

Improving the software development processes between Development and
Operations departments at a telecommunications operator

Elias Söderström

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of Science in Technology

Espoo 03.10.2016

Thesis supervisor:
 Doc. Kalevi Kilkki

Thesis instructor:
 M.Ec. Arto Kiljunen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80722094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF ELECTRICAL ENGINEERING MASTER’S THESIS
Author: Elias Söderström

Title: Improving the software development processes between Development and Opera-
tions departments at a telecommunications operator

Date: 03.10.2016 Language: English Number of pages: 52+6

Department of Communications and Networking

Professorship: Data Networks

Supervisor: Doc. Kalevi Kilkki

Instructor: M.Ec. Arto Kiljunen

This Master’s Thesis studies the improvement of software development processes of a tele-
communications company by utilizing agile development methods. Specifically, this thesis
focuses on improving the processes of a development organization within the telecommu-
nications company that has been split into two distinct development departments. In order
to apply agile development methods effectively, analysis of the situation had to be per-
formed. The primary analysis method utilized during this thesis was a set of interviews
conducted together with several employees of the company. Additionally, a quantitative
data analysis was performed using Six Sigma process development methods in order to
complement the interview results. The results from the analyses were that the telecommu-
nications company needs to apply certain aspects of agile development, such as preferring
local development teams, and improving cross-team collaboration and knowledge transfer,
while avoiding some potentially ineffective aspects of agile development that would not be
applicable in the specific situation of the company. Additionally, the company needs to
focus on improving the processes related to development of newer, younger telecommuni-
cations systems, as this kind of system development particularly benefits from agile devel-
opment.

Keywords: Agile Development, Process Development, Process Improvement, Software
Development, Six Sigma

AALTO-YLIOPISTO DIPLOMITYÖN
SÄHKÖTEKNIIKAN KORKEAKOULU TIIVISTELMÄ
Tekijä: Elias Söderström

Työn nimi: Kehitys- ja ylläpito-osastojen välisten ohjelmistokehitysprosessien parantami-
nen teleoperaattoriyrityksessä

Päivämäärä: 03.10.2016 Kieli: Englanti Sivumäärä: 52+6

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoverkot

Työn valvoja: Dos. Kalevi Kilkki

Työn ohjaaja: KTM Arto Kiljunen

Diplomityö tutkii tietoliikenneyrityksen ohjelmistokehityksen prosessien parantamista ket-
terän ohjelmistokehityksen menetelmien avulla. Erityisesti, diplomityö pyrkii kehittämään
yrityksen ohjelmistokehitysyksiköiden välisiä prosesseja, sillä yksiköt ovat yrityksessä jaet-
tu kahteen erilliseen kehitys- ja ylläpito-osastoon. Jotta ketterää kehitystä pystytään sovel-
tamaan tehokkaasti, yrityksen nykyisestä tilanteesta piti suorittaa kattava analyysi. Pääasial-
linen analyysimenetelmä diplomityössä oli haastattelu, joka toteutettiin yhdessä yrityksen
työntekijöiden kanssa. Haastattelutulosten täydennykseksi työssä toteutettiin kvantitatiivi-
nen data-analyysi käyttäen Six Sigma -prosessikehitysmenetelmiä. Diplomityön tulosten
perusteella yrityksen on sovellettava eräitä ketterän kehityksen menetelmiä, kuten paikallis-
ten kehitystyöryhmien perustamista sekä ryhmien välisen yhteistyön ja tiedonvälityksen
parantamista, mutta samalla yrityksen tulee välttää tiettyjä sille sopimattomia ketterän kehi-
tyksen menetelmiä, jotka voisivat olla haitallisia yrityksen erityisessä tilanteessa. Lisäksi
yrityksen tulee keskittyä iältään nuorten tietoliikennejärjestelmien kehitystyön prosessien
parantamiseen, sillä tämän kaltaisien järjestelmien kehitys hyötyy eniten ketterän kehityk-
sen menetelmien käyttöönotosta.

Avainsanat: Ketterä kehitys, Prosessikehitys, Prosessien parantaminen, Ohjelmistokehitys,
Six Sigma

iv

Preface

As this Master’s Thesis was requested by the Finnish telecommunications Company, I
would like to thank all the employees of the Company from participating in the study phase
of this thesis and providing me with invaluable experience and support for such an enor-
mous task. Specifically, I would like to thank Oskari Kurki for giving me the opportunity to
work on the subject of this thesis and Arto Kiljunen for guiding and supporting me in the
completion of this thesis during and after the study face performed while working for the
Company.

I would also like to thank the staff of Aalto University School of Electrical Engineering for
supporting me in writing this thesis. My appreciation goes to Professor Raimo Kantola who
began the thesis project with me, to Professor Jörg Ott who took responsibility for the the-
sis intermediately, and in particular Docent Kalevi Kilkki who ultimately took the supervi-
sory role for this thesis and supported me during my hardest moments with the project.

Finally, I would like to express my gratitude to all my friends and family who have sup-
ported me during the whole lifetime of this thesis project. Without them graduation would
have been but wishful thinking.

Helsinki 3.10.2016

Elias Söderström

v

Contents

Abstract ii
Abstract (in Finnish) iii
Preface iv
Contents v
Abbreviations vi
1. Introduction 1
2. Process Development 3

2.1. Agile Development 3
2.2.1. Scrum 8

2.2. Process Improvement 9
2.2.1. Lean 9
2.2.2. Six Sigma 11

3. Study methods 13
3.1. Interviews 13
3.2. Data Analysis 14

3.2.1. Six Sigma 15
4. Analysis 19

4.1. Current Situation in the Company 19
4.1.1. Definitions of Company Terminology 19
4.1.2. State of Agile Development in the Company 20
4.1.3. Company Project Model 20

4.2. Findings from the Interviews 21
4.2.1. Initial Interviews 21
4.2.2. Follow-up Interviews 24

4.3. Six Sigma 33
4.3.1. Fishbone 33
4.3.2. SIPOC 34
4.3.3. Statistical Data Analysis 35

4.4. Analysis Results 40
4.4.1. Data Analysis 40
4.4.2. Data Analysis and Interview Conclusions 41

4.5. Personal Experiences Working for the Company 42
4.6. Recommendations 43

5. Conclusions 46
References 48
Appendix A: Initial interview questions 50
Appendix B: Follow-up interview questions 51

vi

Abbreviations

ASD Adaptive Software Development
AM Agile Modeling
AUP Agile Unified Process
BSS Business Support Systems
CEO Chief Executive Officer
DMAIC Define, Measure, Analyse, Improve, Control
DSDM Dynamic Systems Development Method
Evo Evolutionary Project Management
FDD Feature Driven Development
FTE Full-Time Equivalent
IT Information Technology
ITIL Information Technology Infrastructure Library
LSD Lean Software Development
MIT Massachusetts Institute of Technology
OSS Operational Support Systems
PD Product Development
SIPOC Supplier, Input, Process, Output, Customer
SO Systems Operations
TPS Toyota Production System
TQM Total Quality Management
XP Extreme Programming

1. Introduction

As software has rapidly evolved over the past few decades, software development, its pro-
cesses, and its end products have become increasingly more complex, specific, and de-
manding [BPC07]. In the software development industry there has been a push towards a
more fast paced, gradual, and flexible direction in terms of working methods. This is the
same direction chosen by a major Finnish telecommunications company (henceforth re-
ferred to as the Company) which will be the main focus of this thesis. The goal of the com-
pany is to attain this direction by updating and improving its processes and working meth-
ods of its software development department.

The main reason for this improvement operation is that processes within the company
have become increasingly convoluted and cumbersome. Different working units have be-
come too isolated from each other, projects and processes are inflexible, and there are no-
ticeable issues with communication and co-operation. The high-level solution to this prob-
lem is an attempt to apply agile development to processes and working methods within the
Company. This is a natural direction to be chosen because agile development is already
used in certain parts of the Company.

Agile development (often called agile software development) is an umbrella term for a
selection of methods for improving software development. These methods encompass
themes such as developing software incrementally, improving quality of development, im-
portance of co-operation, efficient use of resources, and prioritization of development. Most
of these themes will be included in this thesis, although more emphasis will be given to
certain themes than others.

This thesis aims to incorporate agile development into the working processes of the
software development of the Company and increase the efficiency, proficiency, and co-
operation of different working units. The research problem for the thesis consists of the
following questions:

1. How can software development processes between the development and support and
maintenance departments of the Company be improved.
2. How can the handover of software and transfer of knowledge related to that software be
improved between these departments
3. How can collaboration between software development and other relevant departments
and stakeholders within the Company be improved?

The hypothesis, fabricated by analysing the research problem questions above, is that by

applying agile development into software development processes, departments within the
Company are able to align and co-operate more effectively with each other and consequent-
ly produce better quality software in less amount of time and with fewer resources. Other
process development methods, aside from agile development specifically, will also be uti-
lized in attempting to improve the work processes of the Company.

Certain intermediate problems have to be solved between choosing agile development as
the solution and implementing that solution. The current state of the Company in terms of
its “agility”, i.e., how well it already conforms to the ideology of agile development, needs
to be determined. The main problem areas where agile development will be applied also
have to be defined within the Company, after which the main areas of focus need to be

2

defined even further. For example, the main areas of interest within the processes and de-
partments responsible for software development will be defined more specifically. Addi-
tionally, how to actually apply agile development needs to be determined as well.

The scope of this thesis will be within the development, support, and maintenance of
software in the Company, and within the collaboration of departments responsible for those
tasks. More specifically, the main focus will be on change management and the handover
process of software development, both of which heavily involve the departments mentioned
above. Additionally, this thesis will focus more on the development of newer systems with-
in the Company, as opposed to older legacy systems. Other important aspects of software
development that will be touched upon include topics like resource management and rela-
tions between development and business but essentially these are topics that require addi-
tional studies that focus specifically on them. Primarily, the scope and focus of this thesis
was chosen iteratively by examining the issues in and solutions to the underlining research
problem and hypothesis. In short, the main reason for such a narrow scope and focus is the
fact that a broader inspection of all the facets of software development processes requires
multiple studies on each individual facet, but other reasons will be elaborated upon in later
sections.

The rest of this thesis is divided into five separate sections. First, theory and basics con-
cerning agile development and other process development methods will be presented. Next,
the study methods used during this thesis will be described in detail. After this, the analysis
section will determine the initial state of the focus of the study and describe results obtained
from utilizing the study methods. At the end of the analysis section, recommendations for
improving processes and applying agile development methods are presented, and finally the
conclusion section will conclude the study by reflecting on the results and the study itself.

3

2. Process Development

2.1. Agile Development

During the 1990s, new and different methodologies for software development began to
appear and challenge the old and cumbersome nature of the traditional waterfall-orientated
methods. These methodologies included and highlighted several topics for software devel-
opment, such as collaboration and communication, iterative working methods, frequency
and value of software deliveries, team organization, and scheduling. [Agi15]

Eventually, these new methodologies would lead to the creation of the Agile Manifesto.
In February 2001, seventeen experts of different methodologies agreed on the Agile Mani-
festo at a summit [Agi15b]. The manifesto, in its entirety, reads as follows [Bec01]:

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

The manifesto is supplemented by the twelve principles of agile software that further

elaborate on the idea behind agile development [Bec01b]:

Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.

4

The most efficient and effective method of conveying information to and within a develop-
ment team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and ad-
justs its behavior accordingly.

Essentially, agile development attempts to alter the ways software was – and still is –

traditionally developed. Traditional software development generally means development
similar to the waterfall process model which can be described as methodical, plan-
orientated, and thus very rigid.

As the manifesto and list of principles suggest, agile development shifts the focus from
cumbersome processes and specified tools to individual software developers and interac-
tion. While processes and tools are not dismissed completely, interaction and communica-
tion of personnel is deemed much more important. This not only includes communication
between developers themselves but also between them and end users, business personnel,
and management. The importance of face-to-face communication is heavily emphasized in
agile development, especially between developers. In order to achieve any kind of agility in
software development, developers must be provided with sufficient support and trust to do
their job. This means that developers must have the power and responsibility to do autono-
mous decisions regarding their development work. Frequent self-reflection and feedback
are also important for constantly improving the development team.

One of the key concepts of agile development is the idea that software that is delivered
to customers should have value. This not only means that the software should be working
but it should also be functional, preferably by itself, meaning that customers do not have to
wait further deliveries in order to get a working product. Simultaneously, the development
of software in agile development is divided into intervals and delivered in smaller parts and
more frequently than in more traditional software development methods. Amidst all of this,
the development team always focuses on the deliveries themselves instead of producing
excessive documentation for the software.

The customer – be it end users or some larger entity that has ordered the software – is a
central focus point in agile development. Feedback from customers is important but collab-
oration with them should be a priority throughout the development cycle. Customers should
preferably be integrated into the development process from the very beginning in order to
provide guidance, ideas, and feedback for the development team. An open and free rela-
tionship with customers is preferred to restrictive and formal contracts.

5

In agile development, change and attitude towards it are extremely important. Instead of
avoiding making changes in the development cycle, they are accepted and often even em-
braced. Typically to agile development, changes – even major ones – can be implemented
also in later stages of development if required. This means that instead of following a wa-
terfall-orientated rigid plan where much needed changes to software might be ignored,
changes can be easily implemented due to the iterative nature of frequent deliveries in agile
development. The favourable view on change is one of the reasons why agile development
is suitable for business environments where changes can happen frequently and unexpect-
edly and must be reacted to.

While all of the aforementioned characteristics are essential to agile development, the
more traditional aspects of development practices are not completely ignored. For example,
documentation, contracts, and planning are acknowledged to be important in development
but they must not be prioritised over the core features of agile development. In other words,
contracts and development plans should be flexible and applicable to changes, and produc-
ing documents should never be the main purpose of development.

Agile development does not require implementing all of its principles and characteristics
into development processes in order to make development agile. Typically, implementing
every single aspect of agile development is not feasible depending, e.g., on the type of de-
velopment teams, individuals, corporate structure, or culture. Table 1 displays some project
characteristics that are either agile or non-agile, and it is a simple and useful aid for deter-
mining whether agile development is suitable for a particular development project. It
should be noted, however, that this table greatly simplifies agile development, other devel-
opment methods, and the nature of development projects. For example, certain non-agile
development methods can still have agile characteristics while not belonging under the ag-
ile development umbrella, hence non-agile methods can still be considered for utilization
even if project characteristics might appear agile. Nevertheless, the table is an easy and
simple resource for people who are not yet familiar with agile development.

6

Table 1: Project Characteristics - Agile versus Non-Agile [Sch04, p. 8]
Project Environment Project Characteristic
Category Variable Agile Non-Agile

The Deve-
lopment

Team

Communication Style Regular Collaboration Only When Necessary
Location Collocated Distributed
Size Up to 50 People More than 50 People
Continuous Learning Embraced Discouraged

Project Ma-
nagement

Management Culture Responsive Command and Control
Team Participation Mandatory Unwelcome
Planning Continuous Up Front
Feedback Mechanisms Several Not Available

The Custo-
mer

Involvement Troughout the Project During Analysis Phase
Availability Easily Accessible Hard to Reach

Processes
and Tools

Team Input
Team Has the Last
Word

Team is Told What to
Use

Amount Just Enough More Than Enough
Adaptability May Be Changed May Not Be Changed

The Contract
Requirements and Da-
tes Flexible Fixed
Cost Time and Materials Fixed

Agile Methodologies

As mentioned before, agile development encompasses several different agile methodologies
instead of being a complete methodology by itself. These methodologies usually include
only some of the principles and aspects of agile development, or they focus on certain as-
pects more than others. A methodology that would contain every single aspect of agile de-
velopment does not exist and is not viable. As was alluded to earlier, a methodology is not
required to contain every aspect of agile development in order to be agile.

Of all the agile methodologies, Extreme Programming (XP) is the most common,
whereas Scrum comes closest to describing current agile development in the Company. The
next list includes some of the more common agile methodologies, of which Scrum will be
more closely discussed afterwards.

Incomplete list of agile development methodologies:

- Adaptive Software Development (ASD)
- Agile Modeling (AM)
- Agile Unified Process (AUP)
- Crystal Methodologies
- Dynamic Systems Development Method (DSDM)
- Evolutionary Project Management (Evo)
- Extreme Programming (XP)

7

- Feature Driven Development (FDD)
- Lean Software Development (LSD)
- Scrum

In order to understand the differences between these agile methodologies, it is useful to

classify them according to some criteria. A typical criterion, in the context of agile devel-
opment, is the flexibility (or inflexibility) of the methodology in terms of the amount of
documentation and other formalities required in the methodology. Another typical criterion
would be the number and length of development iterations in development projects. For
example, a waterfall-type methodology would have no iterations and would require exten-
sive documentation and formalities. Figure 1 demonstrates how certain agile methodologies
can be classified and portrayed according to these criteria. [Lar03, p. 60]

Figure 1: Classification of agile methodologies [Lar03, p. 60]

As the figure suggests, agile methodologies can vary significantly from each other in the
context of these criteria. Even though most of the methodologies presented in the figure
tend to be situated near the iterative end of the spectrum, the level of iteration can vary, and
especially the level of documentation and other formalities is not defined specifically in any
of these methodologies. When comparing the methodologies, there are some apparent dif-
ferences however. For example, the amount and length of iterations in Scrum is quite strict-
ly defined but the amount of documentation and other formalities required is left to the dis-
cretion of the implementer of the methodology, whereas in XP the amount of documenta-
tion and formalities is more strictly defined but the level of iteration required is more flexi-
ble.

8

2.1.1. Scrum

Scrum is one of the most commonly used methodologies under the agile development um-
brella. It was conceived in 1993 for utilization in software development but due to its sim-
plicity it is applicable in other fields as well. The name of the methodology derives from a
similarly named formation used in rugby, the idea being that software development teams
using Scrum function in similar ways to that of rugby players in a scrum formation during a
rugby game. [Scr16]

Scrum is a relatively simple agile methodology, and therefore can be fairly easily ap-
plied to projects that require adaptation to change and include stakeholders who have a
close interest in the project. Due to its simplicity, it does not explicitly detail how the pro-
ject team should function. [Sch04, p. 23]

In Scrum, a project is divided into several parts, i.e., sprints (the amount of sprints de-
pends on the size of the project and timescale of the sprints) and each of them will lead to
delivering a functioning portion of the project to the customer. The requirements for a
sprint are acquired from the product backlog which consists of all the prioritized features of
the product that are designated by the customer. Changes to the project are implemented by
adding features to the backlog, however changes do not affect ongoing sprints and are only
reacted to between sprints. A product manager is assigned to modify feature priorities by
examining the backlog. [Pre10, p. 82-84]

During the sprint (usually 30 days), short, approximately 15 minute scrum meetings are
held daily. In these meetings, each project team member informs what he/she did since the
last scrum meeting, reports any current obstacle or problems, and announces what he/she
will work on before the next meeting. A team leader is assigned as the scrum master to
conduct these meetings. At the end of a sprint, a demo of the product is delivered to the
customer. This demo does not have to include all features of the project, but only the fea-
tures selected for that particular sprint. However, the demo has to be functional in terms of
the features included in the sprint. This allows the customer to assess the features imple-
mented during the sprint. Figure 2 illustrates the chronological order of a Scrum process.
[Pre10, p. 84]

Figure 2: Scrum process chronologically [Scr16]

9

2.2 Process Improvement

In the context of this thesis, process development is used as a colloquial term for simply
developing processes, i.e., making processes better regardless of any particular topic, field,
or methodology, and as such the term process development encompasses every kind of tool,
strategy, principle, and framework related to developing processes. Process improvement,
on the other hand, is an umbrella term similar to agile development but focuses on quality
improvement in processes and emphasizes utilization of statistical methods.

The idea for this type of process improvement materialized as early as the 1970s. By the
1980s, a specific process improvement framework, called Total Quality Management
(TQM), was developed. TQM is one of the most commonly known process improvement
strategies, and it encompasses several topics and themes similar to agile development, such
as participatory teams, focus on the customer, and inclusion of suppliers and other stake-
holders. [Mon08]

TQM was far from an unambiguous success, however. In several recorded cases, TQM
was applied too rigorously into all aspects of processes in order to find all possible issues
and eradicate them regardless of the impact it would cause to customers [Pro09]. Other
common reasons for the failure of TQM include the lack of support from top management
and business, incompetent utilization of statistical methods provided by TQM, and general
lack of focus and enthusiasm for implementing TQM properly. Other similar process im-
provement strategies have emerged since, some even before TQM was conceived, but they
have had similarly poor results on actual process improvement. Six Sigma, developed in the
late 1980s, saw greater success compared to TQM by achieving to incorporate top man-
agement and business leaders in the improvement of processes, and subsequently gained a
massive following amongst the process improvement crowd.

The list below consists of some well-known Process Improvement methodologies, of
which lean and Six Sigma will be focused on in the next section.

Incomplete list of process improvement methodologies:

- Lean
- Quality control
- Six Sigma
- Total Quality Management
- Value Engineering
- Zero Defects

2.2.1 Lean

Lean (also known as lean thinking or lean manufacturing) is a process improvement meth-
od that originally derives from a quality control method called the Toyota Production Sys-
tem (TPS) that was introduced by Toyota, as the name suggests, in the 1950s. TPS itself
was devised by applying earlier quality control methods within the Toyota company. In the
late 1980s, the term lean was first coined when TPS was summarized and modified by re-
searchers in the Massachusetts Institute of Technology (MIT) for application in other fields
as well. [Ber16]

10

The primary idea behind lean is to minimize waste in processes and maximizing value to
the customer which in turn will lead to increasing value while using fewer resources. Lean
concentrates in reducing waste horizontally across entire product and service development
processes, focusing on the flow of products and services through value driven processes –
or streams – instead of trying to optimize individual aspects of those processes. The result
of this approach should be processes that require fewer of any kind of resource and that
produce better quality products and services. Processes will also be more flexible in terms
of environmental changes and more efficient in terms of information management. As per
the original idea in its conception, lean is applicable in most fields and industries, not just
manufacturing. [Lea16]

Lean includes five simple principles for implementation that are as follows:

1. Identify value
2. Map the value stream
3. Create flow
4. Establish pull
5. Seek perfection

In short, the idea behind these principles is to identify what produces value to the cus-
tomer in a product or service, specify all steps in the value stream of the product or service
and remove steps that do not produce value if possible, and optimize the occurrence of the
steps that do produce value in order to ensure an efficient product or service flow to the
customer. After this flow is created, it can be altered to respond to customer demand, i.e.,
pull. After all of the above, the application of the principles can begin again until the value
of the product or service is perfect and no waste occurs. [Lea16b]

As the description above suggests, lean shares some key aspects with agile development,
such as focus on the customer, optimization in terms of resources, and information man-
agement. It is not then surprising that after lean was applied to software development in the
1990s, creating the sub-methodology of lean software development, it was later recognised
as an agile approach to software development after agile development had been conceived.
The principles of lean were even used to measure and justify the usefulness of agile devel-
opment in its early days by demonstrating how agile development methods could reduce
waste and increase development efficiency. [And12]

While lean software development mostly retains the original lean principles, lean cannot
be simply applied to software development as is since software development is a very dif-
ferent field compared to, e.g., manufacturing, which was the original field of lean [Pop13,
p. 15]. Lean or lean software development are not highly specified processes or methods
anyway, and as such, utilizing lean software development should result in a unique soft-
ware development process within a product pipeline or company or whatever the context by
adopting the core principles and values of lean software development [And12].

As alluded to earlier, the principles and values of lean are still intact in lean software de-
velopment but additionally it emphasizes aspects that are essential in modern software de-
velopment and also in agile development, such as focus on people, embracing complexity
and uncertainty, and transparency [And12]. Regarding aspects such as quality, iteration,
and uncertainty, it is paramount to make the distinction between software development and
more traditional fields, for instance manufacturing, in the context of lean. In manufacturing,
uncertainty and variation in quality are not desirable and iteration generally equals wastage,

11

whereas in software development iteration and uncertainty are welcomed and quality is
defined by the needs of the customer [Pop13, p. 16].

2.2.2 Six Sigma

While Six Sigma can be classified as a process improvement methodology, it is far from an
unambiguous term. The history of Six Sigma starts at the 1980s when Motorola began de-
veloping production strategies that focused on reducing defects on its products, as they re-
alised that products with no defects had a vastly lower failure rate in normal use. Since
then, several other companies have adopted and contributed in researching Six Sigma, the
most notable example being General Electric under its then Chief Executive Officer (CEO)
Jack Welch. [Bra02, p. 5-6]

The term Six Sigma can have several different definitions, and as such there is debate
about what it actually means. Since sigma represents standard deviation in statistics, six
sigma can be construed as a deviation of 0.002 per million, and in the context of process
improvement this usually means deviation in quality, e.g., 0.002 defects per million [Dhi14,
p. 5-6]. In a more practical sense, Six Sigma can be considered as a set of tools for improv-
ing processes [Mun08, p. 5]. This set of tools consists of several qualitative and quantitative
process improvement techniques, some of which will be discussed in detail in later sec-
tions. Six Sigma can also be seen as a philosophy where processes can be defined, meas-
ured, analysed, improved, and controlled. And finally, Six Sigma is often regarded as a
methodology that defines five steps for improving processes, those steps being mentioned
in the philosophy definition of Six Sigma and abbreviated as DMAIC. Even though there
are other Six Sigma methodologies, DMAIC is the most commonly used [Mun08, p. 5].

Six Sigma and DMAIC share some common aspects with agile development in their im-
plementation. In DMAIC, employees need to be given proper time and resources in order
for them to complete each step. Six Sigma is an all-encompassing methodology in terms of
the workforce of a company, meaning that everyone within the company should be in-
volved in implementing Six Sigma. Most notably, both the Information Technology (IT)
department and the business department should be in central roles in implementing Six
Sigma, specifically regarding the transfer of knowledge and information. [Mun08, p. 14]

As mentioned previously, the DMAIC methodology consists of five different steps. The
methodology starts by defining the issues faced by customers. The next step requires meas-
uring and collecting data from the processes affiliated with the issues. In the analysis step,
the collected data and the process itself are analysed in order to pinpoint problems in the
process. Next, the process should be improved with the help of the analysis. And finally,
the control step requires monitoring the process in order to ensure the improvements are
being upheld. For each step, there are a significant number of different tools and techniques
to help perform the steps efficiently. Some of these tools will be discussed in later sections
and utilized in the context of this thesis. [Mun08, p.14]

Even though Six Sigma shares some similarities with lean, the end goals of these meth-
odologies are different. Six Sigma focuses on minimizing variability in processes and sub-
sequently defects in quality control, whereas lean concentrates on reducing waste and opti-
mizing resource usage, which is often time. By combining these two methodologies into
what has been dubbed as Lean Six Sigma, the methodologies provide two sets of tools that
complement each other and help improve processes in terms of both eliminating defects
and saving resources. [Ber16, p. 15]

12

When assessing agile development as a whole, it is easy to see why the Company wants to
implement it further into its software development processes. Agile development offers a
flexible, swift, and collaborative way of developing software, all of which is extremely im-
portant in the rapidly shifting business environment of the Company. Even in its subopti-
mal situation, where employees of the Company are heavily distributed and fixed schedules
are demanded, agile development is still a lucrative methodology for utilization since it
itself is flexible and can be applied in circumstances where not every single aspect of agile
development is desirable. The process improvement methods discussed in this section will
complement agile development well. They are easily compatible with agile development,
and while any particular process improvement methodology has not been systematically
implemented in the processes of the Company, they are to some extent already utilized
within the Company in a more general sense. Six Sigma specifically will be considered as
more of a set of tools rather than an all-encompassing methodology in the context of this
thesis, as will be evident from the following sections.

13

3. Study Methods

Initially, several different study methods were considered during the early stages of this
thesis and the study that was concluded within the Company. The original intent was to
choose efficient and accurate study methods that would be able to highlight problems in the
software development processes of the Company and to which agile development could
then be applied.

The study methods that were eventually selected for the thesis were determined organi-
cally, i.e., they were sequentially chosen as the study progressed. In the case of interviews,
it was clear from the very start that information, opinions, and suggestions regarding agile
development and its current state within the Company were needed, hence interviewing
relevant personnel from the Company was an obvious method for the study. The interviews
are considered to be the main qualitative study method in this thesis.

Later on during the study phase, it became evident that a more quantitative approach for
the thesis was desired as well. Ultimately, two different analysis methods from the Six
Sigma family – Fishbone and SIPOC, both of which will be presented in detail in later sec-
tions – were chosen in order to help in identifying problem areas in the software develop-
ment processes of the Company. Six Sigma was a natural choice for a quantitative method-
ology since as a process development method it comfortably complements agile develop-
ment. Additionally, the instructor of this thesis was already familiar in Six Sigma related
topics, making consultation in terms of the methodology convenient. The Six Sigma analy-
sis itself concludes with a simple statistical data analysis concentrating on the problem are-
as found in the Six Sigma analysis.

3.1. Interviews

The interviews consisted of two separate interview rounds. Questions in the first round fo-
cused primarily on the basic principles of agile development, working practices and meth-
ods, and the state of agile development in the Company at that time. The objective of the
second round of interviews was to refine the results obtained from the first round and to
figure out how to further apply agile development within the Company. Interviewees for
the interview rounds were selected primarily from members of middle management in rele-
vant working units by recommendation of the instructor of this thesis.

The actual questions for the first round of interviews were compiled with the help of an
Agile Environment Checklist, seen in Figure 3, and applying that checklist to the specific
situation of the Company. Questions for the second round of interviews were selected by
examining the results from the first round of interviews and, after that, attempting to find
solutions to the issues found during the first round in regards to applying agile development
into the working methods of the Company. No actual scientific method for organising the
interviews or selecting the interview questions was used – a fact that will be reflected upon
later when examining the success of the study and particularly the interview section of it.
The actual questions for both interview rounds can be found in appendixes A and B.

Both rounds of interviews were primarily conducted by phone call as most of the inter-
viewees were located abroad, although a handful of interviews were able to be performed
face-to-face in cases where the interviewee was located in Finland. All interview sessions
were recorded for the purpose of writing an accurate transcription of the interviews. The

14

transcriptions were further analysed and scrutinised, after which a more refined analysis of
the situation of agile development within the Company, as well as issues with and recom-
mendations on applying agile development, were concluded. The conclusions from the in-
terviews were later used in conjunction with findings from the data analysis in order to find
correlating topics related to key issues in the software development processes of the Com-
pany.

The Agile Environment Checklist
Your Development Team
• Do members of your team communicate and collaborate easily and often?
• Is your team located all in one space?
• Is your team less than 50 people?
• Are the members of your team interested in learning new things and changing

the way they work as a result of the things they learn?

Your Project Management
• Does project management listen and respond to the needs of the team?
• Does your team have a hand in the way it is managed?
• Are there feedback mechanisms in place that allow your team to evaluate its

progress and processes?
Your Customer
• Does your customer want to be involved troughout the lifetime of the project?
• Is your customer willing to make himself available for requirements and func-

tionality-related questions as they arise?

Your Processes and Tools
• Does your team have a significant say in what processes and tools it uses?
• Is your team allowed to drop processes and tools it does not consider valuable?
• Can your team alter the process and tools it uses to better fit its needs?
Your Contract
• Are your project's requirements and milestone dates fixed?
• Is the cost of you project fixed?

Figure 3: Agile Checklist for Project Environments [Sch04, p. 15]

3.2. Data Analysis

In addition to the qualitative-natured interview method, there was demand for a more quan-
titative approach for the thesis as well. A simple data analysis was desired to complement
the interviews, however, the focus of such an approach was not immediately apparent. To
help with this problem, out of several alternatives, Six Sigma was chosen as the more quan-
titative method. Six Sigma is a particularly suitable choice since, as a process improvement
method, it is easily applicable with agile development concepts. Additionally, Six Sigma
had been utilised within the Company before, hence it was already familiar to some of the
personnel there.

As Six Sigma encompasses a substantial amount of different analysis methods, only two
of those methods were actually used in this thesis. With the help of these methods, the fo-
cus and specifics of the data analysis could be determined much more comfortably. The

15

final analysis would simply consist of collecting raw data from relevant software develop-
ment related systems and conducting a simple statistical analysis. Comparison between the
quantitative data analysis and the qualitative interviews would also be performed later.

3.2.1. Six Sigma

The two Six Sigma methods utilized in this thesis are the Fishbone diagram and SIPOC.
The Fishbone diagram is a simple method for testing causality in a given situation and also
recognizing and curing causes that are problematic in that situation. Fishbone is useful for
determining and visually presenting all of the reasons to a problematic situation in detail.
The name Fishbone diagram derives from the end result of the method which is a diagram
that visually resembles the backbone of a fish. [Bra02, p. 49]

The construction of the Fishbone diagram has several steps. First, causes for a specific
problem or problematic situation are determined and these causes are then categorized into
“major” causes that are affecting the situation. The determination of the causes can be done
by brainstorming or by examining relevant data related to the situation. After that, the Fish-
bone diagram is created by placing a description of the problematic situation in a box on
the right-hand side of the diagram and then situating the “major” causes along a line drawn
from the description on the right. Finally, the causes that were previously brainstormed or
otherwise determined can be placed under the “major” causes as per their categorization.
Some causes can be placed under several “major” causes although ideally they should fit
only under one category. [Bra02, p. 49-52]

The “major” causes can be chosen according to the situation at hand but there are also
more standardized categories for certain types of situations. For example, typical categories
in production processes would be machines, methods, materials, and people. After the cate-
gorization of the causes, the reasons for all of the causes can be determined by analysing
why the cause happens or why it could happen. If there are similar answers to multiple dif-
ferent causes those answers can be interpreted as root causes. Other methods can also be
used for finding root causes, e.g., a data analysis of the frequencies of the causes on the
diagram. Figure 4 illustrates an example of a Fishbone diagram. [Bra02, p. 51-54]

16

Figure 4: Example of a Fishbone Diagram [Bra02, p. 52]

SIPOC is a Six Sigma tool for examining the inputs and outputs of processes. Utilizing

SIPOC in the order of the abbreviated terms, i.e., starting from suppliers and ending in cus-
tomers, can be challenging, hence simple steps for the easy use of SIPOC have been deter-
mined. First, the starting and ending points of the process that is analysed have to be deter-
mined. Then the rest of the steps between the starting and ending points of the Process need
to be defined, usually limiting the steps from five to seven. The process part of the SIPOC
diagram should read like a simplified, linear, top-level flowchart. Next, the outputs from
the process should be determined, after which customers for those outputs have to be iden-
tified. Similarly, the inputs for processes need to be established, and then suppliers for
those inputs need to be determined. Inputs and outputs are often material goods especially
in production industries but they can also be non-tangible, e.g., information or labour. It
should be noted that both suppliers and processes can have multiple inputs and outputs re-
spectively. Once the SIPOC diagram is finished it can be reviewed and modified according-
ly. Figure 5 illustrates an example of a finished SIPOC diagram. [Bra02, p. 236-237]

17

Suppliers Inputs Process Outputs Customers

Put original

on glass

You

Office
supply

company

Paper;
copier
setup

Close lid

Copies File

Yourself Original

Adjust set-
tings

Others

 Press START

Remove ori-
ginals and

copies

Figure 5: An example of a SIPOC diagram (Process flows downwards, the rest flow from left to right) [Bra02,
p. 238]

As mentioned in previous sections, the focus of this thesis is purposefully narrow and
focused because of the complexity of process development analysis in the context of the
processes of the Company, and the same principle applies to the Six Sigma analysis part as
well. In order for the Six Sigma analysis to be conducted properly, focus on a specific as-
pect of the work processes of the Company had to be chosen. Ultimately, the change man-
agement aspect of software development within the Company was chosen as the focus of
the Six Sigma analysis. Reasons for selecting change management as the focus were plenti-
ful. First, it is an essential part of software development and one that typically can cause a
lot of problems especially in development work that is not yet agile. Second, change man-
agement, and change in the context of software in general, was a central and recurring topic
during the interviews, as can be found in the interview section later. Third, change man-
agement was an aspect of the software development of the Company that had data easily
available from it, and as Six Sigma usually requires quantitative analysis to complement it,
it was extremely important to have that data available. Several other aspects of software
development in the Company, e.g., the planning or testing phases of development projects,
either had only small amounts of data available from them, or alternatively data from them
was not easily retrievable. Since change management had this data available in relatively
large amounts and from a single database, it was a convenient choice for the focus of the
Six Sigma analysis.

18

Data for the analysis was chosen for collection from all systems related to certain tele-
communications services that had had any significant amount of changes implemented in
them within the past year. The data was collected by importing the data from a change
management database system in spreadsheet form. This data, in its rawest form, consisted
of all the changes implemented in each system, which there were ten, incidents that had
occurred in those systems within the past year, and all relevant information related to those
changes and incidents, such as identification numbers, priority, dates, and affected systems.

In order to effectively complete the data analysis, the raw data had to be refined. A sim-
ple spreadsheet tool was used to organize the data in such a way that further analysis was
feasible. A simple statistical analysis was conducted with the help of internal statistics ex-
perts in the Company. Finally, a correlation analysis was performed in order to study corre-
lation between systems, system age and system type, and the number of incidents occurring
after changes in each system.

19

4. Analysis

4.1. Current Situation in the Company

Before proper analysis can be performed by using the study methods described in the pre-
vious section, it is vital to understand the specificities of the Company and its structure. In
the following subsections, Company specific terminology, as well as different models and
methodologies related to the operation of the Company, are explained in order to clarify the
actual analysis procedure.

4.1.1. Definitions of Company Terminology

In the following sections, there will be several mentions of two entities within the Company
called Development and Operations. These entities and their collaboration and communica-
tion with each other will be the focus of the analysis part of this thesis. Development, as the
name suggests, is responsible of the development part of any piece of software that is being
produced either within the Company or by external subcontractors, also described as ven-
dors. The tasks of Operations consist primarily of support and maintenance of software
which is provided to them by Development.

Two other entities within the Company that are often referred to in the analysis part are
Business Support Systems (BSS) and Operational Support Systems (OSS). Again as the
names suggest, BSS is responsible of the business operations of the Company, namely re-
garding customers of the Company, and OSS ensures that technical assets of the Company,
e.g., its networks, are operational. Development and Operations exist within both BSS and
OSS and are further divided into several working units or teams. Regarding, e.g., the inter-
view part of the analysis, employees from both BSS and OSS, and Development and Oper-
ations, were interviewed. Additionally to the entities mentioned above, the business unit of
the Company is a regularly mentioned entity during the interviews and is often simply re-
ferred to as business.

While not Company specific terms, certain concepts relevant to software development
specifically need to be explained in order to understand the analysis part of this thesis
properly. Change is a needed or specifically requested modification to software or to the
functionality of software. Changes can occur because of planned development work or be-
cause of incidents or customer requests. Incident is an unexpected discontinuation of nor-
mal operation of a system or function. The occurrence of incidents often leads to changes in
order to fix those incidents or alternatively to fix the root cause of incidents which are
called problems. A delivery is a modification to existing software or the creation of new
software, hence deliveries can be made to implement changes to software. A single delivery
can consist of several smaller deliveries that are implemented simultaneously, and occa-
sionally multiple simultaneous deliveries are called releases. A feature is a tangible func-
tionality in software. A feature can include a single or several deliveries, hence the terms
delivery and feature are sometimes used interchangeably in the context of this thesis.

Another term that is not Company specific but is nevertheless important to define is In-
formation Technology Infrastructure Library (ITIL). ITIL is a set of standards for managing
IT services and a framework of best practices for the production and delivery of quality IT
services for customers [Ahm13, p. 553-554]. ITIL consists of five core publications – ITIL

20

Service Strategy, ITIL Service design, ITIL Service Transition, ITIL Service Operation,
and ITIL Continual Service Improvement – that together form the ITIL Service Lifecycle
[Axe16].

ITIL is commonly implemented because an organization wishes to focus on improving
its customer service or to increase the effectiveness and transparency of its IT governance.
Benefits of ITIL include cost savings, risk management, and IT operation streamlining, but
it has some notable disadvantages as well. ITIL does not accurately specify how and which
processes should be implemented or improved. While this allows ITIL to be applied into
drastically different kinds of situations and organizations, implementation of ITIL requires
a considerable amount of studying and training if the organization wants to benefit from
applying it. The amount of effort required is also the reason why organizations often face
resistance from their employees when trying to implement ITIL. Therefore, effective
change management is often required when applying ITIL into work processes. [Ahm13, p.
554-555]

4.1.2. State of Agile Development in the Company

Currently, agile development is rarely utilised in the Company. In the case of project work
for instance, most projects are still conducted using the more traditional waterfall method.
There have been a handful of instances where agile development has been used, however.
Certain projects or parts of projects have already been performed utilising agile develop-
ment methods. Overall, the attitude towards agile development and applying it within the
Company has been mostly positive and supportive, as is evident from the interviews. Addi-
tionally, there are plans to develop the Company’s own proprietary project model by in-
cluding agile development as an integral part of it.

4.1.3. Company Project Model

The Company has been trying to incorporate agile methodologies into its working methods
even before the requisition of this thesis. In order to do this, the Company has created its
own proprietary project model whose purpose is to integrate agile working methods into
project work within the Company. The goal is to utilize the general idea of the iterative
nature of agile development instead of any specific agile methodology, although the type of
agile development presented in the project model clearly resembles Scrum the most. [CPM,
p. 1]

In the Company Project Model, a project is divided into roughly seven stages. The pro-
ject model by itself describes a traditional type of framework for development projects but
the Company has already begun to revamp the project model into a more agile direction.
The first stage in the project model is preparation for the project which includes a concept
and documentation of the idea for a project. As per agile development guidelines, current
and future stakeholders should be heavily informed and involved at this stage already even
if the preparation stage might not eventually lead into an actual project. If the concept for
the project is approved the pre-study stage will commence. During the pre-study, business
benefits of the project are determined and clarified, and a plan to achieve those benefits is
determined. A high-level backlog for the project is included in this plan. [CPM, p. 9-10]

After approving the pre-study, the planning stage can begin. Project plans can include
items such as budget, business case, and risk analysis. In regular projects, these items might

21

be rigid and non-negotiable but with agile development they do not have to be detailed
since the project plan can evolve and change during the lifetime of the project. After the
project plan has been determined and approved, the design stage can start. At the beginning
of this stage, the decision to use or not to use agile development during the rest of the pro-
ject has to be made. The design stage defines the product backlog, after which the design is
approved and the project flows naturally into the iteration stage. The design can still evolve
in the iteration stage because of the iterative nature of agile development, but the main goal
of the iteration stage is to begin producing features that are ready to be implemented and
delivered to the end users. [CPM, p. 10-14]

When everything in the product backlog has been delivered, or alternatively when the
budget for the project has run out, and all of the deliveries have been approved, the hando-
ver stage can be commenced. In the handover stage, the responsibility of the deliveries that
were produced during the project is switched from the team that produced the deliveries to
the team that will maintain the deliveries. The last stage is the closing stage where the pro-
ject is closed and post evaluation of the project is performed. [CPM, p. 15]

Even though the project model obviously already contains some aspects of agile devel-
opment, one of the goals of this thesis is to further increase the level of agility of the work-
ing methods in this project model. A particular focus will be put on the handover stage
which both currently lacks agility and also has been a noticeably problematic stage for
many employees of the Company, as is evident from the interview section below. The end
result will not necessarily be a reworked version of the current project model, but instead
the current project model will be used as a frame of reference for indicating which working
methods might be in need of more agility. The project model described above is a general-
ized and summarized version of the actual project model of the Company because of confi-
dentiality issues.

4.2. Findings from the Interviews

What follows are synopses of both of the interview rounds. These synopses consist of

opinions and observations of the interviewees, after which conclusions of both interview
rounds are presented at the end of each respective subsection. The exact interview questions
used in both rounds of interviews can be found in appendixes A and B.

4.2.1. Initial Interviews

Level of Agility within the Company

As per the central theme in agile development, several interviewees agreed that by applying
the incremental delivery method in software development, adapting to changes during pro-
jects and other development work becomes easier, thus ensuring that the effect of unex-
pected changes on project schedules can be diminished.

Almost all interviewees acknowledged that there is a discrepancy in the level of agility
between Development and Operations. This discrepancy must be taken into serious consid-
eration since it is not feasible to apply agile methodologies only in either Development or
Operations. Instead, agile development needs to be applied equally in both Development

22

and Operations, and overall the two entities have to be more aligned with each other in
terms of working methods in order to increase working efficiency.

Even though the size of working units and teams was deemed to be small enough in or-
der for agile development to work, especially considering that some of these teams are of-
ten further divided into even smaller sub-units, there was a concern among the interviewees
regarding the physical location of team members. Teams are often distributed between at
least two different countries, usually more. In terms of agile development, this is problem-
atic since agile thrives on the everyday interactions of team members which is primarily
and most efficiently achieved by working in the same physical space. Because of this, ar-
ranging teams locally should be encouraged, although interviewees agreed that one excep-
tion to this could be specialist teams working on distributed systems. Team members with
specific knowledge of a system can be located in another country if the system is also lo-
cated in that country.

There was a consensus that collaboration both within team members and with manage-
ment was deemed to be sufficient. In addition to more formal meetings, informal communi-
cation seemed to occur naturally between local team members, which again highlights the
importance of locally situated team members.

Involvement in project planning varied greatly between interviewees, regardless of
whether BSS or OSS was considered. One common problem was that Operations is often
involved only in the later stages in deliveries even when Operations itself has a desire to be
involved with Development regarding deliveries. Development, on the other hand, were
concerned with the rigidness of current working methods and models, as well as the imma-
turity of business units and other higher entities of the organization towards agile develop-
ment. Additionally, both Operations and Development were concerned of situations where
external developers or vendors are used. Issues in these situations include the level of agili-
ty of external developers, contracts made with them, and communication with them.

Customer Collaboration

Some interviewees felt that feedback from customers – business units in the majority of
cases – is highly dependent of the involvement of customers in projects. Since customer
involvement varies greatly it should be encouraged in most cases, particularly if the cus-
tomer has sufficient knowledge of the project. Especially in cases where the business unit is
the customer, the presence of a business representative in projects was highly valued. In-
volvement of customers also often affects changes in projects and how they are reacted to.
Currently, change requests from customers are needed for implementing major changes,
although smaller changes can be made without a formal request.

Conclusions

When assessing the answers of the initial interviews, some fairly simple topics, upon which
most interviewees agreed upon, surfaced. Most interviewees agreed that the incremental
delivery method central to agile development would be beneficial if implemented. The in-
cremental method for deliveries will make implementing changes much easier and more
flexible and also less time consuming. It was also clear that all interviewees wanted Devel-
opment and Operations to be aligned not only in terms of the level of agility but also mutu-
al working methods and participation.

23

A persistent topic among all interviewees was the distribution of team members. While
agile development highly encourages local teams that have constant face-to-face interac-
tion, the reality is that in such a global market, in which the Company operates, having lo-
cal teams as a high priority can easily become unprofitable. Therefore, instead of having
localization of teams as a central topic in this thesis, the lack of it is compensated by a
slight focus on tools that can reduce the disadvantage of having team members distributed
globally.

It became clear that improving knowledge transfer is an obvious solution in order to im-
prove the transparency between Development and Operations, especially considering the
issues Operations had regarding its participation in earlier stages in development. Having
sufficient knowledge transfer is vital overall in agile development, but in this case improv-
ing it is an efficient way of addressing a specific problem. Since collaboration within teams
and with management was already deemed to be on a decent level, the foundation for solid
knowledge transfer exists already. The main focus needs to be in improving knowledge
transfer between different teams and entities.

Flexibility of projects and other work was a frequent subject among interviewees. How-
ever, in the context of this study, time is considered to be a critical and inflexible variable
since there are usually so many stakeholders in projects that the effect of delays can poten-
tially be massive. Budget is also usually strict by default, thus the only flexible aspect in
projects is often quality. Since the actual quality of incremental deliveries in agile devel-
opment is basically expected to be high, flexibility in terms of quality often means that the
scope of incremental deliveries can vary, meaning that, e.g., the scope of a difficult delivery
must be fairly narrow in order to ensure the quality of it. Nevertheless, even the flexibility
of scope can vary depending on the type of project, which means that within the context of
this particular Company, even agile projects might be rigid in all its aspects.

The problem with external developers can potentially be a major one, especially since
vendors are utilized within the Company on a significant level. However, studying the col-
laboration of vendors and internal developers is such a significant undertaking that it falls
off the scope of this thesis and is therefore a fitting topic for a separate study altogether.

Even though the attitude towards agile development and applying agile more in every-
day working methods was generally met with positivity, it is clear that some level of en-
couragement and training in agile development is required if the Company wants to suc-
ceed in applying it. This is the case specifically with OSS as a whole but especially with
Operations since they had the most reservations against agile development.

Most issues raised by the interviewees were related either directly or indirectly to the or-
ganizational split between Development and Operations. Some frequent concerns were the
long term responsibility of deliveries, which usually falls to Operations without any support
from Development, and also the disparity of the level of agility between units. Therefore
the mutual alignment, or lack thereof, of the working methods of Development and Opera-
tions will be regarded as a central topic of this thesis.

Other less frequent but still major issues among interviewees were current working
methods and models, organizational structure, trust and confidence towards agile and agile
teams, and the general mindset of the support functions of the Company, especially busi-
ness units. Working methods and models will be considered when suggesting how agile
development could be applied but organizational structure and the mindset of business
units, even if important, are such major topics that they would need much more compre-
hensive analysis and preferably a separate study, thus falling off the scope of this thesis.

24

4.2.2. Follow-up Interviews

After the more general approach to agile development and the state of the Company in the
first round of interviews, questions for the second round were devised in terms of trying to
find solutions to both known problems and problems found in the first round of interviews
and also trying to find potential future issues in applying agile development. Questions
were divided between Development and Operations in order to achieve more specific ques-
tions and answers. Additionally, questions were also divided into three major categories
according to their theme, although certain questions and answers overlapped on some level.

Incremental Deliveries

Many interviewees agreed that in order to make incremental deliveries work efficiently,
processes in the Development-Operations interface need to be aligned properly (for exam-
ple, aligning Scrum and ITIL). This has to be recognized and supported by both top man-
agement as well as the customer – usually the business unit – by aligning their working
methods according to agile development principles, e.g., by adopting the incremental ap-
proach to development and dividing their own larger tasks into smaller ones. Agile projects
are not typically planned thoroughly in advance but are instead prone to potentially major
changes and errors during the whole timeline of the project. Development personnel espe-
cially emphasized that this is something top management, business, and also Operations
have to understand and embrace.

A common agreement was that agile development is best used in situations where the
customer has a vague idea of the desired product but cannot describe it in great detail. The
iterative nature of agile is suitable in this regard. For example, when developing entirely
new systems, agile is an excellent option, even though the more traditional waterfall meth-
od can be sufficient as well depending on the characteristics of the project.

The majority of interviewees were concerned that the handover process can produce
problems when incorporating agile since handover includes tasks, such as implementation,
documentation, and testing, which can be demanding regardless of the size of individual
deliveries. The amount of work that goes into handover tasks with a single small delivery is
the same as it is with a single large delivery. Therefore, having a larger number of smaller
deliveries can increase the amount of handover tasks significantly since every task of the
handover process has to be conducted with each delivery regardless of the size of the deliv-
ery. One solution, that was suggested to solve this problem, is not to put every single deliv-
ery into production separately. Instead, aggregating several smaller deliveries into fewer
larger releases reduces the overhead of multiple handover tasks significantly. Simultane-
ously, it is easier to implement actual functionality within a single release if the release is
larger.

One desirable feature of agile development is that developing a system can be modular
in the sense that a single delivery can include only a part of functionality of a larger system,
and that part can function by itself without the implementation of the rest of the system.
However, some interviewees were quick to point out that, considering the nature of the
specific systems within the Company, this might not be possible in reality, and in many
cases all the parts of a system within the Company may be required to be functional simul-
taneously.

25

Improving Quality

When applying agile development into a real life situation, some interviewees felt it is im-
portant to assess whether it actually has an effect on working methods in reality. People can
often claim they are incorporating agile into their work while still adhering to non-agile
work methods in reality. This is particularly evident in scheduling, meaning that deadlines
for deliveries are not being kept even when they should be, as per agile requirements. Most
interviewees agreed that this concern should be addressed throughout the organization since
top management and business are often the parties responsible for overloading the Devel-
opment department.

Many interviewees expressed their concern over resources when trying to apply agile
development. Resources, or the lack there of more specifically, is a concern directly affect-
ing the potential benefit of agile development. Regarding incremental deliveries particular-
ly, the issue is typically time used in projects compared to the time used in general line
work. Simply put, more frequent deliveries require more resources allocated to them which
is a problem that business and top management need to solve.

Operations personnel felt that, after the handover process, Development should prefera-
bly retain responsibility of deliveries for a few weeks, or alternatively until the next deliv-
ery, and verify that each delivery is working properly. This would substantially benefit Op-
erations in the sense that handover of the responsibility of deliveries would be allotted to a
larger time interval during which Operations would be able to consult Development in case
of potential issues with each delivery.

Handover is not a formal but instead a common process and should be transparent in the
sense that Operations felt they need to have visibility into the Development pipeline in or-
der to efficiently see what changes are made, why they are made, and how they are imple-
mented. When new deliveries are produced, Development should be prepared in order to
quickly fix bugs and other issues on short notice instead of leaving Operations to deal with
incomplete deliveries on their own. Documentation related to deliveries should be suffi-
cient, and Operations should not have to accept deliveries with missing or subpar documen-
tation, even though documentation can often be a secondary concern because of high de-
mand for fast implementation of deliveries. Operations especially emphasized that missing
documents related to, e.g., functionality or testing can severely impede production.

Both Development and Operations agreed that Operations themselves should participate
in the testing phase of deliveries, after which implementing a proper handover process be-
comes more convenient for both parties. During a proper handover process, Operations
learns what deliveries Development is working on, what the business case of the deliveries
are, and what is actually being implemented. The result of a proper handover process is that
afterwards Operations should be capable of conducting incident and problem solving by
themselves while still being able to consult Development if needed.

Currently, Operations feels that there is a discrepancy between the views of Operations
and top management concerning the service Operations should be providing. There is a
conflict between what is expected from Operations, resources that are provided to them,
and the amount of work that is allocated to them. Similarly, views between Operations and
Development are also divided on the subject, as Development seems to expect more contri-
bution from Operations than what they are able to provide.

26

It was generally agreed that, in terms of quality assurance, Operations should be more
active in the testing phase in order to be more knowledgeable of changes and fixes that are
being implemented. However, this is often unfeasible because of limited resources. The
situation is slightly better with older legacy systems compared to newer common systems
since Operations have not yet familiarized themselves with the newer common systems,
neither from a technical nor from a business perspective. Legacy systems are primarily only
being maintained and thus are more familiar to Operations, whereas common systems are
constantly being developed with new functionality.

Concerning legacy systems themselves, many interviewees agreed that applying agile
development to the development processes of legacy systems would be possible depending
on the actual systems but there are certain issues such as requiring rigorous testing of deliv-
eries and, most notably, dependencies between other systems. Because of this, even a small
change to a legacy system can require severe testing and changes in other related systems.
Because there is less room for errors, rigorous control mechanisms are needed when im-
plementing changes into live production. In general, legacy systems should not even be
developed anymore as opposed to, e.g., newer common systems. Legacy systems are typi-
cally in a fairly stable state, development consists only of support and maintenance, and
only necessary changes are made. Using agile development methods in developing legacy
systems might not even be any more beneficial compared to, e.g., waterfall, especially if
the development of legacy systems is strictly defined and planned, which is often the case.

Even though backlog prioritization is generally done by the product owner, many inter-
viewees pointed out that several different aspects can affect prioritization, such as competi-
tion on the market, seasonal events, budget decisions, employee brainstorming, or user sto-
ries. The product owner communicates with stakeholders in order to present the reasoning
behind the prioritization decisions and with developers in order to discuss the characteris-
tics of the tasks that are being prioritized. There exists a balance between the complexity of
developing new features and the monetary or some other benefit from developing those
features. Occasionally, a feature does not provide much monetary benefit but it can be easi-
ly implemented, and sometimes a feature can be complex but the monetary benefits are
significant enough to warrant the cost of development.

While agile requires good quality and testing with less emphasis on extensive documen-
tation, ITIL requires constant updates on documentation and training on work routines. In-
terviewees generally agreed that agile development and ITIL need to be adapted to and
aligned with each other in order for them to function efficiently together. Development
needs to take ITIL processes into consideration in their work, and conversely Operations
has to figure out how they can become more agile while still adhering to ITIL standards.

Developing smaller and more frequent deliveries requires more light weight processes
than what ITIL currently provides. Some interviewees suggested that certain aspects of
Agile can help in this regard, such as the use of modern tools, or incorporating more auto-
mation into work processes, especially into testing. Making certain disciplines of ITIL less
rigid would be beneficial, not just in terms of agile development, but also in general. Since
ITIL requires rigorous documentation and testing, among other things, the overhead of
these processes increases significantly when deliveries are produced more frequently.
Therefore, it is once again beneficial to consider aggregating small deliveries into larger
releases, thus saving time and effort on excess processes and bureaucracy. Individual deliv-
eries should have a distinct business benefit if they are to be put into production by them-
selves.

27

Some interviewees argued that if smaller and more frequent deliveries are utilized, many
processes, such as handover, have to be performed more frequently as well and, conse-
quently, those processes must be made lighter in order to mitigate the extra workload. ITIL
processes should be streamlined and made more efficient in such a way that the workload
required for those processes is decreased. For example, relevant documents for deliveries
should be easily located, and documents should be able to be updated with data relating to
deliveries instead of producing new documents from scratch during every delivery. Overall,
most interviewees agreed that applying agile development with ITIL is possible, and the
two could potentially complement each other if both of their characteristics are taken into
consideration. Agile would benefit the planning of deliveries, keeping deadlines and
scopes, and it would also help Operations to prepare for the workload caused by deliveries.
On the other hand, in order for ITIL to work, items such as definitions, specifications,
schedule, and documentation, among other things, need to be well-defined and planned.

Interviewees noted that, in reality, the quality of releases is typically not perfect, and de-
liveries can have some form of errors or bugs in them. It is the decision of the product own-
er and Development whether the delivery should be released with small errors in it or not.
Critical errors have to be caught in testing and fixed before release but often there can be
minor issues with releases that do not necessarily have to be fixed immediately. It is im-
portant though that Operations are informed and aware of such occasions.

Some interviewees mentioned that different customers, usually some part of the business
unit within the company, have different expectations on the end result of development. For
example, customer support and sales expect deliveries to be user friendly, good quality, and
that they do not increase system complexity, whereas product and offering personnel are
more concerned about the time-to-market and flexibility of deliveries. Cost of deliveries is
naturally a concern throughout the company. Even though the expectations of business can
occasionally be unreasonable, especially in terms of schedule and requirements for devel-
opment, they above all else expect honesty and communication from the delivery organiza-
tion. If issues – in terms of budget, schedule, functionality, or otherwise – during the devel-
opment process occur, business expects those issues to be communicated accurately to
them, which is why the relationship between business and the delivery organization has to
be healthy and functional.

A few interviewees noted that business is often under pressure to get deliveries complet-
ed which means that they can easily dismiss quality concerns for deliveries. New features
or functionality is requested constantly and quality is expected to be high but business is
usually unaware of issues in development and assumes that quality comes free of charge.
Furthermore, it is often Operations who takes the credit when possible issues on deliveries
are fixed, all of which indicates that there is a clear lack of transparency in the development
process. Simultaneously, Operations should be much more honest and strict towards busi-
ness and Development in terms of what they are actually able to accomplish. For example,
Operations sometimes allows Development to cut corners which obviously affects the qual-
ity of deliveries. Operations should be stricter in setting quality demands and deadlines, but
they should also attempt to secure quality by participating in the development process with
Development and business from the very beginning of development.

Regarding securing quality itself, interviewees from Operations expressed desire to have
regular meetings with Development where details such as items being developed, deliveries
approaching handover stage, and the involvement of Operations in development tasks
would be discussed. Meetings of this nature should be increasingly encouraged since not all

28

system areas currently exercise them. In the worst cases, business has pushed deliveries so
rigorously that Development has simply begun developing new features without informing
Operations.

Collaboration

Participation of Operations in developing and testing would be beneficial for several as-
pects of development, such as handover and knowledge transfer. Operations can secure
quality by trying to increase their influence on Development. As many interviewees men-
tioned before, Operations can attempt at being stricter towards Development; challenging
them with differing viewpoints, or imposing stricter qualities on handover and testing. All
of this requires sufficient knowledge on what is currently on the pipeline, thus participation
on the development process becomes even more important. Still, primary responsibility of
development prioritization falls to Development or business since currently Operations
does not have sufficient collaboration with either of them.

Testing is a process in which Operations personnel felt they can have influence on quali-
ty since it is one of the most important aspects of handover. Deliveries will not go into pro-
duction before testing has been approved. Therefore, participation in testing should be the
top priority of Operations when it comes to securing quality. If participation in testing is
not possible, ensuring that proper documentation about the testing process is created and
provided to Operations should be a priority.

Good knowledge transfer between Development and Operations can be achieved
through cooperation. Since a substantial portion of documentation is currently located in
wikis, which are a good environment for organizing lots of technical information, most
interviewees agreed that maintaining this kind of documentation in cooperation between
Development and Operations is highly beneficial. For example, when handover for a deliv-
ery occurs, documentation can simply be updated into the wiki instead of sending docu-
ments back and forth between Development and Operations. Both parties can also see
changes made to the documentation with the help of version control mechanisms. Addi-
tionally, wikis aggregate documentation into a single location where the latest version of
the document, the change history of the document, and information on who has made
changes to the document is easy to find. Wikis can provide access to additional files as at-
tachments, and searching for information could be made easy by the use of a simple search
function.

In addition to change history, version history for wiki documents would be beneficial as
well. If external vendors are used in development they also should have access to relevant
wikis. Some interviewees suggested the implementation of a discussion forum for tools and
systems which would complement wikis effectively. It would allow discussion and presen-
tation of ideas between users and developers, and consequently Development would be
knowledgeable of issues and ideas for changes before actual formal change requests are
made.

Interviewees from both parties felt that Operations should participate more in develop-
ment, also in the early stages of development, which would be beneficial in terms of
knowledge transfer as well. Instead of simply receiving documentation about deliveries, a
more hands-on approach on development would induce implicit knowledge transfer. At the
very least, Operations should prepare and participate in testing in order to familiarize them-
selves with existing functionality and have better prior knowledge of the delivery before it

29

is handed over to Operations. Participation in the early stages of development will also al-
low Operations to give their own views and comments on the development project, thus
transferring knowledge from Operations to others as well.

Some interviewees commented that the utilization of documents can often be poor,
hence the actual importance, priority, and quantity of documentation should be questioned.
The majority of documentation is used only once, a small percentage is used more than
twice, and documentation related to projects is typically used only within those projects.
Therefore, it would be sensible to reassess the validity of excess documentation in devel-
opment. In handover, documentation should preferably be provided slightly ahead of the
deployment of deliveries even if the documentation is incomplete. Updates and corrections
can be applied later.

Most interviewees agreed that a separate representative from Operations in the Devel-
opment team during the development process could be a beneficial arrangement, although
many also noted some concerns about the arrangement. A common consensus was that this
kind of representative work should not take more than 10-15% of the time of the repre-
sentative because he or she has to be able to concentrate on their own operational work.
Another issue is the representative as a resource. Operations typically has fairly limited
resources, and committing a resource to development tasks can hinder the effectiveness of
Operations, especially if that commitment is long-term, e.g., in the case of a large project.
Operations also lack the resources to participate in every development team individually.

Managing teams and projects is easier if all personnel are located in the same location,
but if the personnel is located even relatively close to each other, e.g., in neighboring coun-
tries, then the issue becomes more about the tools used for communication. Most inter-
viewees thought that cross-border working is not a major problem if personal relations be-
tween employees are in order and people understand each other and their cultural differ-
ences sufficiently. Issues often arise simply from working in a large company in general.
Some geographical differences can exist even within countries however, hence good com-
munication is crucial, both in a qualitative and in a technical sense. Some interviewees not-
ed that communication becomes easier if personnel are distributed evenly between loca-
tions of countries instead of, e.g., having the majority of people in one country and a small
subset in another. When communicating with different nationalities or cultures, attention
should be put on how messages will be perceived and understood. This applies to both writ-
ten and spoken communication.

A few interviewees argued that a critical mass of personnel working in the same location
could potentially be beneficial. The issue is not synchronizing work between several differ-
ent countries but rather the difficulty and complexity for managers trying to manage multi-
ple different countries.

Many interviewees thought the internal processes of the company support agile poorly.
Utilization of agile is not prevented but, because of the heavy bureaucracy within the com-
pany, large scale projects are favoured, whereas starting smaller and faster projects is often
not viable or desirable. The issue of decision making is related to the high level of bureau-
cracy. Control over decisions has been taken away from lower level employees and given
to people on higher hierarchy levels. Decisions have to be brought up the hierarchy ladder,
which is problematic since people on higher hierarchy levels might not be knowledgeable
of the work they are approving, decisions take longer to be approved, and employees feel
they are not being trusted. Consequently, time-to-value of products becomes longer. A high
level of hierarchy also typically prevents the implementation of major changes late in a

30

project timeline. Even if these kind of changes are risky it is usually more beneficial to ac-
cept late changes in a project instead of finishing a project with a suboptimal outcome and
starting a new project to fix those outcomes, which is something that occasionally occurs
within the company.

Some interviewees were adamant the division of Development and Operations into sepa-
rate entities made in the past has been a mistake. According to them it would be beneficial
to combine those entities again and make operational tasks an integral part of development.

Conclusions

Since the goal of the second round of interviews was to find solutions and potential prob-
lems in applying agile development, the answers and conclusions were fairly straightfor-
ward. A frequent theme during the interview round was the importance of aligning agile
development, other processes, and Development and Operations. It was often noted that
business and top management must provide support for applying agile development in or-
der for it to work and, in fact, agile development needs to be implemented and enforced
throughout the Company in order for it to be effective.

Even though smaller and more frequent deliveries were seen as a step in the right direc-
tion in terms of development, there were several concerns about them as well. The most
common one was extra overhead and workload caused by the repetition of certain processes
such as handover tasks that have to be conducted for each delivery. A popular solution for
this issue was to aggregate deliveries into larger releases, which would also benefit devel-
opment in producing concrete functionality for separate releases. In reality, achieving true
modularity of functionality in system development might be difficult, and in many cases all
system functions have to be operational simultaneously. Another disadvantage with this
solution is that larger releases can mitigate the benefit of agile development since small and
frequent releases are an essential part of it.

Handover and issues with it were some of the major topics in during the interview
round. Operations had clear concerns about the responsibility of deliveries and wanted De-
velopment to retain responsibility of them longer in order to provide Operations with more
support and consultation. Operations also highlighted the importance of transparency in the
development process which would significantly alleviate the issues of the handover process
for them. Common topics of agreement for both entities were proper documentation and
participation of Operations during the whole development stage of a project and especially
in testing. It should be noted, however, that participation of Operations should usually be
less regular at the beginning of development and gradually increase over time. Also, as per
agile development principles, rigorous documentation should be a secondary concern but,
in reality, it is still an important part of handover, especially because of distributed teams.

Lack of resources was a common concern during the interviews. A unanimous agree-
ment was that both more frequent deliveries and cross-team collaboration require more re-
sources – usually in the form of either time, personnel, or tools – than what are currently
available. The conundrum of resources is an issue for business and top management to
solve, and at the very least it requires significant scrutiny in other separate studies that are
focused on the issue specifically.

Lots of comments about the relationship between different entities within the Company
surfaced during the interviews. Operations felt a clear discrepancy between the expectations
of their work and Development and business. Ultimately, this is an issue that has to be

31

fixed on a higher level and is primarily a strategy issue. Additionally, Operations them-
selves felt that they have to be stricter and demanding towards Development in terms the
workload and the quality of deliveries they receive from Development. Simultaneously,
Operations should indicate their work capacity and towards business and Development
such that they do not become overextended in terms of their resources. There was a com-
mon desire for more frequent joint meetings concerning general development issues. Also,
the idea of having a representative from Operations be involved in the everyday work of
Development was mostly met with positive remarks. This method would benefit Operations
in securing quality and increasing influence over Development but the major issue is again
the lack of resources, most notably time. A lack of personnel resources also means Opera-
tions are unable to participate in every individual Development team, thus some form of
aggregation between Operations and Development interaction would be needed. Conse-
quently, the level of participation has to be fairly low. Operations should participate in the
everyday work of Development, even on a daily basis, but to assume this could be done in
high detail with every development team is unrealistic because of resource limitations. Par-
ticipation on a higher level would be beneficial as well but practical involvement in devel-
opment is a higher priority.

During the interviews, it became clear that Operations are much more familiar with old-
er legacy systems than newer common systems. While utilizing agile development with
common systems would be feasible, there are some caveats with applying agile in the de-
velopment of legacy systems. Most notably, because of the large amount of dependencies
in legacy systems, even small changes to the systems can require rigorous testing and
changes in other systems as well. When considering development of legacy systems, utiliz-
ing, e.g., the waterfall method might be more feasible.

ITIL was another major concern during interviews since some principles of agile devel-
opment can contradict with those of ITIL, such as the focus on documentation and strict
definitions of work routines. A common consensus was, however, that ITIL and agile de-
velopment can coexist but they have to be aligned properly, and both Development and
Operations have to take the qualities of ITIL and agile development into consideration. In
general, ITIL can cause extra workload when utilized with smaller and more frequent de-
liveries but applying agile development principles might alleviate some of that workload.
Therefore, making ITIL processes more efficient and less rigid would benefit both applying
agile development and producing more frequent deliveries.

Knowledge transfer is a key aspect of agile development, and some practical solutions
for improving it emerged during the interviews. By far the most popular suggestions was
the use of wikis for storing information and documents. Wikis are already used in some
extent within the Company, and maintaining wikis in cooperation between Development
and Operations would be an efficient way to disseminate documentation. Wikis can be up-
dated easily, change and version history are readily available, and they are a convenient
single location for the latest information on development projects and tasks. If development
projects utilize external vendors wikis can be used to improve collaboration with them as
well. Discussion forums for all stakeholders of development – Development, Operations,
business, and customers – could be an effective way to complement wikis in terms of
knowledge transfer and communication. Early participation of stakeholders in development
projects would improve implicit knowledge transfer of all stakeholders.

Even if knowledge transfer is vitally important, producing highly detailed documents
should not be a priority since documents are rarely utilized more than once in their lifetime.

32

Focus should instead be on providing sufficient documentation in time, especially for use in
handover.

Additionally, some less common and more minor topics surfaced during the interviews.
Some remarks were made about the realities of quality assurance. As opposed to agile de-
velopment principles, deliveries can often be imperfect and have bugs and errors. Critical
errors obviously need to be found and fixed before release but minor ones might have to be
left in depending on the state of resources. Product owner and Development are ultimately
responsible for releasing deliveries with known errors.

Differences of customers were occasionally noted during the interviews, as different
customers can varying expectations of deliveries. Business is a particularly important cus-
tomer and partner for both Development and Operations, and a working relationship be-
tween Business and the delivery organization is vital. Relationships between the delivery
organization and other supporting entities, most notably the business unit, is another issue
that warrants further scrutiny and separate studies focusing specifically on the topic.

Some comments were mentioned of the location of teams and personnel. While local
teams are always preferable, proper communication tools can effectively diminish the is-
sues with distributed teams if teams are located at least relatively close to each other.
Healthy relations between employees is usually much more important and also makes
cross-border working easier. In order to maintain healthy relations, potential cultural differ-
ences have to be considered in everyday communication. The most difficult issue with dis-
tributed teams is managing multiple different global teams simultaneously.

Finally, there were some common concerns about the state of the company in terms the
feasibility of agile development. Both Development and Operations generally felt that agile
development is not properly supported in the Company. For example, it is often unfeasible
to initiate smaller projects because of the high level of bureaucracy within the Company,
and for the same reason large scale projects are usually highly favoured. Also, because of a
high level of hierarchy decision making power is rarely delegated to lower levels, which in
turn prevents actions typical to agile development, such as implementing changes in later
stages of projects, to be performed. One drastic solution that was suggested would be to
overturn the past decision of dividing the delivery organization into Development and Op-
erations and fuse them together as they once were.

33

4.3. Six Sigma

Six Sigma analysis represents the more quantitative portion of the analysis part of the the-
sis. As mentioned in the previous chapter, the two Six Sigma methods used in this thesis
are the Fishbone diagram and SIPOC. Both are utilized in the context of change manage-
ment of the software development of the Company.

4.3.1. Fishbone

The Fishbone diagram, seen in Figure 6, was constructed by choosing the focus of the Six
Sigma analysis, i.e., change management, as the problem and selecting standardized pro-
duction process categories as the “major” causes of the problem, as explained in the Six
Sigma section of the previous chapter. The causes under the “major” causes were then se-
lected by brainstorming and categorized accordingly. Finally, causes that were deemed rel-
evant to the analysis were marked as controllable or non-controllable.

During the Fishbone analysis, all the causes that were marked as either controllable or
non-controllable were regarded as important and desirable for further analysis. Those caus-
es that were marked as non-controllable were considered either not feasibly analysable or
beyond the scope of the study. Later, it would be discovered that neither full-time equiva-
lent (FTE), i.e., personnel resources, nor handover documentation were feasible for analysis
because of lack of data. Controllable causes that were left, i.e., system name, number of
changes, and number of incidents, would become the key components of the data analysis
presented in a later section.

34

Figure 6: Fishbone diagram of Change Management

4.3.2. SIPOC

The SIPOC analysis was conducted in order to further narrow the focus of the overall anal-
ysis of the thesis within the change management process. As can be seen from figure 7,
three high-level processes within change management were identified: demand, implemen-
tation, and handover. Inputs, outputs, and stakeholders of the processes were identified as
per the SIPOC method, described in the previous chapter. The abbreviated stakeholders in
the analysis are Product Development (PD) and Systems Operations (SO).

While the SIPOC analysis shows that all three processes have attributes that are im-
portant in the context of agile development, the handover process clearly includes attributes
that are most relevant in terms of agile development. In addition to stakeholders, the hand-
over process incorporates several different types of documents, and both the actual change
and the final release. Therefore, handover was an obvious choice for increased focus in the
thesis.

While the SIPOC analysis primarily supplements the qualitative part of the overall anal-
ysis section by indicating handover as a lucrative process to focus on, it also provided fur-
ther insight into choosing the attributes for the more quantitative data analysis. Changes (or
the number of changes in the context of the data analysis) and documentation can easily be
identified as points of interest for the data analysis, but unfortunately, as mentioned in the
Fishbone analysis, analysing documentation would not be feasible because of lack of data.

35

S I P O C
Suppliers Input Process Output Customers

Providers of
the process

Inputs into the
process

Top-level
process desc-

ription

Outputs of the
process

Receivers of
the process

outputs

User

Change request
(RFC), require-
ments, priority,

etc.

Demand (Evalu-
ation, approval,
prioritization)

Prioritized RFC SO
Customer

Business

Tester

SO Prioritized RFC
Implementation
(documentation,

testing, etc.)

Change in code

SO
Release notes

Change docu-
mentation

Test documenta-
tion

PD
Change

Handover
New version Business

Release notes Handover do-
cumentation

User
Documentation Customer

Figure 7: SIPOC diagram of the Change Management Process

4.3.3. Statistical Data Analysis

In order to further focus on actual project and system development within the Company, a
simple statistical analysis was required. Data for the analysis was gathered from a single
change management database system that provided data of several different systems devel-
oped under the development organization. The raw data itself consisted of simple infor-
mation such as the number of changes and incidents in each systems, priority, schedule, and
associated systems of each change.

First, all relevant data (system name, type, and age, number of changes and incidents)
was compiled into a single table, after which the data was further used to calculate the pro-
portions of incidents and changes per system, as well as the reoccurrence of changes and
incidents and the average delay of those reoccurences (see tables 2 and 3). Table 2 also

36

displays the correlation value for the number of changes and number of closed changes
compared to the number of incidents, as well as the mean for both types of changes. By
utilizing this data, a graph displaying the number of changes and incidents, as well as the
number of incidents occurring after changes, was created. The graph can be seen in figure
8, in which the circumference of each data point represents the proportional amount of in-
cidents that have occurred after changes in each system. All systems are colour-coded ac-
cording to their age. Since the ending time for each change was not always available in the
raw data, it was decided that only closed changes were taken into account in producing the
final graph.

Table 2: Change Management Attributes

Change management attributes

System System type System age # of Chan-
ges

fo Inci-
dents

of closed
Changes

Incidents /
Closed
Changes

Incidents /
Changes

Fokus Packet > 10y 1395 7 94 0,07 0,01
NoBill Packet 6-10y 285 5 119 0,04 0,02
NEO Custom 1-5y 197 38 93 0,41 0,19
Tango Custom < 1y 32 183 11 16,64 5,72
Webshop Packet 1-5y 29 63 3 21,00 2,17
JOICE Custom 6-10y 24 2 21 0,10 0,08
Copa Custom < 1y 17 130 9 14,44 7,65
Self Service Custom 1-5y 16 3 14 0,21 0,19
TWAT Custom 6-10y 8 20 7 2,86 2,50
DEMSY Custom 1-5y 1 13 1 13,00 13,00

 Mean 200 46 37 1,25 29,82

 Correlation -0,2658013 -0,3468117

Table 3: Number and Average Delay of next events (change or incident) after changes and incidents

Number of ”next” events
Avg delays of "next" events

Change ->
Change

Change ->
Incident

Incident ->
Incident

Incident ->
Change All Change ->

Change
Change ->
Incident

Incident ->
Incident

Incident ->
Change All (Avg)

88 5 2 5 100 3,8 5,2 0,5 5,0 3,9
113 5 0 5 123 3,2 3,9 4,8 3,3

67 25 13 25 130 3,7 2,6 1,8 2,9 3,2
5 6 177 5 193 2,4 6,8 1,9 2,6 2,1
1 2 60 2 65 19,2 40,5 4,2 26,5 6,2

19 2 0 1 22 5,9 33,6 19,5 17,4
4 5 125 4 138 28,1 13,5 1,4 4,9 2,7

11 3 0 2 16 13,9 43,5 37,3 22,3
4 3 17 2 26 12,1 66,4 3,1 49,0 15,3
0 1 11 1 13 160,2 6,9 124,9 27,8

37

Figure 8: Graph of Changes and Incidents within Systems

The graph in figure 8 provides a good visual representation of the proportions of chang-
es, incidents, and subsequent changes and incidents per system, but a more numerical ap-
proach was still desired. In order to provide this, several simple correlation analyses were
performed by utilizing the refined data. The analyses were categorized by system age and
type, and the goal was to find any correlation between the number of changes and incidents
in systems of certain age or type. Packet type systems are systems that have been provided
for the Company as a complete packet at delivery, whereas custom systems are systems that
have been gradually developed within the Company from the start. Finally, a similar analy-
sis studying the correlation between the priority of changes – where Priority 1 is the most
critical and Priority 4 is the least critical change – and occurred incidents was performed in
the context of all systems. Tables 4 to 10 illustrate these correlation analyses.

-20

0

20

40

60

80

100

120

140

-50 -25 0 25 50 75 100 125 150 175 200

of

 c
lo

se
d

ch
an

ge
s

of incidents

Fokus Packet > 10y

NoBill Packet 6-10y

NEO Custom 1-5y

Tango Custom < 1y

Webshop Packet 1-5y

JOICE Custom 6-10y

Copa Custom < 1y

Self Service Custom 1-5y

TWAT Custom 6-10y

DEMSY Custom 1-5y

38

Table 4: Correlation Analysis for Systems Younger than Five Years
< 5y Systems # of Changes (closed) # of incidents
NEO 93 38
Tango 11 183
Webshop 3 63
Copa 9 130
Self Service 14 3
DEMSY 1 13

 # of Changes (closed) # of incidents
of Changes
(closed 1

 # of incidents -0,194383961 1

Table 5: Correlation Analysis for Systems between Ages of One and Five Years
1-5y Systems # of Changes (closed) # of incidents
NEO 93 38
Webshop 3 63
Self Service 14 3
DEMSY 1 13

 # of Changes (closed)) # of incidents
of Changes
(closed 1

 # of incidents 0,150116214 1

Table 6: Correlation Analysis for Systems Younger than One Year
< 1y Systems # of Changes (closed) # of incidents
Tango 11 183
Copa 9 130

 # of Changes (closed) # of incidents
of Changes
(closed 1

 # of incidents 1 1

39

Table 7: Correlation Analysis for Systems Older than Five Years
5y < Systems # of Changes (closed) # of incidents
Fokus 94 7
NoBill 119 5
JOICE 21 2
TWAT 7 20

 # of Changes (closed) # of incidents
of Changes
(closed 1

 # of incidents -0,471266028 1

Table 8: Correlation Analysis for Packet Systems
Packet systems # of Changes (closed) # of incidents
Fokus 94 7
NoBill 119 5
Webshop 3 63

 # of Changes (closed) # of incidents
of Changes
(closed 1

 # of incidents -0,984581014 1

Table 9: Correlation Analysis for Custom Systems
Custom systems # of Changes (closed) # of incidents
NEO 93 38
Tango 11 183
JOICE 21 2
Copa 9 130
Self Service 14 3
TWAT 7 20
DEMSY 1 13

 # of Changes (closed) # of incidents
of Changes
(closed 1

 # of incidents -0,125531743 1

40

Table 10: Correlation Analysis between Change Priority and Number of Incidents
Priority of Changes Priority 1 Priority 2 Priority 3 Priority 4 # of incidents
Copa 5 2 2 0 130
DEMSY 0 0 1 0 13
Fokus 12 66 16 0 7
JOICE 1 12 8 0 2
NEO 19 47 26 1 38
NoBill 24 45 50 0 5
Self Service 11 2 1 0 3
Tango 9 2 0 0 183
TWAT 1 1 4 1 20
Webshop 0 1 2 0 63

 Priority 1 Priority 2 Priority 3 Priority 4 # of incidents
Priority 1 1

 Priority 2 0,7255 1
 Priority 3 0,837631 0,745616 1

 Priority 4 0,112712 0,131238 0,131533 1
 # of incidents -0,11163 -0,36154 -0,36233 -0,14721 1

4.4 Analysis Results

4.4.1 Data Analysis

As can be seen from the correlation analyses above, the general results from the data analy-
sis are largely inconclusive. Most of the analyses showed no correlation, or in some cases
even heavy negative correlation. The most conclusive result is gained from examining the
changes and incidents of under one year old systems but the problem there is the small
sample size and especially the fact that there are only two systems to examine. Another
fascinating result would be the examination of packet systems if the Webshop system was
not such a clear outlier. Because of this outlier the examination of packet systems leads to
high negative correlation.

Regarding the rest of the analyses, on first glance it seems that the age of a system does
not heavily affect the relationship between changes and incidents. On the other hand, exam-
ining the effect of the type of system – packet or custom – in terms of changes and inci-
dents resulted in either strong negative correlation in the case of packet systems or not
much correlation at all in the case of custom systems, the former occurring because of the
clear outlier of the Webshop system. Finally, the level of priority of changes shows little
correlation as well when comparing the different priorities to the number of incidents.

If certain outliers can be eliminated the correlation analyses can provide some interest-
ing observations. First, the two youngest systems experienced a large amount of incidents

41

with only few changes into them, hence it seems that incidents occur more often in more
immature systems. Second, if the outlier of the TWAT system is eliminated it appears that
more mature systems are more stable and experience fewer incidents. Third, packet systems
are potentially less prone to incidents if the outlier of the Webshop system can be ignored.

One issue with the correlation analysis is that it does not account for incidents that occur
specifically as a result of changes. The graph presented in figure 8 can alleviate this issue
since it represents the proportional amount of incidents that have happened after changes as
the circumference of each data point which in turn represent each individual system. As the
graph shows, systems that have a low number of both changes and incidents do not experi-
ence a significant amount of incidents after changes, whereas in systems with a high num-
ber of either incidents or changes, the number of incidents following changes is higher. It is
interesting to note that in the two youngest systems, where the number of incidents com-
pared to changes is high, the occurrence of incidents after changes is also relatively high,
but the same is true for some of the more mature systems even if the number of actual inci-
dents is low. One hypothesis from this could be that because more mature legacy systems
have more dependencies with other systems, changes in legacy systems can easily cause
incidents even with a low number of incidents overall. This would explain the anomaly that
is the NEO system since, according to many employees, this particular system is central to
several different functions and has a large number of dependencies with other systems.

The combined conclusion from examining the graph and the correlation analyses can be
summed up in three concise points. First, the primary conclusion is that younger systems
seem to experience more incidents overall and a fairly large amount of incidents following
changes to them. Second, incidents often occur after implementing changes into more ma-
ture legacy systems with large amounts of dependencies with other systems even if the
overall amount of incidents in these systems is lower. And third, packet type systems can
potentially be more stable in terms of amount of incidents compared to custom, internally
developed systems. The first two points specifically are worthy of further scrutiny since
some interview results heavily correlate with these two notions, as can be seen in the next
section.

4.4.2 Data Analysis and Interview Conclusions

Since one of the primary conclusions from the data analysis was that changes to younger
systems induce a relatively high number of incidents, the fact that several interviewees
agreed that they were more familiar with the older legacy systems rather than newer sys-
tems can be considered as one of the main conclusions of the interviews. Similarly, since
interviewees stated that they are more familiar with older systems, this might be one reason
why older systems experience fewer incidents when making changes to them according to
the data analysis. Both of these observations correlate within the context of both the inter-
view and the data analysis conclusions. Therefore, the susceptibility of younger systems to
incidents occurring in the development of those systems is a major conclusion from the
overall analysis section.

Another aspect that correlated in both the interviews and the data analysis was the con-
cern of dependencies in older legacy systems. The data analysis shows that lots of incidents
occur directly from changes to legacy systems, potentially because of the high level of de-
pendencies in those systems. Similarly, the exact same concern was highlighted during the
interviews by several interviewees. Therefore, another clear conclusion from the combina-

42

tion of these analyses is that agile development – in which changes are implemented fre-
quently – should be utilized with caution in the context of older legacy systems, or alterna-
tively some other software development method might have to be considered altogether.

While the data analysis results were fairly limited, conclusions from the interviews pro-
vide some complementary insight into the work processes of the Company. An important
notion was that agile development and process improvements related to it need to be im-
plemented throughout the organization – not just the development departments – in order to
provide the best support for software development organization-wide. Also, the potential
issues with more frequent changes and deliveries, especially in terms of handover, need to
be considered in implementing agile development. This is specifically pertinent because of
the vast amount of incidents occurring after changes in certain systems.

The Company specific issue of responsibility over deliveries needs to be solved. Opera-
tions has indicated a desire for more responsibility and support from Development over
deliveries in the handover process. This issue is directly related to the collaboration and
participation issues of both entities, which in turn is related to knowledge transfer issues in
development. One commonly agreed solution to these issues was an Operations representa-
tive in the Development team but some issues with this approach were seen as well, most
notably limited resources. Wikis and discussion forums were suggested as solutions for
knowledge transfer issues specifically, although it should be noted that rigorous documen-
tation most likely is not an efficient form of knowledge transfer. Solutions to all of these
issues will help in either reducing the amount of incidents or solving incidents that have
already occurred.

Finally, having local development teams was highly desired by interviewees. Failing
this, communication tools for cross-border development work has to be provided, and glob-
al teams and team members have to be distributed in a way that does not impede everyday
work processes. Additionally, giving decision power to lower hierarchy level employees
needs to be encourages. All of these aspects can have an effect on both the occurrence and
ability to react to incidents.

4.5 Personal Experiences Working for the Company

This subchapter attempts at recording the experiences of the author of this thesis working
for the Company during the study phase of the thesis, in the context of agile development,
software development, and working in general, in order to provide some empirical insight
on the state of and problems found in the Company.

First of all, there seemed to be a lack of direction and control in everyday working in the
Company, especially in terms of the study phase of this thesis. Regarding agile develop-
ment, this might even be a positive aspect but in the context of the study it made determin-
ing the direction and scope of the study challenging. It is unclear whether other employees
at the Company experienced the same lack of direction as reporting and monitoring meth-
ods used within the Company were not studied.

A clear oversight in the Company was the occasional absence of necessary tools, partic-
ularly in the beginning of either employment or some specific work related task. These
tools were often related to access to specific systems or services but in some occasions
there was a lack of actual physical tools needed for general work tasks as well. This is a

43

massively important issue to be fixed as working in general, let alone working efficiently,
is immediately hindered when accessing proper tools is inhibited.

An equally important issue was confusion in terms of where to find relevant information
related to work tasks. For example, finding relevant information from systems that were
under development within the Company proved difficult even with the help of the instruc-
tor of this thesis. This is a topic where the importance of proper knowledge transfer and
information distribution is easily observable and is critical in the development of complex
systems and services.

Some employees of the Company seemed discontent with the current situation of the
Company in terms of certain aspects of development work. The distinct division of devel-
opment teams, such as the division of development into Development and Operations,
seemed to cause some employees problems in terms of their ability to work efficiently. Dis-
tribution of employees between different countries also affected the everyday tasks of em-
ployees negatively. Additionally, certain employees were so busy with their line work that
they sometimes did not have time to effectively focus on subsidiary or complementary
tasks. In some cases, certain employees were so busy that they were not even able to re-
spond to interview requests. Employee satisfaction and happiness and providing enough
resources for employees seem issues that need to be resolved at least on some level.

4.6 Recommendations

The conclusions from the combination of the two analyses show that particular attention
needs to be given to the development of newer systems, often called common systems with-
in the Company. Several aspects of agile development can potentially be beneficial in im-
proving development of newer systems. It should be noted, however, that utilization of ag-
ile development should be reserved primarily to newer systems since it has become clear
that agile does not scale well with the development of older legacy systems. Because of the
eccentricities of developing legacy systems, such as a high level of dependencies to other
systems, agile development makes developing these systems cumbersome, hence other de-
velopment methods, such as the more traditional waterfall method, should be preferred in-
stead.

Implementing the incremental deliveries aspect of agile development will benefit devel-
opment of newer systems in several different ways. It immediately improves the ability to
react to changes during the development process, even in later stages. Simultaneously, col-
laboration with the customer improves automatically since the customer can observe the
results of development more frequently. It is crucial to establish a feedback loop between
the development team and customer in order to obtain the most benefits possible from im-
plementing the incremental delivery method.

Even though the incremental delivery method is vital in improving development of new
systems, some limitations to the method need to be introduced. First, because of the issues
with the method in the handover process deliveries should not be implemented as frequent-
ly as suggested by standard agile development methods if frequent deliveries increase the
overhead of the process tasks. Instead, deliveries should be aggregated into larger releases
which reduces the overhead caused by individual deliveries. This is especially pertinent
since the Company has had frequent scheduling issues in the past with software develop-
ment. Second, deliveries should not be required to always include functionality. Although

44

this is a key concept of agile development, in reality it is unfeasible to force the develop-
ment team to provide the customer with some concrete feature every time a delivery is
made. However, aggregating deliveries into larger releases alleviates this problem as well
since larger releases have a higher chance of including functionality. Third, the requirement
for flawlessly functioning releases should be relieved. Software development utilizing agile
development – or any other kind of method – should always aim for the highest quality
software possible but the reality is that deliveries will always contain some amount of flaws
and bugs on release. Instead of assuming the development department is able to produce
flawless deliveries, other aspects of agile development need to be supported organization-
wide in order for developers to be able to respond more efficiently to the inevitable inci-
dents that occur from imperfect deliveries.

Aside from improving the development of newer systems in particular, the general
working methods of the Company require improving as well. The incremental delivery
method utilized in the development of newer systems can be generalized and applied to the
working methods of employees, however, the same restrictions of delivery aggregation,
functionality, and quality still apply. In addition to this, the importance of establishing local
development teams became more apparent than initially anticipated during the analysis
phase. Judging by the interview results, the dysfunctionality of the development department
of the Company, and the emphasis agile development puts on local teams, it is paramount
that the Company begins to establish more locally situated development organizations,
even at the cost of some resources, as local teams bring a vast amount of benefits to soft-
ware development. Having local teams instantly improves the collaboration issues Devel-
opment and Operations are experiencing. Operations will be able to participate more easily
in development work from the beginning of development projects, and on the other hand
Development is able to take responsibility from deliveries for longer periods of time and
also provide assistance to Operations during and after the handover process. Furthermore,
by utilizing local teams, Operations are able to assign a representative to Development in
order to further improve collaboration between them, something that was suggested as a
more concrete solution for the collaboration issue. Local teams would allow the representa-
tive to work with Development more efficiently and with fewer resources.

Knowledge transfer, particularly between Development and Operations, needs to be im-
proved drastically. Development teams must continue to update already established wikis
and other databases with relevant information about systems and development tasks, after
which aggregation of such databases needs to be performed in order to store the infor-
mation in such a way that it is easily found when needed. Instead of producing overly rig-
orous documentation that rarely is utilized more than once, emphasis should be put on easy
and fast dissemination of information that is concise and useful for development work. Es-
tablishing a forum for all stakeholders of development projects – developers, business, and
customers – in addition to technical wikis will improve the dissemination of more general
information about development among stakeholders.

Finally, improvements to working methods should also be considered in the context of
the Company Project Model. The model is a decent platform upon which the level of agility
of software development can be improved further. Aspects in the model that are determined
in detail, such as planning and devising the backlog of the project, have already been de-
signed to incorporate agile development principles. Other aspects, particularly the handover
stage and, related to that, responsibility of deliveries, can be improved by utilizing the rec-

45

ommendations discussed in this section. The model can be further updated by adding the
aspects of collaboration and knowledge transfer, among others.

46

5. Conclusions

Ultimately, this thesis provides the Company the means to continue its chosen direction
towards making its software development processes more flexible by incorporating general
agile development methods. In a more general sense, the recommendations of this thesis
can be utilized as a high-level examination and guide on how to apply agile development
into a specific situation where issues arise in the interface of software developer and
maintenance teams and personnel in the context of software deliveries. As such, the results
of this thesis are proprietary in nature and specifically applicable in the situation the Com-
pany currently is.

Since the examined situation of the Company consisted of two distinctly divided devel-
opment entities, Development and Operations, the results of this thesis should only be ap-
plied to similarly distinct situations. Additionally, even though the division of the develop-
ment organization into two distinct entities was criticized during the study, a solution for
their issues must not be the fusion of these entities back into a single entity, as it has to be
assumed that there is a valid reason for the division in the first place. Such a drastic solu-
tion must be studied further before it can be considered.

One aspect of the recommendations presented in this thesis that was not addressed
properly is the issue of resources. Even though the initial goal and hypothesis was to make
software development processes more efficient, implementing agile development into non-
agile processes initially requires additional resources in the form of either time, employees,
finances, or a combination of the three. In general, implementing agile development re-
quires support from the whole organization, not just the development departments. If prop-
er resources are not provided for implementation, benefits from agile development will be
significantly diminished. Ultimately, it is the decision of top management of the organiza-
tion whether they want to commit to agile development and benefit from utilizing it.

On reflection, there are aspects in this thesis that should have been improved. First, the
primary study method utilized during the thesis, i.e., the interviews, lacked a specific scien-
tific method. The initial interview questions were devised by utilizing a single agile devel-
opment source book, and the follow-up questions were conceived organically by referenc-
ing the results from the first interview round. The interview section would have benefited
from a more standardized and scientific method of creating the interview questions.

Second, the Six Sigma analysis was overly simplified. Selecting only two Six Sigma
methods seems satisfactory considering the scope of the thesis but both of them lacked
specificity. In the Fishbone method, the selection of standard production process categories
as the “major” causes inhibited the discovery of enough useful causes for the problem. In-
stead, a more specified set of “major” causes would have benefited the results of the meth-
od. In the SIPOC method, the process column consisted of too few process steps which lead
to each process step having too many sub-processes within them. This method would have
benefited from dividing the process steps into several smaller ones, thus specifying the flow
of each individual process.

Third, the data analysis should have been more comprehensive. Because of the difficul-
ties of finding sufficient data from different systems in development within the Company,
there were not enough data points to conduct a decisive data analysis, which is evident
from the inconclusive correlation analyses. In addition to that, the data analysis assumes
that incidents follow changes, whereas potentially the situation with incidents and changes

47

could have been contrary as well. Also, as is evident from the conclusions from the data
analysis, certain data and anomalies had to be dismissed in order to produce results which
in general is not a particularly scientific approach to this type of analysis.

Some inconclusive aspects of this thesis require further studying in order to thoroughly
examine the effects and requirements of applying agile development into software devel-
opment processes. Most importantly, resource management and requirements for utilizing
agile development is a crucial subject for a separate study. The variation in resource re-
quirements when applying agile development is potentially so significant that its effects
have to be studied before actual implementation of agile development is performed. Anoth-
er important topic is relations between developers and other stakeholders in a development
project. Relations between developers and customers is discussed on some level in this the-
sis already but relations between developers, business and top management in particular is
a subject that can potentially benefit agile development utilization immensely if studied
separately. Similarly, utilization of external vendors in the context of software development
is also a topic that requires an independent study in order to solve collaboration issues be-
tween vendors and other development departments.

48

References

[Bec01] Beck, K. et al. Manifesto for Agile Software Development. Online Document. Up-
dated 2001. Cited 28.2.2015. Available: http://www.agilemanifesto.org/

[Bec01b] Beck, K. et al. Principles behind the Agile Manifesto. Online Document. Updated
2001. Cited 28.2.2015 Available: http://www.agilemanifesto.org/principles.html

[Agi15] Agile Alliance. What is Agile Software Development? Online Document. Updated
2015. Cited 3.3.2015. Available http://www.agilealliance.org/the-alliance/what-is-agile/

[Agi15b] Agile Alliance. Manifesto for Agile Software Development. Online Document.
Updated 2015. Cited 3.3.2015 Available: http://www.agilealliance.org/the-alliance/the-
agile-manifesto/

[Ahm13] Norita Ahmad, Noha Tarek Amer, Faten Qutaifan, and Azza Alhilali. Technology
adoption model and a road map to successful implementation of ITIL. Journal of Enter-
prise Information Management, 2013, Vol. 26, Issue 5, p. 553 - 576

[And12] David J. Anderson. Lean Software Development. Online Document. Updated No-
vember 2012. Cited 6.8.2016. Available: https://msdn.microsoft.com/en-
us/library/hh533841(v=vs.120).aspx

[Axe16] Axelos Globas Best Practices. What is ITIL Best Practice? Online Document. Cit-
ed 2.10.2016. Available: https://www.axelos.com/best-practice-solutions/itil/what-is-itil

[Ber16] Bernardo, N. Lean and Digitize: An Integrated Approach to Process Improvement.
New York, Rouledge, 2016.

[BPC07] Best Price Computers. Application Development. Online Document. Updated
13.8.2007. Cited: 10.7.2016. Available:
http://www.bestpricecomputers.co.uk/glossary/application-development.htm

[Bra02] Brassard, M., Finn, L., Ginn, D., Ritter, D. The Six Sigma Memory Jogger II. First
edition. Salem, GOAL/QPC, 2002.

[CPM] Company Project Model. Instruction for Agile. Internal Document, not available
publicly. Updated 20.12.2011. Cited 2.7.2016.

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/principles.html
http://www.agilealliance.org/the-alliance/what-is-agile/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/
https://msdn.microsoft.com/en-us/library/hh533841(v=vs.120).aspx
https://msdn.microsoft.com/en-us/library/hh533841(v=vs.120).aspx
https://www.axelos.com/best-practice-solutions/itil/what-is-itil
http://www.bestpricecomputers.co.uk/glossary/application-development.htm

49

[Dhi14] Dhirendra, K. Six Sigma Best Practices: A Guide to Business Process Excellence
for Diverse Industries. Fort Lauderdale, J. Ross Publishing, 2006.

[Lar03] Larman, C. Agile and Iterative Development: A Manager's Guide. Boston, Addi-
son-Wesley, 2003.

[Lea16] Lean Enterprise Institute. What is Lean? Online Document. Updated 2016. Cited
2.8.2016. Available: http://www.lean.org/WhatsLean/

[Lea16b] Lean Enterprise Institute. Principles of Lean. Online Document. Updated 2016.
Cited 2.8.2016 Available: http://www.lean.org/WhatsLean/Principles.cfm

[Mon08] Montgomery D. and Woodall W. An Overview of Six Sigma. International Statis-
tical Review, 2008, Vol 76, Issue 3, p. 329–346

[Mun08] Munro, R., Maio, M., Nawaz, M., Ramu, G., and Zrymiak, D. Certified Six Sigma
Green Belt Handbook. Milwaukee, ASQ Quality Press, 2008.

[Pop13] Poppendieck, M. and Poppendieck, T. Lean Software Development: An Agile
Toolkit. Crawfordswille, Addison-Wesley, 2013.

[Pre10] Pressman, R. Software Engineering: A Practitioner’s Approach. 7th edition. New
York, McGraw-Hill, 2010.

[Pro09] Probst J. and Case G. 2009. Integrating Six Sigma and ITIL® for Continual Ser-
vice Improvement. Pink Elephant. Online White Paper. 2009. Cited 26.6.2016. Available:
https://www.axelos.com/CMSPages/GetFile.aspx?guid=d898a583-dff0-4c99-b082-
2354edd725f7

[Sch04] Schuh, P. Integrating agile development in the Real World. First Edition. Massa-
chusetts, Charles River Media, Inc., 2004.

[Scr16] Scrum Alliance. Learn About Scrum. Online Document. Updated 2016. Cited
18.4.2016. Available: https://www.scrumalliance.org/why-scrum/

http://www.lean.org/WhatsLean/
http://www.lean.org/WhatsLean/Principles.cfm
https://www.axelos.com/CMSPages/GetFile.aspx?guid=d898a583-dff0-4c99-b082-2354edd725f7
https://www.axelos.com/CMSPages/GetFile.aspx?guid=d898a583-dff0-4c99-b082-2354edd725f7
https://www.scrumalliance.org/why-scrum/

50

Appendix A: Initial interview questions

BSS | OSS

How are development timelines divided? Short or long time intervals? How often is soft-
ware/products delivered to the customer? | Would it be possible to cut the timeline to short-
er intervals at least in some projects?

How are teams arranged? Are they located within the same office or further apart? How
many people are in a team? | Would it be possible to divide teams into smaller parts and/or
relocate team members more locally?

How frequent is collaboration between developers themselves? How about between devel-
opers and superiors/management? How often are meetings held? | Do you see problems in
more frequent collaboration, e.g., in holding shorter meetings more regularly? Would it be
possible to collaborate more with management?

How are meetings held? Face-to-face or online/phone? What tools are used in meetings?
How are projects planned? Do developers have any say in planning? Are the plans strict or
flexible? | Can you think of ways for the development team to be more active in planning?
Are there any obstacles in the development team participating in planning?

How is feedback gathered from the customer? Both during development and after? | Are
there potential problems in gathering regular feedback?

What is the customer’s role in projects? | Are there any reasons why customers couldn’t
participate in projects?

How are changing requirements and environments reacted to? | Why is change generally
avoided? What are the obstacles for adapting to changing requirements or environments?

What do you see as the biggest obstacles in applying agile development to
work/development processes?

51

Appendix B: Follow-up interview questions

Development:

Incremental deliveries:

What problems do you see in incremental deliveries in general?
How do you see support and maintenance for deliveries? Where do you think your respon-
sibility with deliveries ends?
Do you see problems in developing also legacy systems in an agile way?
How are requirements defined for prioritizing the backlog?
Do you see problems in applying agile development with the ITIL framework?

Quality of deliveries:

Are the incremental deliveries functional themselves?
What are the testing methods for determining the quality of deliveries?
What are the testing criteria for determining the quality of deliveries?
How could knowledge transfer between development and Operations be implemented most
efficiently?

Collaboration:

Would you welcome a representative from Operations and/or business to your team?
What problems do you see in cross border working? How about any solutions to those
problems?
Would it be useful to encourage assembling more local teams? Any problems with that?

Operations:

Incremental deliveries:

What problems do you see in receiving frequent incremental deliveries in general?
How do you see support and maintenance for deliveries? Where do you think your respon-
sibility with deliveries starts and the development’s responsibility ends?
Do you see problems in developing also legacy systems in an agile way?
Do you think it’s possible to apply agile development with the ITIL framework?

Quality of deliveries:

What does your customer, e.g., the business unit, expect from deliveries?
How much influence do you have with development in order to secure quality?
Are you a part of testing with development?

52

How could knowledge transfer between development and operations be implemented most
efficiently?

Collaboration:

Do you think that an Operations representative in the development team would be useful?
What problems do you see in cross border working? How about any solutions to those
problems?
Would it be useful to encourage assembling more local teams? Any problems with that?

