
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Sowmya Ravidas

Incorporating Trust in
Network Function Virtualization

Master’s Thesis
Espoo, October 7, 2016

Supervisor: Prof. Tuomas Aura, Aalto University
Advisor: Dr. Ian Oliver, Nokia Bell Labs

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Sowmya Ravidas

Title:
Incorporating Trust in
Network Function Virtualization

Date: October 7, 2016 Pages: 102

Major: Mobile Computing - Services and Se-
curity

Code: T-110

Supervisor: Prof. Tuomas Aura, Aalto University

Advisor: Dr. Ian Oliver, Nokia Bell Labs

This thesis concentrates on ways of establishing trust in a telecommunications
cloud environment based on Network Function Virtualization (NFV). Telecom-
munication network functions can be deployed as software packages known as
Virtualized Network Functions (VNF). These VNFs are mission critical network
elements such as the Mobility Management Entity (MME) or Home Location
Register (HLR), which must be hosted on trusted infrastructure. In such an ap-
plication, it is important to verify the integrity of both the infrastructure and
the VNF in order to reduce the blind trust we place upon it. This leads to chal-
lenges, such as finding a balance between resource selection based on trust status
and fault tolerance. The goal of this thesis is to understand these challenges in
detail, to develop methods to address them, and also to implement a prototype
demonstrating these features.

We design and implement a trusted telecommunications cloud environment where
the infrastructure integrity is verified using trusted computing technologies which
use Trusted Platform Module (TPM). We develop a management entity called
the Trusted Security Orchestrator (TSecO). This system implements signing of
VNF images and VNF-TPM binding to enable VNF integrity checks at launch
time and to ensure that VNFs are hosted on the most suitable (trusted) platform
available.

One particularly interesting problem identified in the experiments is that incor-
porating trust in NFV may lead to failure situations when the desired trusted
resources are not available. We propose a policy-based fault tolerance approach
to address the trusted resource selection problem. Altogether, the techniques
developed in this thesis are a step towards practical deployment of trusted NFV
in the telecommunications cloud.

Keywords: NFV, Telecommunications cloud, Trust, TPM, Orchestration,
OpenStack

Language: English

2

Acknowledgements

This thesis study is conducted at the Security Research Team of Nokia Bell
Labs in Espoo, Finland. The work is presented at Aalto University School
of Science, as part of the degree requirement for the master’s program in
Mobile Computing - Services and Security. The work was supported partly
by TEKES, as part of the Cyber Trust program of DIMECC (the Finnish
Strategic Center for Science, Technology and Innovation in the field of ICT
and Digital Business).

I would like to thank my manager, Gabriel Waller, for providing me the
opportunity to do master thesis at Nokia Bell Labs. Sincere thanks and
gratitude to my advisor, Dr. Ian Oliver; this thesis would not have been
possible without his constant guidance and support. Heartfelt thanks to
Prof. Tuomas Aura (Aalto University) for supervising my thesis and for pro-
viding constructive comments.

Many thanks to Ian Oliver, Shankar Lal and Leo Hippeläinen for providing
their valuable insights on my work. I appreciate the time and effort they
took to proof-read this document. Thanks to Dr. Yoan Miche, Dr. Silke
Holtmanns, Aapo Kalliola and other members of security research team at
Nokia Bell Labs for their constant support.

I once again thank Prof. Tuomas Aura, for providing me the opportunity to
work as a Research Assistant at the Secure Systems Group of Aalto Univer-
sity during my master studies. It was a good learning experience for me both
personally and professionally. Needless to say, this was also a great support
to fund my education. Thank you Tuomas, for your continuous help and
guidance.

Sincere thanks and profound gratitude to Prof. Mario Di Francesco, Prof. Antti
Ylä-Jääski and Eija Kujanpää for encouraging me to pursue this degree and
for their continued support.

3

Many thanks to Vipin Sir, Abhilash Ettan and other members of am-foss
for encouraging me to take risks in life and helping me take steps towards a
research career. Special thanks to Sreepriya, Savita and Gayathri for their
generous financial aid. I thank Timo and Outi for their kind help during
my initial days in Finland. Life here would not have been fun without my
friends in Otaniemi and Helsinki. I am grateful for their friendship.

Lots of love and gratitude to Amma for supporting me during some of the
hardest times in my life. I dedicate this thesis to my parents and sister for
believing in my strengths and being with me during the ups and downs of
my life.

Espoo, October 7, 2016

Sowmya Ravidas

4

Abbreviations and Acronyms

5G 5th Generation Mobile Networks
AIK Attestation Identity Key
API Application Programming Interface
BIOS Basic Input/Output System
BSS Business Support System
BTS Base Transceiver Station
CIT Cloud Integrity Technology
CLI Command Line Interpreter
CPU Central Processing Unit
CRTM Core Root of Trust Measurement
DB Database
DRM Digital Rights Management
EC2 Elastic Compute Cloud
EMS Element Management System
ENodeB Evolved Node B
ETSI European Telecommunications Standards Institute
GB Gigabyte
GHz Gigahertz
HLR Home Location Register
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
ID Identifier
Intel TXT Intel Trusted Execution Technology
Intel SGX Intel Software Guard Extensions
JSON JavaScript Object Notation
LCP Launch Control Policy
LI Lawful Interception
LTS Long Term Support
MANO Management and Orchestration

5

MB Megabyte
MD5 Message Digest Algorithm 5
MLE Measured Launch Environment
MME Mobility Management Entity
MNO Mobile Network Operator
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure
OS Operating System
OSS Operations Support System
PaaS Platform as a Service
PC Personal Computer
PCR Platform Configuration Register
QEMU Quick EMUlator
QoS Quality of Service
RAM Random Access Memory
REST Representational State Transfer
RNG Random Number Generator
RPC Remote Procedure Call
RSA Rivest, Shamir, & Adleman (Public Key Encryption

Technology)
SaaS Software as a Service
SHA-1 Secure Hash Algorithm 1
SHA-256 Secure Hash Algorithm 256 (SHA 2 Family)
SLA Service Level Agreement
SP Service Provider
SQL Structured Query Language
TCB Trusted Computing Base
TCG Trusted Computing Group
TCP Trusted Computing Pool
TPM Trusted Platform Module
TSecO Trusted Security Orchestrator
vCPU Virtual Central Processing Unit
vTPM Virtual Trusted Platform Module
VIM Virtualised Infrastructure Manager
VLR Visitor Location Register
VM Virtual Machine
VNF Virtualized Network Function
XML Extensible Markup Language

6

Contents

Abbreviations and Acronyms 5

1 Introduction 13

1.1 Problem Statement . 14

1.2 Contributions . 15

1.3 Research Methods . 16

1.4 Structure of the Thesis . 16

2 Background 17

2.1 Cloud Computing and Network Function Virtualization 17

2.1.1 Network Function Virtualization 18

2.2 Need for Trust in the Cloud 20

2.3 Trusted Computing Concepts 22

2.3.1 Trusted Platform Module Architecture 22

2.3.2 Platform Trust Through Boot Time Measurement . . . 24

2.3.3 External Attestation Process 25

2.4 Trusted Cloud . 27

2.5 Summary . 29

7

3 Challenges in Providing Trust in NFV 30

3.1 Terminology . 30

3.2 VNF-VM Assumption . 33

3.3 Requirements . 33

3.4 Challenges . 34

3.4.1 Platform Trust . 35

3.4.2 VNF Integrity Verification 36

3.4.3 Launch VNFs on Specific NFVI 37

3.4.4 Resource Management 38

3.4.5 Fault Tolerance . 40

3.5 Summary . 41

4 Architecture and Design 42

4.1 Modified ETSI NFV Architecture 42

4.2 Trusted Security Orchestrator 43

4.3 Signing Mechanism . 44

4.4 VNF-TPM Binding Mechanism 46

4.5 Resource Selection . 48

4.5.1 Modified Filter Scheduler in OpenStack 48

4.5.2 Modified OpenStack’s Architecture:
Launch of VNF Instance 50

4.6 Fault Tolerance Based on
Policy Mechanism . 53

4.7 Trust Relationship Between Entities 55

4.8 Use Cases . 57

4.9 Summary . 58

8

5 Implementation 59

5.1 Building a Trusted Cloud . 59

5.2 Implementation Set-up . 61

5.3 Implementation of Custom Filters 63

5.3.1 Signature Filter . 64

5.3.2 VNF-TPM Binding Filter 65

5.4 Implementation of Trusted Security
Orchestrator . 66

5.4.1 Verifying Integrity of VNFs Through
Signing Mechanisms 67

5.4.2 Binding VNFs to TPM 67

5.5 Performance Evaluation of Signing and VNF-TPM binding . . 72

5.6 Summary . 76

6 Discussion 77

7 Conclusions 81

A 89

A.1 Enabling tboot . 89

A.2 OpenStack Hypervisor Summary 90

A.3 TSecO Modules Code Snippets 92

A.3.1 Log Function . 92

A.3.2 Signature Verification Function 92

A.3.3 PCR Function . 94

A.3.4 VNF-TPM Binding Function 95

A.4 Creating a Filter . 98

9

A.4.1 Modified Base Host Filter 99

A.4.2 Signing Filter . 100

A.4.3 VNF-TPM Binding Filter 101

A.5 MongoDB and Policy Insertion 102

10

List of Figures

2.1 ETSI NFV Reference Architecture 19

2.2 Trusted Platform Module Architecture 23

2.3 Chain of Trust . 24

2.4 Remote Attestation . 26

2.5 Attestation Service Communication Flow 26

3.1 Assumption . 33

3.2 NFVI Time Scale . 35

3.3 Trusted Resource Selection . 39

4.1 High Level System Architecture 43

4.2 Trusted Security Orchestrator 44

4.3 Creating a Signature File . 45

4.4 Verification of Signature . 45

4.5 Policy for Binding . 46

4.6 VNF-TPM Binding Process 47

4.7 OpenStack Filter Scheduler 49

4.8 OpenStack Resource Selection Process 49

11

4.9 Provisioning VNFs: Modified Architecture 51

4.10 Policy Lattice Based on Length of Policies 54

4.11 Trust Chain . 55

5.1 Cloud Infrastructure . 59

5.2 PCR Values . 61

5.3 Implementation Set-up . 62

5.4 Image Metadata . 64

5.5 Sequence Diagram of Signing Process 68

5.6 VNF-TPM Binding Process 69

5.7 Response from Attestation Server 70

5.8 Sequence Diagram of Binding Process 71

5.9 Execution Time of Filters . 73

5.10 Normal Launch Time Vs Launch Time with Signature Verifi-
cation . 74

5.11 Launch time with Signature Verification Using Different Hash
Functions . 75

A.1 OpenStack Hypervisor Summary 90

A.2 Intel Attestation Server Portal 90

A.3 VNF Image Metadata . 91

A.4 VNF Integrity Output . 93

A.5 VNF-TPM Binding Output 97

12

Chapter 1

Introduction

Cloud computing is one of the fastest growing technologies. Services such
as email, servers, storage and network components are being deployed in
the cloud environment, due to its scalability, elasticity and low cost [34]. In
this study, the focus is on the Infrastructure as a Service (IaaS) model of
cloud computing, in which the customers are provided with storage, network
and processing capacity. However, the underlying architecture is controlled
by the infrastructure providers [34]. In such scenarios, it is not possible to
completely trust the infrastructure providers and the servers where our data
resides.

The notion of trust has been considered in cloud infrastructure standards
such as ETSI’s Network Functions Virtualization (NFV) [6], where telecom-
munication network functions can be deployed as software in the form of
virtualized network functions (VNFs). In such a critical application, it is of
high priority to launch network functions in a trusted environment.

The Trusted Computing Group (TCG)1 has developed a specification that
aims to enhance security and trust of the computer platforms [2]. This en-
hancement is possible with the introduction of Trusted Platform Module
(TPM), which is an embedded chip capable of storing keys, certificates and
other confidential data and protecting from the software running on the ma-
chine. Furthermore, TPM along with other software mechanisms such as
launch control policies (LCP) and external attestation can perform integrity
checks on the infrastructure and the customer-selected platform, and also no-
tify the administrator when any unauthorized modifications have been made

1https://www.trustedcomputinggroup.org

13

CHAPTER 1. INTRODUCTION 14

to it. Such hardware-software co-design based integrity verification mecha-
nisms harden the system against software attacks.

Integrating trusted computing technologies with the cloud infrastructure has
been studied in [9], [35], [52] and [38]. Intel processors incorporate Trusted
Execution Technology (Intel TXT) [22] that provides a hardware root of trust
by verifying the integrity of critical components, such as the BIOS module,
host OS and the hypervisor, and storing the results in TPM. This can be
used in NFV where the service providers need to know the trust level of the
computing infrastructure before launching the VNFs. Hence, it is important
to check the integrity of the cloud platform after boot. Existing external
attestation technologies such as the Intel Cloud Integrity Technology (Intel
CIT)2 performs the remote verification of the platform and verifies if the
platform is trusted or not based on known good values.

However, in an NFV environment, we are required to provide more than
boot-time trust and external attestation. In addition to platform integrity,
verifying the integrity of the VNFs and launching the VNFs on most suitable
hardware are crucial for establishing trust in NFV. Also, the infrastructure
provider is required to maintain the service level agreements (SLAs) with
the user or service providers. The SLAs explain the responsibilities of the
infrastructure provider on the quality of service (QoS). In order to meet
the desired QoS in NFV, we have to minimize the failures in launching the
VNFs. Hence, it is also necessary to consider the aspects of fault tolerance
and resource management.

In this thesis, trust refers to knowing the state of the system. This means
that, even if the system is in a bad state, we still trust that it is in a bad
state, rather than in an unknown state.

1.1 Problem Statement

The VNF integrity check during the launch time is a crucial factor for the
successful deployment of VNFs. An image is selected to launch the VNFs;
however, the integrity of this image is usually not verified. It is possible to
inject malware into VNF images within a few seconds. The existing mecha-
nisms do not consider insider attackers as potential threats. Hence, there is
a need for external verification and monitoring of VNFs.

2http://download.intel.com/support/sftw/ds/cit/sb/trust attestation server 2 0 product guidev2.pdf

CHAPTER 1. INTRODUCTION 15

In a telco cloud environment, the service providers would require to launch
the VNFs in a platform with specific configurations. While the TPM can
measure the system components, there are no existing methods that bind
the VNFs to a specific platform.

Also, there are limited works that consider trust failure when using trusted
technologies in cloud-based environments. For example, there can be sce-
narios where there are no trusted hosts available, leading to a resource man-
agement problem. In such cases, there is a need to consider fault tolerance
mechanism to handle the unavailability of trusted hosts.

1.2 Contributions

In this thesis, we address the problem of integrity verification of VNF images
and binding VNFs to the TPM. We also address the resource management
and fault tolerance issues in an NFV environment.

Our contributions are as follows:

1. Implemented a trusted telecommunication cloud using trusted comput-
ing technologies.

2. Designed and implemented VNF integrity check using an external sign-
ing mechanism, which is a method for verifying the VNF image integrity
at the launch time.

3. Designed and implemented VNF-TPM binding mechanism using a policy-
based approach that solves the problem of whether the VNF can be
launched on the selected host.

4. Implemented the Trusted Security Orchestrator, which is a manage-
ment entity deployed in the management and orchestration stack of
NFV. This entity performs the VNF integrity check, VNF-TPM bind-
ing mechanism and keeps audit logs of hypervisor requests.

5. Investigated on the resource management problem in a trusted telecom-
munication cloud.

6. Proposed a policy-based fault-tolerance mechanism to handle the un-
availability of trusted resources.

CHAPTER 1. INTRODUCTION 16

1.3 Research Methods

In this thesis, the experimental research method [18] has been used where we
devised solutions to the identified problems and evaluated them. Existing
trusted computing technologies are used to build new solutions such as the
external signing of VNF images and the VNF-TPM binding mechanism. We
made new observations on the problem of trust and resource management.
Also, a solution for solving resource management problems through a fault-
tolerance approach is proposed, which leads to new research directions.

1.4 Structure of the Thesis

The rest of the thesis is structured as follows. Chapter 2 gives an overview
of trust in telecommunication cloud environment, trusted computing tech-
nologies and discussions on the existing work in this area. In Chapter 3, we
highlight the challenges of incorporating trust in NFV. The system design
and architecture are detailed in Chapter 4, and Chapter 5 provides the im-
plementation details and performance evaluation. Chapter 6 discusses the
strengths and limitations of our work, and Chapter 7 concludes the report.

Chapter 2

Background

This chapter provides an overview of cloud computing and the notion of
trust in a cloud infrastructure with a focus on telecommunication cloud. We
explain the concepts of trusted computing, Network Function Virtualization
(NFV) and the current research on enabling trust in NFV. Throughout this
thesis, we refer telecommunication cloud as telco cloud.

2.1 Cloud Computing and Network Function

Virtualization

Nowadays, we can find most of the applications and services are being de-
ployed in a cloud environment. In addition to fast scalability, cloud provides
a pay as you go model that makes it more convenient for businesses to use
[34].

The services provided by the cloud are categorized into the following three
models [16].

1. Software as a Service (SaaS)

The cloud providers release their services that can be accessed over the
Internet. Examples of such services are Gmail and Google docs.

2. Platform as a Service (PaaS)

17

CHAPTER 2. BACKGROUND 18

In a PaaS model, the development platform is made available to the
users, who can develop cloud-based services. One such example is
Google App Engine.

3. Infrastructure as a Service (IaaS)

In an IaaS model, the infrastructure that includes the processing, stor-
age, network and other resources are provided to the users. Amazon’s
EC2 is an example of an IaaS model. This eliminates the need to
construct and maintain a data center.

With the reduced capital and operational expenses, there is a trend towards
companies deploying their operations entirely to a cloud-based environment.

There are various categories of deployments of the cloud. Often it is cate-
gorized as either public cloud or private cloud [10]. When the services are
provided to the general public, it is called as public cloud, such as Amazon
EC2. When the services are available only within an organization and not
to general public, then this is called as a private cloud, typically used by
large organizations. There are also other types of deployment such as the
community cloud and hybrid cloud [16]. In a community cloud, different
organizations maintain and share a cloud environment. Hybrid cloud can be
a combination of any of public, private or community cloud.

Another category of cloud is the telco cloud, where the focus is on telecom
applications that can be deployed in a cloud [20]. Some of the benefits of mov-
ing telecom operations to cloud include virtualizing data center infrastructure
for on-demand hosting, delivering telecom functions as SaaS applications and
providing storage on demand [11].

In this thesis, we focus on the SaaS and IaaS models of a telco cloud. In such
models, the aim is to deploy telecommunication operations by virtualizing
the software and network functions.

2.1.1 Network Function Virtualization

In a telco cloud environment, network functions such as mobility manage-
ment entity (MME), base transceiver station (BTS), home location register
(HLR) and visitor location register (VLR), form the basic building blocks and
provide the functionality required for any communication services. Adding

CHAPTER 2. BACKGROUND 19

new services in network functions require purchasing new hardware equip-
ments or physical installation and commissioning of them. Also, software
upgrade becomes complicated due the physical location of hardware equip-
ments such as cell towers. Network functions can take a long time to activate
or upgrade the system and makes the process difficult, especially in scenarios
where more devices get connected to each other1. Hence, there is a need for
an easier way to deploy these network functions.

Network Function Virtualization helps to solve this problem by reducing the
need to rely on hardware and thereby reducing the overall cost. In NFV,
network functions and some parts of the infrastructure are implemented as
software or, in other words, they use virtualized resources. Traditional cloud
combined with NFV provides an ideal environment for the next generation
telco cloud.

The ETSI NFV Reference architecture [5] is shown in Figure 2.1. The

Figure 2.1: ETSI NFV Reference Architecture

NFV architecture consists of Network Function Virtualization Infrastructure
(NFVI), which consists of the hardware and virtual resources. We deploy
our VNFs on the NFVI. There is also a Management and Orchestration ele-

1https://www.ericsson.com/res/docs/whitepapers/network-functions-virtualization-
and-software-management.pdf

CHAPTER 2. BACKGROUND 20

ment that performs the resource allocations in NFVI, life cycle management
of VNFs and overall orchestration. The functionality of these components is
explained below.

The Network Function Virtualization Infrastructure (NFVI) consists
of all the hardware resources such as compute, storage and network ele-
ments. The virtualization layer creates a hardware abstraction of the re-
sources below. Above this, we have the virtual compute element, virtual
storage element and virtual network element. We see that NFVI consists of
the hardware, virtualization layer as well as the virtual resources that are
necessary to launch a VNF.

Above the NFVI, we have the Virtualized Network Functions (VNF)
which are basically software packages that can implement the network func-
tions (such as routers and firewalls) using the infrastructure provided by
the NFVI. Each VNF is connected to an Element Management System
(EMS) that manages the operations of the VNF.

The OSS and BSS refer to the operational and the business support systems
of a mobile network operator (MNO).

The Management and Orchestration block consists of the Virtualized
Infrastructure Manager (VIM), VNF Managers and the Orchestrator. The
VIM manages and controls the interaction of NFVI to the VNFs. It performs
the resource management and also analyses the performance of NFVI. The
VNF Managers help the VNFs to instantiate, update, scale and terminate,
and they also perform other critical functions that are necessary for the entire
VNF life cycle. The Orchestrator performs global management of NFVI and
policy management for the network services.

2.2 Need for Trust in the Cloud

With the advancements in the area of cloud and NFV, enterprises have con-
sidered deploying their services on the cloud. However, one of the major
challenges they face is the lack of trust. The notion of trust is an important
factor to consider, especially when we run mission critical components on the
cloud.

In [49], the authors have considered various definitions of trust as a social
concept as well as in a digital environment. Ko et al. [28] define trust in cloud

CHAPTER 2. BACKGROUND 21

as the confidence that we place in the cloud. In an IaaS model, the word
trust can be associated with the confidence that we place on infrastructure
providers i.e. the belief that our data is protected and our services in cloud
are working in an expected manner. In such scenarios, trust often refers to
the integrity of the system.

In all the service models of cloud, users do not have control over the infras-
tructure and they are often required to trust the infrastructure providers [41].
Chow et al. [12] emphasize the lack of control of data in the cloud, which is
one of reasons why some enterprises do not move their operations into the
cloud. Also, organizations that require data protection policies are required
to know how the data is managed and also to know if there have been any
changes made to it [37]. Hence, transparency of data control and security
guarantees are crucial for placing trust in the cloud.

With the growing use of virtualization technologies, the users and the service
providers have to trust the cloud providers. Zhang et al. [53] consider cloud
security as one of the main topic areas of research and trusting the infras-
tructure as one of the important challenges faced by the cloud users. The
authors state that the infrastructure provider must provide confidentiality
and auditability to the service provider to ensure secure data transfer and
integrity of the data. The authors further stress on the need for a trusted
hardware and trusted virtualization layer.

In [41], the authors highlight the set of attacks possible in a cloud environ-
ment. For example, they explain the possibility of an attacker to retrieve con-
fidential information such as passwords, certificates, private keys and other
critical information from the cloud. Their attacks mostly deal with attacking
the VM such as capturing VM snapshots, analyzing memory dump of VM,
attacks performed on VM migration. The authors also list the possibility
of circumventing the current protections in the cloud environment; however,
they do not propose a solution or mitigation for the specified attacks.

In [15], the authors explain the challenges of IaaS such as the level of trust
on the infrastructure provider, data control, data integrity verification and
VM integrity. The paper also provides a method to secure virtual machine
images by encrypting it in the client side. However, the proposed method
does not enhance trust in infrastructure providers.

Dawoud et al. [14] provide a list of challenges associated with trust in IaaS
and also lists the possible solutions to address these challenges. According
to the authors, one of the critical components in an IaaS is the Service Level

CHAPTER 2. BACKGROUND 22

Agreements (SLA). SLAs detail the benefits and responsibilities of the service
provider and infrastructure provider. The IaaS providers are not supposed to
violate the SLAs or the requirements of the service providers. This is crucial
in scenarios, such as, lawful interception where there is a legal requirement
to launch the services in a specific geographic location. In such scenarios, it
is important to have a clear list of policies concerning the SLAs, especially
in cases of VM migration and evacuation. Preserving SLAs is a critical
component in a telco cloud environment as well.

The aspect of trust has also been considered in other cloud infrastructures
such as in mobile cloud [25]. Survey papers focusing on cloud security such
as [14], [48], [19], [12] and [21], have discussed the aspect of trust with respect
to IaaS and the necessity to introduce trusted computing technologies in the
infrastructure. Yang et al [51] discuss about security in NFV and have con-
sider trust management as a security challenge. In [53], the authors highlight
the necessity to introduce TPM to the hardware and also motivates the need
to have multiple layers of trust in the architecture.

It is evident from the above sources that trust is an important factor to be
considered in a cloud environment and especially for IaaS model. A solution
specified in the above papers is to use trusted computing technologies, which
provides a method to enable trust by verifying the integrity of the platform.

2.3 Trusted Computing Concepts

Trusted Computing defines a set of technologies that can provide trusted
platforms [43], and hence, reducing the level of blind trust the users have on
the cloud infrastructure providers. Such technologies leverage the use of the
Trusted Platform Module (TPM) chip in its hardware layer. In this section,
we will look into the TPM architecture and explain how such technologies
provide a trusted platform.

2.3.1 Trusted Platform Module Architecture

Trusted Platform Module2 (TPM) is a micro-controller that is capable of
storing keys, passwords, certificates and other confidential data. TPM can

2http://www.trustedcomputinggroup.org/trusted-platform-module-tpm-summary/

CHAPTER 2. BACKGROUND 23

Figure 2.2: Trusted Platform Module Architecture

be used for secure storage, to verify the integrity of the platform and also
disk encryption. TPM is often embedded onto the motherboard of servers
or PCs. The basic components of a TPM version 1.2 [1] are shown in Figure
2.2.

The I/O Buffer is the area between the host system and the TPM. The
system sends the request and retrieves the response through this buffer. The
non-volatile memory stores the state associated with the TPM. The TPM
checks if the value it stores is same as that of the values in the non-volatile
storage. This component must be in a protected area and should have re-
stricted access. TPM uses random numbers while creating signatures, nonces
and also in keys. The random number generator has components such
as entropy functions, mixing functions and state registers to ensure the ran-
domness.

The Platform Configuration Registers (PCRs) are registers that contain
the measurements of various components such as BIOS, hypervisor and oper-
ating system. Measurements are cryptographic hashes of these components
and are stored in PCRs. Each TPM has 24 PCR registers numbered 0-23.
Each PCR register has the capacity to store 20 bytes in it. PCR Registers
0-7 store the measurement values of ROM and the BIOS. PCR 8-16 stores
the measurement values of the OS-related files. PCR 18 stores the value of
the hypervisor and PCR 22 stores the measurement of a Geo-location trust
certificate and related entities.

The SHA-1 Engine performs the hash function used by the TPM to take the

CHAPTER 2. BACKGROUND 24

hash of the measured values. In this scenario, we use the SHA-1 algorithm.
The Attestation Identity Key (AIK) or simply known as the Attestation
Key is generally used for the signing procedures. The key generation com-
ponent produces two keys. One is the ordinary key that is generated by the
RNG. The other is the primary key that is generated using the seed value.
The Program Code executes the TPM commands and also ensures the in-
tegrity of PCRs. The RSA Engine performs the 2048 bit RSA encryption
and decryption operations.

2.3.2 Platform Trust Through Boot Time Measure-
ment

Platform trust during the boot time can be achieved with the use of TPM. As
mentioned previously, the PCR registers in TPM store cryptographic hashes
of software components such as the BIOS, boot loader, OS and hypervisor.
In this section, we explain this process using the Intel TXT terminology.
Intel TXT is a hardware technology from Intel which aims to provide root
of trust and verify the integrity of platform [22].

Figure 2.3: Chain of Trust

The Trusted Computing Base (TCB) refers to the set of platform specific
components which are crucial for measuring the trust level of the system.

CHAPTER 2. BACKGROUND 25

TXT provides a Measured Launch Environment (MLE), which verifies the
measurement values of these components based on known good values.

The Core root of trust Measurement (CRTM) is the first set of code executed
during boot. During the initial boot, the CRTM measures BIOS and writes
the hash to the PCRs 0-4. Then it transfers the control to BIOS. BIOS
measures the boot loader, writes to PCRs 5-7 and transfers control to the
boot loader. The boot loader measures the operating system, writes to PCRs
8-15 and gives control to the OS. The OS would perform this operation on the
hypervisor, and so on forming a chain of trust [29], [46]. This is as depicted
in Figure 2.3.

During a trusted boot, these components are measured and verified against
known good values. If this chain is broken, then the system is halted or
is started according to the launch control policies (LCP) specified by the
admin. Launch Control Policies are the list of policies that verifies if the
system meets the required criteria and further decides if the system has to
be booted or not. This is a static root of trust measurement. If there has
been any changes in measurement values after establishing the trust, due to
new components or upgrades, then the TPM has to be reset.

2.3.3 External Attestation Process

Verifying the platform trust is achieved during the system boot. However,
in a telco cloud environment, after the NFVI boot the service provider may
want to verify the platform configurations before launching its VNFs. In
such scenarios, we require an external attestation mechanism that can prove
the trust of a remote platform.

External attestation is a process where a verifier can check the integrity of a
remote machine with the help of an attestation server. The verifier can query
the attestation service to know if a host is trusted. The attestation service
queries the TPM of the selected host and fetches the PCR values. The
attestation server compares them against known good values and informs
the verifier whether the host is trusted or not, as shown in Figure 2.4. This
mechanism is successful only for hosts that have TPM configured in it.

The communication and key exchange between the verifier, attestation ser-
vice and TPM are as shown in Figure 2.5 [33].

CHAPTER 2. BACKGROUND 26

Figure 2.4: Remote Attestation

Figure 2.5: Attestation Service Communication Flow

CHAPTER 2. BACKGROUND 27

1. Step 1: The verifier sends a 160 bit nonce to the attestation server.

2. Step 2: The Attestation server sends this nonce to the TPM of the
machine whose integrity is to be verified.

3. Step 3: The TPM responds to the attestation server with a TPM quote
which includes the PCR values and the quote that is signed by the
attestation identity key.

4. Step 4: The attestation server also retrieves the current measurement
from the measurement list.

5. Step 5: It further sends the quote and the measurement list to the
verifier.

The verifier decrypts the quote with the public attestation identity key. It
checks if the nonce is the same as the one that it had sent to the attesta-
tion server. Further, it compares the PCR values to the measurement list
and decides whether it can trust the system or not. Intel’s Cloud Integrity
Technology [7] is an example attestation server which can be used in cloud
platforms.

2.4 Trusted Cloud

We can build a trusted NFV by enabling a TPM in the NFVI layer. A
trusted NFV can enhance the trust level of the platform and also enhance the
confidence of telecom operators to deploy their network functions as VNFs.
In this section, we discuss some of the ongoing research on integrating TPM
with a NFV or cloud infrastructure.

In [27], authors explain the challenges and the requirements that emerg-
ing technologies need to satisfy in order to establish trust in cloud. These
requirements include platform integrity and remote access control. Addition-
ally, they have also considered certification of the cloud and a strong security
policy as some of the other requirements for placing trust in cloud.

Abbadi et al. [8] discuss the issue of data control by IaaS providers and
the need for trust mechanism between the users and the providers. In their
paper, a trust framework is presented for cloud. In this framework, the
physical layer consists of TPM and it communicates with the control agent

CHAPTER 2. BACKGROUND 28

so as to monitor the operational status of the cloud. The authors aim to
create a chain of trust between the user and the cloud provider, although,
it seems to be an extended version of trust establishment based on remote
attestation process.

In [45], the authors present a mechanism to verify the integrity of a VM. This
is achieved by introducing a cloud verifier component that attests the VM,
and the process involves key exchange between the user and the cloud verifier.
Further, they devise a functionality to encrypt the image and decrypt it when
a request arrives. The authors claim that this gives enough proof to the user
that their VM is launched in a trusted hardware. However, verifying the
integrity of VM images during launch time is not considered. Also, a strong
evaluation of this mechanism is missing from their paper.

Previously, we have discussed SLAs and the need to protect them. A com-
mon SLA between the user and the cloud provider is to enforce data pro-
tection by defining geographic boundaries to the data as mentioned in [26].
In such conditions, the VM migration or evacuation might not be possible if
it violates the geographic policy specified by the user. However, in a cloud
environment with many VMs running, the IaaS providers do not provide
any verification mechanism that the VMs are actually functioning accord-
ing to the policies specified. In [26], the authors further discuss engineering
a middle-ware system that can assert the integrity of the components and
to verify if geographic trust is maintained. This is achieved by introducing
TPM in the hardware and maintaining a hardware root of trust. The paper
discusses more challenges associated with ensuring geographic trust.

Yan et al. [50], presented a trust framework for network function virtualiza-
tion and 5G security. The authors use trusted computing technologies in the
NFVI layer, so as to preserve trust in the platform. Further, they have a
trust management middle layer and trust functions running on top of NFVI.
However, they have not evaluated the framework with the requirements they
have specified and also an implementation of this framework is missing.

In [37], authors have focused on implementing trust in cloud by using trusted
computing technologies. The proposed system’s functionality is similar to
traditional trusted boot mechanism and remote attestation. The authors
have included the aspect of logging in-order to monitor and detect tampering.

There have been efforts on virtualizing the TPM, commonly known as vTPM
[39], [44]. vTPM is helpful during migration where we can migrate the vTPM
along with the VM. This guarantees a flexible migration process and provides

CHAPTER 2. BACKGROUND 29

an easier way to do an integrity check after migration. However, this process
is complicated. vTPM has to measure components in the new platform,
which results in a failure as vTPM would contain the old cryptographic keys
or associated data against the specified VM [42].

There has been significant work done on establishing trust in cloud through
trusted computing technologies. Technologies such as Intel TXT [22] and
Intel’s Software Guard Extensions (Intel SGX)3 are being used in real world
cloud scenarios.

However, it is still insufficient to solve the challenges in a telco cloud envi-
ronment. In this thesis, we aim to establish trust in NFV and address the
challenges associated with it.

2.5 Summary

In this Chapter, we have explained the concepts of cloud computing and
NFV. We explored the need for placing trust in such environments. Further,
we have discussed the existing trusted computing technologies and their func-
tionality. In the last section, we have looked into the existing research that
combines trusted computing in cloud-based systems.

3https://software.intel.com/en-us/sgx

Chapter 3

Challenges in Providing Trust in
NFV

In this chapter, we explain the challenges in providing trust in NFV. The
challenges include providing platform trust for NFVI, developing VNF in-
tegrity verification mechanisms, resource management in NFV and fault tol-
erance. Firstly, we explain the terminology associated with trust and our
assumptions. Next, we look into these challenges in detail.

3.1 Terminology

In this section, we introduce and clarify the terminology associated with
NFVI, VNF and trust.

NFVI States:

1. NFVI Boot
This refers to the boot process of a single NFVI host. In trusted envi-
ronment, the NFVI integrity is verified during this stage.

2. NFVI Run
This refers to the state of NFVI where it is functional and is capable
to launch a VNF. To verify the trust status of an NFVI element during
its run time, we can use the remote attestation mechanisms.

30

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 31

3. NFVI Terminate
This state occurs when the NFVI encounters a shut down due to crash
or for maintenance purposes. When a trusted NFVI hosting sensitive
workload encounters this state, all the workload needs to be migrated
to another trusted platform residing in trusted compute pool.

4. NFVI Crash
The NFVI can move to a crash state when any of its components stops
functioning correctly.

VNF States:

1. VNF Launch
This state refers to the processing of request to launch the VNFs. A
host is selected during this phase that match the requirements of a
VNF.

2. VNF Boot
This refers to the boot process of individual VNFs. A VNF can also
be booted in a trusted way by verifying its integrity.

3. VNF Run
This refers to the running state of a VNF where the network functions
start to operate.

4. VNF Suspend
VNF can enter into a suspend state when we want to save the current
state of the VNF and resume during a later point in time. When a VNF
is suspended, its virtual storage disk should be encrypted in order to
avoid sensitive data leakage. The encryption and decryption keys can
be secured by storing them in TPM.

5. VNF Snapshot
A snapshot is a VNF system state at a particular time. A snapshot of
a VNF can be loaded as a new image.

6. VNF Migration
This process involves the movement of running VNFs from one NFVI
to another including its memory, compute and storage.

7. VNF Evacuation
VNF evacuation is the process of forced migration. This operation is
performed during emergency situations such as NFVI crash.

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 32

8. VNF Crash
A VNF can crash due to failure in VNF components or the NFVI.
VNF crashes can be mitigated using fail-over or backup mechanisms
but the data associated with crashed VNF needs to be securely deleted
or evacuated in order to avoid unauthorized access to it.

Terminology Associated with Trust:

We now define the terminology associated with the notion of trust depending
on the platform and location of NFVI.

1. Platform Trust
The term platform trust implies the state of NFVI where the integrity
of all critical components such as BIOS, OS and hypervisor is preserved.
For VNFs that require only platform trust, it is free to start, migrate
or evacuate on a trusted machine as long as the integrity of platform
components is preserved.

2. Geographic Trust
Geographic trust implies the geo-location trust of NFVI. This is criti-
cal in cases of VNFs such as Lawful Interception (LI), where the VNFs
are expected to be launched in specified geographic location. In such
scenarios, the VNFs may be restricted to migrate or evacuate to other
geographic locations that are not mentioned in the service level agree-
ments.

In a telco cloud environment, the service providers may have to run critical
VNFs that impose geographic restrictions. In such scenarios, we require both
the platform trust as well as geographic trust. In such conditions, the VNFs
can be migrated or evacuated to another trusted machine but in the same
geographic area.

We define trust as a process of ensuring that the integrity of the system is
preserved or maintained. Integrity of platform components affect the place-
ment of VNFs. In this thesis, we introduce two new terms, the hard trust
and soft trust. If the VNFs require hard trust, it implies that the VNFs
can be launched only if all the components of the system are trusted. Such
policies of trust can lead to difficulties during migration and evacuation when
there are no trusted resources and this eventually leads to deliberate killing
of the VNFs. However, soft trust allows mitigations and the VNFs can be

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 33

launched irrespective of trusted hosts and later have the flexibility to migrate
to more suitable trusted host. Such mechanisms preserve SLAs and are easier
to perform migration and evacuation of the VNFs.

3.2 VNF-VM Assumption

VNFs are network functions such as MME, HLR and VLR, that run on a
virtual machine. We can run multiple VNFs on a single VM or single VNF
on multiple VMs as well. The relationship between a VNF and VM is many-
to-many.

Figure 3.1: Assumption

In this thesis, we assume the relationship between VNF and VM is one-to-
one for simplicity reasons. This assumption is reasonable, as many of the
practical deployments often consider VNFs as traditional VMs.

3.3 Requirements

In this section, we list the requirements of trust in NFV. The ETSI report on
security and trust guidance [6], mentions about NFV high level trust goals.
Some of these are:

1. Establishing trust in the platform or NFVI.
The goal is to verify that the platform is in an expected state.

2. Establishing trust in software, policies and processes.
This includes VNFs, MANO elements and other components in NFV.
Establishing trust in each of these components is essential; for example,
a tampered VNF can affect other VNFs.

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 34

3. Supplying guidance for operational environment such as MANO and
EMS, that is critical in decision making.

4. Defining trust relationships between virtualization resources for trust
life-cycle management.

In the ETSI report they have also stressed on the measures that need
to be taken during a trust failure. Some of the options they have
considered are:

5. Inform the failure to another trusted entity

6. Increasing the logging levels

7. Reducing operational parameters

8. Other options include to work normal, cease the operation or destroy

Consolidating the above goals, we derive the following requirements to es-
tablish trust in NFV.

1. The NFVI must be trusted and a mechanism is needed to verify this.

2. NFVI must ensure that the quality of service (QoS) of VNFs are met.
This implies that NFVI should aim to preserve SLAs and minimize the
occurrence of failure.

3. NFVI should verify the trust status of VNFs before launching.

4. An external needs to audit the actions of NFVI

3.4 Challenges

NFV is a relatively new concept and there are numerous challenges associ-
ated with it. However, only a few existing literatures have discussed on the
challenges of incorporating trust in NFV.

The ETSI white paper [4] on NFV details the challenges associated with
NFV. They consider security and resilience as some of the challenges, how-
ever, they do not explicitly state trust as a challenge. Similarly in [23], the

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 35

authors consider only security as one of the challenges but do not consider
the aspects of trust in NFV.

Based on the requirements that we have considered earlier, we see that trust
is an essential aspect that needs to be incorporated in NFV in each of its
layers. We need to consider the platform trust and trust of VNFs. We also
need to consider resource management and fault tolerance aspects, which are
critical to such environment. In this section, we explain these challenges in
detail.

3.4.1 Platform Trust

The main component in an NFV architecture is its infrastructure, consisting
of hardware and the virtualization layer together forming the NFVI. Before
launching the VNFs it is essential to know the state of the platform where
these functions are to be launched.

Figure 3.2: NFVI Time Scale

As mentioned in section 2, there are trusted computing technologies that use
TPM for performing the integrity check of the platform. During the boot
time measurement; the cryptographic hash of platform components (such as
BIOS, OS, hypervisor) are calculated and are verified against known good
measurement values. We have also seen the remote attestation mechanisms
where the verifier can check if the platform is in a trusted state to launch

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 36

a VNF. The prover guarantees this by obtaining the PCR values from the
TPM through a secure communication.

In Figure 3.2, we show the time-scale associated with NFVI. t1 represents
the point in time during which the system is running and had undergone
a successful trusted boot. t2 represents the point in time where the NFVI
is successfully attested by the attestation service. Here, during the time
interval between the points t1 and t2, we can say that the NFVI element is
trusted by itself. During time interval between points t2 and t3, we say that
the element is trusted by the cloud as it is verified by the attestation service.
However, this degree of trust can degrade over time, especially in a cloud
scenario when reboot of NFVI does not take place often. In such scenarios,
we need a re-attestation marked by t3 in the figure.

Although re-attestation can be guaranteed, the values loaded in TPM are
during the boot time. Hence, even if there is a change in integrity measure-
ments of NFVI, it can only be detected during the next boot time, i.e, after
restarting the system. Therefore, re-attestation does not guarantee the fresh-
ness of trust level. To solve this we require run time attestation mechanisms.
Currently, there has been limited works on run-time attestation of NFVI and
it remains an open challenge.

3.4.2 VNF Integrity Verification

Consider a scenario where company A sells its cloud infrastructure to com-
pany B. Company B may verify the integrity of the platform with the help
of trusted computing technologies. However, it has no way to guarantee that
VNF supplied by Company A is not tampered with.

Verifying the integrity of VNFs during its launch-time is crucial to establish
trust in NFV. During VNF launch-time, a VNF image is selected by the
hypervisor. It might be possible that the VNF image has been tampered or
corrupted. For example, it takes only a few seconds to add a malware to
these VNF images. Such VNFs, if launched, can affect the functioning of the
entire system and also of other VNFs.

In [31], the authors describe a method of secure cloud computing by verifying
the freshness of the VM image. However, this does not prevent from insider
attacks and also does not provide user-data confidentiality.

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 37

OpenStack 1 will be having an image signing feature in its next release Mi-
taka, but they do not consider scenarios where the image server is compro-
mised, which might lead the attacker to create fake signatures.

To establish trust in VNF, we need to address the following challenges

1. How to encrypt or sign a VNF

2. How to verify integrity of VNFs

3. How to prevent insider attacks

3.4.3 Launch VNFs on Specific NFVI

In a telco cloud, the service providers may want their VNFs to run only on
servers with certain platform configurations, such as specific BIOS version,
OS type etc.

In traditional PC, an analogous to this problem is addressed by using the
technique of CPU pinning where the processes are bound to specific CPUs
and are allowed to execute only on them. In a cloud scenario, CPU pinning
refers to the pinning of virtual CPUs (vCPUs) of VNFs to the physical CPUs
of the host [24]. This is useful in scenarios where two guest vCPUs compete
for CPU time of the host, which might lead to high latency of the work load
running on the VNFs. CPU pinning avoids this latency by allocating vCPUs
to specific threads in the host, thereby, balancing the workload executing on
the vCPU and efficiently using the cache2. While this solution can guarantee
the SLA of running VNFs on certain physical CPUs, it does not let the
service provider know the state of the platform.

Binding VNFs to NFVI require policies that should be satisfied for the bind-
ing to be successful. The policies would contain the platform configurations
that the NFVI must possess in order to launch the VNF. In [13], the authors
broadly describe the policies that are required in provisioning of a virtual
network operations center. However, the patent does not provide any mech-
anism for the start-up of VNFs. Also, it does not provide a method to bind

1https://specs.openstack.org/openstack/glance-specs/specs/liberty/image-signing-
and-verification-support.html

2https://specs.openstack.org/openstack/nova-specs/specs/juno/approved/virt-driver-
cpu-pinning.html

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 38

VNFs the TPM. Zhang et al, [54], explains the need for restricting access
from one Xen based VM to another Xen based VM. Here, they specify a
policy that details which pairings of VM can communicate with each other.
However, this IPR does not address the policies required for VM startup
mechanism nor the VNF-NFVI binding.

In order to solve the challenge of VNF-NFVI binding, we need to address the
following:

1. How to understand if a VNF requires binding

2. How to retrieve the platform configuration state of NFVI

3. To implement the binding mechanism and the policies associated with
this

4. A mechanism to verify the binding rules before launching any VNFs

In chapter 5, we solve this problem using an external verifier and having a
policy mechanism in place.

3.4.4 Resource Management

Mijumbi et al. [36] explain the challenges associated with NFV Management
and Orchestration. One of the challenges mentioned is the resource manage-
ment, in particular, the problem of identifying a host to launch the VNFs.
This problem gets more complicated in trusted NFV environment where we
require trusted hosts to launch VNFs.

The host selection process is performed based on criteria that the user wants
while launching an instance. For example, the user can specify that they
need 1GB RAM, host is functional and it is trusted. Also, there can be
additional custom requirements. In order to guarantee a QoS for the VNFs,
it is important to meet the VNF requirement by the NFVI. The question to
be solved is how do we select a host M where image i can be instantiated.

The selection of trusted hosts is possible and there are practical implementa-
tions in Openstack. There are also concepts of Trusted Computing Pools in

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 39

OpenStack 3, that are based on Intel TXT4. Here, the machines with TPM
support form a pool of trusted resources. The user can specify to launch their
VNF on a trusted environment and the infrastructure provider provides with
one of the machines in the trusted pool where the VNF can be launched.

Resource selection can also be performed by specifying the location details
or the geographic boundaries where the VNFs must be launched. The geo-
location trust can be verified with the help of PCR 22 in the TPM, which
stores the geo-tagging index. We can also perform the external check of
image signature and select hosts that can run the particular image.

Figure 3.3: Trusted Resource Selection

Consider the Figure 3.3, where initially we have a total number of available
hosts. We will select a subset that satisfies our initial criteria of necessary
RAM. Further again select a subset of these that are trusted. Further, we
can apply custom properties that selects a fewer set of machines which are
capable of running the particular image. The selection of host from a subset
of valid hosts can be done randomly or based on some priority set.

As we can see the problem of resource management gets harder in a trusted
cloud environment. Such mechanisms of resource selection might lead to
unavailability of trusted resources. Also, we need to consider scenarios where
no host is found and in such cases there needs to be some mechanism to
manage the resources effectively and launch an instance without citing a
failure so as to preserve the SLAs.

3https://wiki.openstack.org/wiki/TrustedComputingPools
4http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-

txt-software-development-guide.pdf

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 40

3.4.5 Fault Tolerance

Fault tolerance is yet another unexplored area in a trusted cloud scenario.
We consider a system has failed when the user is not able to launch a VNF
due to unavailability of resources. The current systems have focused on fault
avoidance; however, it prevents the system from functioning during a failure.
In such scenarios, it is necessary to consider fault tolerance aspects.

Dobson et al [17] have mentioned that it is an unrealistic approach to depend
on a system based on fault prevention alone. The authors have also empha-
sized on the need to have fault tolerance mechanisms in practice. In [32] the
authors explain the design requirements for an NFV system. Although, the
article does not cover the requirements we stated in Chapter 3, it mentions
fault tolerance as one of the requirements.

In an NFV environment, VNFs may demand various platform specific re-
quirements. In such scenarios the service providers should be able to decide
the platform configuration and the hardware selection before launching the
VNFs [30]. Some VNFs would require certain guaranteed geographic loca-
tions where it can be launched. Some critical VNFs would need trusted
platform while others might just want to be launched and may be migrate
to trusted platform later.

Considering these cases, we have come up with the scenarios where we require
a fault tolerance or in other words mitigations to the failure scenarios.

1. Unavailability of resources that satisfy the platform specific conditions
set by a VNF

2. VNF integrity is compromised

3. Binding of VNF to NFVI resulted in failure

4. NFVI is not trusted

5. NFVI does not meet the required platform policies for launching a VNF

In order to guarantee fault tolerance during failure scenarios, we need to
consider the above cases and provide a mitigation during these events. Im-
plementing a fault tolerance approach has the potential to solve the resource
management problem that we have previously discussed.

CHAPTER 3. CHALLENGES IN PROVIDING TRUST IN NFV 41

3.5 Summary

In this chapter, we described the various terminologies associated with trust,
NFVI and VNF. Further, we have looked into the challenges of establishing
trust in NFV. We have explored challenges such as platform trust, VNF
integrity verification, VNF-NFVI binding, resource management and fault
tolerance in an NFV environment.

Chapter 4

Architecture and Design

This chapter gives an overview of the system architecture and its components.
We have modified the ETSI NFV architecture to build trusted NFV. Further
we have developed two mechanisms: signing and VNF-TPM binding. The
signing mechanism performs the VNF integrity checks and the VNF-TPM
binding mechanism achieves the VNF-VNFI binding. We explain the process
of resource selection in specific to OpenStack. Also, we propose a policy-
based fault tolerance method.

4.1 Modified ETSI NFV Architecture

We have constructed a system that introduces new components, such as, the
TPM, Trusted Security Orchestrator (TSecO) and the attestation server to
the existing NFV architecture, as shown in Figure 4.1. In our architecture the
NFVI consists of servers with TPM chip that enables the boot time integrity
verification of NFVI. Above this layer, we have the host operating system
and further up the stack we have the hypervisor. Above the hypervisor layer
we deploy the network functions(MME, HLR, VLR) as VNFs. We introduce
the TSecO and the attestation service to the management and orchestration
stack of NFV.

To explain the communication links between the components, we use Open-
Stack with QEMU(Quick EMUlator) as the hypervisor, which communicates
with the TSecO. The host operating system consists of a trust agent which
can securely communicate with the attestation server. We use Intel’s CIT

42

CHAPTER 4. ARCHITECTURE AND DESIGN 43

Figure 4.1: High Level System Architecture

attestation service which fetches the PCR values from TPM. Additionally,
we also assume that the orchestrator can communicate with the TSecO, and
this is particularly required during failure scenarios and their mitigation.

4.2 Trusted Security Orchestrator

We have developed the TSecO, an entity in MANO whose aim is to perform
the integrity check of VNF images, select a suitable host to launch the VNF
and to audit the hypervisor requests.

The hypervisor scheduler sends the image metadata to the TSecO that veri-
fies the integrity of image and also checks if the selected host has the necessary
criteria to launch the particular image.

After these verification, the TSecO sends the result back to the hypervisor, if
it is possible to continue launching a VNF or not. TSecO can communicate
with the attestation server and retrieve the PCR values. TSecO keeps an
audit log of hypervisor requests including the time of request, host selection
and VNF launch decision. The TSecO can perform additional functions such
as the license management and asset management as shown in Figure 4.2.

In this chapter, we explain the two main functionality provided by TSecO:
the signing and binding. As mentioned before, signing is the process of

CHAPTER 4. ARCHITECTURE AND DESIGN 44

Figure 4.2: Trusted Security Orchestrator

verifying the image integrity whereas binding solves the problem of whether
the selected host can run the particular VNF.

The signing and binding processes are invoked during the VNF launch time.
Let us revisit the terminology we have discussed in Section 3.1. VNF launch
refers to the processing of request to launch the VNFs. During this phase, a
host is selected that match the requirements of a VNF and in our case, the
hypervisor selects a host only if VNF integrity and binding are successful.

In the subsequent sections, we will look into the detailed functionality and
architecture of the signing and binding process.

4.3 Signing Mechanism

During the VNF launch time, the hypervisor selects an image which is used
for launching the VNF. This image is prone to attacks from malicious insiders,
such as members of cloud admin group and also from hackers who gain admin
privileges. The admin has access to all VNF related data and can easily make
changes or tamper it, thereby affecting the user data confidentiality. In order
to guarantee VNF integrity, the integrity of VNF images has to be verified
before launching a VNF. In this section, we describe how to achieve this

CHAPTER 4. ARCHITECTURE AND DESIGN 45

Figure 4.3: Creating a Signature File

Figure 4.4: Verification of Signature

using software signing mechanisms. The process involves our TSecO and an
external signing authority.

Prior to launching a VNF, the hash of the image is calculated and sent as
input to the signing authority. The signing authority creates a signature
from the hash value, which is then used as signature of the image as shown
in Figure 4.3. This signature is stored in TSecO.

During the launch time of VNF, the hash of the image is calculated by
the hypervisor and is sent to TSecO along with the image identifier. The
TSecO retrieves the signature file earlier stored corresponding to the image
identifier. TSecO also has the root certificate which contains the public key of
the signing authority. TSecO verifies if the signature is valid or not and sends
this response to the hypervisor as shown in Figure 4.4. Additionally, TSecO
also logs the hypervisor requests for signature verification. The log consists
of the time of request, VNF image ID, information on signing authority, host
selection and the result of signature verification.

This signing mechanism prevents from launching malicious images as the

CHAPTER 4. ARCHITECTURE AND DESIGN 46

signature verification in TSecO would result in a failure for tampered images.
Also, such a mechanism is helpful in proving the ownership of VNF images.
Having an external signing authority and verification mechanism reduces the
possibilities for insider attacks. For example, if a fake admin tries to launch
a malicious VNF, it would fail the signature verification and hence prevents
from launching the VNF. It is indeed possible for the fake admin to proceed
to host selection irrespective of the result from TSecO. However, once the
hypervisor sends request to the TSecO for signature verification, the external
log in TSecO stores all the necessary information and hence it is easier to
detect if there has been any malicious activity. As discussed in Chapter
3, the existing literatures perform the signature verification of VNF images
internally, but does not consider insider attackers as potential threats. We
believe having an external signing mechanism provides an efficient way to
attest the VNF integrity and log the integrity status.

4.4 VNF-TPM Binding Mechanism

In our scenario, the process of binding VNF to NFVI is achieved through
the TSecO. This functionality is useful in telco cloud environment, where
we want the VNFs to be launched only in hosts that have the expected
hardware characteristics. It helps in binding VNFs to the platform with
particular hardware configurations. During the launch time of VNF, TSecO
verifies the binding and sends the result to hypervisor whether the VNF can
be launched in the selected host or not.

Figure 4.5: Policy for Binding

CHAPTER 4. ARCHITECTURE AND DESIGN 47

Figure 4.6: VNF-TPM Binding Process

The process of binding is performed by associating the image with one or
more policies. Each policy consists of combinations of PCR registers and we
take a hash of the concatenated PCR values, which is stored in TSecO as
shown in Figure 4.5.

During the verification process, the hypervisor communicates with the TSecO
by providing the image identifier and host name. The TSecO fetches the
current PCR values corresponding to the policy elements and calculates the
concatenated hash of the retrieved values. TSecO compares this against the
known good hash values that are already stored against the selected policy.
If the hashes match, the binding is considered to be successful. This result is
communicated back to the hypervisor as shown in Figure 4.6. If the binding
fails, the hypervisor does not launch the VNF. Similar to signing mechanism,
the TSecO logs details related to binding, such as VNF image identifier,
time of request, host selection and the result of binding. This method allows

CHAPTER 4. ARCHITECTURE AND DESIGN 48

combinations of PCR values to be taken into consideration and hence VNF
can be associated with more specific policies. To our knowledge there are
no existing works on policy-based approach for VNF-NFVI binding. This
method helps to launch VNF on the platform that has certain hardware
configurations and such mechanisms are necessary especially in a telco cloud
environment.

4.5 Resource Selection

4.5.1 Modified Filter Scheduler in OpenStack

To facilitate the communication between hypervisor and TSecO, we use the
concept of filters in OpenStack. Filters in the OpenStack scheduler find the
most fitting host to launch a VNF. Some of the available filters are RAM
filter, compute filter etc. for checking the available memory and CPU cores
and to select hosts based on these factors to launch the VNF. Additionally,
OpenStack allows the possibility to create custom filters, which we use in
this thesis to communicate with the TSecO. In this section, we describe the
process of filtering in OpenStack.

The scheduler driver in OpenStack’s compute node launches the filter sched-
uler. Filter scheduler contains all the standard filters1 as well the custom
filters that we can create. In the configuration file, we can add custom filter
to be a part of the default filters, so that the filter scheduler launches this
filter along with other filters during the launch of VNFs. When a request to
launch a VNF arrives, the filter passes through each host and selects the list
of host that satisfies the criteria. We can add any number of filters to the
category of default filters. Each of these filters select the host that satisfies
the requirement of that particular filter and passes the list of selected host
to next filter and so on. After the last filter in the process, the filter sched-
uler performs weighing. The filter scheduler assigns weights to each of the
selected hosts depending on the RAM, CPU and any other custom factors
and selects a host that is suitable for the VNF.

Consider Figure 4.7 where have the initial set of four hosts. The filters
are applied on each of them with the criteria such as RAM, trusted, VNF
integrity and the binding policy of OS type. We see that host 2 and host

1https://wiki.openstack.org/wiki/Scheduler Filters

CHAPTER 4. ARCHITECTURE AND DESIGN 49

Figure 4.7: OpenStack Filter Scheduler

Figure 4.8: OpenStack Resource Selection Process

CHAPTER 4. ARCHITECTURE AND DESIGN 50

4 fail to satisfy the filtering rules. After the filtering, weighting is applied
to host 1 and host 3 to select the best of two. The weighting rule in this
scenario depends on the RAM. The host that has more memory is selection
and this case it is host 3.

The resource selection architecture in our scenario is as shown in Figure 4.8.
We use the custom filters for sending the image identifiers and hostname to
the TSecO. It receives the status of signing and binding from TSecO and
does not launch the VNF if TSecO returns a False. We also see the process
of resource selection in OpenStack which is similar to challenge we discussed
in section 3.

4.5.2 Modified OpenStack’s Architecture:
Launch of VNF Instance

The OpenStack’s instance launching procedure2 describes the sequence of
events during the launch of a VNF instance. In this section, we present an
extended version of this VNF startup procedure as shown in Figure 4.9. We
use the sequence numbers used in this figure to describe the flow of events.

When the user creates a launch-instance request, the user credentials are
sent to the Keystone which is the identity service (1). The identity ser-
vice performs the authentication check and sends an authentication token
to CLI (Command Line Interpretor) (2). The CLI or the dashboard sends
the launch-instance request to Nova API (3) and the Nova API validates
the authentication token as well as the access permissions of the users. The
identity service checks the authentication token and sends response with the
roles and permissions (4).

The Nova API interacts with the Nova database (Nova DB) and creates a
database entry for the new instance (5). The Nova components use Remote
Procedure Calls (RPC) to communicate with each other. rpc.cast mode is
used when the function does not wait for a return value and rpc.call mode
is used when it waits for the result. The Nova DB sends a rpc.call to Nova
Scheduler (6) and expects it to select a host and launch the instance. The
Nova Scheduler communicates with the Nova DB (7) and gets list of hosts.
It passes the list of hosts to filter scheduler (8), which consists of a set of
filters. f1 can be for example a RAM filter. After the completion of f1, we

2https://ilearnstack.com/2013/04/26/request-flow-for-provisioning-instance-in-
openstack/

CHAPTER 4. ARCHITECTURE AND DESIGN 51

Figure 4.9: Provisioning VNFs: Modified Architecture

CHAPTER 4. ARCHITECTURE AND DESIGN 52

receive a set of hosts that has the required RAM to run the instance (9). f2
can be for example the trust filter. This performs the check if the host is
trusted i.e. the instance requires only the hosts that are trusted.

We then pass these trusted hosts to our custom filters (10). In our scenario,
the custom filter sends the image metadata and host name to the Trusted
Security Orchestrator (TSecO) that we have developed (11). As mentioned
before, the TSecO performs the VNF integrity checks and VNF-TPM binding
procedures. For example, TSecO can communicate with the signing authority
for signature verification (12-13). It also communicates with the attestation
server (14-15) for the binding process. After the verification process, TSecO
sends the response to the custom filter (16). If all the filters return a true
value, the filter scheduler provides the set of hosts to the weighing component
(17). This component allocates weights to the hosts and selects the best host.
The host with the maximum weight is selected and in this case, it is Compute
2. The name of selected host is sent back to the filter scheduler (18).

The filter scheduler provides the selected hostname Compute 2 and its iden-
tifier to the Nova Scheduler (19). The Nova Scheduler sends this response to
Nova API (20). The Nova Scheduler sends an rpc.cast to Compute 2 node
to launch the instance (21) and Compute 2 node sends rpc.call to the con-
ductor, in order to provide the instance information such as RAM, CPU,
disk etc. (22). The conductor interacts with the Nova DB and retrieves the
required values (23) and this information is then sent to the Nova Compute
(24).

The compute node interacts with the Nova image component to retrieve the
image URI via glance API (25). The Nova image component validates the
authentication token with the identity service (26). The glance API fetches
the image URI from the Nova image component and sends them to the com-
pute node (27). Further, the compute node communicates with the Nova
network component through the network API (28). The quantum server
checks the authentication token and it gets the required network resources
to start the instance (29). The compute node gets the required network in-
formation (30) and it communicates with the Nova block-storage component
via the cinder API to attach the volumes to instances (31). The cinder API
validates the authentication token with the identity service (32) and com-
municates with the Nova block-storage service to retrieve the block storage
information. The compute node gets the block storage information to attach
volumes to instances (33) and it can now communicate with the hypervisor
driver to execute the request (34).

CHAPTER 4. ARCHITECTURE AND DESIGN 53

To conclude, in this section we looked into the case of provisioning a VNF
and how different components interact in our modified architecture.

4.6 Fault Tolerance Based on

Policy Mechanism

As seen from Figure 4.8, the problem of resource selection becomes compli-
cated with the introduction of trusted filter as well as custom filters. There
can be situations where there are no trusted resources available, and this
might lead to problems in launching as well as migration and evacuation of
VNFs.

We introduce a policy-based mechanism to address this problem. As seen
from the VNF-TPM binding, we associate each image to one or more policies
and each policy is a combination of PCRs. If none of the policies are satisfied,
this can lead to unavailability of resources. However, it is possible to find a set
of one or more sub-policies that might satisfy parts of the requirement. For
example, consider the case where the strongest policy does not successfully
complete the binding. In such scenarios, it might be possible to launch the
VNF with the next set of policies that satisfy the requirement. This would
require communication between TSecO and orchestrator so as to launch the
VNF with minimal policy but with certain set of protection such as network
monitoring of VNFs.

We depict this as a partially ordered set of policies as shown in Figure 4.10.
Consider a mechanism where the policy strength depends on the length of
policies and, if the strongest policy is not available then we can select one
of the next strongest policies available from the lattice. From the Figure
4.10, the strongest policy is {0, 17, 18, 22} as it has the maximum policy
length. Here, {0, 17, 18, 22} corresponds to the PCR values of BIOS, OS,
hypervisor and geo-location trust respectively, and the least being φ. If the
policy {0, 17, 18, 22} fails, and the policy {0, 17, 18} is successful, it
is possible to launch the VNF with the latter policy provided there are some
mitigations. In the above example, if the geo-location trust is not guaranteed,
it might be possible to migrate the VNF to nearest geographic location with
network monitoring in place.

The real challenge here is to determine the policy strength. Since this is a
partial order problem, it is difficult to define the policy strength in cases of

CHAPTER 4. ARCHITECTURE AND DESIGN 54

Figure 4.10: Policy Lattice Based on Length of Policies

policies which are incomparable in the lattice. One approach to solve this is
to allocate weights to each of the PCRs. As seen in boot time measurement,
the core root of trust management measures the BIOS first, and the BIOS
would measure the boot loader, and so on. Hence, giving higher weights to
PCR 0 (BIOS) than PCR 17 (OS) can help in arranging the polices according
to their strength. However, this approach is not always scalable especially in
scenarios when we consider all the 24 PCRs.

Another method is to arrange policies according to the policy length. We
have depicted this in the Figure 4.10, where we consider the case of 4 PCRs.
In the current implementation we assume that higher the number of PCR
registers satisfying the binding conditions, the stronger the policy. This is
because if higher the number of PCRs that match the required binding, the
lesser will be the number of mitigations required.

If the policy {0 , 17} and {0, 17, 18} returns true for the hash verifica-
tion, then the host that has the longer policy length is chosen, which in this
case is policy {0, 17, 18}. If we have two policy sets that is incompara-
ble such as {0, 17} and {0, 18}, then we might have to randomly select a
policy and launch the host that satisfies the policy. This decision has to be
made by the orchestrator. Again we can see that arranging polices based on
their lengths makes it complicated when we consider the case of all the 24

CHAPTER 4. ARCHITECTURE AND DESIGN 55

PCR registers with various combinations between them.

A method for defining policy strength as well as implementing a fault toler-
ance method based on the policies would be some of our future works.

4.7 Trust Relationship Between Entities

Figure 4.11 shows the trust relationship between the entities consisting of
Service Provider (SP), Trusted Security Orchestrator (TSecO), Signing Au-
thority (SA), Attestation Service (AS) and Infrastructure Admin (IA).

Figure 4.11: Trust Chain

The trust relationships between the entities are explained below.

1. TSecO and Signing Authority
The TSecO establishes a trust relationship with the signing author-
ity for verifying the VNF image integrity. The Signing authority pro-
vides the signature file of the VNF image and its root certificate to the
TSecO. The TSecO trusts this communication and the data it receives
from the signing authority.

CHAPTER 4. ARCHITECTURE AND DESIGN 56

2. TSecO and Attestation Service
The TSecO establishes a direct trust relationship with the attestation
service. The attestation service provides the PCR values of the infras-
tructure to the TSecO. The TSecO trusts that these values are fresh
and are obtained from the legitimate host.

3. Infrastructure Admin and Attestation Service
The admin trusts the attestation service on verifying the platform in-
tegrity of its hosts after their boot. The attestation service fetches the
PCR values from TPM and compares against known good values. The
admin confirms if its cloud is trusted only if the attestation service
verifies it to be true.

4. Infrastructure Admin and TSecO
The admin trusts the TSecO to perform the VNF integrity check and
VNF-TPM binding check. It relies on TSecO audit logs to verify if
there has been an attempt to launch any malicious VNF images.

5. Service Provider and TSecO
The service provider does not directly establish a trust relationship
with the signing authority and attestation service, however, there is a
transitive trust through the TSecO i.e. the service delegates the trust
decision to TSecO

6. Service Provider and Infrastructure Admin
Even if TSecO is trusted, the service provider has to trust the in-
frastructure admin. This is because there is no direct communica-
tion between the service provider and attestation service or the service
provider and signing authority. The service provider only knows the
final decision through the admin and has to trust the same. However,
after each VNF launch, the service provider can verify the TSecO logs
and know if there has been any malicious activity. This partially limits
the need for service provider to trust the infrastructure admin.

If the trust chain between SP and TSecO is broken, then there is no way of
knowing if the signing and binding process resulted in correct values. This is
because the SP has a transitive trust to the signing authority and attestation
service because of the trust that it places in TSecO. Similarly, if the trust
chain between the infrastructure admin and attestation service is broken,
this affects the trust between infrastructure admin and TSecO. The admin
would not believe the decision from TSecO as the binding process is based
on values it retrieves from the attestation service. Finally, if the trust chain

CHAPTER 4. ARCHITECTURE AND DESIGN 57

between SP and admin is broken then SP would not believe the final decision,
although it can verify the audit logs of TSecO.

The trust chain helps in viewing the high level picture and the trust relation-
ship between the entities. We see that the longer the trust chains are, the
more fragile is the architecture. However, the aim of this thesis is to build
techniques to enhance VNF trust, VNF placement and to address other is-
sues, such as, resource management and fault tolerance. Hence, we are not
focusing on building an end-to-end trust.

4.8 Use Cases

Following are some of use cases of trusted computing, signing, VNF-TPM
binding mechanism and the fault tolerance approach.

1. Lawful Interception

Lawful interceptions are the legal policies to intercept a communication
or network traffic [3]. These are usually targeted at suspected criminals,
and the information collected is used by legal authorities for analysis.
LI components usually have conditions on the platform where it is run
and also on the geographic locations. The VNF which provides the
LI functionality must guarantee that it runs on a platform with the
specified conditions. Using the VNF-TPM binding mechanism, we can
ensure that the VNF is mapped to specific platform configurations and
verify if it is possible to launch the VNF in it. This guarantees the
placement of VNFs in the correct platform and avoid launching it if it
violates the legal policies. Also, we include PCR 22 on the VNF-TPM
binding if the VNFs require geo-location trust.

2. Safety-Critical VNFs

Safety Critical VNFs such as Medical VNFs, Telecommunication soft-
ware, Firewalls etc. needs to be started irrespective of the platform they
are launched on. Using the VNF-TPM binding, if there are no available
platforms that satisfy all the requirements, there are other policies that
might satisfy parts of the requirement. The list of policies for a VNF
makes it possible to launch a VNF in a platform with a certain level of
guarantees. Also, verifying the integrity of such critical VNFs is also
necessary and we can achieve this using the signing method.

CHAPTER 4. ARCHITECTURE AND DESIGN 58

3. Digital Rights Management

Digital Rights Management (DRM) defines the policies, techniques and
tools for managing the digital content [47]. Our VNF-TPM binding
mechanisms will be useful in scenarios where VNFs require DRM. The
provider can define custom policies that would enforce VNFs to start
on a particular platform and refuse to launch if the policies do not
match.

4. Edge Computing

Edge computing refers to placing the network functionality, such as,
mobile network base stations away from the centralized nodes to the
network edge3. This allows easier physical access when managed in
data center and therefore there is a high possibility for attack. Having
trusted computing technologies can help to detect if there has been
any unauthorized modifications made to the system. Also an external
signing mechanism can help in verifying the integrity of VNFs to be
launched in such networks.

5. Data Sovereignty

Consider a scenario where the Russian personal data needs to be stored
in servers within the EU [40]. In such situations, the main concern is
associated with privacy and integrity of the data. Data Sovereignty
refers to the sensitive data flow outside a nation’s border and aims to
isolate particular section of cloud to the rest of the infrastructure. In
such scenarios, using remote attestation can guarantee the trust status
of the infrastructure. Also, methods such as VNF signing and VNF-
TPM binding can prove the ownership and integrity of the VNFs.

4.9 Summary

In this chapter, we have looked into the system architecture that we have
proposed in order to solve the challenges of placing trust in NFV. We have
designed two mechanisms: signing and VNF-TPM binding. Further, we
also propose a policy based fault tolerance approach to solve the resource
management problem. Additionally, we have also discussed the trust chain
between entities and the use cases of the signing and binding mechanisms.

3http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing

Chapter 5

Implementation

In this chapter, we explain how we implemented a trusted telco cloud. We
discuss the implementation details of TSecO, signing mechanism and the
VNF-TPM binding mechanism.

5.1 Building a Trusted Cloud

As discussed in Chapter 4, we introduce TPM in the NFVI layer to enable
platform trust. In our set up, we have the NFVI hardware components that
consist of TPM configured servers. Additionally, we also have servers without
TPM for testing purposes.

Figure 5.1: Cloud Infrastructure

Our cloud consists of five servers as shown in Figure 5.1. We have a Nokia
Air Frame server and two Intel Rack servers with TPM enabled. We have

59

CHAPTER 5. IMPLEMENTATION 60

Node Processor System
Memory

Hard Drive

Controller Intel Xeon E5-2658 v3
3.00GHz 2 Cores

24GB 150GB

Network Intel Xeon 5160
3.00GHz 2 cores

32GB 150GB

Compute Intel Xeon 5160
3.00GHz 2 cores

24GB 150GB

Table 5.1: Hardware Specifications of Nodes

validated that these servers confirm the boot time integrity verification of
the system and hence are considered to be trusted. However, the HP Rack
Servers do not have a TPM configured and falls into the category of untrusted
hosts.

The host operating system we use is Linux Ubuntu 14.04 LTS version. Above
this we have set up our hypervisor, which is the OpenStack kilo version. Ac-
cording to OpenStack terminology, the trusted hosts form a trusted comput-
ing pool. OpenStack’s three node architecture1 involves a controller node,
network node and a compute node. The controller node runs services such
as identity service, image service, management of compute nodes, dashboard
and SQL database. The network node involves components such as network-
ing plugins. They also provide services which include switching, routing and
connectivity of VNF instances. The compute node operates the VNFs and
might also run networking services, firewall services etc. There can be more
than one compute node depending on the requirements. The processor spec-
ification and memory of each of these nodes in our scenario are as shown in
the Table 5.1.

We have configured Intel TXT which depends on the TPM to provide plat-
form trust. From Figure 5.2, we see that the status of TXT measured launch
is TRUE, which means that TXT has been configured correctly and the mea-
surements of components has been successfully verified. We use tboot2 which
is an open-source tool that uses Intel TXT for setting up the trusted boot.
In the practical implementation, the boot loader executes the tboot binary
which takes hash measurement of components and writes to TPM before
transferring control to Linux Kernel. The boot-time attestation is performed

1http://docs.openstack.org/juno/install-guide/install/apt/content/ch overview.html
2https://sourceforge.net/projects/tboot/

CHAPTER 5. IMPLEMENTATION 61

using the launch control policies that has the known good values. The step
wise procedure for a trusted boot is discussed in Appendix.

Figure 5.2: PCR Values

In Figure 5.2, we show the 24 example PCR values. PCR-00 to PCR-07
shows the measurement values of BIOS and boot loader components. PCR-
17 to PCR-19 are the measurement values of OS and hypervisor and PCR-22
shows the measurement value of geographic trust. The other PCRs have the
value 00 since TPM has not extended its measurement to these PCRs.

5.2 Implementation Set-up

In Figure 5.3, we show our implementation set up. We have implemented
the TSecO which includes the signing and binding functionality. We have
also implemented the custom filters in OpenStack.

CHAPTER 5. IMPLEMENTATION 62

Figure 5.3: Implementation Set-up

The TSecO that we have developed is the external server capable of commu-
nicating with signing authority, attestation server and MANO components.
The filters in OpenStack are the signing filter and VNF-TPM binding filter.
The signing filter sends the image identifier and hash of the image to TSecO.
TSecO has the signature file corresponding to the image and certificate of the
signing authority. The TSecO verifies the integrity of the image and sends the
result of the verification to the signing filter. The VNF-TPM binding filter
sends the image identifier and the host name that is selected to the TSecO.
The TSecO communicates with attestation server to fetch the PCR values
and takes a concatenated hash according to the specified policy in TSecO.
TSecO verifies if the host satisfies the policy required by the VNF and sends
the result to the VNF-TPM binding filter. Additionally, the communication
between TSecO and MANO components is essential during a failure scenario.

In our set-up the TSecO is placed externally. This is because it is deployed

CHAPTER 5. IMPLEMENTATION 63

as an additional management component in MANO and such management
functionality cannot be placed inside the filters. The filters send the request
to TSecO and decide to proceed or not depending on the verification result
from TSecO. This dependency helps in efficient logging in the TSecO side
even if the filter fails to function properly.

In the subsequent sections, we explain the implementation details of creating
filters, developing TSecO and the signing and binding process that happen
inside TSecO.

5.3 Implementation of Custom Filters

We know that above the hypervisor layer, we deploy our VNFs such as MME,
HLR and VLR. During the VNF launch time, the hypervisor selects a NFVI
to launch them, based on the requirements of these VNFs. In our scenario,
the host is selected only if the signing and VNF-TPM binding functionality
are successful. This is achieved by introducing custom filters in OpenStack.

As seen in the previous chapter, OpenStack uses a set of filters to filter the
hosts and select the one that is appropriate to run the image. OpenStack en-
ables the creation of custom filters3. To extend the OpenStack functionality
to the external signing mechanism and to the VNF-TPM binding mechanism,
we have implemented custom filters in the OpenStack filter scheduler.

The Base Host Filter in the filter scheduler, is responsible for starting the
filtering process and calls all the default filters. The custom filters inherit
the properties of Base Host Filter. The filters are written using the Python4

programming language.

Each filter has a function named host passes(), which takes parameters
such as host state and filter properties. The parameter host state provides
information of the selected hosts, whereas, filter properties define the VNF
image properties, such as RAM and compute requirements. An instance is
successfully launched only if the host passes() function returns true for all
the filters. The code for a sample custom filter is explained in Appendix A.4.

For demonstration, we use the cirrOS image (cirros-0.3.4-x86 64) of 12MB,

3http://docs.openstack.org/kilo/config-reference/content/section compute-
scheduler.html

4https://www.python.org/

CHAPTER 5. IMPLEMENTATION 64

Figure 5.4: Image Metadata

whose properties are shown in Figure 5.4.

We have added the meta-data integrity verification and VNF-TPM binding.
If the integrity verification is set to true, the signing filter communicates
with the TSecO. If the VNF-TPM binding policy exist, then the VNF-TPM
binding filter communicates with the TSecO for the binding verification. In
Figure 5.4, the binding policy consists of OS version (ubuntu 14.04), hyper-
visor (KVM) and kernel version (3.19.0-39-generic).

5.3.1 Signature Filter

One of the custom filters that we have created is the signing filter. Signing
filter does not perform the signature verification by itself but it proceeds
with filtering of hosts only if the signature verification of VNF images are
successful in TSecO.

CHAPTER 5. IMPLEMENTATION 65

The filter extracts the ID and hostname from the filter properties and
host state. In order to verify the image signature, we also take the SHA256
of the image file. This data is sent to the TSecO in the form of JSON.

Example of JSON input is as follows:

{"ID":"43f24f28-faba-4232-8fa8-86322a3536d8",
"Image hash":"34987d0d5702f8813f3ff9efe90e9e39e

6926ec78658763580a79face67f3394"}

This is sent to the TSecO using Python requests. We use the endpoints
/checkSignature in TSecO, to verify the signing.

checksig = requests.get("http://x.x.x.x:8081/checkSignature",

data=json, headers=’Content-type’: ’application/json’)

The host passes() of the filter returns a True/False based on the response
from TSecO.

5.3.2 VNF-TPM Binding Filter

We introduced the VNF-TPM binding filter in the OpenStack’s filter sched-
uler, which is also a custom filter that selects hosts based on the VNF-TPM
binding requirements.

This filter extracts the hostname and Image identifier from the filter proper-
ties.

{"hostname":"controller",
"ID":"43f24f28-faba-4232-8fa8-86322a3536d8"}

This data is sent to TSecO using python get request to the /checkVMTPM

API end point.

vmtpm = requests.get("http://x.x.x.x:8081/checkVMTPM", data=json,

headers={’Content-type’: ’application/json’})

CHAPTER 5. IMPLEMENTATION 66

URL HTTP Verb Explanation Result
/checkSignature GET For verifying Image

Signature
True/False

/checkVMTPM GET For VM-TPM Binding
Verification

True/False

/pcr GET Retrieves PCR val-
ues from Attestation
Server

PCR Values

/log POST Writes log entries to
the database

OK/ERR

Table 5.2: TSecO REST API Endpoints

The filter selects platform that satisfies the VNF-TPM binding policies.

5.4 Implementation of Trusted Security

Orchestrator

In this thesis, we have implemented a Trusted Security Orchestrator, which
is introduced as a new entity in the management and orchestration stack of
NFV.

We implemented the TSecO as a server written in Node.js5 platform. We
used Node.js version v0.10.25 with Express framework6 and is deployed as a
RESTful web service. We have set up MongoDB7 database (MongoDB shell
version: 2.6.10). The data required for signing and binding, such as, the
certificates, signature files and policies are stored in this database.

The API endpoints used by TSecO are as shown in Table 5.2. For the external
signing functionality, the TSecO is capable of receiving the image ID and
image hash from the signing filter in Json format. This is received in the
/checkSignature API endpoint through HTTP GET method.

For the VM-TPM binding functionality, TSecO receives image ID and hostname

from the VNF-TPM binding filter and is received in the /checkVMTPM API

5https://nodejs.org/en/
6http://expressjs.com/
7https://www.mongodb.org/

CHAPTER 5. IMPLEMENTATION 67

endpoint through HTTP GET method. TSecO receives the hostname se-
lected by the hypervisor on an iterative basis and for each hostname, it
checks if the verified image can be launched in the selected host.

The /pcr API endpoint receives the hostname and fetches the corresponding
PCR values from the attestation server. This functionality is called during
the CheckVMTPM process, in order to verify the policy hash. Additionally,
we also have the /log, which writes the log entries to the MongoDB that
includes the timestamp, filter results, selected hosts, verification results etc.

5.4.1 Verifying Integrity of VNFs Through
Signing Mechanisms

The TSecO parses the obtained JSON from the filter and extracts the image ID

and image hash. This information is sent as a query to the database and the
corresponding image file is retrieved. This signature file, along with received
hash and also the root certificate containing the public key of the signing
authority, is sent to the verification process in TSecO, which confirms if the
received hash is same as that of the image.

The sequence diagram of this functionality is shown in Figure 5.5. For the
initial process of creating the signature file, the admin calculates the hash of
the image and is sent to the signing authority. The signing authority responds
with the signature file which has the file extension .p7. The image is then
loaded to the OpenStack with a suitable Image ID. Additionally, the admin
loads the signature file in the TSecO where the image ID forms the name of
the signature file. During the launch of instance, the custom signature filter
calculates the current hash of the image and sends it to TSecO along with
its image ID. TSecO retrieves the signature file corresponding to the image
ID and the certificate of signing authority, and verifies the if the signature is
valid. The TSecO further communicates the result to the OpenStack. The
instance launch would be terminated if the signature verification fails.

5.4.2 Binding VNFs to TPM

For the VNF-TPM binding, TSecO communicates with the attestation server,
which returns the PCR values. After the VNF-TPM binding verification,
TSecO sends the result to VNF-TPM binding filter in OpenStack. The over-

CHAPTER 5. IMPLEMENTATION 68

Figure 5.5: Sequence Diagram of Signing Process

CHAPTER 5. IMPLEMENTATION 69

Figure 5.6: VNF-TPM Binding Process

all implementation sequence is as shown in Figure 5.6.

Binding the VNFs to the TPM is performed based on a set of polices defined
in the Trusted Security Orchestrator. A Policy is a 3-tuple entry consisting
of the tuple (Image ID, Policy, Hash).

Image ID: This field corresponds to the Image ID of the image. This can be
a 32 bit string used to identify an image.

Policy: The policy is an array consisting of the PCR registers that forms the
policy. For example, policy [0,18] specifies the need for BIOS and hypervisor
to be trusted.

Hash: Hash has the SHA256 value of the PCR values of the Registers in the
policy list.

For each entry in the policy array, the corresponding PCR value from the
(Register, PCR value) pair list is taken. We then calculate the SHA256
of the sum of PCR Values of the given policy list. Further, we compare the

CHAPTER 5. IMPLEMENTATION 70

Figure 5.7: Response from Attestation Server

obtained hash with the expected hash in the database. If the hashes match,
the server sends Ok message to the filter.

The TSecO parses the obtained JSON and extracts the hostname. For a given
hostname, it queries the attestation and retrieves the information on PCR
values. Figure 5.7 shows the response from attestation server in an xml for-
mat. This shows the attestation details corresponding to the host controller.
The details include the date and time of verification when it communicated
with the TPM. It has the value which is the PCR value and the name of the
register. The TrustStatus = 1 implies that the records are verified and the
host can be trusted. TrustStatus = 0 implies the host cannot be trusted.
From the figure, we have the value 3515f30b44a4e6adcc25c35fd9939773c91
d7b2b corresponding to Name ”0”. This value is the hash measurement of
the BIOS which is implied by the PCR register name 0.

When creating a collection in database, we insert the image id and the cor-
responding policy array consists of register 17, 0, 18 and 22 i.e. hypervisor,
BIOS, OS and geo-location respectively. Here, the geo-location can be the
address where the server resides or the geographic region where it is allowed
to relocate. We have set the geo-location as Espoo, Finland in our exper-
imental setup. The corresponding hash that is expected is given the hash
field.

The TSecO uses XML parser to parse through the XML response from the
attestation server and creates a name value pair (Register, PCR Value).

’0’: ’3515f30b44a4e6adcc25c35fd9939773c91d7b2b’,

’17’: ’e0ebd16c271116462f9eaf024d24c18fe1cf5d7e’,

’18’: ’f2a13311d6970e5da38b9de155bbdf1aeeff1a4d’,

’22’: ’6b529d1ccf62c302ab13c1f0e7ad929168ee8e15’

CHAPTER 5. IMPLEMENTATION 71

Figure 5.8: Sequence Diagram of Binding Process

CHAPTER 5. IMPLEMENTATION 72

The checkvmtpm module in the TSecO server receives this (name,value)

pair. Further, it makes connection to the database.

The module retrieves the policy list and the expected hash from the database.
For each entry in the policy array, the corresponding value from the (name,

value) pair is taken. We then calculate the SHA256 of the entire value list
and compare with the expected hash in the database. If the hashes match,
the TSecO sends Ok message to the VNF-TPM binding filter indicating a
success as shown in Figure 5.8.

5.5 Performance Evaluation of Signing and

VNF-TPM binding

We evaluate the performance of signing and VNF-TPM binding mechanisms
based on the time taken for OpenStack filters to perform resource selection.
This includes the time to send the image metadata to TSecO, time taken by
TSecO to verify the signing and binding, and also the time at which filters
receive the result from TSecO. Further, we evaluate the correlation between
the size of image and the total time taken to select a host.

As discussed before the RAM filter and compute filter are standard Open-
Stack filters. The trust assertion filter is a third party filter by Intel which
is used to select trusted hosts. The signing and VNF-TPM binding are the
custom filters which we have developed.

The time taken for the filters : RAM filter, compute filter, trust assertion
filter, signing filter and the VNF-TPM binding filter to execute are repre-
sented as a box plot in Figure 5.9. This data is collected after a launch of
20 instances where the signing and binding was successful and the instances
were launched in a trusted host. The hardware specifications of the trusted
hosts have been explained in Section 5.1.

The mean execution time taken for RAM and compute filters are approxi-
mately around 0.0014 seconds. Whereas, the signing and VNF-TPM Binding
Filter takes 0.14sec and 0.12sec respectively. As mentioned before, this in-
cludes the time taken for both these filters to communicate with TSecO and
retrieve the result. The filter that takes fairly long time to execute is the
Intel’s Trust Assertion Filter with the mean time of 7.4 seconds. This is a

CHAPTER 5. IMPLEMENTATION 73

Figure 5.9: Execution Time of Filters

CHAPTER 5. IMPLEMENTATION 74

Figure 5.10: Normal Launch Time Vs Launch Time with Signature Verifica-
tion

third party filter that is used to select trusted resources. The execution time
is relatively higher as it communicates with the TPM to fetch the PCRs and
compare it against known good hash values. The remote connection takes
time, however, this is acceptable for our NFV application.

We see that the signing and VNF-TPM binding process contributes only 3.5
% of the overall time. This proves that adding custom filter for signing and
binding functionality does not add much overhead to the existing filtering
process.

The signing process requires calculating hash of the VNF image. In order
to understand the correlation between the image size and the time taken
to perform the signing verification, we have launched images of varied sizes
such as 13 MB, 289.8 MB, 951.1 MB, 2.5 GB and 5 GB. We plot the graph
of normal launch time of these images Vs the launch time with the signing
verification in place. This time is calculated from the VNF launch until it is
available for use i.e. when the VNF is running. From Figure 5.10, we see that
the overhead introduced by signing process for images of small size are only
a few milliseconds. However, the time taken to launch the VNF increases
with the increase in image size. This is because of the SHA256 calculation

CHAPTER 5. IMPLEMENTATION 75

Figure 5.11: Launch time with Signature Verification Using Different Hash
Functions

for each of the images and the time taken for this calculation increases, with
the increase in size of the image.

In-order to compare the effect of hash functions on the launch time, we further
compared the launch times and signature verification by using different hash
functions such as SHA256, SHA1 and MD5. Although using MD5 is not a
feasible solution, some of the practical implementations on internal checksum
verification of VNF images still use MD5 8. From Figure 5.11, we see that
the overhead is much less for MD5 and SHA1 when compared to SHA256.

We notice that for smaller images, introducing signing functionality is fea-
sible. For the images with size above 2.5GB, the signing verification can
add performance overhead. However, having mitigation, such as, overlap-
ping the hash computation with image transfer over the data center network
and caching the result might minimize the overall time taken.

To conclude, the addition of signing and binding filters do not add much over-
head to the existing VNF launch time. Although the overall time of signing

8https://specs.openstack.org/openstack/glance-specs/specs/liberty/image-signing-
and-verification-support.html

CHAPTER 5. IMPLEMENTATION 76

functionality increases with the increase in image size, it can be addressed
with certain mitigations in place.

5.6 Summary

In this Chapter, we have looked into the method of implementation of the
signing and the VNF-TPM binding. Further, we have also performed an
evaluation to show that these methods do not add much overhead to the
resource selection process.

Chapter 6

Discussion

In Chapter 3, we have listed the requirements for enabling trust in a telco
cloud environment. In this chapter, we discuss how our approach meets these
requirements and detail some of our future works.

The first requirement is the NFVI trust. In this thesis, we have constructed
a trusted telco cloud using the existing trusted computing technologies that
leverages the use of TPM. Using trusted computing platforms for cloud-based
environments ensure the integrity of critical software components such as
BIOS, OS and hypervisor. Further, storing the cryptographic measurements
of these components in TPM chip reduces the possibility of software-based
attacks. Building a trusted cloud guarantees the NFVI trust during the boot
time and also ensures that the integrity of the platform is preserved. While
this satisfies the requirement of boot time trust, we must note that these are
the static measurements taken by the TPM during the boot time of a system.
In a cloud environment, the servers may not be rebooted on a continual basis
and in most cases, the TPM contains the old measurement values which were
taken during the boot time. Hence, it is important to invent methods to
perform the run time attestation of software components in-order to preserve
its integrity during the run time. While there are methods to perform run
time verification, such as, Intel TXT, currently we are not aware of techniques
that can perform run time attestation which will be a part of our future work.

The next requirement is to meet the Quality of Service of VNFs. Meeting
the QoS of VNFs requires less failure and the VNF needs to be launched
when it is requested without any latency. In order to meet this requirement,
we proposed a policy-based fault tolerance approach. Each policy consists of

77

CHAPTER 6. DISCUSSION 78

a list of software components such as BIOS and OS whose integrity needs to
be preserved. In our scenario even if the integrity of all components are not
verified, it might be possible to launch the VNF with minimal policy but with
certain mitigations in place. This preserve the SLAs and reduce the failures
during launch of VNFs. We also proposed methods to define policy strength
that are based on weighing and the length of policies. However, defining
policy strength is crucial and a difficult problem. To our knowledge, there
are no existing works that deal with policy-based fault tolerance approach for
resource management. We strongly believe that such an approach is essential
for a telco cloud environment where the primary goal is to preserve the SLAs
and maintain QoS. Defining the policy strength as well as implementing a
policy-based fault tolerance approach will be a part of our future work.

Another requirement is to consider the integrity verification of VNFs during
the launch time. In this thesis, we developed TSecO, an external manage-
ment entity capable of performing the VNF integrity checks. We developed
a signing mechanism where the signing authority signs the hash of the VNF
image and stores this signature file along with its root certificate in TSecO.
During the VNF launch time, the hypervisor sends the VNF identifier and
hash of the image to TSecO who verifies the integrity. For the proof of con-
cept we implemented this signing functionality in TSecO and the request
for signature verification is sent by one of the custom filters in OpenStack.
This further led to the development of VNF-TPM binding process. In case
of a telco cloud environment the service providers want to have certain plat-
form specifications in order to launch the VNFs and the VNF-TPM binding
method achieves this. We devised a policy-based mapping of VNF images
to the platform configurations. We implemented the VNF-TPM binding
method in TSecO where we select the host based on policy-based criteria as-
sociated with the VNF. Further, we did the performance evaluation of both
the signing and the binding methods, and showed that it does not add much
overhead to the existing provisioning of VNFs.

In the existing works, VNF integrity checks are performed in hypervisor itself
and do not take insider attackers into consideration. Performing the signing
operation by TSecO prevents unauthorized modification by insider attackers
and also keeps a log of the hypervisor requests. Also, to our knowledge there
are no existing works on policy-based VNF-TPM binding. This method is
another way to ensure QoS service to the VNFs by guaranteeing the platform
configuration where it is placed. We see that both the signing and binding
methods are essential for a telco cloud environment.

CHAPTER 6. DISCUSSION 79

We can also associate the requirement of maintaining QoS of VNFs to the
resource selection problem in NFV. This is because the question here is to
select a NFVI where the VNFs can be instantiated based on certain criteria
of VNF. In a trusted telco cloud the criteria is to find a trusted host where
these VNFs can be instantiated. In this thesis, we used an attestation service
that communicates with the TPM and helps us verify the trust level of the
platform. As a proof of concept, we used trusted filters and custom filters in
OpenStack that help us select host that satisfy the requirements of the VNF
being launched.

We noticed that by solving the challenges of incorporating trust in NFV, the
thesis moved its focus to a much bigger problem of resource management.
This is because identifying a resource that satisfies all the requirements of
VNFs and narrowing the possibility of selecting a resource might lead to a
situation of not finding a suitable host. However, having a policy-based fault
tolerance along with methods of signing and binding of the VNFs, we see that
our work has the potential to solve the resource management problem. The
VNF integrity and its placement can be verified with the help of signing and
binding methods. If the current policies do not satisfy these requirements,
we can use the policy-based fault tolerance approach where we can launch
the VNF with minimal policy but with mitigations. This ensures that the
VNFs are launched irrespective of the availability of resources, yet preserving
the SLAs and satisfying the requirements for launching the VNFs. While an
implementation of policy strength and mitigation mechanisms are missing in
this thesis, we are not aware of any existing works that deal with policy-based
fault tolerance for resource selection.

The last requirement we considered was to have an external entity to au-
dit the actions of NFVI. In our development setup the TSecO performs the
logging operations. It logs the time of request, VNF identifier, host selec-
tion, VNF integrity verification result, VNF binding verification result etc.
TSecO acts as a management entity which communicates with the signing
authority, attestation service and other MANO components. The operation
performed by TSecO is critical and hence we cannot perform the same inside
the hypervisor. An external logging is always beneficial to understand the
failure scenarios in NFVI.

We have satisfied the requirements which we had specified in Chapter 3.
However, our techniques have its own limitations. While VNF integrity veri-
fication through signing and the VNF-TPM binding mechanism address cer-
tain challenges, both these methods are depended on their communication

CHAPTER 6. DISCUSSION 80

with the TSecO. If an attacker gains admin privilege in the hypervisor, it
is possible to launch a malicious instance by modifying the filter scheduler,
even if the TSecO returns a failure. However, it is very well possible to detect
this using the log entries in TSecO. Placing the TSecO and its management
function separated from the NFVI helps in detecting any malicious actions.
Also, the service provider can communicate with TSecO and check the audits
during every launch of VNF to verify the entire launch process. It might be
still possible for the attacker with admin privileges to inject malware after
the signature verification. Hence, our method does not completely prevent
the system from such an attack.

Consider the trust chain we discussed in Section 4.7. In our architecture,
the service provider can communicate with the TSecO, which is a trusted
entity to acquire the platform specific information. One of the limitations
here is the inability of the service provider to directly communicate with the
attestation server. The direct communication between service provider and
attestation server is one of the main goals of attestation and this architecture
fails to provide that. This is because such a feature is not yet available in the
current OpenStack and Intel’s attestation service, because their architecture
aims to hide the technical details of attestation from the service provider.
Also, we noticed that service provider has to place trust in the infrastructure
provider. While the level of trust can be limited with the presence of TSecO
and audit logs, yet we cannot completely break this part of the trust chain.
Also in our trust chain, the service provider has a transitive trust relationship
through the TSecO. If the trust chain between the service provider and the
TSecO is broken, then the service provider cannot trust the signing authority
and the attestation service. We see that the longer the trust chain, the more
fragile is the architecture.

To summarize, this thesis provides an overview of the challenges in incorpo-
rating trust in NFV and devises techniques to address these challenges. We
constructed a trusted telco cloud to address the issue of platform trust. We
have invented methods such as VNF signing and VNF-TPM binding, which
aims to ensure the VNF integrity and proper placement of VNFs. We looked
into the aspects of resource management and meeting the QoS requirements
of VNF. We also proposed a policy based fault tolerance mechanism, which
along the VNF integrity is a way to handle resource management problems.
We showed that our work satisfies all the requirements that we have specified
in Chapter 3. We also discussed the limitations of our work which opens up
new research directions for enhancing the trust in telco cloud.

Chapter 7

Conclusions

In this thesis, we have looked into various aspects of incorporating trust in a
Network Function Virtualization. The discussions focused on the scenarios
of telco cloud, which involves mission critical components. We looked into
the challenges of incorporating trust in NFV such as platform trust, VNF
integrity and fault tolerance. Further, we have devised techniques to address
these challenges.

The first challenge which we identified is to provide platform trust during
the boot time of NFVI. We used the existing trusted computing technologies
to achieve this. We have constructed a trusted telco cloud, which uses TPM
to store the cryptographic measurements of various software components
such as BIOS, OS and hypervisor. Using hardware-based solutions to enable
platform trust, helps in detection of unauthorized modification and reduces
the possibility of attacks. We have also included the attestation service in
our architecture that verifies the platform trust remotely.

Further, the thesis introduces a new management entity to the management
and orchestration stack of NFV, which is the Trusted Security Orchestrator
(TSecO). The main functionality of TSecO is to verify the VNF integrity
and to bind VNF to specific NFVI, which are the next set of challenges we
identified. One of the contributions of this thesis is the implementation of
the TSecO itself. Apart from communicating with the attestation server and
signing authority, TSecO performs critical functionalities such as verifying
signatures, checking the binding policies, logging the hypervisor requests and
communicating the result back to hypervisor. Additionally, TSecO can also
communicate with other MANO components in NFV.

81

CHAPTER 7. CONCLUSIONS 82

During the startup of a VNF, an image is selected by the hypervisor, whose
integrity needs to be verified before launching it. We have discussed the
need for this VNF integrity verification and devised techniques to address
the same. We designed and implemented an external signing functionality
in TSecO, that can verify the integrity of VNFs during the launch time.
This method detects if the VNF images are tampered, proves the owner-
ship of VNFs and also protects them from internal attackers. Hence, this
functionality is better than the existing internal signing features. We also
observed that telco cloud demand certain specifications on the platform be-
fore launching the VNF. We focused on methods to bind VNFs to certain
platform configurations. We have designed and implemented a VNF-TPM
binding mechanism in TSecO where we associated VNFs to PCR values of
the hosts. This mechanism helps in determining if platform configurations
satisfy the requirements of VNFs to be launched. Further, the performance
of signing and VNF-TPM binding methods are evaluated to show that it does
not add much overhead to the existing resource selection by the hypervisor.

Another challenge of incorporating trust in NFV is meeting the QoS of VNFs.
Meeting the QoS of VNFs involves launching them without failure. The
occurrence of failure seems to be rapid in cases where the NFVI does not
have any trusted resources. To solve this resource management problem, we
proposed a policy based fault tolerance approach. In our approach, we define
policies necessary to launch a VNF by considering the scenarios for a failure.
Here, we discussed the challenges of constructing policies as well as defining
the strongest policy. Having a policy based approach helps in launching the
VNFs with best possible policy, while also maintaining the SLAs at the same
time. Moreover, in scenarios where the strongest policy fails, this method
allows the VNFs to be launched with less strong policy, but with certain
mitigations in place.

We believe that the proposed fault tolerance method along with the VNF
integrity mechanisms, have the potential to handle the resource management
problems in trusted NFV.

Bibliography

[1] TPM Architecture Specification (Version 2.0). Trusted Computing
Group. http://www.trustedcomputinggroup.org/wp-content/uploads/

TPM-Rev-2.0-Part-1-Architecture-01.16.pdf.

[2] TCG Specification Architecture Overview. vol. 1, Trusted Computing
Group, TCG Specification Revision, pp. 1–24.

[3] Technical Aspects of Lawful Interception. In ITU-T Technology Watch
Report (May 2008), International Telecommunication Union, Telecom-
munication Standardization Policy Division, ITU Telecommunication
Standardization Sector.

[4] Network Functions Virtualization: An introduction, benefits, enablers,
challenges and call for action. In SDN and OpenFlow World Congress
(October 2012), ETSI.

[5] Network functions virtualisation (NFV); architectural framework. ETSI
Group Specification ETSI GS NFV 002 V1.1.1 (2013-10), 2013.

[6] Network Functions Virtualization; NFV Security; Security and Trust
Guidance. In Report ETSI GS NFV-SEC 003 (V1. 1.1) (December
2014), ETSI, NFVISG.

[7] Intel Cloud Integrity Technology Product Guide, Revision 2.0. In-
tel, April 2015. http://download.intel.com/support/sftw/ds/cit/sb/

trust_attestation_server_2_0_product_guidev2.pdf.

[8] Abbadi, I. M., and Alawneh, M. A framework for establishing trust
in the cloud. In Computers & Electrical Engineering (2012), vol. 38,
Elsevier, pp. 1073–1087.

[9] Achemlal, M., Gharou, S., and Gaber, C. Trusted platform
module as an enabler for security in cloud computing. In Network and

83

http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.16.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.16.pdf
http://download.intel.com/support/sftw/ds/cit/sb/trust_attestation_server_2_0_product_guidev2.pdf
http://download.intel.com/support/sftw/ds/cit/sb/trust_attestation_server_2_0_product_guidev2.pdf

BIBLIOGRAPHY 84

Information Systems Security (SAR-SSI), 2011 Conference on (2011),
IEEE, pp. 1–6.

[10] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,
I., et al. A view of cloud computing. Communications of the ACM
53, 4 (2010), 50–58.

[11] Buvat, J., and Nandan, P. Cloud computing: The telco opportu-
nity. Telecom, Media & Entertainment, Telecom and Media Insights, 57
(2010).

[12] Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J.,
Masuoka, R., and Molina, J. Controlling data in the cloud: Out-
sourcing computation without outsourcing control. In Proceedings of the
2009 ACM Workshop on Cloud Computing Security (2009), CCSW ’09,
ACM, pp. 85–90.

[13] Davne, J., Volkov, A., Yankelevich, M., and Malamud, M.
Managing services in a cloud computing environment, Dec. 9 2014. US
Patent 8,910,278.

[14] Dawoud, W., Takouna, I., and Meinel, C. Infrastructure as a
service security: Challenges and solutions. In the 7th International Con-
ference on Informatics and Systems (INFOS) (2010), IEEE Computer
Society.

[15] Descher, M., Masser, P., Feilhauer, T., Tjoa, A. M., and
Huemer, D. Retaining data control to the client in infrastructure
clouds. In International Conference on Availability, Reliability and Se-
curity ARES’09. (2009), IEEE, pp. 9–16.

[16] Dillon, T., Wu, C., and Chang, E. Cloud computing: issues
and challenges. In Advanced Information Networking and Applications
(AINA), 2010 24th IEEE International Conference on (2010), IEEE,
pp. 27–33.

[17] Dobson, J., and Randell, B. Building reliable secure computing
systems out of unreliable insecure components. In In Proceedings of
the Conference on Security and Privacy, Oakland, USA (1986), IEEE,
pp. 187–193.

[18] Dodig-Crnkovic, G. Scientific methods in computer science. In
Proceedings of the Conference for the Promotion of Research in IT at

BIBLIOGRAPHY 85

New Universities and at University Colleges in Sweden, Skövde, Suecia
(2002), pp. 126–130.

[19] Fernandes, D. A., Soares, L. F., Gomes, J. V., Freire, M. M.,
and Inácio, P. R. Security issues in cloud environments: a survey. In
International Journal of Information Security (2014), vol. 13, Springer,
pp. 113–170.

[20] Gabrielsson, J., Hubertsson, O., Mas, I., and Skog, R. Cloud
computing in telecommunications. Ericsson Review 1 (2010), 29–33.

[21] Gonzalez, N., Miers, C., Redigolo, F., Carvalho, T., Sim-
plicio, M., Naslund, M., and Pourzandi, M. A Quantitative
Analysis of Current Security Concerns and Solutions for Cloud Comput-
ing. In Proceedings of the 2011 IEEE Third International Conference
on Cloud Computing Technology and Science (2011), IEEE Computer
Society, pp. 231–238.

[22] Greene, J. Intel trusted execution technology. Intel Technology
Whitepaper (2012).

[23] Han, B., Gopalakrishnan, V., Ji, L., and Lee, S. Network func-
tion virtualization: Challenges and opportunities for innovations. Com-
munications Magazine, IEEE 53, 2 (2015), 90–97.

[24] Hoban, A., Czesnowicz, P., Mooney, S., Chapman, J., Shaula,
I., Kinsella, R., and Buerger, C. A Path to Line-Rate-Capable
NFV Deployments with Intel Architecture and the OpenStack Juno Re-
lease. Intel Corporation, March 2015.

[25] Huang, D., Zhang, X., Kang, M., and Luo, J. Mobicloud: build-
ing secure cloud framework for mobile computing and communication.
In Service Oriented System Engineering (SOSE), 2010 Fifth IEEE In-
ternational Symposium on (2010), IEEE, pp. 27–34.

[26] Jayaram, K., Safford, D., Sharma, U., Naik, V., Pendarakis,
D., and Tao, S. Trustworthy geographically fenced hybrid clouds.
In Proceedings of the 15th international middleware conference (2014),
ACM, pp. 37–48.

[27] Khan, K. M., and Malluhi, Q. Establishing trust in cloud comput-
ing. In IT professional (2010), vol. 12, IEEE, pp. 20–27.

BIBLIOGRAPHY 86

[28] Ko, R. K., Jagadpramana, P., Mowbray, M., Pearson, S.,
Kirchberg, M., Liang, Q., and Lee, B. S. TrustCloud: A frame-
work for accountability and trust in cloud computing. In 2011 IEEE
World Congress on Services (2011), IEEE, pp. 584–588.

[29] Krautheim, F. J., Phatak, D. S., and Sherman, A. T. Intro-
ducing the trusted virtual environment module: a new mechanism for
rooting trust in cloud computing. In International Conference on Trust
and Trustworthy Computing (2010), Springer, pp. 211–227.

[30] Lemke, A. Why service providers need an NFV platform: Strategic
White Paper. Alcatel Lucent, January 2015.

[31] Lie, D., Cohen, R., and Reiner, R. System and method for secure
cloud computing, July 14 2015. US Patent 9,081,989.

[32] Masutani, H., Nakajima, Y., Kinoshita, T., Hibi, T., Taka-
hashi, H., Obana, K., Shimano, K., and Fukui, M. Require-
ments and design of flexible nfv network infrastructure node leveraging
sdn/openflow. In Optical Network Design and Modeling, 2014 Interna-
tional Conference on (2014), IEEE, pp. 258–263.

[33] McCune, J. M. Reducing the trusted computing base for applications
on commodity systems. ProQuest, 2009.

[34] Mell, P., and Grance, T. The NIST Definition of Cloud Computing.
National Institute of Standards and Technology Gaithersburg, 2011.

[35] Membrey, P., Chan, K. C., Ngo, C., Demchenko, Y., and
De Laat, C. Trusted virtual infrastructure bootstrapping for on de-
mand services. In Availability, Reliability and Security (ARES), 2012
Seventh International Conference on (2012), IEEE, pp. 350–357.

[36] Mijumbi, R., Serrat, J., Gorricho, J.-L., Latré, S., Char-
alambides, M., and Lopez, D. Management and orchestration chal-
lenges in network functions virtualization. Communications Magazine,
IEEE 54, 1 (2016), 98–105.

[37] Neisse, R., Holling, D., and Pretschner, A. Implementing trust
in cloud infrastructures. In Proceedings of the 2011 11th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (2011),
IEEE Computer Society, pp. 524–533.

BIBLIOGRAPHY 87

[38] Ngo, C., Membrey, P., Demchenko, Y., and De Laat, C. Se-
curity framework for virtualised infrastructure services provisioned on-
demand. In Cloud Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on (2011), IEEE, pp. 698–
704.

[39] Perez, R., Sailer, R., van Doorn, L., et al. vTPM: Virtualizing
the trusted platform module. In Proc. 15th Conf. on USENIX Security
Symposium (2006), pp. 305–320.

[40] Pitt, D. Trust in the cloud: the role of SDN. In Network Security
(2013), vol. 2013, Elsevier, pp. 5–6.

[41] Rocha, F., and Correia, M. Lucy in the sky without diamonds:
Stealing confidential data in the cloud. In Dependable Systems and Net-
works Workshops (DSN-W), 2011 IEEE/IFIP 41st International Con-
ference on (2011), IEEE, pp. 129–134.

[42] Sadeghi, A.-R., Stüble, C., and Winandy, M. Property-based
TPM virtualization. In International conference on Information Security
(2008), Springer, pp. 1–16.

[43] Santos, N., Gummadi, K. P., and Rodrigues, R. Towards trusted
cloud computing. In Proceedings of the 2009 Conference on Hot Topics
in Cloud Computing (Berkeley, CA, USA, 2009), HotCloud’09, USENIX
Association.

[44] Scarlata, V., Rozas, C., Wiseman, M., Grawrock, D., and
Vishik, C. TPM Virtualization: Building a general framework. In
Trusted Computing. Springer, 2008, pp. 43–56.

[45] Schiffman, J., Moyer, T., Vijayakumar, H., Jaeger, T., and
McDaniel, P. Seeding clouds with trust anchors. In Proceedings of
the 2010 ACM workshop on Cloud computing security workshop (2010),
ACM, pp. 43–46.

[46] Stumpf, F., Benz, M., Hermanowski, M., and Eckert, C. An
approach to a trustworthy system architecture using virtualization. In
International Conference on Autonomic and Trusted Computing (2007),
Springer, pp. 191–202.

[47] Subramanya, S., and Yi, B. K. Digital rights management. IEEE
Potentials 25, 2 (2006), 31–34.

BIBLIOGRAPHY 88

[48] Takabi, H., Joshi, J. B., and Ahn, G.-J. Securecloud: Towards
a comprehensive security framework for cloud computing environments.
In Computer Software and Applications Conference Workshops (COMP-
SACW), 2010 IEEE 34th Annual (2010), IEEE, pp. 393–398.

[49] Yan, Z., and Holtmanns, S. Trust modeling and management: from
social trust to digital trust. IGI Global (2008), 290–323.

[50] Yan, Z., Zhang, P., and Vasilakos, A. V. A security and trust
framework for virtualized networks and software-defined networking. Wi-
ley Online Library, 2015.

[51] Yang, W., and Fung, C. A survey on security in network functions
virtualization. In 2016 IEEE NetSoft Conference and Workshops (2016),
IEEE, pp. 15–19.

[52] Zhang, F., Chen, J., Chen, H., and Zang, B. CloudVisor:
Retrofitting protection of virtual machines in multi-tenant cloud with
nested virtualization. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles (2011), ACM, pp. 203–216.

[53] Zhang, Q., Cheng, L., and Boutaba, R. Cloud computing: state-
of-the-art and research challenges. Journal of internet services and ap-
plications 1, 1 (2010), 7–18.

[54] Zhang, X., and Seifert, J.-P. Method and system for enforcing
trusted computing policies in a hypervisor security module architecture,
July 10 2012. US Patent 8,220,029.

Appendix A

A.1 Enabling tboot

1. Enable and activate Current TPM State in the TCG Configuration tab
of BIOS.

2. Enable Intel TXT, SMX and VMX in BIOS.

3. Use any linux distribution as the host OS. Here, we use Ubuntu 14.04
LTS.

4. Install tboot, trousers and tpm packages.
$ sudo apt-get install tboot tpm-tools trousers

5. Check if tpm is present in the path /dev/tpm0

6. Update the grub boot loader
grub-mkconfig ?o /boot/grub/grub.cfg

7. Reboot and select the tboot option

8. After reboot check the txt stat and PCR values as shown in the Figure
5.2.

89

APPENDIX A. 90

A.2 OpenStack Hypervisor Summary

In Figure A.1, we show the hypervisor summary of three hosts controller,
compute1 and compute-trusted. The Geo/Asset Tag shows the trust status
and geo-location verification status. The Figure also shows vCPUs, RAM
and storage details of the hosts.

Figure A.1: OpenStack Hypervisor Summary

Figure A.2: Intel Attestation Server Portal

APPENDIX A. 91

We notice that only the hosts controller and compute-trusted are trusted.
Hence, only these hosts are verified by the attestation server. Figure A.2
shows the Intel Attestation Server portal. We see the trust dashboard which
lists the host along with the trusted platform components.

The image metadata with the custom properties of VNF integrity verification
and VNF-TPM binding are shown in Figure A.3.

Figure A.3: VNF Image Metadata

APPENDIX A. 92

A.3 TSecO Modules Code Snippets

A.3.1 Log Function

1
2 tsecoLog.startlog(

3 {’Timestamp ’ : new Date ,

4 ’initial_hosts ’: jsonobject.initial_hosts ,

5 ’start_time ’ : jsonobject.start_time ,

6 ’end_time ’ : jsonobject.end_time ,

7 ’selected_hosts ’: jsonobject.selected_hosts ,

8 ’filters ’ : jsonobject.filters ,

9 ’filter_duration ’: jsonobject.filter_duration ,

10 ’overall_time_taken ’: jsonobject.overall_time_taken

11 },"debug")

A.3.2 Signature Verification Function

1
2 var checkSignature = function(obj , callback) {

3 nonce = uuid();

4 // Insert Log Entries

5 tsecoLog.insertLogEntry ({’function ’:’checkSignature ’,

6 ’nonce’ : nonce ,

7 ’data’ : obj},"debug")

8 var ImageID = obj.Image_ID

9 var Current_hash = obj.Current_hash

10 var signature_file = ’’+ImageID+’.p7’

11 //Read the Signature File Associated with the VNF Image

12 fs.readFile(’/home/seco/TrustedSecOComponent/’+

signature_file+’’, {encoding: ’utf -8’, flag: ’rs’},

function(e, data) {

13 if (e)

14 return console.log(e);

15 });

16 // Verify Signature

17 var task = child_process.exec(’mongofiles -d tseco -c

CheckSignature get ’+signature_file+’ --quiet && /home/

seco/SAverify/SAverify -t /home/seco/SAverify/RootCA.pem

-s /home/seco/TrustedSecOComponent/’+signature_file+’ -

x ’+Current_hash+’’, function (error , stdout , stderr) {

18 var SA_decision = stdout;

19 var good_decision = "INFO: Signature verified successfully"

+’\n’+"INFO: Signing Authority"

20 var verification = (SA_decision == good_decision) ? "Image

is Trusted":"Image cannot be Trusted";

APPENDIX A. 93

21 callback(verification);

22 });

23 }

Console Output

The console output of signature verification is shown in Figure A.4.

Figure A.4: VNF Integrity Output

APPENDIX A. 94

The output shows the content of signature file and the decision of signing
authority.

A.3.3 PCR Function

1 var getPCRvalues = function(hostname , callback) {

2 nonce = uuid();

3 var arr = {};

4 // Insert Log Entry

5 tsecoLog.insertLogEntry ({’function ’:’getPCRvalues ’,

6 ’nonce’ : nonce ,

7 ’data’ : hostname},"debug")

8 // setup the connection parameters to the CIT attestation

server

9 var username = ’ ’

10 var password = ’ ’

11 var options = {

12 host: ’x.x.x.x’,

13 port: 8081,

14 path: ’/mtwilson/v1/AttestationService/resources/hosts/

reports/manifest?hostName=’+hostname ,

15 headers: {

16 ’Authorization ’: ’Basic ’ + new Buffer(username + ’:’ +

password).toString(’base64 ’)

17 }

18 };

19 var xml = ""

20 var xmlbody=""

21 var request = https.get(options , function(res) {

22 res.on(’data’, function(data) {

23 xmlbody += data;

24 });

25 res.on(’end’, function () {

26 var parser = new xml2js.Parser ({ explicitArray : false

});

27 xml = xmlbody;

28 // Parses the xml and creates a (name , value) pair of

the register and pcr values

29 for(var i = 0; i < xml.getElementsByTagName("Manifest")

; i++) {

30 var name = result.host_manifest_report.Host.Manifest

[i].$.Name

31 var value = result.host_manifest_report.Host.

Manifest[i].$.Value

32 arr[name] = value;

33 }

APPENDIX A. 95

34 //sends the (name ,value) pair to checkvmtpm

35 callback(arr);

36 }

37 })

38 res.on(’error’, function(e) {

39 console.log("Got error: " + e.message);

40 });

41 }).end();

A.3.4 VNF-TPM Binding Function

1 var bind = function(hname , im_ID , pcr , db , callback) {

2 // Insert Log Entry

3 tsecoLog.insertLogEntry ({’function ’:’bind’,

4 ’nonce’ : nonce ,

5 ’data’ : hname},"debug")

6 var res = {}

7 var c = 0;

8 //Find the policy that is associated with the given image

ID

9 var db_info = db.collection(’vmtpm’).find({ ImageID: im_ID

});

10 //Keep a count on the number of entries that matches the

given Image ID

11 var cnt = db_info.count(function(err , count) {

12 if(count!= 0) {

13 //For each policy perform this

14 db_info.forEach(function(doc) {

15 hash_value = doc.Hash;

16 policy = doc.Policy;

17 //For all the policy element in db , retrieve the

corresponding pcr value from (name ,value) pair and

concatenate it in variable get_pcr

18 for(var i = 0; i < policy.length; i++) {

19 get_pcr += pcr[policy[i]];

20 }

21 // Calculate hash of the sum of pcrs

22 pcr_hash = SHA256.createHash(’sha256 ’).update(get_pcr).

digest("hex");

23 // Verify the calculated hash against the hash value in

the database and update variable res

24 if(pcr_hash == hash_value) {

25 res[c]= "hashes match";

26 }

27 else {

28 res[c] = "hashes do not match";

29 }

30 get_pcr = "";

APPENDIX A. 96

31 //when the value of c equals the count , check if any of

the values in res is equal to "hashes match". If

yes , return res.

32 //This is not a proper policy strength based approach ,

but checking if any of the policy matched.

33 if(c== (count -1)) {

34 for(var k = 0; k <= c; k++) {

35 if(res[k] !== "hashes do not match"){

36 callback(res[k]);

37 break;

38 }

39 }

40 else {

41 callback("hashes do not match");

42 }

43 }}

44 c=c+1;

45 });

46 });

47 }

VNF-TPM Binding Output

The console output of VNF-TPM binding is shown in Figure A.5.

We see that the host controller satisfies the pinning policy as its PCR val-
ues matches the expected PCR values. This is not the case with the host
compute-trusted.

APPENDIX A. 97

Figure A.5: VNF-TPM Binding Output

APPENDIX A. 98

A.4 Creating a Filter

Steps to create a filter:

1. Add the following lines in /etc/nova/nova.conf. Here, we create our
custom filter ’Custom Filter’ and add it to the list of default filters that
OpenStack uses.

1
2
3 scheduler_driver = nova.scheduler.filte_scheduler.

FilterScheduler

4
5 scheduler_available_filters = nova.scheduler.filters.

ram_filter.RamFilter

6
7 scheduler_available_filters = nova.scheduler.filters.

compute_filter.ComputeFilter

8
9 scheduler_available_filters = nova.scheduler.filters.

nokiafilter.CustomFilter

10
11 scheduler_default_filters = RamFilter , ComputeFilter ,

CustomFilter

2. Create your filter file in the filters directory and the path is
/usr/lib/python2.7/dist-packages/nova/scheduler/filters/

customfilter.py

3. Now you can add contents to your custom filter. A filter should have a
host passes() function and an instance is launched only if this func-
tion returns True.

4. A sample filter looks like

1
2 class CustomFilter(filters.BaseHostFilter):

3 def host_passes(self , host_state , filter_properties):

4 LOG.warn("The filter properties:"+ str(

filter_properties))

5 return True

In this example, we print the filter properties as a warning mes-
sage.

5. Restart the nova-scheduler service and launch an instance.

APPENDIX A. 99

6. If launching is successful, check the warning printed in the scheduler
log - /var/log/nova/nova-scheduler.log

A.4.1 Modified Base Host Filter

1 class BaseFilterHandler(loadables.BaseLoader):

2 """ Base class to handle loading filter classes.

3 This class should be subclassed where one needs to use

filters.

4 """

5 def get_filtered_objects(self , filters , objs ,

filter_properties , index =0):

6 list_objs = list(objs)

7 start = datetime.now()

8 start_time = str(datetime.now())

9 #Initial Hosts

10 initial_hosts = str(list_objs)

11 temp_list = []

12 filter_list = []

13 #Loop through each filter

14 for filter in filters:

15 if filter.run_filter_for_index(index):

16 cls_name = filter.__class__.__name__

17 filter_start_time = datetime.now()

18 data = str(filter_properties)

19 fp=list(filter_properties.values ())

20 temp = fp[4]

21 objs = filter.filter_all(list_objs , filter_properties)

22 if objs is None:

23 LOG.debug("Filter %s says to stop filtering", cls_name)

24 return

25 list_objs = list(objs)

26 temp_list.append(cls_name)

27 if not list_objs:

28 break

29 LOG.debug("Filter %(cls_name)s returned "

30 "%(obj_len)d host(s)",

31 {’cls_name ’: cls_name , ’obj_len ’: len(list_objs)})

32 #Filter duration for each filter

33 filter_end_time = datetime.now()

34 filter_time = filter_end_time -filter_start_time

35 filter_time_sec = filter_time.total_seconds ()

36 filter_duration = str(filter_time_sec)

37 filter_list.extend ([str(cls_name), filter_duration])

38 selected_hosts = str(list_objs)

39 end = datetime.now()

40 end_time = str(datetime.now())

APPENDIX A. 100

41 difference = end -start

42 diff = difference.total_seconds ()

43 duration = str(diff)

44 #Filter Logs

45 log = (’{" initial_hosts"’+":"+’"’+initial_hosts+’"’+","

+’"start_time"’+":"+’"’+start_time+’"’+","+’"

selected_hosts"’+":"+’"’+selected_hosts+’"’+","+’"

end_time"’+$

46 p = requests.Session ()

47 #Send Filter Logs to TSecO

48 start_log = p.post("http ://x.x.x.x:8081/ time_log", data

=log , headers ={’Content -type’: ’application/json’})

49 return list_objs

A.4.2 Signing Filter

1 class SignatureFilter(filters.BaseHostFilter):

2 #This function should return true to proceed further

3 def host_passes(self , host_state , filter_properties):

4 #store the filter properties in variable data

5 data = str(filter_properties)

6 fp=list(filter_properties.values ())

7 temp = fp[4]

8 #Store Image ID in temp1

9 temp1 = temp[’instance_properties ’][’system_metadata ’][’

image_base_image_ref ’]

10 #Check if metadata ’image_integrity_verification ’ exists

11 temp2 = temp[’instance_properties ’][’system_metadata ’][’

image_integrity_verification ’]

12 if temp2 == "true":

13 #Completes the path where image is stored using the

image ID stored in variable temp1

14 image_path=path.join(’/var/lib/glance/images/’,

temp1)

15 #Calculates the sha256 hash of the image to be

launched.

16 hash=hashlib.sha256(open(image_path , ’rb’).read()).

hexdigest ()

17 #Data sent to TSECO comprises of Image ID and Current

sha256 hash

18 new_data = (’{" Image_ID"’+":"+’"’+temp1+’"’+

","+’"Current_hash"’+":"+’"’+hash+’"}’)

19 s = requests.Session ()

20 #connect to TSeco and perform post method to send the

data to /checkSignature end point

21 filterprop = s.get("http ://x.x.x.x:8081/

checkSignature", data=new_data , headers ={’Content -

type’: ’application/json’})

APPENDIX A. 101

22 #Stores the response

23 resp = filterprop.text

24 if resp == ’Image is Trusted ’:

25 return True

26 else:

27 return False

28 else:

29 return True

A.4.3 VNF-TPM Binding Filter

1
2 class BindingFilter(filters.BaseHostFilter):

3 #This function should return true to proceed further

4 def host_passes(self , host_state , filter_properties):

5 #store the filter properties in variable data

6 data = str(filter_properties)

7 fp = list(filter_properties.values ())

8 temp = fp[4]

9 #Store the image ID in temp1

10 temp1 = temp[’instance_properties ’][’system_metadata ’][’

image_base_image_ref ’]

11 temp2 = temp[’instance_properties ’][’system_metadata ’]

12 #Check if metadata ’tpm_pinning ’ exists

13 if ’image_tpm_pinning ’ in temp2.keys():

14 #Get the policies

15 temp3 = temp[’instance_properties ’][’system_metadata ’][

’image_tpm_pinning ’]

16 host_node = (’{" machine"’+":"+’"’+str(host_state.

nodename)+’"’+","+’"image_ID"’+":"+’"’+temp1+’"}’)

17 #python requests to start a session

18 s = requests.Session ()

19 #connect to TSeco and perform post method to send the

data to /checkVMTPM end point

20 vmtpm = s.get("http ://x.x.x.x:8081/ checkVMTPM",

data=host_node , headers ={’Content -type’: ’

application/json’})

21 #Stores the response

22 resp = vmtpm.text

23 #Verifies if hashes match

24 if resp == ’hashes match’:

25 return True

26 else:

27 return False

28 else:

29 return True

APPENDIX A. 102

A.5 MongoDB and Policy Insertion

We create a collection ’vmtpm’ which takes the following fields:

Fields Type
Image ID String
Policy Array
Hash String

The snippet shows the commands of creating a collection and inserting values
in it. Image ID, Policy and Hash; of type string, array and string respectively.
We then insert values to this collection.

$ mongo

MongoDB shell version: 2.6.3

connecting to: test

> use tseco;

switched to db tseco

>db.createCollection("vmtpm",ImageID : "string", Policy: "array",

Hash: "string")

"ok" : 1

>show collections

logEntries

system.indexes

vmtpm

>db.vmtpm.insert(ImageID: "1234", Policy: ["17", "0", "18", "22"],

Hash: "8f6f570423f3fa83ef1cfd89264769b73ff18a28a8d980beb2350fe337de214e")

WriteResult("nInserted" : 1)

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.3 Research Methods
	1.4 Structure of the Thesis

	2 Background
	2.1 Cloud Computing and Network Function Virtualization
	2.1.1 Network Function Virtualization

	2.2 Need for Trust in the Cloud
	2.3 Trusted Computing Concepts
	2.3.1 Trusted Platform Module Architecture
	2.3.2 Platform Trust Through Boot Time Measurement
	2.3.3 External Attestation Process

	2.4 Trusted Cloud
	2.5 Summary

	3 Challenges in Providing Trust in NFV
	3.1 Terminology
	3.2 VNF-VM Assumption
	3.3 Requirements
	3.4 Challenges
	3.4.1 Platform Trust
	3.4.2 VNF Integrity Verification
	3.4.3 Launch VNFs on Specific NFVI
	3.4.4 Resource Management
	3.4.5 Fault Tolerance

	3.5 Summary

	4 Architecture and Design
	4.1 Modified ETSI NFV Architecture
	4.2 Trusted Security Orchestrator
	4.3 Signing Mechanism
	4.4 VNF-TPM Binding Mechanism
	4.5 Resource Selection
	4.5.1 Modified Filter Scheduler in OpenStack
	4.5.2 Modified OpenStack's Architecture: Launch of VNF Instance

	4.6 Fault Tolerance Based on Policy Mechanism
	4.7 Trust Relationship Between Entities
	4.8 Use Cases
	4.9 Summary

	5 Implementation
	5.1 Building a Trusted Cloud
	5.2 Implementation Set-up
	5.3 Implementation of Custom Filters
	5.3.1 Signature Filter
	5.3.2 VNF-TPM Binding Filter

	5.4 Implementation of Trusted Security Orchestrator
	5.4.1 Verifying Integrity of VNFs Through Signing Mechanisms
	5.4.2 Binding VNFs to TPM

	5.5 Performance Evaluation of Signing and VNF-TPM binding
	5.6 Summary

	6 Discussion
	7 Conclusions
	A
	A.1 Enabling tboot
	A.2 OpenStack Hypervisor Summary
	A.3 TSecO Modules Code Snippets
	A.3.1 Log Function
	A.3.2 Signature Verification Function
	A.3.3 PCR Function
	A.3.4 VNF-TPM Binding Function

	A.4 Creating a Filter
	A.4.1 Modified Base Host Filter
	A.4.2 Signing Filter
	A.4.3 VNF-TPM Binding Filter

	A.5 MongoDB and Policy Insertion

