@changeReport_Title)
render​:​ ​()​ ​->

@$el​.​append ​@panel_template​({
"report_title"​: ​@model​.​get​(​"report_title"​) ​#Assume

Report-1

"report_id"​: ​@model​.​get​(​"template_data"​).​report_id

#Assume id-1

"template_class"​:​ ​"delete_chartPanel"
})

In the above code snippet, we create a View named ​ChartPanel by extending
Backbone.View. Backbone’s view has a set of predefined methods that can be
initialized by passing options.

1. tagName/el: ​Every view can either have a ​tagName or an ​el​ . tagName
specifies the HTML tag in which all the components of the View will be
rendered in. In this case, a new <div> tag will be created within the DOM. In
our case it is the ​<div> ​tag. ​el can be used to specify an already existing tag
in the HTML DOM. Assuming one wants to render all these elements into a
<p id="pViewId"> tag. Then the id can be specified as ​el​ : "​#pViewId​ "​.

2. events: Events can be triggered like click on a button with class
close_chartPanel​ will call the ​closeChartPanel()​ .

3. Initialize: ​This method is called upon initialization of the View. It can
contain code for assigning models/collections and listening to their events.

4. render: This method renders the View onto the DOM with the help of
templates. In the code snippet above, when ​ChartPanel.render() is called, it
will append the ​@​ panel_template inside a ​<div> tag and render the whole
onto the DOM. Let's say the ​@panel_template​ ​is defined as below

panel_template​:​_​.​template ​'<h2>{{report_title}}</h2>:

{{report_id}}'​ +
'<div class="{{template_class}}"></div>'

The HTML rendered on the DOM will be
<div>

<h2>​Report-1​</h2>​:id-1
<div​ ​class​=​"delete_chartPanel"​></div>

<div>

However, all these are generic principles, but as mentioned before, developers
have all the freedom to do whatever they please. They can render templates in the
initialize() method itself, or not use templating library at all. Backbone leaves all the
choices with the developer.

4.3.3.6 Backbone.sync
It is called every time Backbone attempts to read or save a model onto the server.
It uses jQuery.ajax to make RESTful JSON request and returns a jqXHR. It can be

45

overridden to use a different persistence strategy like WebSockets. XML or Local
Storage.

4.3.4 Clean HTML
Backbone.js does not add its own invented tags onto the DOM. Other frameworks
like Angular append custom ng-tags on several elements in the DOM, but
Backbone keeps it clean. To make it even better, React.js, which is created and
used by Facebook, can be used within Backbone.View. It makes rendering even
more faster and manageable.

4.3.5 Extensions
Backbone.js is build using the core concept of extending existing functionalities. It
can easily extend and inherit community built or custom built plugins. Conversely, it
is also possible to extend some of the Backbone.js functionalities into other
frameworks.

46

Chapter 5

Implementing the Data Visualization
Pipeline

In this chapter, an architecture will be created with Backbone.js to generate a Web
Report. During our discussion about the Data Visualization pipeline (section 3.3.3),
it was decided that we will try to implement the first two steps of the pipeline (i.e.
Data Acquisition and Filtering) using Backbone.js, while the latter steps of Mapping
and Rendering shall be accomplished using D3.js. The final structure of the
required application is shown in figure 5.1.

5.1 Specifications of a Web Report
The Web Reports module of Poimapper requires to have the following functionality.

1. A Web Report should be defined on a form (refer 2.1) of Poimapper. Users
should be able to select a form and the corresponding type of chart type
(Bar/Pie/Area/Line) required.

47

2. User should then have the option to select a particular set of questions.
Questions should be filtered to show only those questions whose data
types create a perceptive value on the type of charts selected, e.g.,
Quantitative vs Time series type questions for Area and Line charts.

3. Appropriate filters are available to the user to tweak based on the type of
the chart and the form selected along with some other fine tuning options.

4. When user clicks a 'Render' button, data is fetched from the server and web
report is generated.

5. If external filters are changed by the user, the report should show an option
to update/refresh the changes applied by the user.

6. Web Reports can be edited and saved for later use. A previously saved
report can be deleted permanently

7. Report can be downloaded as a pdf, excel or word file formats. This will be
achieved by connecting the Web Reports module to an already existing
Reporting system that uses Jasper Reports to create downloadable files on
the Java based backend. 30

8. Multiple Web Reports should be able to be generated and loaded at once.

5.2 Architecture of Web Reports Module

The architecture of Web Reports Module contains five Backbone Views namely
ChartView, ChartTab, ChartPanel, ChartNew and ChartBox. ChartView is the main
parent and there should be only one instance of this View. There can be multiple
instances of the remaining views. The architecture also consists of four models and
different views listen to changes from different models. There are also two
collections that hold multiple instances of their respective models. The architecture
is illustrated in figure 5.2.

30 "JasperReports® Library | Jaspersoft Community." 2012. 31 Aug. 2016
<http://community.jaspersoft.com/project/jasperreports-library>

48

5.2.1 Models
As explained in section 4.2.1, the models will contain all the information the
application requires. For creating Web Chart reports, I used four models that hold
necessary data for their respective Views.

5.2.1.1 ChartReportModel
ChartReportModel​ ​=​ ​Backbone​.​Model​.​extend {

defaults​:​ {
report_title​:​ ​"Report Title"​,​ ​# Title
report_id​:​ ​null,
checked​:​ ​false​,​ ​# Whether collection is displayed or not
template​:​ ​false​,​ ​# if template then true
form_id​:​ ​null​,​ ​# for new Charts
loaded​:​ ​false​,​ ​# true if data is fetched from the server
chartData​:​ ​null​,​ ​# Stores data fetched from the server
template_data​: ​null​, ​# Parameters needed for generating the

Report

If it is a new Report

newChart​:​ ​false​,​ ​# if chart is new
}

}

This model defines all the necessary attributes that are required to fetch data from
the server for the entire report containing data for several charts.

5.2.1.2 ChartModel
ChartModel​ ​=​ ​Backbone​.​Model​.​extend {

defaults​:​ {
title​:​ ​"Question"​,​ ​# Form Question
no_of_pois​:​ ​"53"​,​ ​# Number of Data Points
chart_type​:​ ​"bar"​,​ ​# bar/pie/area/line etc
time_param​:​ ​""​,​ ​# For area/line etc Day/Month/Year/Week
location​: ​null​, ​# if charts needs to be grouped by

locations

chart_variables​:[​# Domain data for the chart
{​"key"​:​"All year round"​,​"value"​:​16​},
{​"key"​:​"No response"​,​"value"​:​6​},
{​"key"​:​"Seasonal"​,​"value"​:​29}

],

numeric​: ​false, ​# True for bar charts with X-axis a

quantitative value

xLabel​:​ ​'key',
yLabel​:​ ​'value'

}

}

Derived from ChartReportModel's ​chartData attribute. This model will update itself
whenever the chartData attribute of ChartReportModel will be modified. It holds

49

attributes that define each chart within a report. The chart_variables attribute is the
data needed by d3's module to create the necessary charts.

5.2.1.3 NewChartModel
NewChartModel​ ​=​ ​Backbone​.​Model​.​extend {

defaults​:​ {
report_title​:​ ​null​,​ ​# Name of the report
questions​:​ ​null​,​ ​# Questions selected from the form
filters​:​ ​null​,​ ​# Selected filters
settings​:​null​,​ ​# Application specific settings

}

}
This model hold attributes when a new report is being defined or edited by a user.
It is primarily used by ChartNew View.

5.2.1.4 ChartFilterModel
ChartFilterModel​ ​=​ ​Backbone​.​Model​.​extend {

defaults​:​ {
formIds​:​ ​[],​ ​# Selected form ids
locations​:​ ​[],​ ​# Selected locations
users​:​ ​[],​ ​# Selected users
fromDate​:​ ​"",
toDate​:​ ​"",
levels​:​ ​[]​ ​# Levels of locations selected

}

}

This is a requirement of the Poimapper app, as there are global filters specified for
the application. Users can then have an option to use these filters to tweak the
required data for the reports.

5.2.2 Collections
This application requires two collections that hold several instances of their
respective models.

5.2.2.1 ChartReportCollection
ChartReportCollection​ ​=​ ​Backbone​.​Collection​.​extend {

model​:​ poimapper​.​models​.​ChartReportModel
}

This collection holds several instances of ChartReportModel. This is used by the
parent View i.e. ChartView to keep track of the available reports.

5.2.2.2 ChartModelCollection
ChartModelCollection​ ​=​ ​Backbone​.​Collection​.​extend {

model​:​ poimapper​.​models​.​ChartModel
}

50

Holds several instances of ChartModel. Primarily used by ChartPanel View to
create instances of ChartBox for every ChartModel defined within the collection.

5.2.3 Views
As described in section 4.2.3, Views are the Backbone of Backbone.js. They hold
the responsibilities of Controllers as well as Views in an MVC architecture. For
creating Web reports I decided to use a total of five Views (1 parent and 4 child
Views) that specialize in a specific functionality of the Web Reports module. This
makes it very effortless to tweak functionalities wherever required by modifying a
particular View. New features can be efficiently added by just creating a new child
View or editing the existing ones. The hierarchy of the View structure is shown in
the figure 5.3. A bottom-up approach will be used to explain the View structure.

5.2.3.1 ChartTabView
An instance of this View is created whenever a new ChartReportModel is added to
its collection. Every tag shown in figure 5.4 is an instance of ChartTabView. It
has a very simple functionality. When the checkbox is checked, the report is
shown, else it is hidden. When a user checks or unchecks an item in the list, the
checked attribute of the respective ChartReportModel is toggled. Therefore, any
other Views listening to changes for this attribute in the model will update
themselves, in this case, the ChartPanelView is listening for this attribute change.

51

5.2.3.2 ChartBoxView
For every ChartModel created by ChartPanelView after the data has been fetched
by the server, an instance of ChartBoxView is created. This View then creates the
necessary HTML tags required and calls the Chart Object, described in section
3.3.1, with the necessary data that creates the required chart. It listens to the
changes in the model and updates the chart when data changes. This view
completely isolates the workings of Chart Logic from the Application Logic provided
by Backbone.js. This makes chart module reusable within the application.

5.2.3.3 ChartNewView
This View is called whenever a user wants to define a new web report. Defining a
new Web report is a 2 step process, a user first requires to select a particular form
of Poimapper. Then in the next step user can select the required questions, filters
and formats. The first step of this process is handled by the parent view (i.e.
ChartView), since it requires data and interaction with external modules. ChartView
then creates a NewChartModel and stores the required data needed by this view.
ChartView also creates a new instance of ChartReportModel with newChart
attribute set to true. This attribute is used by ChartPanelView to decide whether
ChartNewView needs to be called. This View provides the user with all the
questions, filters and tuning options required to define a new report.

52

5.2.3.4 ChartPanelView
This is the View that contains all elements of Web Report. It calls an instance of
ChartBoxView for every ChartReportModel stored in ChartReportCollection. It also
listens to changes in the ChartFilterModel for changes in external filters. This View
handles other functionalities like downloading the report in pdf,excel and word
formats as well as saving, editing and deleting previously stored reports. It calls
NewChartView if user is defining a new report.

5.2.3.5 ChartView
This is the main parent of the Web Reports module. It initializes the ChartTabView
and ChartPanelView and is the only View in the web Reports module that interacts
with Views and Models of other core modules. It can also handle various other
functionalities like disabling the Web Reports module from users that do not have
access rights or for accounts that do not have the feature enabled.

ChartView handles the following functionalities,

1. Initializes ChartFilterModel with filters required for Web Reports. Also
initializes ChartReportCollection.

53

2. Fetches all the previously saved reports by the user. For every saved report
fetched or created, ChartView creates a new instance of
ChartReportModel. It then adds the instance of ChartReportModel to
ChartReportCollection.

3. A listener is attached to ChartReportCollection, whenever a new model is
added to this collection, a new instance of ChartTab View is created.

5.3 Adding New Features
Adding new features to the Web Reports module is completely scalable. Since
each view is completely independent from the workings of other Views, they are
loosely-coupled components (Kaye, 2003). This makes the application versatile to
changes. Alternative implementations and improving features becomes an
effortless task.

54

Chapter 6

Automated Build Pipeline using Gulp

Modern Web applications generally tend to have two builds of the application,
namely ​Production and ​Development​ . As their names suggests, the Production
build is used when the application is to be catered to users, while the development
build is used during the process of development. Production build requires to be
much more optimized for faster executions and lower loading times. To achieve
this, several optimization tasks needs to be performed.

Gulp is a JavaScript task runner that claims to automate these tasks and
streamline the process of development and production builds. In this thesis, I will
discuss and implement the following tasks using Gulp.

1. Minification of CSS and JS files
2. Concatenation of multiple files
3. Vendor prefixing for cross-browser compatibility
4. Less/SASS/Stylus to CSS compilation
5. CoffeeScript to JavaScript compilation
6. Optimizing 3rd party and custom code
7. Injecting files into HTML
8. File revisions and Version bumping
9. Code Analysis and linting

Before I introduced Gulp into the Poimapper project, our team was manually
compiling the entire project using NPM's scripts, which is a node package
manager. The package.json file used by NPM consisted of a few defined scripts,
that needed to be invoked manually to perform the corresponding task. I found it
inconvenient and time consuming.

Before starting with creating a build automation pipeline using Gulp, I would like to
introduce to some miscellaneous tools that are being increasingly used for

55

developing web applications. These tools are not a requirement, but they are
certainly helpful during the development cycle.

6.1 Miscellaneous Tools
The following are some helpful tools made available by the open-source
community. These tools can reduce development complexity and improve the
software's quality.

6.1.1 CSS Preprocessors
With the evolution of HTML5 and CSS3, many new features like gradients,
transitions, and animations were added. These new features increased the
complexity of CSS code and made it difficult to maintain. Furthermore, as the CSS
code grows, writing and managing styles for various elements becomes an
arduous job. Just to change a color used for an element, might require a
programmer to find and replace it on hundreds of lines. Even small changes might
add up to quite a bit of inefficiency. CSS Pre-processors is a solution to these
inefficiencies.

CSS preprocessors are a must have tool for CSS development. Pre-processors
like Stylus , LESS and SASS extend CSS functionalities by providing variables, 31 32 33

operators, interpolations, functions, mixins and many other usable assets (Davood
M et al., 2016). For this thesis, I have used Stylus and the styling code for the
project can be found in Appendix A. To learn more about Stylus, visit
http;//stylus-lang.com.

6.1.2 CoffeeScript
CoffeeScript is basically JavaScript, just cleaner. Code written in CoffeeScript
eventually compiles into JavaScript. It exposes the good parts of JavaScript and
makes the code easy to read and understand. For core Python, Haskell and Ruby
developers, it is a boon as CoffeeScript takes many elements from these
languages. Another great fact about CoffeeScript is that it is created by Jeremy
Ashkenas, who is also the creator of Backbone.js and Underscore.js. With 34

CoffeeScript, tools like JSHint and JSLint are no more a necessity as JavaScript's
code validation becomes redundant.

Though some main elements of the CoffeeScript will be explained, but to have a
better understanding visit http://coffeescript.org/

31 (2015). Expressive, dynamic, robust CSS — expressive, robust, feature-rich ... Retrieved
July 23, 2016, from http://stylus-lang.com/.
32 (2009). Getting started | Less.js. Retrieved July 23, 2016, from http://lesscss.org/.
33 (2009). Sass: Syntactically Awesome Style Sheets. Retrieved July 23, 2016, from
http://sass-lang.com/.
34 (2010). CoffeeScript. Retrieved July 23, 2016, from http://coffeescript.org/.

56

To quickly start using with CoffeeScript
1. Go to http://coffeescript.org/ and click ​Try CoffeeScript ​at the top.
2. Include CoffeeScript in an HTML page with <script

src="https://rawgithub.com/jashkenas/coffee-script/master/extras/coffee-scri
pt.js"></script>in the <head> then wrap code in <script
type="text/coffeescript"></script> tags.

3. Install CoffeeScript using Node.js and npm with ​npm -g install
coffee-script​ and then run it with ​coffee​.

6.1.2.1 Functions

CoffeeScript JavaScript

compare ​=​ ​(​a​,​ b​)​ ​->
 ​if​ a​.​x ​<​ b​.x
 ​-1
 ​else​ ​if​ a​.​x ​>​ b​.x
 1

 ​else
 0

var​ compare;

compare ​=​ ​function​(​a​,​ b​)​ {
 ​if​ ​(​a​.​x ​<​ b​.​x​)​ {
 ​return​ ​-​1;
 ​}​ ​else​ ​if​ ​(​a​.​x ​>​ b​.​x​)​ {
 ​return​ ​1;
 ​}​ ​else​ {
 ​return​ ​0;
 }
};

Table 6.1
The CoffeeScript in the left column of Table 6.1 will be compiled into JavaScript on
the right. It is easily noticeable that not only the CoffeeScript looks much cleaner,
but one can also get rid of all the useless parentheses and curly braces. Variables
do not need to be declared, as CoffeeScript will automatically determine where the
variables need to be declared with its scope. CoffeeScript uses Haskell's function
description ​Integer -> Integer and Ruby's implicit return of the last statement (Mark
B, 2014).

6.1.2.2 Whitespace
CoffeeScript uses ​syntactically significant whitespace like Python to group
blocks of code. Good developers always indent their code to give a visual clue,
regardless of the language used for development. CoffeeScript takes this
convention and makes it part of the language to tidy up all the curly braces.
Indentation works for any kind of block, if, for, while, functions and classes.

CoffeeScript JavaScript

for​ num ​in​ ​[​1.​.​10​]

 ​if​ num ​%​ ​2​ ​==​ ​0
 console​.​log ​"#{num} is even"
 ​else
 console​.​log ​"#{num} is odd"

var​ i​,​ num​;
for ​(​num ​= i ​= ​1​; i ​<= ​10​; num ​= ​++​i​)
{
 ​if​ ​(​num ​%​ ​2​ ​===​ ​0​)​ ​{
 console​.​log​(​num ​+​ ​" is even"​);
 ​}​ ​else​ ​{
 console​.​log​(​num ​+​ ​" is odd"​);
 ​}

Table 6.2

57

6.1.2.3 Class Definitions
Defining classes in JavaScript is confusing, as there are many ways an OOP-ish
type class can be defined. CoffeeScript solves this problem by adding the ​class
keyword.

CoffeeScript JavaScript

class​ ​Person
 constructor​:​ ​(​options​)​ ​->

​{​@name​, ​@age​, ​@height ​= ​'average'​}

=​ options
 getName​:​ ​()​ ​->
 ​@name

tim ​=​ ​new​ ​Person​ name​:​ ​'Tim'​,​ age​:​ 4

var​ ​Person​,​ tim​;

Person​ ​=​ ​(​function​()​ ​{

 ​function​ ​Person​(​options​)​ ​{

 ​var​ ​ref​;

​this​.​name ​= options​.​name​, ​this​.​age

= options​.​age​, ​this​.​height ​= ​(​ref ​=

options​.​height​) ​!= ​null ​? ​ref ​:

'average'​;

 ​}

​Person​.​prototype​.​getName ​=

function​()​ ​{

 ​return​ ​this​.​name​;

 ​};

 ​return​ ​Person​;

})();

tim ​=​ ​new​ ​Person​({

 name​:​ ​'Tim'​,

 age​:​ ​4

});

Table 6.3
Notice the number of lines that has been reduced by CoffeeScript compared to the
corresponding JavaScript.

There are loads of other features available in CoffeeScript. CoffeeScript removes
the ugliest parts of JavaScript and shows its real power. Most of the code for this
thesis has been written in CoffeeScript.

58

6.1.3 Bower
Bower is a javascript package manager similar to NPM. A Web application may
depend on different libraries, frameworks, assets, and utilities and Bower manages
all of them and provides methods to easily manage these dependencies. Bower
works by fetching and installing packages and takes care of searching,
downloading and saving those libraries . 35

6.1.3.1 Prerequisites
To use bower, the following tools are required

1. Node and NPM
2. Git

To install bower globally (recommended): 36

$ npm install ​-​g bower
To install bower only for a specific project (Not recommended):

$ npm install bower

6.1.3.2 Getting Started
Though packages can be installed directly now using the following command,

$ bower install ​<package>
it is always a better practice, to initialize bower.json file. Here all the dependencies
regarding bower can be saved the same way, as shown for packages.json before
for node packages.
To initialize bower.json automatically, type the following command, and then enter
the requested fields.

$ bower init

Install Packages
Install packages with ​bower install​ . By default Bower installs packages to
bower_components/ folder. However the default configurations can be changed by
creating a .bowerrc file as described . 37

$ bower install <package>

To save runtime dependencies in bower.json, use the following command that is
similar to npm.

$ bower install ​<package>​ ​--​save
To save devDependencies in bower.json, like testing libraries and other used only
during development, use

$ bower install ​<package>​ ​--​save​-​dev
To install a package of a specific version, use

$ bower install ​<package>​#<version>

35 "What's So Great About Bower? | CSS-Tricks." 2015. 22 Jul. 2016
<https://css-tricks.com/whats-great-bower/>
36 "Bower — a package manager for the web." 2015. 2 Jul. 2016 <https://bower.io/>
37 "Configuration · Bower." 2015. 22 Jul. 2016 <https://bower.io/docs/config/>

59

Use packages
To use a particular package in the web application, it needs to be included in the
web page like this:

<script​ ​src​=​"bower_components/jquery/dist/jquery.min.js"​></script>

However, this can be done using Gulp plugins like gulp-wiredep and gulp-inject,
which will be discussed in a later section. The benefit of using Gulp to inject these
CSS and JS filepaths is that Gulp will inject the package and its dependencies in
the required order eliminating human errors and also update file paths when a
library is updated.

6.2 Gulp

6.2.1 Installation and Setup
Gulp requires NodeJS and npm; which is a NodeJS package manager similar to
Bower. A detailed installation instructions for Node can be found at npmjs . After 38

the installation is complete, a package.json file will be created that will later save
the dependencies required by the project.

First a global installation needs to be done using

$ npm install ​--​global​ gulp

Then, to add it to our projects devDependencies, type
$ npm install ​--​save​-​dev gulp

Finally create a file ​gulpfile.js​ . Gulp will automatically look for this file and run its
commands. This file will contain all of our code and configurations for Gulp. Also,
create another file named ​config.js​ . This file will store all our file paths.

6.2.2 Gulp Workflow
Files are processed in Gulp with the help of a pipeline. Files enter into the pipeline,
then different tasks are performed on these files within the pipeline. Finally,
modified files exit the pipeline through the gulp.dest('destpath'). Gulp's pipeline is
illustrated in figure 6.1 and Table 6.4

1. The source of the files is specified using gulp.src('filepath').
2. On these src files, modifications such as minifications, compiling, injecting

and so on are performed. These tasks are performed within the gulp
pipeline using .pipe(<gulp-plugin>), where gulp-plugin is one of the helper
plugins used by Gulp.

3. Finally the output directory/file is specified using
gulp.dest(<'outputFilePath'>) where the files exit the pipeline.

38 "02 - Installing Node.js and updating npm | npm Documentation." 2014. 2 Jul. 2016
<https://docs.npmjs.com/getting-started/installing-node>

60

return​ ​gulp​.​src​(​config​.​backbone)

.​pipe​(​$​.​changed​(​config​.​backbone_dest​,
{​extension​:​ ​'.js'​}))

.​pipe​(​$​.​print​())

.​pipe​(​$​.​sourcemaps​.​init​())

.​pipe​(​$​.​plumber​())​ ​// error logging

.​pipe​(​$​.​coffee​({​ bare​:​ ​true​ ​}))

.​pipe​(​$​.​sourcemaps​.​write​(​'./maps'​))
 .​pipe​(​gulp​.​dest​(​config​.​backbone_dest​));

Table 6.4: Gulp Pipeline

6.2.3 Helper Plugins
There are hundreds of plugins available to use with Gulp that perform a host of
tasks within the Gulp pipeline. Few NPM plugins can be used. Some of the useful
plugins are mentioned in this section. To install a plugin type

npm install ​--​save​-​dev ​<​plugin​-​name>

1. browser-sync: ​This plugin is very helpful during development cycle. It can
test features in synchronization with several browsers at once. Actions
taken in one browser are imitated in other browsers. Also if a source file is
modified, it automatically injects the changes into the browser saving time
by avoiding unnecessary page refreshes. 39

39 "Browsersync + Gulp.js." 2015. 7 Sep. 2016 <https://www.browsersync.io/docs/gulp>

61

2. del: ​A node plugin to delete files. 40

3. gulp-stylus: ​Compiles Stylus files into css. Similar plugins are available for
Less and SASS as well. 41

4. gulp-autoprefixer: ​Different browsers require specific vendor prefixes for
using non-standard CSS properties. These vendor prefixes needs to
specified within the styling for every browser. To relieve the developer from
this ordeal, gulp-autoprefixer adds vendor prefixes so the developer just
needs to write plain css and it will interpret and add the vendor prefixes
wherever necessary. 42

5. gulp-coffee: ​Compiles CoffeeScript files to JavaScript. 43

6. gulp-sourcemaps: ​Sourcemaps creates a mapping between the source
and compiled files so that the source can be recreated from the compiled
version. Sourcemaps are generally helpful for debugging during the
development process. If the development is done in CoffeeScript, it needs
to be compiled into JavaScript to run in the browser. If sourcemaps are
available, the browser can recreate the CoffeeScript file making it easier for
debugging. Sourcemaps works in similar ways for css as well as
minifications. 44

7. gulp-changed: Web applications usually have several styling and coffee
files. Whenever a certain file is modified, it will be inefficient to run the task
on all the files specified at the source of the pipeline. This plugin takes care
of it and only allows the modified file to enter the pipeline. 45

8. gulp-filter: ​Filters out particular files within the pipeline to apply certain
specific actions. For eg. only css files needs to be filtered out for
gulp-autoprefixer though the pipeline might contain js files as well. 46

9. gulp-if: ​Provides conditional 'if' logic within the pipeline. 47

40 "del - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/del>
41 "gulp-stylus - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-stylus>
42 "gulp-autoprefixer - npm." 2014. 7 Sep. 2016
<https://www.npmjs.com/package/gulp-autoprefixer>
43 "GitHub - contra/gulp-coffee: Coffeescript plugin for gulp." 2015. 7 Sep. 2016
<https://github.com/contra/gulp-coffee>
44 "gulp-sourcemaps - npm." 2014. 7 Sep. 2016
<https://www.npmjs.com/package/gulp-sourcemaps>
45 "gulp-changed - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-changed>
46 "gulp-filter - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-filter>
47 "GitHub - robrich/gulp-if: Conditionally run a task." 2014. 7 Sep. 2016
<https://github.com/robrich/gulp-if>

62

10. gulp-imagemin: ​Optimizes image files for production . This reduces 48

filesize and helps conserve bandwidth.

11. wiredep ​and ​gulp-inject: ​Web applications tend to depend on several
external libraries that might be installed through bower (Though there are
manual methods but Bower is recommended as it makes these libraries
much more manageable). The css and js of these external libraries needs
to be included within html using <link> and <script> tags respectively.
These libraries might also have dependencies on other libraries, like
Bootstrap depends on jQuery and Backbone depends on Underscore.
Wiredep helps to automatically inject these file paths into the html (and
other variants like jsp, php) files. So developers no longer need to manually
add file paths into their files. Similarly, application specific css and js files
can also be injected using gulp-inject. ​, 49 50

12. gulp-useref: ​During the production build, number of HTTP file requests
needs to be reduced. This helps in reducing the overall load time of the
page. gulp-useref reads the paths injected in a file through wiredep and
gulp-inject, and concatenates many such files into one. It also injects the
new filepaths replacing the previous older ones in the html file. 51

13. gulp-csso ​and gulp-uglify: ​Minification is a bandwidth optimization
technique that reduces the size of code transmitted over the web . During 52

production, considerable performance gain can be achieved through
minifying of css and js files. gulp-csso and gulp-uglify helps to minify css
and js respectively. These plugins can also be used within the same
pipeline with gulp-useref. ​, 53 54

14. gulp-rev ​and gulp-rev-replace: ​Browsers generally cache files locally to
reduce requests made to the server. This considerably helps in reducing
the initial page load-time. However, it might happen that the remote files
have been updated, but the browser continues to use an older cache. This
might lead to errors. To resolve this, gulp-rev renames the files with
appending revision numbers to their filenames. gulp-rev-replace is another
plugin that renames the occurrences of these filenames in the html files.
These plugins should be used within the same pipeline as gulp-useref. 55

48 "gulp-imagemin-npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-
imagemin>
49 "wiredep - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/wiredep>
50 "gulp-inject - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-inject>
51 "gulp-useref - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-useref>
52 "What Is Minification? - MaxCDN." 2015. 2 Jul. 2016
<https://www.maxcdn.com/one/visual-glossary/minification/>
53 "gulp-csso - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-csso>
54 "gulp-uglify - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-uglify>
55 "gulp-rev-replace - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-rev-
replace>

63

15. gulp-load-plugins: ​Whenever we need to use a plugin in node, we need to
import them using require like

var​ gulp ​=​ ​require​(​'gulp'​),
gulpCoffee ​=​ ​require​(​'gulp-coffee'​),
gulpStylus ​=​ ​require​(​'gulp-stylus'​),
..;

 With gulp we use many such plugins and it becomes cumbersome to repeat
this process for every plugin. By requiring gulp-load-plugins, all these other gulp
plugins no longer needs to be defined. So now all that is needed is

var​ gulp ​=​ ​require​(​'gulp'​),
$ ​=​ ​require​(​'gulp-load-plugins'​)({lazy:true});

Any gulp-<plugin-name> can now be referenced using $.<pluginName> in
the gulpfile. So gulp-coffee becomes $.coffee and gulp-task-listing can be called as
$.taskListing. The ​lazy:true ​ option specifies to load a plugin only when needed. 56

16. gulp-plumber: ​Error handling and logging within the pipeline.

17. gulp-print: ​Prints names of files that are being touched.

18. gulp-rename: ​Renames a file.

19. run-sequence: ​Used to run a series of tasks or function in a particular
order.

20. gulp-strip-debug: ​JavaScript sourcecode might have a lot of console and
debug messages added during the development process. One doesn't
need them during production. This plugin gets rid of these messages.

21. gulp-task-listing:​ Prints a list of tasks created in gulp.

22. gulp-util: ​Provides utility functions to gulp plugins such as logging and
colors.

23. yargs: ​Arguments can be passed to gulp tasks through command line. This
is not a gulp plugin.

6.2.4 Build Pipeline
The flowchart of the desired automated build pipeline is shown in the figure 6.3.
Parallelograms specifies the file types and rectangles specifies the tasks. The
Debug property specifies if the project needs to be built in Production or
Development mode

56 "gulp-load-plugins - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-
load-plugins>

64

6.2.5 Setting up File Paths
I find it a good idea to set all the file paths required by a project in one single JSON
formatted file. This helps in keeping a track of all the files in one place. Gulp can
require this file and use its properties. File paths of Bower components,
CoffeeScript, JavaScript, CSS, HTML, images, fonts and any other paths that are
required can be specified here. Specific configurations for some Gulp and NPM
plugins like wiredep and gulp-useref can also be stored here. The code for setting
up this file is provided in the following snippet.

// gulp.config.js
module​.​exports ​=​ ​function​(){

var​ src ​=​ ​'./WebContent-src/';
var​ prefix ​=​ ​'./WebContent/';
var​ bower ​=​ prefix ​+​ ​"js/vendor/";
root ​=​ ​'./';
var​ config ​=​ {

src​:​ src,
prefix​:​ prefix,
build​:​ prefix ​+​ ​'build/',
packages​:​ [

65

'./package.json',

'./bower.json'

],

// Paths for .styl files

styl​:​ [
'css/style.styl'​,​'css/charts.styl',
'!'​+​'css/test.styl'​ ​// Do not include

],

styl_dest​:​ prefix ​+​ ​'css/',

// Paths for Backbone's .coffee files

backbone​:[
src ​+​ ​'js/**/**.coffee',
src ​+​ ​'js/**.coffee',
src ​+​ ​'js/custom/**.coffee'

],

backbone_dest​:​ prefix ​+​'js/backbone_files/',
...

}

return​ config;
};

6.2.6 Gulp Tasks
This section will describe a few of the Gulp tasks. Tasks in Gulp are similar to
functions or methods. A config object is used to set all the paths and other
variables required by Gulp. These variable are defined in gulp.config.js file in the
repository as described in the section 6.2.5.

6.2.6.1 Stylus/Less/SASS -> CSS compilation
The following code describes compilation of Stylus-> CSS. This process is similar
for Less and SASS. Explanation is provided in the comments.

var​ gulp ​=​ ​require​(​'gulp'​),
$ ​=​ ​require​(​'gulp-load-plugins'​)({​lazy​:​true​});

var config ​= ​require​(​'./gulp.config'​)(); ​// Specifies Filepaths and

configurations

/*

*​ ​'clean-styles'​ ​function​ ​is​ called before running ​this​ task.
* ​Other functions that needs to be run before the process can be specified

within

*​ the array
*/

gulp​.​task​(​'styles'​,​ ​[​'clean-styles'​],​ ​function​(){
log​(​'Compiling Stylus --> CSS'​);​ ​// logs the output
return​ gulp

.​src​(​config​.​styl​) ​// specifies the location of stylus files

in directory

.​pipe​(​$​.​changed​(​config​.​styl_dest​, ​{​extension​: ​'.css'​})) ​//

Filters out only the files where there are changes and needs to be

compiled

66

.​pipe​(​$​.​plumber​())​ ​// for error logging

.​pipe​(​$​.​stylus​())​ ​// Compiles stylus to CSS
/*Adds support for different browser platforms that have

more than 5% market share */

.​pipe​(​$​.​autoprefixer​({​browsers​: ​[​'last 2 version'​,

'>5%'​]}))
.​pipe​(​gulp​.​dest​(​config​.​styl_dest​))​ ​// destination folder

});

6.2.6.2 CoffeeScript -> JavaScript Compilation
A browser cannot interpret CoffeeScript directly. CoffeeScript therefore needs to be
compiled into JavaScript.

gulp​.​task​(​'coffee'​,​ ​function​()​ {
 log​(​'Compiling COFFEE files --> JS'​);
 ​return​ gulp​.​src​(​config​.​coffee_src​)​// Source .coffee files

.​pipe​(​$​.​changed​(​config​.​coffee_dest​, ​{​extension​: ​'.js'​}))

//Recompiles only the updated files

.​pipe​(​$​.​sourcemaps​.​init​())​//Initialization for generating

Sourcemaps

.​pipe​(​$​.​plumber​())​ ​// error logging

.​pipe​(​$​.​coffee​({​ bare​:​ ​true​ ​}))​ ​// Compiles to Coffee

.​pipe​(​$​.​sourcemaps​.​write​(​'./maps'​))​// Writes source maps

.​pipe​(​gulp​.​dest​(​config​.​coffee_dest​)); ​// Destination of coffee

files

});

gulp-sourcemaps generates a .coffee.map file for every .coffee file compiled. This
is helpful during debugging in the browser as a .coffee file instead of a .js file.

6.2.6.3 Injecting File Paths
This is one of the most useful features through Gulp that I came across. A Web
page usually needs several CSS and JS files to load. Many of these files are
external open-source libraries such as jQuery, Bootstrap, Backbone and
Underscore that should be preferably installed using Bower. Many of the files are
project specific files that are needed for the application to perform the intended
tasks. Therefore our .html or other variants like .jsp, .php, .jade would look similar
to following snippet.

<html>

 ​<head>
​<meta ​http-equiv​=​"Content-Type" ​content​=​"text/html;

charset=UTF-8">

 ​<title>​D3 with Backbone​</title>
 ​<!-- CSS from external Libraries -->

​<link ​href​=​"/res/js/vendor/bootstrap/dist/bootstrap.min.css"

type​=​"text/css"​ ​rel​=​"stylesheet">
 ​....
 ​<!-- Custom CSS -->

​<link ​href​=​"/res/css/style.css" ​type​=​"text/css"

rel​=​"stylesheet">
​<link ​href​=​"/res/css/charts.css" ​type​=​"text/css"

rel​=​"stylesheet">

67

 ​....
 ​</head>
 ​<body>
 ​<h1>​Hello World!​</h1>

 ​<!-- JS from External Libraries -->
​<script ​src​=​'/res/js/vendor/jquery/dist/jquery.js'

type​=​'text/javascript'​></script>
​<script ​src​=​'/res/js/vendor/underscore/underscore.js'

type​=​'text/javascript'​></script>
​<script ​src​=​'/res/js/vendor/backbone/backbone.js'

type​=​'text/javascript'​></script>
​<script ​src​=​'/res/js/vendor/d3/d3.js' ​charset​=​'utf-8'

type​=​'text/javascript'​></script>
​<script ​src​=​'/res/js/vendor/bootstrap/dist/js/bootstrap.js'

type​=​'text/javascript'​></script>
 ​….

 ​<!-- Custom JS -->
​<script ​src​=​"/res/js/charts.js"

type​=​"text/javascript"​></script>
​<script ​src​=​"/res/js/backbone_files/models/ChartModel.js"

type​=​"text/javascript"​></script>
 ​....
 ​</body>
</html>

In the above example, the file paths have been manually inserted. Special care
needs to be taken when paths are inserted manually. Many libraries have
dependencies on other libraries that need to be called before. If bootstrap is called
before jQuery, it will throw an error, as jQuery is a dependency for Bootstrap.
Similarly, Underscore is a dependency for Backbone. Application specific JS and
CSS also might have similar dependencies. For Backbone files, Models and
Collections needs to be called before Views. During the software's life cycle, new
libraries might be added, updated or removed, and this will require the developers
to manually search, edit and remove file paths, which might lead to cases where
errors go undetected, there are orphan file paths as well as dependencies that are
no longer required. This can have a significant impact on the performance and load
times of a web application.

This problem can be resolved automagically using two of Gulp's plugins, wiredep
and gulp-inject. Wiredep primarily deals with injecting all the Bower libraries and its
dependencies, while gulp-inject can inject custom .css and .js files. The good part
is that all this can be done in a single gulp pipeline with just a few lines of code.
First, some tags needs to be specified in the .html files that tells Gulp where and
which files needs to be injected.

<html>

 ​<head>
​<meta ​http-equiv​=​"Content-Type" ​content​=​"text/html;

charset=UTF-8">

 ​<title>​D3 with Backbone​</title>
 ​<!-- bower:css -->

68

<!-- CSS files from bower goes here -->

<!-- endbower -->

<!-- inject:custom:css -->

 <!-- Custom CSS -->

<!-- endinject -->

 ​</head>
 ​<body>
 ​<h1>​Hello World!​</h1>
 ​<!-- bower:js -->

<!-- JS files from bower goes here →

<!-- endbower -->

 ​<!-- inject:custom:js -->
 ​<!-- endinject -->
 ​</body>
</html>

As seen all the filepaths have been replaced with just a few tags. Then some
options are set for wiredep . 57

config​.​getWiredepDefaultOptions ​=​ ​function​()​ {
var​ options ​=​ {

directory​: ​'js/vendor/'​, ​// directory where bower files are

stored

 bowerJson​:​ ​require​(​'./bower.json'​),​ ​// bower file
}

return​ options;
}

This task is named ​inject​ . Before this task runs, the previous tasks of ​coffee​ and
styles​ needs to be called so that all the files are compiled and available.
gulp​.​task​(​'inject'​,​ ​[​'coffee'​,​ ​'styles'​],​ ​function​(){

log​(​'Wiring up and injecting Bower\'s css & js and custom css and js files);

// logs to the terminal

 ​var​ options ​=​ config​.​getWiredepDefaultOptions​(); ​// Wiredep options
 ​var​ wiredep ​=​ ​require​(​'wiredep'​).​stream;
 ​return​ gulp
 ​.​src​(​config​.​html_files​)​ ​// Files where paths are injected
 ​.​pipe​(​$​.​plumber​())​ ​// logs if errors
 ​.​pipe​(​wiredep​(​options​))​ ​// Injects bower css and js files

​.​pipe​(​$​.​inject​(​gulp​.​src​(​config​.​coffee_dest​,{​read​: ​false​}), ​{ ​// compiled

.coffee files

starttag​:​'<!-- inject:backbone:js -->'​, ​// tag after which paths will

be injected

 relative​:​true
 ​}))

​.​pipe​(​$​.​inject​(​gulp​.​src​(​config​.​styl_dest​, ​{​read​: ​false​}),{ ​// compiled

,css files

starttag​:​'<!-- inject:login:css -->'​, ​// tag where css paths will be

injected

 relative​:​true
 ​}))
 ​.​pipe​(​gulp​.​dest​(​config​.​prefix​));​ ​// Output file path

57 "wiredep - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/wiredep>

69

});

Several customizable options are available for both the helper plugins ​48, . This is 58

the task that should be run during the development phase of the project.

6.2.6.4 Watch
During development, if we are using tools like Stylus and CoffeeScript, it would not
be convenient to manually run ​gulp styles and ​gulp coffee​ after files are edited.
Gulp therefore has an API method ​gulp.watch()​ that can run certain sets of tasks
whenever there are changes in specific sets of files. Several watches can be
created that listens to changes from different sets of files and calls the
corresponding tasks. The watch task runs continuously on the terminal once
initiated. In the following example, two watches are initiated, one that listens to
changes in .coffee files and another to listen to Stylus files.

gulp​.​task​(​'watch'​,[​'inject'​],​ ​function​(​done​){
 log​(​' Watching stylus and coffee files...'​);
 browserSync ​=​ ​require​(​'browser-sync'​);
 ​var​ coffee_watcher ​=​ gulp​.​watch​([​config​.​coffee_src​],​ ​[​'coffee'​]);
 ​var​ stylus_watcher ​=​ gulp​.​watch​([​config​.​styl​],​ ​[​'styles'​]);
 browserSync​({<​options​>});
});

An additional function that is mentioned is browserSync(). This function is used to
initiate the Browser-Sync and it is quite useful during development as can inject
changes into browser and avoids unnecessary reloads. To read more about the
available options, check . It can also synchronously simulate events across 59

multiple browsers and has several other useful utilities.

6.2.6.5 Optimize
This task is used to create the production version of the project. It has several
subtasks that needs to be performed like concatenation, minification of css and js
files, and static file revisions. All these steps are performed within a single gulp
pipeline during the production build.

Minification, Compression and Concatenation CSS and JS
Whenever a web application loads on a browser, the browser requests all the CSS
and JS files specified in the document. When all of these files are received and
processed by the browser, the page finally completes loading. Minification and
compression of these files reduces their overall file size by 30-80%. This leads to a
reduction in load times of the webpage. Furthermore, this also leads to a reduction
in bandwidth consumption and server load, allowing more visitors to access server

58 "gulp-inject - npm." 2014. 7 Sep. 2016 <https://www.npmjs.com/package/gulp-inject>
59 "Browsersync - Time-saving synchronised browser testing." 2015. 7 Sep. 2016
<https://www.browsersync.io/>

70

resources. Minification removes Comments and whitespaces from the files which
are not required for execution during production, speeding up script execution
times. Another important aspect is concatenation of a number of files into fewer
files. This is required so that the browser makes fewer HTTP requests to the server
(Souders, 2008).

All of the above can be achieved using gulp-useref in combination with gulp-csso
and gulp-uglify. gulp-useref requires similar html tag setup like gulp-inject or
wiredep.

<!-- build:css build/app.css -->
<!-- list of CSS filepaths -->

<!-- endbuild →

<!-- build:js build/app.js -->

<!-- list of js filepaths -->

<!-- endbuild -->
The tags specifies the path and name of the final output file. All the files mentioned
within those tags will be concatenated into a single file with the name mentioned in
the tag i.e. build/app.css and build/app.js. So, the HTML file defined in section
6.2.6.3 will be modified into

<html>

 ​<head>
​<meta ​http-equiv​=​"Content-Type" ​content​=​"text/html;

charset=UTF-8">

 ​<title>​D3 with Backbone​</title>
<!-- build:css build/app.css -->

<!-- bower:css -->

<!-- CSS files from bower goes here -->

<!-- endbower -->

<!-- inject:custom:css -->

 <!-- Custom CSS -->

<!-- endinject -->

<!-- endbuild -->

 ​</head>
 ​<body>
 ​<h1>​Hello World!​</h1>

<!-- build:js build/app.js -->

<!-- bower:js -->

<!-- JS files from bower goes here -->

<!-- endbower -->

 <!-- inject:custom:js -->

 <!-- endinject -->

<!-- endbuild -->

 ​</body>
</html>

After concatenation, the files will be minified. gulp-csso minifies the css file, while
gulp-uglify minifies the js files. gulp-uglify performs an additional task of mangling
the filenames. Mangling replaces the local variables and function names to usually
single letters which further improves optimization. This can be an issue in some

71

cases especially when using AngularJS templates, and it can be disabled through
options.

Static File Revisions
Modern browsers like Google's Chrome, Mozilla's Firefox, Microsoft's Edge, Safari
and Opera manage a local cache where css and js files are stored. When a web
page requests a file, the browser first checks if it already has a local copy of the file
before requesting the file from the server. This improves performance and reduces
unnecessary requests to the server. Decision is made by the browser by
comparing the url and name of the file requested to its locally cached version. If
they are similar, the browser loads the cached file, else it clears old cache and
requests the new one from the server. Therefore, file revisioning is crucial
whenever the static files like css and js are updated on the server otherwise the
browser will continue loading the older caches, which might lead to errors or
confusion.

Gulp achieves this task by using gulp-rev; gulp-rev renames the file using content
hashing. Whenever the content in a file is updated, so does its hash, giving files
automatic revision numbers.

app.js​ → gulp-rev() → ​app-098f6bcd.js

Finally the file path of the updated file name needs to be replaced in the ,html file,
this is accomplished by gulp-rev-replace. The new filepath is finally injected into the
source html file by gulp-useref

The following code snippet describes the optimize task.
gulp​.​task​(​'optimize'​,​ ​[​'inject'​],​ ​function​()​ {

log​(​'Optimizing the static assets for Production build'​);
var​ optimize ​=​ ​function​(){

var​ assets ​=​ $​.​useref​({
searchPath​: config​.​prefix​, ​// directory where static files

are stored

});

var htmlFilter ​= $​.​filter​([​'**/*'​, ​'!**/**.html'​], ​{ restore​: ​true

});​// Filters out html files
return​ gulp

.​src​(​config​.​html_files​)​// sorce html files

.​pipe​(​$​.​plumber​())​ ​// error logging

.​pipe​(​assets​)​// calling gulp-useref

.​pipe​(​$​.​sourcemaps​.​init​())​ ​// initialize sourcemaps

.​pipe​(​$​.​if​(​'*.css'​,​ $​.​csso​()))​ ​//minify css files

.​pipe​(​$​.​if​(​'*.js'​,​ $​.​uglify​()))​ ​//uglify js files

.​pipe​(​htmlFilter​) ​// filters out html files from the

pipeline

.​pipe​(​$​.​rev​())​ ​// File revisioning on JS and CSS files

72

.​pipe​(​indexJspFilter​.​restore​) ​// Restores html files back

into the pipeline

.​pipe​(​$​.​revReplace​()) ​// replaces revisioned file paths in

the html files

.​pipe​(​$​.​sourcemaps​.​write​(​'./build/maps'​)) ​// generates

sourcemaps

.​pipe​(​gulp​.​dest​(​config​.​prefix​)) ​// Outputs all the

processed files

.​pipe​(​$​.​rev​.​manifest​())​ ​// Generates manifests

.​pipe​(​gulp​.​dest​(​config​.​build​)); ​// outputs the

manifest.json file to the location

};

return​ optimize​();​ ​// call optimize() function
});

There are several other smaller tasks that are performed by Gulp in this project,
such as version bumping, cleaning files, options for logging output, generating
fonts and minifying images for production build. The code for these can be found
the Appendix A.

73

Chapter 7

Evaluation

In this chapter, I will first discuss the benefits and performance analysis of using an
MV* framework within the Data Visualization Pipeline. It will be then followed by an
evaluation of our second sub-topic, regarding the use of JavaScript task runners.

7.1 Evaluation of Data Visualization Pipeline with
Backbone.js and D3.js
The discussion regarding the use of Backbone.js with D3.js is subjective and
based on my experience while working on it. Many studies have proven the
superiority of using MVC frameworks for software development, and therefore
using any framework having a substantive open-source community supporting it is
always a safe choice. Frameworks are also crucial when working with teams as it
sets some rules that needs to be followed and leads to a better architecture and
understanding of a software project. Therefore, using any popular frameworks
such as AngularJS, Backbone, Ember, Knockout and React for creating data
visualizations or any other task would always be helpful. As I have an experience
working with AngularJS and Backbone, my basis of comparison will be between
them.

Before I started with my internship at Poimapper, I already had an extensive
working experience with AngularJS. It takes a fair amount of time and practice
initially to become productive with AngularJS. However, after I started working on
my internship, I had to switch to Backbone.js as the Poimapper application was
already developed using it. I had my own set of qualms of going through the same
learning process with Backbone before I can become productive. Nevertheless, I
found Backbone.js to be relatively simpler to understand and work with in contrast
to AngularJS.

7.1.1 Data-Binding
As we are concerned with Data Visualizations which highly relies on data, this is
the most important property for choosing the framework. Data binding is a

74

technique that establishes a connection between the application's UI and
application's logic . Data binding is established either as a two-way data binding 60

or a newer concept of unidirectional data flow. In two-way data binding, when the
properties of the model gets updated, so does the UI and when the UI elements
are updated, the changes gets propagated to the model. AngularJS strictly follows
two-way data binding, while Backbone gives the flexibility of choosing one of the
flavours. In Backbone, it can be achieved with the use of change listeners on the
Model.

Recently, unidirectional data flow has gained traction especially due to Facebook's
introduction of React.js with Flux which implements unidirectional data flow. Cory
(2015) has listed down several benefits of implementing unidirectional data flow
over two-way data binding. It increases the lines of code required compared to
two-way data binding, but the logical flow of data becomes easier to understand
and interpret.

As Backbone leaves the decision of data binding upon the user, it is possible to
implement unidirectional data flows using Backbone as opposed to Angular.

7.1.2 Performance Analysis
TodoMVC is a very useful tool that can help developers decide on the framework
to be used to develop a Web application . It is developed as an open-source 61

project that is an implementation of the same To-Do task management application
using different JavaScript frameworks and libraries.

Runeberg (2013) has done several basic performance tests comparing Angular
with Backbone using TodoMVC. His study proves many similar performance
aspects between Angular and Backbone like ​Source Lines of Code (SLOC)​ and
Heap Profile​ . The difference between their heap profiles is not significant to make

60 "What is Data Binding? - Definition from Techopedia." 2012. 15 Sep. 2016
<https://www.techopedia.com/definition/15652/data-binding>
61 "TodoMVC." 2012. 11 Sep. 2016 <http://todomvc.com/>

75

any noticeable difference. However, the amount of SLOC required by Angular are
far lesser than required for Backbone. SLOC is highly correlated to programming
productivity and manageability, and therefore Backbone will require some
additional time to develop.

Moreover, when stress tests were performed on both of these frameworks, findings
showed that Backbone outperformed Angular in most of the scenarios. Figure 7.1
shows the execution times in milliseconds for four different cases between Angular
and Backbone on TodoMVC. Execution times is a crucial factor to provide
smoother interactions with visualizations. A slower execution can render the
visualization to be clunky. Backbone.js has a faster execution speed compared to
Angular.js, and is therefore a better choice for creating visualizations.

7.1.3 Loose Coupling and High Cohesion
Cohesion is a measure used in software engineering to determine the degree to
which elements of a certain module belong together. On the other hand, ​Coupling
determines how much one component depends on the workings of other
components.

According to Beyer (2001), software applications having reduced coupling and
higher degrees of cohesion, tend to be increasingly versatile and robust. A
software having high cohesion, will keep similar and related modules together. This
helps in keeping modules sharing similar goals or functionality together, such as in
our case of Web Reports Module. Backbone provides with a robust implementation
through which several modules possessing high cohesion such as Table, Maps,
Web Reports, Image Gallery, and Filters could be developed independently
accomplishing different goals. Finally, loose coupling between these module
helped to bring them easily together to create the Poimapper application.

7.2 Evaluation of Automated Build Pipeline using Gulp
Before I introduced Gulp into the project, all tasks were handled using NPM's
scripts. Gulp did introduce several new features, but the basic tasks of compiling
CoffeeScript and Stylus files, minification of custom JS files remains the same.
However, Gulp did outshine when it comes to compiling and minifying all the
external library files, Gulp watch and several other minor tasks like images and
fonts optimizations, cleaning files, error logging and linting.

7.2.1 Improved Developer Efficiency
The efficiency gained from this parameter is hard to quantize, but can be
explained. Prior to using Gulp, all developers were required to run a script through
npm, that compiled all the CoffeeScript and Stylus files and concatenated them
regardless of the environment (Development or Production). Usually, this script
used to take somewhere between 30-40 seconds to run. The script required to be
manually called on the terminal whenever a developer made changes. This whole

76

process would take about a minute before the developer can finally analyse the
changes on the browser.

Gulp on the other hand, only compiles the the files that have changed, and doesn't
require concatenation into a single file during the development mode as it injects
file paths automatically. Because of Gulp's watch command, the necessary tasks
are called automatically when a particular type of file is changed. The whole
process is usually completed within a second, and the developer does not even
require to refresh the browser as even that is handled using Browser-sync. NPM
can also accomplish the same results, just that it was not implemented in our
project, and it is not as versatile and easy to implement compared to Gulp. Gulp
took care of the entire build process, and developers only need to concentrate on
writing code.

7.2.2 Performance Gains using Gulp
These performance analysis are done using Chrome Developer Tools . The 62

performance tests are done on production builds of two versions of the project, one
using Gulp and the other using NPM scripts. The following are the Common
timeline event properties on which the comparisons are based on, 63

1. Loading Events: ​Includes events like parsing HTML, loading network
resources, receiving data, receiving response and sending network
requests.

2. Scripting Events: ​Includes events such as Animation Frame Fired,
Garbage Collection, DOMContentLoaded, Script evaluations, JavaScript
events, Function calls and XHR events.

3. Rendering Events: Includes events like Invalidatelayout, Recalculate
Styles and Scroll.

4. Painting Events: Contains events that belong to the painting category
such as Composite Layers, Image Decoding, Image Resize and Paint.

5. Other and Idle: ​These contain some other events that do not belong to the
previous categories. The rest is Idle time where browser is usually waiting
for resources and no processing is being done.

As seen from Table 7.1, the build using Gulp takes an average of 3.96 seconds for
all the elements of the page to load as opposed to 7.44 seconds of NPM scripts.
Furthermore, Gulp outperforms in every category. The overall performance gained
using Gulp is 46.77% which is quite appreciative.

62 "Chrome Developer Tools - Google Developers." 2013. 8 Sep. 2016
<https://developers.google.com/chrome-developer-tools/?PHPSESSID=ebd55af1156a549f35
03274c51dd2b8f>
63 "Timeline Event Reference | Web Tools - Google Developers." 2015. 8 Sep. 2016
<https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/perf
ormance-reference>

77

Gulp NPM Scripts

Table 7.1

In the previous case broswer-cache was disabled and even better results are
obtained when browser-cache is enabled. The following are the results when
browser cache is enabled.

Gulp NPM Scripts

If you compare the results to the previous ones, Gulp has comparatively much
higher performance gain. The performance gained with cache enabled is 56.49%.

The average performance gained using the automated build pipeline with Gulp is
approximately 52%. This is very high and can significantly improve the page
response and page speed.

NOTE: ​This comparison is not really between the performance of Gulp and NPM
scripts, it is more about the practices followed. Similar results can be achieved with
proper configuration of NPM, or even manually building the project by running a
certain set of commands on the terminal. It is more about the convenience and
versatility provided by Gulp that matters.

78

7.2.3 Page Speed Comparisons
Another analysis is done using a chrome developer plugin, PageSpeed . It uses 64

several heuristics to compare page speeds of web pages to give a score and
provides necessary suggestions to improve them. The scores are based on
parameters such as optimizing images, leveraging browser caches, file
compression and minifications, cache validators and several others. The Gulp
version received an overall score of 76/100 while the non-Gulp version received a
score of 65/100.

7.2.4 Disadvantages of Gulp
Gulp is exceptionally faster if compared to task runners like Grunt or NPM. The
reason for this is that Gulp is based on Node and its asynchronous as opposed to
synchronous processing of Grunt. It also has in-memory streams and relies on
parallel processing which this makes it much faster. This does not sound like a
disadvantage, until resources are taken into consideration. I would not have
discovered this disadvantage if the company's server was not limited on CPU
resources. Gulp is much more resource intensive and the build started failing
several times on the server. On my local machine, Gulp was building the
application much faster than the non-Gulp versions. However, on the remote
server where our application is hosted, Gulp took a much longer time to build. I had
to make several changes and optimizations, and avoid tasks that required heavier
processing to finally make it work. So make sure to have sufficient resources
before using Gulp.

I have also come across several other disadvantages of using Gulp or other similar
task runners that are discussed in the following sections.

7.2.4.1 High dependency on Helper plugin authors
Gulp and Grunt depend completely on helper plugins like gulp-inject, gulp-useref
and gulp-coffee to actually get a tasks done. These plugins are developed and
managed by other open-source contributors, and there is no guarantee that they
will always be supported in the long run. Many plugins are also deprecated and no
longer supported in newer versions of Gulp. Recently, there was a famous story
about the a programmer who almost broke the internet . All he had to do was to 65

delete one of his library that was downloaded more than half a million times from
the NPM's repository. This led to an avalanche effect as all the projects and
libraries having dependencies on this deleted library started failing, which in turn
were dependencies in other projects and so on.

64 "PageSpeed Insights - Google Developers." 2012. 8 Sep. 2016
<https://developers.google.com/speed/pagespeed/insights/>
65 "NPM left-pad controversy explained - Business Insider." 2016. 11 Sep. 2016
<http://www.businessinsider.com/npm-left-pad-controversy-explained-2016-3>

79

7.2.4.2 Frustrating Debugging
This one I realised again through experience. Poimapper had multiple language
support and the character set specified in <head> tag was utf-8 that stands for
unicode. This tells the browser about the character encodings to be used for the
document. The project had some Finnish and German characters that were not
written in the unicode format, but anyways popular browsers like Chrome and
Firefox handle them without issues. However, Gulp processes files in unicode, and
now since html files were parsed through Gulp, it messed up the character
encodings. This took quite an effort to figure out where the bug was and why it was
happening. Debugging might therefore become frustrating as an additional layer of
abstraction is introduced.

7.2.4.3 Disjointed Documentation
Many of Gulp/Grunt plugins are actually extensions of core NPM plugins. For
example, gulp-wiredep, gulp-coffee, gulp-eslint are extensions of NPM tools like
wiredep, coffee and eslint respectively. The documentation of these helper-plugins
is never complete and one needs to refer to the core plugin's documentation and
fill in the gaps themselves. Furthermore, when a newer version of the core tool is
available, one might have to wait until their extended plugins are updated to
support them as well.

80

Chapter 8

Discussion and Conclusion

There are many frameworks and libraries available, and all of them have their own
sets of strengths and weaknesses. It is therefore very crucial to select the right
tools for your project. In this thesis, I studied effects of using a build automation
tool like Gulp and resulting implications on an ongoing project. Another important
focus of the study was to manage the complexities of interactive visualization using
a MV* framework.

Gulp helped in automating several build tasks, improved efficiency and increased
productivity. However, after I introduced Gulp into the project, I received a lot of
friction from other developers. It took time for everyone in the team to get used to
it. Furthermore, external resources in our project was poorly organized and I had to
take a great number of precautions while moving them around without breaking the
build. It also sets certain rules that needs to be followed by all developers which
helps maintaining consistent architecture and principles for the project. The
evaluation results indicate that by using Gulp along with the build pipeline,
improved performance of every page event. It also improved Page Speeds and
reduced overall load time. However, there are also some disadvantages.

RQ1 Does a JavaScript task runner help improve overall software
efficiency and productivity?

A1 According to the evaluations discussed in sections 11.1, this
depends greatly on the requirements and available resources. It has several
benefits, but in many cases the weaknesses might outweigh them. A careful
evaluation is crucial. For Poimapper, the benefits marginally outweighs the
disadvantages. If our remote server did have enough resources, then Gulp would
had been a major advantage. These resources do come with an additional cost
and paying extra just to run Gulp might not be always feasible.

Furthermore, Backbone.js had a seamless integration within the Data Visualization
Pipeline. This helped enable separation of concerns within the pipeline, and tasks
were performed by libraries that are efficient in performing the relevant
functionalities.

81

RQ2 Can a MV* framework like Backbone.js help in separation of

concerns within the Data Visualization Pipeline?
A2 The evaluations discussed in section 11.2 proved that Backbone.js

has some significant advantages against Angular.js, which is another popular
framework. The faster execution speed against Angular.js makes it a better choice
to be used within the Visualization Pipeline. Moreover, using any MV* framework
within the visualization pipeline will provide significant benefits such as data
binding, loose coupling, higher cohesion and seamless integration.

8.1 Future Work
Webpack is a new contender for task runners. In reality, it has created a new family
of its own called ​module bundlers​ . It addresses many of the backdrops of Gulp and
Grunt. Furthermore, it does not require custom helper modules, and can directly
make use of npm plugin's. Webpack can also create an automated build pipeline
with relatively fewer lines of code. It is a strong contender and might dethrone Gulp
in near future.

On the other hand, React.js is a recent framework introduced by Facebook. It is not
an MV* framework, but it claims to be the most reactive View module in an MVC.
Facebook has introduced Flux, a framework that enforces uni-directional data flow
and provides the rest of the skeleton of MVC to work with React. However, React
can be plugged in easily with Backbone.js replacing the default View component of
Backbone. I believe, React can provide exceptional performance for data
visualization due to the use of Virtual DOM technique. This can render data
intensive visualizations and its transitions appear to be much more smoother.

82

Bibliography

Amr, Tarek, and Rayna Stamboliyska. "Getting Started with D3." ​Practical D3.js

(2016): 75-90.

Bergman, L.d., B.e. Rogowitz, and L.a. Treinish. "A Rule-based Tool for Assisting

Colormap Selection." ​Proceedings Visualization '95​ .

Bertin, Jacques. "Graphische Semiologie." (1974).

Beyer, Dirk, Claus Lewerentz, and Frank Simon. "Impact of Inheritance on Metrics

for Size, Coupling, and Cohesion in Object-Oriented Systems." ​New

Approaches in Software Measurement Lecture Notes in Computer Science

(2001): 1-17.

Borkin, Michelle A., Azalea A. Vo, Zoya Bylinskii, Phillip Isola, Shashank

Sunkavalli, Aude Oliva, and Hanspeter Pfister. "What Makes a Visualization

Memorable?" ​IEEE Trans. Visual. Comput. Graphics IEEE Transactions on

Visualization and Computer Graphics​ 19.12 (2013): 2306-315.

Card, Stuart K., Jock D. Mackinlay, and Ben Shneiderman. ​Readings in

Information Visualization: Using Vision to Think​ . San Francisco, CA: Morgan

Kaufmann, 1999.

Coplien, James O., and Trygve Reenskaug. "The DCI Paradigm." ​Agile Software

Architecture​ (2014): 25-62.

Eugster, Patrick Th., Pascal A. Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. "The Many Faces of Publish/subscribe." ​CSUR ACM Comput.

Surv. ACM Computing Surveys​ 35.2 (2003): 114-31.

Finkbine, Ronald. "Programming in CoffeeScript by Mark Bates." ​SIGSOFT Softw.

Eng. Notes ACM SIGSOFT Software Engineering Notes​ 39.3 (2014): 25.

Gackenheimer, Cory. "Introducing Flux: An Application Architecture for React."

83

Introduction to React​ (2015): 87-106.

Kaye, Doug. ​Loosely Coupled: The Missing Pieces of Web Services​ . Marin County,

CA: RDS, 2003.

Luboschik, M., H. Schumann, and H. Cords. "Particle-based Labeling: Fast

Point-feature Labeling without Obscuring Other Visual Features." ​IEEE

Trans. Visual. Comput. Graphics IEEE Transactions on Visualization and

Computer Graphics​ 14.6 (2008): 1237-244.

Mackinlay, Jock. "Automating the Design of Graphical Presentations of Relational

Information." ​TOG ACM Trans. Graph. ACM Transactions on Graphics​ 5.2

(1986): 110-41.

Maclean, Malcolm. ​D3 Tips & Tricks Interactive Data Visualization in a Web

Browser​ . Vancouver: Lean, 2014.

Marschner, Steve, and Peter Shirley. ​Fundamentals of Computer Graphics​ . Print.

Mazinanian, Davood, and Nikolaos Tsantalis. "An Empirical Study on the Use of

CSS Preprocessors." ​2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER)​ (2016).

Meng, X. "Information Graphics: A Comprehensive Illustrated Reference Robert L.

Harris, Oxford University Press, New York & Oxford, 1999, 448 Pp. ISBN

0-19-5135326, £32.50." ​Quaternary Science Reviews​ 19.17-18 (2000):

1837.

Murray, Scott. ​Interactive Data Visualization for the Web​ . Sebastopol, CA: O'Reilly

Media, 2013.

Nielson, Gregory M., Bruce D. Shriver, and Lawrence J. Rosenblum. ​Visualization

in Scientific Computing​ . Los Alamitos, CA: IEEE Computer Society, 1990.

Pfister, Hanspeter, Alyssa A. Goodman, and Eric Mazur. "Perception, Cognition,

and Effectiveness of Visualizations with Applications in Science and

84

Engineering." ​Borkin, Michelle A​ . Web. 15 Sept. 2016.

Rigdon, Steven E. "Power Law Process." ​Wiley StatsRef: Statistics Reference

Online​ (2014).

Sheelagh, M., T. Carpendale, D.j. Cowperthwaite, and F.d. Fracchia. "Distortion

Viewing Techniques for 3-dimensional Data." ​Proceedings IEEE Symposium

on Information Visualization '96​ .

Souders, Steve. "High-performance Web Sites." ​Communications of the ACM

Commun. ACM​ 51.12 (2008): 36.

Spence, I. "No Humble Pie: The Origins and Usage of a Statistical Chart." ​Journal

of Educational and Behavioral Statistics​ 30.4 (2005): 353-68.

"Timeline Event Reference | Web Tools - Google Developers." ​Timeline Event

Reference | Web Tools - Google Developers​ . 12 May 2015. Web. 08 Sept.

2016.

Tory, M., A.e. Kirkpatrick, M.s. Atkins, and T. Moller. "Visualization Task

Performance with 2D, 3D, and Combination Displays." ​IEEE Trans. Visual.

Comput. Graphics IEEE Transactions on Visualization and Computer

Graphics​ 12.1 (2006): 2-13.

Ware, Colin. ​Visual Thinking for Design​ . Burlington, MA: Morgan Kaufmann, 2008.

Wolff, Robert S., and Larry Yaeger. "Volume Visualization." ​Visualization of Natural

Phenomena​ (1993): 121-44.

"The Best Stats You've Ever Seen." ​Hans Rosling:​ . Web. 18 Aug. 2016.

85

Appendix A

Project Code and Repository

I have created a public git repository for this thesis. I extracted the modules
relevant to the thesis from Poimapper, and have created a new project. The
repository contains the code for creating the Data Visualization Pipeline using
Backbone.js and D3.js. It also contains Gulp's implementation of Automated Build
Pipeline.

Github Repository:​ https://github.com/CodeTaha/backbone-dashboard

Instructions to build and run the project are as follows.

1. Make sure Git, Node, npm, Gulp and Bower are installed on the machine
globally.

2. Either download a zip or clone the git repository.
3. cd to the root of the repository.
4. Run ​npm install
5. Run ​bower install
6. Run ​gulp inject
7. Run ​node server.js​ in the root directory of the project
8. Open http://localhost:3000/ in the browser.

86

