Architecture for analyzing Potentially
Unwanted Applications

Alberto Geniola

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 10.10.2016

Thesis supervisor:

Prof. Tuomas Aura

Thesis advisor:

M.Sc. Markku Antikainen

A’ , Aalto University

AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF SCIENCE MASTER’S THESIS

Author: Alberto Geniola

Title: Architecture for analyzing Potentially Unwanted Applications

Date: 10.10.2016 Language: English Number of pages: 8+149

Department of Computer Science

Professorship: Information security

Supervisor: Prof. Tuomas Aura

Advisor: M.Sc. Markku Antikainen

The spread of potentially unwanted programs (PUP) and its supporting pay par install
(PPI) business model have become relevant issues in the IT security area. While PUPs
may not be explicitly malicious, they still represent a security hazard. Boosted by PPI
companies, PUP software evolves rapidly.

Although manual analysis represents the best approach for distinguishing cleanware from
PUPs, it is inapplicable to the large amount of PUP installers appearing each day. To
challenge this fast evolving phenomenon, automatic analysis tools are required. However,
current automated malware analisyis techniques suffer from a number of limitations, such
as the inability to click through PUP installation processes. Moreover, many malware
analysis automated sandboxes (MSASs) can be detected, by taking advantage of artifacts
affecting their virtualization engine.

In order to overcome those limitations, we present an architectural design for imple-
menting a MSAS mainly targeting PUP analysis. We also provide a cross-platform
implementation of the MSAS, capable of running PUP analysis in both virtual and bare
metal environments. The developed prototype has proved to be working and was able to
automatically analyze more that 480 freeware installers, collected by the three top most
ranked freeware websites, such as cnet.com, filehippo.com and softonic.com. Eventually,
we briefly analyze collected data and propose a first strategy for detecting PUPs by
inspecting intercepted HTTP traffic.

Keywords: PUP, PPI, MSAS, PUA, Potentially Unwanted Application, Potentially
Unwanted Programs

v
Preface

This thesis work constitutes the final step of my master education in Computer Engineering.
It has been written during my exchange year, spent at the Aalto University, in Helsinki.

I wish to thank professor Tuomas Aura, who gave me the opportunity of working in
the research area of the information security deparment. I had the opportunity to expand
my education background, by working with IT security research experts, immerse in an
intellectually challenging environment. Special thanks go to Markku Antikainen, whose
valuable advices guided me while writing the thesis. I must also offer a very special word of
thanks to all my researchers colleagues of the security department, especially to Blomqvist
Tuomas, who demonstrated genuine interest about my work. Great thanks go to professor
Fulvio Risso, for his constant (and valuable) availability and support.

I would like to thank my two flatmates, Luigi and Raul, whose sympathy and cheerfulness
have been a relief during hard times. Furthermore, I would like to thank all my closest
friends Marina, Marta, Valentina, Valeria D. for their constant emotional support. Thanks
to my girlfriend Elena, who always believed in me and supported my ideas. Special rewards
go to Valeria Z., who inspired me with her I'T-difficulties.

I must spend special word of thanks for Francesco and Riccardo, two of my closest
friends who shared hard times during these two years of master studies.

Lastly, I would like to thank all family that has always stood by my side. Great thanks
to Maria, whose generosity helped me in finishing my studies.

Turin, Sep 26, 2016
Alberto Geniola

This work was supported by TEKES as part of the Cyber Trust program of DIGILE
(the Finnish Strategic Center for Science, Technology and Innovation in the field of ICT
and digital business).

Contents

Abstract e iii
Preface e iv
Contents e e v
Symbols and abbreviations L viii
1 Introduction 1
1.1 Motivation e e e 1
1.2 Research goals 2
1.3 Structure e e 3
2 Background 5
2.1 Potentially Unwanted Programs 5
2.1.1 Definition e 5
2.1.2 Potentially-unwanted ambiguity oL 6
2.1.3 PUP Classification 7
2.1.4 Severity e 8
2.1.5 Profitability 9
2.1.6 The EULA trap it 10
2.1.7 User informed-consent to dicriminate PUP 10
2.1.8 Habituation and blind approach 10

2.2 Problem: PUP on Windows 11
2.2.1 Windows installers 11
2.2.2 Where do PUPs fit themost 13

2.3 PUP detection state of theart 14
2.3.1 How antivirus detect PUPs 14
2.3.2 Suspicious behaviors Lo Lo 15

2.4 Malware analysis techniques to the rescue 15
2.4.1 Static Analysis 16
2.4.2 Dynamic analysis Lo 21

2.5 Malware Sandbox Analysis Systems 26
2.5.1 Limitations 27

2.6 Automated GUI interaction 27
2.6.1 Windows UI Architecture 28
2.6.2 Low level Ul interactions 28
2.6.3 Basic Win32 Ul messages 29
2.6.4 Windows Ul libraries 30
2.6.5 Inspection tools for windows: Spy-++ and Snoop 31
2.6.6 Inspection tools limitations, 32

vi

3

2.6.7 Image recognition frameworks L.
2.6.8 Optical character recognition techniques
2.6.9 Ul automation frameworks
2.6.10 Installers vs Applications, considerations
Related Work
3.1 Automated Malware analysis L L.
3.1.1 Anti-spyware solutions
3.1.2 Sandbox Analysis.
3.2 Automated Ul Interaction
Problem Statement
4.1 Automating software installation
4.2 Data collection and correlation o oL
4.3 Scalability and performances L oL
4.4 Avoiding MSASs detectiono oo
Design of a Windows PUP analysis infrastructure
5.1 Designgoals
5.2 Architecture
5.2.1 Overview e e e e
5.2.2 Crawlers. e
5.2.3 Central DB
5.2.4 Host Controller
5.2.5 Sandbox Machine.
5.2.6 Networking Design
5.2.7 Bare metal and virtual environments support
5.3 UllInteraction e
5.3.1 Ul interaction engine basic architecture
5.3.2 Automated Ul interaction challenges
5.3.3 Ul elements detection
5.3.4 Ul element selection
5.3.5 Interacting with Ul elements
Implementation details
6.1 Central database
6.1.1 DB Schema
6.1.2 Multiple Host Controller synchronization
6.2 Resource monitoring implementation o000
6.2.1 Shared resource access in Windows NT
6.2.2 API Hooking: Overview
6.2.3 DIl Injection & Injector
6.2.4 Clooser look at HookingDLLL
6.2.5 Process hierarchy, dll injection and APT hooking
6.2.6 Hooking Windows services
6.3 Snmiffer e
6.3.1 Networking services
6.3.2 Host controller interaction

6.3.3 Capture file synthesis L L oL

39
39
39
40
41

43
44
44
44
45

47
47
48
49
50
51
93
95
o8
63
67
67
68
71
73
76

vii

7 Test and evaluation of results 109
7.1 Test configuration Lo 109
7.1.1 Jobselectiono 109

7.1.2 Infrastructure configuration L. 111

7.2 Evaluation of results o 115
7.2.1 Install automation results 116

7.2.2 Looking for PUP installers 119

8 Conclusions and future work 133
8.1 Contributions e 133
8.2 Limitations e 134
8.3 Future work e 135

A Database schema 137
B Hooked APIs 139

References s 141

viii

Symbols and abbreviations

Abbreviations
API Application Programming Interface
CTPH Context Triggered Piecewise Hashing
DNS Domain Name Service
EULA End User License Agreement
FS File System

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol over Secure Socket Layer
10 Input Output

1T Information Technology

JSON JavaScript Object Notation

MAC Media Access Control

MITM Man In The Middle

MSAS Malware Sandbox Analysis System

MSI Microsoft Installation Package
NIC Network interface controller

OCR Normalized Character Recognition
OEM Original equipment manufacturer
0OS Operating System

PE Portable Executable

PPI Pay Per Install

PUA Potentially Unwanted Application
PUP Potentially Unwanted Program

SSL Secure Socket Layer

TCP Transmission Control Protocol
Ul User Interface

URL Uniform Resource Locator
VM Virtual Machine

XML Extensible Markup Language

Chapter 1

Introduction

1.1 Motivation

The growth of Internet in terms of availability and bandwidth has changed the way software
is distributed. New software monetization techniques arose, such as advertising or user’s
data collection. While those techniques enable free software to spread all over the web,
they still introduce new security challenges, mainly affecting users’ privacy. In particular,
spyware and adware represent two malware classes aimed at enabling software monetization.

Recently a new kind of software monetization technique came to light. Its business
model is based on the distribution of legitimate bening software bundled within unknown,
third party software, which generally offers poor or none functionality [63]. In order to
gain legal right of collecting user’s data or installing third party software on the user’s
system, their installers display complex end user agreements [17, 33|, that users tend
to skip by habituation [19, 54]. Furthermore, those programs tend to present tricky
installation procedures, aimed at stealing the user’s consent for performing questionable
operations on his system. Therefore, users not paying sufficient attention during the
installation process tend to install programs which they are not aware of. Those programs
are usually undesired and unexpected by users, who may realize their presence because of
behavioral changes of their system, brought by such unwanted programs. Classic examples
are invasive toolbars which also change the browsing experience, by altering the default
homepage and search engine results. Fake antimalware and registry cleaners products
represent another class of unwanted applications, generally addressed as rogue software
or grayware [63]. Current antimalware vendors include all those software classes in a
wider definition, such as Potentially Unwanted Programs (PUP) or Potentially Unwanted
Applications (PUA) [8, 34, 47, 78].

While PUPs might not be malicious by their nature, they may still be undesired by
users. Usually, those kind of applications come with no warranty, nor they comply with
any security standard. As a consequence, the installing users end up with third party
software they are not aware of, which certainly enlarge software’s surface of attack. This
phenomenon possibly introduces vulnerabilities on the affected systems. Therefore, it is
reasonable to consider the PUP class as dangerous, especially when suspicious behaviors
are observed on the system.

While spyware and malware are considered malicious, the case of PUP is pretty
different. The main difference between malware and PUPs stands in the user’s consent of
installing the software. While malware behaves secretly and silently, without asking for
user’s permission, PUPs extort user’s consent to operate with his permission [19]. This

explicit uninformed consent enables the application to operate in a legal gray zone. As a
consequence, antimalware products are not entirely entitled to automatically remove that
software [27, 28]. This legal issue is aggravated by the business model standing behind
the PUP world, generally addresses as Pay Per Install. Recent studies confirmed that
such business model is particularly valuable [86] and widely adopted over the Internet.
Thus, companies implementing the PPI model can count on a solid economic base, then
have economic resources to legally fight against antimalware products affecting their
products [27].

Current antimalware products recognized the threat of PUP as a relevant issue. For
this reason, major antimalware vendors started to adopt some client-side countermeasures
in order to mitigate the spread of PUPs. However, considering the legal issues they need
to face, they tend to adopt conservative detection methods, based on user’s feedback,
blacklisting and signature-based detection. Those methods represent classic tools for
fighting malware threats, but are unable to address the new ones introduced by PUPs. On
the other hand, PUP detection and classification is still a open research problem. Current
antimalware products rely on a mix of indicators and manual inspection of software in
order to classify it as PUP. For instance, they check whether toolbars are installed or
default search engine is altered. However, those indicators might led to misclassification
errors, causing legal issues we discussed previously. For this reason, antimalware vendors
offer public submission forms for requesting manual checks and whitelisting of false positive
detections [41].

Due to the solid business model supporting PUP spread, PUP installers are continuously
evolving, refining their behaviors and avoiding classic detection systems. As a consequence,
antimalware products need to evolve in turn in order to catch up the gap between them.
Clearly, manual inspection of PUPs is not fast enough to react against new PUPs. Therefore,
semi-automatic analysis mechanisms can deliver better results in the battle against PUP
spread. For this reason, we introduce an architecture for a full automated sandbox for
analyzing unknown software installers. Our goal is to adapt classic malware analysis
techniques for analyzing PUP installers, solving a number of limitation affecting current
automated analysis tools. In particular we focus in describing a distributed, multiplatform
architecture, capable of handling unmanned software installation and collecting low-level
information about software execution. By merging static and dynamic analysis techniques,
together with general user interface automation, we implemented a prototype of the
architecture. Our prototype demonstrated its scaling capabilities and provided detailed
behavioral information about analyzed installers. Moreover we tested the goodness of
collected data and we identified a first simple indicator for detecting PUPs by looking at
their HTTP downloads.

1.2 Research goals

The main objective of this work is to define a system architecture able to automate static
and dynamic analysis for PUP installers, capable of overcoming limitations affecting current
automated sandboxes. In particular we focus on automating user interface interaction
offered by PUP installers, taking advantage of computer vision and text recognition
technologies. At the same time our system implements an isolated sandbox, capable of
intercepting and logging low level access to system’s resources.

The major contributions brought by our PUP analysis sandbox include the followings:

e providing a cross-platform, distributed architecture with acceptable scaling capabili-
ties, able to automatically analyze thousands of binaries per day.

¢ delivering automatic human-like interaction mechanism for clicking through installing
procedures, directly from within the sandbox environment

« collecting behavioral information about the analyzed binary, by implementing dynamic
and static analysis capabilities

e providing both virtual and bare-metal support, so that virtual machine aware software
is identified by running the test on both environments

o providing aggregated and easy-to-query data, representing a truth ground on which
to study PUP behaviors or to define new PUP detection techniques.

1.3 Structure

This thesis is divided in eight chapters. Chapter 1 presented the central topics of this
work, alongside the our research goals. In the second chapter we provide an overview of
PUP, discussing its definition and describing its classification problems. We also describe
why the PUP problem affects Windows operating systems and what are the challenges
related to those operating systems. Moreover, second chapter also describes static and
dynamic analysis technologies, on which we based part of our work. Chapter 3 describes
other research works that are related to automated sandbox analysis, PUP detection and
user interface automation. In chapter 4, we discuss problems affecting solutions considered
in the previous chapter, which are later on addressed in the directly in following chapters.
Chapter 5 presents the architecture of the analysis system we developed, from high level
perspective. It provides a wide overview of the nodes composing the analysis systems,
pointing out objectives and goals for each component of the system. Chapter 6 describes
some relevant technical aspects regarding the implementation of some core components
of the architecture. It enlighten how we applied DLL injection and API hooking in order
to implement the sandboxing system. In chapter 7 we describe test configurations and
present obtained results. Furthermore, in the same chapter we briefly analyze collected
data, and identify a possible way for identifying certain classes of PUPs. The document is
concluded with our final remarks, exposed in chapter 8.

Chapter 2

Background

In this chapter we will introduce the fundamental concepts needed to comprehend our work.
At first, a general description of PUP is given. It follows a short analysis of the problem
on Windows operating systems. Later on, common analysis techniques are described.
Afterwards, a brief overview of the Window’s user interface system is provided. In the
same section some user interface automation frameworks will be presented. We conclude
this chapter explaining which are the limitations of current technologies.

2.1 Potentially Unwanted Programs

Our work focuses on automating PUP installation in order to enable more reactive PUP
detection systems. Thus, it is crucial to familiarize with the PUP technology before taking
into account further technical aspects. For this reason, we will discuss fundamental concepts
behind PUPs, giving to the reader a general overview of this software type.

2.1.1 Definition

It is difficult to define Potentially unwanted programs (PUP), although some definitions
exist. ESET identifies Potentially Unwanted Program (PUP), also known as Potentially
Unwanted Application (PUA)! as a particular type of software with its set of associated
behaviors. Not necessarily malicious, this class of programs is able of installing additional
unwanted software, thus changing the behavior of the hosting digital device [34]. In the
scope of this work, we will embrace this definition. Being general and wide, the given
definition includes genuine software as well as malware. Indeed, a program may be classified
as PUP even when it is totally unharmful, but behaves in an unexpected or suspicious
manner. On the contrary, trojan and spyware are considered subsets of PUPs [33] and
classified as malicious software. Among all the possible suspicious behaviors that a software
may expose, there are some common patterns that PUPs tend to include [34, 47], such as:

o Implicit browser plugin or toolbars installation
e Implicit ADWare installation
« Installation of software following the pay-per-install business model

o Changes to the web browser settings (search engine, homepage)

Yor Potentially Unwanted Software (PUS) or simply rogue software [63]

o Changes to the network system settings (DNS/Proxy)
o Installation of vulnerable software that can be exploited
e Leak of adequate uninstall procedures

Although some of these are not easy to notice by non tech-savvies (e.g. network settings
change), usually the side effects of PUP are invasive and evident to the end user [74].
That is the case of some browser plugins, shipped with legitimate software, which present
invasive advertisements and pop-ups, heavily impacting on the user experience.

Hidden bitcoin miners (a.k.a. Potentially Unwanted Miners) present another case of
PUP: usually they do not gather personal user information, neither affect the Internet
browsing sessions of the user explicitly; instead they consume system CPU impacting on
the system usability. Malwarebytes LABS reported the case of yourfreeproxy.net, a
website that used to distribute a free proxy application, installing a bitcoin miner on the
user’s system [11]. In that case, the end user license agreement (EULA) reported the
necessity of mathematical calculation to improve the system security. However, the CPU
power was used to mine bitcoins, without sharing any of the earnings with the user. At
the time of writing yourfreeproxy.net has been closed. Moreover, its PUPs are now
considered malicious by major antimalware products [91].

2.1.2 Potentially-unwanted ambiguity

Beside a formal definition has been provided, the concept potentially unwanted still offers
many sources of ambiguity. It is non-trivial to classify which software is desired and which
one is unwanted. The difficulty of this classification lays on the fact that many programs
may legitimately use third party libraries or services. These third party components may be
necessary to the original software in order to provide some core functionality, nevertheless
the user may classify those as unwanted.

Another important aspect to consider is the knowledge gap among computer users. It’s
reasonable to assume that basic computer users are not familiar with the technicalities, and
they tend to look at a program like a monolithic entity. Tech-savvies, instead, are aware of
software modularity and may be able to detect what is really a desired feature and what is
unwanted. This knowledge disparity is the basement on which the adverb “potentially” lays
on. While for expert users there would be little or no uncertainty for classifying unwanted
software, that is not the case of end-users. For this reason some antispyware and antivirus
companies try to help non IT users by performing a classification of software as “potentially
unwanted”, warning them that the program they are installing may not be desired [33].

Potentially-Unwanted Programs and Potentially-Unwanted Data

Another source of ambiguity regards the relationship between software and data. Although
both the terms “program” and “software” are usually used as synonyms, there is a difference
between them. According to IEEE Standard Glossary of Software Engineering Terminology,
a program is defined as a set of computer instructions and data definitions, while a
software is a set of computer programs and associated data [10]. The latter definition
better covers some PUP border line cases, when the unexpected software behavior is limited
to some file-drops on the user’s system. As an example, we might consider a legitimate
software that, alongside its basic features, also installs an unwanted Root Certificate
Authority (CA). In this case, data is unwanted, rather than software. The installer

software itself may now be categorized as PUP, because it installed a Root CA with little
or no notification to the user.

2.1.3 PUP Classification

Malware is malicious software, that causes damage to users, computers or network [75]. On
the other hand, legitimate software is sometime referred as cleanware. Given the definition
of PUP, it is hard to establish a hierarchical relationship between malware, cleanware and
PUP. In fact, all the three software classes lay on the same logic layer.

MALWARE

Pry
ADWARE
UNWANTED
APP LEGITIMATE
TROJAN APP

i
/75,,%/

OFFERWARE
UNWANTED
KEYLOGGER APP
SCAREWARE

Affiliate

dagramning & design] Create|y com

Figure 2.1: Relationship among PUP, malware and cleanware

A PUP may be benign, i.e. part of the cleanware class, yet not desired on the user’s
system. On the contrary, a large number of malicious software is classified as PUP, falling
as well into the malware category. For instance, spyware programs are considered a type
of PUP, aiming at stealing user’s personal information [51, 74]. Figure 2.1 points out
other classes of malicious software, categorized as PUP. Among those we find adwares and
offerwares, which mainly impact on system usability [74] and user privacy. On the other
hand, it exists a class of benign software that bundles third party software without explicit
reason, causing the user to become suspicious about that.

An example of legitimate and potentially unwanted application is given by the Avast
Antivirus installer, which - at the time of writing - installs the Google Chrome browser and
will make it the default browser. Although it is possible to opt-out both these options, both
of them are pre-selected. Beside Avast Antivirus might have legitimate reasons to install
the Google Chrome browser, it still classifies itself as PUP installer, being the browser
functionality not strictly needed in order to operate the protection services offered by the
antivirus. A possible explanation would be the ability of logging SSL session keys not
offered by Internet Explorer at the time of writing. Google Chrome offers the possibility
of extracting the SSL private key when surfing the web, so that antimalware products
may decrypt SSL traffic to spot dangerous websites. However, Avast Antivirus installs
a root certificate on the system in order to intercept HI'TPS traffic; so the key-export
functionality is no strictly needed.

PUP Taxonomy

In the past years some research works have been done over the PUP phenomenon, providing
an early attempt to classify the different kinds of PUPs according to their business model
and general functionality. The result of these studies led to the following classification [63],
also shown in Figure 2.1:

o Affiliate PUP
o Pay-Per-Install (PPI) PUP
e Financial PUP

PUPs are classified as affiliate when they offer a very minimal set of functionality, requiring
the user to complete a registration through the vendor website, in order to activate the
core features of the software. Moreover, those utilities are distributed through a network
of affiliate partners, in which the installer party receives a relevant part of the sales as
revenue. The second category regards the Pay-Per-Install (PPI) PUP. In general, PPI
PUP are software installers which contain hidden malicious payloads, installed silently on
the user’s system. In this case, the installer distributor receives payments by the malware
coder, based on the number and geographical location of performed installations. Spywares
and adwares usually belong to this category. Finally, Financial PUPs represent a class
of malicious software that offer zero functionality and directly interacts with the user, in
order to steal credit card information. Scarewares and offerwares are part of this category.

2.1.4 Severity

We have already mentioned that identifying a PUP is not a trivial task due to the narrow
limit that separates a benign software from a potentially unwanted application. So, in
general, it is inconvenient and wrong to describe all the PUPs as threats for the users.
However, based on the classification presented in 2.1.3, there is no doubt that a substantial
part of PUPs means a threat for inexpert users. Financial PUPs and PPI PUPs are the
most relevant threats, since they implement or bundle malicious software [63], such as
spywares, adwares, offerwares and scareware. Those threats mainly target the user’s privacy
and financial data (user’s asset), exposing the victim to potential frauds, as well as privacy
loss.

An important consideration also regards the case of affiliate PUPs and benign unwanted
applications. Let’s assume an user downloads a benign utility that installs an unwanted
antimalware on the system. Let this PUP be benign, but extremely poor in performance
and threat detection. The program itself would be considered benign because it shows
no suspicious behavior, however an important side effect is also obtained: the user may
consider her system secure, while it is not. That will expose the user and his system
to many threats. Another possible goal of benign PUPs is to press the user to buy the
full-version of the software, claiming that only the professional version can solve a certain
problem, even when it is obviously impossible. That pattern has been already discovered
and pointed out by previous researches in this area, demonstrating how those PUP vendor
may trick the user into frauds [63].

2.1.5 Profitability

The spread of PUPs is mainly justified by the existence of a business model that makes
PUP distribution profitable. This model is called Pay-Per-Install (PPI), and in the last
years has been used by malware distributors [8, 23].

The PPI distribution model is based on a three entity architecture: clients, PPI
service providers and distributors (aka affiliates). Clients are software vendors (or malware
coders) willing to install their products (payloads) on a large number of hosts. They
pay a commission to the PPI service provider, that is proportional to the number of
successful installations. On the other hand, PPI service providers represent the central
orchestration points of this distribution model. They charges clients for every successful
software installation and rely on affiliates to perform those installations. Moreover, PPI
providers implement affiliate recruitment through advertisements, so that their network
reaches a larger number of affiliates. Lastly, affiliates impersonate the distributors of the
clients’ software. By installing clients’ programs on different hosts, affiliates earn revenues
from the the PPI service providers.

Malicious
Payload

il
()

Client

PPI Service Provider

Affiliate - Distributor

Installer

Legit software

Malicious Downlosd & Install
Download & Install Payload oW loa nstal

Target Target

Figure 2.2: PPI business model

There are different possible ways for affiliates to install software into target hosts. One
common approach is to bundle the payload along side a well-known and legitimate software,
as shown in Figure 2.2. Once bundled into an installer, this package is usually distributed
by freeware or shareware download websites. This technique allows the aggregator to
get higher ranking and visibility on search engines, thus the possibilities of PUP spread
increase. After the PUP gets downloaded, the installer may either obtain the user (not

10

informed) consent, by displaying a complex EULA, or may install itself silently. In the
first case, the payloads may be categorized as spyware or PUP. In the second case, those
payloads are generally malware, bundled through software binders and installed silently.

2.1.6 The EULA trap

Pay-per-install business moves a substantial amount of money. Thus, it is reasonable
to assume PPI business runners may resort to legal courts whenever their products are
categorized as malicious [20]. That is one of the reasons why antimalware products
introduced the expression potentially unwanted programs [51].

Afraid of possible legal problems, many vendors carefully decide to whitelist most of
grayware, although current antispyware technology is capable of detecting many different
PUPs. In fact, some of those suspicious software (primarily adwares) are not explicitly
prohibited by current laws, provided that the user is informed [27]. In these cases, the
PUP installers present EULAs, in which the suspicious behavior is somehow justified. By
accepting the EULA, the user fully authorize the software vendor to act as stated in that
agreement. Once the user’s consent is obtained, the software has the legal authorization to
act as described in the agreement.

2.1.7 User informed-consent to dicriminate PUP

Some PUP vendors display EULAs, at installation time, in order to give the impression of
installing fully benign software [28]. However, an EULA does not imply trustness by itself.
In fact, some malicious PUP installers will rely on long (6000 words or more) and complex
EULAs, in order to discourage the users from reading them. Nevertheless, malicious PUPs
present EULAs written using complicated and specific legal terms, usually obscure to the
final user [17].

In order to take an accurate decision, the user must read the entire EULA and must
be able to fully understand it. When both of these circumstances are verified, then the
user consent is valid. This situation is generally defined as user informed consent [19].
If the software obtains the user’s informed consent, then it does not belong to the PUP
class. On the contrary, when an application is installed without the informed consent, then
it may be classified as PUP, or even malware. In fact, spyware and PUP try to get the
user’s not-informed consent [20]. This attempt, if successful, puts the spyware vendor in a
legitimate position, legally protecting the software merchant.

It is worth noticing that previous researches have shown it is possible to detect classes
of spyware (i.e. subset of PUP) simply analysing the EULA, displayed at installation time
[21].

2.1.8 Habituation and blind approach

Being a legal contract, the EULA should be read very carefully by the user. On the contrary,
some previous research works show that the general trend is subjected to habituation and
heuristic shortcuts [19]. This phenomenon also evolves: when new user interfaces (UI)
appear, users start learning new shortcuts to get their prime task done (i.e. installation),
ignoring the possible implications that their blind interaction would produce.

In some cases EULAs are used as a mechanism to demonstrate false legitimacy of
software installers. In this case, long and uncomprehensive text is shown at installation
time [33]. Disheartened by the long reading, the users tend to blindly accept the EULA,

11

ignoring possible privacy consequences. This phenomenon is much more evident when the
software being installed is somehow known to the user. However, when legitimate software
is bundled as part of PPI installers, this approach is catastrophic: accepting EULA blindly
basically turns into installing any software bundled within the PPI installer.

Beside the problem of the EULA has its fundamental roots in the user mis-information
and habituation, previous researches have proposed a number of countermeasure for
mitigating this problem [20]. All the proposed approaches, however, did not find any
practical implementation at the time of writing.

2.2 Problem: PUP on Windows

The PUP phenomenon is not limited to a single operating system architecture. However,
the spread of PUP is a major problem on Windows operating systems. For years Microsoft
Windows has been the most used desktop operating system when surfing the web, neverthe-
less it still is the most popular at the time of writing (78.6 %) [92]. Therefore, PUP threat
mainly targets Windows hosts, because they offer the most wide market for PPI business.
For this reason, in this work we will focus on Microsoft Windows operating systems.

In order to better understand how the PUP phenomenon affects the Windows OS, it is
necessary to consider some technical aspects of OS family. Thus, in this section, we will
introduce some of the main challenges arising when dealing with PUP on a Windows OS.

2.2.1 Windows installers

Given an application, its installer is a software aimed at automating the deploying phase
in a software engineering process. An installer generally takes care of copying executables
files, data and configuration entities on the target operating system, in accordance with
the OS version and architecture. Moreover, installers are also in charge of checking OS
compatibility and fixing missing software dependencies. In the most general case, an
installer is just a program, of which main task is to persist and configure the bundled
application.

Microsoft Windows operating systems do not enforce any standard mechanism for
installing a software. In fact, in the simplest case, an application is installed on the OS
by copying its executable files on the host file system, sometimes providing commodity
shortcuts on the user’s desktop. Such a simple task can be achieved by a scripting
file (e.g. batch files), or done manually by the user. When more advanced features are
required, such as autostart on boot, the installer generally needs to deal with the Windows’s
registry. However, Windows registry has evolved during the time, preserving part of its
legacy architecture for compatibility reasons [66]. This registry evolution has introduced
confusion for software developers who want to target many different Windows versions.
Moreover, being part of a common process (software production), it makes sense for most
companies to automate, wherever possible, the way software is bundled. For these reasons,
various free and commercial frameworks arose, such as InstallShield, Advanced Installer,
Wix and Microsoft Installer. Their goal is to facilitate the bundling task for software
developers, implementing a systematic deployment process. Therefore, these frameworks
usually automate graphic user interface (GUI) generation, software removal procedures and
software upgrade tasks. Each installer framework may operate in a different way: different
frameworks may use various registry keys to achieve the same goal, and generally offer
different installer GUL.

12

At the end of 90s, Microsoft introduced Windows Installer[93], a technology that defines
standard Microsoft Installer file type (MSI) alongside Windows Installer Service[65]. The
former defines a database-like file type, based on tables, used to describe the installation
process of a software. This file type documents most of the common tasks needed to deploy
an application, such as file copying, software dependencies, installer GUI, etc. Those MSI
files are then processed by a Windows service, called Windows Installer, preinstalled on
the operating system.

The goodness of MSI

Since the first release of Windows Installer, Microsoft has been encouraging developers to
adopt this standard?.

There are several reasons that justify this choice. In first instance, the MSI file
format provides a clear organization of information regarding the deployment process. By
implementing a database-like file structure, MSI packages contain tables grouping data and
metadata, describing the most important phases of the software installation. By relying on
such organized package structure, it is possible to analyze software components and features
beforehand. This means that more sophisticated analysis techniques may be applied to
detect potential anomalies, without running any code. Nevertheless, it is worth noticing
that MSI packages are not executable by themselves. To install a certain MSI package,
the operating system invokes the Windows Installer Service (MSIExec). This service is
in charge of parsing, validating and installing data and programs contained into the MSI
file. MSIExec provides then a simple and unified interface to manage operating system
dependent matters, freeing the developer from complex version checks.

A relevant aspect of MSI data structure concerns the software removal process. Since
MSI describes which files and registry keys are being installed, the MSIExec is able to
implement automatic rollback operations. In other words the software uninstaller can be
derived directly looking at the MSI package. In fact, the software developer is generally no
longer required to implement custom software removal procedures, because most of it is
handled by MSIExec service.

Custom executables

As already mentioned, Windows operating systems do not enforce any standard for ap-
plication installation. Thus, any executable file is potentially an installer. This approach
introduces many problems. First of all, the developer is in charge of handling direct deploy-
ment operations and has to deal directly with the operating system. As a consequence, the
developer must consider compatibility issues among different version of operating systems,
as well as handling software dependencies in its code. Therefore, the installer code grows
(because of the OS checks, libraries to be bundled) and the effort of writing a good installer
becomes substantial. Moreover, there is no automatic rollback feature (as offered by MSI
packages), thus the developer should implement its own uninstaller procedure.

However, custom installers have no limits in terms of functionality, while MSI are
limited to the MSIExec capabilities. For instance, custom installers can implement fancy
GUIs (e.g. using hardware accelerated graphic) or executing remote code (RPC calls)
and so on. In fact, an increasing number of custom installers do not bundle all the data
hey need. Instead, they download the latest version of the software at installation time.

https://msdn.microsoft.com/en-us/library /windows/desktop/bb204770(v=vs.85).aspx

13

In this way the achieve a series of goals. In first instance, the installation executable
installer is tiny (hundreds of Kb or few Mb) and easy to maintain. Secondly, the installer
may implement download session recovery, handling possible network problems. In third
instance, software dependencies may be resolved in the same way, by downloading missing
components on-demand.

Third party frameworks

The necessity of automating software’s installers installation was already evident before
the birth of the MSI file format. For this reason, products like InstallShield became very
popular and widely adopted by software vendors (Flexera, distributor of InstallShield,
claims 80% of the current Windows installations are built with its technology). This
class of products represent a hybrid approach between the MSI standard and the custom
executable building. They provide a setup building environment, where most of the basic
deployment tasks are simplified. However, they rely on their own proprietary building
process. Moreover, installer frameworks generally produce executable files, therefore it is
impossible to accurately predict system changes without running them.

2.2.2 Where do PUPs fit the most

Although MSI provides a standard way of installing software on Windows Operating
systems, still the majority of software available on the most known freeware distributors
does not conform to this new format. Indeed, at time of writing, among the 484 applications
available from most-popular rankings from FileHippo, Softonic and Cnet, 472 expose .eze
extension, while only 12 are in .ms¢ format.

MSI vs Custom executables

A PUP may be installed in any of the previous ways. Yet, malicious PUP would hardly be
bundled into MSI packages. In fact, thanks to their descriptive structure, MSI packages
are easy to be analyzed by antimalware and antiviruses, even without running the payloads.
Moreover, also benign PUP applications (or grayware) tend to be dynamically downloaded
by the installer at installation time, following the PPI model. For these reasons, without
excluding the MSI packaging possibility, we expect the majority of PUP to be bundled
within custom executables.

Another case supporting the assumption of bundled custom installer regards the malware
distributors. It makes sense, for malware installers, to use code obfuscation techniques in
order to escape malicious payload detection. In these cases, the most convenient installation
process is the custom installer building, using binary packers or binders[8].

Installers usually require admin rights

Microsoft defines a set of best practices and guidelines concerning software deployment.
According to those, software executables should be placed under X: \Program Files (where
X is the current drive letter). However, placing software under this directory requires
elevated privileges. Thus, the majority of installers, following those best practices, will
require administrative rights. In fact, previously to Windows Vista, users were supposed
to always run program installers within administrative accounts[69].

14

In an attempt of providing better protection against malware, Microsoft introduced the
User Account Control (UAC) system in Windows Vista. This protection system implements
the least privilege security concept within the Windows Reference Monitor. The UAC
system allows processes to run with standard user rights, acquiring elevated privileges
on-demand, after prompting the users for their consent. However, since its first release,
the UAC suffered of too much annoying pop-ups, causing user habituation, vanishing any
security protection[54] offered by the system itself.

The the legitimacy of an installer to obtain administrative rights, combined with user
habituation to grant it, serves as great help for malicious PUPs. Indeed, PUPs acquire
elevated privileges at installation time and can perform deep changes to the hosting system,
becoming a potential threat for the system.

2.3 PUP detection state of the art

Potentially unwanted programs represent a relevant but yet new threat to the user systems.
Thus, antivirus companies are nowadays developing and improving their detection techniques
in order to be more competitive on the market. However, given their complex and blur
nature, it is difficult to detect PUP in a reliable manner.

2.3.1 How antivirus detect PUPs

Over the years, malware companies have developed different technique to spot malicious
software, but those are generally poor effective against legitimate PUP [53]. PUPs represent
a new threat, carrying new challenges and high risk of false positive in detection.

In order to protect themselves against legal issues [27], some antimalware companies
have adopted cautious approaches to detect PUP and alert the user. For instance, they
heavily rely on user’s feedback [53] and develop signature-based databases in order to
increment detection rates. Companies like Sophos [78], Kaspersky [41], Symantec [26], have
developed their own signature-based databases for PUP detection[78], allowing legitimate
software vendors to claim legitimacy when their software is listed as PUP. Beside being a
conservative approach, signature-based PUP detection is ineffective against 0-day releases.
On the other hand, signature based detection leaves little space for false positive detection.

To beat the concurrents, antimalware companies do not publicly share their own
malware or PUP definitions. While malicious software is generally detected by most of the
top antivirus technologies, for PUPs we observe very different classification behaviors [53].
This difference of classification depends on divergent definitions of PUP adopted by each
company. Moreover, the effectiveness of PUP classification also depends on the technologies
involved by each antimalware product. For instance, Symantec introduced one heuristic in
their SONAR engine, aimed at detecting potentially unwanted applications [85]. Heuristic
based detection is a powerful weapon against 0-day releases and malware variation, but
also produces an higher rate of false positives.

Other companies decided to adopt an hybrid approach. They let the user choose the
level of protection desired and PUP detection is generally optional. Examples are the
ESET LiveGrid and the Sophos Live Protection technologies®. When active, signature
based detection and advanced heuristics provide some defense against potentially unwanted
applications. In order to mitigate the false positive problems, those companies allow users

3These technologies collect behavioral data about suspicious objects, relying on realtime cloud analysis
in order to detect 0-day malware spreading

15

to report any possible classification error, by submitting a whitelisting request to the
antimalware company [45, 79]. This approach is nothing new: some mail providers use the
same basics to classify spam [27].

2.3.2 Suspicious behaviors

Whether applying proactive or reactive detection mechanism (heuristics vs signature),
antimalware companies rely on a set of suspicious behaviors in order to classify PUPs.
Crawling among the different antimalware policies, we have found the followings being
applied:

1. Advertising exaggerate claims about software capabilities, not matching real func-
tionality

2. Not asking user consent or seeking for not-informed user consent
3. Changing default browser, system and network settings
4. At installation time, providing no EULA or too long and complex texts
5. Requesting unnecessary permissions
6. Implementing inadequate uninstaller procedures
7. Adding advertisement or threating false claims
8. Manipulating search Engine results manipulation
9. Using great amount of system resources
10. Program is not digitally signed
11. Providing remote access listening on the network

12. Downloading unexpected files from the web

Due to the continuos evolution of PUPs, the list of common suspicious behaviors
may grow in the future. Some of them may seem harmless: exaggerating claims or
providing inadequate uninstallation procedures do not constitute direct threats for the
user. Nevertheless, having hard-to-remove software (which may represent part of attack
surface for an hacker) on a system can lead to vulnerabilities. Moreover, the exaggerate
and false claims may lead the user to fraud attempts, as proved by previous researches [23].

2.4 Malware analysis techniques to the rescue

Antimalware companies have developed, during the years, advanced techniques to detect
malicious software. It makes sense for these companies to adapt the same techniques in
order to detect PUP. In this section we will discuss those techniques, pointing out why
they are useful and what are their limitations.

In general, it is possible to classify all the malware analysis technology within two
major classes: static analysis and dynamic analysis. Static analysis is the act of inspecting
the structure of a computer program, given its binary code, without executing it [75]. On

16

the other hand, dynamic analysis corresponds to the analysis of the software behavior
performed at runtime, by using debugging (and usually virtualization) techniques. Both
the approaches offer different pros and cons. Given the variability of malware and their fast
evolution, dynamic analysis is the most valuable information provider, thus it is generally
applied by antimalware researches [87]. Nevertheless static analysis is a good source of
information as well and it generally requires less resources and security knowledge to be
performed.

In our work we will mainly rely on dynamic analysis techniques, due to some critical
aspects of PUPs. However some static analysis techniques are also applied during automated
analysis. Therefore, it is necessary to introduce most important static analysis techniques
to understand which are their limitations and how dynamic analysis solves them.

2.4.1 Static Analysis

Discussing static analysis technique is out of the scope of this work, however we will
briefly introduce basic concepts regarding relevant aspects when dealing with PUP analysis.
Among the most widely used static analysis techniques we find:

Hashing

Strings extraction

PE Header analysis

Linked libraries analysis.

Hashing

For hashing we mean the act of applying hash functions to data and binary files that we
want to analyze. A cryptographic hash function is a mathematical procedure hash() that
takes an arbitrary long input of bits and produces a fixed-length unique (generally small)
sequence of bits (digest)[67]. Given the unlimited domain and the limited codomain spaces,
no hash function is injective, thus no output is really unique. However, hash functions
expose collision resistance property, which states it is difficult to find two inputs m1 and m2
such as hash(ml1) = hash(m2) [77]. Other properties, relevant to hash functions, are the so
called pre-image resistance and second-image resistance. The former is formally declared
as the difficulty, given a hash function hash() and a hash value h, to find any message m
such as h = hash(m) The second-image resistance describes the difficulty, given an input
m1 and a hash function hash(), to find another input m2 such as hash(m1)=hash(m?2).

Hashing is used by malware analysts in order to store digests of malicious binaries. This
technique drastically reduces the space needed to store those information (sometimes this
approach is addressed as data reduction). Moreover, it still provides comparison criteria:
instead of performing byte-to-byte comparisons, files are hashed and then digests are
compared. One relevant drawback of classic hash functions is that they do not measure how
similar two inputs are. A single bit changed in the input produces a completely different
output. For this reason, recent research works developed Context Triggered Piecewise
Hashes (CTPH, a.k.a. Fuzzy hashing) [42, 43].

Fuzzy hashing, combined with standard cryptographic hashing, is nowadays particularly
relevant for forensic analysis [31]. CTPH functions are based on a fixed-length sliding
window, on a state and on trigger function. A sliding window (generally small, few bytes) is

17

used to roll over all the input. At each step, a hash function is calculated based on the bytes
contained in the input at that time, then the input is moved forward by 1 byte. Once the
window is moved, a trigger function is evaluated. If that function meets some pre-defined
criteria, then a partition is defined. By reiterating the algorithm for the whole input length,
we will obtain a set of partitions for the input data. At this point, the CTPH functions
uses classic cryptographic hash functions (e.g. MD5) over the identified partition. By
concatenating partial parts of the obtained hashes, the final fuzzy-hash result is obtained.

Fuzzy hashing exposes two important properties, i.e. non-propagation and alignment
robustness [88]. The first property defines the resilience of the output to change, when
little modification is performed on the input. Opposed to the cryptographic hashing
functions, when a few bits change on the input, partial input modification will not affect
the whole output. The second property states that CTPH algorithms are robust to shifting
or padding operations. Again, those operations would cause drastic output changes when
used with classic cryptographic hashing functions. It is worth noticing, however, that
CPTH algorithms do not produce fixed length hashes. Output length depends on the
partitioning function and on the input size.

String extraction

Binary and executable files may contain much information in different forms. Part of
that is represented by text, usually bundled within the executable file and encoded with
ASCII or Unicode. Information in text form can disclose several potential behaviors of
the binary file, thus it represents a valuable source of information. Naming some of the
possible information, we identify:

o Host names

o Http Urls

e [P Addresses

« EULA

e Dynamic Libraries
e Registry key names
o File Paths

o UI messages

Several technique may be applied in order to extract that information out of a binary
file. One simple approach is to scan the whole binary input in accordance with a specific
character set. Then, only detected strings that respect pre-defined boundaries are saved.
For instance, we might want to detect all the ASCII strings at least 8 characters long, and
at maximum 200 characters long.

Figure 2.3 shows a real-world example taken from the Avast Antivirus downloader?. In
order to inspect the binary data, we used a web-browser HEX editor https://hexed.it.
Scrolling the binary source at address 0x000A2FC7 we find some information in ASCII
encoding. Some urls are listed among those values. That suggests the ability of the software

4MD5 hash: bf77838al5ae4e72d343820693b629¢9, version 11.1.2245.1540

https://hexed.it

18

] HexEd.it-avast fre x
< C | B https;/hexed.t

File Information 76 69 64 65 72 2E 66 66 2E 61 76 61 73 T4 ovider.ff.avast. GoTo
63 GF 6D 2F @D 0A 49 50 4D 76 32 44 6F 6D 61 69 com/..IPHv2Domai
File Name avast_free_antivirus_setup_onlin.. 6E 46 61 6C 6C 62 61 63 6B 3D 68 74 74 70 73 3A nFallback=https: Current Address OX00DAZFCT Memo
File Size 5,066,104 bytes (4,048 KiB) 2F 2F 69 7@ 6D 20 78 72 6F 76 69 64 65 T2 2E 66 //ipm-provider.f s 0004D4DT7
66 2E 61 76 61 73 74 2E 63 6F 6D 2F @D OA 4F 6E f.avast.com/..On ot
Data Inspector (Little-endian) : 6C 69 6E 65 54 6F 61 73 T4 65 72 44 6F 6D 61 69 lineToasterDomai ote
6E 32 30 31 35 3D 68 74 T4 70 73 3A 2F 2F 69 76 n2015=https://i
e ety Sonea I
6D 2D 78 72 6F 76 69 64 65 72 2E 66 66 2E 61 76 m-provider.ff.av
Bbit Integer 65 65 61 73 74 2E 63 GF 6D 2F OD OA 49 70 6D 50 72 6F ast.com/..IpmPro eI
165t Integer 16961 16961 74 6F 63 6F 6C 48 74 74 TO 73 32 36 31 35 3D 2A tocolHttps2015=+ Search
©D GA 52 65 64 69 72 65 63 74 4D 79 41 76 61 73 ..RedirectMyAvas
24t Integer 3686977 3686977 5
© 74 55 72 6C 3D 68 74 74 T 73 3A 2F 2F 69 64 2E turl=https://id. Search for hitp:
32-bit Integer 842547777 842547777 © 61 76 61 T3 74 2E 63 6F 6D 2F 69 6E 41 76 61 73 avast.com/inAvas DataType
cobitinteger(s) 3910029594513130049 866 74 69 75 6D @D OA 41 76 61 73 74 69 75 6D 55 73 tium..AvastiumUs
1002955451 3130040 65 72 41 67 65 6E 74 3D 4D 6F TA 69 6C 6C 61 2F erAgent=Mozilla/
EATT () 35 2E 30 20 41 70 70 6C 65 57 65 62 4B 69 74 2F 5.0.AppleWebKit/ 24bit Intege
16-bit Float. P 3126953 8 35 33 37 2E 33 36 20 28 4B 48 54 4D 4C 2C 20 6C 537.36.(KHTML,.1
eTEE TR 8 69 6B 65 20 47 65 63 6B 6F 29 20 43 68 T2 6F 6D ike.Gecko).Chrom
65 2F 33 37 2E 30 2E 32 30 36 32 2E 31 32 34 20 /37.0.2062.124. -
CAmiRzz 2T R 53 61 66 61 72 69 2F 35 33 37 2E 33 36 20 41 76 Safari/537.36.Av
MS-DOS DateTime 20050124 08:18:02 Local 76 61 73 74 69 75 6D OD OA 50 72 6F 67 55 70 64 61 astium..ProgUpda
e TESERSDIMIEITATIONE 886 74 65 52 65 7@ 65 61 74 54 6F 61 73 T4 65 72 44 teRepeatToasterD .
8 61 79 73 3D 23 6D BA 56 T2 6F 67 55 7@ 64 61 74 ays=3..ProgUpdat
SRIE T Te AR AT e 65 4E 61 67 41 66 74 65 72 44 61 79 73 3D 32 31 eNagAfterDays=21
Mo 193009-12 19:02:57 Lacal 8 @D @A 50 T2 6F 67 55 70 64 61 74 65 4E 61 67 50 ..ProgUpdateNagP - Text
Macintosh HFS# 65 72 69 6F 64 44 61 79 T2 3D 32 31 @D OA 53 65 eriodDays=21..Se
1930-09-12 17:02.57 UTC .
LS 8 63 44 4E 53 4C 69 73 74 44 69 73 74 72 69 62 75 cDNSListDistribu Text Encoding el
sy L 2 S8E® 74 6F 72 49 50 73 3D 37 37 2E 32 33 34 2E 34 33 torIPs=77.234.43 Case Sensitivity Match Case (faster)
ey 2E 39 33 2C 37 37 2E 32 33 34 2E 34 32 2E 37 34 .93,77.234.42.74 sy v
o ©D OA 53 4C 53 63 6F 77 55 GE 73 65 63 75 72 65 ..SLShowUnsecure yte Order 2 Litle endian
57 69 66 69 4E 6F 74 69 66 69 63 61 T4 63 6F 6E WifiNotification Big-endian
49 6E 74 65 T2 76 61 6C 3D 32 38 38 3@ OD A 49 Interval=2880..I P —
70 6D 56 T2 6F 74 6F 63 6F 6C 48 74 T4 T0 32 30 pmProtocolHttp20 Wisiinkiitlntell
31 35 3D BD BA 54 72 61 63 6B 69 6E 67 44 63 61 15=..TrackingDia P
6C 6F 67 73 3D 44 49 41 4C 4F 47 S5F 41 4C 45 52 1ogs=DIALOG_ALER
54 SF 42 45 48 41 56 49 4F 52 5F 53 48 0D ©A 4A T_BEHAVIOR_SH..J 2000ED
53 45 78 76 54 6F 61 73 T4 65 72 54 69 6D 63 6E SExpToasterTimin 0x003C1453
67 3D 31 35 2C 32 34 2C 30 3B 31 32 2C 32 34 2C g=15,24,0312,24, T
30 38 39 2C 32 34 2C 30 3B 37 2C 32 34 2C 31 3B ©;9,24,0;7,24,1;
e S | oxoosciAsD -
Selected: 2770 bytes in 2 ranges
& avast_free_a...exe ~ & avast_free_a..exe ~ SHOWALL X

Figure 2.3: Avast Antivirus Installer HEX binary data

to contact those urls. If any of those URLs were blacklisted or known to be malicious, then
the program itself would be suspicious. However, it is worth to stress that information
extracted by string analysis does not imply the action will happen at runtime. Nevertheless,
that information may be used as indicator for possible threats exposed by the binary
program.

PE Analysis

On Windows NT, executable files follow the Portable Ezecutable (PE) specification [38].
A PE file is composed by 5 parts and is called module (or hModule). The first one is a
generic DOS header (64 bytes), containing general and legacy metadata, only relevant
for DOS systems. The next part is the DOS stub, i.e. a portion of the executable which
can be run under a DOS operating system. Although this part is generally irrelevant for
Win32 applications, it is common behavior of compilers to put legacy code that displays
an error message if the executable is run under DOS. Right after the DOS Stub, there is
the PE Header portion. This area of the PE contains metadata describing the following
part of the executable file. After the header we find the section table, i.e. a data structure
mapping the rest of the PE file into sections. Each section can either contain code or data,
and there may be many of them.

In Windows NT, a PE file must exposes 9 different sections, as showed in Figure 2.4.

Executable .text or CODFE, contains the code segments which will be loaded into
paginated memory and then executed by the OS

19

DOS Header
Legacy Dos Portion
DOS Stub
-
PE Header
| SeclonTave |
Section 1
Code section : Windows MT relevant
Data Sections cedlii ™ portion
Hesource Sections
Export Data Section =
Import Data Section
Debug Section Section ...
Section n
L p—

Figure 2.4: Structure of a Portable Executable file

Data .bss and .rdata. The former contains uninitialized data for the application
(such as static variables), while the latter contains readonly information,
such as literal strings or constants.

Resources .rsrc, this section includes resource data, usually icons and images, needed
to the application.

Export .edata, exposes the address of exported functions contained in the module
Import .1data, contains information about imported functions
Debug Information .debug, includes some debug information.

Relevant information may be extracted by the resource section. For instance, in a
PUP installer, several files (binary and not) may reside in this section of the module. By
extracting bundled files and using hash functions, we might immediately identify possibly
known malicious payloads within the module.

The read-only data section usually contains strings and constants used by the application.
However, string extraction is generally applied to the whole binary file and not limited
to a single section. On the other hand, there may be cases in which the string extraction
procedure can be limited exclusively to read-only data segment. In this way, the probability
of gathering invalid or meaningless strings may be lower in respect to the techniques
described in 2.4.1.

20

Export and Import sections are important for static analysis too. Modules can export
functionality to other applications, or may require some functionality exported by other
modules. Either the cases, it is possible to identify a set of imported or exported functions
that a module requires to run correctly. For instance, an unpacked keylogger might
import SetWindowsHookEz (to install keyboard hooking) from User32.d11 and some file
manipulation functions such as WriteFile from Kernel32.d11l. At the same time, the
analyzed module may export LowLevelKeyboardProc and LowLevelMouseProc, used by the
Set WindowsHookEx to notify the application of inputs received [75].

Other information lays in the PE header. TimeDateStamp is a data field, belonging to
this header, representing the time and the date when the module has been produced by
the linker or compiler [64]. When an executable file is old, the possibility to find signature
for it is generally higher [75], so this information becomes relevant.

Library linking

Imported functions listed in the PE header do not always represent the totality of referred
functions. In fact, functions used by a module may depend on the linking policy chosen
by the developer. Windows operating systems support three different policies of linking:
static linking, dynamic linking at loading and dynamic linking at runtime [62].

Static linking means the act of coping the referred code from the library into the
module, increasing the compiled module dimensions. This approach is generally used when
size of the module is not critical and when developers wants to avoid code dependencies
problems. On the other hand, dynamic linking defers the linking procedure, producing
smaller modules and allowing code re-usability. Moreover, compilation time for the module
is shorter because linked code does not need to be compiled. Dynamic linking may be
performed in two different moments: either at loading time (dynamic linking at loading) or
at runtime (runtime dynamic linking). The former method requires the Windows Loader
to check, once the program has been loaded into memory, if all the requested libraries are
available on the system. In case of missing libraries, the operating system refuses to run
the program. The latter case, instead, requires the developer to handle dynamic linking
within the code, by using ad-hoc procedures, such as LoadLibrary() and GetProcAddr().

When static linking is adopted, it is hard to identify which library has been bundled
into the executables. However, PUPs generally rely on dynamic linking in order to produce
lighter modules. Furthermore, when loading the required libraries ad load-time, the
operating system needs to know what kind of functions have to be linked. Those functions
are listed in the Import section of the PE file, and are pretty easy to identify. To do so,
we only need to look into the export section of the PE file and interpret the relative data
structure contained. On the contrary, when the dynamic linking happens at runtime, there
is no explicit area - in the PE file - where those functions are listed. In fact, the developer
uses the LoadLibrary() functionality of Windows in order to load an external module at any
place in the execution flow. Then, using GetProcAddr(), the developer is able to retrieve
the offset of the function within the module. At that point, the function can be invoked.

String extraction represent a last resort against runtime dynamic linking. In fact, by
scanning the code section of the PE file, it might be possible to find linked function names
and modules. Most of the common operating system modules and functions are known, so
it might be possible to match extracted strings with a list of known functions and module
names.

21

Disassembling applications

One more advanced technique among the static analysis tools is the disassembly process.
Without running the application, an analyst may decide to reverse-engineer the binary,
trying to interpret the meaning of the code. By using ad-hoc software, such as IDA Pro®,
an analyst would be able to translate binary code into assembly. After that, looking at the
code, it might be possible to recognize some behaviors of the software.

In order to facilitate the reverse engineering process of an executable, some tools
interpret assembly code and produce constructs in higher level languages, such as C/C++.
However, without debugging symbols, the generated code is hard to read, and hardly
matches the original source code structure.

Static analysis limitations

Static analysis techniques are able to extract a relevant set of potentially useful information
about the executable file. However, new grayware introduced many challenges, not handled
by static analysis.

Particularly challenging are code obfuscation and packing techniques. When dealing
with PPI PUPs and malicious payloads, distributors generally obfuscate their code [§].
Packing is a manner of hiding the binary code into a packed format, so that static analysis
cannot directly extract information out of the file. A relatively small portion of code is left
in clear form: that part of the code is in charge of extracting (or unpacking) the rest of
the code into memory, before executing it. Once the file is executed, the Windows Loader
extracts the data and runs the unpacked code. The rest of the code is then unpacked
by that stub and, later on, executed. A possible way of achieving this goal would be by
encrypting the code to be executed, and let the unpacker decrypt it at runtime. The
decryption key may be retrieved through network, or would be bundled into the executable
itself. In this case, static analysis would not be able of extracting all the information such
as strings and dynamic linked libraries, because most of them would be available only after
the unpacker code runs.

Packed and obfuscated software also make it difficult to process reverse-engineering
without executing the program. When running a disassembler, the first instructions of
the unpacking process are visible: an analyst would recognize the software is unpacking
itself. However, the unpacked code would not be visible until the unpacking routine runs.
Therefore, it is close to impossible to predict, a priori, the final outcome. Moreover, human
interaction is needed to perform this step, and it generally takes a considerable amount of
time.

Another limit of static analysis comes to light when the PUP is composed by a simple
network downloader. In this case, the software components to be installed on the system are
retrieved over the network, at installation time. Therefore, execution of the downloader has
to precede the time of analysis . However, this is not possible, according to the definition
of static analysis itself (binary execution should not happen).

2.4.2 Dynamic analysis

Dynamic analysis is defined as the inspection of an application, during its execution [75].
The main goal of this approach is to go beyond static analysis limits, especially when
dealing with obfuscated or packed software. In the most general case, a dynamic analysis

Shttps://www.hex-rays.com/products/ida/

https://www.hex-rays.com/products/ida/

22

technique is represented by a debugging session: in that way an analyst can observe, step
by step, all the modifications performed on the system by the analyzed program.

The main difference between static analysis and dynamic analysis resides in the execution
of binary code. While static analysis does not require program execution, dynamic
approaches require code execution. Therefore, caution is needed when executing possible
malicious code, in order to avoid malware infection. In particular, isolation and revertability
must be enforced.

Safe execution environments

A test environment where to run unknown software is named sandboz [95]. A sandbox
takes into account risks and threats possibly exposed by the unknown software, thus
three main properties characterize such an environment: observability, containment and
efficiency [95]. The first property states the ability of detecting actions performed by
the unknown application within the sandbox, such as file system and network 10. Good
observability generally implies much grained granularity in auditing systems. Containment
is the ability of the sandbox to prevent attacks to hosts external to the sandbox itself. Lastly,
efficiency measures how good and relevant the extracted information is, in comparison
with the execution time.

In order to implement sandboxes, virtualization is often used. Virtualization is a
technology aimed at abstracting applications from the underlying supporting hardware,
by providing a convenient Hardware Abstraction Layer (HAL), implemented by an Hy-
pervisor [44]. In other words, virtualization decouples software components and hardware
infrastructure [32]. One of the main goals of virtualization is to maximize hardware
resources utilization, by multiplexing several virtual machines on a single hardware infras-
tructure. Flexibility and portability are also relevant goals for this technology: providing an
abstract hardware layer, virtual machines can be moved (i.e. migrated) from one hardware
infrastructure to another one, in a relatively short time.

Other than resource sharing, any virtualization technology offers isolation among virtual
machines [73]. Software running on a virtual machine (vim) may not interact with software
running on a different vm. By implementing isolation features, virtualization improves
reliability and security, thus containment of the sandbox is enforced. Moreover, deep
inspection of software behavior is possible either with Hypervisor support [52] or thanks to
hardware accelerated support (i.e. Intel VT-d%) [48].

Virtualization also offers a convenient way of starting the analysis by a known state. By
configuring a virtual machine and saving its state in the form of a snapshot, it is possible
to repeat the analysis multiple times, always starting from the same known state. In this
way, results are comparable and it is possible to perform the same analysis even when the
underlying hardware changes, without affecting the VM configuration.

Virtualization drawbacks

Being a convenient way of implementing sandboxes, virtualization is being largely used in
grayware and malware analysis. Therefore, virtual environment detection systems (a.k.a.
anti- VM) have been implemented by malware developers, and are widely used by deployed
malwares [75].

Shttps://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-in

https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices

23

Company and Products ‘ MAC unique identifier (s)
VMware ESX 3, Server, Worksta- | 00-50-56, 00-0C-29, 00-05-69

tion, Player
Microsoft Hyper-V, Virtual Server, | 00-03-FF
Virtual PC
Parallells Desktop, Workstation, | 00-0F-4B
Server, Virtuozzo Virtual Iron 4

Red Hat Xen 00-16-3E
Oracle VM 00-16-3E
XenSource 00-16-3E
Novell Xen 00-16-3E
Sun xVM VirtualBox 08-00-27

Table 2.1: Known virtualization vendors codes

The goal of anti-VM is to inspect the underlying system in order to find some proofs
of being ran on a VM. This goal is achieved with heuristics targeting vendor-specific
products, but also general applicable techniques exist. For instance, when a specific
toolset (VirtualBox Guest Additions, VMWare Tools, etc.) is installed on the Guest OS, an
application may simply detect the existence of those services running on the background,
or scan the registry for known key locations. Even when no toolset is found on the system,
application may recognize known driver signatures installed on the Guest OS. Another
simple way of detecting a virtualized environment is to rely on the manufacturer (OEM)
portion of the MAC address of the network interface card (NIC). Table 2.1 shows some of
the most known virtualization vendors OEM MAC portions, that might be interpreted as
proofs of virtualization environment.

Beside the anti-VM techniques exist, the popularity of countermeasures seems to grow
down [75]. The main reason is that malware coders are now considering virtualization
as a much more common technology, often used even by consumer users. Thus, virtual
machines may still represent valuable victims to be infected [75].

Another drawback of virtualization consist into the overhead caused by the hypervisor
and by the resource sharing among VMs. For instance, by running multiple I0-bound
processes on different VMs, the IO capacity of the hardware media is overstressed. This
phenomenon causes a bottleneck that slows down all the VMs. In general, performance
degradation is strictly dependent on the underlying hardware infrastructure, hypervisor
architecture and number of VMs simultaneously running. This aspect is relevant when
considering the efficiency property of sandboxing: the time of the analysis may increase
proportionally with performance degradation.

Live Debugging

A debugger is a software or hardware tool aimed at examinating the execution of a program,
by inspecting its internal state [75]. By using a debugger, a software developer is able to
check the execution of binary code, instruction by instruction, in form of assembly code
(low-level debugging). Moreover, the developer has full control over memory and registers
of the system, being able to modify their values while running the program itself.

24

Originally debugging was meant to spot potential errors into software components.
However, malware analysis uses the same approach to investigate what a piece of software
does. Security analysts use low-level debuggers in order to detect the program behaviors,
which are hard to spot with simple static analysis.

Live debugging provides the biggest source of information when performing software
analysis, since it represents the deepest inspection technique applicable. On the other hand,
the debugging process is completely manual and requires security expertise interaction. For
this reason, although this technique is useful to analyze particular instances of malware, it
is not applicable to PUP analysis.

Automated Asset Monitoring

In order to perform analysis on a large number of software components, automation is
needed. Thus, debugging is not a viable option in this case. Instead, monitoring tools
represent a convenient way of gathering low level information about software execution;
moreover it can be easily automated. Before presenting existing tools and technique to
audit resource accesses, it is important to identify which are crucial resources we want to
monitor.

On Windows OS, a program may interact with several resources exposed by the
operating system. Particular relevant assets are:

o File System
o Registry
o Network

As we will discuss later in Section 6.2, there are multiple ways of accessing system
resources. On Windows, a particular resource may be accessed through different level
APIs. Some APIs are performance oriented, thus implement a very strict set of operations,
providing low-level access to the resources. That is usually the case of device drivers.
On the other hand, the OS also provides high-level access to the resource, reducing the
developer’s pain, at expenses of performance.

File System. The file system (FS) consists in the logical abstraction of hardware storage
devices [76], implemented by the operating system. Thus, it provides access to data and
system files both to the applications and to the operating system itself. In other terms, the
FS exposes a homogeneous view of underlying hardware devices, which may vary in terms
of technology used. This abstraction consists in a set of files and a directory structure,
mapped on hardware device sectors, cylinders and blocks.

By interacting with the file system, an application may impact on the system behavior
in a permanent way. For instance, an application may overwrite a system executable,
affecting the operating system behavior. Moreover, an application may read and leak user’s
data, by using network connections.

Registry. The Windows registry represents a system-wide database, containing settings

controlling the OS behavior, alongside per-user configurations and system information [71].
By editing the registry, it is possible to control system boot options, decide which

programs have to be auto-started at system boot, configure the windows firewall, etc.

25

Network. A process that interacts with the network may perform unknown operations on
the system, which are hardly guessable a priori. For example, malware may download and
install other malware, or might wait for commands before acting in a certain way. Moreover,
malicious software with network access might leak personal information, compromising
user’s privacy.

Monitoring tools

A process may interact with system resources at various levels, therefore access auditing
may happen at different layers. In general, we might identify the following possible logging
approaches:

e Hardware level
¢ Kernel driver level

o User space level

Hardware tools

The lowest level approach consists in inspecting media access at hardware level [81]. This

goal is achieved by interconnecting specialized devices among hardware components of a

system. Network monitoring is often performed using hardware inspection tools.
Hardware inspection offers some key advantages in respect with other logging techniques:

Inescapability No software component will be able to elude the logger, since every access
to the media is intercepted at hardware level.

Detail level Maximum detail level at hardware layer, skipping every abstraction layer
offered by the OS.

Performance System performance is not affected by hardware loggers, since no system’s
CPU cycle is wasted in logging those accesses.

On the other hand, hardware logging suffers from following drawbacks:

Verbosity Collected data may be too verbose and usually needs to be aggregated
to provide meaningful information

Encryption End-to-End encryption frustrate hardware logging.

Costs Hardware loggers are expensive.

Software tools

Logging at software level is a pretty common technique, natively implemented in Windows
OS (e.g. event viewer and performance counters) and in antivirus products. System
monitoring may happen at two different stages: kernel level or user level. Kernel level
monitoring permits to log the totality of system resources at the lowest software layer,
regardless of the actor accessing the resource (processes, OS). As a consequence, privileged
access is needed to perform kernel level monitoring. On the contrary, user level monitoring
is much more restricted. In fact, this technique only allows to log actions performed by the
current principal over non-privileged resources.

26

An example of kernel level monitoring is a File System Filter Driver”: every access
to the F'S will be passed to the driver, which may log it somewhere on the system (or in
memory).

An example of user level monitoring is given by RegMon®. RegMon is a simple utility
which takes a snapshot of the entire Windows Registry and is able to compare it with
other possible snapshots, calculating differences between them. When launched without
administrative rights, the utility will be able to intercept all the information visible to the
current logged principal.

Among the most used monitoring tools for Windows operating systems, we find the
Windows Sysinternals® utilities. In particular, Process Monitor represents a tool combining
many legacy utilities, aimed at monitoring FileSystem 10, Registry Accesses and Network
operations in real-time [75]. According to its implementation, Process Monitor installs
kernel-drivers in privileged mode and collects data into volatile memory during system
execution. Beside being very powerful, this tools suffers from high memory consumption
when no logging filter is applied.

2.5 Malware Sandbox Analysis Systems

Malware Sandbox Analysis Systems (MSASs) consist of security-minded sandboxes, aiming
at providing a safe environment where to analyze unknown binaries [95]. Therefore, MSASs
generally apply both software and hardware auditing techniques'?, taking full advantage
from cloud technology.

MSASSs can either be Internet-connected or network-isolated. When a sandbox is Internet
connected, the running software is able to communicate with the external network, thus
potentially acting as an infected host. On the other hand, isolated sandboxes only provide
emulated network, so that no interaction is really routed over the Internet. Software may
behave differently according to the connectivity capabilities available within the sandbox.
For instance, some applications may act only in response of commands received from a
remote host. According to the recent malware evolution, Internet connectivity is becoming
a strong requirement for many classes of malware, and becomes absolutely necessary for
many kinds of malicious PUP (offerware, scareware, etc).

MSASSs offer a great resource when combining hypervisor automation capabilities with
dynamic analysis monitoring tools. It becomes possible to automate the information
collection process. Once information is gathered, it may be presented in a structured form,
such as a human readable report. This approach has become rather common lately, giving
birth to Public MSASs [95]. Those services aim at providing public and freely accessible
cloud-based MSAS, which analyze user provided executables. Their goal is to provide
a structured report about software behaviors, detected during the sandboxing process,
stressing potential maliciousness indicators.

Public MSASs might apply both static and dynamic analysis techniques to uploaded
software, and may provide emulated or real Internet connection. Each sandbox might also
provide different environment configurations, such as Guest OS version, hypervisor type,
maximum test durations, etc.

Thttps: //msdn.microsoft.com/en-us/windows/hardware/drivers/ifs /introduction-to-file-system-filter-
drivers
8
https://technet.microsoft.com/en-us/sysinternals
OHardware logging in virtual environment consist in software logging within the hypervisor

27

At the time of writing, two of the most known public and free MSASs are malwr.com
(based on Cuckoosandboz!'!) and hybrid-analysis.com (powered by Payload security). Others,
such as Anubis'?, have turned into commercial products (e.g. LastLine), after being public
long enough to gather data from the samples submitted by users.

2.5.1 Limitations

Classic malware analysis techniques are able to provide valuable information about software
behaviors. Nevertheless, PUPs present some unique characteristics, very different from
classic malware (e.g. they generally offer an UI). Also, PUPs installer are continuously
evolving and evading signature detection, vanishing the work of classic dynamic analysis
through low-level debuggers.

In order to respond to the growing phenomenon of malware evolution, public MSASs
try to automate part of the analysis. However, at the time of writing, we did not find
any public sandbox able to interact actively with offline or web installers. Just to give an
example, by submitting the Avast Antivirus online installer to Malwr.com, we obtain a
poor report, which does not include most of the basic information we might expect. Just
to mention one, the Avast’s executable, which is dropped upon successful installation, is
not listed among the dropped files'3. Also, screenshots of the analysis clearly show the
installation process did not go beyond the first two steps of the procedure. The problem
resides in the poor capabilities of the Ul interaction offered by the MSAS, causing the
anslysis to time out when the Ul asks for user’s input.

MSASSs usually provide uncorrelated pieces of information. For instance, malwr.com
enumerates the dropped files into its section and, separately, the list HTTP requests into
another section. In terms of analytics, it would be crucial to correlate a dropped file to the
relative HTTP request, thus to its source host address.

Finally, MSASs rely on virtualization technology, which may be ineffective against
certain type of malware or PUPs. Beside malware and PUPs are loosing interest in evading
detection in virtual environment, it may still be convenient to rely on a hybrid sandboxing
approach, capable of using bare metal hardware.

2.6 Automated GUI interaction

A relevant part of our work focuses on automating the PUP installation procedure. However,
being nothing more than computer programs, PUPs usually show graphical user interfaces
(GUI or simply UI). During the installation process, the user is supposed to interact with
graphical elements provided by the installer. By doing so, the installer is configured and
the installation process begins. Therefore, it is crucial to find a convenient mechanism
aimed at automatically interacting with the GUI of a PUP installer.

In this section we will briefly introduce the basic concepts of the Windows operating
system. Although most of the basic architectural concepts of the Ul system are common
to any modern Microsoft OSes, we will focus on Windows 7.

"https://uckoosandbox.org
2http://anubis.iseclab.org
3https://malwr.com/analysis/M2IwYjE3NDVIM2QxNDk1ZGExODQxZjFkM2JiNzASMTQ/

28

2.6.1 Windows Ul Architecture

Every GUl-enabled application on Windows 7 is based on two fundamental concepts:
windows and messages [55].

The windowing system, used by Windows 7, is based on an object oriented architecture,
inspired by code modularity and reusability. The base class, that every stand-alone graphical
element must extend, is the Window. In the most general case, a window just identifies
a portion of the screen. Each window may contain specialized child windows (subclasses
of Window), implementing particular graphical widgets. Those widgets are called child
window controls [62]. Examples of specialized window controls are textboxes, checkboxes
and buttons. Thanks to object orientation and to window modularity, the Windows OS
supports hierarchies of windows: each control may have a parent and children.

The Window class implements an interface exposing the WndProc() function [56],
formally named Window Procedure. Beside representing the most important function of
the Window class, the window procedure is inherited by all the sub-classes, which may
specialize it. The main objective of WndProc() is to handle special pieces of information,
called messages, which are dispatched to every window by the OS. Messages correspond
to system’s events, that windows might want to process [55]. In particular, they need
to handle inputs event from the users and special messages from the OS. In fact, user’s
interactions with the windowing system happen through input devices, such as keyboard,
mouse or touch devices. Then, the operating system translates those inputs in events, that
are dispatched to relative windows in form of messages [62].

As an example, we might refer to a very basic use case: button click. Whenever the
user moves the mouse cursor over a button and left-clicks, the operating system generates
a sequence of messages describing both the cursor’s movements and the click event. Those
messages are dispatched to the main window (containing the button) and to the button
itself. Therefore, the WndProc procedures exposed both by the containing window and
by the button are invoked. In order to let the user understand that the button has been
pressed, the WndProc of the button usually repaints the area occupied by itself with a
new pressed button aspect. Once the system detects the mouse left-button release event,
than another message is delivered to the WndProc of the button, which will paint the area
again, making it appear unpressed.

Given the object orientation of the Ul system and the re-usability of most of the Ul
elements, each window has to register its class to the Ul system. This operation happens
thanks to the windows RegisterClass() API function, which takes as argument a structure
describing the window’s class. Among the parameters of that structure, the most important
is represented by a pointer to the WndProc() procedure associated with the class itself.
Once the class has been registered, the program can allocate one or more windows based
on that same class, through the CreateWindow() function. All the window instances, based
on that class, share the same WndProc() implementation.

2.6.2 Low level Ul interactions

The interaction mechanism between user’s inputs and UI elements is based on the message
exchange system. To support this kind of approach, the Windows operating system allocates
one system-wide message-queue and one message-queue for each application’s Ul thread.
Whenever an input event is triggered by an input device, its driver converts that input into
a message, which is sent to the system’s message-queue. The operating system implements
a dispatcher mechanism that continuously looks into the main system queue. Once a

29

message is found, the OS examines it and forwards it to the queue of the targeted window’s
thread. Each UI thread, then, implements a message-looping architecture [62], so that
each message gets popped out of the queue and processed by the associated WndProc().
This message exchanging mechanism is defined posting: the OS (or another application)
may post a message to a window by calling the PostMessage() function and specifying
the system-wide identifier of the target window (also known as window’s HANDLE). The
post operation is asynchronous: as soon as the message is stored in the target’s queue, the
control returns to the caller.

A second way to interact with a window is by sending messages. In this case, the
message is passed directly to the target’s WndProc function, which will react right away,
skipping the message queue. This operation is synchronous: the caller will wait until the
message is processed.

The decision whether sending or posting a message is left to the application developer.
However, the OS itself uses the two methods in different cases. For instance, both mouse
clicks and key strokes events are posted to the queues. This decision strincly finds its
motivation in efficiency and caching. On the contrary, the OS sends a message to the
interested window when the user wants to focus it. Therefore, this operation is executed
synchrounously, and may block the UT in case the WndProc() takes much time.

2.6.3 Basic Win32 Ul messages

Windows defines a very large number of possible messages that windows can exchange.
Many of them are meant to support the standard GUI system, while others are left for
user’s defined functionality[55]. Messages are used by the OS even for the very basic
functionality of the controls, such as element creation, painting, and destruction. In fact,
the whole life-cycle of any UI element is handled by its WndProc() function, handling
messages received from the OS or from other windows. Each basic Ul element should, at
least, handle the following messages in its WndProc():

« WM _CREATE
« WM_PAINT

« WM CLOSE

« WM _DESTROY

When the program wants to create an instance of a window (or a control), it calls the
CreateWindow() function [62], after registering the base class of that window. Then, the
OS sends a WM_CREATE message to the relative WndProc() function, which consequently
provides appropriate functionality in response to that message. In the simplest case, the
WndProc() handles WM_CREATE messages just allocating memory necessary for the control.
At a certain point of the execution flow, the Ul thread will need to show the control it has
created before. This is done by invoking the ShowWindow() function, which will cause the
OS to send another message to the component: WM_PAINT. In response to this message,
WndProc() performs all the needed drawing operations necessary to paint the control on
the screen’s surface. Finally, when the Ul thread exists and the associated resources have
to be released, the WM_DESTROY message is sent to the relative WndProc() function. In this
case, the handler is in charge of releasing all the resources previously acquired, returning
them to the system.

30

The list of messages, handled by every component, may vary in length. For instance,
many Ul elements are able to handle the WM_SETTEXT message: labels and textboxes respond
to this messages by showing the text passed as parameter of the message. Other elements,
such as ComboBoxes or ListViews generally handle XXXX_SETITEM and XXXX_GETITEM
messages (where XXX stands for a component class dependent prefix), in order to react to
selection events.

2.6.4 Windows Ul libraries

So far, it is evident that even a simple GUI-enabled application causes a lot of overhead for
developers, when using low level Windows API to deal with Ul elements. However, many
programming languages and Ul frameworks rely on UI libraries, which facilitate the usage
of the UI system, providing commodity high-level APIs.

For instance, the Microsoft .NET framework implements the so called Winforms li-
brary[61]. This library provides many different widgets ready to use, and provide commodity
high-level api to facilitate their usage.

There are also multiplatform UI libraries, providing similar sets of elements. An
example is Qt'*. Qt is a software framework, using C++, aiming at building cross-platform
GUI applications [18], providing libraries for different operating systems and various
programming languages.

Another framework which is gaining importance nowadays is Sciter'®. This multiplat-
form GUI framework enables native Ul support for HTML5 based frontends. In other
words, Sciter allows developers to use HTML5 and Javascript programming languages to
define the Ul appearance of an application frontend. The framework also uses advanced
hardware capabilities of the hosting system to show powerful Ul animations, providing low
level Win32 API translation.

Each UI library mainly has two objectives. The first one is to provide an high level
interface for the developers, reducing the overhead due to the complexity of native Win32
GUI APIs. Secondly, each library aims at providing good look and feel for applications,
enabling new visual effects. Figure 2.5 gives an idea on how much different two Uls
can be when built via different frameworks. In the proposed images, the top screenshot
represents the first window that appears when installing Avast Antivirus, built with the
Sciter library. On the other hand, the image at the bottom represents a more classic
installation window. In the latter case, the Internet Downloaded Manager’s installer uses
classic Winform elements to build its UL

Windows does not enforce any strict implementation constraint for custom controls and
windows, leaving maximum freedom to the developer. Nevertheless, each library implements
its widgets in a distinc manner. For instance, different Ul frameworks may rely on custom
messages to implement standard functionality and ignore certain messages. For example,
a framework might provide an implementation for textboxes, ignoring XXXX_SETTTEXT
and XXXX_GETTTEXT messages. Instead, the framework may use custom defined messages
for implementing the same functionality. When an external application wants to set a
particular text to the given textbox, it would probably send a XXXX_SETTEXT message,
which will be just ignored by the target window. In that case, the interaction basically
fails.

This framework taks its name by the developer company, Quasar Technologies
http:/ /sciter.com/

31

2.6.5 Inspection tools for windows: Spy+-+ and Snoop

In order to facilitate debugging and try to automate Ul interactions, some software utilities
have been developed. One of the most famous and widely used in the last 20 years is
Spy++16. This tool is currently owned and maintained by Microsoft and belongs to the
suite of the Sysinternals’ utilities, a toolset for debugging and monitoring various aspects
of Windows’ OS. The main goal of Spy++ is to provide information about the windowing
system of the OS, inspecting all the available windows. The most relevant information that
Spy—++ is provides, for each window, is the following:

o Identifier (or Handle)

o Position on screen

e Hierarchy information

e Class name

e Owner process and thread

This information can be used to debug applications or to interact with them. In fact, by
knowing the window’s HANDLE, a program might send or post messages to it. Moreover, it
is possible to determine which message has to be sent by looking at the class of the window.
If that class is documented (or simply is a well known class), then the developer would
probably know which kinds of message does it handle. Nevertheless, it is also possible to
identify different parent-child relationships among UI elements within windows, by taking
advantage of the EnumChildWindows() Win32 API [57].

The way Spy++ works is described by an article available in the MSDN repository!”.
In short terms, this utility sniffs all the messages sent to each window, by registering a
global system hook for the send and post messages operations [22]. Then, whenever a
process sends or receives a message, the hook is triggered, and relevant message information
is copied into a shared memory structure. Afterwards, Spy+-+ reads that memory structure
and provides information about the windows on the screen, in an organized manner through
a simple user interface.

Like Spy++, many other tools have been developed. Many of them behave exactly in the
same way and provide some interaction functionality (Spy+++ only displays information).
In general, they differ for the support offered for each Ul framework. In other terms,
different utilities are aware of distinct window class sets. For instance, Spy++ is only
capable of extracting detailed information out of Visual C++ elements, which provide
known class names and correctly handle most of the standard windows messages. Snoop'®
represents another example. This utility provides advanced information when analyzing
UI programs developed using the Microsoft Windows Presentation Foundation (WPF)
framework!?. Some GUI frameworks provide their own specific inspection tools. For
example, the Sciter framework provides a debugging tool. That tool is capable of displaying
detailed information about the nested HTML elements (composing the frontend): other
generic tools are unable to do the same when dealing with UI generated by Scitor framework.

Y https://msdn.microsoft.com/en-us/library /aa242713(v=vs.60).aspx
https://blogs.msdn.microsoft.com/vchlog/2007/01/16 /spy-internals/
Bhttps://snoopwpf.codeplex.com/documentation
9https://msdn.microsoft.com /en-us/library /ms754130(v=vs.110).aspx

32

2.6.6 Inspection tools limitations

Beside inspection tools are capable of getting much relevant information about on-screen
windows, that is not enough to enable automated interaction in every context. In fact,
when applications rely on unknown custom controls, there is no guarantee about the
message handling feature they will implement. Moreover, applications may not expose
widget modularity, by only providing monolithic controls, generated at compile time by
their GUI frameworks.

An example would be an application showing just one custom window, which handles
all types of message. Figure 2.6 shows a possible implementation of such mechanism.
The application would only generate a single window object, and will just register that
class through the RegisterClass() API call. The associate WndProc() function might
treat messages differently according to an internal mapping, defined within the logic of
the handler itself. Thus, the window is able to simulate behaviors of any type, from
buttons to comboboxes, but only one window element is published to the OS. In this
case, inspection tools will just detect one window, even though the WndProc() is able to
simulate sub-elements.

The proposed case is not far from the reality. The Sciter framework works in a similar
way. When building an Ul on Windows, the framework will just register one window, and
route all the messages to an internal event-handler. This function (WndProc()) translates
those event into DOM events [3], handled internally within the Sciter’s HTML engine.

Beside generic GUI inspection tools are useful with standard GUI implementations, they
do not provide exhaustive information when dealing with advanced graphical interfaces.
Their main limitation resides in the impossibility of inspecting custom monolithic Uls, that
are admitted by Windows. Therefore, Ul interaction mechanisms cannot only count on
such detection techniques.

2.6.7 Image recognition frameworks

GUI analysis may be applied through other techniques. The most generic one is represented
by general purpose image-recognition engines. Those engines are based on digital image
processing, i.e. the process of acquisition and transformation of visual information operated
by a computer [90]. In other terms, they capture images (acquisition), apply a specific set
of filters (transformation) and compute image analysis, i.e. examination of image data to
solve a specific imaging problem [90]. Although the main use cases of those frameworks
mainly concern military and civil applications [90], they can be applied in our context.
Given the scope of our application, the imaging problem consists in identifying Ul elements
on a specific window, so we might automate interaction with them. Therefore, pattern
recognition algorithms serve as great assets for our goal.

At the time of writing, a few opensource computer-vision frameworks are available.
Among the most known we find OpenCV?® and AForge. NET?'. They mainly differ for
application level libraries, performances and functionality; nevertheless, the two can serve for
our goals. In particular, AForge.NET provides both libraries aimed at manipulating images
(filtering) and computer vision algorithms. Moreover it supports some other functionality,
such as machine learning algorithms and evolutionary algorithms [25].

A practical example of functionality provided by AForge. NET framework is given by

2Ohttp://opencv.org/
http:/ /www.aforgenet.com/

33

Figure 2.7. The screenshot shows an use case of the AForge. NET library, applying shape
checking algorithms to an image with black background. The image clearly shows that
AFgorge. NET is capable of identifying a series of geometric shapes such as quadrilaterals,
triangles and circles.

2.6.8 Optical character recognition techniques

Among computer vision applications and image analysis techniques, one is particularly
relevant for our scope: optical character recognition (OCR). This technique is defined as
the process of extracting textual information out of a digitalized image. In general, this
process is characterized by two stages: text preprocessing and text identification [40].

Image preprocessing consists in applying a series of filters or transformations to a
digitalized image, aimed at removing non-significant pixel information (noise) out of the
source image. If the source of information is in a material form, digitalization is required:
this is usually performed through cameras or scanners. Afterwards, in the preprocessing
stage, the source image is manipulated with transformation tools. In particular the image
is oriented through rotation or flipping, while color information is removed (usually through
binary threshold filters). Then, potential text areas are identified through computer vision
algorithms. Finally, text identification is applied, using the technology specific of the OCR
library used.

One of the most known opensource OCR engine is Tesseract?? [40]. This software
framework solves the second part of OCR process, i.e. performs text identification starting
from a digitalized image. In case a source image needs any preprocessing phase, another
framework has to handle that. Thus, Tesseract is usually used alongside one of the
major computer vision libraries, such as OpenCV or AForge.NET, which provide tools for
preprocessing images before applying text identification techniques.

Text recognition technologies are particularly relevant for our scope, because they can
be used to extract information out of the Ul during of an installer process. In particular,
it is possible to use them in conjunction with other image analysis algorithms in order to
identify buttons, checkboxes and other Ul elements, even when they belong to monolithic
custom controls.

2.6.9 UI automation frameworks

Automating interactions with GUI is an important objective with several use cases. One of
the most common is software test automation. In this particular case, automating GUI
interaction allows the developers to run a suite of predefined tests and check for their
results, speeding up the testing processes and drastically reducing costs [15]. For instance,
IBM offers a specific framework for developing test-cases and automating GUI interaction,
called Rational Functional Tester (RTF). The framework enables developers to design
functional and regression automated tests, supporting a variety of applications, such as
.NET, Web, Java [5].

Another relevant application of Ul automation frameworks consists in automating
software deployment or configuration. This can be done by simply simulating user’s
input programmatically, based on timers or in response to Ul events. A widely adopted
tool, serving this matter, is Autolt??. Autolt mainly consists of a BASIC-like scripting

https://github.com/tesseract-ocr/tesseract /wiki
Zhttps://www.autoitscript.com /site/autoit/

34

language, aimed at automating Windows GUI. This scripting language provides high-level
functionality to automate winform applications, enabling users to simulate keystrokes
and mouse events on the running system. Although being a community-based freeware
platform, providing no warranty neither paid support, Autolt has been successfully applied
to industrial contexts [24].

When dealing only with native supported Windform or Visual C++ widgets, UTAtuo-
mation?? library provides another automation framework to work with. Developed by
Microsoft, this library is capable of providing programmatic access for most of the Ul
elements natively supported by the operating system. In other terms, UlAutomation
consists of a library able to interact with any native windows window and expose its
information in convenient way, hiding most of the background low-level messaging system.

It is worth to notice that automation framework only enable GUI interaction, but still
require manual configuration. In fact, all the cited frameworks need scripting configuration
for each different use case. For instance, we might use Autolt to script an automatic
installation of the Microsoft Office package. Once the automation script is ready, then
we might use it to automatically deploy the same package on many different machines.
However, using the same script with another installation package would probably fail
to install the software. This situation is a consequence of the many distinct and highly
configurable GUIs, used for application deployment. Therefore, automation frameworks by
themselves are not able to automate every installation process. Instead, they need some
scripting inputs, which could be produced by another application component, which is
aware of the installation context.

2.6.10 Installers vs Applications, considerations

Some operating systems enforce installation procedures, by providing standard GUIs
and OS native support for application management. Android™ ?° is one of them. This
mobile operating system implements some standard installation procedures and enforce
them thanks to a dedicated module, called Packagelnstaller [29]. Thus, regardless of the
application being installed, the Packagelnstaller always shows a standard and uniform
installation GUI. It gives information about the application name, developer and required
permissions. Moreover all the installer files have to comply to a standard format, called
APK, which is the only one processed by the Android Install Manager. Given such a
context, it is rather easy to discriminate installer files (APK) from other executable files;
moreover automation of GUI interaction would be straightforward.

However, our application focuses on Windows OS. Every application running on win-
dows is potentially an installer. Therefore, there is no systematic way to discriminate
installers GUIs from application GUIs, theoretically. However, when observing windows ap-
plication installers, GUIs tend to be homogeneous. One of the main reasons depends on the
usage of installer builder frameworks. They enable semi-automated GUIs implementation,
facilitating application deployment procedures. Hence, installers bundled with a common
framework tend to be similar, in terms of exposed GUIL. Moreover, some installation
frameworks are very popular, therefore they have somehow imposed a de-facto standard for
installing GUIs. An example is the Windows Installer system. When running a MSI file
through the MSIExec service, the GUI is built from templates, filled with the information
contained into the MSI file. That information describes the Ul at an high level, by using

Zhttps: //msdn.microsoft.com/en-us/library /ms747327(v=vs.110).aspx
Zhttps: //www.android.com

35

concepts like windows, buttons, labels, dialogs,checkboxes and so on. In this way, the GUI
is generated at runtime, matching the look and feel of the installing system. Another
example regards the executables produced by popular installer builders, such as Install
Shield and Inno Setup. Both these frameworks produce most of the binary files following
a fixed file structure. Therefore, unpackers (a.k.a. decompilers) have been developed
in order to manually extract information about these kinds of installers. For instance,
archive extractors like Total Commander or 7zip may be able to extract files out from
self-extracting installer. Still, those methods only enable partial extraction of bundled files,
providing no further information about the installers.

36

,@ﬁ:lm:lst! Suomalanen v X

Avast Free Antivirus Asennus

Asentamalla tai kayttamalla tata ohjelmaa hyvaksyt seuraavan
Kayttooikeussopimus

Mukauta

Avast Antivirukseen siséltyy Avast SafeZone

» Avast SafeZone on maailman turvallisin selain, joka on luotu yhieistydssa Avastin tietoturva-
asiantuntijoiden kanssa

» Se estda mainokset, valesivut ja hakkereiden hydkkaykset
* Se tarjoaa myds lisdsuojan verkkopankin kayttdon

o Internet Download Manager Installation Wizard .

program. This program will install Internet

@ Welcome to Internet Download Manager Setup
Download Manager on your computer.

It is neccessary to dosze all web browsers before running this
Setup Program. Click Next to continue installation.

WARNING: This program is protected by copyright law and
international treaties.

Unauthorized reproduction ar distribution of this program, or
any portion of it, may result in severe civil and criminal
penalties, and will by prosecuted to the maximum extent
possible under law.

Mext = | | Cancel

Figure 2.5: Appearance comparison between two installers. On the top, Avast Antivirus
Installer, built with Sciter. On the bottom, Internet Downloader mangager, built with
InstallShield.

37

void WndProc(struct message msg, ...) {

switch (msg.code) {
case WM_LBUTTONDOWN:
if (concernsBtni(msg.x, msg.y)) {
handle_btl_event(msg);

}
Monolitic approa ch———————»}
break;
//... more logic ...
}
//... more logic ...
GetchildWindows() -> returns NULL |
Button 1
Main Window void Nnd?roc(stru:"c_message msg, L A{
// ... window specific handlings
}
Vodul Child Window
Modular
" 9 void WndProc(struct message msg, ...) {
Child Window —» // ... button specific handlings

3

GetchildWindows() -> returns
[child_win1, child_win2]

Figure 2.6: Comparison between monolithic GUI approach and modular GUI approach.

File Help
Legend

Dﬁ'cles .Quadlilatemla . Known quadrilaterals . Triangles . Kriown trizngles

Figure 2.7: Example application provided by AForge.NET applying shapes recognition
algorithm.

Chapter 3

Related Work

Beside the PUP threat was little addressed in the past, recent researches show users starting
to care about those [83]. Antimalware companies are offering client-side solutions to fight
the PUP threat, while academics are focusing the research over the PUP area, as proved
by a recent massive PPI distributors study [86].

Despite some tools exist for automated malware analysis, there is no specific system
aimed at studying the PUP phenomenon. At the best of our knowledge, the system we
propose is the first one targeting automated PUP analysis, taking care of a number of
challenges not directly addressed by current available sandbox mechanisms.

3.1 Automated Malware analysis

Potentially unwanted programs are semantically different from malware, nevertheless they
still share many common aspects with spyware. Current solutions aimed at analyzing
spyware threats include client-side anti-spyware engines and cloud-based sandboxes. While
the former runs on the users’ systems, the latter runs on the cloud, performing automated
and unattended analysis.

3.1.1 Anti-spyware solutions

The majority of antimalware vendors have already recognized the popularity of the PUP
threat. Thus, they have started to integrate PUP signatures within their databases,
offering a basic layer of protection against this threat. However, two problems affect classic
antimalware products. The first one is the difficulty in detecting new PUP versions. The
second regards legal implications caused by automatic PUP removal and false positive
detections.

Concerning PUP detection task, the majority of current antimalware products im-
plement active PUP recognition by inspecting a subset of potential dangerous behaviors,
commonly exposed by PUPs [8, 34, 47]. Those actions are listed in 2.3.2. Moreover,
other compoanies adopt more aggressive detection policies, based on heuristics. As an
example, Symantec implements a specific heuristic aimed at spotting PUPs, formally named
SONAR.PUA!gen5 [85]. Another more conservative way for detecting PUPs is by relying
on user’s consent. As an example, Malwarebytes offers a support forum where to publish
PUP or false positives, so that balcklisting/whitelisting is possible [46].

Given the ambiguous legitimacy of PUPs, antimalware products are facing legal issues
in performing automatic clean-up of such type of software, because users tend to give their

39

40

uninformed consent to their installation [19]. As a consequence, antimalware products
do not have the explicit right to remove that software, because they cannot verify the
legitimacy of PUP installation.

In order to find a trade-off between PUP removal and consequent legal issues, anti-
malware vendors apply different strategies. Some vendors chose a conservative approach:
antimalware might spot the PUP threat but will not take any action against it. It would
just warn the user about the threat and leave the final decision to him. Such an approach
is often choosen as the default behavior of many antimalwares, such as Malware bytes’
Anti-Malware PRO [50]. Another possibility is the one applied by FEset’s Nod32, which
asks the user whether activate the PUA protection at install time. By doing that, the user
gives its consent to automatically remove potential unwanted applications, as soon as the
antivirus engine spots them.

Main limitations of client side antimalware solutions heavily depend on the user’s ability
of understanding the PUP threat. Indeed, the majority of antimalwares tends to be quite
conservative when it comes to automatic PUP removal. Moreover, those products do
not keep track of the Ul offered during software installation, which instead offers relevant
information for classifying PUPs [17, 21].

3.1.2 Sandbox Analysis

The closest tools available today for analyzing fast-spreading PUPs are MSASs. The
Cuckoo Sandbox' represent an effective option for analyzing unknown software, but sill
lacks of crucial automation aspects for interacting with installers UI. Also, MSASs generally
require virtualization technologies to perform malware analysis, which sometimes may be
too restrictive for certain classes of PUPs or malware.

A similar approach has been adopted by Stamminger et al. while analyzing spyware [82].
Differently from other systems, Stamminger et al developed a virtual sandbox that takes
into account UT interaction (even though little information is given on the UI interaction
mechanism) and collects information to discriminate spyware from malware. On the other
hand, that analysis system focuses on browser extensions. Therefore, it only describes how
many installers installed a browser helper or plugin, but does not consider possible third
party utilities, such as fake anti-malware or registry cleaners.

Thomas et al., in a very recent study [86], investigated the PPI networks applying both
sandbox analysis and automated PUP binary collection. After manual inspection of a
large number of PUP downloaders, Thomas et al. reverse-engineered some PUP download
protocols from different PPI distribution networks. Then, special crawlers (milkers) were
developed in order to collect PUPs in large quantity. Gathered PUPs were finally ran on a
sandbox, without any UI interaction mechanism (which would not be necessary at this
stage). However, the emulation of PUP installers is subjected to protocol variations. As a
result, reiteration of the study requires new manual inspections of PUP installers, in order
to reverse-engineer new versions of the protocol. The same limitation affects the case in
which new PPI networks arise. As a result, the proposed analysis mechanism of Thomas et
al. does not meet requirements for an automated PUP installers inspection system.

Some malware started to react to public Internet connected MSASs, by blacklisting
their ip addresses [95]. So, some bare metal or hybrid sandboxes have been developed.
Spensky et al. introduced Lo-Phi, a monitoring mechanism taking advantage of special
hardware for auditing [81]: malware hiding in virtual environment did not evade that metal

Thttps://cuckoosandbox.org/

41

sandbox. However, the costs of high-specialized hardware is relevant and that approach
does not offer any facilitation for Ul automation.

Another kind of approach is offered by DRAKVUF™?2, This technology relies on Intel’s
hardware assisted virtualization capabilities (VT-x), in order to implement transparent
in-depth analysis of unknown software. DRAKVUF is built over XEN virtual machine
manager and is able to analyze binary code execution within its VMs, reducing the number
of artifacts exposed to the running software [49]. DRAKVUF basically combines low level
inspection techniques with automation-capable virtualization technologies. However, like
all the other solutions presented, it still does not implement any GUI automation approach
to interact with the unknown software being analyzed.

3.2 Automated Ul Interaction

Concerning GUI automation, many research works focused on automated GUI testing
and validation. Among all, Grilo et al. [35] presents a reverse-engineering based approach,
aimed at automatically extracting GUI models during application execution. This goal
is achieved by using Microsoft Ul Automation libraries®. Unfortunately, Ul Automation
alone is not able to deal with custom native GUI, thus this approach is not robust enough
for analyzing certain classes of software.

Murphy Tools [16] offer a way of automatically extracting GUI models from applications,
with a platform independent approach. Its goal is to improve previous GUI extraction
tools in a platform independent way, by providing a modular architecture and pluggable
UI drivers (os dependent Ul scanners). Its goal is to generate automatic GUI tests model,
by dynamically crawling the application GUISs, testing all the possible user interactions.

Automatic interaction for software installation is also addressed by a number of com-
mercial products. Silent Install Builder claims the ability of automating installers produced
by popular frameworks, such as InstallShield, Inno Setup, Nullsoft Installer and Windows
Installer [9]. However there still are unhandled installer frameworks, such as Self-Extractors
and Sciter, which require manual Ul automation scripts. For instance, we were unable to
perform unattended installation of Spotify*, a popular music streaming application.

http://drakvuf.com/
3https://msdn.microsoft.com /it-it /library /ms726294(vs.85).aspx
“https://www.spotify.com

Chapter 4

Problem Statement

Boosted by its valuable business model (PPI scheme), the distribution of PUPs has become
a relevant phenomenon, estimated as 60 million download attempts per week [86]. In
response, the majority of antimalware companies have developed proprietary techniques
aimed at contrasting the PUP threat[8]. Most of those techniques share the same basis:
they classify PUPs by looking for a set of particular behaviors, as listed in 2.3.2 [33].
Although PUP classification is still a hard-to-tackle problem, there are few tools aimed
at studying the PUP phenomenon. Moreover, most of them rely on classic antimalware
products, installed on users’ machines. Such an approach has a series of drawbacks:

e The PUP analysis happens on client side, at the time the PUP is being installed. Its
analysis is triggered only when it reaches the users’ systems.

e In order to identify PUP distributors in the PPI model, client-side solutions require
collection of user’s browsing history. As a consequence, installation of security toolbars
or extensions is necessary in order to track the provenience of PUPs. However, toolbars
might negatively impact on user’s experience. Moreover, users might disagree to
disclose their browsing history with antimalware vendors.

e There is no support for automated PUP analysis: current MSASs systems are unable
to click through the installation process in a reliable way.

e In order to avoid legal issues, most of antimalware companies require users’ feedback
to confirm the PUP classification for the binary [27]. That feedback might arrive
several days after the first spread of the PUP, letting the infection grow in the
meanwhile.

e Current systems do not take into account the Ul presented by the installer program
at runtime. Those Uls contain relevant information that might facilitate a better
classification of unwanted applications, via common EULAs [21] or graphic patterns.

e A program may explicitly expose none of the dangerous behaviors, still it might be
undesired for the users. In such cases, classification based exclusively on dangerous
behaviors is ineffective.

In order to tackle those issues, we developed an automated system, capable of au-
tomating software installation and analysis. By taking advantage of Ul-recognition and
OCR technologies, alongside experience-driven heuristics and malware dynamic analysis

43

44

techniques, we adapt classic malware analysis approaches to a new class of software, not
necessarily malicious, defined grayware. As a consequence, the result of our work provides a
new powerful tool in the fight against the PUP threat. In doing so, we addressed a number
of challenges, described in the following sections.

4.1 Automating software installation

At the best of our knowledge, there is no automated system aimed at analyzing PUP
installers. Current automated solutions mainly target malware, which generally hide itself
to the user. Thus, Ul interaction is not directly addressed by those solutions. PUP
installers are different: they rely on user habituation and consent-extortion, by displaying
complex and incomprehensible EULAs [17], alongside linear and simple interfaces during
the installation processes. Thus, our goal is to provide a way of emulating a habituated
user, who puts low attention at the installing process and potentially falls in the trap of
PUP installers.

4.2 Data collection and correlation

While classic malware directly alter data in the user’s system or silently steal information,
PUPs may monetize by affecting user’s system in many different ways. One of the most
common ways is to pretend to offer better search results while surfing the web, altering
the classic web surfing experience. Invasive advertisements and surfing data collection
constitute common ways for earning revenues, in this context. PUPs may also led to the
installation of other software, for which no warranty is given.

As a consequence, it is crucial to monitor all the most relevant assets of the system,
such as network, file and registry accesses, similarly to classic antimalware software. At
the same time, the analysis system must take care of collecting information about the
structure Ul structure proposed during the installation phase. Moreover, the information
needs to be collected in aggregated form, providing a convenient way to query and mine
gathered data.

Differently from classic antimalware approaches, running on users’ systems, our analysis
system must collect information about the source of the analyzed sample. In this way it
is possible to extract valuable correlations. Once an installer has somehow been found
responsible of installing PUPs, the system must be able to answer questions like the
followings:

e Which other installers installed the same PUPs?
e Where did this installer come from?

¢ Is this installer distributed by other distributors?

4.3 Scalability and performances

Potentially unwanted software evolves rapidly. Nowadays PPI distributors are evaluated to
trigger as many as 60 million of download attempts per week [86]. With such a market,
the number of PUPs grows rapidly. Within this context, the performance of the analysis
process plays an important role. Therefore, the analysis has to be engineered in order

45

to perform thousands of analysis per day, and to scale up performance conveniently. In
particular, we identify two important performance counters: the throughout of the analysis
system and the time taken by every single analysis. The former represents the number
of analysis that the system is able to perform in one minute. If dealing with millions
of download attempts per week, the system must be able to scale up to thousands of
analysis per day. The latter expresses how long does a single analysis take. In this case,
our objective is to limit the single analysis time to a few tens of minutes.

4.4 Avoiding MSASs detection

Automated systems for analyzing malware exist. They take the name of Malware Sandbox
Analysis Systems (MSASs). Beside they offer a convenient way of collecting behavioral
information about the analyzed binary, they still suffer from easy detection [95]. Most of
those anti-MSASs techniques are based on virtual environment detection, taking advantage
of artifacts affecting the virtual sandbox. Therefore, some malware may behave differently
when a sandbox environment is detected, biasing the analysis.

The analysis system presented in this work should then implement convenient counter-
measures to MSASs detection, as secondary objective.

Chapter 5

Design of a Windows PUP

analysis infrastructure

In this chapter we present the general design choices adopted to develop our automated
MSAS, aimed at analyzing PUPs on Windows OS. The first part of the chapter is
dedicated to our objectives. It follows a general presentation of the infrastructure, from
high architectural level. After that, we focus on each sub component of the infrastructure,
presenting its roles and objectives, describing its main characteristics.

5.1 Design goals

The starting point of this work is the concept of MSAS. Malware Sandboxing Analyzing
Systems provide a safe and scriptable environment where it is possible to analyze malicious
software. Indeed, MSASs already tackle most of the limitations of other malware analyzing
approaches, such as:

Signature based detection. Malware evolves very fast, thus simple signature based detection
is ineffective, especially against 0-day attacks

Simple static analysis. Malware is generally packed: static analysis technique is ineffective
for analyzing malware.

Reverse Engineering and Debugging. Both reverse engineering and debugging require human
interaction and are not applicable for large scale analysis.

Beside being particularly effective against malware, those sandboxes are characterized
by a number of limitations, making them inappropriate for PUP analysis. As previously
anticipated in Section 2.5.1, we identify the following problems when dealing with MASAs
and PUPs:

e Missing automated GUI interaction
e Poor information correlation

e MSASSs artifacts can bias analysis

Our primary objective is to evolve the classic MSAS, by addressing those limitations.
In other words, the main goal of this work is to provide a fully automated analyzing

47

48

infrastructure, able to download, install and analyze software installers, on Windows OS.
To do so, the MSAS has to take into account GUI interaction problems, should provide
conveninent and menainful data correlations and should offer some defense against MSAS
detection mechanisms. Moreover, in order to facilitate further analysis, our idea is to store
collected data into a centralized database, as well as providing human-readable reports for
single PUP analysis.

Secondary objectives address the efficiency, scalability and flexibility of our design.
Moreover, performance represents a key factor in our system. Indeed, in order to be effective
against the fast spreading of PUPs, PUP analysis should take a relatively short amount
of time. At the same time, data collection has to be detailed enough to spot relevant
correlations. Thus, some trade-offs have to be achieved: too much verbose data collection
causes longer analysis periods. For this reason, it is necessary to develop a scalable system,
relying on a distributed architecture, taking advantage of multiple hypervisors and
cloud technologies. To achieve such objectives, we designed the whole system with
software modularity in mind, applying - when possible - multiplatform technologies.

Finally, in order to avoid MSAS detection, our design has to take into account side
effects caused by virtualization technologies. Thus, the system should be able to perform
malware analysis on non-virtualized systems, usually named bare metal systems.

5.2 Architecture

As any MSAS, our system has to take into account different aspects of unknown applications
analysis. Thus, as main design principle, we applied separation of concerns, following the
divide et impera idea [89]. This means that every part of the architecture aims at serving
for a specific set of tasks, solving particular issues.

From an high level perspective, the system architecture has to comply with the process
defined in Figure 5.1. The first task of our system is to gather application binaries and
relevant associated metadata. The consequent action is to analyze the collected binaries,
producing verbose analysis data. Then, that data has to be aggregated in a structured
manner. The last step in the process corresponds to data analysis and result evaluation.

ol LGy Analyze application Aggregate data Analyze data

application

Figure 5.1: PUP Analysis process

In order to implement such a process, the infrastructure must take care of:
e Collecting binary sources to be analyzed

o Administrating the sandboxes

e Performing execution analysis

e Storing results

o Analyzing data and produce reports

To serve those demands and hit our goals, we designed the system with a multi-tier
distributed architecture. Figure 5.2 shows an overview of the architecture scheme.

49

Internet

Crawler
X

— >
h | 4

CNET.com

HostController 1
Crawler

VM N

Hypervisor (Vbox)

Network
Sniffer

FileHippo.com

Crawler

Softonic.com
HostController 1

Hypervisor (OpenStack)

Network
Sniffer

N U\ AN PN J

&
!
|

SourceForge.com Crawler
Installers

repository

4 4 Vo

Job fetching Results storage Sandbox administration Job analysis

Figure 5.2: Architecture Overview

5.2.1 Overview

Four different modules layers take into account distinct aspects of the system. More
specifically, the entire architecture is composed by the following entities:

o Crawler(s)

o Central database

o Host Controller(s)
o Guest Machine(s)

A relational database (er-db, or simply db) represents the central point of the architecture.
The database holds all the metadata regarding the binaries to be analized, which are instead
stored on a shared network location. The combination of a binary file with its associated
metadata is a job. Crawlers are software modules in charge of scanning the network and
collecting jobs, by storing the binary data and the relative metadata, respectively on the
network share and the db. At the same time, the database also manages results of previous
executed jobs. The analysis of each job occurs in isolated machines, called guest machines,
with dynamic analysis and asset-monitoring techniques. Guest controller are not directly
attached to external network, instead their traffic is routed through special network entities,
named sniffers. Sniffers both provide basic networking services to the guest controllers

20

and at the same time provide networking sniffing capabilities. In between guest machines
and central db, we find one or more host controller. Those software entities are in charge
of managing the life-cycle of guest machines; moreover they fetch jobs from the central
db and serve them to guest machines. Once the analysis of a particular job is done, host
controllers also elaborate the results and store them in the central db.

The proposed scheme clearly points out both scalability and flexibility capabilities of
the infrastructure. In first instance, a certain number of crawlers can simultaneously collect
information from different software distributor’s websites. Those crawlers may run on the
same host where the DB is installed, or may be external, relying on network communication
to access the DB. At the same time, multiple host controllers can collaborate in job analysis.
Several machines are managed by each host controller and run in parallel: each machine
handles a distinct job. Moreover, a single network sniffer serves many guest machines, and
collaborates with the host controller associated to those machines. Once the analysis is
concluded, gathered data is returned to the associated host controller, which integrates
network information (gathered from the sniffer) and stores everything into the central db.

As a drawback, the central database might possibly cause the bottleneck of the infras-
trucure; moreover it represents a single point of failure of the entire architecture. However,
in order to avoid db-bottlenecks, the system minimizes the number of queries processed
against the DB. Moreover, host controllers and crawlers use timers in order to perform
retries attempts in case of failures. On the other hand, no specific software countermeasure
has been adopted for solving the single point of failure problem. In that case, hardware
redundancy and High-Availability (HA) technologies can serve for this matter, at hard-
ware level. Detailed implementation choices, regarding the database querying system, are
exposed in the next chapter.

5.2.2 Crawlers

The job fetching area of scheme shown in Figure 5.2 is characterized by crawlers. Generally
speaking, a crawler is a software module specialized in automated web traversal, extracting
useful information out of visited pages [37].

The main objective of crawlers in out infrastructure is to collect inputs for the system.
In particular, the following list enumerates inputs for our system:

Application binaries: Binary data of the program to be analyzed

Application file name: File name of the downloaded program

Application hash: MD5 hash of the downloaded data

Download URLs: Full web host and path of the downloaded program.

Download date: Date and time in which the program has been downloaded

Popularity: An optional index, associated with the application, representing its popularity

FEach successful downloaded binary represents an input job for our system. Once a
crawler finds a new application, downloads it and calculates its MD5 hash, taking note of
source URL and download date. Then, it stores binary-related metadata into the db, as a
job. However, the database may refuse the job, by checking MD5 hash and download URL.
If there already is a job with the same URL source and same hash, the database refuses
the new entry. On the other hand, the database will accept a job with same hash but

ol

Same hashes Different hashes
Same URLs No change (Refused)

DIV SIS ANBIRANEN A pplication spreading (Accepted) | New application (Accepted)

Binary updated (Accepted)

Table 5.1: Database jobs acceptance policies, applied when in case two jobs share hashes
or source urls.

Domain Global Rank |
cnet.com 171

softonic.com 247

sourceforge.net | 316

filehippo.com 696

Table 5.2: Alexa.com rankings of most known freeware download websites

different source URL, or with same URL but distinct hash. In this way, the db will contain
information regarding both the “evolution” and the “spread” of a certain application, as
described in Table 5.1.

The current implementation of the described infrastructure provides four similar crawler
implementations. In fact, given the PPI business model behind PUPs, most of the
applications are distributed through centralized websites (affiliates). For this reason, we
focused our attention on the most important freeware software distributors at the time
of writing. Thus, the most four popular freeware distributor websites have been selected,
according to the Alexa’s global rankings', as shown by Table 5.2.

For each website listed in Table 5.2, a specialized crawler has been developed. Moreover,
each website in the list offers an internal ranking of most popular freeware downloads,
therefore a popularity index has been derived directly by the download websites.

5.2.3 Central DB

The central node of the entire system is the transactional database, which implements a
number of important roles. More specifically, the database is in charge of storing both
inputs and outputs of the system. Furthermore, it resembles the synchronization point
of the entire distributed architecture: every crawler and host controller will interact with
the same db instance. Thus, from a technical point of view, the database is used as
synchronization mechanism to coordinate all the system components.

The logic scheme in Figure 5.2 demonstrates how the database both servers as input
buffer and output storage. Moreover, the same db is used as transactional storage for
ongoing analysis.

The db schema used in our system is based on several entities, which are grouped among
three categories: inputs, outputs, transactional state. More specifically, Figure 5.3
exposes the entity-relational (ER) relationships of db entities taken into account.

The system fulcrum is identified by the experiment entity. An experiment represents
the conjunction of inputs and outputs. In other words, an experiment links specific inputs
to relative outputs. For each configuration of inputs, there will be an associated experiment
record, to which outputs will be linked.

"http://www.alexa.com

|

Http download

Job }o—r Aggregator
Pending network —
analysis)
Test
% configuration
Worker -—
—t
G —
——+ Experiment
— Network protocol
. L
Registry changes e
 CEE—
I
— Http request
New apps >0———— U
G —
e ————————
Networl_(
conversation

Legend

Entity Transactional State

Figure 5.3: DB ER diagram

Inputs of our system consist of jobs and associated test-configurations. A job
identifies an application to be analyzed. Thus, it is mainly characterized by a cryptographic
hash, download date and source URL. Binary data, associated to a job, is not stored
directly on the database: instead the db contains path references to network locations,
where binary data is available. Moreover, each job is linked to the download website where
it comes from, named aggregator. The relationship between jobs and aggregators is useful
to impute potentially source of PUPs to one or more affiliates or PPI distributors. Another
input of the system is the configuration of the test environment. As we will describe later
on, our system offers some parameters that can be tuned. Thus, it is important to keep
track of the system configuration used for each analysis. In this way, it is possible to
identify different behaviors of an application under various configurations, in order to spot
similarities or anomalies.

The number of entities concerning the outputs is considerably higher. Indeed, we can
group output entities in four main sub-classes:

e Network
o File system

o Registry

93

e Control panels new apps

Regarding network data, the system intercepts used protocols, http requests, tcp/udp flows
(conversations) and http downloads. Moreover, statistics about network flows are collected
into the network conversation table, which also takes track of contacted hosts addesses,
alongside the number of exchanged bytes. Finally, http requests and downloads metadata
are collected, such as source host address, path and so on.

Data regarding file system access is based on three entities: file accesses, files and
file system changes. The first entity, file access, models every attempt performed
by the application when trying to open a file (with write access), based on its path (on
the FS) and a sequence number. Each file access is referred to a file, which is basically a
sequence of bytes. Thus, the files entity contains hashes (cryptographic and fuzzy) of
every file encountered during the analysis. In order to quickly aggregate file system changes
performed by a certain application, a new entity is derived: file system changes. This
table contains the path of the affected file and some binary flags describing the outcome of
application interaction(e.g. new, modified, deleted).

The entity Registry changes registers all the interactions between the analyzed
application and the Windows registry, similarly to file system changes. This table
presents, in an aggregated way, the results of application execution over the Windows
registry. In particular, for each affected registry key or value, three flags express the
outcome of the interaction (new, modified, deleted). Moreover, in case of edited or deleted
key /values, the entity takes track of new nad old key/values, thus offering a clear vision of
what has been modified and how.

The last output information provided by the system is new apps. This entity maps the
new installed apps detected by the operating system upon application execution. In other
words, new apps contains the list of new records spotted into the control panel Installed
programs. A new record into that list is not necessary and sufficient condition to determine
successful application installation. However, it still provides a quick hint to spot installed
programs following the Microsoft best practices.

The third group of entities contains implementation-related temporary objects, nec-
essary to the system during its running state. Indeed, transactional state group includes
worker and pending network analysis entities. A worker represents a running machine
performing one job analysis. Thus, this entity contains data useful to administrate that
machine, such as start time, id of the job, number of execution attempts and so on. On the
other hand, pending network analysis maps part of the data aggregation process, and
it is used to store jobs that have completed but still are lacking network data processing.

5.2.4 Host Controller

The host controller (hc) represents a fundamental part of the architecture. In general terms,
we define an host controller as a stand-alone software component, aimed at orchestrating
the life-cycle of analysis sandboxes. Therefore, an host controller is in charge of starting the
machines, serving them the job to analyze, retrieving the results from them and shutting
them down (or restarting them).

From software point of view, host controller implementation aligns to Figure 5.4. The
main software components of this architecture are the database interface, the main logic
module and the machine manager interface. The logic module is in charge of administrating
the whole host controller, therefore it closely interacts with the other software components.
The database interface handles data persistence, in accordance with the particular database

54

Hypervisor 1 Hypervisor 2 Bare metal machines

.)] | 1
Communication Communicates Communiates Communicates
[1

Channels H H !
1 1 1

Machines

i — Hypervisor API Hypervisor API
Drivers yp A Driver

Host Controller
Module

Adapting logic Adapting logic Adapting logic

Machine manager interface

< DB Interface Host Controller Logic
o
Databse N
ost controller

Figure 5.4: Host controller modular software architecture

technology used. In order to independently handle both virtual machines and bare metal
machines, an uniform abstraction layer is necessary. Thus, a common interface has been
defined: machine manager. As a consequence, interoperability of host controllers is easy to
extend to many different hypervisors, as well as bare metal machines, by just implementing
hypervisor-dependant middleware.

Among the main tasks assigned to the host controller, machine life-cycle management
is the most important.Figure 5.5 describes life-cycle of guest machines through a state
diagram.

The host controller has to allocate and to setup a parametrized number of machines.
After that, the hc will start them. Once booted, each machine requests a job to the host
controller, which queries the central db in order to atomically pop one job, marking it as
assigned. In this way, multiple host controllers may require jobs at the same time, but
each hc gets a distinct job.

Given its nature, the analysis state may persist for a relative long period of time,
compared to the other states. Moreover, the machine may fail the analysis and might
enter an unrecoverable internal state. For instance, this situation might happen when a
buggy application is submitted for analysis. That program may cause a hard failure of
the operating system, causing a Blue Screen of Death (BSOD)2. To recover these possible
failures, host controllers are in charge of monitoring the execution of the analysis. This is
done by starting a timer at the moment in which the job is served to the guest machine.
When the timer expires, if the job has not completed yet, the host controller reports failure
state into the central DB, hence takes care of hard resetting the relative guest controller.

Whenever a machine completes the analysis of a given job, a XML report is returned
to the host controller. The hc will then persist the report on its disk and will update the
database accordingly. After that, the host controller will revert the state of machine which
has completed the job. In this way, each machine always starts the analysis from a known

https://msdn.microsoft.com/en-us/library /windows/hardware/ff547224(v=vs.85).aspx

95

INIT Stopped Started

END Reporting Analyzing

Figure 5.5: Machine life-cycle

clean state, named started, according to the Figure 5.5.

Figure 5.6 represents a flow diagram describing how each host controller works. More
specifically, the bottom part of the chart marks the parallelism between the result listening
task and the jobs serving task. It is crucial to to ensure a good grade of parallelism, in
accordance to the number of machines handled by each host controller. In fact, implementing
concurrent operations, the host controller increases the throughput of the system.

5.2.5 Sandbox Machine

Each job is analyzed within a guest machine. Guest machines represent controlled envi-
ronments where software analysis happens. Those sandboxes are administrated by host
controllers as reported by Figure 5.5. The main objective of a guest controller is to run the
job offered by the hc, analyze it through dynamic analysis techniques and then report back
all the information collected.

In section 2.5 we introduced the basic properties characterizing any sandbox: observ-
ability, containability and efficiency. Our design takes into account those requirements
by combining both virtualization support and bare metal support. However our partic-
ular context (i.e. PUP analysis) requires additional shrewdness. In accordance with our
goals, guest machines require automated GUI interaction capabilities, as well as MSAS
detection-avoidance mechanisms. To do so, we designed guest controller with a particular
architecture, shown in Figure 5.7.

Machine-Scoped architecture

A guest machine is equipped with an operating system, configured with basic system
drivers, in accordance with the underlying hardware (which can also be virtualized). Since
our objective is to analyze executables on Windows environment, the chosen operating
system is Windows 7 Professional 32bit.

56

Are machines
configured?

|

Figure 5.6: Host Controller data flow diagram

A particular process runs within the operating system of the guest machine: the guest
controller. This software program constitutes the logic core of the guest machine, being in
charge of:

e Handling communication with the host controller
e Performing Ul interaction
¢ Reporting results to the host controller

The guest controller delegates another software module to perform job execution: the
injector. This program is a Windows 32 bit application, written in C++, accessing low
level API of the OS. Its main objective is to start the given binary by altering its memory
space, in such a way that a custom library gets loaded beforehand. This operation is
achieved by using DLL injection techniques, explained in section 6.2.3. The loaded library
represents the third software entity of guest architecture. Named HookingDLL, this module
is in charge of intercepting low level API calls performed by the target process and to
report them to the guest controller. This is obtained by applying API hooking techniques,

o7

Machine software components

Guest Controller

Injector
executable J

HookingDLL

Operating System

Figure 5.7: Software components of sandbox machine

discussed later on in section 6.2.3. The HookingDLL module is the software component that
enables observability in our sandbox. By intercepting a certain set of APIs, the sandbox
takes track of behavior of the processes, in accordance with the chosen API set. On the
other hand, the number and the type of hooked APIs impacts on efficiency of the sandbox.

Communication between HookingDLL and guest controller occurs locally to the guest
machine. Whenever the target process invokes an hooked API, the routine will first com-
municate some information to the guest controller, then the actual operation is performed.
Therefore, the guest controller has a chance to log what the target process is going to
do, before the action happens. This approach is particularly relevant for registry and
file system accesses: before any interaction happens, guest controller gathers information
about the file being opened (storing its hash, size and so on). Then, when the analysis is
terminated, guest controller compares the state of the file before and after the interactions,
so that file system changes are detected.

Guest Controller

The guest controller has to accomplish different goals by running distinct tasks. Some
of them are time-consuming and live for the entire lifetime of the machine. Moreover,
all of them have to run simultaneously. For instance, the GUI monitoring task runs in
parallel with the HookingDIl logging task. For this reason, the software architecture of
geust controllers was defined with software modularity and parallelism in mind. Figure 5.8
describes the inner software modules of the guest controller and marks the interactions
with the other two software elements of the guest machine.

The GUI interaction logic is handled by an ad-hoc module, called GUI bot, in charge of
scanning the user interface, exposed by the target process. This module scans the UI (if
any) offered by the target process, and according to a set of policies, interacts with it. The
GUI bot applies some scanning algorithms and decision heuristics in order to determine
how to interact with the target UL. However, the decision policy may also rely on IPC
messages received by the HookingDLL in order to improve the its effectiveness.

The IPC handler is a software module responsible of handling interprocess commu-
nication with the target process. Messages are exchanged via Windows named pipes,
preallocated by the guest controller and filled by the logging functions, which have been
injected into the target process. The throughput of messages flowing from target processes
to the guest controller is in general high, so multiple IPC handlers are defined in order to

o8

Guest Machine

Target Process

T0

Ul Interaction
Foreground Ul

User Space

I APl Hooks

Figure 5.8: Insight architecture of Guest Controller

take advantage of multiprocessing capabilities of underlying hardware.

The third software part of the guest controller includes file and registry monitoring
libraries. Those components are mainly used by the IPC handler during massage processing.
Among the functionality exposed by those modules there are file hashing and registry
querying libraries.

A full overview of the general behavior followed by the guest controller is given by
Figure 5.9. When the machine starts, the operating system boots up. The OS image is pre-
configured to start a batch script after the auto-logon. This script waits until network access
is automatically configured, afterwards it downloads guest controller binaries from a remote
server. In this way, software changes to guest controller do not need manual deployment,
since its binary is automatically updated at each boot. Afterwards, the script executes the
guest controller application, which immediately initiates network communication with the
host controller. If no jobs are ready to be processed, the guest controller holds up for a
timeout and contacts back the host controller after a timeout. When a job is available,
that is returned by the host controller to the guest controller. Therefore, the gc delegates
the injector to start the given job and inject the HookingDLL. At the same time, the
guest controller starts listening for log messages coming from the HookingDIl and handles
UI interaction with the GUI belonging to the target process. Only when no more Ul
interaction are possible, or when the target process ends, then the guest controller prepares
the resulting report and sends it back to the host controller.

5.2.6 Networking Design

According to the system architecture proposed in Figure 5.2, Internet access for guest
machines is mitigated by a particular entity: the network sniffer. This device has three
important roles: to provide basic network services, to sniff traffic and to enable network

99

Machine OS Guest Controller Injector
Start Get Job from HC Allocate memory
for process

No

Job Received?

Inject Hooking DLL
Boot OS Yes
Start Injector
Fetch GC Start Process
binaries
Ul Interaction Log Data
No No Yes
Job Job
ended? ended?
Yes Yes
End
Start Guest
Controller

Yes
Create report
Yes
Send report to HC
Yes

End

Figure 5.9: Workflow diagram of the Guest Controller

isolation. Figure 5.10 shows the relationships among guest machines, host controller and
external nextwork.

Isolation of guest machines is ensured by providing a separation layer in between guest
machines and the rest of the network. Guest machines belonging to the same host controller
reside in the same local area network (LAN). Therefore, they are not attached directly to
the Internet; instead, their traffic is routed through the sniffer.

Basic network services

Guest machines are capable of communicating with external hosts though a gateway: the

sniffer gateway. This entity provides a number of necessary network services for the internal
LAN;, such as:

o IP level routing

« DHCP

60

Guest Machine

Guest Machine Guest Machine Guest Machine

i n

I Internal
Network

Switch L2
Internet
Packet - =---
Sniffer = =
T
= Firewall
(]
; Router Sniffer Logic
)
g o
=
C saix .
(7] Local Services c°[‘t“.’"er Private
oglc Network
g8 o | L DK
{5} {a {ﬁ Q HTTP API
Network
NAT DHCP DNS Host Controller

analyzer

Figure 5.10: Architecture of Network Sniffer

« DNS
o« NAT
 Firewall (Optional)

The most important and basic service provided by this gateway is IP routing (or IP
forwarding). In fact, the gateway is attached to three different networks, so it behaves
mostly like a L3 router. It is worth noticing that the routing service is crucial also for the
guest controller process: communication with the hc happens through TCP/IP sockets,
thus it requires packet routing from internal to private network, as shown in Figure 5.10.

The second most important service offered by the gateway is the Dynamic Host Config-
uration Protocol (DHCP) service. Indeed, guest machines are configured to automatically
acquire an IP address at boot time. This approach is particularly convenient because it
reduces the configuration overhead regarding every single guest machine. Without DHCP
service, each guest machine would require a preassigned unique IP address for its LAN
domain, resulting in the need of some manual addressing task.

At an higher level in the OSI stack, the sniffer gateway also provides Domain Name
System (DNS) resolution and Network Address Translation (NAT). The former is used
in order to translate domain names into IP addresses. However, the gateway does not

61

implement a proper DNS server system, instead it provides a DNS proxy: every DNS
request coming from the internal LAN is delegated to the ISP’s DNS server. On the other
hand, network address translation is necessary in order to multiplex the same external and
public IPv4 address among the different guest machines. Therefore, this service would
not be strictly mandatory if many IP address were available. That is generally the case of
IPv6, when many public addresses are usually available even for a domestic contract.
Guest machine isolation and containability is improved thanks to a firewall. For instance,
the firewall prevents guest machines from contacting any other host in the private network
other than the host controller. In other terms, firewall rules should be defined in such as
way that any host, belonging to the internal network LAN domain, can initiate a TCP
connection only to a HOST-TCP port combination (i.e. host controller), forbidding all
the others. In the meanwhile, firewall rules allow outbounds network connection to the
Internet, and forbid any incoming TCP/UDP connection from the Internet. However, the
firewall may impact on the analysis, biasing results. In fact, in case the analysis focused on
malware or particular p2p installation programs, the firewall might affect the quality of the
results. Therefore, its usage is optional and strictly depends on the context of the analysis.

Sniffing capabilities

The second important task performed by the gateway is network sniffing. Providing sniffing
capability within the gateway causes two major advantages. The first is about network
topology: the sniffer is the only bridge between the internal network and the Internet.
Thus, any connection to external hosts needs to pass through the gateway. Therefore,
implementing the network monitoring and sniffing capabilities at gateway level represents
the most logic choice. In fact, it is theoretically impossible for a guest machine to escape
network sniffing under this network topology. In second instance, guest machine is absolved
of monitoring low level network traffic. This feature is particularly relevant because
low level network monitoring techniques are platform dependent. The given solution,
instead, is platform independent. Therefore, this approach absolves guest machines of
implementing network monitoring features and provides a uniform platform independent
network monitoring layer.

In order to intercept all kinds of network interaction performed by guest machines,
sniffing must capture traffic directly at OSI layer 2, i.e. MAC. By adopting such an
approach, the gateway is able to intercept any communication between the guest machines
and other hosts, at any layer above the MAC. In other terms, it is possible to intercept
data in form of Ethernet frames (OSI L2), IP packets (OSI L3), TCP segments or UDP
datagrams (OSI L4) and HTTP requests/response (OSI L7). However, this capturing
process produces huge amount of data. In general the size of captured network data
depends on the network activity processed by the guest machine. Roughly, each analysis
session capture file might require from few tens up to several hundreds of megabytes to be
stored on disk. Given those high space requirements, storing all the captured network files
is not a convenient option. Moreover, some of the capture data is not relevant for analysis
purposes (i.e. DHCP exchanges, conversation with host controller). For these reason,
after capturing network data, the host controller delegates to a network analyzer some
post-analysis operations, which will extract and summarize only the relevant information
out of the captured network dumps, discarding original capture files.

On the other hand, network monitoring through sniffer gateway introduces new man-
agement overhead. In first instance, dedicated logic is needed in order to start and stop

62

network traffic sniffing. Moreover, the host controller needs to retrieve captured network
data from the gateway. These requirements led to the implementation of a custom logic
component, installed on the sniffing gateway, in charge of handling local configuration.
The HTTP API provides a convenient management interface, letting host controllers to
configure gateways and administrate sniffing tasks.

Figure 5.11 points out the interactions between an host controller, guest machines and
a sniffer gateway. As pointed out by the sequence diagram, some specific interactions
regard both the host controller and the sniffer gateway. In particular, the host controller
starts a sniffing session on the gateway, before starting the guest machine. In this way, the
gateway creates a sniffing process by applying convenient network filters (i.e. capture only
traffic regarding that guest). Once the sniffer has been allocated, an acknowledge message
is transmitted back to the host controller. At this point, the host controller starts the
guest machine through the relative driver. Now on, every network interaction performed
by the guest machine is catch by the sniffer. When the analysis ends, the host controller
stops both the guest machine and its relative sniffer. Afterwards, network captured data
is transfered from sniffer gateway to the host controller, which will submit that data to
another entity, i.e. a network analyzer. This process may reside in the same host controller,
in another machine or in the sniffer gateway itself. The main task of the network analyzer
is to scan the captured data and to extract relevant information out of it, so that the rest
of the captured data can be discarded.

Netwrok Sniffer Gateway
Guest Machine X
analyzer API Host Controller uest Machine
]]
| |
Stop Machine X

Create Sniffer for X

<< — -Creates— —

__Snifferallocated _ <

|
|
|
|
|
|
and running |
|

Start Machine X

Analysis finished

Report result

Stop machine-

Get sniffer dat:
-<4—Stop Sniffe ctenitercata
— — Captured data— — =

nalyze captured data
************** Analysisresults — — — — — — — — — — — — — —

]
|
|
|
|
1
|
|
|
|
|
|
|
1
|
|
1
| PUP analysis
|
|
|
|
|
l
|
1
|
|
|
|
[
|
|
|

Figure 5.11: UML sequence diagram describing system interactions among Sniffing Gateway,
Host Controller and Guest Machine

63

Gateway considerations

Delegating network sniffing and analysis to a dedicated device, external to the guest
machines, has many advantages. We have already mentioned most of them in the previous
sections. For sake of clarity, we will resume them here, stressing also possible drawbacks
regarding the gateway structure.

In general, the gateway approach discharge the guest machine of monitoring low level
network access. This speeds up performances of the guest machine. Moreover, being an
external entity, the sniffer gateway does not expose any artifact to the guest machine: any
process within the guest will not be able to identify any sniffing attempt. As an extra,
there is no way for a guest machine to communicate to external network without being
spotted. Therefore, observability property of the sandbox is truly improved.

From the point of view of extendability, the gateway provides a platform independent
analysis layer: it exposes functionality via a web service and is capable of analyzing low
level network data coming from any OS. Even though our target is Windows OS, the same
approach will work with other operating systems. Moreover, it is worth to mention that
part of the guest controller can run on custom hardware or be entirely virtualized. In
particular hardware implementation of switches, NAT, firewall and DHCP can be used
for achieving maximum performances. The trade off in this case is represented by the
manual configuration overhead introduced by using custom hardware devices. On the other
hand, the sniffer gateway may be implemented by a Linux machine, and used in almost any
environment: bare metal or virtual machine. On our current implementation, the gateway
is implemented completely via software, by relying on a virtualized Linux machine.

However, the given architecture introduces a possible performance bottleneck. A
single network sniffer handles multiple guest machines, therefore its resources must be
dimensioned consistently with the number of assigned guest machines. Also, available
network bandwidth must be taken into account when deciding how many guest machine to
assign to a single sniffer gateway:.

Another important drawback to take into account is the impossibility to intercept
end-to-end encrypted data or encrypted proxied connections (such as IPSec or encrypted
VPN protocols). In such cases, the data flowing within a network stream is unreadable.
Moreover it is hard to identify tunneled connections through an encrypted channels: in that
case, only the network information of the front-end hop are available. Some workarounds
are available for SSL traffic (using SSL proxies), but they do not offer any general solution
for the end-to-end encryption issue.

Finally, external network sniffing does not intercept socket connections local to the
guest machines. For instance, if two processes on the guest machines use local sockets
as communication channel, no records of them will be present on the relative network
capture file. However, given the details of windows operating system, it is possible to
intercept those operation though API Hooking, therefore this drawback does not represent
a limitation for our analysis system.

5.2.7 Bare metal and virtual environments support

One of the crucial properties of our design is the ability to run on both bare metal hardware
and virtual environments. This unique characteristic improves the number of use cases
of the infrastructure, providing a good defense against MSAS detection systems (when
exploiting artifacts of the virtualized system). Running MSASs on dedicated hardware
also improves performances. However, some design constraints have been introduced by

64

such a requirement. In particular, two aspects of the architecture were affected: resource
monitoring technology and messaging system among the infrastructure nodes.

Resource monitoring is performed within the operating system of guest machines, thanks
to API Hooking and DLL Injection. This design choice does not require any hardware
support from the underlying layers. As a consequence, the logging system runs within any
virtual or dedicated machine, independently of its hypervisor technology or underlying
hardware infrastructure.

Communication among different nodes of the architecture relies on TCP/IP sockets.
Therefore, both virtual machines and dedicated hardware can be used to run different nodes.
Moreover, mixed environment are possible. For instance, in our specific implementation,
network sniffers are virtualized, while host controllers run on dedicated rack servers.

However, virtual environments provide some management facilitations which are not
natively available for bare metal machines. First of all, hypervisors usually expose com-
modity APIs to manage the life-cycle of its machines. Operations like power on, power off
and restart can be scripted, thus automated easily. A classic computer, instead, requires
custom hardware in order to be controlled remotely via software. Although server grade
machines usually have such hardware support, they might be expensive and inefficient when
uniquely dedicated to PUP analysis. In order to solve this problem, our design separates
the logic of the host controller from the logic of the guest controller, by interposing a driver
interface between them. When dealing with a particular hypervisor, this driver implements
interface’s specifications, by taking advantage of hypervisor’s specific APIs. In the same
way, a driver might be implemented to control the power cycle of guests, by using cheap
network commanded power switches, as shown in Figure 5.12.

Host Controller

Machine Driver Intermidiate Machine Driver

& Power

loT Device

Host Controller

Dedicated Guest Machine

Figure 5.12: Using IoT device to manage power cycle of bare metal machines

Thanks to the spread of cheap Internet of Things (IoT) devices, implementation of
network commanded switches is straightforward. In Figure 5.12 we propose a solution

65
based on a single Arduino Ethernet device?, using simple relay switches to power on, power
off and restart hardware guests. In this particular case, the machine driver is distributed:
part of it is implemented in the software layer of the host controller, while the other part
is implemented into the firmware loaded into the Arduino device.

Lastly, bare metal support introduces another technical challenge: automatically restor-
ing the original known state after each analysis. While virtualization technologies support
rollbacking and snapshooting, dedicated machines do not natively provide that capabil-
ity. However, it is possible to workaround this problem by applying one of the following
approaches:

e Backup and automatic restore
o Commercial software

e Ramdrive or ramdisks

e Diskless boot and virtual disks

A very easy way for implementing rollback capabilities is to use backups. Given an
known image of a specific system state, we might restore that backup at every machine boot.
However, this operation is hard to automate: it requires low-level scripting at bootloading
time. Moreover, restoring a system backup may take a long time, depending on the
read /write speed of the media. Other than that, every machine requires a dedicated disk,
and power-cycle management must take care of clean shutdowns (preventing mechanical
disk failures). Lastly, every update on the known state causes a great maintenance overhead
to synchronize the backups. Commercial software has been developed to provide software
solutions to this problem. However, the main drawback like power-cycle management,
disk-image updates and backup restoring time still persist. By using dedicated hardware
or reserving part of the RAM memory of each machine, it is possible to restore the
known system state faster. Although improving boot time and system restoration time,
this approach requires much memory or dedicated high-performance hardware, thus it
becomes expensive. Moreover, synchronization of known image still represents an unsolved
problem. In order to combine central state management, simple power-cycle management,
performance and scalability, we designed a diskless network-boot infrastructure, shown in
Figure 5.13. The idea is to store an immutable disk image within a central boot server,
and to create n virtual differential disk images, one for each guest machine. Each machine
boots via USB drive, which launches a preboot execution environment (PXE). Within the
PXE, the machine executes a local http request to the boot server, asking for the image
to boot. At that point, the boot server handles the request by allocating a differential
virtual disk on the top of the base image, returning its iSCSI target address. Afterwards,
the guest machine attaches the iSCSI target disk and performs a diskless boot. Figure 5.14
summarizes the various steps in this process, by pointing out interactions among the central
server and the guest machines. The proposed solution allows central image management,
enables base image deduplication, provides good performances and reduces costs. Whenever
known states of guest machines need to be updated, it is sufficient to change the base
image; all the guest machines will automatically synchronize their image at next boot.
Also, this solution saves much storage space: the full disk image is stored in one single
location and not duplicated among the guest machines. Moreover, guest machines can

3https://www.arduino.cc/

66

Get image
3et image
1. GET image
Central boot server
Machine 1
= .
& Local web service ld—
I N —>< PXE script
2. Allocate Diff VHD ‘
iSCSl @rget Machine 2
3. Attach VHD & boot
;\\ PXE script hﬁ
D\Ff VHD I
Machine n
SRR I DIff VHD 2 3. Attach VHD & boot
Diff VHD n 3. Attach VHD & nm—»(PXE script)*

N\ ‘ /

Gigabit network

Figure 5.13: Diskless boot and virtual disk management architecture

Central Server

iSCSI Target service VHDs Repo

Web service Guest Machine

Delete diff disk X

|
Create diff disk X

Allocate ISCSI target X

I
Attach ISCSI Target
I

Figure 5.14: Diskless boot sequence diagram

run totally diskless. As a consequence, it is possible to hard-reboot those systems without
any hardware hazard (because there will be no mechanical parts running), therefore the
power-cycle management proposed in Figure 5.12 is safe to be used. Concerning the costs,
this solution reduces expenses when compared to the other bare-metal approaches. It
does not require hard disks for guest machines, neither any dedicated hardware; moreover
is widely applicable to existing infrastructures. However, good network capabilities are
mandatory: large bandwidth among guest machines and boot server is crucial to have

67

good performance. Also, the boot server has to implement iSCSI target services as well as
virtual disk management services.

5.3 UI Interaction

The interaction with graphic user interfaces constitutes the key feature of PUP analysis
automation. Differently from silent malware, PUP installers usually offer GUISs, in order to
give the impression of legitimacy of the software [17]. Without interacting with those GUIs,
only partial software behaviors are observable. When the analysis is targeting software
installers, this constraint becomes even more restrictive. In other terms, GUI interaction
is mandatory in order to perform analysis for application installers. Another important
reason supporting the need of GUI interaction regards the information contained by the
GUI itself. Indeed, researches demonstrated that it is possible to identify spyware by
simply looking at the EULA they provide, at installation time [21]. Therefore, information
concerning the GUI of an installer may be used as input for application classification, as
support for other malware analysis methods.

5.3.1 UI interaction engine basic architecture

Given the scope of our work, the Ul interaction engine is in charge of automatic software
installation GUIs, by simulating an habituated and lazy user’s behavior. In other terms,
we designed a system that aims at successfully completing the installation procedure,
minimizing the number of interactions with the GUI. To do so, it has to accomplish three
different tasks, executed in loop, until the application installation is considered completed:
detecting Ul elements, selecting next interaction, executing the interaction. The whole
process is described in Figure 5.15. The GUI interaction engine takes place within the
guest machine, and it is implemented by the guest controller.

The first step performed by the engine is to check whether the process under analysis is
still alive or not. If there is no process alive, the engine terminates. Otherwise it identifies
and locates all the windows currently available on the desktop, owned by the processes
under analysis. Processes might own many windows, but only one receives the keyboard
and mouse focuses among all. Therefore, the detection engine tries to detect the window
currently active, holding the focus. Once identified the active window, the engine performs
the inspection by applying different techniques. The result of the inspection consists of a
data structure containing information about the window and contained controls. For each
detected control, the following information are collected, when available:

o Parent window (container)
o Position on screen

e Position on parent window
¢ Bounds of the control

e Contained text

e Type of the control

o Focus status

68

Isinstaller
running?

Perfom interaction

el \loammy 4 Wait scan interval

Select interaction
control

—’
Rank controls
Look for active
windows

d
Inspect P
. N
window

Found window? g
Figure 5.15: Control flow of the UI Interaction engine

Yes

o Enabled status or disable status

If no window is available or no data is collected, the interaction engine repeats the
scan again, after waiting for a short period of time, giving a change to the installer process
to build its Ul In case no Ul is found within a certain timeout, the interaction engine
gives up and terminates. On the other hand, when controls are found on a window, the
engine applies a number of ranking policies, in order to select the best control to interact
with. The ranking policies will then assign a score to each control listed, according to a
number of heuristics. After that, the control totalizing the highest score is selected. So,
the interaction engine tries to interact with the selected component, waits for its reaction
and repeats the process again.

5.3.2 Automated UI interaction challenges

So far, the described portion of the interaction engine is pretty linear. However, the
proposed scheme is not complete. In fact, there are a number of issues that the architecture
had to take into account. Those issues inevitably increase the complexity of the GUI

69

interaction engine. In particular two major problems have to be considered: when to
perform the inspection and how to avoid UI loops.

Given the dynamic nature of user interfaces, some controls may change their state just
after the inspection process. If that happens, the ranking process might assign a wrong
score to elements that have changed. Therefore, the engine might select a wrong control, or
even worse, a control which does not exist any longer. Hence, the interaction will inevitably
fail. For this reason, it is necessary to trigger the window inspection only when the window
is stable, or better, waiting for the user’s input. However, the problem now is shifted to
detecting stable windows. Unfortunately, there is no programmatic general way to identify
windows waiting user’s action. Therefore, some heuristics have been applied, as reported
in Figure 5.16.

Wait until stable

Start
4><_
v
Get Window
Isinstaller Screenshot
running? Yes
Apply image
Perfom interaction filtering
— ml\le g Wait scan interval
Yes
| l

Calculate Hash
N
No
Look for active Reset Counter b aul\epmu
windows
T
Yes
v

Select interaction

control

L=
I Rank controls I

Inspect Wait until UJ
I \ / &
-~ -~

Found window?

Increment Counter

|
Yes
v /
|
S <
| Threshold?
|
)

Figure 5.16: Flowchart of the Ul interaction engine with UI stability checks

Banally, the interaction engine considers a window to be stable when it does not change
in terms displayed graphics. If the graphics of the window remains the same for long enough,
then the engine assumes the window is waiting for input. For this reason, a scanning
loop is added to the process. At every iteration of this loop, the engine scans the active
window and saves its current status. The status of the window is basically provided by its
appearance, i.e. by its pixel matrix. To save memory among the iterations, the interaction
engine takes a screenshot of the window’s area, applies some graphic filters and calculates
a cryptographic hash of the screen. Image filtering is necessary in order to reduce the
details of the capture screenshot. In fact, animation effects (such as shadowing, blinking,
etc) cause small color variation in the source pixel matrix. Those differences would led

70

to different hash calculation. Therefore, by applying adequate image filters, it is possible
to remove animation noise, and calculating hashes only on relevant image characteristics.
Figure 5.17 shows an example of this hash derivation process.

Select Setup Language @
Select the language to use during the
installation:
1. Clear pixel matrix
[Englsh 7 of the window
OK] [Cancel]

. mhwm-inuh

2. Pixel matrix after
image filters

(e

B82064EC586D8ACS823E16933D5B5DA2D 3- Hash calculated
from pixel matrix

Figure 5.17: Example of hash derivation and screenhost manipulation

The hash is held as fingerprint of the current window status, which is compared at
each iteration. If the status remains constant for a certain number of iterations, than the
engine triggers the Ul inspection and passes the results to the ranking system. However,
there is no guarantee that the window will stay stable until the interaction happens. In
the unfortunate case in which the window changes during the scan, an error will occur.
Therefore, the interaction engine must be robust enough to detect those cases and to
recover from them.

Yet considering Ul timing challenges, another issue arises. When a single threaded
installer process is performing heavy background calculation or waiting on 10, its GUI
may be stuck. In such a case, the GUI may remain blocked for long enough to trick the
GUI engine, appearing like a stable window. Therefore, if no countermeasure is adopted,
the interaction engine might try to interact with an unstable window, causing undesirable
behaviors. In order to avoid such a problem, the interaction engine performs some checks
on the status of the guest controller, by looking at the log messages received by the
HookingDLL. The workload of the process is derived by the frequency of the messages
received by the dll injected into the analyzed processes: whenever this frequency is higher
than an arbitrary threshold, the installer process is considered busy. As a consequence, the
interaction engine queries the log-ratio value kept by the guest controller, and takes that
value into account in the interaction process.

Problems also occur whether GUIs admit loops. A GUI loop is nothing more that a
repetition of an already encountered window, as a consequence of a previous interaction.
A very immediate example is provided by most of the application installers. When an user
wants to abort an installation procedure, the GUI may ask for confirmation. If the user
does not confirm, then the installer shows the previous window again. At this point, the
same sequence of interaction may happen again, therefore the GUI interaction mechanism

71

might fall into an infinite loop. Figure 77 gives an explicit example of this possibility.

In order to detect and recover from loops, the interaction engine has to keep a list of
already visited windows. This task is simply achieved by storing all the hashes of stable
windows encountered. Each time a window is considered stable, its hash is added to an
in-memory table, alongside a counter. If the hash is already present into the table, its
associated counter is increased. When the counter exceeds an arbitrary threshold, then the
interaction engine realizes it has fallen into a loop and gives up, terminating.

5.3.3 UI elements detection

After detecting windows belonging to the analyzed installer, the interaction engine performs
an inspection of the contained Ul elements. As explained in Section 2.6, detecting Ul
elements on Windows OS is not a trivial task. In particular, developers may build GUIs
using standard Visual C++ libraries (or Winforms), they may use custom frameworks (such
as Qt, Sciter) or use a combination of both. Each of those methods handles low-level UI
messages in a distinct way, implementing the WndProc() functions of windows differently.
Winforms and Visual C++ GUI elements are easy to identify, thanks to their known class
names and standard message handling procedures. On the other hand, custom frameworks
GUIs are much more complex. The most relevant problem with those frameworks depends
on the way they combine multiple widgets into one single window. While Winforms follow
a modular approach (declaring one window for each widget in the UI), frameworks like
Sciter only declare one window, hiding the presence of child widgets behind it. In this way,
functionality offered by child widgets become hard-coded into the WndProc() handler of
the parent window. As a consequence, the OS is only aware of one window, and offers
absolutely no way to identify sub-widgets contained in that.

Instead of developing ad-hoc systems to inspect GUI elements produced by each
different GUI framework on Windows, we decided to design an hybrid system to identify
UI elements. The interaction engines scans elements within a window by applying the
following technologies:

e Microsoft UiAutomation library
o AForge. NET Image recognition framework

e Tesseract OCR engine

The whole process is described by Figure 5.18. As soon as the foreground window has
been identified (i.e. active window), the interaction engine scans it using two concurrent
approaches: one using UTAutomation library, another one using OCR and Image recognition
techniques.

The left branch in the figure describes how logically simple is to perform the analysis
with the UTAutomation framework. In this case, the library is able to identify all the
native windows elements, with little developer’s effort. For each detected widget, its data
is then available through a convenient abstraction interface, called UTAutomationElement.
Therefore, data extraction is straightforward.

On the other hand, UI recognition approach requires much more computational effort
and a more structured logic. The first step is to retrieve raw pixel data information about
the window being analyzed (digitalization). After that, the digitalized image is preprocessed
through a series of filters using the AForge.NET image manipulation library. In particular
the following filters are used:

72

Acquire Screenshot
of Window

Identify native

Pre process screen

RS (Aforge.NET filters)

UlAutomation

Apply shape recognition
algorithms (Aforge.NET)

Apply OCR on
recognized buttons

Extract text, Extract text,
position, and other position, and other
info info

Visual recognition scan

Ul Automation scan

Purge collisions and
invalid data

Figure 5.18: Flowchart about designed UI elements detection process

SISThreshold Performs image thresholding according to [14]. Color information is then
discarded.

FillHoles Fills black holes in the image, resulting from noise [13].

Dilatation Removes noise by filling gaps among shapes close one another [12]

73

Later on, the AForge. NET framework is used again, taking advantage of its shape
recognition algorithms. In particular, the interaction engines looks for quadrilateral shapes,
ideally representing buttons. At this stage, the only information available is the position of
the detected shapes. Afterwards, the interaction engines processes all the potential buttons
areas through Tesseract, which tries to extract textual contents out of the detected button.
After that, a result set of potential Ul elements is returned and combined with the results
obtained by the UTAutomation library.

Applying separate recognition techniques to the same window may cause redundant
results. For instance, both the scanning techniques would be able to detect classic Ul
buttons. Therefore, the produced list of results would contain duplicates. Thus, in order
to reduce overhead and avoid ambiguity, the interaction engine performs some sanitizing
actions on the result set. In particular, if both the scanning system have found elements
with same bounds, the ones detected by the visual recognition system are discarded. The
reason why we adopted this approach depends on the quality of information provided by
the two scanning system. In general, UL Automation is able to provide much more detailed
information about the scanned components. In fact, the visual recognition techniques is
only be able to extract the following:

o Owning window handle (through WinAPT)
o Position of the element on screen (through pattern recognition and WinAPT)

o Position of the element relatively to container window (through pattern recognition

and WinAPT)
o Owning Process (through WinAPT)
o Contained text (through OCR)

On the other hand, UIAutomation provides much more detailed and relevant information.
Other than the previously mentioned, we find:

« Control type
e Supported interaction patterns
e Specific control-type dependent information

Therefore, whenever overlapping results are detected by the two frameworks, it makes
perfect sense to discard less detailed records in favor of UlAutomation results.

5.3.4 UI element selection

Once detected all the Ul elements belonging to the active window, the interaction engine
ranks all the items. Each UI element is assigned a score, calculated by applying scoring
rules, based on its properties. Ranking rules are meant to provide higher scores to Ul
elements which would advance the installation procedure. Therefore, higher scores have to
be assigned to elements which possibly push the installation process to the correct path.

Due to the recurrent patterns used during installation procedures of any kind, we
decided to apply a series of ranking rules based on our experience. Each of the rules assigns
a positive, negative or neutral score to a single property of element being analyzed. However,
there may be rules evaluating properties not exposed by the element being analyzed. In

74

Property ‘ Evaluation Score when not available
. Enabled = 0
Control is enabled Disabled — -1000 0
Empty = -30
Exact match of whitelist = 280
Control contain text | Partial match of whitelist = 30 0

Exact match of blacklist = -280
Partial match of blacklist = -30

Proportional to bottom right corner

Position of control of the container window 0
Button = 50
Type of control Checkbox = 15 0

Radiobutton = 15
Hyperlink = 10

Unchecked = 50
Checked Checked = -100 0

. HasFocus = 50
Control is focused NoFocus — 0 0

Table 5.3: Ranking rules and assigned scores

Words

next, continue, agree, accept, ok, install, finish, run, done, yes, i agree, i accept,

accept and install, next >

forward by small, amount, back, by small amount, back, by large amount,
Blacklisted | forward by large amount, disagree, cancel, abort, exit, back,<, decline, quit,
minimize, no, close, pause, x, _, do not accept, <, back

Whitelisted

Table 5.4: Comma separated blacklisted and whitelisted words

fact, detection through visual recognition is only capable of extracting basic properties,
such as position and, possibly, contained text; UlAutomation elements provide instead
much more details. Whenever an Ul element does not provide a particular property, the
assigned score would be 0.

Table 5.3 summarizes evaluated properties and assigned scores adopted by our current
implementation. Among all the properties, two of them really impact on the ranking
system: enabled/disabled status od the element and contained text. Whenever any UI
widget detected through the UlAutomation library exposed the "disabled" property, its
score will be penalized by 1000 points. This basically prevents any kind of interaction with
it. On the contrary, if the item is enabled, no point is assigned. In order to evaluate the
contained score of each control, the interaction engine applies both blacklist and whitelist
approaches. In particular, there are two sub cases to take into account: when the contained
text matches exactly a word or a sentence contained in the lists, or when the match is
only partial. Whenever the word-matching is complete, a score of £280 is given (+280
if whitelisted, -280 if blacklisted). If the text of the control matches only a subset of the
whitelist /blacklist words, a score of +30 is given for each matched word (+30 for whitelist,
-30 for blacklist). Table 5.4 lists all the words used in both the whitelist and blacklist.

The following example helps the reader to understand how the ranking system operates
within the interaction engine. Let Figure 5.19 represent a screenshot captured by the

75

Rule ‘ Element 1 ‘ Element 2 ‘ Element 3

Control is enabled NA =0 NA =0 NA =0
Control contain text | NO = -30 NO = -30 "71 Install" = 30
Position of control (24,21) = 6 | (216,29) = 7 | (205,368) = 10

Type of control NA =0 NA =0 NA =0

Checked NA =0 NA=0 NA =0

Control is focused NA=0 NA=0 NA =0
Total -24 -23 40

Table 5.5: Drill-Down of scoring assignments for Figure 5.19

interaction engine, taken during the analysis of Smart Defrag 5 installer. The figure
stresses the elements identified by the interaction engine. Moreover, for each identified
widget, the associated score has been printed. The item marked in red identifies the element
with higest score, thus the one leading the result-set. The analyzed installer does not use
classic windows widgets for its Ul, therefore the UIAutomation was unable to recognize
any item. In fact, three elements have been spotted by the image recognition tools.

24 Element 1 m%
Welcome to Smart Jetrag Installer

my PC EETE com

Online Backup for your photos, music, emails,
videos, documents & more

¥ Fast and Easy to Install

¥ Protect al your files

+ For Windows, Mac & Linux
v FREE Mobile and Tablet apps

Figure 5.19: Screenshot of first stable window during analysis of Smart Defrag 5

Table 5.5 describes how scores where assigned in relation with applied rules. The
only widget totalizing a positive score is the Installation button, identified as Element 3.
Indeed, this control contained the text Install, which has been recognized by the OCR
engine as 71 Install. Although the OCR recognition was not perfect, the scoring system
assigned +30 points for the whitelisted contained word. Moreover, the position of the
control contributed to gain other 10 points, for a total of 40 points. The other two elements,
identified by shape recognition engine, did not represent any valid widget. In fact, the
OCR was unable to extract any textual information out of them, therefore those elements
were penalized by 30 points each. However, the position scoring system attributed +6 and

76

+7 points respectively to Element 1 and Element 2. Eventually, neither Element 1 nor
Element 2 got positive scores.

Once built a ranking table of elements, the selection is trivial. The interaction engine
just pops out the top ranked Ul item out of the list with a positive score, and interacts with
that. If no items are available or all the items present a negative score, then the inspection
is performed again. Every time a stable window is inspected and no control obtains a
positive score, an internal counter is increased. Therefore, whenever that counter hits a
threshold, the interaction engine gives up the inspection, allowing the GuestController to
terminate the analysis.

5.3.5 Interacting with Ul elements

A given widget may expose many possibilities of interaction. For instance, a checkbox can
be selected or unselected, while button may be pressed, released or clicked. Automatically
identifying which kinds of interactions are supported by scanned widgets is not trivial.
The problem behind this challenge still concerns the custom UI elements. In fact, native
winform controls implement a well defined set of interaction patterns, clearly recognized and
exposed by the UTAutomation library. However, this library is not capable of recognizing
which interaction patterns are supported by custom widgets. As a consequence, all the
elements recognized by the image recognition engine are affected by this problem.

In general, the interaction with any kind of visual widget requires user’s input. Thus,
keyboard or mouse drivers are the main actors in such an environment. For this reason,
interactive Ul widgets have to handle at least one mouse or keyboard event. In case of a
button, it usually can be clicked by pointing the cursor in the widget area, pressing the
left mouse button and releasing it after a short time interval. In most cases, the same
interaction can be performed by focusing the button and pressing the ENTER key on the
keyboard. Checkboxes and radio buttons exposes similar behaviors: their internal state
changes both when clicked (also focus and key press affect them).

The interaction engine takes into account all the available information of the scanned UL
Therefore it knows whether the selected widget belongs to the set of winforms components
or it is a custom component. If the selected widget is not recognized by the UlAutomation
library, the engine simulates the user’s click event. The click event is triggered by sending
two messages to the owning window, interleaved by 1 second pause: WM_LBUTTONDOWN
and WM_LBUTTONUP. Both the messages require the coordinates of the mouse pointer to
be expressed as parameters. Those are retrieved by simply calculating the center of the
scanned widget, taking advantage of their position coordinates.

If the selected widget is recognized by the UTAutomation library, more complex and
convenient interactions are possible. However, the engine only takes into account very
simple actions, such as:

e Checkbox: check
+ Radiobutton: select
e Button: click

The interaction engine behaves as shown in Figure 5.20. After performing one of the
interactions, the engine waits for a reaction of the UI. This operation basically mimics the
user’s behavior: Ul is expected to react to a successful interactions. From a programmatic
point of view, this goal is achieved by applying the same window stability check described

7

Are Ul items
available?

Yes

Pop top ranked

es Is UlAutomation

element?

Apply native Calculate bericenter
interactin pattern of widget

Simulate mouse
click

Is window
changed?

Yes
\4 \4
“ L

Figure 5.20: Flowchart describing UI interaction process

Interaction

. —
timeout?

in Section 5.3.2. If no reaction is observed within a given time interval, the engine assumes
the interaction has failed. Therefore, it pops another Ul element out of the ranked Ul
widget list, and tries to interact with that. This loop is repeated until an interaction is
successful or the ranked list is emptied. In both the cases, the interaction engine starts
again the whole process described in Section 5.3.2; however, if no interaction was performed,
the interaction engine increases an internal counter, called STUCK_INTERACTIONS.
Whenever this counter hits a predefined threshold, the interaction engine gives up and
allows the guest controller to terminate the analysis.

Chapter 6

Implementation details

In this chapter we present various technical aspects regarding the implementation details of
the MSASs. The chapter begins with a description of the database technologies used in our
implementation. In the same section we describe the synchronization issues arising in our
distributed architecture and demonstrate a valid way for solving them. Afterwards, focus
is given to the resource monitoring policies applied by the guests. In particular we briefly
describe the Windows NT architecture and discuss possible approaches for monitoring
access to operating system’s resources. Later on we introduce the concepts of API Hooking
and DLL injection, used for implementing the injector and the HookingDLL. The chapter
ends with a detailed description of the technologies used for implementing the Sniffer
Gateway.

6.1 Central database

The central database represents the fulcrum of the entire system architecture. It stores both
inputs and outputs of the analysis, alongside transactional state for host controllers. The
database is accessed directly, via network, by distinct host controllers and job crawlers: the
former popping jobs to analyze, the latter pushing new jobs. Therefore, the synchronization
among different nodes of the system heavily relies on this mechanism.

In our specific prototype we used PostgreSQL 9.3': an open-source object-relational
database system. It offers multiplatform support (Linux, Unix, Windows, Mac OSX,
etc) and provides native programming interfaces for multiple programming languages,
such as C/C++, Java, Python, ODBC and so on. PostgreSQL also complies to ANSI-
SQL:2008 standard, offering advanced features for nested queries, transactions and advanced
replication features (such as online hot-backup and asynchronous replication).

In order to facilitate and speed up the development of database queries, database access
is performed through a special middleware: SQLAlchemy 1.1%. SQLAlchemy is an Object
Relational Mapping (ORM) system, developed for Python language. Its main goal is to
abstract the underlying DBSM, by providing a set of common features aimed at handling
the storage of object oriented models. However, SQLAlchemy also provides native access
to SQL quering mechanisms, when database specific capabilities must to be used.

"https://www.postgresqgl.org/
Zhttp://www.sqlalchemy.org/features.html

79

© 0 N O U W N =

e e e
= W N = O

15

16

80

6.1.1 DB Schema

In Section 5.2.3 we introduced the basic data model which the analysis system is based on.
Thanks to SQLAlchemy, the implementation of such a db schema is straight forward and
only takes few lines of code. For instance, Listing 6.1 points out the definition of the Job
entity.

4 ...
class Job(Base):

__tablename__ = 'jobs'

id = Column(Integer, primary_key=True, autoincrement=True)

fname = Column(String(255), nullable=False)

downlink Column(String(4096), nullable=True)

downdate Column (String(4096), nullable=True)

assigned = Column(Boolean, nullable=False)

path = Column(String(4096), unique=True, nullable=False)

md5 = Column(String(32), nullable=False)

shal = Column(String(40), nullable=False)

fuzzy = Column(String(150), nullable=False)

aggregator = relationship(Aggregator)

aggregator_id = Column(Integer, ForeignKey("aggregators.id"))

T

Listing 6.1: Source code of database library shared between host controllers and crawlers

Both crawlers and host controllers import the same database library, called db.py, that
initializes all the SQLAlchemy objects and prepares the database for querying. Moreover,
the db module directly imports the database configuration string from the settings.py
module, which is also shared among the crawlers and the host controllers.

Once SQLAlchemy is loaded, the db schema is automatically generated, reflecting the
model specified in the db.py module. The resulting schema obtained through SQLAlchemy
is reported in details in Appendix A.

6.1.2 Multiple Host Controller synchronization

The system architecture supports multiple host controllers running simultaneously, boosting
scalability and throughput of the system. However, this situation introduces the necessity
of synchronization mechanisms, in order to mitigate accesses to shared data structures and
to avoid race conditions.

According to the system design, race conditions among host controllers may happen in
the following contexts:

e Popping a Job

Popping a Pending network analysis

Updating a Worker

Updating an Experiment

When two host controllers concur in order to pop a job from the database, each DB
driver performs a SELECT... job query against the centralized DB. If the two DB queries
are started at the same instant t0, and no synchronization mechanism is applied, both the

81

host controller may receive the same job. This situation introduces two problems. The
first is that the system will waste more resources to perform a single analysis. In fact, two
or more guests may receive the same job id, thus they perform possibly identical analysis.
The second problem is that the race condition is then reflected at the time when both
the host controllers report back results for the same job. In this case, one of the two host
controllers may detect the conflict and fail, or both of them may race again. Figure 6.1
graphically marks the race condition event, when no countermeasure is adopted.

@
m i
Host Controller 1
Host Controller 1

T Spawns___

— ///s;u.-v $
DB Session 1
Jobs DB Session 2
| Table
e False—nl : I -
I

WHERE assigned =F

SELECT job
WHERE assigned

False

Figure 6.1: Race condition between two Host Controllers when popping a job. Both of
them obtain the same job.

To fix this issue, we decided to add an ad-hoc flag in the structure of the job table, named
ASSIGNED. Moreover, the select query has been implemented using a transaction with Read
Committed isolation level. This isolation level is obtained by using the structure "SELECT
... FOR UPDATE", which adds a write-level lock into the selected rows, preventing dirty
reads by other instances. Once the selection successes, the ASSIGNED flag relative to the
selected job is raised. This approach basically causes the serialization of select queries over
the job table, as shown in Figure 6.2

The same approach has been used to solve the other possibilities of race condition: a
transaction is started with read committed isolation level, ensuring only one entity at a
time may modify the transient state.

6.2 Resource monitoring implementation

Observability capabilities of guest machines are implemented via software. The main idea
is to monitor a set of processes under analysis, auditing access performed against valuable
assets of the system. In particular, a few resources are particularly interesting for our
analysis: file system, network and registry.

In order to understand how to intercept resource access of a given process to a specific
asset, it is necessary to inspect the architecture of the target OS. Therefore, in this section
we introduce the basics regarding Windows NT architecture and then we explain how our
specific auditing approach works thanks to API Hooking and DLL Injection.

82

[]
m)
Host Controller 1
Host Controller 1
Spawns.

DB Session 1
Table
1

SELECT FOR UPDATEjob
WHERE assigned = False

Select and LOCK Job row———Jp

777777 Jobl— — — — — —]

— —obl —— — — Select and LOCK Job row

|
|
- 1 elec
UPDATE
set assigned = False
Update Job 1 STALL
Disconnect E— waiting for lock
UV\\U(K\>

T T T T — — b2 —

————Updatelob?

‘//UMOCK

Figure 6.2: Race condition resolved by locking rows being updated

6.2.1 Shared resource access in Windows NT

The way a process can access a particular asset strongly depends on the architecture of the
operating system. In general, any recent OS provides mitigation mechanisms for accessing
shared assets, eventually providing security enhancements [76]. Given a particular hardware
asset, operating systems tend to expose different software abstractions of the hardware
interface, by providing distinct API libraries for the developer. Those API sets usually
differ one another for their level of abstraction, implemented security features, ease of usage.
Moreover, OSes usually follow software modularity principles, enabling stacked module
architectures for accessing low level assets.

Windows 7 follows the NT architecture, described by Figure 6.3[71]. The lowest software
interface, able to directly deal with hardware resources, is the Hardware Abstraction Layer
(HAL). This layer of code provides very basic software interface between kernel objects and
hardware specific technologies. On the top of the HAL, multiple device drivers are stacked.
Drivers provide translations of interface I/O function calls into specific hardware requests.
Moreover, drivers can be stacked, providing multiple layers of abstraction at each stage.
Other kernel entities of the system make use of drivers in order to expose functionality
to the upper user space. Interaction between kernel services and user-mode processes is
enabled by a trap handler mechanism, implemented via software interrupts. Whenever a
user-mode application requests access to a resource asset, a software interrupt is triggered
(through the sysenter instruction). Therefore, a context swap is performed and the control
flow passes to the dispatching service, running in kernel mode. Whenever the requested
operation is concluded, the control is returned back to the user-mode calling application,
after executing another context switching.

Due to the development overhead caused by such context switching protocol, Windows
offers commodity libraries that facilitate the interaction with kernel objects from within
user-space. The ntdll library represents the lowest API entry point available within
user-space. However, applications running in user-mode do not typically call ntdll functions
directly; instead, they rely on Win32 routines [60]. Win32 libraries provide an higher

83

Applications
: : DLLs System Services Login/GINA
: Subsystem: 2 -
e Kernel32 Critical services User32 / GDI
Usermode ‘ ntdll / run-time library ‘
Kemel-mode ‘ Trap interface / LPC ‘

Security refmon IO Manager Virtual memory Procs & threads Win32 GUI

| Filefilters |

File systems __: ‘ FS run-time ‘

| Volume mgrs |

| Device stacks |

‘ Scheduler ‘

‘ exec synchr ‘

Cache mgr

‘ Kernel run-time / Hardware Adaptation Layer

Figure 6.3: Windows NT architecture, Microsoft©

level of abstraction, implementing more generic functionality by dealing with specific ntdll
implementations independently of the version of the operating system. There are a number
of reasons why programs usually rely on Win32 libraries instead of linking directly with the
native ntdll module. The most important regards the stability of the Win32 interface over
the years: Microsoft develops Win32 carefully, putting much effort in holding the interface
stable. Therefore, when a bug is fixed or a functionality is improved, the Win32 APIs tend
to remain the same, but ntdll interface may change. Moreover, Win32 APIs take care of
many low level aspects which are not directly addressed by ntdll functions. Lastly, many
ntdll APIs are not officially documented by Microsoft [36].

Given a process running in user-space, its interaction with a resource asset happens
through different layers. To summarize, from the highest abstraction layer, we find:

e User Mode

— Application libraries
— Win32 libraries (user32, kernel32, etc.)
— Ntdll library

o Kernel Mode

— Filter drivers
— Low level drivers (hardware dependent)

— HAL

One concrete way of monitoring resource access is to intercept all the API calls provided
by one or more libraries in the given stack. In particular, the lower is the level of

84

APIs intercepted, the more difficult is for an application to escape the interception layer.
Therefore, a drastic approach is to implement specific drivers for underlying hardware,
and load them at the bottom of the driver-stack, just above the HAL. However, several
problems arise when dealing with that a way. In first instance, driver implementation
requires knowledge of the underlying hardware and associated communication protocols.
Moreover this approach is not robust to hardware changes: whenever a component is
updated, drivers might require to be updated. Another relevant drawback of intercepting
resource access at this level is the lack of abstraction. Drivers are usually stacked [70]
and each one is addressing a specific function set. Thus, lowest drivers in the chain only
deal with low level information, while higher drivers in the chain are aware of high level
information. As an example, we might consider disk drivers and the file system. Whenever
an user-space process requests write access to a device, the IO Manager (a kernel object in
charge of handling I0) passes the request to the file system driver. This request contains
few parameters: a file pointer, an offset and the buffer to be written. The FS driver
calculates the position of data to be written, resulting in volume-relative byte offset. Then
it calls the next driver in stack. At this point, the disk driver will translate the volume
byte offset in sector and cylinder coordinates, used for storing the buffer on the disk. As a
result, the lowest driver has lost the information of which file is being written, while it was
available to the higher ones.

A good trade-off would be to intercept high-level drivers at the top of the stack. For
this purpose, Microsoft provides commodity driver classes, such as file-system and registry
filter drivers [58]. A file system filter driver gets loaded just above the file system driver,
therefore it can filter all the request before passing them to the next driver in the chain.
In the same circumstances of the previous example, this approach would provide a good
level of abstraction (the filter driver will be aware of the file being accessed). However,
there still are a couple of drawbacks when using this strategy. First of all, in case the
IOManager performs optimizations, caching or simply refuses to handle a request coming
from user space, the driver does not get called. Therefore, such as system would not be
able to intercept access failures in those cases. Moreover, a driver loaded in the system may
represent an artifact of the system, that analyzed software might identify relatively easily.

In order to find a good trade-off among the previously described situations, we decided
to adopt a third strategy. The idea is to add a software interception layer in between the
user space and the kernel space. More specifically we targeted the API exposed by ntdll
module. Every process running on windows NT is required to load this module. In fact,
the system throws a hard error if a process is run without loading the ntdll module [30] in
its memory space. Our approach consists in modifying the memory-space of each process
in such a way that specific code is executed before and after ntdll function calls. Thus, the
added code provides monitoring and logging functionality, directly from within the running
processes. The technique we have used to de-route ntdll function calls to our custom binary
code is technically defined as API Hooking.

6.2.2 API Hooking: Overview

APIT Hooking is a technique that enables the interception of function calls [84]. There are
many possible ways to perform such interceptions. On Windows, we might identify the
followings:

o Import/Export Address Table Hooking

85

e SSDT Hooking
e Inline Hooking

The first hooking mechanism is an user-space oriented approach. Its idea is to modify
the Import Address Table (IAT) or the Export Address Table (EAT) of a given process.
The IAT maps imported functions of an external DLL to their relative memory address.
This binding is performed by the Windows Loader before the executable is run. TAT
Hooking consists in modifying such a table, so that the address of a loaded function is
overwritten with the address of another arbitrary function [75]. Although this hooking
method is easy to apply, its efficacy is poor. In fact, IAT hooking is easily detectable [75]
and more advanced hooking systems are usually preferred. Moreover, IAT Hooking is
ineffective when the target process uses runtime dynamic linking via LoadLibrary() and
GetProcAddr(). On the other hand, this hooking system allows to selectively hook only
the functions of interests for a given process. That is because each process has its own
private IAT.

The second hooking approach, performed within kernel space, aims at patching the
System Service Dispatch Table (SSDT). The SSDT represents a kernel data structure,
mapping system call routines to their relative memory addresses [80]. Whenever a system
call is requested by an user-space process, the SSDT is scanned in order to find the memory
address of the system call to execute. Thus, it is possible to change the address of specific
system calls, obtaining the same hooking effects described previously. Since kernel memory
is shared to all the kernel objects, a driver would be able to access the SSDT. Thus, a
simple way of patching SSDT is to develop a driver that, at load time, allocates hooking
functions and overwrite the addresses of the SSDT. Although SSDT is write protected,
there are some strategies allowing to workaround that limit [75]. Eventually, this SSDT
method patching methods have been tackled by Microsoft with modern 64bit operating
systems [59], but still affect 32 bit OSes. The main problem of SSDT is the overhead
inducted to the entire system. In fact, once the SSDT has been patched, every process
calling an hooked syscall will run hooked function. A workaround is to add some logic into
the hooked function, so that the standard syscall is called based on certain circumstances.

The third method is called Inline Hooking, and corresponds the hooking approach
adopted in our system. The basic idea behind inline hooking is to overwrite the first
instruction of the function to hook, so that arbitrary code is executed. To do so, a series of
operations are necessary. Let FUNC be the hooked function and HOOK the hook function. In
order to hook FUNC and execute HOOK before it, inline hooking requires to:

1. Copy the first bytes of FUNC into a new memory location, STUB
2. Overwrite the first bytes of FUNC with an unconditional JUMP to HOOK
3. Append a JUMP instruction to HOOK, bringing control back to STUB

Figure 6.4 graphically shows a comparison between a standard function call (A) and
an inline hooked function call (B). The very first part of the function (A) constitute the
prologue, which is in charge of preparing the stack and registers before executing the logic
of the called function. In a normal context, when calling this function, the prologue is
executed, then the control passes to the real logic of the function (unspecified in the image).
After applying the inline hooking, the memory appearance changes like in Figure 6.4 (B).
The prologue is overwritten with an unconditional JUMP instruction, which immediately

86

A. Non hooked function

Address Assembly instruction

[FUNC]}, RSN RELTY)

IRSIN[®HAN MOV ebp, esp —

[FUNC+3]}, B ebp+8

<
[FUNC+61p| .. | Function
[FUNC+ ... Tn] ... specific code

B. Hooked function
Address Assembly instruction
-
Overwritten | _ | GO VP [HOOK],
part
~
Target [FUNC+6]p] ...
function’s logic [FUNC+ ..]n| ... ‘
[STUB]}, Ba ebp <P
1 (2)
trampoline — IVEESAM MOV ebp, esp
_ [STUB+3]}, Bx ebp+8
[STUB+...]n| JIMP [FUNC+6];, — (3) optional
[HOOK]p| ... <
Detour
. [HOOK+...]n| ...
function
[HOOK+n]y,| JIMP [STUB],

Figure 6.4: Inline hooking from memory perspective

brings the control to another user-defined function, called detour function (in our case
HOOK). The detour function implements custom logic, often aimed at logging or profiling
function calls. The detour code, after performing profiling or logging, might execute the
original targeted function. This is done by executing the trampoline function, i.e. the copied
version of the original prologue (in our case a copy of it, STUB). Hence, the trampoline
prepares the stack and then invokes the unmodified target function.

Inline hooking is mostly applied in user space, and does not suffer of any drawback
regarding DLL load strategies. In fact, in contrast with IAT hooking, inline hooking
overwrites library functions after they have been loaded into the memory. Thus, inline
hooking serves well both with static runtime and load-time dynamic linking. Moreover, in
contrast with SSDT hooking, inline hooking does not affect the entire system. In fact, inline

10

11
12

14
15

17
18

20

87

hooks can be applied selectively to an arbitrary set of processes, chosen by the developer.

The hooking mechanism we chose for our architecture belongs to the third family:
inline hooking. More specifically, we rely on the Microsoft’s Detours library [39]. Detorus
implements inline hooking by preserving the target function unaltered, patching the libraries
directly in memory at runtime. Indeed, the interception mechanism used by Detours is
guaranteed to work regardless of the method used by the application to locate the target
function [39].

6.2.3 DIl Injection & Injector

In order to perform inline function hooking, it is necessary to inject a portion of code
into the target process, so that its memory space can be modified. The idea of injecting
code into another process is called process injection [75]. There are two different ways for
performing process injection under windows: direct injection and dll injection. While direct
injection consists in writing all the pre-compiled code to be injected directly into the remote
processes, dll injection is more convenient in our case. In fact, dll injection represents the
most used technique to perform process injection [75]. The basic idea consists in injecting
only a few instructions into the target process, aimed at loading an external DLL. The
external DLL contains the whole logic to be injected into the remote process. To do so,
the following actions have to be taken:

1. Obtain an handle to the target process (if already spawned)
2. Allocate enough memory in the target process for storing the dll path name to load
3. Write the dll path into the allocated space

4. Make the target process to execute the LoadLibrary() function

//
// Perform injection:
if (processCreated) {
// Allocate enough memory on the new process
LPVOID baseAddress = (LPVOID)VirtualAllocEx(lpProcessInformation—>«

hProcess, NULL, strlen(DllPath)+1, MEM_RESERVE | MEM_COMMIT, <«
PAGE_READWRITE) ;

// Copy the code to be injected
WriteProcessMemory(lpProcessInformation—>hProcess, baseAddress, DllPath, <«
strlen(D11lPath), NULL);

kern32dllmod = GetModuleHandle (TEXT("kernel32.d11"));
HANDLE loadLibraryAddress = GetProcAddress(kern32dllmod, "LoadLibraryA");
if (loadLibraryAddress — NULL)

{

return 0;

}

reate a remote thread into the target process and trigger the <«
C t te th d into the target d trigg th
LoadLIbraryA execution

21

22
23
24
25
26
27
28
29
30

© 0 N s W N =

P
= O © N o U A W N R O

22
23
24
25
26
27
28
29
30
31

88

HANDLE threadHandle = CreateRemoteThread(lpProcessInformation—>hProcess , <
NULL, O, (LPTHREAD_START_ROUTINE)loadLibraryAddress, baseAddress, <«
NULL, 0);
if (threadHandle — NULL) {
OutputDebugStringW (_T("REMTOE THREAD NOT O0K"));
}

OutputDebugStringA ("Remote thread created");

ResumeThread (lpProcessInformation—>hThread);

Listing 6.2: An example of dll injection

Listing 6.2 demonstrates a simple way of performing dll injection on Windows. At first
we allocate enough memory in the target process, aimed at storing the path for the dll
path to load. This operation is performed via VirtualAllocEx. Afterwards we write the
path into the previously allocated memory. Later on we retrieve an handle to the kernel32
library, via GetModuleHandle. At that point, using GetProcAddr, we obtain the relative
offset of the LoadLibrary routine within the kernel32 module. Then, we start a new thread
in the remote process. The entry point of the thread is the LoadLibrary function, having
the address of the dll to load as first parameter. Finally, we start the thread we allocated.

BOOL WINAPI MyDetourCreateProcessWithD11l (LPCSTR lpApplicationName,
__in_z LPSTR lpCommandLine,
LPSECURITY_ATTRIBUTES 1lpProcessAttributes,
LPSECURITY_ATTRIBUTES 1pThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCSTR 1lpCurrentDirectory,
LPSTARTUPINFOA 1lpStartupInfo,
LPPROCESS_INFORMATION 1lpProcessInformation,
LPCSTR 1lpDllName,
PDETOUR_CREATE_PROCESS_ROUTINEA prreateProcessA)

PROCESS_INFORMATION pi;
LPCSTR rlpDlls [2];
DWORD nDlls = 0;

// Configure flag mask and set SUSPENDED bit .
DWORD dwMyCreationFlags = (dwCreationFlags | CREATE_SUSPENDED);

// If no custom function has been passed to create the process, use
CreateProcessA
if (pfCreateProcessA — NULL) {
pfCreateProcessA = CreateProcessA;
}

// Invoke process creation

if (!pfCreateProcessA(lpApplicationName,
lpCommandLine ,
lpProcessAttributes,
lpThreadAttributes,
bInheritHandles ,

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

1
2
3

89

dwMyCreationFlags,
lpEnvironment ,
lpCurrentDirectory,
lpStartupInfo,
&pi)) {
return FALSE;
}

// Copy the dll path string pointer into the array of dll to inject
if (1pDllName != NULL) {
rlpDlls [nD1lls++] = 1lpDllName;

// Inject the DLL into paused process

if (!DetourUpdateProcessWithD11l(pi.hProcess, rlpDlls, nDlls)) {
TerminateProcess (pi.hProcess, ~0Ou);
return FALSE;

}

// Copy back info about the created process
if (lpProcessInformation) {
CopyMemory (lpProcessInformation, &pi, sizeof(pi));

// Resume thread execution, so process continues.

if (!(dwCreationFlags & CREATE_SUSPENDED)) {
ResumeThread (pi.hThread);

}

return TRUE;

Listing 6.3: DIl Injection procedure

Listing 6.3 shows part of the source code characterizing the injector module of guest
nodes, which is in charge of performing dll injection. The injector requests to the OS
to prepare a process for execution (Line 27), but to leave it in suspended status(Line
19). Then, dll injection is performed indirectly, using DetoursUpdateProcessWithD11 ()
(Line 46). That function basically implements some checks against the target process and
performs the needed operation to load the HookingDLL into the remote process, similarly
to what is shown in Listing 6.2. Afterwards, the code takes care of storing information
about the new created process (such as thread ID and Process ID). Eventually, the process
execution is resumed, by calling ResumeThread (Line 58).

6.2.4 Clooser look at HookingDLL

So far we have briefly introduced API Hooking and DLL injection techniques, used in our
implementation. However, the fulcrum of the API Hooking system is implemented within
the HookingDLL, which uses Microsoft Detours and is injected via the injector.

INT APIENTRY D1l1lMain (HMODULE hDLL, DWORD Reason, LPVOID Reserved)
{
// Get the module in which there is the function to deroute, which is «
NTDLL.DLL
ntdllmod = GetModuleHandle (TEXT("ntdll.d11"));
kern32dllmod = GetModuleHandle (TEXT("kernel32.d1l1l"));

© o N O

10
11

12
13
14
15
16
17
18
19
20
21
22
23

25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

90

wsmod = LoadLibrary (TEXT("wsock32.d11"));
ws2mod = LoadLibrary (TEXT("ws2_32.d11"));

string tmplog;

// Now, according to the reason this method has been called, register or <«

unregister the DLL

switch (Reason)

{

}

case DLL_THREAD ATTACH:
OutputDebugString (_T("THREAD ATTACHED TO DLL."));
break ;

case DLL_THREAD_DETACH:
OutputDebugString (_T("THREAD DETACHED FROM DLL."));
break;

case DLL_PROCESS_ATTACH:

// Initialize the TLS index. Every allocated slot is guaranteed to be<«
initialized to 0. So we don't need to initialize them.
if ((dwTlsIndex = TlsAlloc()) = TLS_OUT_OF_INDEXES)
return FALSE;

tmplog.append(_T("Attached to process"));
tmplog.append(to_string(GetCurrentProcessId()));
OutputDebugString(tmplog.c_str());
DisableThreadLibraryCalls (hDLL);

// Set the error mode to NONE so we do not get annoying Ul
SetErrorMode (SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX):
_set_abort_behavior (0, _WRITE_ABORT_MSG);

// The following is needed for performing the lookup of opened query <

keys
realN;EueryKey = (pNtQueryKey) (GetProcAddress(ntdllmod, "NtQueryKey")<
);
Hook(&realNtCreateFile, MyNtCreateFile, ntdllmod, "NtCreateFile");
/-
// ...other hooks..
//

notifyNewPid (0, GetCurrentProcessId());
break ;

case DLL_PROCESS_DETACH:
OutputDebugString (_T("PROCESS DETACHED FROM DLL."));

// Removing Hooks
UnHook(&realNtCreateFile, MyNtCreateFile, "NtCreateFile");

//

// ... other hooks being removed here

//

break;

61
62
63

1
2

3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

91

return TRUE;

}

Listing 6.4: Hooking DLL source code, DLL entry points

Listing 6.4 points out the entry point of the HookingDLL module. Windows Loader,
at loading time, invokes the D11Main method and passes two important arguments: the
module handle and an enumerative variable. The former, represents the handle of the
loading process, which is not really relevant in our case. The latter argument can assume
four distinct values, depending on the reason why the loader invokes the DIIMain. Therefore,
this variable is used as discriminant by a switch case (Line 12). Whenever the DLL is
loaded for the first time into a process, the control will b passed to DLL_PROCESS_ATTACH
branch. On the contrary, when the Windows Loader unloads the DLL from the process, the
control is passed to the DLL_PROCESS_DETACH branch. Similarly, DLL_THREAD_ATTACH and
DLL_THREAD_DETACH constants are used by the Windows Loader for loading and unloading
the module to singular threads. In our case we expressly avoid this by disabling thread
library calls.

At loading time, HookingDLL takes care of initializing some memory structures (Line
25) used afterwards, then it disables DlIIMain invocation upon thread events (Line 31).
Afterwards API hooking is actualized, by invoking a custom function Hook, generated by a
template, as shown in Listing 6.5. The Hook function is invoked for each function to be
hooked. The complete list of API hooked in the current version of the HookingDLL is
reported in Appendix B. Eventually, a call to notifyNewPid () communicates to the guest
controller that the DLL has been correctly injected to a new process. By doing so, the
guest controller adds the relative pid to the list of monitored processes, and starts listening
for logging message from them.

template <typename Type>
bool Hook(Typex realFunction, void* hookingFunction, HMODULE module, const <«
char+* function_name) {

char buff[512];
// Assign the pointer to the real function
(*realFunction) = (Type)(GetProcAddress(module, function_name));
DetourTransactionBegin();
DetourUpdateThread (GetCurrentThread());
DetourAttach(&(PVOID&)(*xrealFunction), hookingFunction);
if (DetourTransactionCommit () != NO_ERROR) {
sprintf_s(buff, "[CHOOKING DLL] %s not derouted correctly", <
function_name);
OutputDebugStringA (buff);
return false;
else {
sprintf_s(buff, "[CHOOKING DLL] %s atteched OK", function_name);
OutputDebugStringh (buff);
return true;
}
}

template <typename Type>
bool UnHook(Typex realFunction, voidx hookingFunction, const charx <«

25
26
27
28
29
30
31

1

2

92

function_name) {
char buff[512];

DetourTransactionBegin();
DetourUpdateThread(GetCurrentThread());
DetourDetach(&(PVOID&)(*xrealFunction), hookingFunction);
if (DetourTransactionCommit () != NO_ERROR) {

sprintf_s(buff, "[CHOOKING DLL] %s not detached correctly", <

function_name);
OutputDebugStringh (buff);
return false;

}

else {
sprintf_s(buff, "[CHOOKING DLL] %s detached OK", function_name);
OutputDebugStringA (buff);
return true;

}

Listing 6.5: Hooking DLL source code, Hooking and UnHooking templates

When a process is going to be unloaded, the operating system takes care of invoking
DIlIMain again, passing the DLL_PROCESS_DETACH value as reason argument. Thus, the
control reaches the relative branch in the switch-case construct (Line 57), and the hooks
are removed.

A closer look to the hooking mechanism is provided by Listing 6.5. In particular,
we implemented two C++ templates in charge of providing Hooking and UnHooking
functionality, independently of the functions to be hooked. The Hook templates starts
by retrieving a pointer to the target function to be hooked, via GetProcAddr (Line
6). Afterwards, it starts a DetourTransaction and requests to hook the target function
(realFunction) via a detour function (hookingFunction). Then, if the operation succeeds,
the template returns a true value; in case of error, false is returned. The UnHook function
works similarly. At first, it starts a transaction, then it requests to unhook the target
function (this also destroys any allocated trampoline), finally a boolean value is returned
for discriminating success or failure.

NTSTATUS WINAPI MyNtOpenFile (PHANDLE FileHandle, ACCESS_MASK DesiredAccess , <
POBJECT_ATTRIBUTES ObjectAttributes, PIO_STATUS_BLOCK IoStatusBlock, <«
ULONG ShareAccess, ULONG OpenOptions)
{
if (!shouldIntercept())
return realNtOpenFile(FileHandle, DesiredAccess, ObjectAttributes, <«
IoStatusBlock, ShareAccess, OpenOptions);

/* If the handle has write access, it is a good idea to calculate the <
hash before the attached thread changes the file itself. To do so, we+
send a message to the GuestController everytime we see an NtOpenFile«
with write access. The Guest controller will then try to open the <«
file and store, in its report, the hash of the file before any <«
modification. After that, the Guest controller will answer to the <«
SendMessage and this thread will continue (yeah, SendMessage blocks <
until the sender eats the message from the pump). =/

string s = GetFullPathByObjectAttributes (ObjectAttributes);

if (IsRequestingWriteAccess(DesiredAccess))

NotifyFileAccess (s, WK_FILE_OPENED);

93

10

11 // Call first because we want to store the result to the call too.

12 NTSTATUS res = realNtOpenFile(FileHandle, DesiredAccess, ObjectAttributes<
, IoStatusBlock, ShareAccess, OpenOptions);

14 if (res = 0)
15 handleMap.Insert (xFileHandle, s);

17 #ifdef SYSCALL_LOG

18 // Use a node object to create the XML string: this will contain all <«
information about the SysCall
19 pugi::xml_document doc;pugi::xml_node element = doc.append_child(_T("+

NtOpenFile"));
20

21 /] >>555555555555> File Path <<<<<<<<<<<<<<<

22 // The objectname contains a full path to the file

23 element .addAttribute(_T("Path"), s.c_str());

24

25 /] >>>55555>>>>>>> DESIRED ACCESS <<<<<<<<<<<<<<<

26 element .addAttribute(_T("AccessMask"), StandardAccessMaskToString(+
DesiredAccess).c_str());

27

28 // S>SSSS55555555>> [0 STATUS BLOCK <<<<<<<<<<<<<<<

29 s.clear();

30 IoStatusToString(IoStatusBlock, &s);

31 element .addAttribute(_T("IoStatusBlock"), s.c_str());

32

33 /] >>>>>55>>555>>> SHARE ACCESS <<<<<<<<<<<<<<<

34 s.clear();

35 ShareAccessToString(ShareAccess, &s);

36 element .addAttribute(_T("ShareAccess"), s.c_str());

37

38 // S>> OPEN OPTIONS <<<<<<<<<<<<<<<

39 s.clear();

40 FileCreateOptionsToString(OpenOptions, &s);

41 element.addAttribute (_T("OpenOptions"), s.c_str());

42

43 / / SSSSSSSSSSSSSS> Result <<<<<<<<<<<<<<<

44 s.clear();

45 NtStatusToString(res, &s);

46 element.addAttribute (_T("Result"), s.c_str());

47

48

49 if (NT_SUCCESS(res))

50 {

51 wchar _t buff [32];

52 wsprintf (buff, _T("Ox%p"), *FileHandle);

53 element.addAttribute (_T("Handle"), buff);

54 }

55

56 log(&element);

57

58 #endif

59

60 return res;

61 }

Listing 6.6: HookingDLL source code, Detour function of NtOpenFile()

94

An example of detour function is provided by Listing 6.6. Function MyNtOpenFile ()
represents the detour procedure attached in place of NtOpenFile(). All the detour
procedures share the same structure. At first, the function checks whether the following
logic has to be applied or not. In fact, in case recursion is detected, detour function is
skipped, and the original procedure is called directly, via the trampoline (Lines 3-4). This
situation is pretty common when hooking low level API such as NtOpenFile() and using
high level API to communicate with other processes. In fact, the notification mechanism,
via named pipes, internally uses NtOpenFile () to achieve its goal. Thus, it is necessary to
avoid hooking function calls used for logging and IPC with guest controller. For this reason,
the HookingDLL module makes use of Thread Local Storage (TLS), a simple mechanism
providing private memory to each thread. Whenever a thread invokes any of the logging
procedures (such as NotifyFileAccess()), a thread-specific flag is raised. Then, when a
recursion happens, shouldIntercept() checks whether the flag is set or not. In case it has
been set, the detour procedure is skipped, and the trampoline to the target function is
invoked directly (Line 4).

For logging purposes, each function may require an overhead to provide contextual
data. For example, in this case, NtOpenFile () is invoked directly using a file handle,
which does not bring any path information. Thus, the path associated to the file being
accessed is obtained through a specific function (GetFullPathByObjectAttributes()), on
Line 7. After that, the function checks if the access has to be logged or not. In case the file
access is performed with write permission, the action is logged, therefore the HookingDLL
synchronously notifies the guest controller. In this way, the guest controller has a chance
of performing preliminary checks, such as calculating a hash of the accessed file before any
other modification happens. Afterwards, the function calls the trampoline of the target
function (in this case NtOpenFile () with original arguments). Eventually the HookingDLL
takes track of all accessed handles and relative paths using an in-memory hashmap.

The last part of the function is executed only when the code is compiled with SYSCALL_LOG
switch on. If that is the case, supplementary log information is sent to the guest controller,
encoded in XML format. In this case, the logging information would include all the syscall
arguments and the result of the execution.

6.2.5 Process hierarchy, dll injection and API hooking

So far we have described how HookingDLL is injected into a process and how hooking is
performed via Microsoft Detours, using the injected DLL. Initially, the injector starts the
target installer-process by pausing it and injecting the HookingDLL at startup. However, in
case the process forks (i.e. creates a new process), the child process will not be subjected to
hooking. Hence, it is necessary to recursively inject the HookingDLL to any child process,
at spawn time.

Such an objective can be easily achieved by hooking the CreateProcess() API be-
longing to the Kernel32.dll library (user space). The idea is to intercept calls to process
creation routines, spawn the child process with the suspended flag (using the trampoline),
then inject the HookingDLL into the child; eventually we resume the execution normally.
However, Windows offers different APIs to create processes [72]:

o CreateProcessW() (kernel32.dll)
o CreateProcessAsUserW() (kernel32.dll)

o CreateProcessWithLogonW() (advapi32.dll)

1

© 00 N D O W N

N S e e
G W N = O

16

18
19
20
21

95

o CreateProcessWithTokenW() (advapi32.dll)

Those API belong to two relevant user-space libraries, documented by Microsoft.
Unfortunately, their inner implementation details are not public nor documented. Therefore,
the way they use lower level APIs, such as NtCreateUserProcessEx() is not completely
disclosed and often subjected to change on any Windows version. For these reasons, we
decided not to hook native APIs for process creation; instead we targeted a common
internal routine invoked by all the previous functions: CreateProcessInternalW(). We
discovered the existence of such an undocumented function by using a windows debugger,
analyzing the call stack for simple custom test executables. In particular, we observed this
function among the call stacks of CreateProcessW() and CreateProcessAsUserW(), as
shown by Figure 6.5. The last two functions, instead, rely on a separate Windows Service,
called Secondary Logon, which internally uses CreateProcessAsUserW(). Therefore, the
reader may immediately note that every function has invoked, at a certain point, the
CreateProcessInternalW() function.

0:000: ui »D ~c kernell?|CreateProcessT
kernel3? |CreateProcess¥ (757e204d)
kernel 32 | CreateProces=sT+0x27 (757220740
call to kernelid?|CreateProcessInternall (7582de78)
0:000: uf ~D ~c kerneli?|CreateProcessislzerl
kernel3? |CreateProcessAslI=ser¥ (758158af)

kernel 32 | CreateProcessi=sTeerT+0x28 (75815847)
call to kerneldl? | CresateProcessInternallW (V5824730

Figure 6.5: Call stacks of disassembled functions CreateProcessW() and CreateProcessAs-
UserW(), obtained via WinDbg

Listing 6.7 shows the detour function implemented on top of the CreateProcessInternalW(),

within the HookingDLL.

BOOL WINAPI MyCreateProcessInternalW (HANDLE hToken,
LPCWSTR 1lpApplicationName,
LPWSTR lpCommandLine,
LPSECURITY_ATTRIBUTES 1lpProcessAttributes,
LPSECURITY_ATTRIBUTES 1lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCWSTR 1lpCurrentDirectory,
LPSTARTUPINFOW lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation,
PHANDLE hNewToken)

if (!shouldIntercept())
return realCreateProcessInternalW(hToken, lpApplicationName, <
lpCommandLine, lpProcessAttributes, lpThreadAttributes, <
bInheritHandles, dwCreationFlags, lpEnvironment, lpCurrentDirectory<
, lpStartupInfo, lpProcessInformation, hNewToken);

CHAR D11Path[MAX_PATH] = { 0 };
GetModuleFileNameA ((HINSTANCE)&__ImageBase, D11lPath, _countof(D1l1lPath));
BOOL processCreated;

// Save the previous value of the creation flags and make sure we add the+
create suspended BIT

22
23
24
25
26

32
33
34

35
36

37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52

53

54
55
56
57
58
59
60
61
62
63
64

66
67
68

96

DWORD originalFlags = dwCreationFlags;
dwCreationFlags = dwCreationFlags | CREATE_SUSPENDED;

// Call the trampoline

processCreated = realCreateProcessInternalW (hToken, lpApplicationName, ¢
lpCommandLine, lpProcessAttributes, lpThreadAttributes, <«
bInheritHandles, dwCreationFlags, lpEnvironment, lpCurrentDirectory, <>
lpStartupInfo, lpProcessInformation, hNewToken);

// Perform injection: we cannot use directly DetoursCreateProcessWithDI1l <«
due to the low level functionality being hooked.
if (processCreated) {
// Allocate enough memory on the new process
LPVOID baseAddress = (LPVOID)VirtualAllocEx(lpProcessInformation—>«
hProcess, NULL, Strlen(DllPath)+ﬂw MEM_RESERVE | MEM_COMMIT, <
PAGE_READWRITE);

// Copy the code to be injected
WriteProcessMemory(lpProcessInformation—>hProcess, baseAddress, DllPath+«
, strlen(Dl1lPath), NULL);

OutputDebugStringh ("HookingDLL: DLL copied into host process memory <
space");

// Notify the HostController that a new process has been created
notifyNewPid (GetCurrentProcessId(), lpProcessInformation—>dwProcessId);
kern32dllmod = GetModuleHandle (TEXT("kernel32.d11"));

HANDLE loadLibraryAddress = GetProcAddress(kern32dllmod, "LoadLibraryA"«

)

if (loadLibraryAddress = NULL)
OutputDebugStringW (_T("!!!!'!LOADLIB IS NULL"));
//error
return O;

}
else {

OutputDebugStringW (_T("LOAD LIB 0K"));
}

// Create a remote thread into the target process and trigger the <«
LoadLIbraryA execution
HANDLE threadHandle = CreateRemoteThread(lpProcessInformation—><
hProcess, NULL, 0, (LPTHREAD_START_ROUTINE)loadLibraryAddress, <«
baseAddress, NULL, 0);
if (threadHandle = NULL) {
OutputDebugStringW (_T("REMTOE THREAD NOT OK"));

else {
OutputDebugStringW (_T("REMTOE OK"));
}

OutputDebugStringA ("HookingDLL: Remote thread created");

// Check if the process was meant to be stopped. If not, resume it now
if ((originalFlags & CREATE_SUSPENDED) != CREATE_SUSPENDED) {

// need to start it right away

ResumeThread (lpProcessInformation—>hThread);

OutputDebugStringA ("HookingDLL: Thread resumed");

}

69
70
71
72

73

74
75
76
7
78
79
80
81
82
83
84
85
86

97

}

#ifdef SYSCALL_LOG

// Use a node object to create the XML string: this will contain all <«
information about the SysCall

pugi::xml_document doc; pugi::xml_node element = doc.append_child(_T("«+
CreateProcessInternalW"));

/] SSSSSSSSSSSSS>> Result <<<K<< <<<K<<<<<<
string w = string();
NtStatusToString(processCreated, &w);

element .addAttribute(_T("Result"), w.c_str());
log(&element);

#endif

return processCreated;

Listing 6.7: Detour function for CreateProcessInternalW ()

Similarly to the other detour functions, MyCreateProcessInternalW() begins with
recursion checks. In case recursion is detected, the trampoline is invoked directly, without
executing any other operation of the detoured function (Lines 14-15). If no recursion
is detected, the CREATE_SUSPEDED flag is set, saving its previous value apart. Thus the
trampoline to the original CreateProcessInternalW() is executed with that flag set
(Line 26). Afterwards, if process creation succeeds, DLL injection is performed into the
child process. In this case we could not use directly the DetourCreateProcessWithD11 ()
utility: in fact that utility internally uses CreateProcessInternalW(), and that would
cause recursion. Thus, we decided to manually implement DLL injection in this case.
Therefore, we first allocate enough memory into the child process in order to store the path
to the HookingDIl to be loaded (Line 31). Then, we write the path into that memory space,
via WriteProcessMemory (). Later on, we notify the guest controller about the new child
process being spawned (Line 30) and finally allocate a remote thread into the child process,
setting its entry point to LoadLibraryA() and specifying the dll path previously allocated
as argument. Eventually we decide whether to start the main thread of the process directly
or not, by looking at the original value of CREATE_SUSPEDED bit (Lines 64-70).

6.2.6 Hooking Windows services

Microsoft Windows implements several services, each one offering a specific set of func-
tionality to other applications. Some of these services are generally used by installers.
Particularly relevant in our context are two services: Distributed Component Object Model
(DCOM) and Microsoft Installer (MSI).

The DCOM Service provides mechanisms to distribute applications’ functionality over
a network. It uses the Microsoft Component Object Model (COM) system, by implementing
location transparency and relies on Remote Procedure Call (RPC) [71]. The DCOM service
is critical for us due to its ability of spawning a process remotely. In fact, even though the
application resides on the same machine, it may request to spawn a process via RPC, by
relying on the local DCOM server.

1
2

© 0 N O s W

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

98

The Microsoft Installer Service implements some background functionality related to
MSI-compilant installers. Similarly to the DCOMLaunch service, also MSIExec uses RPC
to communicate with client applications. Moreover, the MSIExec services implements
a wider range of capabilities: from registry modification, file manipulation and process
creation.

Any process in the system may, sooner or later, communicate with those services and
delegate to them some operations. For instance, InstallShield may use DCOM in order to
start some COM objects and deal with them later on. Another important issue regards
the capability of a process to install a new service. In such a case the new service needs to
be monitored as well. For this reason, we decided to apply the same hooking system to
the following system services: dcomlaunch, msierec and services. As a consequence, the
injector takes care of checking whether those services are alive, and injects the HookingDLL
into them before spawning the target installer. The relative code that addresses this task
is exposed in Listing 6.8.

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,LPSTR <
lpCmdLine ,int nCmdShow)
{

// Variables
[...]

// Arg check
[...]

// Some processes will use DCOMLAUNCHER. Patch it!

if (!HookAndInjectService(DLLPATH, DCOM_LAUNCH_SERVICE_NAME)) {
LogError ("XXX INJECTOR ERROR XXX: Cannot hook DCOMLauncher");

}

else {
Log("[INJECTOR] DCOM Injection performed! :)");
}

// Some processes will use Windows Installer , so we need to path it

if (!HookAndInjectService (DLLPATH, WINDOWS_INSTALLER_SERVICE_NAME)) {
LogError ("XXX INJECTOR ERROR XXX: Cannot hook WindowsInstaller service"<«

)5

}

else {
Log("[INJECTOR] WindowsInstaller Injection performed! :)");

}

// Also take care of patching services.exe
if (!HookAndInjectServicesExe(DLL_SERVICES_PATH)) {
LogError ("XXX INJECTOR ERROR XXX: Cannot hook Services.exe");

1 else {

Log (" [INJECTOR] Services.exe Injection performed! :)");
}

// Rest of logic
[...]
}

BOOL HookAndInjectService(const charx dllPath, const charx serviceName){

39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68

69

70
71

72
73
74
75
76
7
78
79

80
81
82
83
84
85
86
87
88
89
90

99

// Declarations

[...]

// Look for the DcomLaunch process.
// Connect to service manager first , then open the service.
schSCManager = OpenSCManager (NULL, NULL, SC_MANAGER_ALL_ACCESS);
if (schSCManager — NULL) {
DWORD err = GetLastError ();
sprintf_s(strbuff, sizeof(strbuff), "XXXXXX Injector Error: Cannot open<
service manager error: %d", err);
LogError (strbuff);
return FALSE;

}

service = OpenService(
schSCManager , // SCM database
serviceName , // name of service
SERVICE_QUERY_STATUS); // Query Status
if (service =— NULL) {

DWORD err = GetLastError ();

sprintf_s(strbuff, sizeof(strbuff), "XXXXXX Injector Error: Cannot open<
service, error: %d", err);

LogError (strbuff);

CloseServiceHandle (schSCManager);

return FALSE;

}

ZeroMemory(&srvStatus, sizeof(srvStatus));

// At this point we want to know which is the PID of the process running <«
this service.
if (!QueryServiceStatusEx(service, SC_STATUS_PROCESS_INFO, (LPBYTE)&<—
srvStatus, sizeof (SERVICE_STATUS_PROCESS), &dwBytesNeeded)){
DWORD err = GetLastError();
sprintf_s(strbuff, sizeof(strbuff), "XXXXXX Injector Error: Cannot ¢«
retrieve status info about service Y%s, error: %d",serviceName, err)<«

)
LogError (strbuff);
CloseServiceHandle (schSCManager);
return FALSE;

}

// Check if the service is started. If not, start it now.

if (srvStatus.dwCurrentState != SERVICE_RUNNING) {
sprintf_s(strbuff, sizeof(strbuff), "Service %s was not running. I'll <«
start it now.", serviceName);

Log(strbuff);

StartSampleService (schSCManager , serviceName, &dwProcessId);

}

else {
// We finally have the pid now. Copy into a local variable.
dwProcessId = srvStatus.dwProcessId;

}

// We don't need this anymore.
CloseServiceHandle (schSCManager);

91
92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119

120
121
122
123
124
125
126
127
128
129
130
131

100

sprintf_s(strbuff, sizeof(strbuff), "Process ID of %s is %d", serviceName<
, dwProcessId);
Log(strbuff);

// Get the handle of the running dcomlauncher process
return injectIntoPID(dwProcessId, dllPath);

}

BOOL HookAndInjectServicesExe(const charx dllPath) {

HANDLE hProcess = NULL;
DWORD dwProcessId;
char strbuff[512];

// Check the pid of services.exe and proceed with the injection
PROCESSENTRY32 entry;
entry.dwSize = sizeof (PROCESSENTRY32);

HANDLE snapshot = CreateToolhelp32Snapshot (TH32CS_SNAPPROCESS, NULL);

if (Process32First (snapshot, &entry) — TRUE)
while (Process32Next(snapshot, &entry) — TRUE)
{
if (_stricmp(entry.szExeFile, "services.exe") =— 0)
{
hProcess = OpenProcess (PROCESS_ALL_ACCESS, FALSE, entry.<
th32ProcessID);
dwProcessId = entry.th32ProcessID;
sprintf_s(strbuff, sizeof(strbuff), "Process ID of services.exe is ¢«

%d", dwProcessId);
Log(strbuff);
CloseHandle (hProcess);
break;

}
}
}

CloseHandle (snapshot);

// Get the handle of the running dcomlauncher process
return injectIntoPID(dwProcessId, dllPath);

}

Listing 6.8: Injector’s source code: injecting HookingDLL into dcom and msiexec

The source code is self explanatory. At the very beginning of its execution, the
injector immediately injects the HookingDLL into the relevant services. A specific function
takes care of locating the service, retrieving its PID and injecting the given DLL into
it: HookAndInjectService() (Line 38). Specific injection logic into the process is added
by another function: injectIntoPID(). The injection logic is the same we applied for
CreateProcessInternalW(). The only difference between the two approaches regards the
call to CreateRemoteThread. In fact, starting from Windows Vista, Microsoft protects
system services against the usage of CreateRemoteThread. In order to workaround this
limitation, we relied on another function, called Rt1CreateUserThread, which does not
perform this security check and allows us to create a remote thread into a system service.

101

6.3 Sniffer

Our specific implementation of the gateway sniffer is completely software, based on a
Linux Ubuntu 14.10 operating system (64 bit, Kernel 3.19), equipped with a specific set
of networking services. Linux offers a wide set of networking capabilities, some of them
provided directly by its kernel module [68]. Moreover, various open source software packages
have been developed over the years, targeting specific networking functions. Although
performances are not comparable to high-end proprietary hardware accelerated solutions,
they remain more than acceptable for our scope.

An overview of the general architecture of the sniffer is provided in Section 5.2.6. The
complete list of services to be implemented by the network sniffer are the following;:

e Networking functions

— IP Routing

— DHCP

— DNS

— NAT

Traffic sniffing

¢ Host Controller interaction

— Handling sniffing sessions

— Serving captured files
o Capture file synthesis

The first set of services represents the basic networking functions that guest machines
need to operate on the network. As we will discuss later in this chapter, those services are
provided by a combination of open-source Linux software and native Linux kernel modules.
The second subset of services addresses the problem of providing a network interface for
the host controller, which will command the sniffer. As we will see, those services have
been implemented via a simple python daemon, offering convenient HT'TP APIs accessible
to the Host Controller. Finally, the last service provided by the sniffer gateway aims at
elaborating capture files, in order to summarize relevant data out of redundant and large
capture logs.

6.3.1 Networking services

Table 6.3.1 describes which software packages have been adopted in order to implement
relative networking features.

The most basic network service for a router is the ip forwarding service. Linux imple-
ments such a feature directly within its kernel. However packet forwarding among different
NICs is disabled by default, but can be enabled by simply setting the net.ipv4.ip_forward
value to 1 in /proc/sys/net/ipv4/ip_forward. By doing so, the router will automatically
forward incoming IP packets according to its routing table, passing them to the default
gateway if no matching is obtained among the connected networks.

The second most important networking service in our configuration is represented by
DHCP. The sniffer gateway uses a specific software package to implement such a feature:

102

Network Service ‘ Software Package

IP Routing Linux kernel

DHCP DNSMASQ 2.68

DNS DNSMASQ 2.68

NAT Iptables (Linux kernel)
Firewall Iptable (Linux kernel)
Network sniffing Tepdump (Libpcap)

Table 6.1: Sniffer Gateway: Mapping between software relative networking functions
provided

© W N s W N

10
11
12

G W N =

103

dnsmasq. Dnsmasq is a lightweight software component, providing both dhcp and dns
services, targeting small network infrastructures. Dnsmasq is configured through a text
file, usually located in /etc/dnsmasq.conf. Its configuration is really simple and requires
just a few modification to the standard configuration file provided by default. Listing 6.9
shows the necessary configuration entries needed for dnsmasq in order to work correctly in
our infrastructure.

If you want dnsmasq to listen for DHCP and DNS requests only on
specified interfaces (and the loopback) give the name of the

interface (eg eth0) here.

Repeat the line for more than one interface.

interface=ethl

Uncomment this to enable the integrated DHCP server , you need

to supply the range of addresses available for lease and optionally
a lease time. If you have more than one network, you will need to
repeat this for each network on which you want to supply DHCP

service.

dhcp—range=eth1,192.168.0.2,192.168.0.150,12h

Listing 6.9: Configuration entries needed by dnsmasq to operate as transparent DNS proxy
and simple DHCP server

In summary, the configuration file tells to dnsmasq daemon to listen on interface eth0,
by answering both to DNS and DHCP requests. In particular, DHCP service is configured
to lease addresses from 192.168.0.2 up to 192.168.0.150, with a lease period of 12 hours. The
rest of the settings are taken by defaults and are perfectly aligned to our needs. Specifically,
DNS service is exposed locally to the network, and requests are proxied though the system’s
DNS configuration. Therefore dnsmasq acts exactly like a transparent DNS proxy by
default.

Another important service needed by the guests is NAT. Network address translation
enables multiple connections though a single public IP, shared among many machines, each
of them using a private IP. Due to the possible high amount of guest machines running,
natting enables Internet access through a single public IP, rather than requiring many
dedicated public IPs. On Linux, NAT is implemented directly within the kernel and can
be configured via the iptables module. The configuration applied in our case is shown in
Listing 6.10.

Basic iptables configuration for natting

eth0 => Internet

ethl => Local LAN 192.168.0.0/24

Masquerade private source lan addresses with external IP when directed to<«

ethO
iptables —t nat —A POSTROUTING —o ethO —j MASQUERADE

Accept packets incoming from public network and directed to local nodes <«
only if connections status is ACCEPTED

iptables —A FORWARD —i ethO —o ethl —m conntrack —ctstate ESTABLISHED, <«
RELATED —j ACCEPT

Allow all outgoing connections from local LAN to external network
iptables —A FORWARD —i ethl —o ethO —j ACCEPT

104

Listing 6.10: Configuration commands issued to iptables in order to enable NAT

The last network service offered by the sniffer gateway is traffic sniffing. The tool used
for this purpose is tepdump?, an open source protocol analyzer [68]. This tool is based on
the libpcap C/C++ library, offering network traffic capture capabilities on many platforms,
Linux included. Tepdump is capable of sniffing network traffic from layer 2 in the TCP/IP
stack. Before starting a new job on a guest machine, the host controller requests to start a
new sniffing session to the associated sniffer gateway. As a consequence, a new tcpdump
process is spawned, with specific arguments aimed at filtering only the traffic relevant for
that capture session.

tcpdump —w <capturefile> —C 2048 —W 1 —i ethl ip and ether host <mac>

Listing 6.11: Linux command to start a capture session with specific paramters

Listing 6.11 shows how capture sessions are spawned by the sniffer gateway in response
to host controller requests. The reader may notice several arguments being specified. First
of all, the -w switch tells to tcpdump where to store the captured data on the disk. The
following arguments, -C' 2048, limits the capture file size to 2 Gb, avoiding to fill up the
gateway disk in case of network angry jobs. The -W I argument limits the number of
captured files to 1, so that the total amount of captured data is 1 * 2048 Mb. After that,
the -i ethl argument instructs tcpdump to sniff traffic coming from the ethl interface,
matching the following filters i¢p and ether host <addr>. Those filters have two effects: to
hold only packets going from/to the relative guest (having <addr> as mac address), and
to filter information lower than network level.

6.3.2 Host controller interaction

The host controller interacts with the gateway sniffer thanks to a web application, im-
plemented by a custom Python module, spawned on the gateway at boot time. This
component is called MiddleRouter, and is in charge of:

e Offering web APIs for controlling sniffing sessions
e Implementing a simple web-ui for manually checking spawning sessions
o Exposing a network service for synthesizing captured data

The web service has been implemented using the Flask* Python library. Table 6.2
points out supported methods by the web service.

When performing a GET request to the root of the gateway sniffer, a simple html page
is returned, which dynamically updates itself. This page offers an handy way for manually
controlling the sniffing status of the system. A screen shot of the returned web page is
offered by Figure 6.6.

3http://www.tcpdump.org/
“http://flask.pocoo.org/

‘ Method

105

Url Parameters Description

/sniffers Get None List all the sniffer instances available.

/sniffers Post {‘mac’:".’} Creates a new sniffer instance, aimed at
sniffing network data from/to the speci-
fied mac address.

/sniffers/ MAC Get None Returns details about the sniffer at-
tached to the mac specified in the url

/sniffers/ MAC Delete None Deletes the specified sniffer, if stopped

/manager/ MAC /start Get None Starts the sniffing instance associated to

/manager/ MAC /stop Get None Stops the sniffing instance associated to

/manager/ MAC /collect Get None Download the captured data file for in-
stance

/manager/ MAC /delete_log | Get None Removes the captured data file for in-
stance

Table 6.2: MiddleRouter http API specification

6.3.3 Capture file synthesis

The gateway sniffer captures raw network data from MAC level (OSI 2), collecting a
very large amount of information for each session. Maintaining such that amount of data
for each analysis is possible, but would require very large storage systems. Moreover, a
relevant part of the raw data exchanged at level 2 and level 3 corresponds to overhead.
Classical examples are the header checksums calculated at mac layer as well as packet
re-transmissions at network layer, and so on. Moreover, storing all the capture data in raw
format does not provide any facilitation for querying and correlating captured data. For
this reason it is necessary to post-process the capture files for each job analysis, reducing
the amount of data to be stored in the system.

The MiddleRouter implements a network service aimed at elaborating network-capture
data files, called synthetizer, by extracting relevant information out of capture files. This
synthesis process takes as input the raw capture file, obtained previously by a sniffing
session, and returns a report in json format, containing the following datas:

o List of hosts and relative packet statistics

o List of tcp network flows and relative statistics
e List of udp network flows and relative statistics
o List of observed network protocols

e List of http requests

e List of http downloads

The first five items of the list are calculated via tshark®, a protocol analyzer utility able
of parsing and processing raw tcpdump outputs. Regarding contacted hosts, tshark extracts
hostnames and associated ip(s). Concerning udp and tcp network flows, tshark calculates
the number of trasmitted /received frames and bytes for each endpoint (source/destination
ips, ports). Tshark also extracts the list of observed protocols appearing in the capture

®https://www.wireshark.org/docs/man-pages/tshark.html

106

=
[Tive x N}

- C A [1192.16856.1777& 7 O @ O &0 Q@ =

i3 App Y Bookmarks 54 » Creare un dominic © [Inbox (2841) [} » [Altri Preferiti

Sniffing status

Last update: 12:45:17 GMT+0300 (FLE Daylight Time)

status: running
start_time: 2016-08-16 09:44:40.944961
pid: 6249

exit_code: null

mac: 08:00:27:90:DF:5F
stop_tune: Never

size:

| Start | Download | Stop | Delete |

status: fimished
start_time: 2016-08-16 09-44:50 285977
pid: 6250

exit_code: 0

mac: 08:00:27:90:DF:8F

stop_time: 2016-08-16 09:44-36 578691
size: 24

| Start | Download | Stop | Delete |

status: prepared

start_time: Never

pid: null

exit_code: null

mac: 08:00:27:90:DA-8F
stop_tune: Never

size:

| Start | Download | Stop | Delete |

Figure 6.6: Screenshot of the sniffer gateway monitoring page implemented by MiddleRouter

file, alongside with the number of exchanged frames and bytes. For instance, if a process
uses some P2P protocol as bittorrent, this would result in a specific entry in the observed
protocols array. Eventually, tshark is also able of calculating http requests statistics: for
each destination host it collects contacted url paths.

Unfortunately, tshark is unable to extract downloaded files out of a capture file. To do
so, other tools are required. In particular we need to perform the following steps in order
to obtain http downloads:

o Reassemble tcp streams from L2/L3

107

e Interpret HI'TP protocol
o Analyze HTTP responses and extract binary files
e Recursively analyze downloaded compressed files

In order to reassemble the tcp streams and perform simple http processing, the syn-
thetizer relies on tcpflow®. This utility is able of extracting all the TCP flows by parsing
raw capture files. As a result, tcpflow provides a bounch of files, each one corresponding
to a particular tcp flow. By specifying the -e http parameter, tcpflow also performs basic
http processing, providing more metadata for every flow. Each flow is described by its
file name, which is formatted as follows: <SOURCE ADDRESS>.<SOURCE PORT>-
<DESTINATION ADDRESS>.<DESTINATION PORT>-<PROTOCOL>. For example,
an http response obtained by server 8.8.8.8:80 for client 192.168.1.2:54635 would produce
the file 008.008.008.008:00080-192.168.001.002:54635-HTTPBODY. Once extracted http
body responses, the synthetizer opens each file and analyzes its binary contents, guessing
the mime type and calculating md5/shal hashes. If the mime type corresponds to a
compressed file, the synthetizer extracts its contents and recursively applies the same
analysis to extracted files. Eventually, the synthetizer builds up the downloads section
of the analysis. As a consequence, this section will contain a set of entries, one for each
downloaded file, describing the source ip, source port, the mime type, the file size and
calculated hashes.

Shttp://manpages.ubuntu.com/manpages/xenial /manl /tcpflow.1.html

Chapter 7

Test and evaluation of results

In this chapter we present the results obtained by experimenting our PUP analysis in-
frastructure. In particular, the chapter begins with a detailed description of the test.
We first justify how we performed job collection, then we comment the composition of
input binaries, in terms of binary types, sizes and sources. After that, we describe the
hardware configuration used for hosting the analysis system and to run the tests. Later
on, results are presented to the reader. In that context, we evaluate how good was the
Ul interaction mechanism, by manually double checking how many interactions led to
successful installations. Later on, focus is given to performance and scalability capabilities
of the system. Finally we introduce a series of heuristics that could be used in order to
detect PUPs and discuss their goodness.

7.1 Test configuration

Our analysis system necessitates to be tuned before being operative. In fact, each node of
the system requires specific settings. For instance, crawlers need URLs where to search for
binary installers, while host controllers necessitate of hypervisor-dependent configurations.
Moreover, in case virtual machines are used, each VM needs to be configured accordingly to
the resource available on the hosting system. Job selection and resource allocation policies
represent crucial aspects of the system, which are discussed in the next paragraphs.

7.1.1 Job selection

In order to run the analysis and test the performance of our prototype, the database
needs to be filled with some inputs. Inputs are provided by crawlers, which scan arbitrary
websites, looking for executable binaries to analyze. The current version of the prototype
is equipped with three different crawlers, each one targeting a specific software distributor
website. Targets for our test are reported in Table 7.1. The underlying criterion we applied
in the selection of targets is popularity. Thus, chosen websites represent the top-visited
freeware aggregators at the time of writing, in accordance with Alexa’s global ranking!
(updated in September 2016). We also decided to avoid explicit PPI distributors, as they
would possibly bias the analysis with a very high number of PUPs.

We noticed that all of those websites offer internal freeware rankings, according to the
most downloaded applications. Therefore, our crawlers target those rankings and download

"http://www.alexa.com

109

110

cnet.com softonic.com filehippo.com total

Alexa’s Global Rank 160 297 705 /

.exe binaries 196 195 81 472
.msi jobs 4 5 3 12
collected jobs 200 200 84 484

Table 7.1: Jobs’ sources with relative Alexa’s global rank, divided by format. Crawling
session of 17th September 2016

most popular software. Some websites also offered advanced filtering mechanisms, such type
of license (freeware, shareware, etc), supported operating system (Windows Xp, Windows
7, etc) and system architecture (32 bit or 64 bit). In those cases, rankings have been
filtered by Windows 7 supported OS, freeware license and 32 bit architectures.

All the crawlers operate in a similar way: they scan the list of most popular downloads,
sorted by popularity, and accept the job only if the download file is either a 32bit executable
or a Windows Installer archive. Then, the binary file is accepted only if its cryptographic
hash and source domain is not already present into the database. Moreover, crawlers inspect
the mime type of source page, the magic number and the extension of the downloaded file,
only accepting 32bit Windows compatible executables or MSI.

In order to limit the amount of files to be collected, each crawler has been configured to
download up to 200 jobs. Therefore, the test has been limited to the first 200 top ranked
executable files for each websites, for a maximum of 600 jobs. However, by applying these
criteria, crawlers were able to collect 484 different installers in total. Table 7.1 shows that
the FileHippo only offered 84 valid jobs. The reason why this happened depends on the
limitation of its ranking system: FileHippo only shows its 100 hottest downloads, and 16
of them are not 32 bit executables nor MSI files.

The reader may observe that the majority of collected binary files is in .exe format,
while just a little subset of them uses the windows installer format. This consideration
represents valuable information: sadly, the majority of the top-downloaded utilities freely
available on the web do not comply with the msi file format. Indeed, the total number of
collected msi file is as low as 12, which represents barely 2.48% of the input jobs.

It is also interesting to consider how many executable files are shared among those
sources. For this reason, we identified the common binaries by grouping jobs with same
binary hashes and different sources. As a consequence, Table 7.2 was produced.

cnet.com | filehippo.com | softonic.com

#0% | #. % # . %
cnet.com 200 : 100 | 13 : 15.47 10 : 5
filehippo.com | 13 |, 6.5 | 84 | 100 2 1
softonic.com 10 ‘ 5 2 ‘ 1 200 ‘ 100

Table 7.2: Percentage of identical binaries crawled across different sources

Interestingly, Filehippo and Cnet share a noticeable number of binary files. In particular
Filehippo shares 13 binaries over 84 with Cnet. Similarly, Softonic shares 10 binary files
with Cnet and only 2 with filehippo.

111

‘ Unit 1 ‘ Unit 2

Brand HP HP

Model ProLiantBL280c G6 ProLiant BL280c G6

CPUs 2 x Intel Xeon E5640 2x Intel Xeon E5640

Memory 64 Gb DDR3 ECC 64 Gb DDR3 ECC

Storage 136 Gb Raid 1 on | 136 Gb Raid 1 on Smart Array
Smart Array P512m | P512m
Samsung EVO 850 500Gb SSD

Network 2 x Intel 82576 Dual Gigabit 2x Intel 82576 Dual Gigabit

Operating System | Windows Server 2012 R2 (64 bit) Ubuntu Server 14.10 (64bit)

Table 7.3: Hardware specifications for testing infrastructure

7.1.2 Infrastructure configuration

Our PUP analysis system has been deployed in a private production environment offered
by the Aalto university. We were entitled a couple of rack-mount enterprise-grade servers,
i.e. two HP ProLiant BL280c G62. The given hardware does not rely on latest CPU
architectures, yet it offers an acceptable starting point for our needs. Table 7.3 reports the
specific hardware configuration for both of the rack units.

The reader may notice there are little differences between the two hardware configu-
rations. Both the units are based on a couple of Intel Xeon E5640 processors, each one
counting 4 physical cores running at 2.66 GHz. Thanks to the Intel Hyper Threading (HT)
technology, each processor runs 8 threads. This means each Unit is theoretically capable
of running 16 threads nearly simultaneously. Each unit also has 64 Gb of total memory,
running at 1333 MHz. Regarding the storage options, both the units rely on hardware
raid controllers, each one providing 136 Gb of total redundant storage (RAID 1). Unit
1 also has a dedicated 500 Gb consumer level solid state drive. Networking capabilities
are identical for both of the units: each one is connected to a gigabit public network, with
external Internet access and protected by a firewall. The second and last difference between
the two units regards the installed operating system. We expressly asked to be given two
heterogeneous systems in order to prove platform-independence of our analysis system. As
a consequence, the first unit has been equipped with Windows Server 2012 R2 (64bit),
while the other unit runs a plain Ubuntu Server 14.10 (64bit) operating system.

Given the modular and distributed nature of the analysis system, it is necessary to
decide how to deploy the various nodes among the two units. In particular, a very basic
configuration of the analysis system requires:

¢ One central database
e One or more host controllers
e One or more guest machines

Figure 7.1 shows how the distributed nodes have been deployed between the two server
units.

In order to balance the IO on the disks, we decided to deploy the central database on
Unit 1. In fact, this unit has more storage space to be used (combining the SSD and the

2http://h20564.www2.hpe.com /hpsc/doc/public/display?docld=emr_ na-c01740643

112

VirtualBox

Database
Host Controller

Server Unit 1 Server Unit 2

| Gateway |

Firewall

Figure 7.1: Deployment of distributed nodes among the server units

RAID 1 logic array), therefore it makes sense to install the database on this unit. More
specifically, the database resides on the RAID 1 logic array. The reason why we decided in
favor of such an option mainly regards reliability: RAID 1 offers good protection grade in
case of disk failure. Moreover, the database is not stressed much during PUP analysis: host
controllers just requests jobs and save results at the beginning and end of each analysis.
Therefore, there would be no advantage in deploying the solid state drive.

Both the servers units have sufficient computational power to serve as host controllers.
In fact, both of them support hardware accelerated virtualization (thanks to Intel VT-d
technology) and have enough CPU cores and memory to ensure sufficient performance for
a discrete number of small virtual machines. Thus, we decided to install a dedicated host
controller instance on each server unit.

Guests are virtualized though VirtualBox, intsalled on both the server units. Each host
controller has been configured to use the virtualbox driver for handling machine states.

Two network sniffers have been deployed, one per server unit, virtualized alongside the
guests. Therefore, each sniffer handles the traffic generated by guest machines handled
by the same host controller. This solution is particularly convenient because allows to
completely virtualize the network infrastructure among guests and sniffers. Moreover
the traffic is routed locally to the virtualization engine (in this case VirtualBox) without

113

actually passing over wires: this reduces latency and ensure high bandwidth.

Both the units communicate with the external Internet via a gateway and a firewall,
protecting the system from unwanted inbound connections, yet allowing outbound connec-
tions. The host controller deployed on the second unit also uses the same network in order
to communicate with the central database. On the other hand, communication in between
host controller and database happens locally for server unit 1.

The reader may notice that Unit 1 can run the analysis on its own. In fact it hosts the
db, a host controller and a series of guests. Therefore, server unit 2 is not crucial for the
system. That is correct. In fact, this configuration allows us to switch on and off a second
node, whenever high load is detected. However, no automatic system has been developed
for turning on or off the secondary unit, yet.

Specific server units configurations

Each server unit has a limited amount of resources to be used. In particular, those resources
are:

e Cpu cores / threads
e Primary memory
o Secondary memory (storage)

In order to ensure good performances, it is crucial to balance correctly those resources
among the software modules, ensuring no bottleneck is present. Even though both the
server units are similar, their configurations are different. This difference is due to the
asymmetric distribution of the database and the unavailability of a solid state drive in
server unit 2. Infact, as it generally happens in modern systems, mechanical disks represent
the main performance bottleneck [94]. On the contrary, solid state drives are now quickly
filling the gap, fixing that bottleneck. For these reasons, we will discuss allocation of
resource separately, pointing out the policies we applied in order to balance the system.

CPU Cores. Each server unit is capable of running up to 16 threads simultaneously.
Both the HostController and the database are not meant to perform high CPU-bound
operations; instead they mainly require IO resources. Thus they only require little CPU
time to work correctly. On the contrary, guests are more cpu-hungry. This happens because
of the large amount of hashing and image processing performed by the guest controllers,
happening in parallel with the installations. As a consequence, we decided to assign all the
CPU cores to the virtualized system. In particular 2 virtual cpu cores (vCPU units) have
been assigned to each VM and 4 vCPU units have been assigned to the sniffer gateway.
Considering that server unit 1 is running 8 VMs and a gateway sniffer, the total number of
vCPU requested would be 20. As a consequence, the cpu power results under-dimensioned
by a 25% factor: 16 threads are available but 20 would be required. However, the usage of
such a dimensioned system increases the CPU usage efficiency and still does not represent
a bottleneck for the entire system.

The second unit has been dimensioned differently. As we will discuss later, storaging
and IO capabilities impact heavily on the system. So, the number of running VMs has
been reduced to 6. Therefore the second server uses 12 vCPU for all the virtual machines,
plus a sniffer gateway, counting 4 more vCPU. As a consequence, the second unit uses 16
threads for 16 vCPU, with a 1:1 dimensioning approach.

114

Ram Memory. Ram memory is a crucial resource for host controllers. Memory allocation
has is shown in Figure 7.2.

64 Gb
32Gb
4Gb | 4Gb | 4Gb | 4Gb | 4Gb | 4Gb | 4Gb | 4Gb 20 Gb | 10Gb | 12Gb
| | | | | | | | |
; -
g E VM1 VM2 VM3 VM4 VM5 VM6 VM7 VM8 Gatway Sniffer Base disk cache 0S, DB, HC
wn 2
64 Gb ‘
24 Gb
2 Gb
4Gb | 4Gb | 4Gb | 4Gb | 4Gb | 4Gb 16 Gb L 22Gb |
| | | | |

Server
Unit 2

VM1 VM2 VM3 VM4 VM5 VM6 Gatway Sniffer Ram disk: diff fisks S(S:

Figure 7.2: Memory allocation comparison between server unit 1 and 2

The virtualization system absorbs the majority of the available memory. Server unit 1
allocates half of the total memory for VMs: each vm is assigned 4 Gb of dedicated memory,
for a total of 32 Gb. Similarly, Unit 2 uses 24 Gb of memory for virtual machines.

The gateway sniffer is assigned a quantity of memory calculated in relation with the
maximum number of concurrent sniffing session. Indeed, gateway sniffers allocate an
internal ramdisk of 2 Gb for possible concurrent sniffing sessions, plus 4 Gb of memory
for virtualized operating system. As a consequence, unit 1 allocates 20 Gb for the sniffer,
while unit 2 allocates 16 Gb.

A noticeable difference between memory allocation of unit 1 and unit 2 regards the
green and blue areas, as shown in Figure 7.2. Unit 1 reserves 10 Gb of memory used as
ramdisk cache for the base virtual disk shared among its virtual machines. In this case
it amounts to 10 Gb. At the same time, differential disks are stored directly on the solid
state drive of the unit. The same approach is inapplicable for the second unit, hence a
portion of the 22 Gb is reserved to be used as ramdisk for differential disks.

Finally, unit 1 reserves 12 Gb of memory for host operating system, database and host
controller daemon. On the contrary, the second unit only reserves 2 Gb for the operating
system and host controller daemon. This difference is mainly due to the different operating
system memory requirements (Ubuntu 14.10 is less memory-hungry than Windows Server
2012) and to the memory requirements of the database.

Storage. Both the server units have limited storaging capabilities. While Unit 1 can
count on a 136 Gb volume and a 500 Gb SSD, the second unit only has a 136 Gb volume.

For each job analysis, a discrete amount of data is generated: network sniffed data
can grow up to 2 Gb per job, while the IO log might hit tens of megabytes. Therefore,
analyzing up to 484 jobs can led up to 1 Tb of temporary capture files. Such an amount
of data cannot be held by neither of the server units. For this reason, temporary logs
and capture files are stored on an external NAS, offering 2 Tb of space. The NAS only
serves as temporary buffer for raw analysis data. Each time a job analysis is done, the

115

sniffer performs the synthesis of the sniffed data, extracting only a few Megabytes of data.
However, due to debugging reasons, the current implementation of the system does not
delete temporary capture data, which is maintained for further analysis on the NAS.

Another important aspect to consider is the IO capabilities of the storaging system.
While unit 1 can count on a recent consumer-grade solid state drive, Unit 2 only relies on
mechanical disks, which are several times slower than solid state drives. In particular disk
IO capabilities heavily affects performances of the system. Each job aims at deploying
software on the machine, therefore it is reasonable to assume that those process are 10-
bound. Hence, neither Unit 1 nor Unit 2 use the mechanical disk for storing guest machine
images. In fact, server unit 1 relies on the SSD, while server unit 2 uses a ramdisk for
storing the differential guest images.

7.2 Evaluation of results

Once the infrastructure was ready, and crawlers finished the input collection process, the
real automated analysis started. At first, we ran the entire analysis process just using a
single server unit, i.e. server unit 1, running 8 VMs. Afterwards, the same test has been
executed with both the server units, with a total of 14 VMs.

Measure Single server results | Dual server results | Improvement
Input Jobs 484 484 N/A

Guests 8 14 75 %
Total Test Duration 19:24:20 11:13:42 72.83 %
(hh:mm:ss)
Average Throughput
(Jobs /Minte) 0.42 0.72 72.83 %
Average Job Analysis . .
Duration (hh:mm:ss) 00:13:20 00:12:11 9.44 %

Table 7.4: Results of tests: test duration, throughput and average analysis duration

First column of Table 7.4 summarizes results about the first test. A single server
offering 8 VMs is able to analyze the total input set in roughly 19.5 hours. The resulting
throughput of the analysis system is 0.42 jobs per minute, with an average analysis time of
about 13 minutes. The same results are plotted on Figure 7.2 for visual comparison.

When taking advantage of both server units, performance globally grows. In particular
the total analysis time drops to 11 hours 13 minutes 42 seconds, while the throughput of the
systems raises up to 0.72 jobs per minute, which means we obtain a 72.83% improvement
by adding 6 guests to the analysis system. This result clearly demonstrates scalability
capabilities of the system. On the other hand, the average time for a single analysis is
reduced by a 10% factor. This improvement is justified by the better performance obtained
by guests belonging to the second server. In fact, they rely on ramdisk instead of a solid
state disk. Beside the second server unit dedicates a single CPU core to each vCPU, while
the first server unit is underdimensioned from CPU perspective.

It is worth to noticing that average analysis time mainly depends on the hardware
configuration of guests. The more resources are dedicated to each guest (memory, fast
disks or ramdisk, cpu cores), the faster will be the analysis. Memory and disks are the
most stressed devices, due to the IO-bound nature of analyzed jobs. At the same time,

116

Figure 7.3: Results of tests: comparison of single server and dual server configurations
0,9

0,8

0,7
0,6
0,5
0,4
0,3
0,2
0,1
0 00:10:12 00:09:43

Total test duration (hh:mm:ss) Average throughput (jobs/minute) Average job analysis duration (hh:mm:ss)

m Single Server Unit m Double Server Unit

hash calculations and image recognition absorb cpu power as well. However, over a certain
threshold, guest’s hardware capabilities eventually hit a bottleneck: network bandwidth.
In fact, most of the analyzed jobs exchanged data with the network. More specifically, the
average of downstram tcp traffic per installer is about 103 Mb, with a minimum of 56 mb
and a maximum of 1780 Mb. As a consequence, the time spent on completing network 10
becomes relevant. Beside, some servers may intentionally limit the reserved bandwidth for
each client, therefore the IO time cannot be reduced on the MSASs, even increasing the
network bandwidth reserved to each guest.

7.2.1 Install automation results

Guest controllers are in charge of automating Ul interaction, in order to step through the
installation process. This part of the analysis is crucial: in case guest controllers fail to
correctly install jobs, results are biased. In fact, in case of failed installations, resource
accesses may be limited to some initial or pre-loading stage of the installer, which may not
trigger any PUP installation at that time.

In order to evaluate the quality of the results obtained in our test, it is necessary
to inspect first the quality of the UI automation process. To facilitate this task, guest
controllers collect internal information about their interaction status. In particular, identifies
the following result statuses:

Success The installer ran correctly and all spawned processes exited with result
code 0. At least one new entry is found among installed programs in the
control panel. Log report is reported back to host controller.

Partial Success The installer ran correctly, but not all of the spawned processes exited
when timeout was hit. However the control panel shows at least a new
item in the list of installed programs. Log report is reported back to host
controller.

Ul Stuck The installer ran correctly, but the GUI analyzer detected a Ul loop or a

117

window offering no interaction possibilities. Log report is reported back
to host controller.

Timeout The installation process times out and the guest controller gives up. Guest
controller reports failure. Log report is reported back to host controller.

Failure The host controller was forced to reboot the guest after an error or a
timeout. No log report is reported back, data cannot be processed.

Each analysis will be described by one of the statuses introduced above. Yet, we cannot
accurately rely on such information, since it just describes the results of Ul interaction,
which may differ from the epilogue of the installation. In fact, there are situations in which
the Ul interaction status describes a timeout/failure, but the software installation has been
performed correctly. That is the case of installers running the deployed executable at the
end of the installation: the gui engine tries to follow the interaction, eventually stalling,
giving up with a timeout or UI Stuck result.

In order to give an accurate ground of truth, we manually checked all the installations
performed by this first run. This operation was performed with the help of an ad-hoc
Android applicaiton, developed by us for this purpose. The application showed information
regarding every job analysis in an intuitive form, so that we could immediately recognize if
the program was successfully installed or not. In fact, for each analysis, screenshots were
automatically taken by the interaction engine, before performing any interaction. As a
result, we were able to review all the interactions performed by the engine. Figure 7.2.1
shows how the ad-hoc Android application facilitates the result checks.

CICEEN

Jobid: 3052 Finished ok: Detected PUPs: TimeOut
(69/464) 14%

ﬁ S PhotoScape V3.7 Setup Iﬁ?@

Google Chrome

ﬁ &# Thankyou for downloading PhotoScape.
! PHOTOSCAPE

PhotoScape

&

Google Update Helper

L]

Google Update Helper Photoscape is provided free of charge.

60
I’hotos:ape End User License Agreement. I

61 172
I Options] I I Agree - install l

Figure 7.4: Screenshot of the Android application developed for quick report visualization.
In this screen only few of the total information is shown, such as detected installed
applications, assigned scores to each control and the job’s id.

The review process marked each analysis as follows:

Successful The installer procedure finished correctly. In this case the interaction with
the Ul simulated closely the approach of lazy user.

118

Failed

Impossible

The interaction engine was unable to correctly accomplish software instal-
lation. As a result the software was only partially installed or not installed
at all. Failed installations usually happen when the UI requires advanced
user’s interaction, such as textual inputs with no predefined default value
(e.g. serial numbers, destination paths). Also this case is verified when
the interaction engine detects a loop in the Ul or some controls are not
detected on the UL

The analysis did not run correctly because the input job required unpre-
dictable interactions or because of incompatibilities with the test environ-
ment. Binaries for different architectures that x86 fall in this category, as
well installers checking for particular hardware or software dependencies.
In this case, it would be incorrect to mark those analysis as failed, because
failure of this analysis is not addressable to the analysis system.

Once inspected all the reports, we were able to identify the success ratio of the GUI
interaction engine, as shown by Figure 7.2.1. The chart shows that 354 jobs over 484 (73%)
were correctly handled by the GUI engine. Those installers are confirmed to be executed
in a human-like manner, therefore they provide the most accurate data for our analysis.
On the other hand, 87 jobs did not complete the installation in a satisfactory way. In
such cases, the interaction stopped in the middle of the installation, or did not trigger the
installation in the first place. Analysis falling under this category provide the same amount
of information that classic sandboxes would collect.

M Success W Failed

m Impossible Incompatible Architecture Impossible Unpredictable Interaction Required
MW Impossible Not an installer

Figure 7.5: Outcomes of the Ul interaction engine.

Finally, we identified 43 (9 % of the total inputs) jobs within the impossible category.
In particular, 9 of them corresponded to different hardware/software architectures (i.e. 64
bits), 6 required advanced interactions and 28 corresponded to uninstallable applications
(such as stand-alone applications).

By leaving apart the third category, the success ratio of installations raises to 80.27 %,
while failure ratio becomes 19.73 %.

1

N O s WoN

oo

9
10
11
12
13
14

119

7.2.2 Looking for PUP installers

Identifying PUPs is a hard task. Issues and countermeasures, applied by antimalware
vendors, are discussed in Section 2.3. In general, antimalwares analyze each execution
separately, looking for a set of suspicious behaviors. Thus, antimalwares defined a set of
suspicious patterns that are inspected during software execution. This approach enables
immediate reactions: whenever a suspicious behavior is detected, the antimalware may
block the installation or warn the user.

Our context is different: unknown software is running in a safe environment, thus
immediate reaction is not strictly necessary. Beside, behavioral information collected by our
sandboxing system is much wider than what is collected by antimalware products, installed
on users’ systems. Our system is capable of analyzing suspicious behaviors analogously
to the antimalware products (by limiting the scope to each single analysis). At the same
time, it also enables data correlation among different analysis.

Common installed applications

A first very simple approach for analyzing results is to check the most common installed
applications, as listed in the control panel. Similarly to software libraries, PUPs should
appear among the installed applications in specific registry keys, alongside the legitimate
applications desired by the user.

In order to prove the effectiveness of this criterion, we executed query shown in
Listing 7.1. At first, the query selects experiments that report the installed product name
among the newly detected applications (Lines 8-12). Consequently, we count the number of
distinct installed applications (Line 2) for each product name (Line 13) different from the
intaller’s one (Lines 5-6). The product name is extracted by the metadata of the analyzed
binary and is usually used as human readable identification for the installed application.

— Select the program name and the number of distinct experiments <
characterized by the same program name

SELECT TRIM(LOWER(name)), COUNT(DISTINCT e.id)

FROM cp_new_apps AS apps

JOIN experiments AS e ON e.id = apps.experiment_id

WHERE e .product_name NOT LIKE CONCAT('%',apps.name,'%"')

AND apps.name NOT LIKE CONCAT('%',e.product_name,'%')

— Limit this analysis only to installers which show themself among the <
control panel.

AND e.id IN (SELECT id
FROM cp_new_apps AS apps
JOIN experiments AS e ON e.id = apps.experiment_id
WHERE e.product_name LIKE CONCAT('Y%',apps.name,'%')
OR apps.name LIKE CONCAT('%',e.product_name,'%"'))

GROUP BY TRIM(LOWER(name))

ORDER BY COUNT(*) DESC

Listing 7.1: Query for selecting the most common installed applications, as listed in the
control panel

The execution of such a query on the result set we collected is summarized by Table 7.5
The most common installed application is Google Chrome, explicitly listed as installed
software by 5 distinct binaries (other 5 executable installers are shared among aggregators,
therefore results overlap). Similarly, the Google Toolbar for Internet Explorer is reported as

=W N

o

oo

120

installed program by 4 different installers. The rest of the records are biasing: most of the
listed entries represent legitimate libraries or dependencies for the installing applications.
Yet, we inspected the case of Google Chrome. Table 7.6 drills down the results obtained
by previous analysis, by focusing on Google Chrome product name. That data is obteined
by executing Listing 7.2.

select c.name as PUP_name, e.product_name as installer_name, e.<¢
product_version, e.id as ExperimentId, a.name

from experiments as e

join cp_new_apps as c¢ on e.id = c.experiment_id

join jobs as j on j.id = e.job_id

join aggregators as a on j.aggregator_id=a.id

where lower (trim(c.name)) not like CONCAT('%',lower (trim(e.product_name)),'<«"
n')

and lower (trim (e.product_name)) not like CONCAT('%',lower(trim(c.name)),'%'<+

and lower (trim (c.name)) = 'google chrome'

9 order by a.name

w N

0 N O Ot

9
10

Listing 7.2: Query for selecting all the installers which explicitly installed Google Chrome.

As we may observe from Table 7.6, Google Chrome is installed as part of 6 different
installers: CCleaner, Avast Antivirus, Recuva, PhotoScape, Defraggler, Speeccy. Those
applications do not depend on Google Chrome for implementing their functionality, excep-
tion made for Avast Antivirus, which may take advantage of SLL key exports offered by
Google Chrome browser. From this perspective, Google Chrome configures as a PUP.

Suspicious registry accesses

Analysis of registry accesses represent a valid way of looking for malicious or unwanted
applications. In fact, antimalware products heavily rely on registry inspection when to
identify potential dangerous behaviors, such the ones listed in 2.3.2. Therefore, we scanned
the results looking for the followings:

o Browser extensions / toolbars / plugins
e Autorun and startup configurations

o Installed Root Certificate Authorities

— IE Toolbar settings

select CASE experiments.product_name WHEN '' THEN experiments.description <
ELSE experiments.product_name END as ProductName, experiments.id as
experiment_id, aggregators.name, concat(count(*) over (PARTITION BY «
AGGREGATORS .name) *100 / count (%) over (), '%') as Aggregator_Percentige

from registry_changes

join experiments on experiments.id = registry_changes.experiment_id
join jobs on experiments.job_id = jobs.id
join aggregators on aggregators.id = jobs.aggregator_id

where lower (full_path) like lower('%Software\\Microsoft\\Internet Explorer<
\\Toolbar¥%') and is_new=true and key_value_name is not null
order by aggregators.name;

11
12

13
14
15
16

o v s W N —

oo

10
11

121

—— Chrome Extensions

select distinct 'Chrome', CASE experiments.product_name WHEN '' THEN <«
experiments.description ELSE experiments.product_name END as <
ProductName, experiments.id as experiment_id, aggregators.name, concat(+
count (%) over (PARTITION BY AGGREGATORS.name)*100 / count(x) over (), '«
%') as Aggregator_Percentige

from fs_changes

join experiments on experiments.id = fs_changes.experiment_id
join jobs on experiments.job_id = jobs.id
join aggregators on aggregators.id = jobs.aggregator_id

where lower (fs_changes.path) like lower('%AppData\\Local\\Google\\Chrome\\«
User Data\\Default\\Extensions%');

Listing 7.3: Query for selecting all the installers which installed/modified any toolbar
settings for Internet Explorer amd Google Chrome

As we can observe from Table 7.7, 16 jobs caused modifications to registry keys regarding
the toolbar configurations of Internet Explorer. In terms of unique binaries (i.e. excluding
identical binaries among aggregators), we count 10 different installers. Regarding Google
Chrome’s extensions, we only detected one positive: PhotoScape, collected from cnet.com.
However, those results are affected by the fact that Google Chrome was not installed on
the SandBox environment. Thus, PUP installers might have refused to install extensions
because of the missing browser.

select distinct experiments.id as Experiment_id, CASE experiments.<
product_name WHEN '' THEN (select fname from jobs where id = <«
experiments.job_id) ELSE experiments.product_name END as product_name, <
aggregators.name
from registry_changes

join experiments on experiments.id = registry_changes.experiment_id
join jobs on jobs.id = experiments. job_id
join aggregators on aggregators.id = jobs.aggregator_id

where (lower (full_path) like lower('%Software\\Microsoft\\Windows\\«
CurrentVersion\\Run¥%')

or lower(full_path) like lower('%Software\\Microsoft\\Windows\\«+
CurrentVersion\\Run%')

or lower(full_path) like lower('%Software\\Microsoft\\Windows NT\\«>
CurrentVersion\\Winlogon\\Userinit%"')

or lower(full_path) like lower('%Software\\Microsoft\\Windows NT\\«
CurrentVersion\Windows?')

) and (is_new = true or is_modified=true)

order by aggregators.name

Listing 7.4: Query for inspecting accesses to startup configuration of the operating system.

Another delicate zone of the Windows’ Registry regards the autostart management.
Listing 7.4 shows how did we query the central database in order to retrieve all the
experiments affecting autostart management. Results are listed in Table 7.8. We counted
31 different experiments, with 25 unique product names (i.e. excluding duplicates among
different aggregators). It is worth noticing that the number of results provided by this
query is higher than the previous one. Many of the listed products may have valid reasons
for doing so, such as antimalware applications. The rest of programs may take advantage
of update checking capabilities, that justify the autostart requirement. As a consequence,
we need to consider the autostart indicator very carefully, because it may affect heavily
the false positive detection rate of PUPs.

[CLEN VU N

10

[R SR

122

Eventually we focused our attention to the area of the Windows’ Registry regarding
system’s certificates. In particular we looked for installer that have installed new root
certificates into the system, which are therefore trusted by the entire system. To do so, we
ran the query shown in Listing 7.5, that produced results exposed in Table 7.9.

select distinct experiments.id, product_name, aggregators.name from ¢
registry_changes

join experiments on experiments.id = registry_changes.experiment_id
join jobs on jobs.id=experiments. job_id
join aggregators on aggregators.id = jobs.aggregator_id

where (lower (full_path) like lower('%Software\\Microsoft\\«
SystemCertificates\\root¥%")

or lower(full_path) like lower ('%SOFTWARE\\Policies\\Microsoft\\«
EnterpriseCertificates?')

or lower(full_path) like lower ('%SOFTWARE\\Policies\\Microsoft\\«
SystemCertificates¥')

or lower(full_path) like lower ('%SYSTEM\\CurrentControlSet\\Services\\«+
CertSvec %')

) and (is_new=true)

order by aggregators.name

Listing 7.5: Query for selecting jobs that installed new root certificates on the system.

Excluding duplicates among different aggregators, we only identify one product which
installs a root certificate: Avast Antivirus. The reason why Avast installs a Root CA is
explained in [4]. In summary, the antivirus scans HT'TPS traffic by performing a man-
in-the-middle attack. This is possible thanks to the registration of the Root Certificate
Authority in the system.

Network and HTTP traffic

Previous researches have shown that many PUP installers contact remote services, in order
to retrieve the most promising PUPs for the system they are running on. After testing
particular conditions [86], they might download PUPs and show associated EULAs during
the installation process, eventually installing the downloaded binary. As a consequence, we
might assume that a relevant part of the PUPs are downloaded on demand at installation
time. By implementing such an on-demand feature, PPI distributors can promptly avoid
antimalware or antispyware detection, once they recognize an antimalware product being
installed on the target system. Moreover, they might avoid re-installing PUPs already
available on the target system. Thus, many PPI distributors started to build tiny application
downloaders, which query a centralized HTTP server in order to choose the best PUPs to
install on the local system. This interaction usually happens over HT'TP or HTTPs. The
reason why those protocols are usually preferred is mainly related to firewall issues: HTTP
traffic can usually propagate through firewalls better than other traffic type.

Once an offer is selected, the relative installer is downloaded, then executed. Assuming
those executable files are downloaded via HT'TP, then it is logic to analyze HTTP traffic,
looking for HT'TP downloaded files.

select http_downloads.shal, count(distinct jobs.shal)

from http_downloads

join experiments on http_downloads.experiment_id = experiments.id
join jobs on experiments.job_id = jobs.id

N o v

10

123

join file_accesses on file_accesses.file_id = http_downloads.shal
where file_accesses.file_id not in (
select file_id from file_accesses where lower(file_accesses.path) like «

lower ('%CryptnetUrlCache?') or lower(file_accesses.path) like lower ('«
%Temporary Internet Files)'))

group by http_downloads.shal

having (count(distinct jobs.shal)>3)

order by count(distinct jobs.shal) desc

Listing 7.6: Query for selecting common donwloaded files via HTTP by at least 4 different
binaries

Listing 7.6 represents the query executed on the collected data, in order to identify most
common downloads among all the analysis. The logic behind the query is straightforward:
it lists all the file hashes (downloaded over HTTP) shared by at least 4 different installers,
excluding temporary files and ssl-encrypted ones. The minimum number of distinct
experiment is arbitrary, and may affect the quantity of returned records. Logically, by
lowering this number we might spot more PUP candidates, while increasing the chances of
false positives. For instance, different versions of the same product may rely on common
modules, downloaded from the internet. Our query does not take into account this
possibility, because it groups results by installer’s binary. For this reason, we adopted a
high threshold: if the same file is downloaded by more than 3 different binaries, we list
it. The implicit assumption is that there are no more than 3 versions for each possible
product being analyzed.

The execution of Listing 7.6 produced 11 results (as listed in Table 7.10). For each of
the obtained files, we listed associated installers, with relative product names and vendors.
Then, we elaborated results and we extracted all the combinations of installer’s file name
sharing the same downloaded file hash. By doing so, we identified 6 different groups of
installers. Table 7.11 summarizes the results we eventually obtained. Alongside dependency
relationships among applications and files, Table 7.11 also shows the number of expected
PUP applications to be installed. This number is manually derived by looking at the
interaction screenshots. The number of offers shown by the installer are summed up in the
FExpected PUPs column.

Interestingly, we found 6 distinct groups of related applications. Particularly important
are groups 1, 2, 4, 5. In fact, those groups clearly enlighten common installation patterns:
GUIs are similar, installed offers also. As a confirmation, we checked what are the file
names associated to the common hashes, in order to inspect what kind of files are they
depending on. By looking at Table 7.12, we identify Google Chrome, Google Toolbar and
Google Update installers, falling in tha same group. This clearly confirms our previous
results: Google Chrome and its toolbar is being installed as part of at least 5 distinct
products (group 1). The second group of installers download and execute a couple of
files, respectively named rkverify.exe and rkinstaller.exe, which led to the installation of a
PUP. Similarly, Fences & is being installed by applications belonging to group 4 (7 distinct
applications, 6 of which install the PUP). Lastly, we identify a single binary file being
downloaded by applications belonging to group 5.

It is worth noticing that the 4 groups of interest (1,2,4,5) depend on binary files shared
among them and downloaded via HT'TP. The other two groups downloaded textual data
(the .gz files contained textual files) in form of XML configuration files.

The analysis we applied so far can be easily automated, being based on a bunch of DB
queries. By doing so, we define a first indicator for spotting PUPs. The indicator is given

124

by the execution of the following steps:

Identify all the HT'TP downloaded files shared by at least n distinct applications

Define groups of applications depending on the same shared files

Discriminate groups downloading binary files from groups downloading textual files.

Groups downloading the same binary files most probably install PUPs.

We can evaluate the goodness of the derived indicator by referring to Table 7.11. Group
1 is composed by 3 executable files, which led to the installation of Google Chrome and
its toolbar. Similarly, group 2 identifies 2 executable files, which led to the installation
of rkinstaller.exe, which is a malicious PUP, as according to the majority of antimalware
programs [1]. Group 3 is composed by two files: a textual xml configuration file and a
compressed .gzip configuration file. Here, we miss one positive: Free Studio was expected
to install a PUP. On the other hand, we do not get any false positive. Analogously, group
6 misses one positive, but provides not false positive. Groups 4 and 5 detect all positives
(as they should), and we get one false positive on YTD Video Downloader. Therefore, we
may conclude that this indicator provides a good detection rate: it correctly spotted both
PUP installers and installed PUPs, with a null false positive detection rate. Concerning
the successful detection rate, the indicator identified 21 pups over a total of 43 jobs that
showed PUP offers during installation, i.e. 48.84 %.

Suspicious file accesses

Accesses to the file system provide another valuable source of information for our research.
In particular, we wanted to identify all the installers that ended up installing known
malicious third party modules. However, data collected from the sandbox does not include
any binary that landed on the analysis system. On the contrary, our analysis system takes
track of file modifications, through files’ hashes. In our test, we identified 194.800 different
file hashes. All the hashes were queries against VirusTotal®.

Virus total recognized 26.333 hashes, 440 of which were positives to at least one scanner.
As shown by Figure 7.2.2, about 98.33 % of scanned hashes are considered clean or unknown,
while the remaning 2.67 % is positive to at least one scanner.

Particularly relevant are hashes 7dca11208de954c55e352a1ca2660223ece286fa and 5cafb0702e89b7a0982e33e8a
corresponding to rtkinstaller.exe and rtkverify.ere. Those hashes resulted malicious to
33 and 31 different scanners, respectively. Most of the scanners classified these files as
PUP or adware threats. In accordance with our records, these two files were manipulated
by 7 different job analysis, corresponding to 5 distinct product names (2 of the analysis
were duplicated hashes regarding different aggregator). More specifically, product names
affected by those two files are:

e Free Video Cutter Joiner;
e Free Video Editor;
e FreeMp3VideoConverter;

e Free MP3 Cutter Joiner;

Shttp://www.virustotal.com

125

310; 1,18%

22; 0,08%

1; 0,004%

25893; 98,33% 1; 0,004%

1; 0,004%
1; 0,004%
19; 0,07%
1; 0,004%
1; 0,004%
1; 0,004%
1; 0,004%
48; 0,18%
33; 0,153%
m Clean m 1 Positive m 2 Positives 3 Positives w4 Positives m 5 Positives @ & Positives

W 3 Positives M 10 Positives M 11 Positives B 13 Positives B 23 Positives B 31 Positives B 33 Positives

¢ Free Video To Audio Converter 2016.

The reader may recognize those product names, because they appeared in previous
analysis, while inspecting HTTP traffic. Thus, this second analysis confirms the presence
of PUPs that we were able to spot by simply inspecting http traffic.

In order to confirm previous results, we extended the analysis to the rest of the hashes
considered dangerous by VirusTotal. We studied the detection rate of our indicator in
relationship with the number of positive scanners reported by VirusTotal, for each file hash
in our database. A summary view of this study is shown in Figure 7.2.2.

As clearly shown by the proposed chart, the quality of HTTP detection strictly depends
on the minimum number of positives scanner considered as lower threshold. When taking
into account a very low threshold, i.e. 1, the HTTP analysis is capable of detecting just
26.96 % of the potential threats. However, such a low threshold affects the quality of
results, causing possibly high false positives. By increasing the threshold to 5, we obtain a
substantial improvement, i.e. 76.47 % of detected potential threats. Raising the threshold
to 13, the indicator perfectly aligns to the VirusTotal detections.

126

Minimum number of positive scanners

W Detected

N Undetected

N Detected M Undetected

31 84
20 40 60 80 100 120
1 a4 10 15
31 13 7 7
84 a4]

140

20

Figure 7.6: Relationship between minimum numbers of positive scanners and our HT'TP
analysis detection rate

Control panel entry

Per experiment

Per product name

google chrome

10

google toolbar for internet explorer

oo

google update helper

auslogics boostspeed 9

avg zen

avira antivirus

avisynth 2.5

bonjour

easeus todo backup free 9.2

fast browser cleaner 2.0.0.7

ffdshow [rev 2583] [2009-01-05]

fmw 1

haali media splitter

iobit uninstaller

jasob 4.1.2

microsoft .net framework 4 multi-
targeting pack

Uy QYN Y U YUY QY JUY WY IS Uy Uy jruny e Foul

[l B Rl R R R R Dl B R R e R S Y R

microsoft application error reporting

microsoft security essentials

microsoft sql server compact 3.5 enu

microsoft visual c++ 2005 redis-
tributable

[Y BN

=] =] = =

microsoft visual c++ 2008 redis-
tributable - x86 9.0.30729.17

microsoft visual c++ 2008 redis-
tributable - x86 9.0.30729.4974

microsoft windows sdk for visual studio
2008 express tools for .net framework

microsoft windows sdk for visual studio
2008 express tools for win32

mozilla maintenance service

orange defender antivirus 2

save-o-gram instagram downloader 3.9

spyhunter 4

vc runtimes msi

visual studio 2012 x86 redistributables

web companion

winpcap 4.1.2

wondershare helper compact 2.5.0

4videosoft dvd copy 3.2.22

ziiosoft total video converter version
2.1.4

=] =] = = =] =] =] =] = =] e

N e e e Y I IS S

apple application support

—_

—_

apple software update

Table 7.5: Results regarding the execution of query shown in Listing 7.1

127

128

Installer’s product name | Installer’s version | Experiment id | Aggregator
CCleaner 2992 cnet
Avast Antivirus 12.1.3076.0 2995 cnet
Recuva 3420 cnet
Avast Antivirus 12.2.3126.0 3464 cnet
PhotoScape 3005 cnet
Defraggler 3018 file hippo
Recuva 3014 file hippo
CCleaner 2987 file hippo
Speccy 3179 file hippo
CCleaner 3191 softonic
Recuva 3218 softonic
PhotoScape 3052 softonic
Avast Antivirus 12.1.3076.0 3001 softonic

Table 7.6: Installers which installed Google Chrome as part of their default installation
process.

Job Product Name Experiment id | Aggregator
CCleaner 2992 cnet
RoboForm 3006 cnet
Yahoo! Messenger Suite Install Bootstrapper Setup | 3166 cnet
Recuva 3420 cnet
GetGo Download Manager 3417 cnet
Speccy 3179 file hippo
CCleaner 2987 file hippo
AIM for Windows 3176 file hippo
Recuva 3014 file hippo
Defraggler 3018 file hippo
Check Point Install Utility 3321 softonic
CCleaner 3191 softonic
Microsoft Office 3152 softonic
Check Point Install Utility 3321 softonic
Yahoo! Messenger Suite Install Bootstrapper Setup | 3103 softonic
Recuva 3218 softonic

Table 7.7: Installers that created registry keys affecting Internet Explorer toolbars

129

Experiment Id | Product Name Aggregator
2995 Avast Antivirus cnet
3017 AVG Internet Security System cnet
3148 Spybot - Search & Destroy cnet
3155 Avira Launcher cnet
3214 Setup Factory 6.0 Runtime cnet
3242 ACD_ Weblnstaller(EN-CNET) cnet
3373 EaseUS Partition Master cnet
3391 SetupWinCalendarV4.exe cnet
3393 Freemake Video Converter cnet
3399 Freemake Video Downloader cnet
3403 KeyScrambler cnet
3434 360 Total Security Online Installer cnet
3442 Windows Media Component Setup Application | cnet
3464 Avast Antivirus cnet
3091 Spybot - Search & Destroy file hippo
3117 Microsoft Security Client file hippo
3129 ZoneAlarm file hippo
3171 Microsoft® Windows® Operating System file hippo
3175 Microsoft® Windows® Operating System file hippo
3001 Avast Antivirus softonic
3206 QuickTime softonic
3210 360 Total Security Online Installer softonic
3215 WhatsappTime-9-1-1dp3.exe softonic
3228 Connectify 2016 softonic
3259 Filmora softonic
3274 Microsoft Security Client softonic
3294 Baidu Antivirus softonic
3297 Video Converter Ultimate softonic
3298 Baidu PC Faster softonic
3321 Check Point Install Utility softonic
3334 Free USB Disk Security softonic

Table 7.8:

Binaries that affected Windows autostart management

Experiment Id | Product Name | Aggregator

2995 Avast Antivirus cnet

3001 Avast Antivirus softonic

Table 7.9: Binaries that affected Windows autostart management

130

Shared downloaded file

of jobs

unique jobs

38dfccb749f98ceaded3a03380eefdc9c752bal8

543dee8cf997bf0ea7e74b372b33de71dd4648ad

5cafb0702e89b7a0982e33e8a5¢5d52d0el7alc2

7dcal1208de954cH5e352alca266b223ece2861a

8f2ffcel1be02356fb37abc2bef0f4d2163e261F

91d5182f719543aftb1fe4a4a809cf646aleadd

a0fd82fd911f4136¢ca2ac23¢7379cef41170b0ea

adabe3d6¢cb3921cf2af221559e8b1dafc2fc38b9

ae323deec092111142¢a91926e1670e4732c24f

b15989b9c3f7bce2d39426d826abfa5683b4dab0

fb3c1dfcd979099138¢592¢4d043a7b53ae1b010

\I%OOChOJOb\I\]OOCbCﬁ:H:

UT»&CH@OO@\IOTGB@%:H:

Table 7.10: Hashes of downloaded files shared by more than 3 unique jobs

Shared downloaded files

Jobs

|.U
c
T
n

CCleaner

38dfccb749198ceaded3a03380eefdc9c752bal8

Recuva

ae323deec09211ff142e¢a91926e1670e4732c24f

Speccy

fb3c1dfcd979099138c592c4d043a7b53ae1b010

Defraggler

PhotoScape

Free Video To Audio Converter 2016

Free MP3 Cutter Joiner

5¢cafb0702e89b7a0982e33e8a5c5d52d0el7alc2

FreeMp3VideoConverter

7dcall208de954c55e352alca266b223ece2861a

Free Video Editor

Free Video Cutter Joiner

MKV Player

Free Studio

Free Audio Converter

91d5182ff719543affb1fedada809ci646aleadb

Free 3GP Video Converter

adabe3d6¢chb3921cf2af221559e8b1dafc2fc38b9

Free YouTube To MP3 Converter

Free YouTube Download

Free Video to MP3 Converter

WindowBlinds__setup.exe

Fences3-cnet-setup.exe

543dee8cf997bf0ea7e74b372b33de71dd4648ad

WindowBlinds_ cnet_ setup.exe

ObjectDock.exe

8f2ffce11be02356tb37abc2bef0f4d2163e26£E

DeskScapes8 setup.exe

ObjectDock-cnet-setup.exe

YTD Video Downloader

Freemake Video Converter

iPadian

b15989b9c3f7bce2d39426d826abfa5683b4dab(

The KMPlayer

Freemake Video Downloader

IObit Uninstaller

a0fd82fd911f4136ca2ac23c7379cef41170b0ea,

Start Menu 8

IObit Malware Fighter 4

Ol = O = = = == = = = = =] =] OO O O O = | = = =]]] NN N DN DN

Table 7.11: Groups of installers depending on same dowloaded files

131

| File name Mime type Source host
googletoolbarinstaller....exe application/x-dosexec dl.l.google.com
1 | ..._chrome_installer.exe application/x-dosexec rl.sn-ovgqOoxu-
5goe.gvtl.com
GoogleUpdateSetup.exe application/x-dosexec r4.sn-ovgqOoxu-
dgoe.gvtl.com
9 rkinstaller.exe application/x-dosexec post.securestudies.com
rkverify.exe application/x-dosexec post.securestudies.com
3 versions_ tmp.xml.gz application/gzip tools.dvdvideosoft.netdna-
cdn.com
versions__ tmp.xml application/xml tools.dvdvideosoft.netdna-
cdn.com
4 Fences 3__setup.exe application/x-dosexec stardock.cachefly.net
getCountry text /plain ytd01.greentreeapps.ro
5 | T0D9FOFS8_ stp.CIS application/octet-stream | cdnus.meyepey.com
6 | F4$0CvbABEqJXwRF.tmp text /plain gsl.wpc.edgecastcdn.net

Table 7.12: File type and network source for shared http downloads regarding Table 7.11

Chapter 8

Conclusions and future work

In this work we presented a distributed architecture of MSAS aimed at automating analysis
of software installers, mainly targeting PUP installers. We also implemented a prototype
reflecting the architectural structure provided, in order to evaluate the real possibilities of
such a tool. The system implemented so far combines classic techniques already adopted in
the malware fighting, yet it discloses new angles from which to study the PUP threat. In
this chapter we will summarize what are the contributions that our work brings to the PUP
fight, comparing pros and cons with state-of-the-art competing technologies. Furthermore,
current limitations and possible issues are discussed, hence possible future improvement
strategies are introduced.

8.1 Contributions

The structure of the MSAS we designed and developed in this document is, at best of our
knowledge, the first kind of sandboxed environment specifically addressing PUPs. As such,
it attempts to solve a number of limitations that current malware sandbox anslysis systems
do not consider. In general, we might identify two major contributions that differentiate
our design from the other sandboxes: automation of Ul interfaces and data correlations
on server side. Secondary objectives included scalability capabilities and MSAS detection
avoidance.

Our Ul interaction system was able to automatically handle 80.27 % of the possible
installations in a human-like way, based on the interaction policies currently implemented.
The remaining 20 % of the analysis provide results comparable to MSASs currently freely
accessible on the Internet (i.e. resource auditing with no UI interaction). The interaction
mechanism adopted proved to be general enough for interacting with the majority of
software installers, independently from their installer framework. This represent a strong
advantage in respect with other sandboxing systems, which are capable of automating
none or a strict number of installation interfaces, depending on the underlying installer
frameworks. The UI system also collects basic UI data during analysis and takes advantage
of the background auditing system in order to decide when to interact with the installer’s
GUL

Thanks to the analysis of collected data, we were able to correlate results obtained by
distinct installers. HTTP traffic analysis, together with native file system access monitoring,
proved to be crucial when dealing with PUP detection. We were able to define a simple
indicator which correctly identified 48.84 % of the expected PUPs, without relying on any

133

134

signature or blacklisted hashes database. The quality of the indicator has been confirmed
by the analysis of the detected files via VirusTotal. Moreover, the indicator was able to
detect 76 % of the PUPs rated as malicious by at least 4 scanners of VirusTotal. The
detection rate became 100 % when the number of minimum scanners considered raises to
15.

Differently from the other MSAS platform we are aware of, ours collects information on
the Ul interface presented, such as recognized buttons, checkboxes, radio buttons and labels.
Although this data has not been analyzed yet, it is our believe that it might disclose new
information useful for PUP installer analysis. This aspect represents another important
contribution that our MSAS brings to the PUP detection research area.

Another relevant characteristic distinguishing our work regards the bare-metal anaysis
support. The modular - network driven - architecture, combined with platform indepen-
dence, allows guest controllers to run virtually on any hardware supported by the Guest
OS (a the moment Windows 7). Moreover, the structure of the analysis system is modular
and is designed to support multiple hypervisors. At the time of writing, only virtual box
support has been implemented, however little effort is required in order to support other
virtualization engines, such as Openstack or VM Ware.

From the perspective of scalability, the infrastructure reacted as expected. Our tests
registered a significant improvement of throughput corresponding to the increment of guest
nodes added to the distributed system. In fact, raising the number of guests from 8 to 14
(75 %), the total average throughput grew by a 72.83 % factor, alongside with the reduction
of duration of test. When running with a total of 14 guests (handled by 2 host controllers)
the current prototype was able to collect and analyze 484 distinct binaries in less than 11.5
hours, running on a relatively old server infrastructure (6 years old processors). The average
time for a single jobs analysis is around 12 minutes. Thanks to the scalable architecture
of the system, multiple analysis can happen simultaneously, on different host controllers
running distinct virtualization engines. As a result, with two 6-years-old server blades,
running heterogeneous operating systems(one Linux server and one Windows server), we
reached an average throughput of 0.72 jobs per minute.

8.2 Limitations

The analysis system we presented is affected by some limitations, some of which may be
easily overcome in future versions. At first, the current implementation of API hooking is
based on Microsoft Detours 86 and on a custom DLL we implemented for 32 bit operating
systems. Thus, the current prototype is only capable of analyzing 32 bit installers. However,
there are several more recent libraries providing API hooking capabilities, such as Deviare [7]
or EasyHook [2]. Similarly, we can recompile the injected DLL for 64 bit systems and code
the injector in such a way it decides dynamically which versions of the DLL to inject in
each process.

A second limitation is represented by encrypted http traffic not being analyzed. The
current version of the analysis system does not enable SLL/TLS inspection. To solve this
problem, we might install a HTTPS proxy on the sniffers, configuring all the VMs to use
that proxy while accessing HT'TPS traffic. There are open source products that address
exactly this problem, such as mitmprozy [6].

Other constraints of the actual prototype regard the GUI interaction engine. While
the current state of the engine is sufficient to interact with the majority of installers we
gathered, it still requires to be fine tuned and optimized. The prototype we implemented

135

and tested in this document correctly interacted with 80 % of the installers. It is our
believe that this result can be increased considerably.

8.3 Future work

Our MSAS implementation demonstrates that a great part of the PUP analysis can be
automated. However, we introduced a number of limitations that should be overcome in
the future. In particular it is crucial to add support for 64 bit binaries, by developing a
64bit version of the injected DLL, taking advantage of a API Hooking library supporting
64 bit applications. Secondly, the prototype lacks of HI'TPS traffic inspection capabilities.
Lastly, the GUI interaction mechanism requires tuning and improvements in order to be
more effective.

Once fixed the current limitations of the developed MSAS, it is our intention to focus
on data analysis, in order to synthesize new possible PUP indicators. In fact, in this work
we just scratched the surface of data analysis, yet we were able to identify more than 48 %
of expected PUPs, just considering HT'TP traffic, without relying on any external PUP
database. We believe that new PUP identification techniques can be disclosed by analyzing
PUP installer’s GUIs. Machine learning technology can be used in order to classify PUP
installers from legitimate clean software.

Thanks to the ability of running the same job on multiple guest configurations, it might
be interesting to compare behaviors of installers when running on bare metal and virtual
environment. This study may reveal which are, if any, sandbox detection mechanisms
applied by PUP installers.

Lastly, we plan to generalize crawlers, in order to collect installers from all over the web
automatically, pushing jobs into the central DB any time a new product is identified. To
do so, crawlers need to evolve in such a way they recognize installer products, discarding
stand-alone executable files.

Appendix A

Database schema

n

atwark_protocals

pending_netwark_analysis =

-id

- assigned

- experimant_id

+ experiment_id

-frames

id
expariment_id
protocal
bytas

+ experiment_id

filas

shal
- mds
-fuzzy

-size

+ file_id

+ shalf+ id

file_id

fila_accassas

fs_changes

fila_id

exparimeant_id

path
is_new
is_modified
is_deleted

- experiment_id
~file_id

- path

- sequance

- directory
-file_name
-file_extension
-is_last

+ experiment_id

network_convarsations

-id

- experiment_id
-transport_protocel
~erc_addr

- sro_pert

- dst_addr

- dst_pert
-tx_frames

- r_frames

- t_bytas

- r_bytes

- duration
-total_frames

- dst_host

+ =xperiment_id

+ i

heep_downloads

-id

- axpariment_id
-shal

- mds

-fuzzy

-size

- source_ip

- source_part
-source_hast

-mima

+

+ experiment_id

axperiments

-id

~job_id

- startdate
-finishdate
- duration

-rasult

- attampt
- retrying
-pcappath

-infa

-test_bed_id

- reportpath

-processad

- network_summary
- neteork_summary_attempt

-injector_axit_coda
-injector_stdout

“pariment_id | -injector_stderr

-screens

- ui_bot_log

- ui_bot_exit_status

+ job_id

+ experiment_idn experiment_id

+ id

registry_changes

- experiment_id
_full_path

- key_path

- key_value_name
- key_value_valus

“is_naw
<is_medifisd
<is_delstad

+ id

cp_new_apps

- axparimant_id

-name

137

+ tast_bed_id

filz_strings

- string
-file_ids

workers
http_requests
-id
-id
-mac
- experimeant_id
- startdate
- host)
-job_id
- path
-tast_bed_id
-fullpath
- attampt
number ! _
- experiment_id
+ expepment_id

+ expariment_i

jobs

+ tast bad id

job_id

- downdate

- assignad

- path

-mds

- shal

-fuzzy

- aggregator_id

+ aggregator_id

+ i

agaragators

-id
-name

-url

-id test_bads
-fname =

-id
- dewnlink

-maode

- hypervisor
-os

“ns_arch
-wm_timeout

-installar_timaout

Appendix B

Hooked APIs

Table B.1 shows the list of APIs which are hooked by the HookingDLL. For each hook it

is also reported the original Windows module and a short description.

Method
NtCreateFile

Module
ntdll.dll

Detour Function
MyNtCreateFile

Description

The ZwCreateFile routine cre-
ates a new file or opens an ex-
isting file.

NtOpenFile

ntdll.dll

MyNtOpenFile

The NtOpenFile routine
opens an existing file, direc-
tory, device, or volume.

NtDeleteFile

ntdll.dll

MyNtDeleteFile

The ZwDeleteFile routine
deletes the specified file.

NtCreateKey

ntdll.dll

MyNtCreateKey

The ZwCreateKey routine cre-
ates a new registry key or
opens an existing one

NtOpenKey

ntdll.dll

MyNtOpenKey

The ZwOpenKey routine

opens an existing registry key.

NtSetInformationFile

ntdll.dll

MyNtSetInformationFile

The ZwSetInformationFile
routine changes various kinds
of information about a file
object.

NtClose

ntdll.dll

MyNtClose

The ZwClose routine closes an
object handle.

CreateProcessInternal W

kernel32.d11

MyCreateProcessInternal W

Internal function that creates
a new process.

ExitProcess

kernel32.d11

MyExitProcess

Ends the calling process and
all its threads.

Table B.1: API hooked in the current version

File monitorng is obtained by hooking three low level file access APIs: NtCreateFile(),
NtOpenFile(), NtDeleteFile and NtClose(). Whenever one of those functions is called by
the target process, the HookingDLL notifies the guest controller, which calculates the hash
of the file being processed and updates the logging data structures accordingly.

The Windows registry is monitored in a different way. Instead of hooking all the API pro-
viding writing capabilities on the registry, only two methods are monitored: NtOpenKey()
and NtClose(). When a registry key is being created or opened, the HookingDLL notifies
the guest controller, which saves the relative registry path and its original values into

139

140

a hash-table. When target process finishes, the guest controller scans that table and
calculates all the differences with the original contained values.

Bibliography

[12]

[13]

[14]

Antivirus scan for {8d11b1e3e027355a11163049b530de4fd67183abd08a691d5d18744653ef575
at utc - virustotal. https://www.virustotal.com/it/file/
£8d11b1e3e027355211163049b530de4fd67183abd08a691d5d18744653ef575/
analysis/1474630548/. (Accessed on 09/23/2016).

Easyhook. https://easyhook.github.io/. (Accessed on 09/24/2016).

Embedding principles - sciter. http://sciter.com/developers/
embedding-principles/. (Accessed on 07/19/2016).

Explaining avast$ https scanning feature. https://blog.avast.com/2015/05/25/
explaining-avasts-https-scanning-feature/. (Accessed on 09/22/2016).

Ibm - rational functional tester. http://www-03.ibm.com/software/products/it/
functional. (Accessed on 07/20/2016).

Mitmproxy. https://mitmproxy.org/. (Accessed on 09/24/2016).

Nektra - custom software development company. http://www.nektra.com/. (Ac-
cessed on 09/24/2016).

Pay-per-install: The new malware distribution network. (Accessed on 06/03/2016).
Silent install builder. http://www.silentinstall.org/. (Accessed on 09/04/2016).

Systems and software engineering — vocabulary. ISO/IEC/IEEE 24765:2010(E), pages
1-418, Dec 2010.

Kujawa A. Potentially unwanted miners, malwarebytes un-
packed. https://blog.malwarebytes.org/cybercrime/2013/11/
potentially-unwanted-miners-toolbar-peddlers-use-your-system-to-make-btc/.

(Accessed on 06/03/2016).

AForge. Dilatation class. http://www.aforgenet.com/framework/docs/html/
88f713d4-a469-30d2-dc57-5ceb33210723 . htm. (Accessed on 07/25/2016).

AForge. Fillholes class. http://www.aforgenet.com/framework/docs/html/
68bd57bd-1fd6-6c4e-4500-ed4726bc836e.htm. (Accessed on 07/25/2016).

AForge. Sisthreshold class. http://www.aforgenet.com/framework/docs/html/
39¢861e0-e4bb-7609-c067-6cbdabd646£3. htm. (Accessed on 07/25/2016).

141

https://www.virustotal.com/it/file/f8d11b1e3e027355a11163049b530de4fd67183abd08a691d5d18744653ef575/analysis/1474630548/
https://www.virustotal.com/it/file/f8d11b1e3e027355a11163049b530de4fd67183abd08a691d5d18744653ef575/analysis/1474630548/
https://www.virustotal.com/it/file/f8d11b1e3e027355a11163049b530de4fd67183abd08a691d5d18744653ef575/analysis/1474630548/
https://easyhook.github.io/
http://sciter.com/developers/embedding-principles/
http://sciter.com/developers/embedding-principles/
https://blog.avast.com/2015/05/25/explaining-avasts-https-scanning-feature/
https://blog.avast.com/2015/05/25/explaining-avasts-https-scanning-feature/
http://www-03.ibm.com/software/products/it/functional
http://www-03.ibm.com/software/products/it/functional
https://mitmproxy.org/
http://www.nektra.com/
http://www.silentinstall.org/
https://blog.malwarebytes.org/cybercrime/2013/11/potentially-unwanted-miners-toolbar-peddlers-use-your-system-to-make-btc/
https://blog.malwarebytes.org/cybercrime/2013/11/potentially-unwanted-miners-toolbar-peddlers-use-your-system-to-make-btc/
http://www.aforgenet.com/framework/docs/html/88f713d4-a469-30d2-dc57-5ceb33210723.htm
http://www.aforgenet.com/framework/docs/html/88f713d4-a469-30d2-dc57-5ceb33210723.htm
http://www.aforgenet.com/framework/docs/html/68bd57bd-1fd6-6c4e-4500-ed4726bc836e.htm
http://www.aforgenet.com/framework/docs/html/68bd57bd-1fd6-6c4e-4500-ed4726bc836e.htm
http://www.aforgenet.com/framework/docs/html/39e861e0-e4bb-7e09-c067-6cbda5d646f3.htm
http://www.aforgenet.com/framework/docs/html/39e861e0-e4bb-7e09-c067-6cbda5d646f3.htm

142

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[28]

A. Ahmed. Test automation for graphical user interfaces: A review. In Computer
Applications and Information Systems (WCCAIS), 2014 World Congress on, pages
1-6, Jan 2014.

P. Aho, M. Suarez, T. Kanstren, and A. M. Memon. Murphy tools: Utilizing
extracted gui models for industrial software testing. In Software Testing, Verification
and Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference
on, pages 343-348, March 2014.

Jason B. Defining rules for acceptable adware. In Proceedings of the Fifteenth Virus
Bulletin Conference, 2005.

J. Blanchette and M. Summerfield. C++ GUI Programming with Qt4. Pearson
Education, 2008.

Rainer Bohme and Stefan Kopsell. Trained to accept? a field experiment on consent
dialogs. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pages 2403-2406, New York, NY, USA, 2010. ACM.

M. Boldt and B. Carlsson. Privacy-invasive software and preventive mechanisms. In
Systems and Networks Communications, 2006. ICSNC °06. International Conference
on, pages 21-21, Oct 2006.

M. Boldt, A. Jacobsson, N. Lavesson, and P. Davidsson. Automated spyware detection
using end user license agreements. In Information Security and Assurance, 2008. ISA
2008. International Conference on, pages 445-452, April 2008.

Pat Brenner. Spy++ internals | visual c++ team blog. https://blogs.msdn.
microsoft.com/vcblog/2007/01/16/spy-internals/, January 2007. (Accessed on
07/19/2016).

Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. Measuring pay-
per-install: The commoditization of malware distribution. In Proceedings of the 20th
USENIX Conference on Security, SEC’11, pages 13-13, Berkeley, CA, USA, 2011.
USENIX Association.

Wei Hoo Chong. Loader cart automation enhancement. In Advanced Communication
Technology (ICACT), 2012 14th International Conference on, pages 1096-1101, Feb
2012.

R.S. Choras. Image Processing € Communications Challenges 8. Advances in
Intelligent and Soft Computing. Springer Berlin Heidelberg, 2011.

Symantec Corp. Risks. https://www.symantec.com/security_response/landing/
risks/. (Accessed on 06/13/2016).

C. D. Curran. Combating spam, spyware, and other desktop intrusions: legal
considerations in operating trusted intermediary technologies. IEEE Security Privacy,
4(3):45-51, May 2006.

Benjamin E. Spyware, adware, and malware— research, testing, legislation, and suits.
http://www.benedelman.org/spyware/. (Accessed on 06/03/2016).

https://blogs.msdn.microsoft.com/vcblog/2007/01/16/spy-internals/
https://blogs.msdn.microsoft.com/vcblog/2007/01/16/spy-internals/
https://www.symantec.com/security_response/landing/risks/
https://www.symantec.com/security_response/landing/risks/
http://www.benedelman.org/spyware/

[29]

[30]

[31]

32]

[43]
[44]

[45]

143

N. Elenkov. Android Security Internals: An In-Depth Guide to Android’s Security
Architecture. No Starch Press, 2014.

J. Faircloth, J. Beale, R. Temmingh, H. Meer, C. van der Walt, and HD Moore.
Penetration Tester’s Open Source Toolkit. Elsevier Science, 2006.

David French and William Casey. 2 fuzzy hashing techniques in applied malware
analysis. Results of SEI Line-Funded Exploratory New Starts Projects, page 2, 2012.

T.S. Garfinkel, M. Rosenblum, D. Boneh, J. Mitchell, and Stanford University.
Computer Science Department. Paradigms for Virtualization Based Host Security.
Stanford University, 2010.

Nathaniel Good, Rachna Dhamija, Jens Grossklags, David Thaw, Steven Aronowitz,
Deirdre Mulligan, and Joseph Konstan. Stopping spyware at the gate: A user study of
privacy, notice and spyware. In Proceedings of the 2005 Symposium on Usable Privacy
and Security, SOUPS ’05, pages 43-52, New York, NY, USA, 2005. ACM.

Aryeh Goretsky. Problematic-unloved-argumentative.pdf. http://go.eset.com/us/
resources/white-papers/Problematic-Unloved-Argumentative.pdf. (Accessed

on 06/03/2016).

A. M. P. Grilo, A. C. R. Paiva, and J. P. Faria. Reverse engineering of gui models for
testing. In 5th Iberian Conference on Information Systems and Technologies, pages
1-6, June 2010.

R.A. Grimes. Honeypots for Windows. Apresspod Series. Apress, 2005.

A. Gupta and P. Anand. Focused web crawlers and its approaches. In Futuristic
Trends on Computational Analysis and Knowledge Management (ABLAZE), 2015
International Conference on, pages 619-622, Feb 2015.

D. Harley. AVIEN Malware Defense Guide for the Enterprise. Elsevier Science, 2011.

Galen Hunt and Doug Brubacher. Detours: Binary interception of win32 functions.
In Proceedings of the 8rd Conference on USENIX Windows NT Symposium - Volume
3, WINSYM’99, pages 14—14, Berkeley, CA, USA, 1999. USENIX Association.

P. Joshi, D.M. Escriva, and V. Godoy. OpenCV By Ezample. Packt Publishing, 2016.

Kaspersky. Participate in whitelist. http://whitelist.kaspersky.com/
whitelist_program. (Accessed on 06/13/2016).

Jesse Kornblum. Identifying almost identical files using context triggered piecewise
hashing. Digital Investigation, 3, Supplement:91 — 97, 2006. The Proceedings of the
6th Annual Digital Forensic Research Workshop (DFRWS ’06).

Jesse Kornblum. Fuzzy hashing, 2012.

D. Kusnetzky. Virtualization: A Manager’s Guide. Real Time Bks. O’Reilly Media,
Incorporated, 2011.

F-Secure Labs. Submit a sample. https://www.f-secure.com/en/web/labs_
global/submit-a-sample. (Accessed on 06/13/2016).

http://go.eset.com/us/resources/white-papers/Problematic-Unloved-Argumentative.pdf
http://go.eset.com/us/resources/white-papers/Problematic-Unloved-Argumentative.pdf
http://whitelist.kaspersky.com/whitelist_program
http://whitelist.kaspersky.com/whitelist_program
https://www.f-secure.com/en/web/labs_global/submit-a-sample
https://www.f-secure.com/en/web/labs_global/submit-a-sample

144

[46] Malwarebytes Labs. Malwarebytes adopts aggressive pup pol-
icy. https://blog.malwarebytes.com/malwarebytes-news/2013/07/
malwarebytes-adopts-aggressive-pup-policy/. (Accessed on 09/04/2016).

[47] Malwarebytes labs. Pup reconsideration information. https://it.malwarebytes.
org/pup/. (Accessed on 06/03/2016).

[48] Tamas K. Lengyel, Steve Maresca, Bryan D. Payne, George D. Webster, Sebastian
Vogl, and Aggelos Kiayias. Scalability, fidelity and stealth in the drakvuf dynamic
malware analysis system. In Proceedings of the 30th Annual Computer Security
Applications Conference, 2014.

[49] Tamas K. Lengyel, Steve Maresca, Bryan D. Payne, George D. Webster, Sebastian
Vogl, and Aggelos Kiayias. Scalability, fidelity and stealth in the drakvuf dynamic
malware analysis system. In ACSAC, 2014.

[50] Malwarebytes. What are pup detections. https:
//support.malwarebytes.com/customer/portal/articles/
1834873-what-are-pup-detections—-are-they-threats-and-should-they-be-deleted-7
b_1d=6438. (Accessed on 09/04/2016).

[51] P. McFedries. Technically speaking: The spyware nightmare. IEEE Spectrum,
42(8):72-72, Aug 2005,

[52] T. Mitchem, R. Lu, and R. O’Brien. Using kernel hypervisors to secure applications.
In Computer Security Applications Conference, 1997. Proceedings., 13th Annual, pages
175-181, Dec 1997.

[53] Jianpeng Mo. how_to_identify pua.pdf. file:///C:/Users/webking/Downloads/
how_to_identify_pua.pdf. (Accessed on 06/13/2016).

[54] Sara Motiee, Kirstie Hawkey, and Konstantin Beznosov. Do windows users follow
the principle of least privilege?: investigating user account control practices. In
Proceedings of the Sizth Symposium on Usable Privacy and Security, page 1. ACM,
2010.

[55] MSDN. About messages and message queues (windows). https://msdn.microsoft.
com/en-us/library/windows/desktop/ms644927 (v=vs.85) .aspx. (Accessed on
07/18/2016).

[56] MSDN. About window procedures (windows). https://msdn.microsoft.
com/en-us/library/windows/desktop/ms633569 (v=vs.85) .aspx. (Accessed on
07/18/2016).

[57] MSDN. Enumchildwindows function (windows). https://msdn.microsoft.
com/en-us/library/windows/desktop/ms633494 (v=vs.85) .aspx. (Accessed on
07/19/2016).

[58] MSDN. Filtering registry calls (windows drivers). https://msdn.microsoft.
com/en-us/library/windows/hardware/ff545879 (v=vs.85) .aspx. (Accessed on
07/26/2016).

https://blog.malwarebytes.com/malwarebytes-news/2013/07/malwarebytes-adopts-aggressive-pup-policy/
https://blog.malwarebytes.com/malwarebytes-news/2013/07/malwarebytes-adopts-aggressive-pup-policy/
https://it.malwarebytes.org/pup/
https://it.malwarebytes.org/pup/
https://support.malwarebytes.com/customer/portal/articles/1834873-what-are-pup-detections-are-they-threats-and-should-they-be-deleted-?b_id=6438
https://support.malwarebytes.com/customer/portal/articles/1834873-what-are-pup-detections-are-they-threats-and-should-they-be-deleted-?b_id=6438
https://support.malwarebytes.com/customer/portal/articles/1834873-what-are-pup-detections-are-they-threats-and-should-they-be-deleted-?b_id=6438
https://support.malwarebytes.com/customer/portal/articles/1834873-what-are-pup-detections-are-they-threats-and-should-they-be-deleted-?b_id=6438
file:///C:/Users/webking/Downloads/how_to_identify_pua.pdf
file:///C:/Users/webking/Downloads/how_to_identify_pua.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633569(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633569(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633494(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633494(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545879(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545879(v=vs.85).aspx

[59]

145

MSDN. Kernel patch protection: frequently asked questions - windows 10
hardware dev. https://msdn.microsoft.com/en-us/library/windows/hardware/
dn613955 (v=vs.85) .aspx. (Accessed on 07/27/2016).

MSDN. Libraries and headers (windows drivers). https://msdn.microsoft.

com/en-us/library/windows/hardware/f£554288(v=vs.85) .aspx. (Accessed on
07/25/2016).

MSDN. Windows forms. https://msdn.microsoft.com/en-us/library/
dd30h2yb (v=vs.110) .aspx. (Accessed on 07/23/2016).

Charles Petzold. Programming Windows, Fifth Edition. Microsoft Press, Redmond,
WA, USA, 5th edition, 1998.

C. Pickard and S. Miladinov. Rogue software: Protection against potentially un-
wanted applications. In Malicious and Unwanted Software (MALWARE), 2012 Tth
International Conference on, pages 1-8, Oct 2012.

Matt Pietrek. Peering inside the pe: A tour of the win32 portable executable file
format. https://msdn.microsoft.com/en-us/library/ms809762.aspx. (Accessed
on 06/22/2016).

Realtimepublishers.com and D.M.J. Sanoy. The Definitive Guide to Windows Installer
Technology for System Administrators. Realtimepublishers.com, 2002.

Paul Robichaux. Managing the Windows 2000 Registry. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2000.

D.J. Rogers. Broadband Quantum Cryptography. Synthesis lectures on quantum
computing. Morgan & Claypool Publishers, 2010.

R. Rosen. Linux Kernel Networking: Implementation and Theory. Books for
professionals by professionals. Apress, 2014.

Mark Russinovich. Security: Inside windows vista user account control. https:
//technet.microsoft.com/en-us/magazine/2007.06.uac.aspx. (Accessed on

06/09/2016).

Mark E. Russinovich, David A. Solomon, and Alex Ionescu. Windows Internals, Part
2: Covering Windows Server 2008 R2 and Windows 7 (Windows Internals). Microsoft
Press, 2012.

M.E. Russinovich, D.A. Solomon, and A. Ionescu. Windows Internals. Number pt. 1
in Developer Reference. Pearson Education, 2012.

M.E. Russinovich, D.A. Solomon, and A. Ionescu. Windows Internals. Number pt. 1
in Developer Reference. Pearson Education, 2012.

J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A survey on concepts, taxonomy
and associated security issues. In Computer and Network Technology (ICCNT), 2010
Second International Conference on, pages 222-226, April 2010.

Mark B. Schmidt and Kirk P. Arnett. Spyware: A little knowledge is a wonderful
thing. Commun. ACM, 48(8):67-70, August 2005.

https://msdn.microsoft.com/en-us/library/windows/hardware/dn613955(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn613955(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554288(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554288(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd30h2yb(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd30h2yb(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://technet.microsoft.com/en-us/magazine/2007.06.uac.aspx
https://technet.microsoft.com/en-us/magazine/2007.06.uac.aspx

146

[75]

[76]

[77]

[78]

Michael Sikorski and Andrew Honig. Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. No Starch Press, San Francisco, CA, USA,
1st edition, 2012.

Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System
Concepts. Wiley Publishing, 8th edition, 2008.

N.P. Smart. Cryptography Made Simple. Information Security and Cryptography.
Springer International Publishing, 2015.

Sophos. Pua protection and adware security | pua threat detection and
removal. https://www.sophos.com/it-it/threat-center/threat-analyses/
adware-and-puas.aspx. (Accessed on 06/13/2016).

Sophos. Submitting samples of suspicious files to sophos. https://www.sophos.com/
en-us/support/knowledgebase/11490.aspx. (Accessed on 06/13/2016).

T. Soulami. Inside Windows Debugging. Developer Reference. Pearson Education,
2012.

Chad Spensky, Hongyi Hu, and Kevin Leach. Lo-phi: Low-observable physical host
instrumentation for malware analysis. 2016.

Andreas Stamminger, Christopher Kruegel, Giovanni Vigna, and Engin Kirda. Auto-
mated spyware collection and analysis. In International Conference on Information
Security, pages 202-217. Springer, 2009.

Vlasta Stavova, Vashek Matyas, and Mike Just. On the impact of warning interfaces
for enabling the detection of potentially unwanted applications. 2016.

L. Stevenson and N. Altholz. Rootkits For Dummies. —For dummies. Wiley, 2006.

Symantec. Sonar.pualgenb | symantec. https://www.symantec.com/security_
response/writeup.jsp?docid=2015-061218-1537-99. (Accessed on 06/13/2016).

Kurt Thomas, Juan A. Elices Crespo, Ryan Rasti, Jean-Michel Picod, Cait Phillips,
Marc-André Decoste, Chris Sharp, Fabio Tirelo, Ali Tofigh, Marc-Antoine Courteau,
Lucas Ballard, Robert Shield, Nav Jagpal, Moheeb Abu Rajab, Panayiotis Mavrom-
matis, Niels Provos, Elie Bursztein, and Damon McCoy. Investigating commercial
pay-per-install and the distribution of unwanted software. In 25th USENIX Security
Symposium (USENIX Security 16), pages 721-739, Austin, TX, August 2016. USENIX
Association.

R. Tian, R. Islam, L. Batten, and S. Versteeg. Differentiating malware from cleanware
using behavioural analysis. In Malicious and Unwanted Software (MALWARE), 2010
5th International Conference on, pages 23-30, Oct 2010.

Andrew Tridgell. Spamsum algorithm. https://www.samba.org/ftp/unpacked/
junkcode/spamsum/README. (Accessed on 06/15/2016).

A.B. Tucker. Computer Science Handbook, Second Edition. CRC Press, 2004.

S.E. Umbaugh. Digital Image Processing and Analysis: Human and Computer Vision
Applications with CVIPtools, Second Edition. CRC Press, 2016.

https://www.sophos.com/it-it/threat-center/threat-analyses/adware-and-puas.aspx
https://www.sophos.com/it-it/threat-center/threat-analyses/adware-and-puas.aspx
https://www.sophos.com/en-us/support/knowledgebase/11490.aspx
https://www.sophos.com/en-us/support/knowledgebase/11490.aspx
https://www.symantec.com/security_response/writeup.jsp?docid=2015-061218-1537-99
https://www.symantec.com/security_response/writeup.jsp?docid=2015-061218-1537-99
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README

[91]

[92]

[93]
[94]

147

VirusTotal. Antivirus scan for 865b480f7ec90ffb&738f581658f24b6{81cbcb6fefb0f540f01644a51e51f167

at 2015-10-27 01:23:55 utc. https://www.virustotal.com/en/file/
865b480f7ec90ffb8738£5681658f24b6£81cbc6fefb0f540f01644a51e51£167/
analysis/. (Accessed on 06/03/2016).

W3C.org. Operating system statistics. http://www.w3schools.com/browsers/
browsers_os.asp. (Accessed on 06/07/2016).

Phil Wilson. The Definitive Guide to Windows Installer. APress, 2004.

Y. Wiseman. Advanced Operating Systems and Kernel Applications: Techniques and
Technologies: Techniques and Technologies. Premier reference source. Information
Science Reference, 2009.

K. Yoshioka, Y. Hosobuchi, T. Orii, and T. Matsumoto. Vulnerability in public
malware sandbox analysis systems. In Applications and the Internet (SAINT), 2010
10th IEEE/IPSJ International Symposium on, pages 265-268, July 2010.

https://www.virustotal.com/en/file/865b480f7ec90ffb8738f581658f24b6f81cbc6fefb0f540f01644a51e51f167/analysis/
https://www.virustotal.com/en/file/865b480f7ec90ffb8738f581658f24b6f81cbc6fefb0f540f01644a51e51f167/analysis/
https://www.virustotal.com/en/file/865b480f7ec90ffb8738f581658f24b6f81cbc6fefb0f540f01644a51e51f167/analysis/
http://www.w3schools.com/browsers/browsers_os.asp
http://www.w3schools.com/browsers/browsers_os.asp

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	Introduction
	Motivation
	Research goals
	Structure

	Background
	Potentially Unwanted Programs
	Definition
	Potentially-unwanted ambiguity
	PUP Classification
	Severity
	Profitability
	The EULA trap
	User informed-consent to dicriminate PUP
	Habituation and blind approach

	Problem: PUP on Windows
	Windows installers
	Where do PUPs fit the most

	PUP detection state of the art
	How antivirus detect PUPs
	Suspicious behaviors

	Malware analysis techniques to the rescue
	Static Analysis
	Dynamic analysis

	Malware Sandbox Analysis Systems
	Limitations

	Automated GUI interaction
	Windows UI Architecture
	Low level UI interactions
	Basic Win32 UI messages
	Windows UI libraries
	Inspection tools for windows: Spy++ and Snoop
	Inspection tools limitations
	Image recognition frameworks
	Optical character recognition techniques
	UI automation frameworks
	Installers vs Applications, considerations

	Related Work
	Automated Malware analysis
	Anti-spyware solutions
	Sandbox Analysis

	Automated UI Interaction

	Problem Statement
	Automating software installation
	Data collection and correlation
	Scalability and performances
	Avoiding MSASs detection

	Design of a Windows PUP analysis infrastructure
	Design goals
	Architecture
	Overview
	Crawlers
	Central DB
	Host Controller
	Sandbox Machine
	Networking Design
	Bare metal and virtual environments support

	UI Interaction
	UI interaction engine basic architecture
	Automated UI interaction challenges
	UI elements detection
	UI element selection
	Interacting with UI elements

	Implementation details
	Central database
	DB Schema
	Multiple Host Controller synchronization

	Resource monitoring implementation
	Shared resource access in Windows NT
	API Hooking: Overview
	Dll Injection & Injector
	Clooser look at HookingDLL
	Process hierarchy, dll injection and API hooking
	Hooking Windows services

	Sniffer
	Networking services
	Host controller interaction
	Capture file synthesis

	Test and evaluation of results
	Test configuration
	Job selection
	Infrastructure configuration

	Evaluation of results
	Install automation results
	Looking for PUP installers

	Conclusions and future work
	Contributions
	Limitations
	Future work

	Database schema
	Hooked APIs
	References

