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Pooled sequencing (Pool-seq) is the sequencing of a single library that contains
DNA pooled from different samples. It is a cost-effective alternative to individual
whole genome sequencing. In this study, we utilized Pool-seq to sequence 100
streptococcus pyogenes strains in two pools to identify polymorphisms and create
variant protein databases for shotgun proteomics analysis. We investigated the
efficacy of the pooling strategy and the four tools used for variant calling by
using individual sequence data of six of the strains in the pools as well as 3407
publicly available strains from the European Nucleotide Archive. Besides the raw
sequence data from the public repository, we also extracted polymorphisms from
19 S.pyogenes publicly available complete genomes and compared the variations
against our pools.

In total 78955 variants (76981 SNPs and 1725 INDELs ) were identified from
the two pools. Of these, ∼ 60.5% and 95.7% were discovered in the complete
genomes and the European Nucleotide Archive data respectively. Collectively, the
four variant calling tools were able to mine majority of the variants, ∼ 96.5%,
found from the six individual strains, suggesting Pool-seq is a robust approach for
variation discovery. Variants from the pools that fell in coding regions and had
non synonymous effects constituted 24% and were used to create variant protein
databases for shotgun proteomics analysis. These variant databases improved
protein identification in mass spectrometry analysis.
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1. Introduction

Bacteria are ubiquitous, found in diverse niches, including humans and other organ-
isms, and extreme environmental conditions. Humans have 10 times more bacteria
than cells in their bodies. Most of these bacteria are harmless and some are even
beneficial, while others are pathogenic. The first bacteria to be whole genome se-
quenced was Haemophilus Influenza in 1995 [29]. Since then, around 20,000 bacterial
genomes of 50 different phyla have been sequenced and made available to the public.
This explosive increase has been possible due to the vast price reduction of the
Next-generation sequencing (NGS) technologies.

We have come to understand through such sequencing efforts that bacteria are very
diverse and for certain bacteria, even within the same species, there could be a lot of
variation in terms of gene content and genome size. This suggests sequencing of large
number of samples, such as different strains of a bacteria, is vital for various population
based studies. Even though NGS technologies offer a substantial cost reduction
compared to previous methods such as Sanger sequencing, the cost associated with
whole genome sequencing of large cohorts is still prohibitive for many labs. As a
result, various cost effective alternatives such as Pool-seq, RNA-seq, RAD-seq and
exome sequencing have been utilized in various studies.

Pool-seq is the sequencing of a single library containing equal amounts of DNA from
different samples. The samples could be tagged (barcoded) before pooling which
will enable to distinguish the sequence reads coming from the different individuals.
However, tagging incurs additional effort and cost when attaching and demultiplexing
the barcodes during sample preparation and analysis, especially for large number
of samples. For this reason, samples are usually pooled without tagging and this
strategy is also adopted in the current study. Pool-seq has been effectively utilized
in studies that involve allele frequency estimation and polymorphism identification
of large sample of organisms. In the current study, Pool-seq is used to study
genetic polymorphisms in 100 strains of one of the most important human pathogens,
Streptococcus pyogenes bacteria. S.pyogenes or Group A streptococcus (GAS),
commonly known as the flesh eating bacteria, is a Lancefield group A bacterial
pathogen that causes a multitude of non-invasive and invasive infections and post-
infection sequelae throughout the world. Diseases caused by GAS include pharyngitis,
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impetigo, erysipelas, cellulitis, necrotizing fasciitis, scarlet fever, toxic shock syndrome,
rheumatic fever and glomerulonephritis. GAS is part of the normal flora in humans
typically in the respiratory tract, and can be considered an opportunistic pathogen.

Besides the Lancefield antigens, the M protein surface antigen is also used for
classifying GAS. Currently more than 100 distinct M serotypes have been identified.
Certain M types such as M1 and M3 are mostly isolated from both human invasive
infections and pharyngitis in high-income countries [70]. In this study, 50 non-invasive
and 50 invasive strains were sequenced in two pools. The publicly available M1 strain,
SF370, was used as a reference genome to explore polymorphisms of these strains in
the two pools.

In addition to the discovery and exploration of polymorphisms from pooled sequence
data, creation of variant protein databases for shotgun proteomics analysis of GAS
strains is central to this study. Protein databases are used in shotgun proteomics
studies for searching the mass spectra identified from experiments against the theo-
retical mass of the peptides found in the databases. Such databases usually contain
wild type proteins and therefore fail to identify variant peptides. Various studies have
devised ways to enable the consideration of variation information in database searches.
For instance, certain search engines have an option to search for all possible amino
acid substitutions due to SNVs. In addition, several authors have used combinatorial
approaches (’shotgun annotation’) as well as known variants in humans (including
cancer-specific ones) to create such variation databases.

To our knowledge, this study is the first to utilize Pool-seq for polymorphism iden-
tification as well as create a variant proteome database for GAS. The genetic
polymorphisms in the pooled samples were mined using 4 variant calling tools, whose
efficiency was evaluated based on results from individual sequence analysis of 6 strains
that were in the pools and also publicly available data. A custom in-house script
was utilized to create variant protein databases from the two pools.

GAS and other pathogen microbes with high species-level genetic diversity would
benefit from large sample studies and findings from this study, which includes
examining the efficiency of Pool-seq , will motivate the use of the method for
addressing important study questions in various non model organisms. In addition,
the availability of variant protein databases for this essential pathogen, we anticipate,
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will enable the identification of novel peptides in shotgun proteomics studies which
may have implications in clinical applications.

This thesis work is part of a project that aims to identify novel candidate antigens
for clinical diagnosis of GAS, GGS, GBS and GCS pathogens. The author is solely
responsible for the sequence data analysis and database creation, with out undertaking
any of the laboratory work in this project. The rest of this thesis is organized as
follows. In Chapter 2, I describe briefly streptococcal diseases, NGS technologies and
downstream analyses, issues that concern Pool-seq and Pool-seq variant analysis and
bottom up shotgun proteomics analysis and the methods employed for mass spectral
search. The materials and methods employed in this study and the results from the
variant detection analysis as well as the database creation process are presented in
chapters 3 and 4 respectively. In the final chapter, chapter 5, a discussion of the
various results obtained and the conclusions drawn in the course of this study are
reported.
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2. Background

This chapter gives an overview of the various issues that are addressed in this thesis
work. The first part briefly introduces how streptococci bacteria are classified and
the diseases they inflict on humans. This is followed by a general description of NGS
technologies and downstream analysis steps. The next two parts discuss important
considerations in relation to using Pool-seq for polymorphism identification and allele
frequency estimation, and introduce variant calling tools suitable for Pool-seq studies
respectively. Then follows a few examples of Pool-seq applications. The last part
describes the bottom-up shotgun proteomics set up with an emphasis on variant
protein databases.

2.1 Streptococcal diseases

The streptococcus genus is comprised of spherical (coccus) bacteria that stain purple
in the Gram stain test, also known as Gram-positive bacteria. Currently, there are
about 115 species under the streptococcus genus [41]. These species are classified into
alpha, beta and gamma based on their hemolytic properties, i.e. the area of the blood
agar around the colony becomes dark and greenish, lightened yellow (transparent)
and unchanged respectively. The beta hemolytic streptococci are further serotypically
classified according to the Lancefield carbohydrate group present on the bacterial
cell wall. The Lancefield groups A, B, C, D, and G (GAS, GBS, GCS, GDS, GGS)
have been known to cause infections in humans.

GAS causes the most devastating human infections through out the world, which
vary in clinical spectra and severity, causing at least 517,000 deaths annually [13].
The prevalence of severe GAS diseases is estimated to be 18.1 million, with 1.78
million new cases per year. These severe cases include rheumatic fever, rheumatic
heart disease, post-streptococcal glomerulonephritis, and invasive infections such as
bacteraemia. The incidence of less severe diseases such as strep throat (pharyngitis)
is estimated to be 616 million cases per year. GBS mainly causes pneumonia and
meningitis in newborns and the elderly; GGS on the other hand has similar spectrum
as that of GAS. In Finland, an increase in GGS bacteraemia cases has been observed
recently [61].
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Certain features of a bacteria enables it to attach to, colonize and invade the host
cell and are associated with virulence. For instance in GAS, the hyaluronic capsule
mimics the mammalian polysaccharide which enables it to avoid detection by the
host immune system. The surface M protein is another virulence factor in GAS that
has antiphagocytic properties. The N terminal part of this protein is hypervariable
and is the basis for the serological classification of GAS strains. Based on this typing,
more than 100 distinct strains have been identified so far.

Diagnosis of streptococcal diseases is mainly based on culture. Antigen detection
methods are also being used in certain countries. The antigen based diagnostic
methods are quicker and also relatively reliable and thus can be used as point of
care tests. However, there is still a need for more sensitive and specific tests; for
instance, there are no current tests that recognize GGS antigens resulting in failure
to diagnose substantial numbers of streptococcal tonsillitis cases.

2.2 Next generation sequencing and downstream analyses

DNA sequencing of various organisms has been crucial to numerous kinds of studies
including sequence variation detection and interpretation. Compared to the previous
methods such as the capillary electrophoresis based Sanger sequencing which produces
96 sequencing reads, NGS (also referred to as high-throughput sequencing, i.e.HTS)
technologies produce large number of sequence reads per experiment [39] which are
shorter in length and lower in quality. NGS technologies are cheaper, quicker and
need significantly less DNA. There are a number of NGS technologies including
Illumina (Solexa), Roche 454, Ion torrent and SOLiD. These technologies differ in
the protocols they employ during template preparation, sequencing and imaging,
and data analysis. But all of these methods involve random shearing of the DNA
in to smaller sized templates and the immobilization of the templates to a solid
surface. The templates’ nucleotide sequences are inferred from the light signals
emitted (recorded using a camera) during the incorporation of the bases via synthesis
or ligation. This process is carried out in parallel resulting in the production of
thousands to millions of short reads. All of the NGS platforms introduce sequencing
errors that pertain to the unique combination of protocols they each follow. The
sequence reads, in downstream analysis applications, will either be used to reconstruct
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the underlying whole genome de novo or will be aligned to a reference genome, for
example to identify polymorphisms.

Various alignment tools exist that are capable of mapping the large number of reads
in a reasonable amount of time. To speed up the alignment process, they use either a
hash table (e.g Novoalign[1], stampy[52], SHRiMP[65]) or prefix/suffix array trees (e.g.
BWA[48], Bowtie[44]) to index the reference genome or the read sequences. In the
hash table implementation, k long substrings (k-mers) of the query are created and
saved in a hash look up table against which seeds are searched. The candidate seeds
will then be extended using a local alignment algorithm such as the Smith-Waterman
algorithm[68]. In the second category, one of the most common implementations
is the FM-index. This is based on the Burrows-Wheeler transformation (BWT)
[12] where the rotated instances of the string are lexicographically sorted and the
last columns represent the transformation. Then using the FM-index a last-to-first
column mapping can be done on this transformation. The BWT-based aligners are
faster and more memory efficient but less sensitive than the hash-based methods.

After the alignment step, positions that show evidence of variation are determined in
what is called the variant calling step. The variants can be small, usually less than
50bp, as in SNVs and short INDELs or large ones, such as structural variants (SVs).
Due to the length of the reads produced from most NGS platforms, inferring larger
variants could be challenging. Having a pair of reads using paired-end or mate-pair
sequencing (in the former you sequence the two ends of a size-selected fragment
while in the latter the sequence is first circularized with the ends tagged and then
size-selected fragments that contain the ends are sequenced) with known distance
and orientation between the pairs helps to get around the problem of short length
reads. The polymorphic positions and frequencies of the variant alleles are central in
many population genetics studies.

2.3 Pool-seq

The amount and quality of data that is being generated by NGS technologies is
improving while at the same time the cost of sequencing is decreasing significantly.
NGS technologies have basically democratized sequencing by making it affordable
to a large number of investigators. As a result of this, whole genome sequencing of
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various non model organisms has been possible; some organisms have had more than
one type or strain sequenced [26, 34]. A decade ago, sequencing of a finished bacterial
genome using Sanger sequencing could cost up to $50,000; currently, a draft sequence
can be generated at a fraction of that [43]. In bacteria this has opened doors for
vital population based studies such as investigating polymorphisms associated with
antibiotic resistance mechanisms and evolutionary pathway of virulent clones (see
[15, 55] for example). For GAS, currently 45 complete GAS sequences have been
recorded in the Genomes OnLine Database [62].

Nevertheless, sequencing is still costly for many research groups wishing to undergo
large scale studies that involve large number of individuals, for instance genome wide
association studies (GWAS). For this reason, various strategies have been adopted
that aim to reduce the sequencing cost while still being able to draw statistically
meaningful conclusions from the data. Some of these strategies include:

• Exome sequencing: only the gene coding regions of the genome are captured and
sequenced. This method has been widely used especially in disease association
studies to identify causative variants found in coding regions. However, many
studies have discovered associations between diseases and variants that fall in
non coding regions, such as promoters. In addition, it is usually not possible
to capture all the exons and building exon capture kits for different species is
expensive.

• RNA-seq : involves the sequencing of mRNA transcripts, which are distin-
guished by their poly A tails. Here again the focus is on the gene coding regions
but unlike exome sequencing, only expressed transcripts are sequenced and no
special capture kits are needed.

• RAD-seq : only regions that flank a restriction site are sequenced. This method
relies on linkage disequilibrium (LD) and may give a biased allele frequency
estimate if the restriction site contains polymorphisms that are in LD with
nearby snps.

Another approach that has been employed to mitigate the high cost associated
with large sample studies is Pool-seq. While all of the above strategies attain cost
reductions by sequencing only part of the genome, in Pool-seq the whole genomes
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of multiple samples is sequenced. Pool-seq achieves cost effectiveness through the
sampling of multiple individuals and therefore limiting the amount of redundant
reads to be considered. Pool-seq can provide better allele frequency estimates than
individual sequencing if large number of samples are included in a pool. This is
because sampling variance decreases as the sample size increases and allele frequencies
are usually estimated from samples drawn from a larger population. It is possible to
tag (index) sequences to identify the individuals in a pool but usually this method
incurs more cost and therefore unindexed pooled sequencing is mostly used.

In Pool-seq, there is an assumption that the pool is composed of equal DNA amounts
from all the individuals. Uneven representation of individuals in a pool could lead to
significant allele frequency differences and therefore large pool sizes are recommended
to reduce the effect of individual read depth variation. Moreover, when the assumption
of equal DNA contributions is violated, which happens more often than not, and
sequencing error rates are high, Pool-seq fails to identify rare variants [20]. In
addition, haplotype information is lost during pooling and Pool-seq is unsuitable for
studies that rely on linkage disequilibrium.

Several studies have developed statistical theories for the analysis of pooled samples
and to infer population genetics estimators such as Tagima’s π and Watterson’s
θ from such data [27, 30, 32]. These studies emphasize the importance of sample
size and read depth for efficient SNV identification and allele frequency estimation.
Pool-seq could be more effective for such tasks than individual sequencing given
large enough sample sizes and high read depth, for instance when the pool contains
more than twice the number of individual sequences and the coverage per individual
sequences is at least two [30].

2.3.1 Examples of Pool-seq applications

Pool-seq has been used in studies of various nature that involve the sequencing of
large number of samples such as GWAS and/or for which it is difficult to obtain
individual samples, as in cancer and metagenomics. The following are but a few
examples of such studies. For more examples and a comprehensive review of Pool-seq
and guidelines to follow see [67] and the references thereof.
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• GWAS. The common variant common disease paradigm has been successful in
identifying causal variants with small effect sizes for various diseases. However,
since the common variants explain only a small proportion of heritability, there
is now a shift to investigate rare variants as well. Large sample sizes are
required to detect associations in such cases and individual sequencing is still
expensive, and therefore various studies have employed Pool-seq instead. Using
Pool-seq, rare novel pathogenic mutations were found in the PSEN1, GRN
and MAPT genes in Alzheimer’s disease [40]. Similarly, Pool-seq was used to
identify three rare variants in Crohn’s disease associated genes [38].

• Evolve and resequence (E&R). These experimental evolution studies, especially
those that start from a segregating population, typically involve Pool-seq as
genome wide polymorphism data is required. Similar to GWAS, E&R studies
aim at genotype-phenotype mapping. Unlike GWAS however, the studies are
carried out under researcher controlled environments and conditions. Most
E&R studies have been carried out on D. melanogaster. For instance, in a
longevity study in flies, 156 genes were found to be divergent between flies that
have been selected for 50 generations and unselected flies [63].

• Reverse ecology. Pool-seq is valuable in studies that use genomics to study
ecological factors deriving selection. It has been used to study adaptive genetic
variations in the herb Arabidopsis halleri from the Alps that are associated to
climatic variations. 175 genes were found to be associated with the 5 tested
climatic factors [28].

2.4 Variant calling of pooled data

One of the main differences between variant calling in pooled samples and that of
individual samples is the frequency of the variant alleles in each individual. For
instance, for diploid individuals, the variant allele frequency can only be 0 (reference
homozygous), 0.5 (reference heterozygous) and 1 (variant homozygous), while for
pooled samples the frequency could be any number between 0 and 1, with the minor
allele frequency being 1

h
for h haploid genomes. In individual sequencing data, at

a depth 30x the variant allele will often be observed sufficiently that it is possible
to make a reliable distinction between true variants and errors [8]. In Pool-seq on
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the other hand, the minor allele could be found at a frequency equal to or below
the sequencing error rate. In light of this fact, pooled variant calling tools employ
different combinations of methods including error models, read quality and various
characteristics of the sequencing errors (such as lower base quality, strand bias and
clustering at certain positions in the read [7]) to make a reliable detection of rare
variants. For instance, while tools that are not suited for pooled samples fail to
call a variant that has a frequency of less than ∼ 0.5× depth at a certain position,
pooled variant calling tools would more or less be able to identify a rare variant that
is represented in ∼ 1

h
× depth of the reads. This suggests using tools that are not

geared towards the analysis of pooled data may result in many true variants being
confounded with sequencing errors and therefore not being called.

There are a number of tools available for variant detection of pooled data. Some
of them use Bayesian approaches with pre-specified prior probability of observing
a variant (GATK, MAQ) and there are those that use heuristics methods, such
as the minimum allele frequency threshold, for filtering candidates (VarScan) and
others that use frequentist approaches (SNVer). There are those (such as snape,
SNPSeeker) that can only identify SNPs while majority are capable of identifying
SNPs and INDELs. While most of them use a constant error rate depending on the
sequencing platform, tools such as EM-SNP and LoFreq model the error rate in a
position specific manner.

The four variant calling tools used in this study employ both bayesian and frequentist
approaches. SAMtools [49] is designed for diploid indviduals and uses a Bayesian
model with a binomial likelihood and a pre-specified prior probability (for a heterozy-
gote, 0.001 for the discovery of new SNPs and 0.2 at known SNP sites) to determine
the posterior probabilities of the three possible genotypes. GATK’s Unifiedgenotyper
[23] uses the same model as SAMtools but partitions the posterior probability over
all the possible genotypes and also uses various filtering strategies. Freebayes [31]
also employes a Bayesian model but operates on haplotypes from a local de-novo
assembly of reads than single positions, unlike SAMtools and Unifiedgenotyper. On
the contrary, SNVer [74] uses a frequentist approach (variant calling as a hypothesis
testing problem) to determine for each pool the p-value cutoff of true variants based
on a binomial model of variant allele frequency and sequencing error. It then combines
the p-values from individual pools to give an overall p-value; unlike in the other
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methods where the decision is dichotomous (is or is not a variant), ranking of the
variants is possible. Excepting SAMtools, all three tools have options for the analysis
of pooled samples. We included SAMtools for comparative purposes as it is a popular
tool and we have come across a Pool-seq study that employed it.

There are other variant calling tools for Pool-seq data but we chose these 3 based on
popularity, convenience and their previously reported performance. Below is a list of
some of the other tools that enable variant calling from pooled samples.

• CRISP [7]: Uses contingency tables to compare the distribution of allele counts
across multiple pools in order to identify rare variants. It can call SNVs and
short INDELs. It is not capable of calling variants from a single pool but
requires multiple pools. It accepts SAM/BAM files as inputs and outputs a
VCF. It can be used with Illumina and Solid reads. It is reported to be better
than Varscan and SNPSeeker.

• Syzygy [64]: Uses a likelihood computation to determine if a position contains
a non-reference allele given all the alleles in a pool using Baye’s rule. It can
call SNVs and short INDELs. Accepts additional pool/target info files besides
SAM/BAM input but the output is a CSV format than VCF. It can handle
Illumina and Solid reads.

• SPLINTER [72] : It is an extension of the variant caller SNPSeeker [24](which
calls only SNPs). It compares observed allele frequency and distribution of
sequencing errors using Kullback-Leibler (KL) distance. It needs an additional
positive control (besides the negative control data, such as a plasmid DNA,
required in SNPSeeker). It can call SNVs and INDELs. Accepts only SCARF
input and outputs CSV. It can not handle Solid reads. There is no dedicated
download page available, it requires registration.

• Varscan [42]: Applies heuristic filters (for instance, minimum number of sup-
porting reads and allele frequency threshold) to each candidate site. It can
identify SNVS and INDELS. Accepts pileup input rather than SAM/BAM.
Outputs both VCF and CSV files. It can also call variants from exome and
RNA-seq data. Accepts Illumina, Solid and Roche/454 reads.

• LoFreq [75]: Uses Poisson-binomial to model the distribution of variants and
the Phred base quality scores to model the errors. It can call SNVs and INDELS.
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It accepts SAM/BAM inputs and outputs VCF. It does not call genotypes and
also does not process inputs from different pools simultaneously. It can call
variants from exome and targeted resequencing data.

• vipR [4]: Uses the Skellam distribution to identify sites with significant dif-
ference in minor allele frequencies in at least two pools. It calls SNVs and
INDELs. Accepts only pileup input and outputs VCF. It requires multiple
pools. It can handle Illumina and Solid reads.

2.5 Variant protein database creation

Proteomics is the study of proteins in a holistic manner including their biological
functions, processes and interactions. One of the main goals in proteomics is identi-
fication and quantification of a species’ proteome. Bottom-up mass spectrometry
(MS)-based shotgun proteomics has been widely utilized for this purpose, especially
in large scale studies.

Bottom-up shotgun proteomics involves the digestion of a mixture of proteins into
peptides by proteolytic enzymes (such as trypsin), followed by MS analysis that
generates mass spectra. The experimental mass spectrum is then analyzed to identify
the peptides. Figure 1 depicts the steps involved in a bottom-up shotgun proteomics
including the creation of the experimental mass spectrum and the identification of
peptides from the spectrum.

The reliable identification of peptides/proteins depends on various issues ranging
from the sample preparation and MS instrument (and fragmentation techniques) to
the computational methods employed. Identification of the peptide sequences can be
accomplished in 4 ways, by matching the spectra to a protein sequence database or
a spectra database, by using sequence tags or through de novo sequencing (see part
2 of Figure 1).

Utilization of sequence databases is the most popular method in which the acquired
experimental spectrum is compared to the theoretical spectrum obtained from the
in silico digested sequences found in the database. This comparison is performed
by search engines that score peptides, i.e. based on how similar they are to the
experimental spectrum, using various criteria such as the parent ion mass tolerance,
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Figure 1: Bottom-up shotgun proteomics steps. 1)Proteins will be digested in to peptides and subjected to
tandem mass spectrometry analysis. 2) The experimental spectra acquired will then be used to identify peptides
using four methods. a)Using a sequence database in which theoretical spectra obtained via in silico digestion of
the sequences are matched to the experimental spectra. b) Using a spectral database where the spectra are
matched to the experimental spectra. c) Using tag short sequences and a sequence database in which only
theoretical spectra of peptides that contain the tag sequence are matched to the experimental spectra and d) The
peptides are identified de novo from the experimental spectra without using a database.

digestion enzymes, post-translational or chemical modifications and fragment ions
expected. The search tools vary and the concordance among them when applied to
the same dataset is between 70-80%. There are various protein sequence databases
available for different organisms including Entrez Protein sequence database, Refseq,
Uniprot and the International Protein Index(IPI) and they vary in terms of quantity
and quality. For instance, Refseq and Uniprot are better annotated while Entrez
contains larger number of sequences.

Not all the peptide to spectrum matches (PSMs) reported by search tools are true
due to a number of reasons such as the low mass accuracy of certam MS instruments.
The confidence of the PSM is assessed by the search score which is converted and
reported as a p-value or an E-value in some tools. Multiple test correction is required
when applying these single spectrum scores to multiple spectra analysis. The most
common method used for this purpose is the false discovery rate (FDR). The FDR is
usually estimated by using a decoy database which contains the reversed or shuffled
protein sequences.
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Instead of sequence databases, previously deposited spectra, against which the
acquired spectra are searched, can also be utilized. This approach has an advantage
over sequence databases in terms of speed, error rates and sensitivity. However it is
limited by the availability of previously analyzed spectra.

On the other hand, de novo sequencing involves the determination of sequences
directly from the spectra. As it does not require sequence or spectral databases, it
can identify peptides that are not present in the databases. Yet, it is computationally
intensive and is therefore mostly used when a protein sequence database is unavailable
or to interrogate spectra unassigned during the database search. It can also be used
to validate results obtained using databases.

Tag sequences are hybrid methods in which a short sequence tag is inferred de novo
followed by a database lookup of the tag sequence together with the sequence masses
flanking it. The database search in this case will be restricted only to those peptides
that contain the sequence tags which will speed up the search. This approach is
usually employed to identify post-translational and chemical modifications.

Not all the spectra from MS analysis can be matched to a sequence in a protein
database owing to various reasons including post translational and chemical mod-
ifications, protein isoforms and amino acid substitutions (due to polymorphisms)
[11, 19]. Nesvizhskii et al. [57] demonstrated that there are high quality spectra that
remain unmatched after the first initial search against a conventional database and
that using several types of databases leads to increased identification of peptides,
including those that contain modifications and polymorphisms. Moreover, Dasari
et al. reported that 3.2% to 7.1% of spectra showed evidence of mutations in the
different samples they analyzed [21].

To address the issue of amino acid substitutions, certain database search engines
such as Mascot and X! Tandem provide options to search for all possible amino
acid substitutions that result from SNPs [19, 18]. However, such exhaustive search
methods lead to an explosion of the search space and loss of sensitivity, at the
same time requiring increased processing time [56]. It has also been shown that tag
sequencing can be used to identify such mutations [21]. But, this method also suffers
from computational inefficiencies especially for large scale studies.

Multi-stage strategies using the same tool iteratively or a combination of various
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tools have also been used to decrease the number of unassigned spectra. For instance,
in the first run, few or no modifications could be allowed in addition to proteolytic
enzyme constraint. In the following runs, these criteria could be relaxed and a subset
of the database could be searched. Alternatively, the searching could start by using
multiple database search engines on sequence databases, followed by the utilization
of spectral libraries or exhaustive searching.

A more commonly used alternative is the use of customized databases that incorporate
known variants. For instance for humans, by utilizing different sources such as dbsnp,
OMIM, PMD, and PHI, the SysPIMP and CanProvar databases have been developed
[77, 50]. SysPIMP contains human disease related sequences which can be searched
using MS data utilizing the X!tandem search engine. CanProvar contains cancer
related variations from various sources as well as known coding variants from dbsnp.
In this study, a custom database that contains variants identified from our next
generation sequence analysis has been developed for GAS.



16

3. Materials and methods

This chapter contains an outline of the materials and tools I used in this study. The
first part concerns Pool-seq variant calling, followed by a part that describes in detail
the protein database creation process. For variant calling, I mostly used free existing
software tools while for the protein database creation I developed a custom python
script.

3.1 Bacterial strains

The 100 GAS strains used in the two pools are listed in the supplementary material
(Table S1). The strains were selected from the bacterial culture collection of the
National Institute of Health and Welfare so that each of the pools contained similar
wide array of emm types isolated in wide geographical area in Finland within years
1995-2012.

3.2 Pooling and sequencing

All strains were cultured overnight at +35 ◦C on blood agar plates in 5% CO2. DNA
was isolated using UltraClean Microbial DNA Isolation Kit (MoBio) according to
manufacturer’s instructions except for the following modifications: in the beginning
300 µl MicroBead solution and 6 µl mutanolysin (1 mg/ml) was mixed in a tube
followed by addition of bacteria scraped with a 10 µl loop from the culture plate. After
incubation for 60 min at +37 ◦C, the solution was transferred to a MicroBead tube, and
2 µl of RNAse A (1mg/ml) was added. From there, the manufacturer’s instructions
were followed until at step 18, 35 µl of solution MD5 was added followed by 2 min
incubation. Before pooling, the quality and the integrity of the DNA was checked
using Nanodrop equipment (Thermo Scientific) and agarose gel electrophoresis. From
each GAS strain, 400 ng of DNA was used in one of the pools of 50 strains. The pools
were precipitated and vaporized with SpeedVac and concentrations were measured
with Qubit 62.5 ng/µl and 86.4 ng/µl for pool 1 and 2, respectively. Sequencing was
done at Science for Life laboratory in Stockholm using Illumina HiSeq 2500 with
approximately 20000x mean coverage. Each of the pools were sequenced in two lanes
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using the paired-end sequencing strategy.

3.3 Public data

GAS sequences of 3407 runs and 20 complete genomes were downloaded from ENA
and NCBI respectively. The runs from ENA were all paired-end sequenced using
Illumina. The raw sequences of the reference strain SF370 are also available publicly
but they were not included in the public data analysis.

3.4 Variant calling

The major steps involved in variant calling are summarized in Figure 2 and briefly
described here. A number of tools exist that are capable of manipulating the data at
each step of the variant calling workflow. The step that proceeds the alignment of
the reads to the reference genome is a pre-processing step which involves checking
the quality of the reads (using such tools as FastQC, SolexaQA) and trimming of
possible adapter contaminants and low quality bases (using Trimmomatic, Cutadapt
etc). FastQC [66] presents quality metrics such as per base sequence quality, per base
GC content, over-represented sequences etc. in a user friendly graphical interface.
FastQC (version 0.11.2) was used for quality inspection of the sequence reads from
the pools and the ENA data. Trimmomatic [9] handles paired-end reads and can
trim adapters and also low quality bases from the start and end of the read or using
a sliding window. A custom python script was used to automatically extract adapter
and primer contaminants from the FastQC output and trim them using Trimmomatic
(version 0.33).

The alignment step is one of the most fundamental steps as the accuracy of the
alignment is one factor that will influence the quality of the variants mined. The
large number of short length reads, platform dependent sequencing errors and certain
features of the reference genome, such as repetitive DNA sequences, pose challenges
in this step. BWA-MEM [46] is a recent algorithm employed in BWA that is designed
for longer reads and is faster and more accurate than previous methods. BWA-MEM
(version 0.7.10) was used for aligning the quality filtered reads to the reference genome
using default parameters. Toolboxes such as Bedtools [60] include various utilities
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SAM/BAM

VCF

Figure 2: Variant/genotype calling workflow

for manipulating the alignment outputs (SAM/BAM files). The aligned read depth
of the pools and the ENA runs was obtained from the alignment BAM files using
Bedtools’ coveragebed utility (version 2.17.0).

The next step, post-alignment processing deals with issues such as multi-reads (reads
that aligned to multiple locations in the reference), PCR-artifacts (over-representation
of certain sequences), inaccurate base qualities, alignment-inconsistencies (arising
from independently aligning each read to the reference as opposed to multiple reads
to reference mapping) and it is mostly application and type of sequencing data
dependent. For instance, for studies that do not employ PCR amplification or for
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which the removal of PCR duplicates has a negative consequence such as Pool-seq,
removing PCR-artifacts could be skipped. The Picard tool (version 1.122) [2] was
used to mark duplicates in the six individual strains and the ENA runs. Different
aligners handle multi-reads differently; some discard all such reads while others choose
one randomly if the alignments are equally best. Read re-alignment that considers the
context of multiple reads, for example around INDELs, employed by certain variant
calling tools can improve variant detection and genotyping accuracy [37]. For certain
types of variant callers such as Freebayes and GATK’s HaplotypeCaller, a separate
re-alignment around INDELs step is not necessary as the tools already undergo local
de novo assembly around areas that show evidence of variation. The Phred-scores
reported by the base calling algorithms are very essential to the subsequent steps
but they are often inaccurate [10]; base quality re-calibration aims to recalibrate
the raw Phred-scores by using non-polymorphic sites so that they accurately reflect
the true error rate. In GATK’s implementation of the quality score recalibration,
first the bases are grouped in to different categories based on the position of the
base in the read, the raw quality score and the dinucleotide context. The quality
score for each category is then estimated by using the number of mismatches against
the reference genome; a comprehensive list of known or highly confident SNPs is
required to infer the non-polymorphic sites. Re-alignment around INDELs and
base quality re-calibration was undertaken using GATK before variant calling by
UnifiedGenotyper. For the BaseRecalibrator, the variants consensually identified by
Freebayes and the first run of UnifiedGenotyper were used since known variants are
not available for GAS.

In the variant and genotype calling step, the base calls and their quality score
will be used to identify positions that show evidence of variation compared to the
reference and to assign genotypes (homo/heterozygous) to these variants. There is an
uncertainty associated with variant calling due to errors, including those that occur
during base calling and alignment, and variant calling tools need to account for that.
Previous variant calling methods used hard cutoffs on per-base quality, total read
depth, read alignment quality etc. to filter variants. For instance, in [73], six steps
including the following thresholds, Phred quality score of 20, four supporting reads
and an overall depth of 100 reads were used for filtering. These methods perform well
when the sequencing depth is high but miss a lot of heterozygous calls when the depth
is medium to low and also fail to quantify the uncertainty in the genotype inference
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[58]. Currently, tools that use probabilistic methods such as Bayesian models
are widely adopted. Through the Baye’s formula, the posterior probability of a
genotype G is inferred from the genotype likelihood, P (Data|G), (which incorporates
information such as the called base, per-base quality and alignment quality scores of
the reads) and the prior probability of each genotype P(G), which can be set based
on evidence from multiple samples (could incorporate LD information), or in single
sample cases using external information such as variant databases. The genotype
with the highest posterior probability will then be chosen as the most likely genotype,
with its posterior probability or the ratio between its probability and the next highest
used as a measure of uncertainty.

In such probabilistic frameworks, the ability to incorporate additional information
from various sources results in more accurate genotype calling than the previous
methods. The three tools utilized in this study, SAMtools [49], GATK’s UnifiedGeno-
typer [23] and Freebayes [31], use such bayesian frameworks. There are also tools
that use frequentist approaches such as SNver [74]. The Bcftools utility in SAMtools
(version 1.1) was used to call variants from the pools, the six individual strains
and the ENA runs after the mpileup command was used to calculate the genotype
likelihoods. For the pools, besides SAMtools, GATK’s UnifiedGenotyper (version
3.2-2), Freebayes (version 0.9.18-1) and SNVer (version 0.5.3) were used for calling
variants. In SAMtools, maximum reads per input bam (–max-depth) of 10000 (de-
fault is 250) and a minimum mapping quality of 20 (default is 0) was utilized. In
UnifiedGenotyper, a minimum Phred-scaled confidence threshold of 20 for calling
and emitting variants was adopted. In Freebayes and SNVer, a variant was called if
the minimum fraction of observations supporting the alternate allele was 0.02 and
only bases of quality 13 or greater were counted (base quality of 13 is the default
in SAMtools). The variants identified by the four tools were concatenated using
bcftools concat command with the -d option to remove duplicates (version 1.2).

The variant calls are likely to contain false positives and in the filtering variant
candidates step, we aim to improve the final call set by removing such artifacts; the
filtering can be hard or soft. In hard filtering, a specific threshold is set on such
things as variant call confidence scores, coverage of depth and mapping quality while
in soft filtering an extensive variant database is used to learn the filtering criteria
from the data itself instead. In the current study, a hard filtering of the variant
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quality score threshold (20) was employed to filter variants from the pools, the six
individual strains and the ENA runs.

In the last step, the annotation of the variants is undertaken to interpret the variants
generated, for instance the effects of the variants on coding regions of the genome.
SnpEff and SnpSift (version 4.0e) [16] were used to annotate and filter the variants
that fall in the coding regions and had a non-synonymous effect.

Whole genome alignment and variant calling poses a different challenge than short
read alignment due to the existence of non-linear rearrangements. C-Sibelia [53]
handles this problem by breaking a genome in to synteny blocks which allows the
separation of linear (SNPs, INDELs) and non-linear (rearrangements) operations;
variants are then identified from the synteny and alignment blocks. The variants
among the 20 complete genomes were identified by using C-Sibelia (version 3.0.5).

Different variant calling tools report the same variant sequence in different manners.
This makes integration and comparison difficult across datasets. Vt [71] offers
a way of normalizing the inconsistent variant representations. For instance the
decompose_blocksub command will decompose the following representation of a multi-
nucleotide polymorphism (MNP), CA/TG (REF/ALT) in to C/T and A/G. Vt
was used to normalize the variant calls from the different tools before concatenation
and comparison. Seqtk [45] is a lightweight tool that includes different functions to
manipulate sequence data; it was used to sub sample reads from one of the pools.

3.5 Protein database creation

An inhouse python script was utilized for the database creation. Figure 3 illustrates
the important steps of the process. First, the non synonymous variants that fall on
the coding regions were chosen using the variant annotation tool Snpeff [16]. The
ensemble of the non synonymous variants (SNPs and short INDELS) identified by
all the four tools were incorporated in the database. The genbank format of the
reference genome, that contains the sequences and the associated annotations, was
downloaded from NCBI and used in the script. The nucleotide sequence of each
protein was extracted from this file to insert the variants.

Since the pools were sequenced without indexing, it was impossible to determine
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which variants came from which of the 50 strains that were in a pool. As a result, in
our first attempt, we employed a combinatorial approach where we incorporated every
possible combination of the variants in a protein and created separate entries in the
database for each. However, such an approach resulted in very large databases and
wasted a lot of computation time especially for proteins that contain large number
of variants.

We then, adopted an alternative strategy of interrogating every read that mapped to
a coding region and contained one or more of the final variant calls. This enabled us
to determine and capture, to a certain degree, the strain specific variant signatures
of a protein since more than one variable sequence could be included in the database
for the protein if the reads were unique in their variant composition. The sam flags
produced during alignment of the reads were also used for filtering reads, such as
those that did not pass platform/vendor quality controls.

The variants were inserted in the protein sequences according to their positions. In
the cases of INDELs, the original reported positions of the other variants that fell
in the same protein had to be re-calculated based on how many nucleotides were
inserted or deleted before them. On the other hand, if a read contained a mutation
in the start codon resulting in a start loss, it was discarded. And, if a read contained
frameshift mutations that caused premature stop codons or loss of stop codons, the
protein sequence was truncated or elongated accordingly.

Following the inclusion of all the variants from a read into the nucleotide sequence
of the protein (and reverse complementing it if it was on the complementary strand),
in silico tryptic digestion of the protein took place; the peptides were cut when
encountering an arginine (R) and lysine (K) residues unless a proline (P) follows
immediately after. The peptide sequence that encloses the variants together with the
two tryptic peptides that flank it, was then written as an independent entry in the
fasta database. The flanking peptides were added to accommodate missed cleavage
identifications.

In the fasta header, the protein accession id and information of the variant positions
in that entry was recorded. To allow the concise representation of the variant
information in the header, all the variant positions of a read were coded using bitwise
flags (0 or 1) and then converted to decimal notation. For instance, if a protein
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contains 4 variants in total and there is a read that contains the first and last variants,
then the corresponding bitwise flag would be 1001 which in decimal form becomes 9.

Peptides less than 4 amino acids long were excluded (since they can not be positively
identified in MS analysis), as were non unique peptides. Besides these variant
peptides, the original sequences of these proteins as well as those proteins that had no
variations were also included in the database, identified by ’org’ and ’0_org’ headers
respectively.

Yes

No

Fasta db of variant + wild peptides

Yes

No

Figure 3: Flow chart of the database creation process
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3.6 Shotgun tandem MS analysis

The Q ExactiveTM Hybrid Quadrupole-OrbitrapTM Mass Spectrometer was coupled
with nLC1000 liquid chromatography nanoflow system (ThermoScientific, USA)
for the shotgun tandem MS analysis. The analysis was performed as described in
appendix E.
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4. Results

In this chapter, I discuss the results of the variant analysis from the pools and also
the public data. The high sequencing depth and adequate pool size employed in
this study enabled the identification of majority of the variants from the individual
strains. Performance comparison of the four variant calling tools based on these
identified variants is also included. In addition, preliminary results obtained by using
the variant protein databases in an MS-based shotgun proteomics study of GAS is
put forward.

4.1 Identification of genetic polymorphisms from the pools

High read depth and large pool sizes decrease the effect of the variance in DNA
concentrations of the different samples. Most of the bases in our pools were spanned
by larger number of reads than in the ENA data. Figure 4 shows, ∼90% of the bases
in the two pools were covered by ∼ 10000 reads, while in ENA on average, they were
covered only by ∼100 reads.
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Figure 4: Cumulative percentage of bases spanned by at most X reads of the ENA runs and the pools. For the
3407 ENA runs the average is shown with ±1 SD. The coverage was calculated from the aligned reads. ∼90% of
the bases in the two pools were covered by at most 10000 reads.
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The two pools had average read depths of ∼18000x and 20000x ( 400x per strain)
which is much higher than the average per strain read depth (∼186x) of the ENA data.
Pool-seq has been effectively used for variant calling in various studies with much
lower read depth than that of our study. For instance, Holt et al. [36] achieved ≥80%
sensitivity at 40x. To study the effect of lower coverage in our study, we undertook
a saturation analysis where we randomly sub sampled reads from one of our pools
initially at average read depths of 10000x, 5000x, 1000x and 300x (and later added
4500x, 4000x, 3500x, 2500x, 2000x, 1500x). Following [3], we modeled the relationship
between depth and number of variants using the Michaelis–Menten equation (Figure
5). At around 5000x, the number of variants identified was increasing only slightly
as the coverage kept increasing.
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Figure 5: The number of variants identified (y-axis) at a given depth of coverage (x-axis). The ’drc’ package in R
was used to fit the data to the Michaelis–Menten equation.

A depiction of the read depth in 100 base stretches of the genome in Figures 6 and
7 reveals that regions bounding prophages had minimal coverage while areas, such
as where a 23s ribosomal RNA resides, had higher coverage. Prophages are highly
divergent structures responsible for the heterogeneity observed in different GAS
strains while rRNAs are mostly conserved among species.

Variants were identified by using four tools, SAMtools, Freebayes, GATK’s Uni-
fiedGenotyper, and SNVer. The decision to use more than one tool was motivated by
reports of varying concordance in calls by different tools [47, 59]. The concordance
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370.1 370.2 370.3 370.4

Figure 6: The aligned average coverage of the two pools per 100 base length of the GAS genome. The positions of
prophages of the SF370 strain are indicated by the gray fill and the prophage numbers (370.1 etc.)

370.1 370.2 370.3 370.4

Figure 7: The aligned average coverage of the 3407 ENA runs per 100 base length of the GAS genome. The
positions of prophages of the SF370 strain are indicated by the gray fill.

of SNPs and INDELs called by the four tools in this study endorses the findings
from these studies (see Figure 8). The commands used to invoke these tools can
be found in appendix C. The performance of each of the tools was evaluated by
utilizing variants identified by SAMtools from six individually sequenced strains.
Since SAMtools is the only tool that does not handle Pool-seq data, using it to call
variants from the individual strains will help reduce bias while assessing the efficacy
of the other tools.
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Figure 8: The concordant and discordant SNP and INDEL call counts of the 4 variant calling tools used in this
study. The combined calls from the 4 tools is used as the true set for this analysis.

All tools, with the exception of SAMtools, identified more than 95% of the variants
in all the individual strains (Table 1). The number of variants identified from the
6 individual strains increased by about 1% when calls from all the four tools were
combined. To deter propagating errors from confounding evidence of true variation,
it is a common practice to remove PCR duplicates before variant calling in studies
that use PCR for amplification purposes; reads that have the same 5’ position are
considered duplicates. However, we anticipated removing such duplicates in Pool-seq
studies will have a negative impact since reads that begin from the same position might
come from different samples and are not PCR duplicates. As predicted, removing
duplicates resulted in SAMtools failing to find 20% of the variants it identified
before duplicate removal (see Table 1). Gautier et al. [32] removed duplicates in
their Pool-seq study; however they used paired-end RAD sequencing whose random
shearing mechanism makes it safe for removal of duplicates [22].

Using all the four tools without duplicate removal, 78955 variants were discovered
from the two pools combined. Of these, 29% fell in coding regions and had non
synonymous effect. Figures 9 and 10 show respectively, how the identified SNPs
and INDELs are distributed across 100 base regions through out the GAS genome.



29

Table 1: Percentage of the variants identified from the six individual strains that were
also mined from the pools using different variant calling tools and methods

Individual strains

Variant calling
tools

strain1 strain2 strain3 strain4 strain5 strain6

Samtools

(non-dedup) 67.2 71 71.2 69.9 63.4 70

Samtools

(dedup) 48.1 52.2 50.9 47.6 47.4 51.4

Freebayes 96.9 97 96.9 96.8 95.7 96.5

GATK 95 94.9 94.9 94.9 92.2 94.3

SNVer 97.1 97 97 96.9 95.6 96.5

All combined 97.7 97.7 97.8 97.8 96.6 97.4

Except in some areas that showed very high and low variations, most of the variants
identified had a uniform spread. Almost all the areas that had more than 30 SNPs
per 100 bases were in and around putative genes whose function has yet not been
determined in the reference strain. The area that contained the largest number of
INDELs is where the scl (streptococcal collagen-like) gene that encodes a protein for
attachment to the host epithelial cells resides.

We also analyzed the polymorphisms of one of the pools using the other 19 genomes
as a reference to determine how the choice of the reference genome will impact the
variant analysis. The Number of SNPs and INDELS from this analysis ranged from
62680 to 72133 and 1271 to 1551 respectively (Figures 11 and12).

4.2 Identification of genetic polymorphisms from public data

The 19 publicly available complete genomes were aligned to the reference genome
and the variants identified from each were merged. In total, 62600 SNPS and 1469
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Figure 9: Distribution of the SNPs identified from the pools per 100 base length. The SNPs are mostly uniformly
distributed across the reference genome

Table 2: Total number of variants identified in the two pools, the 19 complete genomes
and 3407 runs from ENA

Two pools 19 complete 3407 ENA runs

GAS genomes

Total number of variants 78955 65334 286502

SNPs 76981 62600 270212

INDELs 1725 1469 16290

INDELs were discovered (see Table 2), which as in the pools were more or less
uniformly distributed (data not shown). We further compared the 20 genomes with
one another and clustered them based on the number of variants among them, which
ranged from 100 to 9286 (Figure 13). A table containing this pairwise variant counts
is attached in appendix B.

From ENA, initially 3513 paired end illumina sequencing runs that had varying
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Figure 10: Distribution of the INDELs identified from the pools per 100 base length. The INDELS are mostly
uniformly distributed across the reference genome
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Figure 11: SNPs identified from one of the pools relative to the 20 complete GAS genomes publicly available
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Figure 12: INDELs identified from one of the pools relative to the 20 complete GAS genomes publicly available
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Figure 13: Hierarchical clustering of the 20 publicly available GAS genomes based on the number of variants that
exist among them. The M-types of each of the strains is given in parenthesis

degrees of sequence quality (from 1% to 100% mappability to the reference genome)
were aligned to the reference. There are a variety of uncertainties associated with
publicly available data. One such uncertainty concerns the species nomenclatures



33

used. For instance, it is not unusual to find out that sequences deposited as GAS
are actually not, therefore the need for filtering. In addition, according to a personal
correspondence with the support team at EMBL-EBI, the same experimental runs
could be assigned more than one id. This is the reason why we are referring to the
data from ENA as runs and not genomes.

We removed 106 of the ENA runs that had mapping percentage of less than 1.5*IQR
(a mapping percentage of < 83.93% ) from our variant analysis. After the exclusion
of such runs, the 3407 runs that remained had an average mapping and proper pair
percentages of 93.3 and 91.01 respectively (Table 4). There were 286502 variants
from the 3407 runs and they contained 95.7% and 90.6% of the variants identified in
the two pools and the 19 genomes respectively (Table 3).

Table 3: Percentage of variants identified from the two pools, 19 GAS genomes and the
ENA runs (rows) that were also found in two of these (columns)

Two pools 19 complete 3407 ENA runs

GAS genomes

Two pools 60.5 95.7

19 GAS genomes 67.9 90.6

3407 ENA runs 24.8 20.9

To investigate if certain regions were more variable in the pools than the 19 genomes
or the ENA data, we divided the entire genome of the reference strain into 10 kb
regions and calculated the proportion of variants in such regions (Figure 14). Some
areas appeared to have different proportions in these three sets; Fisher’s exact test
was used to identify those regions that show significant differences. There were two
areas in particular where the ENA data showed the highest difference compared
to the pools and also the 19 genomes; these were locations of the 370.1 and 370.2
prophages of the SF370 genome (Figure 15). Even though there were such areas that
had differences in the proportion of variants, in general, based on the welch-ANOVA
test, the means of the proportions of the three sets are not statistically different
(p-value of 0.997).
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Table 4: Alignment statistics of sequence reads from the two pools and the 3407 ENA
runs. For the ENA runs, besides averages, maximum and minimum values are given for
the mapped, unmapped and properly paired percentages

Two pools 3407 ENA runs

Total number of reads 8.0 ∗ 108 1.4 ∗ 1010

Mapped (%) 91.7 93.13 (83.9-100 )

Unmapped (%) 8.2 6.8 (0-16 )

Properly paired (%) 86.9 91.0 (78.0-99.6)

370.2 370.3370.1 370.4

Figure 14: Graph showing the relative variability of 10 kb regions. Black solid lines represent the pools, red
dotted lines the 19 genomes and blue dashed lines the ENA data. The positions of prophages of the SF370 strain
are shown with gray fills.

4.3 Variant protein databases

For the shotgun proteomics experiment, first, 19429 of the variants (from the total of
76981 SNVs and 1725 INDELs identified by the four variant calling tools) that fall
within the protein coding regions and that had non-synonymous effects were selected.
Using the in-house script these variants were then incorporated to the respective
proteins of the reference genome. Afterwards, the protein sequences were in silico
digested and both wild and variant peptides were written to the fasta database.
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370.1 370.2 370.3 370.4

Figure 15: -log10 p-value from a fisher’s exact test to identify regions that show significant difference in the
proportion of variants between the pools, the 19 genomes and the ENA data. Black dots indicate the p-values of
the proportions of variants between the pools and the ENA data, blue dots the p-values between the pools and the
19 genomes and red dots the p-values between the ENA data and the 19 genomes. The positions of the prophages
of the SF370 strain are shown with gray fills.

The inclusion of the variant peptides brought about an increase of 8.5% in the
database size, which is almost double the increase reported by Li et.al [50]. This
could be attributed to the read based strategy employed in this study to account for
the pooled nature of the data. There were ∼68916 variant peptide entries from 1697
proteins in each of the databases.

The variant peptide database was used to search for spectra matches from 5 GAS
strains using the PEAKS DB search engine. Different protein extraction methods
were employed to target proteins that are found in different subcellular locations.

Table 5, lists the peptide matches for one such preparation, the trichloroacetic
acid (TCA) method, that targeted the surface proteins. On average, ∼ 200 variant
peptides were identified from each of the 5 samples. Figure 16 shows that the proteins
that matched to wild type peptides have less number of variants per amino acid than
those that matched to the variant peptides. This suggests that the highly variable
proteins may not find a match in conventional databases that do not contain variants.
However, some of these variant peptide matches could also be false positives, found
as hits only because of the increase in the database size; in Figure 17 more of the
variant peptides have scores shifted to the lower end than the wild peptides (see also
Fig 2a in [50]).
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Table 5: Number of wild and variant peptides identified in the TCA preparation from 5
GAS strains

Samples Wild peptides Variant peptides

161072 2713 263

252285 935 126

253082 1549 169

253411 2422 258

253414 2393 277

252285 253414 161072 253411 253082
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Figure 16: Distribution of the number of variants for proteins that matched to the variant (green) and wild type
peptides (orange). Proteins that could be identified with the variant peptides had higher number of variants than
those that matched to the wild type peptides
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Figure 17: Distribution of search scores for the variant (red) and wild type peptides (blue). More variant
peptides than wild ones are in the low range.
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5. Summary

Bacteria are diverse and can thrive in extreme conditions. Some of them affect
health and thus the economy. For certain species, the intra-species diversity is very
high that the available sequenced strains might not be representatives, requiring the
sequencing of large number of strains.

The arrival of NGS technologies has facilitated the sequencing of various non model
organisms. Moreover, technological advances in proteomics such as in mass spec-
trometry and the substantial and ever growing availability of data in the public
domain has promoted interfacing between genomics and proteomics. In GAS, various
strains of both invasive and non-invasive nature have been whole genome sequenced.
But, undertaking studies that require sequencing of large number of individuals is
still expensive for many research groups, necessitating the need for cost effective
alternatives such as Pool-seq.

In this study, we demonstrated Pool-seq to be an efficient alternative for genome-wide
polymorphism surveys given high enough sequencing coverage and the right choice of
variant calling tools and methods. We utilized the variants mined using this approach
to develop a custom database for GAS to be used in MS based proteomics.

In Pool-seq, the precision of variant detection increases with the increase in coverage
and decreases with the minimum number of reads required for allele calling [30]. In
this study, at the average read depth of ∼20000x, we were able to detect most of the
variants in the six individually sequenced strains with the false negative rate being at
most ∼4%, i.e. given that we consider all the variants identified from the individual
strains as true variants, which usually is not the case. The variants Pool-seq failed to
uncover had a small average raw depth (in the tens range) compared to those that
could be identified, which ranged in the tens of thousands. This indicates, similar to
other studies [33, 35], that the approach is not suited for studies that rely on rare
variants.

The resampling analysis also shows that Pool-seq is still a powerful approach for
variant discovery even at a coverage that is four folds smaller than the average read
depth taken up in this study. We note that we used only few individually sequenced
strains for verifying the efficiency of Pool-seq and as a result the false negative rate
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could be higher for some strains due to differential representation in the pool. Further,
because we had variant information for only six of the 50 strains in a pool, we cannot
report the false positive rate from our study.

Various studies have demonstrated the effect the size of the pool has on the perfor-
mance of Pool-seq. For instance, Anderson et al. [5] in their commentary presented
how small sample sizes and low read depth led to an erroneous inference of pronounced
population structure in Baltic sea herring data published by Corander et. al [17]. A
minimum pool size of 40 is recommended in Pool-seq studies.

In our comparison of variant calling tools, using SAMtools with duplicate removal
resulted in the identification of the least number of variants from the six individual
strains. We have come across Pool-seq studies that used SAMtools and/or removed
duplicates. Mullen et al. [54] used SAMtools for variant detection and removed
PCR duplicates which resulted in identification of only 598 of the 1304 (45.9%)
dbSNPs variants. They attributed the high false negative rate to low coverage, lack
of segregation of the SNPs and inaccurate dbSNP data. However, based on results
from our study (on average only 49.6% variants from the 6 strains were identified;
see Table 1), we think it is likely that the choice of SAMtools for variant calling
and duplicate removal contributed to such a high false negative rate. We therefore
recommend, at least for whole genome Pool-seq studies with high coverage, to use
variant calling tools that can handle pooled samples and to avoid duplicate removal.

On the other hand, Gautier et al. [32] observed for their RAD data that without
duplicate removal the “effective pool size” substantially decreased which led them to
conclude that PCR duplicates considerably contribute to the overall experimental
error. Hence, in certain Pool-seq studies, for instance those that use RAD sequencing,
duplicate removal might be appropriate. Furthermore, there are other methods for
handling duplicates that consider other base qualities besides read positions, such as
that employed by Chen et al. [14], which might be more appropriate under certain
circumstances.

Having access to publicly available sequences of various GAS strains proved essential
in our study. We used the public data to validate the variants we identified from
the pools. We have also acquired valuable insights about GAS in general including
variations that exist in various strains. For instance, we have identified a 23rRNA
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that is highly conserved among different strains of GAS; a blast search confirmed
that the rRNA is also conserved in other streptococcal groups such as groups B, C
and G. We also found the phage regions of the reference strain to have the lowest
coverage, in the public ENA data as in our pools, which lends further support to
previous studies on the highly variable nature of phage and phage-like elements (see
[69, 6]).

We were also able to cluster the 20 publicly available GAS strains based on the
number of variants between them and found M59 strains to be more similar to the
M1 strains than strains of other M serotypes. In our analysis of the public data
we also found that only small percentages of the variants from the ENA data were
discovered in our two pools and the 19 complete genomes. This shows that the
strains in our pools and the complete genomes represent only but a small proportion
of, geographically limited, strains and more can be uncovered about GAS through
the sequencing and annotation of additional strains.

In general, many studies involving non-model organisms can benefit from sequencing
of large number of individuals and Pool-seq can be used in such cases when the
cost and effort of sequencing individuals is unaffordable. In this study, we have
examined issues such as the expected coverage, representation of samples in a pool
and variant calling methods that are central to a Pool-seq genome wide polymorphism
detection study. We have demonstrated that Pool-seq can be an efficient cost effective
alternative in polymorphism discovery for large samples of organisms that already
have a high quality reference genome.

On another note, novel peptides can be identified in shotgun proteomics studies by
searching against customized protein databases that contain genomic and proteomic
sequence information. For instance such databases have been generated from RNA-
seq data [76], genomic variant data [50] and EST data [25]. Bacteria, such as
GAS, that exhibit very high variability could benefit from the availability of variant
protein databases. The preliminary results obtained from this study suggest that
identification of peptides/proteins can be greatly improved by employing such custom
databases. However, the various issues, such as the database size and false peptide
identifications, associated with such databases need careful considerations [56].
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5.1 Future Improvements

In this study, around 10% of the sequence reads could not be aligned to the reference
genomes. Investigating these reads further will be part of our future work. Since
the typical way of removing duplicates using Picard or SAMtools resulted in lower
sensitivity in our Pool-seq analysis, we have not removed duplicates in this study.
However, the saturation analysis of the sequencing depth (versus number of variants)
revealed we could have achieved a comparable sensitivity at a depth of coverage
that is 4 folds smaller and we anticipate the high depth of coverage could lead to
higher number of false positives. We therefore plan to remove duplicates using other
methods such as those that take in to consideration additional information besides
the 5’ end position [14] or by using binomial distribution to calculate the maximum
number of reads at a certain position as in [78]. We also plan to identify markers for
distinguishing invasive and non-invasive strains by employing the insights from the
genomics and proteomics analysis that was carried out in this study. We hope the
availability of the custom databases will facilitate such future explorations.

From the analysis of the publicly available sequence data, it was evident that there
are but much larger number of variants than that we could identify from our pools.
We therefore plan to improve our protein databases by including these variants. In
addition, previous studies have shown that there is a high risk of false positives
associated with such databases and therefore separate false discovery rates (FDRs)
need to be specified for the variant and wild type sequences. Hence we plan to modify
our current search settings that use the same FDR threshold of 0.05 for both variant
and wild type peptide matches and instead employ the method of Li et.al [51] or a
modified version that will be more suitable for pooled data.
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A. M-types of the strains in the pools

emm type Non-invasive Invasive Total

emm1.0 5 5 10

emm1.10 3 3 6

emm1.24 1 0 1

emm1.45 1 1 2

emm1.50 1 0 1

emm11.0 2 2 4

emm119.1 2 2 4

emm12.0 5 4 9

emm2.0 2 3 5

emm22.0 1 1 2

emm22.3 1 1 2

emm28.0 4 5 9

emm6.4 1 0 1

emm73.0 2 3 5

emm75.0 3 4 7

emm76.3 1 1 2

emm77.0 2 3 5

emm78.3 2 2 4

emm84.0 1 1 2

emm212 (st75.0) 1 1 2

emm11.1 1 0 1

emm4.0 1 1 2

emm78.0 2 2 4

emm89.0 5 5 10

Total 50 50 100

Figure A1: M-types of the strains of the 100 GAS strains used in this study. The M-types have been matched
across the pools as much as possible.
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B. 20 by 20 pair-wise variants of the GAS
genomes
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Figure B1: The pair-wise variation analysis of the 20 complete GAS genomes.C-Sibelia was used to analyze the
variation in these complete whole genome GAS sequences.The smallest number of variants is observed between the
GAS genomes AE004092 and NC_002737 and that is because these are the same strains and NC_002737 was
updated to AE004092 after correcting some errors and AE004092 is the SF370 strain used as a reference in this
study.



53

C. Alignment and variant calling commands used

# preprocess ing , remove_adapt . py i s an in−house s c r i p t
remove_adapt . py pool1_lane1_Read1 . f a s t q . gz ’ pool1_lane1_Read2 . f a s t q . gz ’ \
pool1_lane1_Read1_trimmed_paired . f a s t q . gz \
pool1_lane1_Read1_trimmed_unpaired . f a s t q . gz \
pool1_lane1_Read2_trimmed _paired . f a s t q . gz \
pool1_lane1_Read2_trimmed _unpaired . f a s t q . gz

# bwa mem al ignment
bwa mem AE004092 . f a s t a pool1_lane1_Read1_trimmed_paired . f a s t q . gz \
pool1_lane1_Read2_trimmed _paired . f a s t q . gz |
samtools s o r t −o pool1_lane1_sorted .bam −O bam −T temp −

bwa mem AE004092 . f a s t a pool1_lane2_Read1_trimmed_paired . f a s t q . gz \
pool1_lane2_Read2_trimmed _paired . f a s t q . gz |

samtools s o r t −o pool1_lane2_sorted .bam −O bam −T temp −

# lane merging a f t e r al ignment , pool1_header conta ins
# the sam f i l e headers
samtools merge −rh pool1_header . txt − pool1_lane1_sorted .bam \
pool1_lane2_sorted .bam | samtools s o r t −o pool1_merged_sorted .bam \
−O bam −T temp −

# index the merged bam
samtools index pool1_merged_sorted .bam

# var ian t c a l l i n g
# Freebayes
f r e ebaye s −f AE004092 . f a s t a −m 20 −q 13 −p 40 −F 0.02 \
−−use−best−n−a l l e l e s 3 −−pooled−d i s c r e t e −−pooled−cont inuous \
pool1_merged_sorted .bam >pool1_freebayes . vc f

# SAMtools
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samtools mpileup −u −q 20 −f AE004092 . f a s t a pool1_merged_sorted .bam |
b c f t o o l s c a l l −vm >pool1_samtools . vc f

# SNVer , r e qu i r e s a d i r e c t o r y not the bam f i l e s d i r e c t l y
java −Xmx64g −j a r SNVer−0.5.3/ SNVerPool . j a r − i pool1_bam/ −r \
AE004092 . f a s t a −n 40 −o pool1_snver −bq 13 −t 0 .02

# GATK−Unif iedGenotyper
java −Xmx64g −j a r GenomeAnalysisTK−3.4−46/GenomeAnalysisTK . j a r −T \
Rea l ignerTargetCreator −R AE004092 . f a s t a −I pool1_merged_sorted .bam −o
\ pool1_target . i n t e r v a l s

java −Xmx64g −j a r GenomeAnalysisTK−3.4−46/GenomeAnalysisTK . j a r −T \
Inde lRea l i gne r − R AE004092 . f a s t a −I pool1_merged_sorted .bam \
−t a r g e t I n t e r v a l s pool1_target . i n t e r v a l s −o poo l 1_ inde l r ea l i gned .bam

java −Xmx64g −j a r GenomeAnalysisTK−3.4−46/GenomeAnalysisTK . j a r −T \
Unif iedGenotyper −R AE004092 . f a s t a −I poo l 1_ inde l r ea l i gned .bam \
−p lo idy 40 −out_mode EMIT_VARIANTS_ONLY −glm BOTH −stand_cal l_conf \
20 −stand_emit_conf 20 −o pool1_gatk_noBQSR . vc f

java −Xmx64g −j a r GenomeAnalysisTk−3.4−46/GenomeAnalysisTK . j a r −T \
BaseReca l ib rator −R AE004092 . f a s t a −I poo l 1_ inde l r ea l i gned .bam \
−knownSites freeb_gatkNoBQSR . vc f −o poo l1_reca l i b ra t i on_repor t . grp

java −Xmx64g −j a r GenomeAnalysisTk−3.4−46/GenomeAnalysisTK . j a r −T \
PrintReads −R AE004092 . f a s t a −I poo l 1_ inde l r ea l i gned .bam −BQSR \
poo l1_reca l i b ra t i on_repor t . grp −o pool1_gatk_BQSR .bam

java −Xmx64g −j a r GenomeAnalysisTk−3.4−46/GenomeAnalysisTK . j a r −T \
Unif iedGenotyper −R AE004092 . f a s t a −I pool1_gatk_BQSR .bam −p lo idy 50 \
−glm BOTH −stand_cal l_conf 20 −stand_emit_conf 20 −o pool1_gatk_yesBQSR . vc f
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D. Source code for the create_peptide and
retrieve_reads functions

def create_pept ide ( pid , var_info ) :

’ ’ ’ Return pep t i d e s a f t e r i n c l u d i n g va r i an t s .

Key word arguments :

p id −− pro t e in id
var_info −− a l i s t o f t u p l e s con ta in ing va r i an t s

and t h e i r p o s i t i o n s from a s i n g l e read

’ ’ ’
# index_genbank_features ( ) f unc t i on re turns the index o f f e a t u r e s
# from the genbank f i l e in t h i s case i t i s r e tu rn ing the index
# of coding reg i ons ( p ro t e i n s )

protein_id_cds_index=index_genbank_features ( gbk_f i le , "CDS" ,\
" prote in_id " )

# using the p ro t e in index , then r e t r i e v e a d d i t i o n a l i n f o
# such as the aminoacid seq o f p ro t e in

index=protein_id_cds_index [ pid ]
cds_feature=gbk_f i l e . f e a t u r e s [ index ]
immu_tran=cds_feature . q u a l i f i e r s [ ’ t r a n s l a t i o n ’ ] [ 0 ]
l o c=cds_feature . l o c a t i o n
strand=cds_feature . l o c a t i o n . strand
feature_seq=cds_feature . e x t r a c t ( gbk_f i l e . seq )
pr_name=cds_feature . q u a l i f i e r s [ ’ product ’ ] [ 0 ]

# ex t r a c t s the nuc l e o t i d e sequence o f the p ro t e in



56

mut_cds_seq=gbk_f i l e [ l o c . s t a r t : l o c . end ] . seq
mut_cds_len=len (mut_cds_seq )

de l_range_l i s t =[ ]
in s_range_l i s t =[ ]
modi f i ed=False

# var_info has s t r u c t u r e s ( var_pos , a l t , re f , e f f e c t , ’ snp ’ ) ,
# ( var_pos , a l t , re f , e f f e c t , ’ in s ’ ) or
# ( var_pos , nt_after_del , a l t , re f , ’ d e l ’ , e f f e c t )

for subset in var_info :
var_pos=subset [ 0 ]
a l t _ a l l e l e=subset [ 1 ]
r e f=subset [ 2 ]
e f f e c t=subset [ 5 ]

#since python uses 0−based index ing
zero_based_pos=int ( var_pos)−1

# since var_pos i s interms o f the whole sequence
# and not the p ro t e in
pos_re lat iveto_cds=abs ( l o c . s t a r t − zero_based_pos )

# to i n s e r t or d e l e t e appropr ia t e number o f nt
d i f f=len ( a l t _ a l l e l e )−len ( r e f )

i f e f f e c t == ’START_LOST’ :
modi f i ed = False
break

i f d i f f >= 0 : #ins and snp

# check_if_in_del ( ) r e tu rns the modi f ied p o s i t i o n
# i f t h e r e are d e l e t i o n s preced ing t h i s var_pos



57

in_del=check_if_in_del ( pos_re lat iveto_cds , \
de l_range_l i s t )

i f in_del=="True " :
modi f i ed=False
break

e l i f in_del==" Fal se " :
pos_re lat iveto_cds = pos_re lat iveto_cds

else :
pos_re lat iveto_cds = in_del

# check_if_in_ins ( ) r e tu rns the modi f ied p o s i t i o n
# i f t h e r e are i n s e r t i o n s preced ing t h i s var_pos
pos_re lat iveto_cds=check_if_in_ins ( pos_re lat iveto_cds , \
in s_range_l i s t )

i f ( d i f f > 0 ) :
in s_range_l i s t . append (xrange ( pos_re lat iveto_cds +\
len ( r e f ) , pos_re lat iveto_cds +\
len ( a l t _ a l l e l e ) ) )

try :
mut_cds_seq=mut_cds_seq [ : pos_re lat iveto_cds ] + \
a l t_ a l l e l e + mut_cds_seq [ pos_re lat iveto_cds + \
len ( r e f ) : ]

except IndexError :
modi f i ed = False
break

else :
modi f i ed = True

else : #de l e t i o n
in_del=check_if_in_del ( pos_re lat iveto_cds , \
de l_range_l i s t )
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i f in_del=="True " :
modi f i ed=False
break

e l i f in_del==" Fal se " :
pos_re lat iveto_cds = pos_re lat iveto_cds

else :
pos_re lat iveto_cds = in_del

pos_re lat iveto_cds=check_if_in_ins ( pos_re lat iveto_cds , \
in s_range_l i s t )

de l_range_l i s t . append (xrange ( pos_re lat iveto_cds + \
len ( a l t _ a l l e l e ) , pos_re lat iveto_cds + len ( r e f ) ) )

try :
mut_cds_seq=mut_cds_seq [ : pos_re lat iveto_cds \
+ len ( a l t _ a l l e l e ) ] + mut_cds_seq [ pos_re lat iveto_cds \
+ len ( r e f ) : ]

except IndexError :
modi f i ed = False
break

else :

modi f i ed = True

i f modi f i ed :

i f strand == −1:
cur_pos=len (mut_cds_seq ) % 3
i f cur_pos == 0 :

i n i t i a l = l o c . s t a r t −1
e l i f cur_pos == 1 :

i n i t i a l = l o c . s t a r t
else :

i n i t i a l = l o c . s t a r t + 1
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# check_stopcodon_index_backward () re tu rns the s top codon
# po s i t i o n f o r the −ve s t rand seq
start_index , las t_index=check_stopcodon_index_backward\

( i n i t i a l )

# the modi f i ed sequence a f t e r the i n c l u s i on o f the
# var ian t s , which might be l onge r or s ho r t e r than the
# o r i g i n a l seq . The +1 as backward i nd i c e s are 1−based
lengthmodif ied_cds_seq = gas_seq [ las t_index +1: l o c . s t a r t ] \
+ mut_cds_seq

lengthmodif ied_cds_seq=lengthmodif ied_cds_seq . \
reverse_complement ( )

else :
cur_pos=len (mut_cds_seq ) % 3
i n i t i a l = l o c . end − cur_pos

# check_stopcodon_index_forward () re tu rns the s top codon
# po s i t i o n f o r the +ve s t rand seq
start_index , las t_index=check_stopcodon_index_forward\

( i n i t i a l )

lengthmodif ied_cds_seq = mut_cds_seq + \
gas_seq [ l o c . end : las t_index ]

mut_tran=str ( lengthmodif ied_cds_seq . t r a n s l a t e \
( t ab l e =11, to_stop=True ) )

# the modi f i ed sequence in s i l i c o d i g e s t e d
pept ide_l i s t_group=re . s p l i t ( r ’ ( [K,R ] ( ? ! P) ) ’ ,mut_tran )
p ep t i d e_ l i s t =[ pept ide_l i s t_group [ i ]+ pept ide_l i s t_group [ i +1] \
for i in xrange (0 , len ( pept ide_l i s t_group )−2 ,2) ]
i f pept ide_l i s t_group [ len ( pept ide_l i s t_group )−1] != ’ ’ :
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pep t i d e_ l i s t . append ( pept ide_l i s t_group \
[ len ( pept ide_l i s t_group )−1])

return ( p ep t i d e_ l i s t )

else :
return None

def r e t r i ev e_reads ( po s_ l i s t ) :
’ ’ ’ Return sequence reads spanning the l i s t o f p o s i t i o n s .

Key word arguments :

p o s_ l i s t −− l i s t o f va r i an t p o s i t i o n s

’ ’ ’
start_pos=pos_ l i s t [ 0 ]
end_pos=po s_ l i s t [−1]

sam=subproces s . Popen ( [ " samtools " , " view " , " pool_1 . so r t ed .bam" ,\
’ g i | 602625715 | gb | AE004092 . 2 | : ’+str ( start_pos)+"−"+str ( end_pos ) ] , \
stdout=subproces s . PIPE)
awk=subproces s . Popen ( [ "awk" , "−v " , "OFS=\t " , ’ { p r i n t ␣$4 , $2 , $10} ’ ] , \
s td in=sam . stdout , s tdout=subproces s . PIPE)
sam . stdout . c l o s e ( )
output=awk . communicate ( ) [ 0 ]
return output
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