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Docker tarjoaa omavaraisia sovelluslevykuvia joita voidaan siirtää eri tietokoneille
ja tavan suorittaa kyseisiä sovelluslevykuvia Docker konttien muodostamissa eris-
tetyssä sovellusympäristöissä. Konttialustat tarjoavat pilvessä ajettavien skaalau-
tuvien sovelluspalveluiden käyttöönottoon vaadittuja peruspalveluita, kuten orke-
strointia, verkkoviestintää, palvelinetsintää sekä kuormantasausta.
Tämä työ tutkii konttiverkkojen arkkitehtuuria sekä olemassaolevia pilvikuorman-
tasaajatoteutuksia luodakseen skaalautuvan Linux IPVS-toteutukseen pohjautu-
van verkkotason kuormantasaajan toteutusmallin. Tämä clusterf kuorman-
tasaaja käyttää kaksikerroksista kuormantasausmallia joka yhdistää eri kuorman-
tasausmenetelmiä saavuttaakkseen sekä skaalautuvuuden että yhteensopivuuden
olemassaolevien Docker konttisovelluksien kanssa. Työssä toteutetaan hajautettu
ohjauspinta joka tarjoaa automaattisen kuormatasauksen Docker konttisovelluk-
sille.
Tämän clusterf kuormantasausmallin toteutusta arvioidaan erillisessä ym-
päristössä mittaamalla Linux IPVS-toteutuksen tarjoama suorituskyky. Tämän
clusterf kuormantasaajan skaalautuvuus arvioidaan käyttäen Equal-Cost Multi-
Path (ECMP) reititystä sekä IPVS-yhteystilojen synkronointia.
Tutkimustyön tuloksena nähdään että verkkotason IPVS kuormantasaaja suo-
riutuu huomattavasti paremmin kuin sovellustason HAProxy kuormantasaaja
samassa kon�guraatiossa. Tämä clusterf toteutus mahdollistaa myös kuor-
mantasaajan skaalautumisen, sallien yhteyksien siirtämisen kuormantasaajalta
toiselle.
Nykyinen clusterf toteutus perustuu epäsymmetrisen reitityksen käyttöön,
joka onnistuu Ethernet-pohjaisessa paikallisverkoissa. Toteutuksen laajentaminen
mahdollistaakseen käyttöönoton erilaisia verkkototeutuksia käyttävien pilvialus-
tojen päällä sallisi clusterf-kuormantasaajan käytön osana yleistä konttialustaa.

Avainsanat: Containers, Docker, Cloud, Load Balancing, DSR, NAT, Service
Discovery
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Docker uses the Linux container namespace and cgroup primitives to provide iso-
lated application runtime environments, allowing the distribution of self-contained
application images that can be run in the form of Docker containers. Container
platforms provide the infrastructure needed to deploy horizontally scalable con-
tainer services into the Cloud, including orchestration, networking, service discov-
ery and load balancing.
This thesis studies container networking architectures and existing Cloud load
balancer implementations to create a design for a scalable load balancer using
the Linux IPVS network-level load balancer implementation. The clusterf load
balancer architecture uses a two-level load balancing scheme combining di�erent
packet forwarding methods for scalability and compatibility with existing Docker
applications. A distributed load balancer control plane is implemented to provide
automatic load balancing for Docker containers.
The clusterf load balancer is evaluated using a testbed environment, measuring
the performance the network-level Linux IPVS implementation. The scalability
of the clusterf load balancer is tested using Equal-Cost Multi-Path (ECMP)
routing and IPVS connection synchronization
The result is that the network-level Linux IPVS load balancer performs signi�-
cantly better than the application-level HAProxy load balancer in the same con-
�guration. The clusterf design allows for horizontal scaling with connection
failover between IPVS load balancers.
The current clusterf implementation requires the use of asymmetric routing
within a network, such as provided by local Ethernet networks. Extending the
clusterf design to support deployment onto existing Cloud infrastructure plat-
forms with di�erent networking implementations would qualify the clusterf load
balancer for use in container platforms.

Keywords: Containers, Docker, Cloud, Load Balancing, DSR, NAT, Service Dis-
covery
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1 Introduction

Cloud computing can be de�ned as the combination of three di�erent service mod-
els: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS) [1]. An IaaS Cloud uses Virtual Machines (VMs) to allocate
and share physical machine resources between multiple operating systems by vir-
tualizing low-level resources such as disk controllers, network interface cards and
bootloaders. The provider of an IaaS Cloud platform controls both the physical
network and server infrastructure. A PaaS Cloud provides a high-level application
environment including the tooling and infrastructure required to provide software
applications and services in the Cloud (SaaS). Application containers can be used
as the foundation of such a platform for horizontally scalable cloud services. Con-
tainer platforms designed to be portable across di�erent infrastructures can be used
for the local development of cloud applications and deployment onto cloud server
infrastructures.

Containers allocate and share operating system resources between multiple pro-
cesses by virtualizing high-level resources such as process management interfaces,
the TCP/IP network stack, or the �lesystem namespace. Mature container-based
platforms such as Google's Borg [2] demonstrate the strengths of containers when
operating cloud services at large scales. Google Borg is the primary container plat-
form used to deploy thousands of di�erent applications across clusters of tens of
thousand of servers within the Google infrastructure [2]. Google Borg is used to
run a wide variety of applications in the form of containers, including end-user fac-
ing services such as Gmail and Google Web Search, infrastructure services such as
BigTable, and batch-processing infrastructure such as MapReduce [2].

The history of mature container-based platforms such as Google Borg can be traced
back to the implementation of shared resource isolation primitives for optimizing
server resource utilization [2]. Critical production services require the reservation of
su�cient resources for handling peak loads, leading to poor resource utilization dur-
ing idle periods. Robust resource isolation primitives allow these idle resources to be
used by lower-priority batch jobs that are insensitive to latency and can be quickly
preempted on demand [3]. However, the development and deployment of services
in the form of distributed applications requires systems to support their manage-
ment and operation. The rapid evolution of support services within Google's Borg
ecosystem demonstrated the applicability of the application container abstraction for
more than just managing shared resources. Over time, the nature and signi�cance
of these early container-based platforms expanded, forming an Application-oriented
Infrastructure platform [4].

Docker is an open-source Linux container management system that is rapidly gain-
ing adoption in the development of Cloud applications [5]. Docker emphasizes the
application-oriented aspect of containers, with containers being used to operate in-
dividual applications rather than opaque virtual machines. Docker Images can be
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used to package applications into a single easily distributable image, including all
runtime resources and dependencies. Docker combines the ease of building Docker
images when developing applications with the �exibility of running Docker Contain-
ers when deploying applications. Docker Containers provide an isolated runtime
environment for each application, such that the application images do not need to
include any low-level components such as disk management or network con�gura-
tion. The Application Container model simpli�es the deployment of applications by
providing an abstraction layer where Docker manages the infrastructure resources
such as the storage and network. The Docker Engine can be used to deploy any
application developed as a Docker Image onto any developer machine or cloud server
con�gured to run Docker Containers.

While Docker presents a solution for many of the problems related to application
development, deploying container-based applications into the Cloud requires the
support of a container-oriented cloud infrastructure platform [6]. An Application-
oriented Infrastructure platform [4] supports the development and deployment of dis-
tributed cloud-native applications, allowing them to scale horizontally in the Cloud.
Such an application infrastructure platform requires numerous components, includ-
ing a container engine for running applications, an orchestration system to manage
containers, a service discovery mechanism to allow containers to communicate across
the network, and a load-balancing layer to distribute tra�c across multiple service
instances.

1.1 Research Problems

The objective of this work is the implementation of a scalable network-layer load-
balancer within the scope of a cluster of machines running Docker applications.
Docker container networking concepts and existing implementations of cloud load
balancers such as Google Maglev [7] and Microsoft Ananta [8] are studied to con-
struct a design for a scalable network-level load balancer using Linux IPVS. We
implement the clusterf control plane to integrate this network-level load balancer
design with Docker, providing automatic load balancing for container services within
a Docker cluster. The research questions for this work are:

• Do network-level load balancing methods have scalability advantages over
application-level load balancing methods?

• How is the design of a network-level load balancer determined by the network
architecture?
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1.2 Thesis Structure

This work is structured as follows. Chapter 2 presents a theoretical model for a
container platform with a focus on container networking, discussing orchestration,
service discovery and load balancing methods. Chapter 3 studies various implemen-
tations of Docker container platform components, focusing on components relevant
to networking and load balancing. Chapter 4 presents the implementation of the
clusterf load balancer for Docker clusters, using a design for a scalable network-
level load balancing based on the Linux IPVS implementation discussed in Section
3.4.5. Chapter 5 discusses the methods used to evaluate the design and implementa-
tion of the clusterf load balancer, presenting and analyzing the results in Chapter
6. Finally, we conclude with Chapter 7, answering our research questions based on
the design work in Chapter 4 and the results in Chapter 6.
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2 Background

The dynamic nature of Cloud computing leads to changes in application design [9]
when scaling an application from a developer's machine to a service with millions
of users. For a traditional application running on a single machine, vertical scal-
ing involves upgrading the machine for improved performance and reliability. The
vertical scaling approach keeps the application software simple, but it is ultimately
limited by the cost of su�ciently powerful and reliable hardware. Cloud infrastruc-
ture uses a di�erent approach, running large numbers of commodity server machines
optimized for cost and e�ciency over reliability. For a distributed application capa-
ble of running across multiple machines, horizontal scaling involves increasing the
number of machines for improved performance and reliability.

Horizontal scaling of a service involves additional complexity due to the need for a
distributed systems design. Increasing the capacity of the service requires a method
for dynamically distributing load across multiple instances, allowing the addition of
more instances to increase capacity. However, increasing the number of independent
instances also means that it is more likely for some instance to fail. Horizontal
scaling also requires a fault tolerance mechanism to maintain the reliability of the
service. Any cloud service running only a single instance is limited in terms of both
performance and reliability.

This Chapter provides an overview of container platform infrastructure components
that ease the development of horizontally scalable applications using containers.
Containers provide isolated runtime environments for application, allowing the use
of self-contained application images and immutable infrastructure for determinis-
tic deployments. Container network allows container applications running within a
cluster of machines to connect to services exposed by other containers within the
same cluster, while also allowing those containers to be run on any networked ma-
chine. Service discovery allows container applications to resolve the current network
location of a service, even as new containers providing the service are started, or
old ones are removed. Load balancing allows the deploying of horizontally scalable
applications, distributing processing workload across multiple service instances.

A design for a generic container platform allows application architectures devel-
oped in the form of application containers on a local machine to be deployed across
heterogneous cloud platform infrastructures. The design of a generic container plat-
form must allow for implementation di�erences across di�erent local development
environments and cloud infrastructure platforms. These di�erences are particularly
apparent in the design of container network architectures, requiring the use of tech-
niques such as Network Address Translation (NAT) and overlay networking.

Using a container platform as an abstraction layer for the deployment of cloud ap-
plications allows the use of cloud infrastructure services as commodity resources,
easing the portability of cloud service deployments across competing cloud infras-
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tructure providers. Applications dependent on speci�c cloud infrastructure services
within a cloud provider's platform lead to cloud vendor lock-in. [10]

2.1 Docker Containers

Containers can be considered as a lightweight alternative to virtual machines, shift-
ing the virtualization layer from low-level machine resources to the virtualization of
operating system resources. Containers extend the typical multi-processing model of
operating systems to further isolate groups of processes by virtualizing their view of
system resources such as the process management interfaces, the TCP/IP network
stack, or the �lesystem namespace. Processes executing within di�erent containers
all share the same operating system kernel, but cannot see resources outside of their
container.

Docker is a container management tool which provides an image format for dis-
tributing self-contained application bundles, and a container runtime for executing
the application images within isolated runtime environments using Linux containers
[11]. Docker's philosophy of Application Containers di�ers from traditional container
management systems in that Docker containers are designed to execute individual
applications, rather than a traditional operating system. The Docker Engine ini-
tializes each container with pre-con�gured runtime environment, allowing the use
of minimal application images as small as a single statically built binary. Docker
application Images are designed to be portable across di�erent machines and infras-
tructures, providing a consistent runtime environment whether run on a developer
machine or on cloud servers.

Docker's images are designed to be self-contained application bundles that can be
distributed and run on any architecture-compatible Linux machine without any
dependencies on the host environment. Images are built from a source-language
Dockerfile �le format which describes the base image to extend, and the execution
steps used to set up the desired environment within the container. Each image also
includes metadata about the runtime environment for the container, including the
application command line to run within the container, additional �lesystem volumes
to mount for storing data, network TCP/UDP ports exposed by the service, and
additional metadata labels. The application runtime interface provided by Docker is
that of a generic UNIX process, meaning environment variables and an executable
binary with arguments (or shell command). This avoids the need to impose any
requirements for the use of a speci�c application-level framework, and maintains
compatibility with existing applications intended to be run as UNIX services.

On Linux, Docker uses the kernel's cgroup [12] and namespace [13] facilities to
create an isolated environment for the container. Linux cgroups are mainly used
to manage resource limits for contained processes, whereas the di�erent namespaces
virtualize various aspects of the runtime environment. The Mount namespace is used
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to present a copy of the Docker image as the root �lesystem for the container, as
well as internal system mounts and optional persistent data volumes. The Network
namespace is used to create and con�gure a separate in-kernel networking context
for the container, including an isolated set of network interfaces, IP routing tables,
net�lter �rewall rules, and TCP/UDP ports.

Docker's Application Containers philosophy is evident in the way that these names-
paces are con�gured and managed. Both the mount and network namespaces are
fully initialized and con�gured by Docker when creating the container, and thus
the application images can be kept free of any infrastructure-speci�c artifacts such
as bootloader or network con�guration. The Docker engine also provides facilities
for the administration, centralized logging and monitoring of application contain-
ers, avoiding the need for running auxilliary components such as traditional SSH or
Syslog daemons within each container.

The behavior of Docker's �lesystem namespaces is also related to various aspects of
application design that arise when developing applications for deployment on cloud
infrastructure [9]. Docker's container runtime environment is designed to give each
container a private and ephemeral copy of the image: any changes to �les in the
Docker image are invisible to other containers, and are discarded when the container
is restarted. Immutable Infrastructure means that rather than modifying the �les
included in the image, the running container is replaced with a new container running
an updated version of the image. Infrastructure as Code means that the updated
images are built from the modi�ed Docker�le, which can be managed as code using a
Version Control System. Applications must therefore enforce a separation between
code and data, by con�guring explicit data volumes for any �les written by the
application. Docker can then provide various infrastructure-speci�c volume drivers
to provide persistence for these data volumes across container restarts.

2.2 Orchestration

When moving from application development to operating a production service, per-
formance and reliability requirements can quickly grow beyond the scale of a single
machine. Where an operating system manages the tasks running on a single ma-
chine, orchestration manages the tasks running across an entire cluster of machines:
a distributed operating system.

The Mesos [14] platform is an example of an orchestration system that serves as a
foundation for the Mesosphere DC/OS distributed operating system. Both Apache
Mesos and Google Borg [4] share a common motivation of e�ciently sharing ma-
chine resources between di�erent kinds of distributed applications. Both systems
replaced speci�c distributed batch processing frameworks (Google's Global Work
Queue and Apache's Hadoop) with more general mechanisms suitable for running
other workloads such as latency-sensitive production services. Whereas Google Borg
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is a monolithic system with a single master and agent process, Apache Mesos decom-
poses the system into a minimal master reponsible for resource allocation, external
schedulers and modular executors. A scheduler is responsible for assigning tasks to
machines, and an executor is responsible for executing tasks in an isolated environ-
ment. Di�erent Mesos frameworks can then provide optimal scheduling strategies
and execution environments for di�erent workloads sharing a cluster of machines.

Clusters consist of large numbers of machines interconnected by a network. Both
Borg [4] and Mesos [14] discuss cluster sizes on the order of tens of thousands of
machines. The orchestration system consists of a central master for the cluster, and
an agent process on each machine. The agents register with the master, which main-
tains a registry of available machines and their resources, in terms of quantities such
as CPUs, memory and disk. To execute tasks, the master provides a management
interface for users to submit job speci�cations, which de�ne the characteristics and
resource requirements of the tasks to execute. The master schedules the job onto a
set of machines matching the job's constraints, and hands the job over to the ma-
chine agents for task execution. The machine agent then executes each task, using
an isolation mechanism such as Linux containers to enforce the resource allocation
for di�erent tasks sharing the same machine. The machine agent must also track the
lifetime of the task, in order to release its resources for further use once it exits. The
master must deal with unexpected changes to jobs, such as task failure or machine
failure.

The speci�c scheduling requirements for an orchestration system vary depending
on the di�erent kinds of workloads being run. Batch processing workloads such as
Hadoop can be optimized using data locality in order to minimize inter-machine
network tra�c. When the input dataset for a job is distributed across disk storage
on the cluster machines, tasks should ideally be run on the same machine that their
slice of the input dataset is stored on. For batch-processing pipelines, the scheduler
must also be aware of task completion in order to start further jobs which depend
on the output of the completed task. For long-running production services, support
for runtime support con�guration changes to existing jobs is highly desireable, such
as rolling upgrades to individual tasks to minimize service downtime.

The task execution environment is fundmental in achieving the dual bene�ts of
performance scalability combined with e�cient resource utilization, which relies on
isolation between mixed-priority tasks sharing machine resources. Critical produc-
tion services that handle network requests are highly latency-sensitive, while batch
processing workloads are generally insensitive to latency and considered best-e�ort.
High-priority production services must be scheduled with su�cient guaranteed re-
sources to handle peak load, which leaves signi�cant amounts of resources under-
utilized during idle periods. With an execution environment capable of providing
su�ciently strict task isolation and scheduling, this otherwise idle capacity can be
utilized by overcomitted resources for lower-priority tasks, which can be preempted
under higher-priority task load spikes [4].
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Both Apache Mesos and Google Borg use a task execution environment based on
Linux containers with their cgroup [12] features to provide the necessary performance
isolation. Using Linux containers with their namespace [13] features also solves
the operational aspects of executing tasks on di�erent machines, as the semantics
provided by application containers align closely with the concept of a workload
unit to be scheduled onto a cluster of machines. Container images provide the
application portability needed to transparently execute arbitrary applications on
arbitrary machines.

2.3 Container Networking

Container platforms using Linux network namespaces allow each container to behave
as a virtual network host with independent network interfaces, IP addresses, routes
and TCP/UDP port numbers. Providing each application container with its own
network identity can be considered a design requirement for a container platform
[4]. This requirement is discussed in more detail in Section 2.4 on Service Discovery,
considering the additional complexity introduced by sharing a common TCP/UDP
port space between di�erent containers.

Figure 1: Minimalist container networking architecture, with the host machine in
blue, and the virtual container network in green.

The minimalist container networking architecture shown in Figure 1 contains the
minimum of networking components used to allow containers to communicate. The
host machine is used to run multiple Docker containers, as discussed previously
in Section 2.1 on Docker Containers. A virtual container network is created, us-
ing a virtual Ethernet bridge (docker0) as described in Section 2.3.1 on Ethernet
Bridging. The container network uses a subnet of Internet Protocol (IP) network
addresses to allow each container having an individual network address to commni-
cate, as described in Section 2.3.2 on IP Routing. Expanding the container network
to communicate with other machines outside the container platform typically uses
Network Address Translation (NAT), as described in Section 2.3.3 on NAT. Ex-
panding the container network to communicate with container networks on other
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machines within the container platform typically uses overlay network tunnels, as
described in Section 2.3.4.

Container platforms designed to scale from a single developer machine to a horizon-
tally scalable cloud deployment must consider many di�erent scenarios, including a
developer's machine roaming between di�erent networks, a variety of cloud infras-
tructures, or a dedicated network designed for container workloads. The network
abstractions exposed to the application containers must remain independent of the
infrastructure used to run the containers. A network implementation must not arbi-
trarily limit the number of containers that can be run on a machine, such as requiring
a DHCP lease on the machine's local network for each container. It should also be
possible to run the same service as a single container on a development machine, or
as large number of horizontally scaled instances scheduled to run on multiple cloud
servers.

2.3.1 Ethernet Bridging

A link-layer Ethernet network consists of Ethernet interfaces connected using either
a point-to-point link or an Ethernet bridge to forward packets between multiple links.
Ethernet networks use a �at address space with 48-bit Ethernet addresses, where
any Ethernet address may be used anywhere within the network. Each Ethernet
interface connected to the network must have a unique Ethernet address, which
are typically pre-assigned when the interface is created. Ethernet networks are
modeled as a shared broadcast domain where each transmitted packet is potentially
received by all connected interfaces, with spurious packets being discarded. Ethernet
packets sent to the broadcast destination address are processed by all interfaces, and
provide a means for a host to discover other connected interfaces. The advantage of
Ethernet networks is in their simplicity and �exibility, as interfaces can be attached,
detached or moved within the network without the need for any recon�guration.
[15, Section 4.3]

Ethernet bridges can minimize �ooding by only forwarding unicast tra�c to the
port closest to the destination, but this requires every bridge on the network to
learn all connected interface Ethernet addresses. Ethernet packets sent to unknown
address or the broadcast address are �ooded to all connected links. The volume of
broadcast tra�c and the requirement for each bridge to have global knowledge of
all connected interfaces limits the ultimate scalability of Ethernet networks. The
standard broadcast �ooding algorithm always requires a loop-free topology, requiring
all tra�c across the network to share the same spanning tree of links. [15, Section 4.7]

Traditional machine-level virtualization uses a physical machine to run a virtual-
ization hypervisor, virtualizing the physical machine's resources for use by multiple
virtual machines. Virtual machines generally use Ethernet as the networking inter-
face between the hypervisor and virtual machine. The hypervisor exposes a virtual
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Ethernet interface to the virtual machine. The virtual machine's operating system
uses the virtual Ethernet interface to send Ethernet packets, which are processed by
the hypervisor. A common con�guration is to use a virtual Ethernet bridge within
the hypervisor to forward tra�c between the machine's physical Ethernet interface
and the internal virtual machine Ethernet links, forming a single Ethernet network
spanning both virtual and external machines.

Linux container networking is generally also implemented using virtual veth Ether-
net interface pairs forming a virtual point-to-point link. A newly created network
namespace only contains the default loopback device, and processes running within
such an empty network namespace will not have any network connectivity. When
creating a new container, a pair of veth interfaces is created, and one of the paired
network interfaces is moved into the container's network namespace. The remaining
veth interface is typically attached to a virtual Ethernet bridge on the host ma-
chine. This con�guration forms a internal virtual Ethernet network within the host,
allowing containers to communicate with other containers and the host machine.
[16]

It is also possible to connect containers to an external Ethernet network. As in
virtual machine networking, the machine's external network interface can be at-
tached to the virtual Ethernet bridge used for container networking. Alternatively,
Linux allows the creation of virtual vlan, macvlan and ipvlan devices for a net-
work interface, which can be moved into the container's network namespace. The
use of macvlan devices can provide signi�cant performance advantages over the use
of veth interface pairs with a virtual bridge [17]. However, this requires that the
external Ethernet network allows the use of multiple virtual Ethernet addresses for
packets forwarded across the external network interface. Using Ethernet networking
techniques such as macvlan for container networking on cloud virtual machines is
not always possible: [16]

Kubernetes is unable to use MACVLAN since most software de�ned net-
works (including Google Compute Engine's) don't support this option.

Using Ethernet bridging for virtual machine networking has the bene�t of allowing
the use of live migration. Live migration allows a running virtual machine to be
moved between di�erent physical machines within the same virtualization cluster
without restarting the virtual machine or changing the virtual machine's network
address. A virtualization cluster supporting live migration requires a shared net-
work infrastructure, allowing the virtual machine's Ethernet network interface to be
reattached to a di�erent location within the cluster network. Containers generally
do not support live migration, and any method of migrating a container from one
machine to another involves restarting the container. Container platforms used to
deploy horizontally scaled applications can use dynamic service discovery and load-
balancing, dynamically routing tra�c for container services to service instances with
dynamic network addresses within the cluster.
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2.3.2 IP Routing

Network-layer IP routing di�ers from Ethernet networks in the use of a hierar-
chial addressing scheme, where hosts are assigned addresses based on their location
within the network. Global IP addresses are allocated in large chunks for use by an
Autonomous System (AS), which may be further subdivided into smaller subnets
routable by routers within the AS. Each AS presents a coherent routing policy to
neighboring AS routers, whereby routers in a di�erent AS do not need to be aware
of the interior network structure. The use of hierarchially assigned network address
pre�xes allows IP networks to scale to the size of the Internet by aggregating the
routing information for large quantities of individual host addresses into a single
�xed-length routing entry. The use of global IP addresses requires each attached
host to be con�gured with a unique IP address allocated and routed by the network
it is connected to. [15, Section 5.6.2]

IP network addresses are allocated and routed based on a bitwise pre�x, which can
be represented using the Classless Inter-Domain Routing (CIDR) address notation.
The CIDR network pre�x 192.0.2.0/24 matches all 32-bit IPv4 addresses with
a 24-bit pre�x matching 192.0.2.0, covering 256 addresses from 192.0.2.0 to
192.0.2.255. [15, Section 5.6.2]

IP network packets between hosts are forwarded over a link-layer protocol such
as Ethernet. Each Ethernet interface on a network host is con�gured using a lo-
cal address and subnet mask, which can be expressed using the CIDR notation
192.0.2.100/24. IP hosts use the Address Resolution Protocol (ARP) to resolve
the Ethernet address of IP hosts connected to the same network [15, Section 5.6.3].
The host will send an ARP query on that interface for any destination address within
192.0.2.0/24, using the Ethernet broadcast destination address and the local IP
source address 192.0.2.1. Hosts connected to an Ethernet network will respond to
queries for their con�gured interface address, returning an ARP reply using unicast
Ethernet addresses. Communication between IP hosts connected to the same Eth-
ernet network is straightforward, assuming that all hosts have a matching interface
route and use source addresses within the network pre�x.

An IP router with multiple interfaces connecting di�erent networks must be capable
of forwarding incoming packets between interfaces. IP routers use a set of con�gured
routing rules to forward packets with a matching IP destination address via the
correct interface and link-level destination. Each routing rule contains the CIDR
pre�x for matching the destination address, the outbound interface and the next-hop
address. The routing table can contain multiple overlapping routes for an address,
and the route with the longest matching pre�x is used. A default route of 0.0.0.0/0
matches all destination addresses that do not have a more speci�c route.

An IP host with a single network interface and IP network address only needs to
process packets associated with its own local address, requiring a minimal routing
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table. A machine being connected to a network uses a mechanism such as Dynamic
Host Con�guration Protocol (DHCP) to con�gure the local interface address and
routes [15, Section 5.5.3]. A DHCP client on the machine uses Ethernet broadcast
messages to request a DHCP lease from a DHCP server attached to the Ethernet
network, which allocates an appropriate IP address within the network for use by
the client. The DHCP lease will contain the IP address used to con�gure the local
interface, a subnet mask used to con�gure the interface route for the local network,
and a default gateway used to con�gure a default route for reaching all other IP
destinations outside of the local network. Di�erent con�guration methods can be
used for virtual machines in cloud environments, but the resulting IP host routing
is generally similar.

The scalability of IP networks relies on the centralized allocation of network ad-
dresses, which comes at the cost of requiring explicit mechanisms for allocating
addresses and con�guring routing rules. Each IP host must be allocated a unique
IP address within the local network, each local network must be allocated a unique
subnet within the AS, and each AS must be allocated a unique network within the
Internet. For two hosts connected to di�erent IP networks to communicate, they
must both use appropriate local address routable by every IP router on the path be-
tween the endpoints. If a host attempts to use an inappropriate local source address,
any reply packets will not be routed back to the host.

Routers use routing control protocols to exchange routing information, originating
local routes and propagating routes advertised by other routers. Routers within
an AS will generally use an interior routing protocol to exchange speci�c routes for
each network within the AS, ensuring optimal routing for packets within a reasonably
sized network. Routers in di�erent ASs will use the Border Gateway Protocol (BGP)
to originate aggregated routes for their interior networks, and propagate router
advertisements from other ASs. [15, Section 5.5.6]

In order for a router to provide IP connectivity to hosts on a local network, a network
subnet must be allocated and advertised for routing. While DHCP can be used to
automatically allocate individual addresses for hosts within an Ethernet network,
using ARP to providing zero-con�guration routing, no similar IPv4 protocol exists
for automatically allocating entire network subnets for use by a router. The limited
availability of IPv4 addresses makes it di�cult to provide any dynamic mechanisms
for address allocation, and the additional complexity of dynamic routing is rarely
needed outside of carrier and dedicated server networks. The IPv4 access networks
at the edge of the Internet are thus typically con�gured to only provide host-level
connectivity, lacking any option for a host to upgrade itself into a network router,
providing IP network connectivity for multiple local virtual machines or containers.
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2.3.3 Network Address Translation

Network Address Translation (NAT) allows an IP router to use normal host con�g-
uration mechanisms such as DHCP for external network con�guration, while also
providing routing for an internal network of hosts. NAT avoids the requirement for
allocating globally routable addresses by introducing a separate internal network ad-
dress space. NAT avoids the requirement for neighboring routers to have any routes
for the internal network addresses by modifying the packets being forwarded, using
the external network host source address when forwarding packets to the external
network. A NAT router can operate using a single external network address, while
allowing the use of arbitrary private RFC1918 [18] address space on the internal
network. [19]

Compared to the stateless nature of IP routing, where every packet contains suf-
�cient header information to be forwarded independently of other packets, NAT
routing is stateful. When an outgoing packet from an internal network host is for-
warded by replacing the internal source address with the external network address,
the incoming reply packet on the external network interface will not contain the
internal network address of the originating host. Sharing the same external net-
work address for all outgoing packets requires the NAT router to use additional
transport-layer header information from incoming packets to determine the internal
network destination address for forwarding. Whereas the NAT router must be able
to determine the internal network host address from the incoming packet's 5-tuple of
network-layer addresses and transport-layer port numbers, the same transport port
number space is also used independently by each internal network host. NAT is
thus closely tied to transport-layer client-server semantics, using SNAT techniques
for clients, and DNAT techniques for servers.

Source NAT (SNAT) is used for internal network clients establishing connections to
external network servers, sharing the NAT router's external network source address.
Each internal network host will independently choose an ephemeral source port for
the outgoing connection, and di�erent internal network hosts may use overlapping
source ports for connections to the same external server and port. The NAT router
will create a connection state recording the internal network host address associated
with each outgoing 5-tuple, also rewriting the source port as necessary to guarantee
unique 5-tuples. The 5-tuple of each incoming packet will be compared with the con-
nection state table, and an incoming packet matching a recorded state entry will be
rewritten to the corresponding internal network host address and port. SNAT rout-
ing is transparent to internal network hosts behaving strictly as clients, where the
NAT router is able to use and record a unique 5-tuple for each outgoing connection.
SNAT does not generally allow internal network hosts to act as servers accepting
connections from unkonwn external clients, as an SNAT router will generally discard
incoming packets for unknown 5-tuples.

Destination NAT (DNAT) can be used to expose internal network servers by al-
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locating speci�c ports to forward incoming connections to an explicitly con�gured
internal network host. DNAT implementations generally also allow rewriting the
internal destination port, allowing the use of multiple distinct external ports to for-
ward connections to multiple internal hosts using the same internal destination port.
The use of DNAT requires a con�guration mechanism for allocating and con�guring
the port-forwarding rules, which is problematic in cases where the NAT router and
the internal host machines are in di�erent administrative domains.

The stateful nature of NAT routing complicates the design of a scalable network
architecture where the capacity or reliability requirements preclude the use of a single
router for a given set of internal hosts. When distributing packets between multiple
routers, the same router must be used for both the initial connection packet and the
reverse path. Only the router having forwarded the initial packet for a connection
will have the state required to translate any further packets associated with the same
connection, including any reply packets. Any fault-tolerance mechanism requires the
NAT connection states to be synchronized between machines, as a restarted NAT
router will lose all connection states. Any connections being redirected to a di�erent
NAT router lacking the connection state will be cut, forcing clients to reconnect.
NAT is best used as close to the edge of the network as possible, limiting the resulting
scalability bottlenecks.

Container networking engines designed to run containers on a single machine can
use NAT to create an internal network for use by containers. Using NAT allows a
host machine to provide internal network connectivity for multiple virtual network
hosts without requiring support for address allocation and routing within the exter-
nal network. The separate internal network address space introduced by NAT gives
the virtualization platform the �exibility to manage the internal network addresses
as required. The concept of separate internal and external connectivity also �ts well
with the concept of internal and externally exposed services. Virtual network hosts
within the same internal network are able to communicate freely using their inter-
nally assigned internal network address. The virtualization platform can provide an
integrated mechanism for the con�guration of DNAT rules for exposing services on
the external network address.

2.3.4 Overlay Networks

NAT allows the use of internal network address space within a single machine with-
out exposing the internal network addresses to the external network. Overlay net-
works allow the use of internal network address space across multiple machines
without exposing the internal network addresses to the external network. Tradi-
tional networking methods require a network infrastructure capable of forwarding
internally addressed packets between machines, using a link-layer network intercon-
nect capable of forwarding packets with arbitrary internal addresses. Cloud IaaS
platforms may provide a separate internal network between virtual machines within
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a datacenter, but large cloud platforms typically use custom Software De�ned Net-
working (SDN) implementations. These SDN implementations may either require
the use of platform-speci�ed network addresses, or require explicit con�guration
using a platform-speci�c method.

Overlay networks form virtual network links between machines using a packet tun-
neling protocol to encapsulate packets for transport across an external network.
When forwarding a packet between internal network addresses on two di�erent ma-
chines, a new packet is constructed using the external network addresses of the ma-
chines, having the internal packet as the payload. The external network infrastruc-
ture forwards the tunnel packet to the destination machine, which de-encapsulates
and forwards the internal packet. The external network only inspects the outer
packet headers containing external machine addresses, and does not inspect the in-
ternal network packet. The tunneling protocol may encrypt the inner packet payload
to protect the internal network from packet inspection or spoo�ng.

Overlay tunnels can be used to forward either link-layer or network-layer packets.
Network-layer tunnel are used to route IP packets between machines, forming an IP
routing domain connecting virtual IP networks on multiple machines. A network-
layer overlay network can allocate a subnet for use by the virtual network hosts on
each machine, allowing the use a single routing rule per machine. Link-layer tun-
nels are used to bridge Ethernet packets between machines, forming larger Ethernet
networks connecting virtual Ethernet hosts on multiple machines. A link-layer over-
lay network can use network addresses within the same IP network across di�erent
machines, requiring the use of a forwarding rule per virtual Ethernet host.

Virtual eXtensible LAN (VXLAN) is a link-layer overlay networking protocol us-
ing UDP to transport Ethernet packets over IP unicast and multicast. VXLAN is
designed for large-scale networking of virtual machines in a physical multi-tenant
infrastructure, using IP multicast to implement broadcast �ooding and learning sim-
ilar to a standard Ethernet bridge. The Linux kernel includes an implementation
of VXLAN, using either IP multicast for dynamic learning, or a userspace control
plane. VXLAN can be used as an alternative to custom tunneling protocols used
in userspace implementations of overlay networking, where the in-kernel VXLAN
switch o�ers a reduced packet forwarding overhead. The multicast-based VXLAN
control plane can be replaced using a userspace control plane for use with network in-
frastructure that does not support multicast. Securing the VXLAN tunnels without
the use of a dedicated infrastructure network providing strict access control requires
the use of IPSec to secure tunneled packets forwarded over untrusted networks.

An overlay network using packet encapsulation must consider the link-layer Maxi-
mum Transmission Unit (MTU), which limits the maximum size of a transmitted
packet including all headers and payload [15, Section 5.5.7]. The packet payload
must �t into the link MTU after prepending any headers, or the payload must be
fragmented into multiple smaller packets. Any protocol tunneling packets across an
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external network using the same default Ethernet MTU as the internal network will
lead to fragmentation, as a su�ciently large internal packet will no longer �t into the
external network MTU after adding the encapsulation headers. Tunneling protocols
generally avoid the use of fragmented packets, preferring the use of a su�ciently
small MTU on the internal network. Determing the correct MTU for the internal
network can be di�cult if the external network MTU is unknown. For example, the
VXLAN protocol does not support the use of fragmented packets, and recommends
increasing the external network MTU instead [20, Section 4.3].

2.3.5 IPv6

The IPv6 protocol is designed to address the limitations of IPv4, with a larger
128-bit address space o�ering new possibilities for address allocation and routing
mechanisms [15, Section 5.6.8]. Where IPv4 networks use mechanisms such as NAT
to decouple internal network addressing and routing from the external network, IPv6
includes support for new dynamic network address allocation and routing mecha-
nisms such as DHCPv6 Pre�x Distribution (PD). A network using DHCPv6 can
allocate both globally routable host addresses and networks, allowing hosts to also
act as routers. IPv6 address allocation guidelines recommend [21] the allocation of
multiple /64 networks for each end site to avoid the requirement for NAT. An IPv6
host could in theory use a dynamic con�guration mechanism such as DHCPv6-PD
to acquire a su�ciently large routable network of IPv6 addresses for use by local
containers.

In practice however, support for the dynamic allocation and routing of multiple /64
networks to end hosts is not universal. Any universal virtual networking architecture
must work in network architectures having only a single IPv6 address per host, or
lacking any IPv6 addressing at all. While container networking platforms can o�er
optional support for IPv6, it is unrealistic to design a universal container network-
ing architecture without relying on the use of IPv4 NAT with a separate internal
network. The use of NAT with a separate internal network also avoids the need for
renumbering the internal network hosts when the host machine roams to a di�erent
network. While the IPv6 design includes mechanisms for dynamic renumbering,
these are rarely usable in practice.

2.4 Service Discovery

Containers running within a container platform will have an internal network address
assigned by the container platform. Container platforms used to deploy network
services must support server applications running within containers, allowing each
application container to expose services in the form of TCP/UDP ports. Container
platforms must allow client applications to connect to services exposed by other
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containers, such as an internal database server. In order for a client application
to connect to such a service, it must know the network address of the container
exposing the service. For services running on dedicated servers, each server may be
con�gured with a static network address, and the clients can simply be con�gured
to connect to this static network address. However, if the service is moved and its
network address changes, every client would need to be recon�gured.

A static con�guration mechanism is no longer su�cient when deploying horizontally
scaled services onto a container platform, as a service may have multiple dynami-
cally allocated network addresses that change over time. Orchestration systems for
the automatic scheduling of cluster resources means that we can no longer deter-
mine where a particular service will be running ahead of time. A horizontally scaled
service will have multiple service instances, with each instance having an individ-
ual network address. The set of network addresses will change over time, as new
instances are added in order to increase capacity, and failed instances are removed
to maintain reliability. Clients will fail to connect to a service if using stale network
addresses, requiring a method for clients to dynamically resolve the network address
of a service as it changes over time.

A container platform used to deploy service containers must include a service dis-
covery mechanism, registering deployed service instances and providing a protocol
for clients to resolve the network addresses of a service. Each service is deployed as
a set of application containers, using network addresses assigned by the container
platform. A service registration mechanism registers each service instance into a
shared service discovery database, updating the set of network addresses for a ser-
vice as instances are started and stopped. In the case of machine failures within the
cluster, any associated service instances must be cleared from the service discovery
database.

The Domain Name System (DNS) is the standard mechanim used by client ap-
plications to resolve the network address for a service [15, Section 7.1]. A client
application connecting to a service is con�gured with the network address of a DNS
resolver, the DNS name of the service, and optionally the port number the service
is con�gured to listen on. Standard operating system libraries provide a method for
the client application to resolve DNS names into network addresses, sending DNS
A/AAAA queries to the con�gured DNS resolver, receiving DNS responses containing
network addresses. The client application establishes a connection to the resolved
network address, using either a predetermined or explicitly con�gured port number.
A container platform can support the use of DNS for service discovery by con�guring
the containers to use a dynamic DNS resolver provided by the container platform,
using the shared service discovery database to respond to DNS queries for registered
services.

Supporting standard client applications using DNS for service discovery requires
the container platform to provide each service container with a separate network
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address. The standard TCP client-server model involves the use of well-known port
numbers for services, where a server providing a service is expected to listen on a
predetermined port number. Without the use of container networking namespaces,
all of the services running on a machine share the set of available TCP/UDP port
numbers, constraining the set of services that can be run on a machine to those
con�gured to listen on distinct ports. Container platforms such as Borg [4] lack-
ing support for network namespaces ultimately require the orchestration system to
dynamically allocate ports for use by containers. The use of dynamically allocated
ports for services requires client applications to use a service discovery mechanisms
capable of dynamically resolving both a service's network address and TCP/UDP
port number. While DNS supports the use of SRV records to resolve a service
name to a set of network addresses and port numbers, standard DNS resolver li-
braries lack support for SRV queries. Using a container platform with a container
networking model lacking support for per-container addresses thus requires the use
of application-speci�c service discovery mechanisms for dynamically resolving port
numbers. The additional complexity of a container networking model providing
per-container network addresses is preferrable to the per-application complexity of
alternative service discovery mechanisms [16].

While the use of DNS for service discovery is widely supported by applications, it
is dependent on the client application's use of DNS queries to respond to changes
in services. DNS uses caching resolvers to optimize scalability and query latency,
caching records using a con�gurable Time-to-Live (TTL) duration to trade perfor-
mance bene�ts of caching against the propagation time of updates. DNS caching
is less of a problem within a container platform, which may use a local dynamic
DNS resolver with low TTLs to quickly propagate updates. If a client application is
disconnected from a service, it may reconnect to a di�erent instance of the service
by performing a new DNS query. Using DNS for service discovery is problematic in
the case of applications that only perform a DNS lookup for the con�gured service
name once at startup, and then continue to use the same resolved address through-
out their entire lifetime. An example of this kind of application is the collectd

agent used for system statistics monitoring, which uses a connectionless UDP proto-
col, and is unable to notice when a server goes down. Using DNS service discovery
for these kinds of applications requires restarting the client processes if the service
network address changes. Some applications may not support the use of DNS names,
requiring an explicitly con�gured IP network address.

Implementing service discovery for applications unable to use DNS requires inte-
grating directly with the service discovery database. Service discovery databases
generally provide a method to watch for changes to services, following the service
state in realtime. One approach for implementing service discovery for applications
requiring static con�guration is the use of an external tool to manage the application
con�guration. Such a con�guration tool can be used to query the service discov-
ery database, generating an application con�guration, reloading the con�guration
if the service changes. For more advanced needs, the application can also integrate
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directly with the service discovery database.

Service discovery only works within a given network domain, where the client is
able to connect to the network addresses used by the service. Container network
architectures using NAT with a separate internal address space can only use service
discovery methods within the internal network. Publishing services to the external
network requires the use of DNAT, where connections to a speci�c port on the ma-
chine's external network address are forwarded to an internal service. Such virtual
network addresses can also be used as an alternative to service discovery, allowing
clients to be con�gured to connect to the virtual network address, using packet
forwarding to redirect each connection to a suitable service instance. The virtual
network addresses can be statically allocated by the container platform, implement-
ing the dynamic service discovery mechanisms within the network platform. The
use of statically allocated network addresses with dynamic forwarding allows the use
of static client con�guration mechanisms.

Container platforms using DNAT to publish services on speci�c network ports en-
counter similar issues related to port allocation as container platforms that do not
use network namespaces. Only one service instance using a well-known port num-
ber can be published per machine using DNAT. Dynamically allocating DNAT ports
for published services again requires application speci�c service discovery support
for dynamic port numbers. Using virtual network addresses for horizontally scaled
services requires a load balancer to forward connections to multiple service instances.

2.5 Load Balancing

Load balancing is a critical component of a container platform used to deploy hori-
zontally scaled services with multiple independent service instances. Load balancing
is used to scale the performance of a service by distributing incoming tra�c for a
service across each instance of the service. Load balancing methods can be used to
scale the reliability of a service by rerouting tra�c away from any failed instances.

Cloud services use a combination of service discovery and load balancing methods
to route tra�c for services. Any Internet service intended for access by client appli-
cations such as web browsers requires the use of DNS to resolve the service's domain
name to a globally routable IP address. This IP address can be provided by a load
balancer situated at the edge of the cloud platform, connected to both external and
internal networks. The load balancer then associates the incoming tra�c with a ser-
vice, selects a server within the internal network, and forwards the incoming tra�c
to the selected instance.

Load balancing is closely related to service discovery. Service discovery methods
supporting multiple network addresses for a service can be used for client-side load
balancing, with each client independently selecting which service instance to use.
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Alternatively, a load balancer can be used to provide a virtual network address as-
sociated with a service, forwarding the incoming tra�c to a service instance. The use
of relatively static virtual network addresses for services allows the use of straightfor-
ward service discovery mechanisms such as DNS, or even static con�guration. The
load balancer can be used to implement a more complex service discovery mech-
anism to dynamically forward tra�c to horizontally scaled service instances. The
con�guration required for a load balancer is similar to the service instance records
used for service discovery. A container platform can provide automatic load bal-
ancing for services using a dynamic load balancer control plane con�gured via the
shared service discovery database.

The ultimate performance and reliability of a horizontally scaled service is deter-
mined by the performance and reliability of the load balancer used to distribute load
across the service instances. A scalable service also requires a scalable load balancer.
The load balancer data plane can be scaled by combining di�erent load balancing
methods across multiple layers of the networking stack:

• DNS load balancing to distribute connections for a service across multiple
network addresses

• L3 load balancing to distribute network-layer packets for a network address
across multiple network hosts (BGP Anycast, Equal-Cost Multi-Path routing)

• L4 load balancing to distribute transport-layer connections for a TCP/UDP
service across multiple servers

• L7 load balancing to distribute application-layer requests for di�erent application-
level resources across multiple application servers (HTTP)

2.5.1 Network-layer load balancing

A L3 load balancer uses the network-layer addresses within the packet header for
forwarding decisions. Standard network routers can be used for large-scale load-
balancing, using standard network-layer routing methods to distribute tra�c for a
network address across multiple paths to multiple hosts. Routers support the use
of routing control protocol for dynamically updated routing rules, and the stateless
nature of IP network routing does not require routers to maintain any per-packet
state across any topology changes. A stateless L3 load balancer data plane can be
e�ciently implemented in hardware for greater performance. However, connection-
oriented transport protocols such as TCP require connection state at the end hosts,
and rerouting TCP packets for an existing connection to a di�erent end host will
break any a�ected connections.

Network routing between AS border routers within the Internet uses the Border
Gateway Protocol (BGP) for dynamic routing control [15, Section 5.6.5]. BGP
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anycast is a L3 load balancing method, using BGP to advertise the same network
address from multiple network locations. Each router within the Internet will use the
shortest avilable path for forwarding, causing tra�c from clients to be routed to the
topologically closest location of the anycast address. If the BGP route for an anycast
address is withdrawn from one location, the a�ected routers will continue forwarding
packets using the next-best route for the anycast address, advertised by a di�erent
location. BGP anycast is primarily used for geographic load balancing and failover
of stateless protocols such as DNS. Using anycast addresses for connection-oriented
protocols such as TCP is suspectible to the disruption of connections caused by
changes in the network topology, which may cause packets for existing connections
to be rerouted to a di�erent end host in a di�erent service location.

Equal-Cost Multi-Path (ECMP) routing provides a highly scalable method for L3
load balancing, allowing incoming packets for a single Virtual IP (VIP) network
address to be distributed across multiple paths. A network router having multiple
next hops for a route may use Equal-Cost Multi-Path (ECMP) routing to load-
balance packets across each path [22]. ECMP routers minimize the disruption of
network �ows by selecting the forwarding path for a packet using a hash of the
packet's network addresses. Stateless ECMP forwarding using hashing can be im-
plemented e�ciently in hardware. However, dynamic routing updates that add or
remove ECMP forwarding paths will change the output of the hash function used
to select the forwarding path, causing packets to be rerouted via di�erent paths.

Using ECMP routing with stateless hashing for L3 load balancing also introduces
multiple corner cases for special kinds of tra�c. Using transport-layer 5-tuple hashes
for ECMP load balancing causes issues with fragmented IP packets, where the �rst
and following fragments of a packet may be forwarded via di�erent paths, compli-
cating any e�orts at fragment reassembly [7, Section 4.3]. Incoming ICMP messages
returned by routers forwarding outgoing packets from a VIP using L3 load balancing
may not be routed back to the same host having sent the outgoing packet, causing
issues with path-MTU discovery, particularly for IPv6 connections [23].

2.5.2 Network-level load balancing of Transport-layer connections

Stateless network-layer load balancing methods alone cannot be used for reliable load
balancing of stateful transport-layer connections across multiple end hosts. Changes
in the network routing topology will cause packets for established connections to be
rerouted to di�erent end hosts, leading to broken connections. A network-level L4
load balancer uses both the network addresses and transport-layer port numbers
within the packet header for load balancing, forwarding packets for existing con-
nections to the same server host. A L4 load balancer is used to forward tra�c for
speci�c TCP/UDP ports on a Virtual IP (VIP) address to a set of backend servers.
A L4 load balancer can be used to forward tra�c for di�erent TCP/UDP ports
on the same VIP to di�erent backend servers, allowing the use of a single external
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network address for multiple di�erent services using di�erent port numbers.

A network-level L4 load balancer associates incoming packets with a service con�g-
ured to accept tra�c for the packet's destination network address and TCP/UDP
port. For each incoming packet, the L4 load balancer must determine which back-
end server to forwards the incoming packet to. A L4 load balancer must ensure
that every packet for a connection is forwarded to the same backend server. Given
a relatively static con�guration of backend servers, consistent hashing algorithms
can be used to deterministically select a backend server for each incoming packet
[7, Section 3]. Connection state tracking is required for reliable backend selection
across arbitrary con�guration changes. The �nite size of any connection tracking
table implementation requires the use of connection state tracking and timeouts to
evict connection state table entries. Minimizing the impact of load balancer fail-
ures within a clustered L4 load balancer performing stateful connection tracking
for dynamically con�gured backends requires the use of explicit connection state
synchronization, allowing the migration of connections across load balancers.

There are two main approaches to the forwarding the incoming packets from a L4
load balancer to the backend server. The two approaches di�er in whether or not the
network addresses within the forwarded packets are modi�ed, either requiring the
use of symmetric routing or allowing the use of asymmetric routing for any reply
packets from the backend server to the client. While providing symmetric rout-
ing for backends behind a single load balancer is straightforward, the requirement
for a symmetric return path complicates the design of a scalable L4 load balancer
distributing incoming tra�c across multiple load balancers.

L4 load balancers using DNAT for forwarding of modi�ed incoming packets replace
the destination address of each forwarded packet with the network address of the
backend server. This allows the use of unmodi�ed network routing using the locally
con�gured network address of the backend server, without requiring the backend
server to be con�gured with the destination VIP address. However, the stateful
nature of NAT requires that any reply packets from the backend server must be
processed by the same load balancer having the NAT state formed by the initial
incoming packet. Using NAT for load balancing requires a method to provide a
symmetric return path from the backend servers via the load balancers. Satisfying
the requirement for symmetric routing is trivial in the case of a single load balancer
forwarding tra�c for backend servers having the single load balancer as their default
gateway. Using a cluster of multiple L4 load balancers for load balancing incoming
tra�c requires additional mechanisms to provide a symmetric return path.

L4 load balancers using Direct Server Return (DSR) forward the unmodi�ed incom-
ing packets to the backend server, preserving the original client source address and
destination VIP address. Each backend server having the original source and desti-
nation addresses will be able to construct a valid reply packet, allowing the use of an
asymmetric return path. The use of asymmetric routing for load balancing means
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that packets for the destination VIP will be routed to the load balancer machines,
whereas packets with the source VIP will be sent by the backend servers. Using
DSR, each backend server may independently route any reply packets using any
valid network path, allowing the forwarding of reply packets to be o�oaded from
the load balancers. However, using DSR for load balancing requires con�guration
of each backend server to process tra�c for each destination VIP address locally.
If the load balancer and backend server are connected to the same Ethernet net-
work, the load balancer can use ARP to forward the packet using the destination
Ethernet address of the backend server. If the load balancer and backend server
are on di�erent networks, a packet tunneling protocol may be used to transport the
unmodi�ed internal packet within an external packet using the locally con�gured
network addresses of the load balancer and backend server.

There are pros and cons to both approaches of forwarding incoming load balanced
packets. Using DSR simpli�es the design of a scalable L4 load balancer, but assumes
a network infrastructure allowing the use of asymmetric routing, and requires spe-
cial con�guration of the backend servers. Using NAT allows the use of unmodi�ed
backend servers, and provides additional �exibility by allowing the use of port trans-
lation to rewrite packets for backend servers listening on a di�erent TCP/UDP port
than the client is using to connect. Both methods require additional consideration
for internally load balanced services, where the clients, load balancers and servers
reside on the same network. Using NAT for a connection from a client within an
internal network to a server having a direct route for the client's internal source
address requires methods for addressing such NAT hairpinning issues. Using DSR
to accept incoming connections for a VIP causes issues if the same VIP is shared
between multiple services, and one backend server attempts to connect to a service
using the same destination VIP address that is also con�gured locally.

One design for a scalable network-level load balancer using NAT for forwarding
is the use of Full NAT. A cluster of load balancers may each be con�gured with
an unique local internal network address, used for SNAT of load balanced packets
forwarded using DNAT. The use of SNAT with the load balancer's local source
address ensures a symmetric return path for any reply packets from the backend
server. However, the use of Full NAT leads to the complete loss of the original client
source network address information by the backend server. Using Full NAT for load
balancing also complicates the design of a reliable load balancer allowing failover of
connections between load balancers, requiring the new load balancer to use the same
source address for SNAT as the initial load balancer. A network-level load balancer
using Full NAT for connection forwarding behaves similarly to an application-level
load balancer performing transport-level proxying, wherein the failure of any load
balancer within a cluster will disrupt some subset of active connections.
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2.5.3 Application-level load balancing of Transport-layer connection

An application-level load balancer is implemented using the standard TCP/UDP
socket programming API provided by an operating system [15, Section 6.1.3]. An
application-level load balancer can be used for load balancing of transport-layer con-
nections by accepting an incoming connection from a client to a service, establishing
a new outgoing connection to the backend server, and then proxying tra�c between
the pair of connections.

A transport-level load balancer is well behaved across a wider variety of network
architectures than a network-level load balancer requiring consideration of routing
paths for the forward and return paths. Each packet forwarded by a transport-level
proxy will use a network address associated with the transport-level load balancer,
ensuring the use of symmetric routing paths using normal network host addresses.
A transport-level proxy may be used to forward tra�c between clients and servers
in di�erent networks that do not provide any direct routing between the client
and server. A transport-level proxy may also be used to forward connections to
local addresses con�gured on the client, including the 127.0.0.1 host-local address,
which poses a challenge for network-level load balancers, particularly those using
DSR. A transport-level load balancer is thus more �exible than a network-level
proxy, allowing the deployment of load balancers forwarding connections within and
between arbitrary external and internal networks.

The disadvantage of a transport-level load balancer over a network-level load bal-
ancer is that each connection is tied to the local network addresses used by the
transport-level proxy. The server application on the backend server will only see the
local network address of the proxy, and not the source network address of the client,
compared to a connection forwarded by a network-level load balancer. The use of
transport-level connections terminated by the proxy also ties each connection state
to the load balancer, making the implementation of connection failover between load
balancers impractical. Using a L3 load balancing method such as ECMP to scale a
transport-level load balancer will inenvitable lead to broken connections on topology
changes, as the stateless hashing of transport-level �ows changes and connections
are rerouted to di�erent L4 load balancers.

2.5.4 Application-layer load balancing

An application-level load balancer implemented using the TCP/IP stack provided
by the operating system may also support application-layer load balancing in addi-
tion to generic transport-layer load balancing. Application-level load balancers will
use similar transport-layer forwarding methods for proxying incoming application-
layer protocol requests to application-layer backend servers. Application-level load
balancers for application-layer protocols such as HTTP can use the application-
layer protocol semantics to support more �exibility load balancing policies than
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a transport-layer proxy. The additional application-layer protocol semantics may
also reduce the impact of transport-layer load balancing issues by simplifying the
implementation of workarounds such as automatically reconnecting clients.

Many cloud services use the application-layer HyperText Transfer Protocol (HTTP),
allowing the use of generic HTTP load balancer implementations for di�erent HTTP
services. An application-layer load balancer supporting the load balancing of HTTP
requests across HTTP server backends provides more semantics for use in load bal-
ancing than a generic transport-layer load balancer. The stateles design of HTTP
is well suited for the use of HTTP reverse proxies as load balancers, allowing inde-
pendent forwarding of each HTTP request. The de�ned semantics for idempotent
HTTP methods such as GET allows the transparent implementation of additional
HTTP reverse-proxy functionality such as request retry and response caching. Each
HTTP/1.1 request will also include a Host header specifying the original DNS name
used by by the client application to resolve the service, allowing the load balancing
of tra�c for multiple di�erent HTTP services sharing the same VIP. [24]

2.5.5 DNS

DNS supports multiple address records for a DNS name, allowing clients resolving
DNS names with multiple address records to choose which server to connect to. As-
suming di�erent clients choose di�erent address records, the load will be distributed
across each server returned by the DNS server. DNS can be used for both internal
load balancing of services within a cluster, as well as external load balancing of
services across the Internet. Any standard DNS server implementation can be used
to con�gure multiple static address records for a DNS name.

A shared service discovery database can be used to implement a dynamic DNS server,
such as the SkyDNS server studied in Section 3.2.2. The dynamic DNS server can be
used to provide clients with the network addresses of all service instances associated
with the queried service name. SkyDNS allows the use of hierarchially de�ned sub-
domains of the service name to select a subset of the services to return, allowing
clients to be explicitly con�gured to use a named subset of services. A GeoDNS
server uses the origin of the DNS query to automatically select a subset of address
records to return. GeoDNS can be used to provide di�erent DNS resolvers with
di�erent network addresses for a single DNS service.

GeoDNS can be used to distribute clients across multiple geographically distributed
service locations by approximating the geographic source of the DNS query, and
returning the network address of the nearest service location. Implementing geo-
graphic load balancing using DNS requires a method for mapping the DNS resolver
sending the query to the expected location and number of clients using that DNS
resolver. Any DNS response returned to a DNS resolver will be used by any client
con�gured to use that DNS resolver. The incoming DNS query will not contain the
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network address of the client, unless the DNS resolver supports the use of the DNS
client-subnet extension. The use of improved client-mapping methods can have
a signi�cant positive e�ect on the network performance of a large scale CDN with
a large number of geographically distributed locations [25].
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3 A Study of Docker Container Platform Compo-

nents

This Chapter studies various implementations of the container networking, service
discovery and load balancing concepts introduced in the previous chapter. This
study focuses on the Docker container platform and related components used in
the implementation of the clusterf load balancer. Section 3.4 also discusses load
balancer implementations designed for speci�c cloud infrastructure platforms.

3.1 Docker Networking

Docker uses network namespaces to assign each container an individual IP network
address. This network isolation between containers serves to avoid con�icts be-
tween di�erent applications providing network services using the same well-known
TCP/UDP ports [16]. Docker supports a number of mechanisms for networking
these containers, in the form of built-in network drivers and external network plu-
gins. Docker is designed to be �exible, allowing applications to be run on a single
machine during development, or deployed on a container platform using a cluster
of multiple machines. While initial releases of Docker focused on single-machine
networking to support application development, Docker has gradually been intro-
ducing new features supporting the deployment of horizontally scaled services across
clusters of servers.

Designing a container networking architecture usable in such a wide range of net-
working environments presents interesting challenges. Any networked machine must
be able to provide network connectivity for any number of containers acting as vir-
tual network hosts without depending on any explicit support from the external
network. Container networking architectures are generally designed around the use
of NAT, allowing the use of a separate internal network to provide the necessary
�exibility. Containers can use the internal network for communication between con-
tainers, using networking mechanisms such as NAT to enable communication with
the external network. A scalable container network architecture must also allow con-
tainers to be distributed across multiple machines, using di�erent forms of internal
and external networking.

Docker's network model allows each container to be run using a separate network
namespace, assigning each container an individual network address. Docker's default
con�guration creates a new network namespace for each container, connecting each
container running on a machine to a default network. Docker also allows containers
to be run using the native network namespace of the host machine, or sharing one
network namespace between multiple containers. Docker allows containers to expose
ports, allowing other containers within the same network to connect to the exposed
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services. [16]

Docker 1.7 2 introduced a new networking model, allowing the use of multiple sepa-
rated networks. Docker networks can be created using a variety of network drivers or
external plugins, allowing the use of di�erent mechanisms for container networking.
Each container can be attached to one or more networks, corresponding to network
interfaces within the container's network namespace. Docker containers attached
to a network are con�gured using the same IP subnet, allowing containers within
a network to communicate directly using IP addresses within the Docker network's
subnet. Multiple networks can be used to limit access to the internal services ex-
posed by a container, limiting connections to those containers attached to the same
network. Docker does not route tra�c between di�erent Docker networks, requir-
ing the use of proxy applications to forward application tra�c between networks.
Multiple Docker networks are typically used to split an application stack into mul-
tiple tiers, limiting access to a database service to those containers attached to the
dedicated database access network.

Docker 1.9 3 introduced support for multi-host overlay networks. Docker overlay
networks can be used to extend the Docker network model from containers running
on a single machine to containers running on multiple machines. Docker overlay
networks use the VXLAN protocol for Ethernet tunneling, additionally supporting
the use of IPSec for encryption.

Docker includes service discovery mechanisms allowing containers to communicate in
an internal network environment using dynamically allocated addresses. Containers
can be explicitly linked together, allowing the linking container to connect to services
exposed by the linked container. Assuming a container named mysql-test providing
a service on TCP port 3306, a second container can be con�gured using the �link
db:mysql-test option. The application running within the linking container can
be con�gured to connect to the MySQL service using either the db DNS host name,
or environment varibles of the form DB_PORT=tcp://172.17.0.5:3306 provided by
Docker. Internally, Docker container linking is implemented using a dynamically
generated /etc/hosts �le managed by the Docker Engine, which the libc resolver
uses for DNS resolution.

Docker 1.10 4 introduced an embedded DNS server for containers attached to user-
de�ned networks. Containers attached to a user-de�ned network can use DNS to
resolve the name or network alias of any container connected to the same user-de�ned
network without the requirement for explicit linking. Containers using the default
network must continue to use the legacy explicit linking mechanism, with Docker
recommending the use of the dynamically updated /etc/hosts DNS names for
application con�guration. Using environment variables for application con�guration

2https://blog.docker.com/2015/06/announcing-docker-1-7
3https://blog.docker.com/2015/11/docker-1-9
4https://blog.docker.com/2016/02/docker-1-10/

https://blog.docker.com/2015/06/announcing-docker-1-7
https://blog.docker.com/2015/11/docker-1-9
https://blog.docker.com/2016/02/docker-1-10/
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does not allow the con�guration to be updated if the linked container is moved to a
di�erent network address.

Docker allows publishing TCP/UDP ports exposed by containers, using DNAT to
provide external access to the service using the machine's external network address.
Ports can be published using a dynamic port allocated by Docker, or using a con-
�gurable static port. However, only one container may publish a service on a given
port. Publishing multiple service instances on a given port requires the use of a load
balancer.

Docker 1.12 5 introduced support for Docker Services, allowing multiple replicated
task containers to publish the same TCP/UDP port. Docker 1.12 uses Linux IPVS
to load balance incoming connections for a service across the task replica containers.

3.1.1 Single-Host container networking

Docker is designed for ease of application development, and Docker's default network
con�guration for containers must be compatible with any network environment. Any
normal network host should be able to run Docker containers without requiring the
local network to be redesigned for container networking support. At the same time,
Docker must be able to provide each container with an individual network address.
A network host running Docker containers is no longer a simple network host, but a
network router that must provide address allocation and routing for virtual network
hosts. However, typical networks using mechanisms such as DHCP for con�guration
only provide each machine with a single network address. Support for mechanisms
such as DHCPv6 Pre�x Distribution that provide automatic allocation of routable
network address space in IPv6 networks is not universal.

One approach would be to connect each container to the local network using Eth-
ernet bridging, as commonly used for servers running virtual machines. This would
allow the use of existing networking mechanisms such as DHCP for container net-
working, but simultaneously also limits the �exibility of container networking. Most
networks only have a limited number of available addresses, which would limit the
�exibility of container architectures by imposing an arbitrary and unpredictable
limit on the number of containers that can be used. Cloud servers use di�erent
network con�guration mechanisms, and generally only provide each machine with a
single network address.

Figure 2 demonstrates the default Docker single-host networking architecture in a
typical small home/o�ce (SOHO) network environment. Host A and B are attached
to a local network, using a mechanism such as DHCP to con�gure an interface
address within the local network, using the router as the default gateway. Host
A is used to develop an application using Docker containers, and is running two

5https://blog.docker.com/2016/06/docker-1-12-built-in-orchestration/

https://blog.docker.com/2016/06/docker-1-12-built-in-orchestration/
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Docker containers. Each Docker container is a virtual network host within the host
machine, attached to the default Docker network within host A.

Figure 2: Docker single-host container networking architecture

Docker creates a virtual network bridge (docker0), and automatically chooses an
internal network of private RFC1918 addresses (172.17.42.0/24). The virtual
bridge interface on the host machine (docker0) is con�gured using an interface
address within the Docker network (172.17.42.1/24). For each Docker container,
the Docker engine creates a new network namespace, and a pair of virtual Ethernet
(veth) interfaces. One of the veth interfaces is moved into the container's network
namespace, and the other veth interface is attached to the docker0 bridge. Docker
con�gures the veth interface within the container using an interface address allo-
cated from within Docker's internal address space (172.17.42.X/24). The container
is con�gured to use the host machine's Docker network address (172.17.42.1/24)
as the default gateway. This forms a virtual Ethernet network spanning the host
machine and each container, allowing containers to communicate using the internal
Docker network. [16]

The resulting routing con�guration for each host within the example network is
shown in table 1. The network contains two separate Ethernet networks for the
host machines (192.168.0.0/24) and host A's Docker containers (172.17.42.0/24).
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Hosts within each such network are able to communicate by using ARP to resolve
the link-layer Ethernet addresses of neighboring hosts within each such network.
Docker con�gures the operating system networking stack on host A to act as a
router, forwarding packets between the two networks.

Table 1: Detailed routing con�guration used by the example network in Figure 2
Host Pre�x Interface Next-Hop

Gateway

0.0.0.0/0 enp1s0 Router B
192.0.2.17/30 enp1s0

192.168.0.0/24 enp2s0

192.168.0.10 enp2s0 Host A
192.168.0.11 enp2s0 Host B

Host B
0.0.0.0/0 eno1 Gateway
192.168.0.0/24 eno1

192.168.0.10 eno1 Host A

Host A

0.0.0.0/0 eno1 Gateway
192.168.0.0/24 eno1

192.168.0.11 eno1 Host B
172.17.42.0/24 docker0

172.17.42.2 docker0 Container 1
172.17.42.3 docker0 Container 2

Container 1
0.0.0.0/0 eth0 Host A
172.17.42.0/24 eth0

172.17.42.3 eth0 Container 2

Container 2
0.0.0.0/0 eth0 Host A
172.17.42.0/24 eth0

172.17.42.2 eth0 Container 1

The containers are able to connect to services exposed by other containers on the
same host machine using their internal Docker network addresses. Each container
has a local interface route for the 172.17.42.0/24 network, and uses a source
address within the same network for outgoing connections. The containers will
also use their 172.17.42.X source address for any outgoing connections using their
default route, with the host machine acting as a router to forward the packets onto
the local network. However, the containers cannot use their internal Docker network
addresses to communicate with the other hosts within the local network. While the
host machine can forward the packet with a 172.17.42.X source and 192.168.0.11

destination address to the host B machine, the receiving machine will be unable to
route any return packet back to the Docker container. The host B machine does
not have a route for 172.17.42.0/24, and it will forward the reply packet to the
Gateway. The Gateway router does not have any route for the Docker network
either, and the return packet will leak outside of the local network until hitting a
router con�gured to drop packets for unknown destinations. If the same private
network used by the Docker containers is used in a di�erent location within the
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network, the return packets may even be forwarded to a completely di�erent host
within the network.

Using locally assigned internal network addresses requires the host machine to per-
form NAT when forwarding packets between the internal Docker network and the
local network. Docker con�gures the host machine as a NAT router by default, us-
ing Linux iptables �rewall rules. SNAT is used for outgoing connections from the
internal Docker network, rewriting the source address to the local network address
of the host machine. The requirement for symmetric routing when using NAT is
trivially satis�ed, as the host machine acts as the default gateway for every Docker
container. The reliability issues related to the stateful nature of NAT are also irrel-
evant, as any failure of the machine will also lead to the failure of any containers
using the host machine for NAT routing.

Docker allows the use of DNAT for publishing ports exposed by server applica-
tions within containers, rewriting the destination address of incoming tra�c for a
published port to the internal Docker network address of the container. Publish-
ing Docker container ports is commonly used in single-host networking, but quickly
becomes limiting when running multiple instances of a service within a machine,
requiring each such instance to be published using a di�erent external port. The
astute reader may also note the use of private network address space in the example
SOHO network shown in Figure 2. The use of NAT within the external network
makes it practically impossible for a container platform to publish container services
to the Internet without explicit con�guration of the external network, which may
also be considered a feature by some.

3.1.2 Multi-host container networking

A scalable container platform must be able to run containers on multiple machines
without changing the network model seen by the applications. The default Docker
networking model for single-host container networking uses a separate internal con-
tainer network with NAT. Multi-host container networking architectures extend the
internal container network to span multiple hosts. Containers running on any ma-
chine within the cluster can be attached to the same network, communicating using
the same service discovery mechanisms as used within a single machine. Inter-
connecting the container networks on multiple machines either requires a network
infrastructure capable of forwarding tra�c using the internal network addresses, or
the use of overlay network tunnels.
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Figure 3: Docker multi-host container networking using a network-layer architecture

Multi-host container networking can be implemented using either network-layer or
link-layer architectures. In the network-layer architecture shown in Figure 3, each
machine is assigned a unique subnet for use by local containers. The container
network infrastructure uses network routing to forward packets for any network
address within a container subnet via the container's host machine. In a link-layer
architecture, each container Ethernet network can span multiple host machines,
with containers running on di�erent machines using the same network subnet. The
container network infrastructure uses Ethernet switching to forward packets for each
container interface via the container's host machine. Whereas routed network-layer
architectures only need a single routing table entry per subnet, bridged link-layer
architectures require separate forwarding entries for each container.

The Kubernetes container platform 6 uses a network-layer architecture for multi-host
container networking. A Kubernetes Pod is a group of tightly-coupled containers
that can be scheduled to run on any machine within a cluster. Kubernetes extends
the default Docker networking architecture to give each Pod a unique container
network address within the cluster. The default Docker network within each Kuber-
netes node is con�gured to use a unique internal subnet within the cluster's network

6http://kubernetes.io/

http://kubernetes.io/
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address space. Each container pod is con�gured to use a network address within the
node subnet, routing all other tra�c via the Kubernetes node. Each Kubernetes
node is con�gured to route container tra�c between node subnets. For Kubernetes
clusters running in Google Compute Engine, the underlying Andromeda Software
De�ned Network (SDN) is con�gured to forward network tra�c for each container
subnet to the associated node. Flannel can be used to provide a universal network
infrastructure for Kubernetes clusters, using overlay networking to tunnel internal
container tra�c between machines. [16]

The Docker Swarm overlay network driver uses an alternative link-layer architecture
for multi-host container networking [26]. The Docker overlay network forms a single
Ethernet network spanning all machines within the cluster. Docker containers on
multiple machines can be attached to the same overlay network, using the same
IP subnet across the cluster. The overlay networking is implemented within the
host machine's virtual Ethernet bridge, allowing containers attached to a clustered
overlay network to behave identically to containers attached to a local bridge net-
work. Docker supports the use of multiple bridge and overlay networks, allowing
containers to be segregated into di�erent networks. Docker's overlay networks pro-
vide direct connectivity between containers attached to the same overlay network
within a cluster.

A container platform must also allow containers to connect to external services. The
typical multi-host container networking model assumes that each machine within a
cluster is also connected to an external network using a separate external network
address. Docker containers attached to an overlay network are also attached to a
special docker_gwbridge network, using the host machine as the default route for
outgoing connections outside of the overlay network. The host machine uses SNAT
to forward the packet using the locally con�gured external network address. The use
of SNAT ensures a symmetric return path, whereby any reply packets will be routed
back to the same host machine having the NAT connection state. This property
of NAT allows each host machine within a cluster to forward outgoing connections
from local containers, assuming that each machine uses a di�erent external network
addresses.

A container platform must also allow containers running on di�erent nodes to publish
services. Publishing container services within a cluster requires the host machines
to use DNAT for forwarding incoming connections from the external network. The
symmetric routing requirement for NAT requires any container accepting incoming
external tra�c to have a default route via the same host machine providing the
DNAT forwarding. Publishing ports for a Docker container connected to a Docker
overlay network also uses the docker_gwbridge network for DNAT. Publishing a
port for dynamically scheduled Docker containers requires any incoming connections
to use the external network of the speci�c machine used to run the Docker container.
Providing a static virtual network address for ports published by horizontally scaled
Docker containers requires the use of a load balancer, such as the service routing
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mesh included in Docker 1.12 7.

3.2 Service Discovery

This Section studies the implementation of various service discovery components
designed for use in Docker container platforms, focusing on the components used in
the implementation and evaluation of the clusterf load balancer in Chapters 4 and
5. The etcd key-value store can be used for dynamic con�guration and shared service
database. The SkyDNS dynamic DNS server provides DNS-based service discovery
for hierarchially named services con�gured in etcd. The Gliderlabs registrator
can be used as a service registration tool for maintaining a dynamically updated
inventory of Docker containers in etcd. The confd tool allows traditional Unix
services using static con�guration �les to be integrated into a container platform
using dynamic service discovery.

3.2.1 etcd

etcd 8 is a highly consistent distributed key-value database. A cluster of etcd

nodes exchange messages over peer connections, using an implementation of the Raft
[27] distributed consensus algorithm to provide leader election and a replicated log.
Each of the etcd cluster nodes provides a network API, and client applications can
establish connections to any available node to send read/write requests. One of the
etcd cluster nodes is elected as the leader, and the cluster requires a leader to process
any write requests. If the currently elected leader node fails, the remaining cluster
nodes will automatically elect a new leader, during which time period in-progress
writes may fail. A majority of the nodes within an etcd cluster are required for leader
election, whereby a 5-node etcd cluster can tolerate the loss of up to two nodes. A
network partition will cause any minority of etcd nodes to become unavailable to
reject any writes that would lead to a split-brain situation violating the consistency
guarantees. If half or more of the cluster nodes are lost, the remaining nodes will
be unable to form a strict majority or elect a leader to process writes.

Applications can use etcd for a variety of di�erent purposes such as distributed
lock services, shared con�guration or service discovery. The basic etcd application
API presents a hierarchial key-value store with atomic get, set and delete opera-
tions, including support for consistent create-if-not-exists and check-and-set oper-
ations. Keys are �lesystem-like paths, starting from the root / directory, forming
a /-delimited path to a directory node, or a key node within a directory. Values
are arbitrary strings that are not interpreted by etcd, and applications are free to
use any syntax such as JSON-encoded con�guration objects or plain-text hostname

7https://docs.docker.com/engine/swarm/ingress/
8https://github.com/coreos/etcd

https://docs.docker.com/engine/swarm/ingress/
https://github.com/coreos/etcd
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and network address strings. Each directory and key-value pair supports automatic
expiration using a Time-to-Live (TTL) parameter, allowing the use of periodically
refreshed keys to detect failures. Any client can also watch any subset of the tree,
with the etcd server pushing any updated key-value pairs to the client.

The etcd security model is based on a combination of SSL for network security with
the recent addition of an auth API for resource-level security. A combination of SSL
client and server X.509 certi�cates can be used to secure both the peer connections
between etcd nodes and client connections from applications. This can be used to
provide strong transport-level security by limiting access to nodes and applications
posessing the private keys for X.509 certi�cates signed by a dedicated CA. The new
auth API allows the con�guration of users, roles and access control lists granting
read/write permissions to speci�c keys. User authentication requires the use of
HTTP Basic Authorization for password authentication of requests.

Security is an important aspect of any etcd-based system, particularly for a Docker
platform using etcd to store critical infrastructure state. Uncontrolled access to
the etcd datastore by an attacker would have major implications for any platform
using etcd for shared con�guration and service discovery. For example, in the case
of Kubernetes 9:

Access to the central data store (etcd) in Kubernetes allows an attacker
to run arbitrary containers on hosts, to gain access to any protected in-
formation stored in either volumes or in pods (such as access tokens or
shared secrets provided as environment variables), to intercept and redi-
rect tra�c from running services by inserting middlemen, or to simply
delete the entire history of the cluster.

3.2.2 SkyDNS

SkyDNS 10 is a dynamic DNS server used for DNS-based service discovery, us-
ing dynamically con�gured host records stored in the distributed etcd database.
DNS query names are translated into an etcd path, returning DNS host records
retrieved from etcd. SkyDNS uses etcd keys of the form /skydns/local/skydns/

service-a/instance-a with JSON-encoded values of the form {"host":"10.0.1.125"}.
Con�guring a client host to use the SkyDNS resolver allows applications to resolve
the instance-1.service-a.skydns.localDNS name, connecting to the 10.0.1.125
network address con�gured in etcd. The SkyDNS servers and the etcd database
can be distributed across multiple machines, ensuring reliable service across possible
machine failures. The implementation of DNS service discovery in the Kubernetes
container platform is based on SkyDNS 11.

9https://github.com/kubernetes/kubernetes/blob/master/docs/design/security.md
10https://github.com/skynetservices/skydns
11http://kubernetes.io/docs/admin/dns/

https://github.com/kubernetes/kubernetes/blob/master/docs/design/security.md
https://github.com/skynetservices/skydns
http://kubernetes.io/docs/admin/dns/
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SkyDNS also supports the use of DNS for application-based load balancing across
multiple service instances. A DNS query for service-a.skydns.local will re-
turn multiple DNS host records for any values under the /skydns/local/skydns/
service-a/ key pre�x. Any such hierarchial structure can be used to further clas-
sify service instances, allowing a client to be con�gured to connect to some subset
of the available service instances.

3.2.3 Gliderlabs registrator

Allowing clients to query running services from a shared service database such as
etcd requires each running service to be registered into the shared service database.
The service discovery records must also be removed if the service instance is stopped,
or the host machine fails. For a schemaless key-value database such as etcd, the
services must be registered using a key-value schema de�ned by the service discovery
implementation.

Gliderlabs registrator 12 is a service registration tool for Docker containers. The
registrator tool includes support for the SkyDNS schema, registering the internal
Docker container network addresses used for multi-host Docker networking. The
registrator tool uses the Docker API to synchronize running Docker containers
into the service discovery database. Using the Docker Events API allows immedi-
ately synchronizing containers as soon as they are started or stopped, without re-
quiring the use of periodic polling to refresh container state. The service registration
records stored in etcd are periodically refreshed, using etcd TTLs to automatically
expire service records if the host machine fails and stops refreshing the records.

3.2.4 confd

confd 13 is a con�guration management tool used to integrate services requiring
static con�guration into a platform using dynamic service discovery. confd uses
user-de�ned templates to generate static con�guration �les from records stored in
a con�guration database. confd watches the con�guration database for changes,
generating a new con�guration �le and reloading the statically con�gured service
process.

Assuming a container platform registering running containers for a servce into etcd,
confd can be used to synchronize the con�guration of a horizontally scaled load
balancer using proxy servers running on multiple machines. Each proxy machine
uses a confd template to enumerate the service backends stored in etcd, generating
a proxy con�guration �le to route tra�c for those services to the running backends. If

12https://github.com/gliderlabs/registrator
13https://github.com/kelseyhightower/confd
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a new service backend is started, or an existing one is stopped, the service registrator
updates the backends in etcd. etcd propagtes the update within the cluster, and
noti�es each confd process watching the updated keys. The confd process on each
machine generates an updated con�guration �le and reloads the proxy, allowing
tra�c to use the updated service instances.

3.3 Networking

Section 3.1 studied common Docker networking architectures, and brie�y covered
the multi-host overlay networking implementations included in Docker itself. This
Section studies two speci�c implementations of multi-host Docker networking in
more detail. Given the rapid pace of Docker development, the Flannel and Weave
implementations of multi-host networking for Docker clusters were both originally
designed to extend the default Docker single-host networking architecture, before
Docker itself added support for multi-host networking using globally scoped network
plugins.

The Flannel implementation of network-layer multi-host container networking was
originally designed for use with the Kubernetes platform, using etcd as a control
plane. Flannel provides multiple alternative implementations of routed connectivity
between multiple machines having unique local container network subnets. Flannel
is only used to con�gure the default Docker network on each node, and does not pro-
vide a Docker network plugin implementation. The Weave implementation of link-
layer multi-host container networking provides integrated control and data planes
for overlay mesh networking, providing a single Ethernet network spanning contain-
ers running on any machines within a cluster. Weave provides multiple approaches
for Docker integration, including multiple Docker network plugin implementations.

3.3.1 Flannel

Flannel 14 implements a network-layer architecture for multi-host Docker network-
ing, designed for use with the Kubernetes platform. Flannel can be used to provide
an internally routable network address for each Docker container running on a ma-
chine, allocating a unique internal network subnet for each machine. Each machine
in the cluster runs the flanneld agent, using the distributed etcd database for
con�guration and control. Given an internal network address space (10.0.0.0/8),
each Flannel agent will automatically allocate a unique internal network subnet
(10.0.10.0/24) for the local container network. The Flannel agent con�gures
Docker to use a local bridge with the allocated subnet for the local container network.
Tra�c between local containers uses the normal Docker bridge network mechanism.
For tra�c outside of the host machine, each Docker container is con�gured to use the

14https://github.com/coreos/flannel

https://github.com/coreos/flannel
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host machine's bridge interface address as the default gateway. Flannel con�gures
the Linux kernel's network stack to route tra�c for the internal Flannel network
across di�erent machines, using a packet forwarding dataplane provided by one of
the Flannel backends. Each Flannel backend provides a dataplane for forwarding
packets between internal container addresses on di�erent machines, using the dy-
namic etcd con�guration for automatic con�guration. The shared etcd database
contains the internal subnets and external network addresses of each machine within
the cluster.

The udp backend routes internal network packets via a virtual Linux tun interface
to a userspace proxy, which uses UDP encapsulation to tunnel packets for each
con�gured Flannel subnet via the external network address of the remote machine.
The vxlan backend uses the Linux kernel implementation of VXLAN tunneling,
routing packets for internal container addresses via a virtual L2 address con�gured
to tunnel packets using the external network address of the remote machine. The
host-gw backend con�gures normal Linux kernel routes to forward tra�c for each
internal container subnet via the directly connected address of the remote machine,
using ARP for routing across an Ethernet network connecting each host machine.
The aws-vpc and gce backends provide direct integration with the Software De-
�ned Network (SDN) implementations used for the Amazon Web Services (AWS)
Virtual Private Cloud (VPC) and Google Compute Engine (GCE) IaaS platforms,
o�oading the inter-machine routing for the Flannel subnets into the cloud network
infrastructure. All of the Flannel backends assume a full connectivity mesh between
machines, lacking support for any multi-hop forwarding within Flannel itself.

3.3.2 Weave

Weave 15 implements a link-layer architecture for multi-host Docker networking us-
ing overlay networking. Weave provides a single Ethernet network spanning multiple
Docker machines, using overlay networking to allow direct communication between
Docker containers connected to the virtual weave bridge on di�erent machines. The
Weave Mesh 16 control plane implements a gossip protocol for peer discovery and
con�guration. Weave supports a combination of two di�erent dataplanes for Eth-
ernet forwarding, providing both a userspace and kernel datapath. The sleeve

tunneling protocol implemented in user space, using a UDP-based protocol pro-
viding built-in support for encryption. The alternative Fast Data Path (fastdp)
mechanism uses the Open vSwitch and VXLAN modules within the Linux kernel.
Weave allows the simultaneous use of both dataplane mechanisms, only using the
fastdp mechanism between nodes on a con�gurable "trusted subnet", due to the
lack of encryption support in the fastdp implementation. Weave does not require
direct connectivity between all peer nodes, and the topology discovered by the Weave

15https://github.com/weaveworks/weave/
16https://github.com/weaveworks/mesh
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Mesh control plane can be used for multi-hop mesh routing, forwarding Ethernet
packets via a chain of multiple nodes. Weave also provides additional infrastructure
services implemented on top of Weave Mesh, including Weave DNS 17. Weave DNS
can be used for DNS-based service discovery of dynamic service endpoints within
the Weave overlay network.

Using Weave for overlay networking between Docker containers can have a signi�cant
performance impact on network performance, depending on the virtual machine
and Weave datapath implementation used. For a pair of smaller single-CPU virtual
machines, using Weave for overlay networking between Docker containers can reduce
total transfer rates by up to 70-80 % compared to the reference performance of the
virtual machine network without container networking [28]. Using larger virtual
machines with multiple CPUs reduces the contention between the Weave dataplane
and application service, providing improved network performance with Weave [29].
The newer Weave fastdp dataplane provides improved network performance, with
Weave's own performance tests using fastdp reaching near-native performance when
using a su�ciently large MTU for the overlay tunnels 18.

3.4 Load balancing

This Section studies various load balancer implementations used in a variety of
environments. The HAProxy and nginx application-level proxies are widely used for
both TCP and HTTP load balancing. The Vulcand and traefik.io application-
level proxies are designed for use with container platforms, supporting dynamic
con�guration for load balancing HTTP services. Google Maglev and Ananta are
proprietary, highly scalable network-level load balancers designed for speci�c cloud
infrastructure platforms. The network-level load balancer implementations use the
NAT and Direct Server Return (DSR) forwarding methods introduced in Section
2.5.2. The �nal part of this Section discusses the Linux IPVS load balancer used in
the implementation of the clusterf load balancer.

3.4.1 HAProxy and nginx

HAProxy 19 and nginx 20 are open-source application-layer proxies. Both HAProxy
and nginx support application-layer HTTP forwarding, providing a wide range of
features to route and handle HTTP tra�c. At the transport layer, HAProxy also
supports TCP forwarding, and nginx supports both TCP and UDP forwarding. At
the application layer, nginx provides a wider range of features for HTTP tra�c, in-

17https://www.weave.works/have-you-met-weavedns/
18https://www.weave.works/weave-docker-networking-performance-fast-data-path/
19http://www.haproxy.org/
20http://nginx.org/
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cluding response caching. nginx also supports a variety of other protocols including
SMTP, IMAP and POP for email services.

Traditional Unix services like nginx and HAProxy are con�gured using a local con-
�guration �le, designed for manual editing. The running process can be signalled to
reload the con�guration �le, gracefully applying any changes to the con�guration.
The use of con�guration �les provides a simple method for static con�guration, but
a load balancer for a container platform must support dynamic con�guration when
deploying horizontally scaled services within a cluster, where the number and lo-
cation of the service backends can change quickly. Both nginx and HAProxy also
provide a command API for runtime control over their load-balancer con�guration,
but this is either proprietary or limited in terms of the con�guration operations sup-
ported. The general solution for using such proxy servers in a container platform is
the use of a con�guration management tool such as confd to dynamically generate
and reload the con�guration �le.

3.4.2 Vulcand and traefik.io

Vulcand 21 and traefik.io 22 are open-source application-layer proxies designed
for use with container platforms. Rather than using a static con�guration �le, a dy-
namic application-layer proxy uses a shared database such as etcd for con�guration,
automatically applying any con�guration updates. Both Vulcand and traefik.io

support the use of etcd for con�guration, load balancing HTTP/HTTPS requests
across multiple backend servers. traefik.io also supports a wider variety of ap-
plication protocols including HTTP WebSockets and HTTP/2. traefik.io also
supports the use of multiple con�guration backends, including integration with the
Docker API for direct registration of Docker services without using a separate service
discovery mechanism. Using a dynamic application-layer proxy can be compared to
a combination of a traditional application-layer proxy such as HAProxy with a dy-
namic con�guration management tool such as confd.

3.4.3 Google Maglev

Google Maglev [7] is the network-layer L4 load balancer used in the Google cloud
infrastructure. Maglev is also used as the load balancing service for Google's IaaS
cloud (Google Cloud Platform). Compared to traditional hardware load balancers
deployed in pairs for redundancy, Maglev is designed for horizontal scalability using
commodity server machines. Google services use GeoDNS to load balance services
using separate Virtual IP (VIP) addresses routed to di�erent frontend locations,
based on user geolocation and current frontend loads. Multiple Maglev load bal-

21https://github.com/vulcand/vulcand
22https://github.com/containous/traefik
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ancers are deployed at each such location, using BGP to control the routing of
tra�c across di�erent. Maglev machines. Maglev scales using a combination of
ECMP routing for a single VIP across a group of Maglevs, and dividing multiple
VIPs between di�erent groups of Maglevs. Maglev uses globally consistent hashing
with local connection tracking to maintain reliable connections across most opera-
tional conditions, including the addition and remove of service backends or Maglev
machines.

The packet forwarding dataplane and connection scheduler is implemented using
Linux userspace networking to optimize the performance of each individual Maglev
machine. The Maglev forwarder bypasses the Linux kernel's network stack for low-
latency processing of small packets at 10 Gbps line rate, handling up to 9.06 Mbps
of small 100 byte packets with a maximum latency of 300µs. Each Maglev forwarder
associates packets for a con�gured VIP with an existing connection state, or creates a
new connection state using a consistent hashing algorithm to select a backend. The
incoming packets are forwarded unmodi�ed using Generic Routing Encapsulation
(GRE) for tunneling, using the backend server's address for the outer packet header.
The backend server accepts the de-encapsulated packet and forms a response packet
using the incoming packet's client and VIP addresses, which can be routed using
Direct Server Return (DSR), bypassing the Maglev machines. [7]

Each service VIP can be scaled using ECMP routing for L3 load balancing within
the network, distributing tra�c for a single VIP across multiple Maglev machines.
The Maglev control plane manages the ECMP routing within the network, acting
as a BGP client to announce VIPs to the network routers, and withdraw individual
routes on machine failures. Reliable load balancing of connection-oriented protocols
requires that all packets for a given 5-tuple are forwarded to the same backend server
to maintain the end-to-end connection state. The use of ECMP routing complicates
the reliable load balancing of TCP connections, as changes to the ECMP routing
will alter the distribution of tra�c across multiple load balancers. [7]

Maglev relies on a combination of local state tracking with globally consistent hash-
ing to maintain TCP connections between clients and backend servers in the case
of backend con�guration or ECMP routing changes. Changes to the ECMP rout-
ing con�guration are handled using a consistent hashing algorithm such that given
a consistent backend con�guration, each Maglev will independently schedule new
connections to the same backend. Each Maglev machine maintains a local table of
connection states to handle cases where changes to the backend con�guration change
the results of the consistent hashing algorithm for existing connections. However,
these connection state tables are not synchronized between Maglev machines, and
concurrent changes to ECMP routing and backend con�guration will lead to broken
connections. [7]
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3.4.4 Ananta

Ananta [8] is a horizontally scalable L4 load balancer implemented in software, using
distributed control and data planes for scalable NAT forwarding. Ananta's design
rquirements consider a datacenter having 40k servers, handling 400Gbps of external
tra�c and 100Tbps of internal tra�c, where up to 44Tbps of tra�c uses virtual
service network addresses and requires load-balancing. Ananta uses a distributed
control plane and a three-layer data plane architecture to provide the necessary scal-
ability to meet these design requirements economically while maintaining �exibility
and reliability. Utilizing hardware ECMP routing capabilities within the network
infrastructure allows the horizontal scaling of the load balancers themselves, where
a pool of Ananta load-balancers can handle 100Gbps of combined tra�c for a single
virtual network address. Utilizing a custom virtual software networking component
allows the server machines to directly route both intra-datacenter and outgoing
external tra�c, bypassing the dedicated load-balancer machines, which are only re-
quired to handle the 20% design ratio of incoming external tra�c. Ananta provides
the network load balancer infrastructure used in the Windows Azure public cloud
platform, with 1Tbps of combined capacity deployed between 2011 and 2013 [8].

The Ananta cluster infrastructure consists of hardware network routers connecting
physical server machines, which act as Ananta Mux nodes or Host nodes. The Host
nodes are used to run the network services being load-balanced as either virtual ma-
chines or native services, and each of these service machines is assigned an internal
network Direct IP (DIP). Tra�c between servers within a service can use the inter-
nal DIP addresses, and does not require load-balancing. All external network tra�c
to/from the Internet uses an external Virtual IP (VIP), as well as all internal net-
work tra�c between di�erent services, and must thus be load-balanced by Ananta
using NAT. The network Ananta model thus includes six distinct cases of packet
forwarding, including the forward and reverse paths for incoming external tra�c
(DNAT) for services, internal intra-cluster tra�c between services (SNAT+DNAT)
and outgoing external tra�c (SNAT) from services. Ananta's dataplane uses a three-
layer architecture involving the network routers, dedicated Ananta Mux nodes, and
a Host Agent on each of the physical servers to e�ciently process each class of
tra�c. Ananta's scalability comes from the ability to o�oad the majority of the
DNAT/SNAT packet forwarding workload to the Host Agent on each server within
the datacenter, bypassing the Ananta Mux nodes for everything except incoming
external packets for the forward external DNAT and reverse external SNAT paths.
[8]

Incoming external packets are forwarded by the network routers to the Mux nodes
announcing their con�gured VIPs via BGP, using ECMP routing to distribute pack-
ets for each L3 VIP address across multiple Ananta Mux nodes. The Ananta Mux
nodes forward the incoming packets using IP-in-IP tunneling to a server DIP in-
cluded in the service's con�gured backends, using a consistent hashing algorithm
and connection state table to distribute connections for each L4 TCP/UDP end-
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point across multiple backend servers. The Ananta Host agent on the physical server
hosting the service intercepts and de-encapsulates the tunneled packets, and per-
forms DNAT forwarding to the backend server, rewriting the inner packet's external
VIP address to the outer packet's internal DIP address using the con�gured NAT
rules. Finally, the backend server receives the incoming packet using its internal
DIP address and optionally rewritten TCP/UDP port number. [8]

The return path for incoming external connections uses the Host Agent's local DIP
connection state to rewrite the reply packets from the backend server, translating
the internal DIP source address to the original external VIP address. The translated
reply packets can be forwarded directly by the host node via the network, bypassing
the Mux nodes for the return path. A similar mechanism is also used for SNAT
forwarding of locally originated outgoing external connections from the backend
servers using the shared VIP address, where the Ananta Manager allocates a pool
of ephemeral ports for use by each Host Agent on demand. For each outgoing
connection, the Host Agent chooses a source port allocated for its use, and forwards
the packet via the network using the translated VIP address, bypassing the Mux
nodes. For the return path, the Ananta Manager con�gures each Mux Node for the
VIP to forward packets for the allocated ephemeral ports to the correct Host Node.
The Ananta architecture provides highly scalable NAT forwarding for a single VIP
by distributing the NAT forwarding across each Host Node, allowing the outgoing
packets to bypass the Mux nodes. However, this comes at the cost of signi�cant
complexity for the Mux node con�guration, requiring the dynamic con�guration of
allocated ports for the outgoing SNAT reverse path. [8]

For intra-DC tra�c between di�erent services, Ananta supports a fastpath tech-
nique, bypassing the Mux nodes in both directions by forwarding packets directly
between Host Agents. Tra�c between two services uses the source and destination
service VIP addresses, involving both SNAT and DNAT: the originating host con-
nects to the destination VIP using its source DIP, the source address is rewritten to
use the source service VIP, the destination address is rewritten to use the destination
service DIP, and the destination host sees the connection from the source VIP to
the destination DIP. The connection is initially established using the combination
of SNAT and DNAT data paths described above, involving both the source host,
destination mux and destination host for the forward path, and the destination host,
source mux and source host for the return path. The destination Mux selects a DIP
for the incoming connection as normal, but once the connection is established, it
is treated as an internal fastpath connection between two Ananta services. The
destination Mux signals the source Mux with the selected destination DIP, and the
source mux signals both the source DIP and destination DIP using a redirect mes-
sage. The source and destination Host Agents use the signalled DIP addresses to set
up a direct forwarding state between the host nodes for the connection, bypassing
both Mux nodes. [8]
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3.4.5 Linux IP Virtual Server

Linux IP Virtual Server (LVS, IPVS) is the network-level L4 load balancer included
in the Linux kernel. Similarly to Google Maglev and Ananta, Linux IPVS imple-
ments a network-level load balancer in software. Compared to Google Maglev, the
Linux IPVS load balancer does not support the use of global consistent hashing. The
Linux IPVS load balancer implements local connection state tracking with optional
connection state synchronization for failover. Large internet sites such as Facebook
have used Linux IPVS for load balancing 23, contributing support for IPv4-in-IPv6
ipip forwarding [30].

IPVS is con�gured using a Linux netlink interface, used to implement userspace
tools such as the ipvsadm command-line. The IPVS con�guration consists of a
set of Services, de�ning the virtual network address and TCP/UDP port used for
incoming tra�c to the service. Each IPVS Service is con�gured with a set of Desti-
nations, de�ning the real network address and TCP/UDP port used for forwarding
tra�c to a backend server. The IPVS module maintains a separate connection state
table, used to forward packets for each TCP/UDP connection to the same backend
server. A con�gurable scheduler 24 is used to select the destination for each incom-
ing connection to a service, distributing connections between destinations using a
con�gurable weight parameter per destination.

IPVS allows each Destination to be con�gured using one of three di�erent forwarding
methods. The droute and tun forwarding methods preserve the service's virtual
destination address for forwarded packets, whereas the masq forwarding method
rewrites the forwarded packets to use the destination server's network address. The
droute and tun forwarding methods require each backend server to be con�gured
to accept incoming connections for the service's virtual network address. The masq
forwarding method does not require any special con�guration on the destination
servers, but requires all reply packets from the destination server to be routed via
the IPVS load balancer to restore the external network address and TCP/UDP
port used by the client. The droute and tun forwarding methods allow the use of
Direct Server Return (DSR) techniques, where each backend server can route any
reply packets directly, bypassing the IPVS load balancer for the return path. The
droute method can be used to forward packets to destination servers on a directly
connected Ethernet network, using ARP to resolve the con�gured network address
for Ethernet forwarding. The tun method uses the IP-in-IP tunneling protocol to
forward packets, allowing the use of IP network routing between the IPVS load
balancer and destination servers. Both droute and tun methods also allow the
server application on the destination to inspect the original network source address
of the client.

IPVS allows each Service and Destination to be individually con�gured with a given

23https://www.isc.org/blogs/how-facebook-is-using-kea-in-the-datacenter/
24http://www.linuxvirtualserver.org/docs/scheduling.html
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TCP/UDP port. Using droute and tun forwarding requires the use of the same
TCP/UDP port for both the virtual service address and the destination servers,
ignoring the TCP/UDP port con�gured for the destination server. IPVS will not
rewrite the destination TCP/UDP port when using droute or tun forwarding, as this
would cause the destination server to reply using the wrong source port, breaking
DSR. Only the masq forwarding method supports the con�guration of a destina-
tion server TCP/UDP port, rewriting return packets to use the original TCP/UDP
source port chosen by the client.

The IPVS load balancer supports the use of connection state synchronization to
maintain client connections to destination servers in the case of failover or ECMP
tra�c redistribution between di�erent IPVS load balancer. IPVS implements con-
nection state synchronization using UDP messages with IP multicast. Each IPVS
server can be joined to the multicast group in either master or backup modes. An
IPVS server with the master mode enabled will send multicast messages for each
updated connection state entry, and an IPVS server with the backup mode enabled
will receive multicast messages, updating the local connection state table. Each
IPVS server may also be con�gured to enable both master and backup connection
state synchronization for peer-to-peer synchronization, assuming each node has the
same con�guration state.
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4 The clusterf Load Balancer

The focus of this thesis is on my design and implementation of a scalable network-
level load balancer for horizontally scalable services within a Docker container plat-
form. This Chapter presents the design of a distributed network-level load balancer
data plane using Linux IPVS, and the implementation of the clusterf distributed
control plane for dynamic IPVS con�guration within a Docker platform. The re-
sulting clusterf load balancer architecture is shown in Figure 4.

Figure 4: The architecture of the clusterf load-balancer, including the Docker
platform components in orange, the clusterf control plane components in green,
the shared etcd con�guration database in blue, and the IPVS data plane network
�ows for incoming packets in purple.
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Section 4.1 discusses the design rationale for the clusterf network-level load bal-
ancer architecture, considering the study of load balancing methods and implemen-
tations in Sections 2.5 and 3.4. Section 4.2 discusses the network architecture of
a network-level load balancer within a container network, forwarding packets for
incoming connections from external network clients to container services within the
internal container network. Section 4.3 presents the two-layer load balancing archi-
tecture used to allow the use of both DSR for load balancer scalability and the use
of NAT for application compatibility. Section 4.4 presents the implementation of
the control plane, used to provide dynamic con�guration of clustered IPVS load bal-
ancers within a Docker platform. Section 4.5 discusses the con�guration model used
by the clusterf control plane in more detail. The �nal Section 4.6 discusses some
speci�c challenges with the current implementation of the load balancer design, in
addition to other possibilities for future work.

4.1 Design Rationale

The highly dynamic nature of container networking for horizontally scaled services
within a container platform requires the integration of an automated load balancer
control plane for optimal load balancing as service containers are added and removed.
The control plane must allow the use of a scalable load balancer data plane, syn-
chronizing the con�guration of multiple clustered load balancers for a given service.
The control and data planes must be fault tolerant, allowing individual machines
and service instances to be dropped from the cluster while minimizing the impact
on any active connections.

The ultimate scalability of a horizontally scaled service is limited by the scalability
of the load balancer data plane. If a single load balancer does not o�er su�cient
performance or relability, the load balancer design must support scaling to a clus-
ter of load balancers. A cluster of load balancers requires a control plane capable
of synchronizing the con�guration of each load balancer, a mechanism for reliable
connection forwarding across failures and con�guration changes, and a method for
distributing tra�c between multiple load balancers. Di�erent load balancing meth-
ods can be used to distribute tra�c across multiple load balancers, from the use
of DNS with multiple service addresses to the use of a dynamic routing protocol
with ECMP forwarding for a single service address. The use of multipath routing
for a VIP is su�cient for an load balancer using DSR, allowing each destination
server to independently determine the return path. Di�erent methods can be used
for maintaining reliable connections, from the use of consistent hashing in Maglev
[7] to the use of multicast connection synchronization in Linux IPVS.

Scaling a load balancer using NAT for forwarding requires additional complexity
to maintain the symmetric routing required for NAT. The DNAT connection state
formed by the incoming packet is required for rewriting any reply packets to restore
the original external network address and TCP/UDP port used by the client. Any
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reply packets from the backend server must be routed via the same load balancer
machine that forwarded the incoming packet. This is straightforward for the trivial
case of a single load balancer acting as the default gateway for each destination
server.

One method used to cluster a load balancer using NAT forwarding is the use of Full
NAT. A clustered load balancer using Full NAT uses both DNAT and SNAT for
each forwarded packet. Packets are forwarded to the destination server using the
load balancer's local source address and the server's destination address. The use
of SNAT with a local address for each load balancer ensures that all return packets
from the backend server are �rst routed back to the load balancer for rewriting. The
use of Full NAT does not allow the server application on the destination server to
see the network source address of the connection client. Implementing connection
failover between load balancers using Full NAT would also require failover of the
local source address on the load balancer used for SNAT forwarding.

The requirement for a symmetric return path complicates the design of a clustered
load balancer using NAT forwarding. A load balancer using DSR with asymmet-
ric return paths allows each backend server to independently form a return path
using the unmodi�ed packet source and destination addresses, simplifying the im-
plementation of horizontal scaling with connection failover between load balancers.
However, destination servers or applications unable to accept connections using the
service's incoming external destination network address or TCP/UDP port require
the use of NAT for forwarding. Using Full NAT to implement such a clustered load
balancer results in the loss of connection source address information and connection
failover capabilities. Implementing a scalable load balancer supporting the use of
NAT thus requires a more complex load balancer architecture as seen in Ananta [8].

4.2 Network Architecture

The architecture of the clusterf load balancer consists of the Gateway and Docker
machines shown in Figure 4. The detailed network architecture of the cluster ma-
chines and networks is shown in Figure 9. The Docker cluster consists of a num-
ber of Docker machines, which are each assigned internally unique /24 networks
for their local Docker network. A container orchestration system such as Docker
Swarm is used to run service containers on any Docker machine within the cluster.
Each service instance is a Docker container having a unique, internally routable
network address. The Docker machines are connected via an internal network, us-
ing IP network routing to provide multi-host networking between Docker containers
on di�erent machines. The standard network-layer multi-host networking model is
extended to include a set of Gateway machines used for load balancing, capable
of routing tra�c to internal container network addresses. Each of the Gateway
machines and Docker machines uses the Linux IPVS load balancer to forwarding
incoming connections to virtual service addresses to the Docker containers.



50

Figure 5: Network architecture used in the clusterf load balancer

The internal network in Figure 5 is represented as a standard Ethernet network.
The internal network uses private 10.0.0.0/8 network address space, using the
10.107.0.0/16 subnet for the internal network between machines, and distinct
10.X.107.0/24 subnets for each machine's local Docker network. The cluster net-
work uses OSPF [15, Section 5.6.4] for dynamic routing, using the bird 25 routing
daemon managing the Linux kernel routing table. Each Docker machine acts as an
OSPF router advertising an OSPF stubnet for the local Docker network, installing
Linux kernel routes for each Docker network advertised by the other machines.

The Gateway machines are used for load-balancing of incoming connections to con-

25http://bird.network.cz/

http://bird.network.cz/
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tainer services within the cluster. Each Gateway machine also acts as an OSPF
router, having a route for each Docker network. The Gateway machines are con�g-
ured to accept tra�c for the VIPs used for load balanced services. The Gateway
machines accept incoming tra�c for services using TCP/UDP ports on any of these
VIPs, using Linux IPVS to forward the incoming packets via the Docker machines
to the container services. The clusterf control plane manages the IPVS service
con�guration on the Gateway machines. The Gateway machines use IPVS connec-
tion synchronization multicast within the internal network to allow for connection
failover between Gateway machines.

The speci�c mechanisms used for the allocation and routing of the Gateway VIPs
are outside the scope of clusterf. For internally load balanced services, the Gate-
way machines may be con�gured to advertise the internal VIP within the cluster
using OSPF. For external load balanced services, any mechanism supported by the
external network may be used to provide external routing for any external VIPs.
The same bird routing daemon used on the Gateway machines may also be used
to announce VIPs to the external router using a routing protocol such as OSPF or
BGP. An external network having multiple routers may use ECMP to distribute
tra�c for each VIP across multiple Gateway machines announcing the same VIP.

Compared to the design for Ananta [8], clusterf does not include any mechanism
for SNAT forwarding of outgoing external network connections from the Docker
containers. The clusterf design follows the standard Docker multi-host network-
ing architecture, and allows the use of separate external network connectivity for
each Docker machine. Each Docker Machine may use its locally con�gured external
network address to SNAT outgoing connections from the Docker containers. The
Docker machines may also use the Gateway machines for outgoing SNAT connec-
tivity, but such a design is outside the scope of clusterf.

Extending the clusterf network architecture for use in di�erent cloud networking
environments is a subject for further study. The current clusterf implementation
assumes the use of standard Ethernet networking for both the internal and external
networks. Assuming a standard Ethernet network for the internal network allows the
use of OSPF routing and IPVS droute forwarding. Alternative implementations of
the internal network could use similar mechanisms as provided by Flannel, including
the use of routing over overlay network tunnels. Assuming a standard Ethernet
network for the external network allows the use of DSR for the return path from
the Docker machines, and the use of mechanisms such as VRRP for VIP failover
between Gateway machines. The use of DSR is not possible within an external
network limiting the use of source addresses across di�erent machines. Alternative
implementations of the external network could use a di�erent VIP per Gateway
machine. The Docker machines would use policy routing to return packets sourced
from a speci�c external network address via the same Gateway machine owning that
address. A mechanism such as DNS would be used to distribute client connections
between each external address.
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4.3 IPVS Data Plane

The data plane architecture of the clusterf load balancer is shown in Figure 4,
using the Linux IPVS network-level load balancer on both Gateway and Docker ma-
chines. The clusterf load balancer uses a hybrid two-level load balancing scheme
combining the use of both DSR and NAT network-level load balancing techniques
for achieving scalability without breaking compatibility with unmodi�ed Docker
containers and applications. Both Gateway and Docker machines are con�gured to
process incoming tra�c for load-balanced VIPs using IPVS, but only the Gateway
machines need external routing for the VIPs. The Gateway machines accept incom-
ing tra�c for the VIP, and use IPVS to forward the unmodi�ed packets to a Docker
machine having a local backend for the service. The Docker machine accepts the
forwarded VIP tra�c, and uses IPVS to forward the packets to a local Docker con-
tainer using DNAT. This load balancing scheme is similar to the Ananta [8] design
for load balancing of incoming tra�c.

Limiting the use of NAT to packets within the Docker machine avoids the issues re-
lated to the use of NAT for load balancing, and allows the use of the default Docker
networking model using internal network addresses and ports within the Docker
containers. Using IPVS masq forwarding is required to translate between di�erent
external TCP/UDP ports used by the service and internal TCP/UDP ports used
by the server application. Each Docker container is con�gured with a default route
via the host machine, ensuring a symmetric return path for any outgoing packets
requiring reverse NAT. The failure of any Docker machine will only lose the NAT
state for connections to containers within the same machine, which will inevitably
fail anyways. More importantly, each Docker machine may use DSR for the return
path. This both o�oads any return tra�c from the Gateway machines, and simpli-
�es the horizontal scaling of the Gateway machines. Avoiding the use of Full NAT
preserves the original network source address of the client for the connection seen
by the server application within the container.

The Gateway machines for a given VIP must all have the full set of IPVS services for
that VIP con�gured. The Docker machines only con�gure those IPVS services hav-
ing local container backends. Most importantly, the Docker machines only con�gure
IPVS destinations for local Docker containers. If the Docker machines con�gured
IPVS destinations for remote Docker containers, this would lead to routing loops,
where packets forwarded by a Gateway machine would be forwarded from Docker
machine to Docker machine. Using a strict hierarchy of Gateway machines with
the full set of IPVS services and destinations forwarding tra�c to Docker machines
having only local IPVS services and destinations ensures the correct forwarding of
incoming tra�c.

As discussed in Section 4.1, the use of IPVS droute/tun forwarding on the Gateway
machines provides the best options for scaling the Gateway machines. Having the
Gateway machines forward incoming packets using the original source and destina-
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tion addresses allows the use of DSR, where each Docker machine may independently
form a return path for any reply packets. Allowing each Docker machine to inde-
pendently form the return path simpli�es the distribution of incoming tra�c across
multiple Gateway machines, allowing the use of techniques such as ECMP forward-
ing with IPVS connection synchronization.

Using internal load balanced services within the cluster requires additional consid-
eration when con�guring the service VIPs on each Docker machine. A client appli-
cation within a container attempting to connect to an internal VIP used for load
balanced services will forward the outgoing packet to the host machine. Because the
Docker machine will have each internal service VIP con�gured as a local address in
order to accept incoming connections forwarded by the Gateway machines for IPVS
forwarding, it will also attempt to process any outgoing packets to a VIP from any
local container. If the Docker machine does not have any local IPVS service or
backends con�gured for the packet's destination, it will drop the packet, causing the
connection to fail.

$ ip l i n k add dummy−i pvs type dummy
$ ip ru l e add i i f eth−terom−dev lookup c l u s t e r f
$ ip route add l o c a l 1 0 . 0 . 1 07 . 0/24 dev dummy−i pvs

t ab l e c l u s t e r f
$ ip l i n k s e t dummy−i pvs up

Figure 6: Example Linux policy routing con�guration for asymmetric IPVS forward-
ing of incoming packets to any 10.0.107.X VIP on the eth-terom-dev interface

The clusterf implementation uses the Linux routing policy shown in Figure 6
to work around this issue. The local processing of routed packets within Linux
uses special local routes, which are implicitly created when con�guring a local
interface address. The clusterf implementation uses a combination of Linux IP
policy routing rules and local routes to limit the use of local IPVS forwarding
to incoming packets forwarded by the Gateway machines. A policy routing rule is
created to lookup routes for packets received on the internal network interface from
a separate routing table. The VIPs used for IPVS forwarding are con�gured using
local routes within this separate routing table. This use of routing policy rules
allows outgoing connections to use the default IP routing table, presumably using
the internal OSPF route for the VIP advertised by the Gateway machines.

For tra�c to such internally load balanced services, the Gateway machine uses the
IPVS con�guration to either route the packet back to the same Docker machine,
or to a di�erent Docker machine having a local backend for the service. In the
later case, the remote Docker machine receives the incoming packet with the source
network address of the client container, and routes any reply packets directly to the
originating machine using the internal network routes. However, the return path for



54

the former case is broken in the current implementation of clusterf due to NAT
hairpinning issues discussed further in Section 4.6.

Extending the strictly hierarchial two-layer forwarding architecture to allow a mesh
of load balanced connections routed directly between Docker machines, as seen in
Ananta [8], is the subject of further study. Two alternative options would involve
tunneling tra�c directly to the Docker containers, con�guring each Docker container
to perform IP-in-IP packet de-encapsulation for the VIPs. This would allow each
machine within the network to perform independent IPVS forwarding, using a full
set of IPVS services and destinations without triggering forwarding loops. Alterna-
tively, the Docker machines could also con�gure IPVS services that do not have any
local destinations to independently forward tra�c to the remote Docker machines.
This would require the Docker machine to disable any such remote IPVS destina-
tions as soon as any local IPVS destination is added, as the Gateway machines will
begin forwarding incoming tra�c. The clusterf control plane could be used to re-
con�gure the disabled IPVS destinations using a zero weight, ensuring that existing
connections could continue, while all new connections would be routed to the local
backends.

4.4 Control Plane

The clusterf control plane is designed for horizontally scaled services running as
Docker containers within a cluster of machines using the Linux IPVS network-level
load balancer. The clusterf control plane synchronizes the IPVS load balancer con-
�guration across a cluster of load balancers, providing dynamic load balancer con�g-
uration for any service containers within the Docker cluster. The clusterf control
plane allows starting and stopping Docker containers associated with a clusterf

service on any machine within the cluster, automatically distributing incoming con-
nections across each active service container. The clusterf control plane scales
with the number of Docker machines, services and containers, while allowing the
Linux IPVS data plane to scale with the service's network load. The clusterf con-
trol plane components are implemented in the Go 26 programming language, and
are available on GitHub 27 under the MIT license.

The clusterf control plane components within the Gateway and Docker machines
are shown in Figure 4. The clusterf load balancer control plane consists of
the clusterf-docker and clusterf-ipvs components, using the distributed etcd

database for dynamic con�guration. The clusterf-docker component runs on
each Docker machine and implements a service registrator, using the Docker API
to register running containers associated with clusterf services into etcd. The
clusterf-ipvs component runs on all Gateway and Docker machines and imple-

26https://golang.org/
27https://github.com/qmsk/clusterf

https://golang.org/
https://github.com/qmsk/clusterf
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ments a dynamic IPVS con�guration mechanism, using the Linux IPVS netlink

control interface to apply any updates to the clusterf con�guration within etcd.

The distributed etcd database is used to store the clusterf con�guration state used
by each machine within the cluster. The clusterf con�guration state consists of
clusterf Routes, ServiceFrontends and ServiceBackends. The clusterf Routes
describe the cluster network topology used for IPVS forwarding. The clusterf

ServiceFrontends are used to con�gure IPVS services, describing the VIP and
TCP/UDP ports used on the Gateway machines. The clusterf ServiceBackends
are used to con�gure IPVS destinations, describing the internal network addresses
and TCP/UDP ports within the Docker containers. The clusterf con�guration
model is discussed in more detail in Section 4.5.

The clusterf-docker component runs on each Docker machine, implementing a
service discovery mechanism for maintaining a dynamically updated inventory of
clusterf Routes and ServiceBackends in etcd. The Docker Engine API is used
to observe the state of local Docker networks and containers, constructing an inter-
nal clusterf con�guration state which is compiled into con�guration objects and
written into etcd. Docker networks are used to con�gure clusterf Routes, using
the Docker network subnet and con�gurable clusterf Route parameters. Docker
containers are used to con�gure clusterf ServiceBackends, using the container's
internal network address, exposed ports and net.qmsk.clusterf.* labels. The
clusterf-docker component uses the Docker Events API to dynamically update
the clusterf con�guration as Docker containers and networks are created, started,
stopped and removed. The clusterf-docker component periodically refreshes each
etcd con�guration node, using etcd TTLs to automatically expire any clusterf

con�guration for local Docker containers on machine failure.

The clusterf-ipvs component runs on each Docker and Gateway machine, with
the Docker machines using a local clusterf Route con�guration to restrict the
IPVS con�guration to local containers backends. The cluster-ipvs component
implements a load-balancer control plane for dynamic con�guration of the Linux
kernel IPVS load balancer, using the global clusterf con�guration state stored in
etcd. During the initial startup, the current runtime IPVS con�guration within
the kernel is examined, forming the initial internal IPVS con�guration. A recursive
etcd get operation is used to read the clusterf con�guration state, constructing a
new internal IPVS con�guration state. The IPVS con�guration update mechanism
runs any necessary IPVS con�guration commands to transform the runtime IPVS
con�guration from the previous state into the new state. A recursive etcd watch

operation is used to consistently follow any updates to the con�guration objects in
etcd, applying them to the internal clusterf con�guration state. The updated
clusterf con�guration is used to generate a new internal IPVS con�guration state,
using the same IPVS con�guration update mechanism to run any necessary IPVS
con�guration commands.
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The runtime IPVS con�guration mechanism is designed to minimize any disruption
to existing IPVS connections upon clusterf control plane restarts or recon�gura-
tions, as opposed to an approach where the entire IPVS con�guration is �rst cleared
before loading the initial con�guration. When the clusterf con�guration state
is modi�ed, any new IPVS services and destinations will be added before updat-
ing or removing the old IPVS services and destinations, minimizing any disruption
to services. Docker service backends can be stopped gracefully, con�guring a zero
IPVS destination weight to drain connections until the container exits and clusterf

removes the IPVS destination.

4.5 Con�guration

The clusterf con�guration is stored as a tree of JSON-encoded con�guration ob-
jects, using the etcd key schema shown in Figure 7. A clusterf Service associates
a number of ServiceBackend network endpoints with a ServiceFrontend network
endpoint provided by IPVS. The ServiceFrontend and ServiceBackend network
endpoints can be IPv4 or IPv6 addresses with TCP or UDP ports, and any com-
bination thereof. Connections to the ServiceFrontend network endpoint will be
load-balanced across the associated ServiceBackend endpoints. A clusterf Route

further associates a set of ServiceBackends within the network with an IPVS for-
warding con�guration. The ServiceBackend and Route con�guration objects can
be automatically managed by clusterf-docker, based on active Docker networks
and containers within the cluster. The ServiceFrontend con�guration is deter-
mined by the external network addressing and routing methods used, which are
outside the scope of clusterf. The clusterf ServiceFrontends must be con�g-
ured externally.

/ c l u s t e r f / route s / docker1
{" Pr e f i x " : " 1 0 . 1 . 1 0 7 . 0 / 24" , "Gateway " : " 1 0 . 1 0 7 . 1 0 7 . 1 " ,

"IPVSMethod " :" droute "}
/ c l u s t e r f / route s / docker2

{" Pr e f i x " : " 1 0 . 2 . 1 0 7 . 0 / 24" , "Gateway " : " 1 0 . 1 0 7 . 1 0 7 . 2 " ,
"IPVSMethod " :" droute "}

/ c l u s t e r f / s e r v i c e s /example/ f rontend
{" IPv4 " : " 1 9 2 . 0 . 2 . 9 9 " , "TCP":1337}

/ c l u s t e r f / s e r v i c e s /example/backends /84dd43bc . . .
{" IPv4 " : " 1 0 . 1 . 1 0 7 . 2 " , "TCP":1337}

/ c l u s t e r f / s e r v i c e s /example/backends /443b85a3 . . .
{" IPv4 " : " 1 0 . 2 . 1 0 7 . 3 " , "TCP":1337}

Figure 7: Resulting clusterf con�guration state for the example network in Figure
5. The etcd key paths are aligned to the left, with the JSON-encoded value indented.
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The con�guration schema is designed to allow atomic updates of the individual
con�guration objects without leaving the con�guration in an invalid state between
individual operations. Storing a network address and port as separate con�guration
nodes would lead to invalid intermediate con�guration states, as the etcd database
does not provide atomic updates of multiple key-value nodes. For example, chang-
ing a service from the ipv4=192.0.1.1 tcp=80 endpoint to the ipv4=192.0.1.2

tcp=8080 endpoint would involve an intermediate con�guration state of either
ipv4=192.0.1.2 tcp=80 or ipv4=192.0.1.1 tcp=8080, both of which are invalid
con�guration states.

The clusterf Routes and ServiceBackends within a Docker cluster can be au-
tomatically con�gured by clusterf-docker based on the networks and containers
managed by the Docker Engine. The Docker API is used to maintain an internal
representation of the current state of each Docker network and container. The in-
ternal representation of the local Docker state is used to generate a local clusterf
con�guration. The clusterf ConfigWriter implementation is used to update and
refresh the local clusterf con�guration into etcd. Each local clusterf con�gura-
tion object is compiled into etcd con�guration nodes, which is created or updated
as necessary using a etcd set operation. Any etcd con�guration nodes written by
the same ConfigWriter that are no longer present in the new con�guration object
are deleted from etcd. Each etcd node is written using a con�gurable TTL, and
the ConfigWriter periodically issues etcd refresh operations to keep the con�g-
uration nodes alive. If the clusterf-docker process fails, the refresh operations
will cease, and etcd will eventually expire each con�guration node managed by the
clusterf-docker instance that failed. The same mechanism is also used to handle
clusterf-docker restarts, where the new ConfigWriter instance does not know
about the existing con�guration nodes.

Each Docker container can use the net.qmsk.clusterf.service label to asso-
ciate itself with a named clusterf Service. A clusterf ServiceBackend will
be generated using the Docker container's IPv4 and IPv6 network addresses within
the default Docker bridge network. The net.qmsk.clusterf.backend.tcp and/or
net.qmsk.clusterf.backend.udp labels must be used to select the exposed port
to con�gure. A container can also be attached to multiple services using a space-
separated list of service names. Di�erent services can use di�erent TCP/UDP ports
con�gured using multiple net.qmsk.clusterf.backend:$service.* labels. The
clusterf-docker component also allows a clusterf Route to be con�gured for
the default Docker network on each machine, generated using the Docker network's
IPv4 and IPv6 subnets. The clusterf Route is exported using a con�gureable
IPVS forwarding method and optional clusterf Route Gateway address.

The clusterf con�guration in etcd is used by clusterf-ipvs to automatically
manage the runtime IPVS con�guration. The ServiceFrontend objects are trans-
lated into IPVS services, and the corresponding ServiceBackend objects are used
con�gure the IPVS destinations. Both the ServiceFrontend and ServiceBackend
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JSON objects use a combination of IPv4, IPv6, TCP and UDP keys to represent a
set of network endpoints. For each clusterf service, the ServiceFrontend con�g-
uration is used to con�gure up to four separate IPVS services, one for each valid
combination of IPv4 TCP, IPv4 UDP, IPv6 TCP and IPv6 UDP addresses and ports.
For each generated IPVS service, a single IPVS destination is generated for each of
the clusterf service's ServiceBackends that have a matching IPv4 or IPv6 address
and TCP or UDP port con�gured. The ServiceBackend JSON object also contains
a Weight key, which is used to con�gure IPVS destination's weight for use by the
IPVS scheduler.

The clusterf Route objects are used to generate the IPVS destination con�guration
for each clusterf ServiceBackend. The Route Prefix is an IPv4 or IPv6 CIDR
subnet that is matched against each ServiceBackend IPv4 or IPv6 address. The
resulting IPVS destination for each ServiceBackend is con�gured using the most-
speci�c matching Route. The Route IPVSMethod is used to con�gure the IPVS
destination forwarding method, and must be either "masq", "droute" or "tunnel".
If the Route IPVSMethod is omitted or an empty string, no IPVS destination will be
con�gured for the ServiceBackend. This mechanism can be used to limit the con�g-
ured IPVS destinations to those matching speci�c clusterf Routes by con�guring
a default Route with an empty IPVSMethod.

The two-level load balancing scheme used in the clusterf load balancer is based
on the extension of the Route object to include an optional Gateway address. If
the Route has a Gateway con�gured, then the IPVS destination is generated using
the matching Route Gateway address instead of the ServiceBackend address. The
IPVS destination is generated using the original ServiceFrontend TCP or UDP port
to enable the chaining of IPVS load balancers. Since IPVS does not allow multiple
identical destinations for a service, multiple ServiceBackend objects matching the
same Route are merged into a single IPVS destination. This merging preserves the
ServiceBackend weights by con�guring the merged IPVS destination with the sum
of the merged ServiceBackend weights.

IPVS supports the use of a zero destination weight value for graceful shutdown,
where packets for existing connections will continue to be forwarded, but no new
connections will be scheduled for the destination. Using the Docker Engine Events
API, clusterf-docker can detect when a container has been commanded to stop,
but has not yet exited. The clusterf ServiceBackends for such a container
will immediately be recon�gured using a Weight of zero, allowing the service to
gracefully complete any pending connections. Once the Docker container exits, the
ServiceBackend is removed.

The clusterf con�guration schema can be used to conveniently represent services
using a combination of IPv4 and IPv6 networking or TCP and UDP transport
protocols. For example, a dual-stack DNS service could be con�gured as a single
clusterf service, supporting the use of both IPv4 and IPv6 for DNS queries over
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TCP or UDP transports. Not all of the ServiceBackends for a clusterf service
are necessarily required to use the same set of network families and transport pro-
tocols. The ServiceBackend endpoints can use di�erent TCP and UDP ports than
the ServiceFrontend ports when using the IPVS masq forwarding method. The
IPVS droute and tun forwarding methods requires the backend to use the same
TCP/UDP ports as the ServiceFrontend. A clusterf service that does not have
any ServiceFrontend con�gured does not result in any IPVS con�guration.

The two-level forwarding method requires the Docker and Gateway machines to use
di�erent IPVS con�gurations. The clusterf ConfigReader implementation can
be used to read and merge multiple clusterf con�guration trees from di�erent
con�guration sources. The ConfigReader supports the use of multiple global etcd
con�guration sources or local �lesystem con�guration sources. The local con�gu-
ration source can be used to con�gure local Route objects that override all Route
objects in the global etcd con�guration. The Gateway machines use the global etcd
Route objects to generate IPVS con�gurations for all available clusterf services
in etcd. The Docker machines use a locally con�gured Route corresponding to the
local Docker container network to only generate IPVS con�gurations for clusterf
services having local container backends.

4.6 Implementation Challenges and Future Work

As discussed in Section 4.2, the current clusterf implementation assumes the use of
standard Ethernet networking, allowing the straightforward use of DSR techniques
for load balancing. Any form of stateful �rewalling or reverse path �ltering based on
source addresses within the external network will limit the use of DSR techniques
for scaling the load balancer, requiring the use of symmetric routing paths for load
balanced tra�c. The clusterf design allows the use of stateful �rewalling and
NAT on the Docker machines, but the Gateway machines must use stateless �rewall
rules for VIPs to allow IPVS connection failover. Extending the clusterf network
model to work within cloud networking environments that assume the use of a single
network address per machine is the subject of future work.

As discussed in Section 4.1, one method to provide symmetric paths for load bal-
ancing is the use of both SNAT and DNAT for forwarded packets. The Linux IPVS
implementation supports the use of Full NAT for network-level load balancing, al-
lowing the use of a local source address on each load balancer to provide a symmetric
return path. The use of Full NAT for network-level load balancing closely resembles
the behavior of an application-level proxy, while potentially o�ering better perfor-
mance. However, the use of Full NAT does not allow the server application to see
the true network address of the client, and greatly complicates the implementation
of connection failover when using source addresses local to each load balancer. An
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alternative approach would be the use of multiple VIPs for each service 28, one for
each Gateway machine. The use of DSR forwarding within the internal network
preserves the individual destination VIP within each incoming connection, allowing
the use of source routing policy rules on each Docker machine to provide a symmet-
ric return path for each VIP via the internal network address of the corresponding
Gateway machine.

As discussed in Section 4.3, the current design of masq forwarding within the Docker
machines su�ers from a serious issue related to NAT hairpinning within each local
Docker network. The return path for a containerized client application connecting
to an internally load balanced service is broken when the connection is load balanced
to a backend container on the same local Docker network. The incoming packets
forwarded by the Docker machine to the service container using DNAT will have
source and destination addresses both within the local Docker network. The service
backend container will have a direct route across the local Docker network for the
incoming packet's source address, and the reply packets bypass the reverse NAT
within the host machine. The client machine will be unable to associate the reply
packets with the source address of the service backend, rather than the virtual
network address of the load balanced service.

Possible solutions to this NAT hairpinning issue would be the use of separate local
container networks for di�erent containers, the use of Full NAT for connections, or
the use of Linux ebtables BROUTING to force bridged packets on the virtual Docker
network bridge to be processed as routed packets. An alternative approach would be
the implemention of a Docker network plugin that con�gures the Docker container
network namespace to accept unmodi�ed packets for the virtual service network
address. Assuming the use of matching service frontend and backend TCP/UDP
ports, this would allow the use of droute forwarding on the Docker machines, using
DSR for load balancing within the local Docker network, The implementation of a
solution for this �aw is tracked in a GitHub project issue 29.

While the clusterf control plane implementation, the Linux IPVS data plane and
Docker all include support for IPv6, extending the network model for IPv6 support
and �xing any IPv6-related implementation issues is the subject of further work.
The current implementation of clusterf-docker is at least partially broken for the
case of a dual-stack Docker network having both IPv4 and IPv6 subnets 30. Using
external IPv6 addresses routable by the external network would avoid the need
for NAT on the Docker machines. Linux IPVS also supports the use of IPv4-in-
IPv6 tunneling [30], which could be used to allow the implementation of IPv6-only
container networking, using separate dual-stack load balancers to tunnel incoming
IPv4 connections to the containers.

28https://github.com/qmsk/clusterf/issues/15
29https://github.com/qmsk/clusterf/issues/10
30https://github.com/qmsk/clusterf/issues/20

https://github.com/qmsk/clusterf/issues/15
https://github.com/qmsk/clusterf/issues/10
https://github.com/qmsk/clusterf/issues/20
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A network-level load balancer processing individual network packets must also con-
sider the case of fragmented IP packets. While the Linux IPVS implementation
includes support for IP fragment reassembly within a single machine, the Google
Maglev design also discusses further issues related to IP fragmentation and ECMP
[7, Section 4.3]. Handling such di�erences in ECMP hashing for �rst and trailing
fragments would require the implementation of additional fragment synchronization
mechanisms between IPVS load balancers.
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5 Evaluating the clusterf Load Balancer

The design and implementation of the clusterf load balancer is evaluated using
the CATCP testbed. A cluster of physical server machines is used to construct a
virtual network topology including two Docker clusters, and two sets of Gateway
machines used for routing and load balancing. Docker containers running the iperf
network measurement tool are used to generate TCP tra�c within the test network,
evaluating the clusterf load balancer in di�erent networking scenarios. A central-
ized monitoring system is used to measure and record performance metrics across
the test cluster.

5.1 Physical Infrastructure

The physical infrastructure used for the testbed network is shown in Figure 8. The
physical infrastructure consists of seven identical "CATCP" machines and an eighth
"obelix" machine. Each of the machines is connected to both an external network
and a dedicated internal network switch. The CATCP machines are used to form a
virtualization cluster that is used to run the virtual testbed network. The CATCP
machines are not dedicated for the clusterf measurements, so some level of inter-
ference from other virtual machines must be accounted for.

A HP ProCurve 2810-48G switch is used for the internal network infrastructure, us-
ing quad-gigabit Link Aggregation Control Protocol (LACP) trunks with VLAN
tagging to form the virtual network infrastructure used by the CATCP virtual
machines. The ProCurve switch distributes tra�c across the LACP trunk ports
based on a hash of the L2 Ethernet source/destination address pairs. The CATCP
machines are con�gured to use OVS bond_mode=balance-tcp to distribute tra�c
across the LACP trunk ports based on L4 Ethernet + IP + TCP/UDP source/des-
tination address pairs. The maximum capacity between any two Ethernet hosts is
thus limited to 1 Gbit/s by the ProCurve switch's LACP transmit balancing, up to
a maximum of 4 Gbit/s per physical machine distributed across multiple targets.

Each CATCP machine is a Dell R410 server with an Intel E5640 quad-core CPU
and 12GB of memory, connected to the CATCP switch with a quad-gigabit LACP
trunk. Each physical CATCP machine has 4 logical CPU cores, for a total of 8
hyperthreads. The physical network interfaces are Intel gigabit NICs, using eight
queues to distribute the packet processing workload across all CPU cores. The
CATCP machines run the Ubuntu Linux 3.13 kernel included in Ubuntu 14.0 . The
CATCP machines use Open vSwitch (OVS) for networking, using VLAN tagging
to form multiple virtual networks over the LACP trunks to the internal CATCP
network switch. The CATCP machines form a virtualization cluster, running QEMU
KVM virtual machines. Each virtual machine may have multiple virtio virtual
network interfaces attached to di�erent virtual networks via OVS.
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Figure 8: The physical testbed machines and network topology
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The CATCP machines are used to run the virtual machines used to form the
evaluation testbed. Each virtual machine used for the measurement infrastruc-
ture has 2 virtual CPUs. The virtual network interfaces are virtio devices, us-
ing a single queue to process all packets on the �rst CPU core. The virtual ma-
chines use Linux Receive Packet Steering (RPS) to distribute as much of the ker-
nel packet processing workload across each CPU as possible. Without RPS, the
network performance of a gateway machines is limited by the saturation of the
�rst CPU core at full softirq utilization. Tuning the Linux networking stack us-
ing /sys/class/net/eth-*/queues/rx-*/rps_cpus=3 provides improved network
performance with more even CPU utilization.

The Obelix machine is a Dell R410 server with dual Intel X5570 quad-core CPUs
and 64GB of memory, connected to the CATCP switch with a single gigabit link.
The Obelix machine is used to run the central monitoring system used for network
performance measurements. The Obelix machine runs multiple LXC containers
having VLAN network interfaces connected to the same virtual networks used by
the CATCP machines. The Obelix machine is not used directly for any network
measurements.
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5.2 Virtual Infrastructure

Figure 9: The virtual testbed machines and network topology

The testbed environment used to evaluate the clusterf load balancer consists of
multiple Docker and Gateway machines, running as virtual machines on the physi-
cal CATCP machines. The virtual machines are connected to a number of virtual
Ethernet networks to form the testbed network topology shown in Figure 9. Each
virtual machine is named per the physical machine they are running on, as arranged
into vertical columns in Figure 9. The numbered catcpX-* virtual machine are
�xed to the corresponding catcpX physical machine, using local disk storage. The
unnumbered catcp-* virtual machines are free to move within the CATCP virtu-
alization cluster, using clustered Storage Area Network (SAN) disks that allows for
live migration across physical machines. The numbered catcpX-* virtual machines
are designed for horizontally scalable applications, whereas the clustered catcp-*
virtual machines are designed for other applications that lack application-level fault
tolerance.

The majority of the virtual machines runs the Linux 4.4 kernel included in Ubuntu
16.04. The catcp-terom-dev virtual machines mostly run the Linux 3.16 kernel
included in Debian jessie, apart from the catcp7-terom-dev virtual machine,
which runs the same Linux 4.4 kernel included in Ubuntu 16.04. All of the machines
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use the Linux iptables �rewall to enforce network access policies, including the use
of connection tracking for stateful �rewall rules. All of the machines use Puppet 31

for con�guration management, used to ensure a consistent system con�guration for
each machine.

The virtual testbed contains a total of three virtual Ethernet networks and two
Docker clusters. The catcp-docker and catcp-terom-dev Docker machines form
two separate Docker clusters. Each cluster of Docker machines is connected to a sep-
arate internal Ethernet network, using internal 10.109.0.0/16 (catcp-docker) and
10.107.0.0/16 (catcp-terom-dev) network addresses. Each Docker machine is as-
signed a unique internal network subnet (catcpX-docker 10.X.109.0/24, catcpX-
terom-dev 10.X.107.0/24) for use by Docker containers within the local Docker
bridge. The catcp-gw and catcp-test-gw Gateway machines act as routers, inter-
connecting the Docker cluster networks via a common core network, using internal
10.255.0.0/16 network addresses.

Per the clusterf network model discussed in Section 4.2, the Open Shortest Path
First (OSPF) routing protocol is used to provide network routing within the testbed,
including each machine attached to the internal networks and any local Docker
container networks. Each Docker and Gateway machine runs the bird 32 routing
daemon, con�gured for OSPF routing within the OSPF 0.0.0.0 backbone area.
Each Docker machine's docker0 bridge is con�gured as an OSPF stub interface in
bird, and is thus advertised as an OSPF stubnet to the other machines. Network
tra�c between Docker containers within each Docker cluster is routed directly across
the virtual Ethernet network between the Docker machines. Network tra�c between
Docker containers in di�erent clusters is routed via the Gateway machines across
the core network.

Using OSPF routing within the testbed network allows the use of Equal-Cost Multi-
Path (ECMP) routing for inter-cluster tra�c. The bird OSPF routing daemon
on each machine is con�gured to enable ECMP routing, installing multiple Linux
next-hops for each matching set of OSPF routes. With multiple Gateway machines
providing alternate paths across the network, each machine will have multiple equal-
cost routes for each subnet, allowing the use of L3 load-balancing for tra�c across
the testbed network. While the use of L2 load balancing within the physical network
infrastructure limits the total throughput for each symmetric routing path across
the cluster to 1Gbit/s, using L3 to distribute tra�c across multiple L2 �ows across
the same network allows achieving a higher total throughput of up to 4Gbit/s per
machine.

The catcp-test-gw machines act as load balancers for the test services on the
catcp-terom-dev machines. The catcp1-test-gw and catcp2-test-gw machines
use internal VIPs within 10.0.107.0/24 for loadbalancing, announced via OSPF.

31https://puppet.com/
32http://bird.network.cz/

https://puppet.com/
http://bird.network.cz/
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Each of the two gateway machines announces the 10.0.107.0 VIP with the same
OSPF cost. Incoming tra�c for the shared 10.0.107.0 VIP is distributed evenly
across the two gateway machines using ECMP routing on the catcp-gw machines.
The 10.0.107.1 and 10.0.107.2 VIPs are announced by each of the two gateway
machines using a di�erent weight. The catcp1-test-gw machine acts as the pri-
mary router for the 10.0.107.1 VIP, and the catcp2-test-gw machine acts as the
primary router for the 10.0.107.2. In the case of gateway machine failure, the
remaining gateway machine will be used for all three VIPs.

The catcp-test-gw machines also act as network routers for the return path from
the catcp-terom-dev machines. The catcp-gw machines act as external network
routers, handling tra�c for the catcp-docker test clients. The catcp5-test-gw
and catcp6-gw machines are used for infrastructure purposes, and have external
network connectivity. These gateway machines are used as NAT gateways for outgo-
ing external tra�c from the Docker machines, as well as load balancing tra�c for the
centralized measurement services running on the obelix-* containers. The catcp5-
test-gw and catcp6-gw machines are con�gured with higher OSPF costs on the
catcp-terom-dev and catcp-docker networks to avoid routing any inter-cluster
tra�c.

The baseline performance measurements in Section 6.3 show that each CATCP
virtual machine is capable of handling a minimum of 10Gbit/s of iperf tra�c
within the local Docker network, and a minimum of 1Gbit/s of iperf tra�c across
the catcp-terom-dev network.

5.3 Docker Infrastructure

Each Docker cluster uses Docker Swarm for orchestration, using the numbered
catcpX-* virtual machines as Swarm nodes, and the clustered catcp-* virtual ma-
chine as the Swarm Manager. Each Docker machine runs Docker 1.11. Due to the
use of customized iptables policy, the Docker iptables con�guration mechanism
and docker-proxy functionality are disabled, meaning that the standard Docker
port publishing mechanism cannot be used.

Each Docker cluster uses etcd for shared con�guration, and SkyDNS for service
discovery within the internal *.catcp domain. The Docker machines within each
Docker cluster are used as etcd nodes, running a �ve-node etcd cluster. Each
Docker machine runs a modi�ed version of Gliderlabs registrator 33 as well as
clusterf-docker to maintain a service discovery database of running Docker ser-
vices within etcd. Both Docker clusters include SkyDNS services providing dynamic
*.docker.test.catcp and *.docker.catcp DNS names for each Docker container
and service within each Docker cluster. The internal SkyDNS domains are delegated

33https://github.com/qmsk/registrator

https://github.com/qmsk/registrator
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within the internal *.catcp DNS hierarchy, allowing the use of all such DNS names
across both Docker clusters.

The catcp5-test-gw and catcp6-gwmachines within each cluster provide clusterf
load balancing for internal infrastructure services. Each Docker cluster also runs the
Vulcand HTTP load balancer, using both internal DNS service discovery and the
clusterf load balancer to expose internal and external HTTP services. Such HTTP
services include a private Docker Registry and the Grafana service used for moni-
toring.

5.4 Measurement Tools

A simple clusterf-test client-server application is used to test the routing of
connections within the testbed network using di�erent load balancing methods. A
Docker container is used to run the clusterf-test server, listening on a con�g-
urable TCP port, registered as a clusterf service backend. The cluserf-test

client connects to a con�gurable destination DNS or network address and TCP
port, where the clusterf-test server returns a string describing the remote and
local network addresses seen by the server application. The clusterf-test client
application prints both the outgoing TCP connection's local and remote network
addresses, and the corresponding addresses sent by the server. An example of the
output printed by the clusterf-test client application is shown in Figure 10.

c l i e n t : 1 0 . 8 . 1 0 9 . 4 : 5 1 158 −> 10 . 0 . 1 0 7 . 1 : 1 3 3 7
s e r v e r : 1 0 . 8 . 1 0 9 . 4 : 5 1 158 −> 10 . 8 . 1 0 7 . 4 : 1 3 3 8

Figure 10: Example clusterf-test output for a connection from the 10.8.109.4
client container to TCP port 1337 on the 10.0.107.1 VIP, using clusterf to load
balance the connection to the 10.8.107.4 server container listening on TCP port
1338

The iperf network measurement tool is used to generate network tra�c for each
experiment, measuring both the baseline throughput of the network, and each load
balancing scenario tested. The catcp-docker cluster is used to run multiple iperf
clients, connecting to a horizontally scaled iperf service consisting of iperf servers
on the catcp-terom-dev cluster. The iperf clients generate upload tra�c to the
iperf clients, resulting in high network transmission rates from the catcp-docker
machines, via the catcp-gw machines to the catcp-test-gw machines, and on
to the catcp-terom-dev machines. The iperf server on the catcp-terom-dev
machines only returns TCP ACK packets.
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5.5 Load Balancing

Three di�erent techniques are used to load balance connections from the iperf

clients to the iperf servers. Each tested load balancing technique uses etcd for
dynamic con�guration, using dynamic service discovery information registered for
each running iperf server container. The load balancer data plane components are
run on the catcp-test-gw machines.

DNS

The SkyDNS support for hierarchially classi�ed services is used to resolve the con-
tainer network address of the iperf server running on each catcp-terom-dev ma-
chine. The container network addreses on the catcp-terom-dev machines are also
routable from the catcp-docker machines. The baseline measurements in section
6.3 use a full mesh of iperf clients, with each client machine connectiong to each
server machine.

HAProxy + confd

The application-level HAProxy load balancer is used in combination with the confd
dynamic con�guration mechanism to provide transport-layer load balancing of TCP
connections. The confd con�guration template shown in Figure 11 is used to provide
dynamic HAProxy con�guration for services registered in etcd by clusterf-docker.
The use of the clusterf con�guration state for HAProxy ensures an identical load
balancing con�guration as for clusterf.

clusterf

The network-level clusterf load balancer is used to provide L4 load balancing of
TCP connections using the Linux IPVS load balancer. Each Docker machine runs
the clusterf-docker service discovery agent, managing the clusterf con�guration
state in etcd for each running Docker container associated with a clusterf service.
Each Gateway machine and Docker machine runs the clusterf-ipvs agent, mang-
ing the local IPVS con�guration. The design and implementation of clusterf is
discussed in Chapter 4.

Each of the catcp1-test-gw and catcp2-test-gw machines can be con�gured
to use either HAProxy or clusterf for load balancing. Switching between the
two involves stopping or starting the respective systemd haproxy.service and
clusterf-ipvs.service services. The clusterf-ipvs service is con�gured to �ush
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{{ range $ s e r v i c e := l s d i r "/ s e r v i c e s "}}
# {{ $ s e r v i c e }}
{{− $f rontend := j son ( getv ( p r i n t f "/ s e r v i c e s/%s / f rontend "

$ s e r v i c e ) " nu l l ") −}}
{{− i f $ f rontend . tcp }}
l i s t e n c l u s t e r f −{{ $ s e r v i c e }}−tcp

mode tcp

{{ i f $ f rontend . ipv4 −}}
bind {{ $f rontend . ipv4 }} :{{ $ f rontend . tcp }}
{{− end −}}
{{− i f $ f rontend . ipv6 −}}
bind {{ $f rontend . ipv6 }} :{{ $ f rontend . tcp }}
{{− end }}

{{ range $node := ge t s ( p r i n t f "/ s e r v i c e s/%s/backends /∗"
$ s e r v i c e ) }}

{{− $backendName := base $node .Key −}}
{{− $backend := j son $node . Value −}}
# {{$backendName}}
{{− i f and $backend . ipv4 $backend . tcp }}
s e r v e r {{$backendName}} {{$backend . ipv4 }} :{{ $backend . tcp

}} weight {{$backend . weight }}
{{ end }}
{{− i f and $backend . ipv6 $backend . tcp }}
s e r v e r {{$backendName}} {{$backend . ipv6 }} :{{ $backend . tcp

}} weight {{$backend . weight }}
{{ end }}
{{ end −}}

{{− end }}
{{ end }}

Figure 11: confd con�guration template for HAProxy using the clusterf etcd

schema
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the IPVS con�guration when stopping, allowing HAProxy to pick up the connec-
tions. The use of the correct load balancing method is tested by monitoring the
internal performance metrics reported by each load balancer.

5.6 Load Measurements

A centralized monitoring system is used to monitor various performance metrics
across the entire testbed network, including the physical CATCP machines and all
virtual machines. The use of a centralized monitoring system allows the correlation
of multiple performance metrics across multiple machines in real time, providing
a better understanding of how the system behaves under testing. The centralied
monitoring system can be used to detect any resource contention bottlenecks within
the underlying physical testbed.

Analyzing the performance of a complex system being load tested requires analyz-
ing the resource utilization, saturation and error rates across each of the underlying
components in order to identify the underlying reasons for any resulting performance
bottlenecks [31]. Verifying the correct behaviour of the system is also important for
determining the accuracy of the results. For example, initial tests of the load bal-
ancers exhausted the default Linux conntrack table limits on the catcp-test-gw
machines, causing the Linux �rewall to drop the TCP SYN packets. Increasing
the conntrack table limits signi�cantly improved the results of the a�ected mea-
surements. Verifying the accuracy of the measurements requires monitoring the
utilization of the conntrack table to detect any dropped connection errors when
saturated.

The Telegraf 34 monitoring agent runs on each virtual machine, and periodically
samples various system and application performance counters. The Collectd agent
also runs on every machine within the measurement infrastructure, including the
physical CATCP machines. Both the telegraf and collectd agents are con�gured
to sample each performance metric at 10-second intervals. The collected metrics are
sent to a central In�uxDB 35 time-series database on the obelix server for storage
and aggregation. During the operation of the system, the gathered metrics are
queried and visualized using the Grafana 36 web application.

Various telegraf and collectd plugins are used to gather relevant performance
metrics, using a Grafana dashboard to monitor test runs, and using In�uxDB queries
to generate the results shown in the following Section 6.

34https://influxdata.com/time-series-platform/telegraf/
35https://influxdata.com/time-series-platform/influxdb/
36http://grafana.org/

https://influxdata.com/time-series-platform/telegraf/
https://influxdata.com/time-series-platform/influxdb/
http://grafana.org/
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CPU

The telegraf cpu input plugin is used to gather CPU utilization percentages per
CPU state for each CPU core.

The following In�uxDB query structure is used to report the CPU utilization in
percentages:

SELECT 100 .0 − usage_idle − usage_stea l AS u t i l FROM cpu
WHERE host ~= / catcp [0−9]+−terom−dev/ AND cpu != ' cpu−
t o ta l ' AND time >= $from AND time <= $to GROUP BY host ,
cpu

Network Interfaces

The telegraf net input plugin is used to gather network interface counters for each
network interface.

The following In�uxDB query structure is used to report the interface utilization
rates in bits/s:

SELECT non_negat ive_der ivat ive ( bytes_sent , 1 s ) ∗ 8 AS tx_bps
, non_negat ive_der ivat ive ( bytes_recv , 1 s ) ∗ 8 AS rx_bps
FROM net WHERE host =~ / catcp [0−9]+−terom−dev/ AND
i n t e r f a c e = ' eth−terom−dev ' AND time >= $from AND time <=
$to GROUP BY host , i n t e r f a c e

Docker Containers

The telegraf docker input plugin is used to gather the CPU and network utiliza-
tion of labeled Docker Containers.

The following In�uxDB query structure is used to report the Docker network inter-
face utilization rates in bits/s:

SELECT non_negat ive_der ivat ive ( rx_bytes , 1 s ) ∗ 8 AS rx_bps
FROM docker_container_net WHERE i p e r f = ' se rver ' AND
network = ' eth0 ' AND time >= $from AND time <= $to GROUP
BY host , container_name
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Background Signals

The collectd ipvs plugin is used to verify that connections are being load balanced
by IPVS as expected.

The telegraf haproxy input plugin is used to verify that connections are being
load balanced by HAProxy as expected.

The collectd conntrack plugins is used to monitor the size of the Linux conntrack
table, verifying that no connections are being dropped due to the saturation of the
conntrack table used for stateful �rewalling.
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6 Results and Analysis

The primary purpose of the experiments is to verify the design of the clusterf load
balancer, evaluating the behavior of the clusterf load balancer under di�erent load
balancing scenarios including load balancer failures. The secondary purpose of the
experiments is to compare the performance of the Linux IPVS implementation of a
network-level load balancer used in the clusterf load balancer with the HAProxy
implementation of an application-level load balancer. The experiment design does
not include any evaluation of the performance of the clusterf load balancer control
plane itself.

The following hypotheses are used to design the set of experiments performed and
analyzed:

1. The clusterf network-level load balancer is able to preserve the original net-
work source address of the client application for load balanced connections,
which is not possible when using a application-level load balancer.

2. The use of local NAT forwarding within the clusterf load balancer allows
the use of backend servers listening on a di�erent port number than the port
number used by the client to connect to the service.

3. The clusterf load balancer is capable of distributing connections across mul-
tiple backends.

4. A single instance of the Linux IPVS network-level load balancer provides bet-
ter performance than a single instance of the HAProxy application-level load
balancer.

5. The use of distributed DSR forwarding within the clusterf load balancer
allows the use of ECMP routing across multiple load balancers to scale the
throughput for a single VIP.

6. The use of the network-level IPVS load balancer allows the use of connection
state synchronization to scale the reliability of a single VIP by migrating active
connections away from a failed load balancer.

The baseline performance provided by the tested infrastructure itself is �rst evalu-
ated using a series of measurements, including local performance within each ma-
chine, intra-cluster performance across the machines within a network, and inter-
cluster performance between networks. We compare implementations of network-
level and application-level load balancing using a symmetric routing scenario, with
a single gateway machine used to route all network packets for both the incoming
path and the return path. We evaluate the use of ECMP routing for horizontal
scaling, using multiple IPVS load balancers to provide additional throughput while
allowing for connection failover.
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The �gures and tables included in this section are rendered from the gathered metrics
stored in the In�uxDB database. A Python script is used to run In�uxDB queries
using the speci�c time range of each experiment's test run, rendering the included
plots using matplotlib.

6.1 Challenges

The use of shared virtual machine and network infrastructure for performance mea-
surements is challenging at best and misleading at worst. The use of multiple virtual
machines contending for the same physical machine resources does not provide per-
fect performance isolation between di�erent virtual machines. Saturating the packet
forwarding capacity of a virtual machine will partially saturate the physical CPU
resoures of the physical machine, which may a�ect the performance of a neighboring
virtual machine.

Careful analysis of the measurement results either requires an experimental design
avoiding any such resource contention, or requires measurement results to be quali-
�ed with any such bottlenecks identi�ed. Segregating the di�erent virtual machines
across di�rent physical machines provides a reasonable level of performance isolation
for most experiments. The physical CATCP1 and CATCP2 machines were selected
to run the virtual Gateway machines used for performance measurements, as they
have less background load than the other physical CATCP machines. The use of
a centralized measurement platform including both physical and virtual machines
allows us to identify any bottlenecks formed by the underlying physical infrastruc-
ture.

The experimental design must account for the use of multiple levels of load balancing
within the testbed network:

• Docker Swarm's dynamic scheduling of Docker containers across di�ernet Dock-
ermachines

• L2 load-balancing of tra�c between each pair of virtual machines within each
virtual ethernet network across multiple LACP trunk links

• L3 load-balancing of tra�c across multiple Gateway machines using ECMP
routing

• L4 load-balancing of connections across multiple backends using IPVS/HAProxy

Each experiment uses statically assigned machines to run each iperf client, avoiding
the use of Docker Swarm for dynamic scheduling. The use of L2 load balancing
across LACP trunks of gigabit links limits the maximum throughput achievable for
any given measurement. The inter-cluster symmetric routing tests are by design
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limited to a maximum 1Gbps by the use of a single L2 �ow between the pair of
Gateway machines. Congestion between multiple L2 �ows hashing onto the same
trunk port may potentially interfere with the results. The distribution of L3 �ows
across gateway machines and L4 �ows across server machines is included in each set
of results.

6.2 Connection Routing

The clusterf-test client-server application is used to test the behavior of TCP
connections routed through the testbed network. For each of the three VIPs used
for load balancing, one instance of the clusterf-test server is run on each of the
catcp-terom-dev machines, for a total of 3 ∗ 5 server instances. Connections to
the 10.0.107.1 VIP are routed to the catcp1-test-gw machine, which uses the
clusterf IPVS load balancer to forward each connection to one of the �ve catcpX-
terom-dev backends having an internal IP address of the form 10.X.107.Y. Con-
nections to the 10.0.107.2 VIP are routed to the catcp2-test-gw machine, which
uses the HAProxy load balancer to likewise proxy each connection to one of the �ve
catcp-terom-dev backends.

6.2.1 DNS Service Discovery

The correct operation of the SkyDNS service used for service discovery within the
cluster is veri�ed by running a single clusterf-test client on the catcp-docker
machine, using DNS names within the clusterf-test.docker.test.catcp domain
to connect to the clusterf-test servers on the catcp-terom-dev machines.

c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 4 3 774 −> 10 . 5 . 1 0 7 . 3 : 1 3 3 7
s e r v e r : 1 0 . 9 . 1 0 9 . 3 : 4 3 774 −> 10 . 5 . 1 0 7 . 3 : 1 3 3 7

c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 3 9 176 −> 10 . 3 . 1 0 7 . 4 : 1 3 3 7
s e r v e r : 1 0 . 9 . 1 0 9 . 3 : 3 9 176 −> 10 . 3 . 1 0 7 . 4 : 1 3 3 7

Figure 12: The clusterf-test client output when using the
clusterf-test.docker.test.catcp DNS name with the network address of
each clusterf-test server

Figure 12 shows the results of multiple client runs using the clusterf-test.docker.
test.catcp DNS name. A di�erent server instance may handle each connection, us-
ing application-level DNS load balancing across each of the clusterf-test servers.
The use of standard IP network routing without any NAT means that both the
client and server see the same network source and destination addresses.
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c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 3 9 166 −> 10 . 3 . 1 0 7 . 4 : 1 3 3 7
s e r v e r : 1 0 . 9 . 1 0 9 . 3 : 3 9 166 −> 10 . 3 . 1 0 7 . 4 : 1 3 3 7

c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 5 3 788 −> 10 . 4 . 1 0 7 . 3 : 1 3 3 7
s e r v e r : 1 0 . 9 . 1 0 9 . 3 : 5 3 788 −> 10 . 4 . 1 0 7 . 3 : 1 3 3 7

Figure 13: The clusterf-test client output when using the
catcpX-terom-dev.clusterf-test.docker.test.catcp DNS name with the
network address of each clusterf-test server on the catcpX-terom-dev
machine

Figure 13 shows the results of two consecutive client runs using the catcp3-terom-dev.
clusterf-test.docker.test.catcp and catcp4-terom-dev.clusterf-test.docker.
test.catcp DNS names, respectively. The name will always resolve to a server in-
stance running on the named catcpX-terom-dev machine, having a corresponding
10.X.107.0/24 container network addresses.

6.2.2 Application-level proxying

c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 3 4 504 −> 10 . 0 . 1 0 7 . 2 : 1 3 3 7
s e r v e r : 1 0 . 1 07 . 1 3 . 2 : 4 3996 −> 10 . 5 . 1 0 7 . 4 : 1 3 3 7

c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 3 4 508 −> 10 . 0 . 1 0 7 . 2 : 1 3 3 7
s e r v e r : 1 0 . 1 07 . 1 3 . 2 : 5 7446 −> 10 . 3 . 1 0 7 . 5 : 1 3 3 7

Figure 14: The clusterf-test client output when using the 10.0.107.2 VIP
routed to catcp2-test-gw using the HAProxy application-level load balancer

Figure 14 shows the results of multiple client runs using the 10.0.107.2 VIP routed
to the HAProxy load balancer on catcp2-test-gw, proxying connections across
the server instances on the catcp-terom-dev machines. The network source and
destination addresses seen by the client and server applications are di�erent. The
client uses the destination address 10.0.107.2 routed to the proxy server, and the
server sees the internal source address of the proxy server 10.107.13.2 within the
catcp-terom-dev network. The server application is unable to see the true network
address of the client application.
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6.2.3 Network-level forwarding

c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 3 8 314 −> 10 . 0 . 1 0 7 . 1 : 1 3 3 7
s e r v e r : 1 0 . 9 . 1 0 9 . 3 : 3 8 314 −> 10 . 7 . 1 0 7 . 5 : 1 3 3 7

c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 3 8 330 −> 10 . 0 . 1 0 7 . 1 : 1 3 3 7
s e r v e r : 1 0 . 9 . 1 0 9 . 3 : 3 8 330 −> 10 . 6 . 1 0 7 . 5 : 1 3 3 7

Figure 15: The clusterf-test client output when using the 10.0.107.1 VIP
routed to catcp1-test-gw using the IPVS network-level load balancer

Figure 15 shows the results of multiple client runs using the 10.0.107.1 VIP routed
to the catcp1-test-gw machine using the clusterf network-level load balancer.
The clusterf load balancer uses the two-level forwarding scheme presented in Sec-
tion 4.3 to load balance the connections across the server instances listening on the
same TCP port on each catcp-terom-dev machine. The network source addresses
seen by the client and server applications are the same, but the destination addresses
are di�erent. The packets for each test connection are routed to the catcp1-test-
gw machine, which forwards them unmodi�ed to the catcp-terom-dev machines,
which then forwards them to the server container using DNAT. The server applica-
tion can see the true network address of the client application.

6.2.4 Network-level forwarding with port translation

For this test scenario, the TCP port used by each clusterf-test server is changed,
con�guring each catcpX-terom-dev instance to listen on TCP port 1330+X. The
clusterf ServiceFrontend still uses the same TCP port 1337 as before, but each
clusterf ServiceBackend uses a di�erent TCP port.

c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 3 8 358 −> 10 . 0 . 1 0 7 . 1 : 1 3 3 7
s e r v e r : 1 0 . 9 . 1 0 9 . 3 : 3 8 358 −> 10 . 6 . 1 0 7 . 5 : 1 3 3 6

c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 3 8 360 −> 10 . 0 . 1 0 7 . 1 : 1 3 3 7
s e r v e r : 1 0 . 9 . 1 0 9 . 3 : 3 8 360 −> 10 . 5 . 1 0 7 . 5 : 1 3 3 5

c l i e n t : 1 0 . 9 . 1 0 9 . 3 : 3 8 356 −> 10 . 0 . 1 0 7 . 1 : 1 3 3 7
s e r v e r : 1 0 . 9 . 1 0 9 . 3 : 3 8 356 −> 10 . 7 . 1 0 7 . 5 : 1 3 3 7

Figure 16: The clusterf-test client output when using the 10.0.107.1 VIP
routed to catcp1-test-gw using the IPVS network-level load balancer with dif-
ferent server ports
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Figure 16 shows the results of multiple client runs using the 10.0.107.1 VIP routed
to the catcp1-test-gw machine using the clusterf network-level load balancer.
The clusterf load balancer uses the two-level forwarding scheme presented in Sec-
tion 4.3 to load balance the connections across the server instances listening on
a di�erent TCP port on each catcp-terom-dev machine. The network source
addresses seen by the client and server applications are the same, but the destina-
tion addresses and ports are di�erent. Each catcp-terom-dev machine uses NAT
forwarding for each connection to the clusterf-test service on TCP port 1337,
allowing the use of di�erent TCP ports within the server containers. Even with the
use of heterogeneous server ports, the server application can see the true network
address of the client application.

6.3 Baseline Measurements

Baseline measurements are used to determine the performance limitations of the
testbed network environment. This includes the catcp-terom-dev machines run-
ning the iperf Docker containers, the catcp-terom-dev network interconnecting
the Docker machines, and the catcp-test-gw machines interconnecting the net-
works.

6.3.1 Local container network

To measure the baseline performance of the local Docker network within each catcp-
terom-dev machine, we run a single instance of the iperf server on each catcp-
terom-dev machine. For each catcp-terom-dev machine, we run a single iperf

client connecting to the local iperf server, using the catcpX-terom-dev.iperf.

docker.test.catcp DNS name provided by SkyDNS to resolve the address of the
local iperf server. The resulting tra�c within each catcp-terom-dev machine is
switched across the internal br-docker bridge, with the Linux kernel bridging tra�c
between neighboring Docker containers. The resulting tra�c is limited by the CPU
processing resources available on each catcp-terom-dev machine.
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Figure 17: iperf measurement results for the baseline performance of local bridging
within each local catcp-terom-dev Docker network

Figure 17 shows the achieved iperf upload throughput and resulting CPU utiliza-
tion for the iperf upload test, with each iperf client connecting directly to the local
iperf server (iperf -c catcpX-terom-dev.iperf.docker.test.catcp -t 120). The
results show a higly varying level of CPU utilization for each catcp-terom-dev ma-
chine, handling both the iperf client and server processes, as well as packet switch-
ing of both upload tra�c and return TCP ACK packets. The di�erent machines
achieve varying upload rates between 11 - 20 Gbit/s.

While the results vary between servers, the results indicate that each Docker machine
is capable of handling at least 10Gbit/s of iperf tra�c.

6.3.2 Intra-cluster

To measure the baseline performance of the internal cluster network, we run a single
instance of the iperf service on each catcp-terom-dev machine. For each catcp-
terom-dev machine, we run multiple iperf clients, each connecting to a remote
iperf server, using the catcpX-terom-dev.iperf.docker.test.catcp DNS name
provided by SkyDNS to resolve the address of each remote iperf server. This results
in a total of n ∗ (n− 1) iperf connections, one for each pair of catcp-terom-dev
machines.

The resulting tra�c between catcp-terom-dev machines is routed across the local
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cluster network infrastructure, with the Linux kernel routing tra�c to the neigh-
boring catcp-terom-dev machines using routes provided by OSPF. The resulting
tra�c is limited by both the CPU processing resources available on each catcp-
terom-dev machine, and the L2 hashing used for the LACP trunks. The L2 �ows
between the catcp-terom-dev machines are distributed across three of the four
LACP trunk ports, limiting the maximum incoming bandwidth for each machine to
3Gbit/s.
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Figure 18: iperf measurement results for the baseline performance of intra-cluster
routing between catcp-terom-dev machines
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Table 2: Measurements for intra-cluster iperf between catcp-terom-dev machines

Interface eth-terom-dev RX Min Max 95'th percentile

catcp3-terom-dev 2.7 Gbit/s 2.7 Gbit/s 2.7 Gbit/s
catcp4-terom-dev 2.4 Gbit/s 2.7 Gbit/s 2.7 Gbit/s
catcp5-terom-dev 2.6 Gbit/s 2.7 Gbit/s 2.7 Gbit/s
catcp6-terom-dev 1.9 Gbit/s 2.5 Gbit/s 2.3 Gbit/s
catcp7-terom-dev 270.6 Mbit/s 694.3 Mbit/s 645.2 Mbit/s

Total 270.6 Mbit/s 2.7 Gbit/s 11.1 Gbit/s

Interface eth-terom-dev TX Min Max 95'th percentile

catcp3-terom-dev 1.3 Gbit/s 1.5 Gbit/s 1.5 Gbit/s
catcp4-terom-dev 1.1 Gbit/s 1.7 Gbit/s 1.7 Gbit/s
catcp5-terom-dev 1.9 Gbit/s 2.4 Gbit/s 2.3 Gbit/s
catcp6-terom-dev 1.8 Gbit/s 1.9 Gbit/s 1.9 Gbit/s
catcp7-terom-dev 3.5 Gbit/s 3.7 Gbit/s 3.7 Gbit/s

Total 1.1 Gbit/s 3.7 Gbit/s 11.2 Gbit/s

Figure 18 shows the achieved iperf upload throughput and resulting CPU utiliza-
tion for the iperf upload test, with each iperf client connecting directly to each
remote iperf server (iperf -c catcpX-terom-dev.iperf.docker.test.catcp -t

300). The results show a high level of CPU utilization for each catcp-terom-dev
machine, handling both the iperf client and server processes, as well as routing of
both upload tra�c and return TCP ACK packets. The di�erent machines achieve
varying upload rates between 1.1 - 3.7 Gbit/s, for a total combined 95th percentile
throughput of approximately 11Gbit/s as shown in table 2.

The behaviour of the catcp7-terom-dev machine is an outlier, with the iperf

clients on the machine sending signi�cant more tra�c than on other machines, and
the iperf server receiving signi�cantly less tra�c than on other machines. One
possible explanation for this behaviour is the use of a di�erent Linux kernel on
the catcp7-terom-dev machine (Linux 4.4) than on the other catcp-terom-dev
machines (Linux 3.16). The newer Linux kernel may prioritze the iperf client
processes sending tra�c over the local iperf server process receiving tra�c.

The results show that packet routing across the internal network is more CPU-
intensive than simply switching tra�c between local Docker containers, with a higher
CPU utilization for a lower throughput. The results are also highly suspectible to
the e�ects of the L2 hashing algorithm used for LACP trunking, which determine
the maximum achieivable throughput in quantiles of the gigabit Ethernet links used
for trunking.
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6.3.3 Inter-cluster symmetric routing

To measure the baseline performance of the inter-cluster network, we run an in-
stance of the iperf service on each of the catcp-terom-dev machines. For each
catcp-docker machine, we run multiple iperf clients connecting to each remote
iperf server, using the catcpX-terom-dev.iperf.docker.test.catcp DNS name
provided by SkyDNS to resolve the address of each remote iperf server. This re-
sults in a total of N ∗M iperf clients, one for each pair of catcp-terom-dev and
catcp-docker machines.

The resulting tra�c between the catcp-docker and catcp-terom-dev machines is
routed by the catcp1-gw and catcp2-test-gw machines across the core network.
For the symmetric routing scenario, the other catcp-gw and catcp-test-gw routers
are disabled (con�gured with a higher OSPF cost). The resulting inter-cluster tra�c
is limited to 1Gbit/s by the use of L2 hashing for the single L2 �ow between the
two gateway machines, as all packets for the catcp2-test-gw machine are hashed
to the same LACP trunk port on the CATCP2 machine.
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Figure 19: iperf measurement results for the baseline performance of inter-cluster
symmetric routing

Figure 19 shows the achieved iperf upload throughput and resulting gateway ma-
chine CPU utilization when using symmetric routing for packets between the two
Docker cluster networks, with each iperf client connecting directly to each remote
iperf server (iperf -c catcpX-terom-dev.iperf.docker.test.catcp -t 120). The
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results show a low level of CPU utilization for the catcp1-gw and catcp2-test-gw
machines forwarding both the upload tra�c and return TCP ACK packets, achiev-
ing a stable 1Gbit/s upload rate with somewhat unevenly distributed tra�c across
the server machines. Both catcp1-gw and catcp2-test-gw are routing approxi-
mately 200k packets/s in each direction, for a total of approximately 400k packet/s
per machine.

6.3.4 Inter-cluster multipath routing

To expand the capacity of the inter-cluser network, we con�gure two pairs of Gate-
way machines with the same OSPF costs, providing multiple equal-cost paths used
for L3 load balancing across the core network. Each of the catcp-terom-dev and
catcp-docker machines uses OSPF ECMP routing for L3 load-balancing of tra�c
across each pair of Gateway machines. The resulting inter-cluster tra�c uses a total
of four L2 �ows between the two pairs of Gateway machines on the core network,
limiting the total attainable throughput to 2-4Gbit/s depending on the resulting
distribution of L2 �ow hashes. Tra�c from multiple di�erent machines is hashed to
the same LACP trunk interface on catcp1, causing the catcp1-test-gw machine
to receive less tra�c than the catcp5-test-gw machine.
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Figure 20: iperf measurement results for the baseline performance of inter-cluster
multipath routing

Figure 20 shows the achieved iperf upload throughput and resulting Gateway CPU
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utilization for the iperf upload test when using ECMP routing between two pairs
of gateway machines, with each iperf client connecting directly to the iperf server
Docker containers (iperf -c catcpX-terom-dev.iperf.docker.test.catcp -t

300). The results show a moderate level of CPU utilization for the catcp-test-
gw machines forwarding both the upload tra�c and return TCP ACK packets,
achieving a combined 2.5Gbit/s total upload rate with tra�c evenly distributed
across the server machines.

The L2 �ows in this scenario saturate LACP trunk interfaces on catcp1 (1 interface),
catcp6 (1 interface) and catcp5 (2 interfaces). The lower eth-core RX throughput
for the catcp1-test-gw machine is presumably explained by upload tra�c from
catcp-docker machines to the catcp1-gw machine colliding with upload tra�c
routed by the catcp6-gw machine.

6.4 Comparing Implementation Performance

To compare the performance of a single Linux IPVS network-level load balancer
with the performance of a single HAProxy application-level load balancer, we use
the symmetric routing scenario shown in Section 6.3.3. One instance of the iperf

service is run on each of the catcp-terom-dev machines, using clusterf-docker

to provide a clusterf ServiceBackend for each service instance within etcd. For
each catcp-docker machine, we run a single iperf client, connecting to the load-
balanced iperf service using the 10.0.107.2 VIP announced by catcp2-test-gw.
All of the iperf upload tra�c and returning TCP ACK packets are routed via
the same catcp2-test-gw machine. The catcp2-test-gw machine is con�gured
to either run the clusterf or HAProxy load balancers, using the same clusterf

service con�guration provided by clusterf-docker for both load balancers. This
con�guration has the gateway machine as a single point of failure with no options
for failover.

6.4.1 The HAProxy application-level load balancer

The catcp2-test-gw machine is con�gured to run a combination of HAProxy and
confd to load balance incoming TCP connections for the iperf service across each
of the catcp-terom-dev iperf server containers.
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Figure 21: iperf measurement results for HAProxy load balancing with symmetric
routing

Figure 21 shows the achieved iperf upload throughput and resulting Gateway CPU
utilization for the iperf upload test using the HAProxy load-balancer (iperf -c

10.0.107.2 -t 120). The results show a high level of CPU utilization for the
catcp2-test-gw machine using HAProxy to forward the TCP connections, achiev-
ing a stable 1Gbit/s upload rate with tra�c evenly distributed across the iperf

servers. Both catcp1-gw and catcp2-test-gw are routing approximately 100k
packets/s in each direction, for a total of 200k packet/s for each machine.

This result shows that using the HAProxy application-level proxy for load-blanacing
has a signi�cant CPU overhead compared to the symmetric routing con�guration
without any load balancing in Section 6.3.3.

6.4.2 The IPVS network-level load balancer

The catcp2-test-gwmachine is con�gured to run the clusterf-ipvs control plane,
using Linux IPVS to load balance packets for incoming TCP connections to the
iperf service across each of the catcp-terom-dev iperf server containers.
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Figure 22: iperf measurement results for IPVS load balancing with symmetric
routing

Figure 22 shows the achieved iperf upload throughput and resulting Gateway
CPU utilization for the iperf upload test using the IPVS load balancer (iperf
-c 10.0.107.2 -t 120). The results show low CPU utilization for the catcp2-
test-gw machine forwarding both the upload tra�c and return TCP ACK packets,
achieving a stable 1Gbit/s upload rate with tra�c evenly distributed across the
iperf servers. Both catcp1-gw and catcp2-test-gw are routing approximately
100k packets/s in each direction, for a total of 200k packet/s for each machine.

This result shows that using the IPVS network-layer load-balancer for load balanc-
ing has similar CPU overhead to the symmetric routing con�guration without any
load balancing in Section 6.3.3. However, the two scenarios di�er in the number
of iperf clients, with the use of fewer iperf clients resulting in a smaller packet-
s/s rate for this experiment, and thus a lower level of CPU utilization for packet
routing. However, the number of iperf clients and resulting packets/s rate for this
experiment is the same as in the equivalent HAProxy experiment in Section 6.4.1.

6.5 Scaling the clusterf Load Balancer

To evaluate the horizontal scaling capabilities of the IPVS load balancer, we use the
multipath routing scenario described in Section 6.3.4. The catcp-terom-dev ma-
chines are used to run 12 iperf server instances of the iperf service. Both catcp1-
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test-gw and catcp5-test-gw machines are con�gured using the same OSPF costs,
allowing tra�c in both directions to be distributed between both machines. Both
catcp1-test-gw and catcp5-test-gw machines are con�gured to announce the
same 10.0.107.0 VIP with equal OSPF costs, causing tra�c for the 10.0.107.0

VIP to be distributed across both load balancers. This con�guration provides op-
tions for testing failover, as tra�c for each VIP can be routed to either of the
catcp-test-gw machines.

6.5.1 ECMP routing for a single VIP

The ability to add more load balancers to scale the total load balancing capacity
available for a service is demonstrated using two IPVS load balancers sharing a
single VIP with ECMP routing. The catcp-docker machines are used to run 8
iperf client instances, connecting to the 10.0.107.0 VIP announced by both load
balancer machines.
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Figure 23: iperf measurement results for IPVS load balancing with EMCP routing
for a single VIP

Figure 23 shows achieved network upload throughput and resulting gateway CPU
utilization for the iperf upload test using the IPVS load-balancer, connecting to
the ECMP VIP address (iperf -c 10.0.107.0 -P 2 -t 300). The results show
a moderate level of CPU utilization for the catcp-test-gw machines forwarding
both the upload tra�c and return TCP ACK packets, achieving an approximately
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2.5Gbit/s total upload rate with tra�c moderately distributed across the server
machines.

This result demonstrates that the clusterf design is capable of horizontal scaling
of tra�c for a single VIP across multiple IPVS network-level load balancers using
ECMP routing. Using ECMP routing to distribute tra�c for a single VIP across
multiple IPVS load balancers providing more throughput (2.5Gbit/s) than when
using a single IPVS load balancer (1Gbit/s). The 2.5x increase in performance
is an artifact of the use of L2 load balancing for the underlying physical network
infrastructure, resulting from the use of 4 distinct L2 �ows between two pairs of
routers compared to the use of a single L2 �ow between a single pair of routers. The
imbalance of throughput levels between the two gateways is a result of the L2 �ow
hashing collisions discussed in Section 6.3.4.

6.5.2 Connection failover for a single VIP with ECMP routing

To test the use of IPVS connection synchronization for fault tolerance, we use a
single iperf client on a randomly selected catcp-dockermachine, connecting to the
10.0.107.0 VIP announced by both IPVS load balancer machines. The catcp1-
test-gw and catcp5-test-gw machines use IPVS connection synchronization to
share the load-balanced connection states.
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Figure 24: iperf measurement results for IPVS failover with ECMP routing for a
single VIP
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In Figure 24, a single iperf -c 10.0.107.0 -t 120 client is run on the catcp-
docker nodes, which establishes a single TCP connection to the VIP at t = 121s,
and transmits data for a total of 120 seconds. The packets for this connection
are initially routed using ECMP to the catcp5-test-gw machine, as shown by the
1Gbit/s of RX throughput on the catcp5-test-gw machine's eth-core interface.
At t = 180s, the catcp5-test-gw machine fails, withrawing the OSPF route for the
VIP. The catcp1-gw machine updates its routing table to forward all packets for
the VIP to catcp1-test-gw. Using the IPVS connection state synchronized from
the failed load-balancer node, the IPVS load balancer on catcp1-test-gw is able to
resume forwarding the packets for the existing iperf connection. The iperf client
succesfully completes its test at t = 260s after a brief hiccup, despite the failure of
the initial load balancer used for the connection and resulting ECMP rerouting of
packets to a di�erent load balancer.

This result demonstrates that the clusterf design provides fault tolerance for mul-
tiple IPVS load balancers using connection synchronization and ECMP routing for
a single VIP. The use of IPVS masq for NAT forwarding within the catcp6-terom-
dev Docker machine is not disrupted by the migration of incoming tra�c across
di�erent Gateway machines.

6.6 Analysis

The clusterf load balancer behaves as designed in each of the load balancing
scenarios tested. The clusterf load balancer preserves the original network source
address of the client, while allowing the use of varying port numbers for the listening
server. The clusterf load balancer is capable of distributing incoming tra�c across
multiple Docker container backends, allowing the horizontal scaling of Docker ma-
chines and service containers. The clusterf load balancer is capable of distributing
incoming tra�c across multiple Gateway machines, allowing the horizontal scaling
of Gateway machines and VIPs. The failure of a Gateway machine does not cause
the failure of active connections when using IPVS connection state synchronization.

Using IPVS for load balancing involves minimal overhead compared to the equiva-
lent routing of packets within the Linux kernel. Using HAProxy for load balancing
involves signi�cnat processing overhead compared to the equivalent routing of pack-
ets within the Linux kernel. The quantitative analysis of any pair of network-level
and application-level load balancer implemenations cannot itself be used to draw
any conclusions about the performance of application-level and network-level load
balancers in general. It is entirely possible for a well implemented application-level
load balancer to have better performance than a poorly implemented network-level
load balancer, and vice-versa.

The study of existing network-level load balancer implementations in Section 3.4
shows that network-level load balancer implementations are capable of achiving
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very high levels of performance. A single Maglev load balancer with 8 CPU cores
is capable of achiving packet processing rates beyond the 12 M packets/s line rate
limit of 10-gigabit Ethernet by implementing a userspace networking stack, where
the Linux kernel network implementation was only able to handle less than 4 M
packets/s in the same con�guration [7]. Any application-level load balancer imple-
mentation will be limited by the performance of the underlying Linux kernel network
implementation.
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7 Conclusions

A container platform based on Docker can be used for the development and deploy-
ment of horizontally scalable services on both local machines and within cloud server
infrastructures. Such a container platform will include various components, includ-
ing a container engine, an orchestration system, an internal network infrastructure,
a dynamic service discovery mechanism, and a load balancer. The load balancer
plays a critical role in the scalability of any cloud service, and thus the scalability
of the load balancer itself must also be considered when designing such a container
platform. A container platform supporting dynamic scaling of services must also
have a dynamic load balancer control plane capable of automatically distributing
incoming tra�c as service instances are added and removed.

Based on a study of the background networking and load balancing theory in Sec-
tions 2.3 and 2.5 and existing implementations of load balancers in Section 3.4, I
create a design for a scalable network-level load balancer. The clusterf design uses
the Linux IPVS network-level load balancer implementation to provide a scalable
load balancer data plane, using a two-level load balancing scheme with both DSR
and NAT forwarding for both scalability and compatibility with existing Docker con-
tainers and applications. I implement the clusterf control plane for the automatic
load balancing of Docker services within a cluster. The design and implementation
of the clusterf load balancer is evaluated within a testbed network infrastructure
using standard Ethernet networking with ECMP routing capabilities for network-
layer load balancing.

The results in Chapter 6 show that the clusterf load balancer provides excellent
performance and reliability for load balancing horizontally scaled services within
a container platform as studied in Chapter 3. The results in Section 6.4 show
that the Linux IPVS network-level load balancer implementation provides better
performance than the HAProxy application-level load balancer implementation. The
results in Section 6.5 show that the clusterf design is capable of scaling in terms
of both performance and reliability using standard network-layer ECMP routing.
However, the current implementation of the clusterf load balancer assumes the
use of standard Ethernet networking allowing the use of asymmetric routing for
Direct Server Return (DSR). Extending the clusterf design for load balancing
within arbitrary cloud network infrastructures that restrict the use of asymmetric
routing is the subject of further study.

IETF BCP 38 [32] requires source address �ltering within networks to prevent the
abuse of source address spoo�ng for Denial of Service (DoS) attacks. Depending
on the exact implementation of such Reverse Path Filtering (RPF), complying with
BCP 38 for ingress �ltering of spoofed source addresses may preclude the use of
asymmetric routing for DSR load balancing within a network. The author can only
speculate as to the various implementations of RPF within cloud network infras-
tructures, but the generally valid assumption for a container platform designed for
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deployment across arbitrary network infrastructures is that each host only has a
single external network address. Resolving this design con�ict is the subject of
further research, involving either extending the clusterf design to use multiple
separate VIPs with DNS load balancing, or exploring the possibilities for the use of
asymmetric routing and DSR within various cloud infrastructure platforms.

In the meantime, network-level load balancer implementations are more likely to
be found within speci�c cloud infrastructure platforms. The providers of physical
cloud platforms have both more control over the speci�c network infrastructure
implementation and con�guration, allowing the use of network-level techniques such
as ECMP and DSR for load balancing, and operate at a su�ciently large scale for
the scalability di�erences between application-level and network-level load balancers
to become apparent. Examples of such cloud provider speci�c network-level load
balancer implemenations include the Amazon Web Services (AWS) Elastic Load
Balancer (ELB), the Microsoft Azure Ananta [8] load balancer, and the Google
Compute Engine (GCE) Maglev [7] load balancers.

As a corollary, portable container platforms designed for deployment across dif-
ferent network infrastructure environments are more likely to use application-level
load balancing methods. The use of application-level load balancing for proxying
transport-layer connections allows the use of symmetrically routed connections be-
tween and within arbitrary networks. However, scaling such an application-level
load balancer either requires the use of DNS within the Internet for load balanc-
ing client tra�c across multiple VIPs, or the use of a scalable network-level load
balancer provided by the cloud infrastructure platform. Designing a load balancer
control plane for a container platform capable of integrating with either global DNS
load balancing or various platform-speci�c load balancer infrastructures to avoid
cloud vendor lock-in [10] is also a subject for future research.

Detailed study of the recent Docker 1.12 service routing mesh using the same
network-level Linux IPVS load balancer implementation as used in clusterf is also
the subject of future research. The author speculates that the Docker 1.12 service
load balancer design is based on the use of Full NAT for forwarding, thus resembling
more of a high-performance application-level load balancer implementation than a
network-level load balancer design. Based on the background networking theory
and study, the author hypothesies that the Docker 1.12 implementation of network-
level load balancing is unable to support network source address transparency or
connection failover between machines. Without the use of external load balancing
routing con�gured to route tra�c to speci�c Docker Swarm nodes, the loss of any
Docker Swarm node acting as a service load balancer may lead to the failure of active
connections routed to the remaining healthy nodes. Testing this hypothesis is out-
side the scope of this thesis, and the author disclaims the possibility for theoretical
misunderstandings and any future extensions of the Docker Swarm implementation
that may negate this hypothesis.
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The clusterf load balancer as currently implemented is thus generally unsuitable
for use within a container platform intended to be portable across di�erent network-
ing environments. With further research of the limitations and proposals explored
throughout Chapter 4, the author believes that the use of a truly scalable network-
level load balancer for horizontally scalable Docker services deployed across multiple
cloud platforms may be possible. Until then, users of container platforms will likely
be using application-level load balancer designs that are capable of providing sat-
isfactory levels of performance and reliability as well as additional �exibility for
application-layer load balancing.

After all, there are numerous other reasons for client connections to fail, and as-
suming the existence of client support for reconnecting on connection loss, do we
really need to pay the price for the complexity of a network-level load balancer de-
sign including complete support for connection failover on load balancer failures?
Horizontal scalability is about the design of abstract distributed computing layers
while navigating the mine�eld of inenvitable practical implementation issues. The
answer to the ultimate question of load balancers, the implementation of dynamic
service discovery and application container platforms may lie in the role of VIPs in
the implementation of dynamic service discovery for client applications, a topic not
fully explored in this thesis.
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