
Risto Hietala

Packet Synchronization Test Automation

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 3.10.2016

Thesis supervisor:

Prof. Riku Jäntti

Thesis instructor:

M.Sc. (Tech.) Jonas Lundqvist

A’’
Aalto University
School of Electrical
Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80722067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university

school of electrical engineering

abstract of the

master’s thesis

Author: Risto Hietala

Title: Packet Synchronization Test Automation

Date: 3.10.2016 Language: English Number of pages:8+66

Department of Communications and Networking

Professorship: Communications Engineering Code: S-72

Supervisor: Prof. Riku Jäntti

Instructor: M.Sc. (Tech.) Jonas Lundqvist

Telecommunications network operators are shifting from circuit switched backhaul
technologies into packet switched networks to save costs with increasing traffic
loads. Frequency synchronization was inherently provided by the circuit switched
network, but has to be provided by other means in packet switched networks. One
solution is Precision Time Protocol (PTP), defined in IEEE standard 1588, which
can be used to create a master-slave synchronization strategy to a network. Syn-
chronization quality is an essential factor when using any synchronization tech-
nology. Packet synchronization quality requirements in different situations are
defined in ITU-T recommendation G.8261.
The objective of this thesis is to create test automation for ITU-T recommendation
G.8261 Appendix VI performance test cases 12 through 17 for Precision Time
Protocol. Hypothesis is that this automation will make testing more effective
than if testing was done manually, allowing testing of more products in a smaller
time frame.
Automated test system was planned and implemented with various measurement
and impairment devices, and testing software to utilize them and to generate
results.
As a result, PTP synchronization quality testing efficiency was increased by over
20 % while reducing the possibility for human errors.

Keywords: Packet synchronization, Precision Time Protocol, Maximum Time
Interval Error, Software Test Automation

aalto-yliopisto

sähkötekniikan korkeakoulu

diplomityön

tiivistelmä

Tekijä: Risto Hietala

Työn nimi: Pakettisynkronointitestauksen automaatio

Päivämäärä: 3.10.2016 Kieli: Englanti Sivumäärä:8+66

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoliikennetekniikka Koodi: S-72

Valvoja: Prof. Riku Jäntti

Ohjaaja: DI Jonas Lundqvist

Verkko-operaattorit vaihtavat matkapuhelinverkoissa käyttämiään tekniikoita pii-
rikytkentäisistä pakettikytkentäisiin säästääkseen kustannuksia kasvavien liiken-
nemäärien kanssa. Piirikytkentäisissä verkoissa taajuussynkronointi leviää verk-
koteknologian myötä automaattisesti koko verkkoon, mutta pakettikytkentäisissä
verkoissa se täytyy tuottaa muilla tavoin. Yksi ratkaisu ongelmaan on Precision
Time Protocol (PTP), joka on määritelty IEEE standardissa 1588, ja jolla voi-
daan luoda verkkoon isäntä–renki -synkronointistrategia. Synkronoinnin laatu on
keskeinen tekijä kaikissa synkronointiteknologioissa. Pakettisynkronoinnin laatu-
vaatimuksia eri tapauksissa on määritelty ITU-T suosituksessa G.8261.
Tämän diplomityön tavoitteena on luoda testausautomaatio ITU-T suosituksen
G.8261 liitteen VI suorituskykytesteille 12–17 käyttäen PTP:tä. Hypoteesina on,
että automaation avulla testauksesta tulee tehokkaampaa, kuin jos samat testit
suoritettaisiin manuaalisesti. Näin entistä useammat tuotteet saataisiin testattua
entistä lyhyemmässä ajassa.
Automatisoitu testausjärjestelmä suunniteltiin ja toteutettiin käyttäen valikoimaa
erilaisia mittauslaitteita ja verkkoemulaattoreita, sekä näiden laitteiden hallintaan
kehitettyä testausohjelmistoa.
Lopputuloksena PTP-synkronointitestauksen nopeus parani yli 20 prosenttia ja
inhimillisten virheiden mahdollisuus väheni.

Avainsanat: Pakettisynkronointi, Precision Time Protocol, Ohjelmistotestauk-
sen automaatio

iv

Preface

This thesis has been carried out at Tellabs Oy (currently Coriant Oy) at Espoo,
Finland.

I would like to thank my instructor Jonas Lundqvist for the idea and also for
all the help during the years, especially related to this thesis, but also otherwise. I
would also like to thank this thesis’ supervisor, professor Riku Jäntti.

I am grateful for the help of everyone at Tellabs synchronization and testing
teams, especially my superior Hannu Tuomisto and Heikki Laamanen who, along
with Jonas Lundqvist, gave this opportunity for me.

Finally I’d like to thank my wife Niina, family and friends for their support and
belief that I would one day finish this.

For Väinö.

Tampere, 28.8.2016

Risto Hietala

v

Contents

Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Symbols and abbreviations vii

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 1
1.3 Structure of the thesis . 2

2 Communication network synchronization 3
2.1 Terminology . 3
2.2 Measurement definitions . 5

2.2.1 Time Error . 6
2.2.2 Time Interval Error . 7
2.2.3 Maximum Time Interval Error 7
2.2.4 Time Deviation . 7
2.2.5 Allan Deviation . 9

2.3 Network synchronization . 9

3 Packet switched network synchronization 14
3.1 Precision Time Protocol . 15
3.2 Packet delay and impairments . 16

3.2.1 Equal-cost multi-path effect 17
3.2.2 Minimum path transit time 17
3.2.3 Random delay variation . 17
3.2.4 Low frequency delay variation 17
3.2.5 Systematic delay variation . 17
3.2.6 Routing changes . 18
3.2.7 Congestion effects . 18
3.2.8 Topology-dependent blocking mechanisms 18

3.3 Mobile technologies’ synchronization requirements 18
3.4 Packet synchronization testing . 19

3.4.1 ITU-T recommendation G.8261 20
3.4.2 MEF Technical specification 18 21

4 Software testing 24
4.1 Terminology . 24
4.2 Testing Maturity Model . 24
4.3 Strategies . 26

vi

4.3.1 Functional testing . 26
4.3.2 Structural testing . 27

4.4 Test-case design . 27
4.4.1 Equivalence partitioning . 27
4.4.2 Boundary-value analysis . 28
4.4.3 Decision tables . 30

4.5 Software development process models 30
4.5.1 Waterfall model . 31
4.5.2 V-Model . 31
4.5.3 Agile software development 32

4.6 Regression testing . 34
4.6.1 Firewall test selection . 35
4.6.2 Graph walk test selection . 36
4.6.3 Modified entity test selection 36

4.7 Test automation . 36
4.8 Testing metrics . 37

5 Requirements and planning 41
5.1 Designing an automated test system 41

5.1.1 Reporting . 42
5.1.2 Graph plotting . 43
5.1.3 Generating packet delay variation 44
5.1.4 Measurement . 44

5.2 Maximum Time Interval Error algorithms 45
5.2.1 Naive algorithm . 46
5.2.2 Extreme fix . 47
5.2.3 Binary decomposition . 47
5.2.4 Mask matching . 49

5.3 Synchronization quality requirements 51

6 Implementation 53
6.1 Test network . 53
6.2 Test control and reporting . 53

6.2.1 Data processing . 55
6.2.2 Graph plotting . 56

6.3 Maximum Time Interval Error calculation 56

7 Evaluation 59

8 Conclusions 61

References 62

vii

Symbols and abbreviations

Abbreviations

3GPP 3rd Generation Partnership Project
3GPP2 3rd Generation Partnership Project 2
ADEV Allan Deviation
ANSI American National Standards Institute
ASCII American Standard Code for Information Interchange
BDS BeiDou Navigation Satellite System
CBR Constant Bitrate
CDMA Code Division Multiple Access
CES Circuit Emulation Service
CESoPSN Structure-Aware Time Division Multiplexed (TDM)

Circuit Emulation Service over Packet Switched Network
CSV Comma-separated Values
DS1 Digital Signal 1
DUT Device Under Test
ETSI European Telecommunications Standards Institute
FDD Frequency-Division Duplexing
GCC GNU Compiler Collection
GLONASS Global Navigation Satellite System (brand)
GNSS Global navigation satellite system (general term)
GPIB General Purpose Interface Bus
GPS Global Positioning System
GSM Global System for Mobile communications
HTML HyperText Markup Language
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IP Internet Protocol
ITU International Telecommunications Union
JPEG Joint Photographic Experts Group
MAC Media Access Control
MEF Metro Ethernet Forum
MPLS Multi-Protocol Label Switching
MRTIE Maximum Relative Time Interval Error
MTIE Maximum Time Interval Error
NTP Network Time Protocol

viii

PCM Pulse Code Modulation
PDH Plesiochronous Digital Hierarchy
PDV Packet Delay Variation
ppb parts per billion
ppm parts per million
PNG Portable Network Graphics
PRC Primary Reference Clock
PSN Packet Switched Network
PTP Precision Time Protocol
RFC Request For Comments
SAToP Structure-Agnostic Time Division Multiplexing (TDM)

over Packet
SCPI Standard Commands for Programmable Instrumentation
SDH Synchronous Digital Hierarchy
SONET Synchronous Optical Networking
STM-1 Synchronous Transport Module level-1
SVG Scalable Vector Graphics
Tcl Tool Command Language
TC12 ... TC16 ITU-T recommendation G.8261 Appendix VI performance

test case 12 ... 16
TCP Transmission Control Protocol
TD-SCDMA Time-Division Synchronous Code Division Multiple Access
TDD Time-Division Duplexing
TDEV Time Deviation
TDM Time-Division Multiplexing
TE Time Error
TIE Time Interval Error
TMM Testing Maturity Model
UMTS Universal Mobile Telecommunications System
VS Visual Studio
WiMAX Worldwide Interoperability for Microwave Access
XG-PON 10 Gbit/s Passive Optical Networking

1 Introduction

1.1 Background

Telecommunications networks have used circuit switched technologies for voice trans-
mission, and after the success of the internet, packet switched technologies for data.
Supporting both would lead to network operators having two different networks
covering the same area: namely Synchronous Optical Networking (SONET) and
Synchronous Digital Hierarchy (SDH) designed for circuit traffic and applying time-
division multiplexing, and Internet Protocol (IP) and/or Ethernet for packet traffic
having statistical multiplexing.

Operators are unifying their core networks to use only one type of technology, and
packet switched solutions are favored. As voice transmission uses still heavily circuit
switched protocols, they must be emulated in a packet switched world. One feature
built in circuit switched protocols and missing (to same extent) in packet networks
is the support for physical layer synchronization. The most common solutions for
providing synchronization in packet switched networks are Synchronous Ethernet,
Precision Time Protocol (PTP) and proprietary adaptive clock recovery solutions for
Structure-Agnostic Time Division Multiplexing over Packet (SAToP) and Structure-
Aware Time Division Multiplexed Circuit Emulation Service over Packet Switched
Network (CESoPSN).

When such technologies are taken into use in communication networks, opera-
tors must be confident that synchronization quality is good enough in all possible
situations the network might experience in normal operation. Behavior in special
situations, as well as in normal operation, must be tested beforehand. From a vendor
perspective, testing should be well specified, unchanged between different software
releases, quick to start and take as little time as possible. From operator perspective,
testing should be comprehensive and simulate real world scenarios.

1.2 Objectives

The objective of this master’s thesis is to study test automation regarding packet
synchronization testing. Selected technology for synchronization is Precision Time
Protocol. Thesis has been done for Tellabs Oy and implementation is using Tellabs’
test tools and processes, as well as Tellabs 8600 mobile backhaul routers as devices
under test.

The scope for implemented test automation is International Telecommunications
Union ITU-T recommendation G.8261 [1] Appendix VI performance test cases 12
through 17 for Precision Time Protocol and calculate Maximum Time Interval Er-
ror (MTIE) graphs for results. Testing is done for Tellabs 8600 including setup,
measurement, packet delay variation emulation and result analysis of the tests.

2

1.3 Structure of the thesis

This thesis is divided into three general parts: literature study, design and imple-
mentation of an automated packet synchronization test system. Section 2 introduces
synchronization in communication networks along with terminology and concepts.
Section 3 discusses packet switched network synchronization with emphasis on Pre-
cision Time Protocol and related issues. Section 4 is an overview of software testing,
how testing is seen in different software development process models, test case design
and testing metrics.

Section 5 deals with packet synchronization testing requirements and planning
of an automated system for this use. Options for possible system components are
compared and the best ones selected. Section 6 discusses the implementation details,
and solutions to problems encountered during implementation.

Section 7 has evaluation of the implemented system with previously shown met-
rics. Section 8 discusses conclusions from the whole thesis.

3

2 Communication network synchronization

Whenever there is communication between two separate parties, both of them must
know at least vaguely what the other might be doing. Whether the question is about
who has to listen and who to speak or when to expect for words or sentences to start,
both parties have to be synchronized in order for the communication to work. This
of course becomes more demanding with increasing number of parties taking part in
the same conversation, and when the parties want to communicate at a faster pace.
It is not enough that synchronization has been achieved once: it must be actively
kept up, as the communicating parties’ track of time can drift apart. Practically
this can be attained by synchronizing again after some interval.

This section discusses the terminology used in (digital) communication synchro-
nization, how the quality of synchronization can be measured and what kinds of
different strategies there are for synchronizing communication networks. More in-
depth analysis of packet network synchronization is presented in Section 3.

2.1 Terminology

International Telecommunication Union’s standardization sector (ITU-T) has de-
fined general glossary for synchronization in ITU-T recommendation G.701, Vocab-
ulary of digital transmission and multiplexing, and pulse code modulation (PCM)
terms [2]:

• Significant instant is “the instant at which a signal element commences in a
discretely-timed signal”. This can be for example the rising edge of a square
wave signal, as highlighted in Figure 1a.

• Synchronous (mesochronous) is “the essential characteristic of time-scales or
signals such that their corresponding significant instants occur at precisely the
same average rate”. Figure 1b has two synchronous signals when ∆t1 = ∆t2.

• Plesiochronous is “the essential characteristic of time-scales or signals such
that their corresponding significant instants occur at nominally the same rate,
any variation in rate being constrained within specified limits”.

• Non-synchronous or asynchronous is “the essential characteristic of time-scales
or signals such that their corresponding significant instants do not necessarily
occur at the same average rate”. Figure 1c has two asynchronous signals with
∆t3 6= ∆t4.

• Isochronous is “the essential characteristic of a time-scale or a signal such that
the time intervals between consecutive significant instants either have the same
duration or durations that are integral multiples of the shortest duration”.

Some more application specific terms are defined in ITU-T recommendation
G.8260, Definitions and terminology for synchronization in packet networks [3]:

4

• Phase synchronization “implies that all associated nodes have access to refer-
ence timing signals whose significant events occur at the same instant (within
the relevant phase accuracy requirement). In other words, the term phase
synchronization refers to the process of aligning clocks with respect to phase
(phase alignment)”. Phase synchronization is illustrated in Figure 1d, where
the two signals’ significant instants occur at the same time.

• Time synchronization is “the distribution of a time reference to the real-time
clocks of a telecommunication network. All the associated nodes have access
to information about time (in other words, each period of the reference timing
signal is marked and dated) and share a common time-scale and related epoch
(within the relevant time accuracy requirement)”. Time synchronization is
illustrated in Figure 1e as having phase synchronous signals with significant
instants

t

(a)
t

(b)

t

∆t1 ∆t1

∆t2 ∆t2

t
(c)

t

∆t3 ∆t3

∆t4 ∆t4

t
(d)

t

t
(e)

t

1335284633.0001

1335284633.0002

1335284633.0003

Figure 1: (a) Significant instants, (b) Synchronous signals, (c) Asynchronous signals,
(d) Phase synchronous signals, (e) Time synchronous signals

Bregni defines some more specific terms for digital communications synchroniza-
tion in his 2002 book Synchronization of digital telecommunications networks [4],
from which the following are relevant to this thesis:

5

• Symbol synchronization or clock recovery means recovering symbol sequence
timing from an analogue signal. This sequence timing information is needed
for reading digital symbols at the right times from the analogue signal.

• Word or frame synchronization is used to distinguish code words from a symbol
flow. Alignment words have to be searched from the bit stream first. These
are special bit patterns which denote a certain place in the stream, usually the
beginning of a frame.

• Packet synchronization is a general term for the means to compensate packet
delay variation caused by a packet switched network. Different methods for
timing recovery in packet networks are introduced in Section 3.

• Network synchronization defines the way to distribute frequency and/or phase
over a communication network. Different strategies of network synchronization
are discussed in Section 2.3.

2.2 Measurement definitions

Synchronization measurement guidelines are specified in ITU-T recommendations
O.171 through O.175 ([5],[6], [7], [8], [9]), where each recommendation is for different
transport technology: Plesiochronous Digital Hierarchy (PDH), Synchronous Digital
Hierarchy (SDH), optical, Synchronous Ethernet and 10 Gbit/s Passive Optical
Networking (XG-PON). This thesis will follow the ITU-T recommendation O.171,
Timing jitter and wander measuring equipment for digital systems which are based
on the plesiochronous digital hierarchy (PDH) [5].

Measured and derived quantities are used for verifying that a used clock’s quality
is good enough for the application it’s used in. Technologies like the Global System
for Mobile Communications (GSM) ([10]), Universal Mobile Telecommunications
System (UMTS) ([11], [12]) and 3rd Generation Partnership Project 2 (3GPP2)
CDMA2000 ([13], [14]) require different clock performance from the network devices.
The requirements are discussed more thoroughly in Sections 3.3 and 3.4.

The following general terms, and others in the following sections, are from ITU-
T recommendation G.810, Definitions and Terminology for Synchronization Net-
works [15]:

• Jitter is “short-term variation of the significant instants of a timing signal from
their ideal positions in time”. This “short-term” is defined as variation with
frequency greater than 10Hz. If the variation is slower, i.e. fj < 10Hz, the
phase noise is called wander.

• Reference timing signal is “a timing signal of specified performance that can
be used as a timing source for a slave clock”. Basically all synchronization
measurements require some kind of reference signal to which compare the
measured signal. The standard notes also, that “[a measurement reference
timing signal’s] performance must be significantly better than the clock under

6

test with respect to the parameter being tested, in order to prevent the test
results being compromised”.

Wander
measuring circuit

x(t)

Reference
clock

Unit under test

Timing reference

Input
port

Output
port

Figure 2: Synchronized wander measurement configuration [5]

A simplified block diagram from ITU-T recommendation O.171 [5] for wander
measurements is shown in Figure 2. The standard specifies wander measurement
guidelines in Appendix II, and lists the followind quantities for wander measurement:

• Time deviation (TDEV), according to G.810 [15]

• Maximum time interval error (MTIE), according to G.810 [15]

• Allan deviation (ADEV), according to G.810 [15]

The listed three quantities can be derived from time error (TE) and time interval
error (TIE), which are thus introduced first in the following sections.

2.2.1 Time Error

Time error (TE) of a clock is the “the difference between the time of that clock and
the frequency standard one” [15]. Time error is the basic function from where nu-
merous different stability parameters such as Maximum time interval error (MTIE)
and Time deviation (TDEV) are derived from. Mathematically, time error function
can be expressed as the difference of two clocks’ time functions:

TE(t) = x(t) = T(t)− Tref(t) (1)

However, this function in its continuous form is not practically attainable, and
therefore sequences of time error samples can be used to denote actual measurement
results:

xi = x(t0 + iτ0), (2)

where:
i is the sequence number;
xi is the i-th time error sample;
τ0 is the sampling interval.

7

2.2.2 Time Interval Error

Time interval error (TIE) is “the difference between the measure of a time interval
as provided by a clock and the measure of that same time interval as provided by a
reference clock” [15]. Time interval error function (TIE) is therefore defined as:

TIE(t; τ) = [T(t + τ)− T(t)]− [Tref(t+ τ)− Tref(t)]

= x(t + τ)− x(t), (3)

where τ is the observation time.

The same can be expressed using discrete values as:

TIE(iτ0) = xi − x0. (4)

2.2.3 Maximum Time Interval Error

Maximum time interval error (MTIE) measures “the maximum peak-to-peak varia-
tion of time errors within an observation time (τ = nτ0) for all observation times of
that length within the measurement period (T)” [15]:

MTIE = max
1≤t0≤T−τ

(

max
t0≤t≤t0+τ

[x(t)]− min
t0≤t≤t0+τ

[x(t)]

)

. (5)

Using discrete values over a single measurement period, MTIE(nτ0) can be estimated
with the following formula, illustrated in Figure 3:

MTIE(nτ0) ≅ max
1≤k≤N−n

[

max
k≤i≤k+n

xi − min
k≤i≤k+n

xi

]

, n = 1, 2, ..., N − 1 (6)

where:
n is the number of samples in an observation time;
N is the total number of samples;
xppk is the peak-to-peak xi within k-th observation;
MTIE(τ) is the maximum xppk for all observations of length τ within T .

2.2.4 Time Deviation

Time deviation (TDEV) is “a measure of the expected time variation of a signal as
a function of integration time” [15]:

TDEV(nτ0) =

√

√

√

√

1

6n2

〈[

n
∑

i=1

(xi+2n − 2xi+n + xi

]2〉

, (7)

where angle brackets denote an ensemble average.

8

0 1 2 3 k

τ = nτ0

xppk

Nk + n i

T = (N − 1)τ0

x(t)

Time
error

Figure 3: Maximum Time Interval Error from Time Error samples [15]

9

TDEV can be estimated based on a sequence of time error samples with the
following formula:

TDEV(nτ0) ≅

√

√

√

√

1

6n2(N − 3n + 1)

N−3n+1
∑

j=1

[

n+j−1
∑

i=j

(xi+2n − 2xi+n + xi)

]2

, (8)

where n = 1, 2, ...,
⌊

N
3

⌋

.

2.2.5 Allan Deviation

Allan deviation (ADEV) is “a non-classical statistic used to estimate stability” [16].
It is defined as [15]:

ADEV(τ) =

√

1

2τ 2
〈

[x(t + 2τ)− 2x(t + τ) + x(t)]2
〉

, (9)

where angle brackets denote an ensemble average.

ADEV can also be estimated with the following formula:

ADEV(nτ0) ≅

√

√

√

√

1

2n2τ 20 (N − 2n)

N−2n
∑

i=1

(xi+2n − 2xi+n + xi)2, n = 1, 2, ...,

⌊

N − 1

2

⌋

.

(10)

2.3 Network synchronization

Bregni has categorized different network synchronization strategies in his 2002 book
Synchronization of digital telecommunications networks [4]. Those are introduced
in the following chapter, along with definitions from ITU-T recommendation G.701,
Vocabulary of digital transmission and multiplexing, and pulse code modulation (PCM)
terms [2] where applicable.

Full plesiochrony, or anarchy, is a no-synchronization strategy where all the net-
work nodes rely on their own local clock for timing (Figure 4). This strategy was
considered feasible in the 1960s because of decreasing cost of oscillators and relaxed
synchronization requirements of transmission techniques. After digitalization and
the introduction of mobile communication networks, the demands for synchroniza-
tion have become more demanding, and networks can not be plesiochronous.

Master-slave synchronization, or despotism, is the idea of having one master ref-
erence clock in the network and synchronizing all other slave nodes to this clock
(Figure 5). Slaves can be synchronized also indirectly via each other, making the
topology tree-shaped. ITU-T defines monarchic synchronized network as: “a syn-
chronized network in which a single clock exerts control over all the other clocks”
[2].

Mutual synchronization is defined as “a synchronized network in which each
clock exerts a degree of control on all others” [2]. A subtype of this is a democratic

10

Figure 4: Full plesiochrony

Figure 5: Master-slave synchronization

11

mutually synchronized network, where “all clocks are of equal status and exert equal
amounts of control on the others; the network operating frequency (digit rate) being
the mean of the natural (uncontrolled) frequencies of all the clocks” [2] (Figure 6).
Controlling this kind of full mesh network requires complex algorithms but at the
same time the strategy can have very good performance and reliability. Due to
these attributes mutual synchronization is used only in special applications, e.g. in
military networks.

Figure 6: Mutual synchronization

Mixed mutual / master-slave synchronization, or oligarchy, has “a synchronized
network in which a few selected clocks are mutually synchronized and exert control
over all the other clocks” [2] (Figure 7). Oligarchy is a compromise between the two
previous strategies: its reliability is better than pure despotism’s while controlling
this kind of network is simpler than one synchronized in pure democratic way.

Figure 7: Mixed mutual/master-slave synchronization

Hierarchical mutual synchronization, or hierarchical democracy, is “a mutually
synchronized network in which each clock is assigned a particular status which de-

12

termines the degree of control it exerts over other clocks; the network operating
frequency being a weighted mean of the natural frequencies of all the clocks” [2]
(Figure 8). Relative weights can be denoted as wi (0 ≤ wi ≤ 1,

∑N

i wi = 1). If
wi = 1 for one node, this strategy reduces to master-slave synchronization. Also, if
wi is equal for all the nodes this strategy is reduced to mutual synchronization.

w1

w6

w5

w4

w3

w2

Figure 8: Hierarchical mutual synchronization

Hierarchical master-slave synchronization, or hierarchical despotism, is a variant
of pure despotism: while nodes are normally synchronized from master to slave,
the network is also hierarchical (Figure 9). In case of failure nodes can be also
synchronized to or through their “sibling” nodes where as in pure despotism the
synchronization path from a slave to master always goes through slave’s parents and
their parents. Hierarchical despotism is the most widely used method to synchronize
modern telecommunication networks because it performs well while having limited
cost.

Figure 9: Hierarchical master-slave synchronization

Mixed plesiochronous / synchronous networks, or independent despotic states,

13

describe the way the world is currently synchronized (Figure 10). While a global
navigation satellite system such as Global Positioning System (GPS), Global Navi-
gation Satellite System (GLONASS), Galileo or BeiDou Navigation Satellite System
(BDS) removes the technical barrier to synchronize all telecommunication networks
with each other, national authorities do not want their communication networks to
be reliant on US, Russian, European Union or Chinese authorities, respectively.

Figure 10: Mixed plesiochronous/synchronous networks

14

3 Packet switched network synchronization

Mobile operators have been shifting their backhaul networks from circuit-based
Time-Division Multiplexing (TDM) technologies such as SDH/SONET towards packet-
based technologies such as Metro Ethernet and Internet Protocol / Multi-Protocol
Label Switching (IP/MPLS) in order to introduce cost savings and to harmonize the
backhaul network. [17] As their installed base stations might support only TDM
interfaces, there is a need to carry TDM traffic over packet-switched network. This
problem is addressed by Internet Engineering Task Force (IETF) in its Request For
Comments (RFC) 4553, Structure-Agnostic Time Division Multiplexing (TDM) over
Packet (SAToP) [18] and RFC 5086, Structure-Aware Time Division Multiplexed
(TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN) [19].

These RFCs do not address the problem of synchronization with a packet switched
network between TDM connections. There are two different approaches to this
problem: plesiochronous and network synchronization methods, and packet-based
methods. [1]

Having plesiochronous synchronization means that a Primary Reference Clock
(PRC) is available wherever synchronization is needed independently from the rest of
the network, for example through a global navigation satellite system (GNSS), such
as Global Positioning System (GPS), Global Navigation Satellite System (GLONASS),
Galileo or BeiDou Navigation Satellite System (BDS). Network synchronization
methods then again refer to having master-slave synchronization using physical layer
of the network, which is widely used in TDM networks. Packet Switched Networks’
(PSN) network layer protocol Ethernet does not support network synchronization:
Institute of Electrical and Electronics Engineers (IEEE) standard 802.3 [20] has a
frequency accuracy requirement of ±100 parts per million (ppm). The protocol
is however extended in ITU-T recommendation G.8262, Timing characteristics of
synchronous Ethernet equipment slave clock (EEC) [21], where frequency accuracy
requirement is much tighter ±4.6 ppm. This extended version is called Synchronous
Ethernet and can be used for network synchronization.

Packet-based methods use a different approach: timing information is stored and
transmitted in packets and recovered at the receiving end. Timing recovery is adap-
tive by nature, and is affected by impairments on packet flows. Examples of protocols
providing packet-based synchronization are Network Time Protocol (NTP) defined
in RFC 5905 Network Time Protocol Version 4: Protocol and Algorithms Specifi-
cation [22], and Precision Time Protocol (PTP) defined for telecommunication use
in IEEE 1588-2008 IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems [23], and protocols using some
method of recovering timing information from SAToP and CESoPSN pseudowires.

The following sections introduce the principles of PTP, what are the different
impairments affecting packet-based synchronization, what is required from synchro-
nization in different mobile technologies, and lastly how packet-based synchroniza-
tion quality can be measured.

15

3.1 Precision Time Protocol

Precision Time Protocol (PTP) is an alias to the IEEE Standard for a Precision
Clock Synchronization Protocol for Networked Measurement and Control Systems
[23]. The protocol was first designed to be used in automation industry in a 2002
standard, and was enhanced in 2008 to better suit the needs of telecom industry.
This section follows the revised 2008 version, especially from a telecom industry
aspect.

Precision Time Protocol system consists of five kinds of nodes: ordinary clocks,
boundary clocks, end-to-end transparent clocks, peer-to-peer transparent clocks and
administrative nodes. There are two different ways of measuring the propagation
delay of different PTP ports: delay request-response and peer delay mechanisms.
The standard also defines ten different message types for handling these two syn-
chronization methods and related clock management.

This section, as well as later sections, will focus on master-slave synchronization
between ordinary and boundary clocks using delay request-response method. PTP
synchronization messaging is shown as a protocol sequence diagram in Figure 11.
Firstly, master sends a Sync message to slave and notes the send time as t1. Slave
receives Sync message and timestamps this event as t2. t1 is transmitted to slave
either in the original Sync message or in a Follow_Up message sent after the Sync
(easier to implement but requires more bandwidth). Then follows the acquisition of
t3 and t4 with Delay_Req and Delay_Resp messages. Slave is able to calculate the
delay offset with this information.

Sync

Follow Up (t1)

Delay Req

Delay Resp (t4)

t1

t2

t3

t4

tms

tsm

Master
time

Slave
time

Timestamps
known by slave

t2

t1, t2

t1, t2, t3

t1, t2, t3, t4

Figure 11: PTP timing message flowchart, two-message mode [23]

It is assumed that the path is symmetrical, i.e. that delay from master to slave
is the same as the delay from slave to master, elaborated in equation (11).

tdelay_ms = tdelay_sm = tdelay_1−way (11)

16

The time difference between master and slave can be expressed as sum of the message
propagation delay and the offset between master and slave clocks.

t2 − t1 = toffset + tdelay_1−way (12)

Same as previous, time difference between slave and master is the sum of clock offset
and message propagation delay. Here the offset has to be negative so that these two
equations (12) and (13) are consistent.

t4 − t3 = −toffset + tdelay_1−way (13)

From the equations 12 and 13 clock offset can be calculated at the slave end.

toffset =
(t2 − t1)− (t4 − t3)

2
(14)

While this way one can calculate the time offset between slave and master clock
at one point of time, toffset will change from one packet sequence to another. The
next section will introduce how the packet delay variation and impairments affect
packet-based synchronization.

3.2 Packet delay and impairments

Adaptive timing recovery from timestamp data is affected by impairments in the
transport network. If delay through this packet network remains constant, tim-
ing recovery in destination node will experience only a constant phase shift in the
recovered clock and there should not be frequency or phase wander.

Delay variations can be interpreted as changes in the source clock’s phase or fre-
quency, but there are lots of other reasons for delay variation in a packet switched
network. These have to be taken into consideration when designing an adaptive
timing recovery algorithm. Different delay factors are examined in the following
sections based on a 2004 study Analysis of Point-To-Point Packet Delay in an Op-
erational Network by Choi et al. [24] and ITU-T recommendation G.8261, Timing
and synchronization aspects in packet networks [1].

Delay experienced by packets is a combination of the following factors:

• Propagation delay is “determined by physical characteristics of the path a
packet traverses, such as the physical medium and its length”. [24]

• Transmission delay is “a function of the link capacities along the path, as well
as the packet size”. [24]

• Nodal processing delay is “the time to examine the packet header and determine
the route for the packet. It also includes checksum calculation time and the
transfer time from an input to an output port.” [24]

• Queuing delay is the time a packet has to wait after it has been processed and
before it can be transmitted.

17

3.2.1 Equal-cost multi-path effect

Equal-cost multi-path routing is commonly used in core packet networks for load
balancing and traffic engineering. Here equal-cost refers to different routing proto-
cols’ sum of link weights on a given path, which doesn’t necessarily have anything
to do with the physical properties along those paths. Therefore the propagation and
transmission delay on might differ a lot between paths that are considered similar
from packet routing perspective.

3.2.2 Minimum path transit time

Theoretically propagation and transmission delay set a minimum transit time that
is linearly dependent on packet size. In practice, routers introduce also lots of other
factors contributing to packet delay. However, these have also been proven to be
linearly dependent on the packet size in a single hop [25]. Combining these factors,
a minimum path transit time can be obtained as a function of packet size.

After equal-cost multi-path effect and minimum path transit time have been
taken into account, the rest of the delay experienced by packet flows is variable by
nature. Different types of variation are introduced in the following sections.

3.2.3 Random delay variation

The primary source for random delay variation is the behavior of switches and
routers along the packet stream’s path. Most of this is caused by queuing delays
in egress interfaces as the packets have to wait for other packets to be transmitted.
There is correlation with random delay variation and network load as the queues
are longer with increased traffic.

3.2.4 Low frequency delay variation

Changing network load can be the reason for low frequency delay variation in packet
switched networks. Most obvious example of these are the daily changes: networks
tend to be more loaded during daytime than during night and cyclic with a 24
hour period. Low frequency delay variation can lead to phase wander in adaptively
recovered timing and it has to be compensated as many clock specifications limit
allowable phase wander over 24 hour or even longer periods.

3.2.5 Systematic delay variation

Using a transmission window or timeslot in egress interface can cause packets to
experience a sawtooth-shaped delay. This results from the incoming constant bitrate
(CBR) packet stream having different packet rate than what is the frequency of
transmission window being open. Transmission windows are used for example in
Worldwide Interoperability for Microwave Access (WiMAX) Media Access Control
(MAC) [26].

Another type of systematic delay variation is beating effect against other CBR
streams along the same route. If two streams are asynchronous and have slightly

18

different rates, the faster will end up having sawtooth-shaped delay variation with
rising slopes and the slower with falling slopes.

3.2.6 Routing changes

Packet networks can experience routing changes due to network errors, protection
switching, network reconfiguration, etc. The effect of this is a constant increase or
decrease in delay along that path. If not dealt with, these changes can be interpreted
as phase changes in the source clock. Routing changes with larger effect on the
delay are easier to detect, while small delay change can be masked in general delay
variation.

3.2.7 Congestion effects

Congestion is a temporary increase in network load which can cause severe delay
variation or packet loss. Its duration is variable, lasting from seconds to a couple of
minutes. However if a network has frequent and long-lasting congestion periods, it
can be considered unusable for adaptive clock recovery.

3.2.8 Topology-dependent blocking mechanisms

Interaction with other flows can have varying effect on the delay experienced by the
packet flow used for adaptive timing. Larger packets take longer to traverse the
network and if there is a burst of larger packets sent before a flow of smaller ones,
the smaller packets will catch up with larger ones at the same time being delayed
in that node.

3.3 Mobile technologies’ synchronization requirements

Mobile technologies have different requirements for synchronization depending on
the standard. This section will gather some of generally used mobile standards’
frequency and phase synchronization requirements.

Global System for Mobile Communications (GSM) base station radio interface
timing requirements are defined in European Telecommunications Standards Insti-
tute (ETSI) Technical Specification (TS) 145010 Digital cellular telecommunications
system (Phase 2+); Radio subsystem synchronization [10]. It requires the frequency
accuracy of ±50 parts per billion (ppb) in a GSM base station and ±100 ppb in
Pico base stations. The requirement comes from the base stations being able to do
handovers of mobile phones between each other. This standard however does not
specify the input timing signal requirements, but as the backhaul network has tra-
ditionally been PDH based [17], required input timing wander limits are in ITU-T
recommendation G.823 [27] and G.824 [28].

UMTS Frequency Division Duplexing (FDD) base station timing requirements
are defined in ETSI TS 125104 Universal Mobile Telecommunications System (UMTS);
Base Station (BS) radio transmission and reception (FDD) [11] for the WCDMA

19

FDD radio interface. The frequency requirement for this kind of base stations is
±50 ppb and in FDD mode there is no phase requirement.

UMTS Time Division Duplexing (TDD) base stations require also phase syn-
chronization, defined in ETSI TS 125105 Universal Mobile Telecommunications Sys-
tem (UMTS); Base Station (BS) radio transmission and reception (TDD) [12] as
±50 ppb frequency accuracy and 2.5µs phase accuracy between neighboring base
stations.

3rd Generation Partnership Project 2 (3GPP2) CDMA2000 base stations require
frequency and time synchronization. The requirements are defined in standards
3GPP2 C.S0010-B, Recommended Minimum Performance Standards for cdma2000
Spread Spectrum Base Stations [13] and 3GPP2 C.S0002-C, Physical Layer Standard
for cdma2000 Spread Spectrum Systems [14]. They state that the average frequency
difference between the actual Code Division Multiple Access (CDMA) carrier fre-
quency and the defined transmit frequency shall not be greater than ±50 ppb. It is
also defined that all the 3GPP2 CDMA2000 base stations shall be time-aligned to
a CDMA System Time. Time alignment error should be less than 3µs and must be
less than 10µs.

3rd Generation Partnership Project (3GPP) Time-Division Synchronous Code
Division Multiple Access (TD-SCDMA) base stations’ radio interface timing require-
ments can be found in 3GPP TR 25.836, Technical Specification Group Radio Access
Network; NodeB Synchronization for TDD [29]. The frequency accuracy must be
±50 ppb and phase accuracy between neighboring base stations must be 3µs.

A common practice for base stations requiring phase or time synchronization is
to equip them with GPS receivers. [1]

Synchronization requirements for the common mobile base station technologies
are gathered in table 1. Frequency synchronization is usually required to be ±50 ppb
and phase synchronization 2.5µs.

Table 1: Synchronization requirements in common mobile base station technologies

Frequency Phase
Standard (ppb) (µs) Notes
GSM ±50 or ±100 -
UMTS FDD ±50 -
UMTS TDD ±50 2.5
CDMA2000 ±50 10 Common system time also
TD-SCDMA ±50 3

3.4 Packet synchronization testing

Packet synchronization testing guidelines are defined in two standards: ITU-T rec-
ommendation G.8261, Timing and synchronization aspects in packet networks [1]
and Metro Ethernet Forum technical specification MEF 18, Abstract Test Suite for
Circuit Emulation Services over Ethernet based on MEF 8 [30]. They describe the

20

test network, what must be measured, what kind of impairments to introduce, etc.
This section will go through the packet synchronization testing sections of both
standards.

3.4.1 ITU-T recommendation G.8261

International Telecommunication Union defines various synchronization measure-
ment guidelines in ITU-T recommendation G.8261 Appendix VI [1], which are in-
troduced in the following chapter. The recommendation defines 17 performance test
cases in total, seven of which are defined for two-way synchronization (and are thus
applicable to PTP).

The test network consists of 10 switches and is shown in Figure 12.

IWF
IWF

(DUT)

Test

equipment

Test

equipment

CE (TDM

traffic

generator) TDM

signal

Traffic generator

GE

reference

point 1

GE GE GE

1 2 3 4 10

Packet delay

variation

Jitter, wander,

frequency

accuracy

TDM

signal
Reference

point 3

FE or GE

Reference

point 3

Reference timing signal (PRC)

...

Disturbance load according to traffic models

Flow of interest

Figure 12: ITU-T recommendation G.8261 performance test topology [1]

The recommendation specifies that measurements shall start after a stabilization
period of 900 seconds (15 minutes), and for each test case the following measurements
shall be done:

• TIE, MTIE and MRTIE according to ITU-T recommendation G.823 [27] and
G.824 [28]

• Frequency accuracy

• Packet delay variation

Figure 13 shows the delay variation profiles of test cases 12 through 16. Here, y-
axis shows the relative background traffic load in test network (solid line in forward
direction and dashed line in reverse direction), and x-axis is the time in hh:mm
format. The test cases are following:

21

• Test Case 12 (TC12) models static packet load: the intermediate switches
must have background load of 80 % for one hour in forward direction (server
to client) and 20 % in reverse (client to server).

• Test Case 13 (TC13) models large and sudden changes in network load. Back-
ground load shall be 80 % for one hour, then drop to 20 % for one hour and
repeating this three times in forward direction. Reverse direction should first
have 50 % load for 1.5 hours, then repeating 10 % for one hour and 50 % for
one hour until 6 hours has passed.

• Test Case 14 (TC14) models slow but large changes in network load. Back-
ground load shall be changed from 20 % to 80 % and back to 20 % in forward
direction, and from 10 % to 55 % to 10 % in reverse direction within a 24-hour
time period. This will result in increments and decrements of 1 % once every
12 minutes.

• Test Case 15 (TC15) models recovering from outages in the network. The test
will have background load of 40 % in forward and 30 % in reverse direction.
After stabilization period of 15 minutes, the network connection is removed
for 10 seconds and then restored. After another 15 minutes stabilization, the
network connection is removed for 100 seconds and restored. Test ends after
third stabilization period.

• Test Case 16 (TC16) models short congestion periods in the network. This
test case is much like number 15: instead of having network outages, network
congestion is modeled by having background load increased to 100 % and then
restored to 40 % / 30 %, first for 10 seconds and on second time for 100
seconds.

• Test Case 17 (TC17) models routing changes caused by failures in the net-
work. A background load of 40 % in forward and 30 % in reverse direction is
used. After stabilization period traffic is routed to skip one switch in the test
network and introducing a constant delay of 10µs in this link. Again after
stabilization period, the cable is disconnected and traffic flow changed back to
the original route through all the switches. The test is repeated with skipping
three switches and adding a 200µs delay on the link.

3.4.2 MEF Technical specification 18

Metro Ethernet Forum has defined synchronization related requirements in its tech-
nical specifications MEF 8, Implementation Agreement for the Emulation of PDH
Circuits over Metro Ethernet Networks [31] and MEF 18, Abstract Test Suite for
Circuit Emulation Services over Ethernet based on MEF 8 [30]. MEF 8 has has two
clauses related to synchronization that both refer to ITU-T recommendation G.823
[27] and G.824 [28] for actual requirements. MEF 18 Test Case 6 defines packet
synchronization testing. There are six different cases out of which five are defined

22

 0

 50

 100

0:00 0:15 0:30 0:45 1:00

TC12

 0

 50

 100

0:00 1:30 3:00 4:30 6:00

TC13

 0

 50

 100

0:00 6:00 12:00 18:00 24:00

TC14

 0

 50

 100

0:00 0:15 0:30 0:45

TC15

 0

 50

 100

0:00 0:15 0:30 0:45

TC16

Figure 13: ITU-T recommendation G.8261 Appendix VI performance test cases 12
through 16 [1]

23

in ITU-T recommendation G.8261. The correlation between MEF 18 and G.8261
test cases is show in Table 2.

Table 2: MEF technical specification 18 synchronization test case correlation to
ITU-T recommendation G.8261

Name [30] MEF 18 G.8261
Static Load Test/Sudden Changes in Network Load 6a 1 & 2
Slow Variation of Network Load 6b 3
Temporary Network Outages 6c 4
Temporary Congestion 6d 5
Routing Changes 6e 6
Wander Tolerance 6f n/a

All the test cases are to be done with ITU-T recommendation G.8261 defined
traffic model 2 only. Test Cases 6c and 6d for temporary outages and congestion must
be repeated 10 times in order to achieve consistent results. For each test, MRTIE (or
MTIE) must be verified to be within ITU-T recommendation G.823/G.824 traffic
interface wander limits over the duration of tests so that MEF technical specification
8 requirements can be satisfied.

24

4 Software testing

In his book, The Art of Software Testing [32], Myers defines software testing as
follows: “testing is the process of executing a program with the intent of finding
errors”. IEEE 610.12, IEEE Standard Glossary of Software Engineering Terminol-
ogy [33] defines testing as “the process of operating a system or component under
specified conditions, observing or recording the results, and making an evaluation
of some aspect of the system or component”.

This section will introduce general software testing terminology, testing maturity
model, strategies, test case design, how testing is included in different software
development process models, what is regression testing and test automation, and
finally how testing progress can be measured.

4.1 Terminology

It is essential to have a set of basic definitions for understanding the software testing
process. The following list is collected from IEEE standard 610.12 [33]:

• Error The difference between a computed, observed, or measured value or
condition and the true, specified, or theoretically correct value or condition.

• Fault An incorrect step, process, or data definition.

• Failure An incorrect result.

• Test An activity in which a system or component is executed under specified
conditions, the results are observed or recorded, and an evaluation is made of
some aspect of the system or component.

• Test Bed An environment containing the hardware, instrumentation, simula-
tors, software tools, and other support elements needed to conduct a test.

• Test Case A set of test inputs, execution conditions, and expected results
developed for a particular objective, such as to exercise a particular program
path or to verify compliance with a specific requirement.

• Quality The degree to which a system, component, or process meets specified
requirements.

4.2 Testing Maturity Model

Burnstein [34] introduces Testing Maturity Model (TMM) in her 2003 book, Practi-
cal software testing, as a reference where to compare different testing strategies and
how testing is viewed in different software process models and organizations. The
model has five levels of maturity, each consisting of a set of maturity goals, support-
ing maturity subgoals and activities, tasks and responsibilities. TMM is illustrated
in Figure 14.

25

Institutionalize basic testing techniques and methods

Initiate a test planning process

Develop testing and debugging goals

Level 1: Initial

Level 2: Phase Definition

Level 3: Integration

Level 4: Management and Measurement

Level 5: Optimization and Quality control

Control and monitor the testing process

Integrate testing into the software life cycle

Establish a technical training program

Establish a software testing organization

Software quality evaluation

Establish a test measurement program

Establish an organizationwide review program

Test process optimization

Quality control

Application of process data for defect prevention

Figure 14: Testing Maturity Model [34]

26

Initial level has no maturity goals and objective of testing is to show that the soft-
ware is minimally functional. On the Phase Definition level, testing and debugging
goals are defined, testing planning process is initiated and basic testing techniques
are used. Primary goal is to show that the software meets its stated specifications.

Integration level assumes software testing organization establishment, technical
training program, testing integrated into the software life cycle and testing control
and monitoring. Test objectives are based on specifications and user requirements,
and are used in test case design.

Management and Measurement level focuses on the process aspects and its goals
are establishing an organization-wide review program, a test measurement program
and software quality evaluation. Reviews in all phases of software development
are recognized as a testing activity complementing execution-based tests. Test cases
from all projects are collected and recorded in a test database for reuse and regression
testing.

Final Optimization and Quality control level aims at fault prevention, quality
control and test process optimization. As all the testing mechanics and their effi-
ciency measurement is in place in fourth level, fifth aims to optimize the mechanics.
Automated tools support running and rerunning test cases as well as collecting and
analyzing faults.

4.3 Strategies

There are many different approaches to test design, which can all be divided roughly
into two groups: functional and structural testing. In order to build a comprehensive
suite of tests, it is essential to know both strategies: what can be gained by using
them and especially what restrictions do they, and thus testing in general, have.

This section follows Myers [32] including definitions from IEEE standard 610.12
[33] where applicable.

4.3.1 Functional testing

With functional, or black-box testing the tester is not concerned about the internal
structure of the test subject. Instead, it is seen as a “black box” which will be given
input, and a certain output is expected. For this reason, it is also called input/output
driven testing. IEEE defines functional testing as “testing that ignores the internal
mechanism of a system or component and focuses solely on the outputs generated
in response to selected inputs and execution conditions” [33].

In order to test for all the possible errors, all possible inputs would have to be
tested. This approach is called exhaustive input testing. It would mean a large
amount of test cases even for the most simple practical software with inputs. For
all different inputs, also the respective expected output must be defined. If the
tested software has internal state, the problem becomes even more difficult: it is not
enough to test only all possible input, but they have to be tested for all possible
input sequences as well.

27

Even if there is a finite amount of correct inputs or input sequences, exhaustive
testing would have to cover also infinite number of invalid inputs to verify that errors
are detected correctly. As a conclusion it can be said that exhaustive input testing
is impossible.

This implicates that in practice it is impossible to guarantee that a software is
error-free by testing, and that economics is a fundamental issue in testing. The
objective of test management is to maximize the number of errors found by a finite
number of test cases.

4.3.2 Structural testing

In contrast to functional testing, structural, or white-box testing relies on knowing
the internal structure of the software under test. IEEE defines structural testing as
“testing that takes into account the internal mechanism of a system or component.
Types include branch testing, path testing, statement testing” [33]. The goal is
to fully test the software logic, executing all program lines at least once via all the
different test cases and therefore testing all the software functionality. This approach
is called exhaustive path testing.

Myers finds flaws in this thinking however. As with exhaustive input testing, the
number of different paths in actual software is so huge that testing all of those would
take an unpractically large amount of time. Moreover, even if all the different paths
were tested the software could still be flawed. Exhaustive path testing does not
guarantee in any way that the software would do what it is specified to. Secondly,
the software may have missing paths, which are not detected with this type of
testing. And thirdly, path testing would not detect data-sensitivity errors: when
output would be correct with a certain input but incorrect with another.

4.4 Test-case design

IEEE defines a test case as “a set of test inputs, execution conditions, and expected
results developed for a particular objective, such as to exercise a particular program
path or to verify compliance with a specific requirement” [33].

As testing for all possible errors is impossible, Myers states the key principle of
test-case design as follows: “what subset of all possible test cases has the highest
probability of detecting the most errors” [32]. While neither functional nor structural
testing alone provide practically usable procedures for test-case design, parts of both
can be used in developing test cases.

This section introduces three test-case design patterns: equivalence partitioning,
boundary-value analysis and decision tables based on Myers [32], and others if noted.

4.4.1 Equivalence partitioning

Selecting the right subset of inputs for testing is crucial in increasing the probability
of finding errors. A well-selected test case should have these two properties:

28

1. It reduces the number of test cases required for reasonable testing by more
than one.

2. It covers a large set of other possible test cases and tells something about
possible errors above the specific set on input values.

The first means that a test case should invoke as many inputs as possible to
reduce the total number of test cases. Second, although seemingly similar, means
that the input domain should be partitioned to a finite number of equivalence classes
so that it can be assumed that any one input from one equivalence class would give
equivalent results as any other inputs from that class. It is important to test both
valid and invalid inputs.

Using equivalence partitioning, test case design should first identify the equiv-
alence classes and then minimize the amount of test cases needed to cover them.
Table 3 shows an example of input equivalence partitioning to reduce the number
of relevant inputs from 12 shown (of course also inputs before -1 and after 10 would
have to be tested) to 4. For example all inputs 0..3 fall into the same equivalence
class B as they produce the same output 1, and therefore it is enough to test only
with one of those inputs.

Table 3: Equivalence partitioning

Input -1 0 1 2 3 4 5 6 7 8 9 10
Output INV 1 1 1 1 2 2 2 2 3 3 INV
EQ class A B C D A

4.4.2 Boundary-value analysis

Test cases that explore boundary conditions tend to have a higher rate of finding
errors than those that do not. These boundaries can be found at directly on, above
and beneath the edges of input and output equivalence classes. Boundary-value
analysis can be distinguished from equivalence partitioning by these two clauses:

1. One or more elements from the edges of equivalence classes have to be selected
for testing.

2. Test cases must take into account also the output equivalence classes along
with input.

Boundary-value analysis is highly dependent on the test subject and its efficiency
depends on the test designer’s ability to identify equivalence class edges no matter
how subtle they might be. On the other hand, using boundary-value analysis can
drastically improve the error-finding rate of a test set.

Table 4 shows an example of boundary-value analysis. The selected boundaries
are minimum and maximum input values for each equivalence class, and the first
invalid input values before and after the valid value range.

29

Table 4: Boundary-Value Analysis

Input -1 0 1 2 3 4 5 6 7 8 9 10
Output INV 1 1 1 1 2 2 2 2 3 3 INV
EQ class A B C D A
Boundary value -1 0 3 4 7 8 9 10

30

4.4.3 Decision tables

A drawback in both equivalence partitioning and boundary-value analysis is that
they do not take into account the different input combinations. Test cases might
execute different inputs in an arbitrarily selected sequence, which probably isn’t the
optimal order.

Cause-effect graphing is a decision table method which analyses the software
functionality so that optimal sequences of inputs can be found. First a specification
has to be divided into workable pieces so that the graph doesn’t become unusably
large. Then the causes (inputs) and effects (outputs or alterations in the system) are
identified and then linked with each other creating a cause-effect graph. A decision
table can be then built based on this graph.

Jorgensen and Posey [35] show that a decision table can be created more easily
by creating sets of conditions (inputs) which will cause certain actions (outputs).
Table 5 shows an example of a decision table. For simplicity, all inputs can be only
true (1), false (0) or indifferent (-). Outputs can be only true. Three different groups
of output values can be identified, and the table can be reduced to three different
cases, shown in Table 6.

Table 5: Decision Tables

Input 1 1 1 1 1 0 0 0 0
Input 2 1 1 0 0 1 1 0 0
Input 3 1 0 1 0 1 0 1 0
Output 1 1 1 1
Output 2 1 1 1

Table 6: Decision Tables - reduced version

Input 1 1 1 0
Input 2 1 0 -
Input 3 1 - 1
Output 1 1 1
Output 2 1 1

4.5 Software development process models

Testing is an integral part of software development. Different software process mod-
els have different approaches to testing. The models have evolved generally towards
a more flexible direction due to more demanding project schedules and requirement
for better predictability on shorter time scales.

This section introduces Waterfall and V-models, and discusses testing in more
recent agile software development models.

31

4.5.1 Waterfall model

Royce [36] introduced the waterfall model in his 1970 paper as an example of bad
software process. The original model is shown in Figure 15. It was a de-facto in-
dustry standard in 1960s and allowed managers to plan software projects easily.
IEEE has defined it as follows: “A model of the software development process in
which the constituent activities, typically a concept phase, requirements phase, de-
sign phase, implementation phase, test phase, and installation and checkout phase,
are performed in that order, possibly with overlap but with little or no iteration”
[33].

System requirements

Software requirements

Analysis

Program design

Coding

Testing

Operations

Figure 15: Waterfall model [36]

It has been criticized for the lack of feedback from one stage to another. Lots of
specification, design and implementation problems are discovered after a system has
been integrated, and following this model the process does not allow specifications
to be changed easily with changing customer needs. [37]

Because testing is located as a separate step at the end of process model, it can
easily become a “project buffer”: exceeding the implementation deadline results in
reduced testing time to meet the project deadline. [32]

Derivations from the waterfall model have been developed. One of these is the V-
model, which has similar steps, but is designed to be more parallel. It is introduced
in the following chapter.

4.5.2 V-Model

An improvement to the waterfall model is V-model which has been developed and is
still used in software development processes in German public sector and military.
[38] It answers to the waterfall model’s problem of not having feedback from one

32

stage to another by introducing communication from different test levels back to
implementation and design. V-model is illustrated in Figure 16. It distinguishes
four different levels of testing: acceptance, system, integration and unit testing,
which have become generally used terms in testing and are defined by IEEE:

• Unit testing is defined as “testing of individual hardware or software units
or groups of related units” [33]. A unit is the smallest piece of software (for
example a function) that can be tested and the tests are usually done by the
person responsible for the source code under test. White box testing strategy
is efficient in unit testing as the tested modules are not generally too large
and as the test creator or test generating system is well aware of the internal
structure of software under test. Due to the relatively simple nature of unit
tests, test case generation can be automated.

• Integration testing is defined as “testing in which software components, hard-
ware components, or both are combined and tested to evaluate the interaction
between them” [33]. These components are verified for fulfilling functional,
performance and reliability requirements. Black box testing strategy can be
applied as integration testing is aimed to test that a system produces certain
output with a given input.

• System testing is defined as “testing conducted on a complete, integrated sys-
tem to evaluate the system’s compliance with its specified requirements” [33].
It is another black box testing level where the test cases assume to have no
knowledge of system’s internal functionality. System testing tries to mimic the
use of a system in real-life scenarios: as a customer would want to use it.

• Acceptance testing is defined as “formal testing conducted to determine whether
or not a system satisfies its acceptance criteria and to enable the customer to
determine whether or not to accept the system” [33]. As defined, it is more of
a formal procedure involving the supplier and customer and new faults in the
product are not expected to be found any more at this stage.

Both of these introduced traditional models are quite cumbersome when devel-
oping software where time to market is critically important. A fairly recent solution
to this problem is agile software development, an umbrella term for several different
software process models. They are introduced in the following section.

4.5.3 Agile software development

Agile software development is a group of iterative software process models that are
bound together by the Agile Manifesto [39].

Scrum is a process skeleton which includes a set of predefined practices and roles.
There are three main aspects: each of the development stages are divided into fixed
time intervals called Sprints. There is no predefined process for a Sprint but instead
short daily Scrum meetings are held for the team to discuss about completed items,
problems that have risen and task assignment. Third aspect is Backlog which stores

33

Acceptance test designRequirements analysis

System design

Architecture design

Module design Unit test design

System test design

Integration test design

Unit testing

Integration testing

System testing

Acceptance testing

Implementation

Figure 16: V-model [38]

34

all the work items for each Sprint. [40] Scrum does not provide any predefined model
for testing, but then again testing can be done according to the Scrum process.

Extreme programming or XP attempts to reduce the cost of change in later stages
of software development projects by having multiple short development cycles in-
stead of one long one. The process has numerous defined practices such as: small
releases, simple design, pair programming and continuous integration. Extreme pro-
gramming emphasizes unit testing: programmers write their own unit tests and this
is done before implementing the actual feature itself. Customers provide acceptance
test cases at the beginning of each iteration. [41]

Dynamic Systems Development Method or DSDM is focused on projects that
have tight schedules and budgets. It addresses the problems of exceeding budgets,
missing deadlines and lack of user and top-management commitment by fixing the
amount of functionality based on available time and resources rather than the other
way around. It has nine practices which are imperative for the success of the method.
One principle is Testing is integrated throughout the life cycle: system components
should be tested by the developers and users as they are developed. Regression
testing is also emphasized due to the incremental nature of development. [42]

Crystal Clear focuses more on people than processes. It has three required
properties: frequent delivery, close communication and reflective improvement. Au-
tomated testing is one sub-property. Cockburn emphasizes the need for automated
unit testing as it provides the developers more freedom of movement because they do
not need to worry if their refactoring or other actions caused earlier implementation
to stop working. [43]

In 2003, Vanhanen et al. [44] found that none of these three agile testing prac-
tices: writing tests first, automated unit testing and customer writes acceptance tests
are actually used in the telecom industry. Automated unit testing was considered
too difficult and time consuming, and having customer writing acceptance tests had
communication problems. The projects included in this study used conventional
testing approaches.

In a more recent study in 2006, Puleio [45] discusses problems faced when adopt-
ing agile process model in a software development team. He found out that testing
practices were the most challenging part to get in place and function properly. Three
points are emphasized: communication, automation and estimation. In the end his
project was a success and agile testing is considered feasible and worthwhile.

4.6 Regression testing

Regression testing is defined by IEEE as: “Selective retesting of a system or com-
ponent to verify that modifications have not caused unintended effects and that the
system or component still complies with its specified requirements.” [33]

Selecting the right tests for each new software version is economically the most
crucial aspect of regression testing. All the features do not change from one version
to another, and then again some features might have changes that have an impact on
seemingly unrelated features. Cost per test might also change from test to another.

Rothermel and Harrold [46] have analysed different regression test selection tech-

35

niques in their 1996 paper. Most are based on information about the code of both
previous and modified software versions while a few are based on software speci-
fications. They have compared 13 different techniques by inclusiveness, precision,
efficiency and generality. Only three of the techniques had been actually imple-
mented: firewall, graph walk and modified entity.

4.6.1 Firewall test selection

Leung and White [47] described a regression test selection technique called firewall
in 1990. It aims to retest only those software features that have either changed from
the previous version or where errors could have been introduced by a change in some
other feature. They observed a reduction of 65 % of test cases run when using this
technique compared to retest-all method, while both found the same errors.

Firewall technique requires knowledge of a call graph, which shows the hierarchy
of how software units might call each other. A firewall is built around the units that
are not modified, but directly interact with the modified units (direct parents and
children of modified units in the call graph). Regression testing is done for units
inside this firewall.

Figure 17 shows an example of a call graph with modified units Ai and unmodified
units Uj . Inside the firewall are all modified units and those unmodified units which
have direct connection to any of the modified ones: (A1, A2, A3, A4, U2, U4, U5, U6,
U7, U8).

U1

U2 U9

A1

U10

U3 U11 U12

U17U16U15U14U13A2 A3

A4U4 U7 U8

U5 U6 U18 U19

U20 U21

code change (cc)

spec. change cc

cc

Figure 17: Firewall test selection [47]

36

4.6.2 Graph walk test selection

Rothermel and Harrold [48] introduced a regression test selection algorithm in 1993,
which was later named as graph walk test selection. It assumes knowledge of unit
call graphs for previously tested and modified software versions, and paths that
existing test cases execute in the earlier call graph.

The algorithm compares nodes in current and previous call graph: if their chil-
dren differ, then all tests which travel through that node in previous call graph are
the ones that can detect errors in the new software. If the nodes’ children are the
same, this process is repeated with those children.

4.6.3 Modified entity test selection

Chen, Rosenblum and Vo [49] designed a test selection algorithm they called Test-
Tube in 1994. Rothermel and Harrold [48] however call this technique modified
entity test selection as it describes the algorithm’s functionality better. This tech-
nique assumes knowledge of changed units in the software, but not how they are
called.

The algorithm states that if there have been changes in functions or in non-
functional entities such as variables that a test uses, that test must be rerun for the
changed software. Otherwise that test will not discover any new faults in the code.

4.7 Test automation

In contrast to manual testing, automated testing uses software to control the set-
ting up, executing and reporting tests. Motivation for test automation is that by
automating tests they can be run faster (with less manual work) and thus increasing
regression test coverage.

At first sight, test automation might seem very tempting but there are lots
of examples of failed test automation projects due to false expectations or bad
execution. This section discusses the drawbacks and benefits of test automation
based on Kaner [50], Bach [51] and Oliveira et al. [52]

Kaner [50] in 1997 and Bach [51] in 1999 have listed drawbacks and false assump-
tions about test automation. Automating, documenting and running test cases once
may take up to 10 times more time than running them manually. From software
process perspective this is always unwanted as almost all the models emphasize
the effect of finding defects as early as possible. Long duration of automation cre-
ates both direct (increased time spent on testing) and indirect (delayed first faults)
costs. To combat this, only tests that are going to be run multiple times should be
automated at all, and first run(s) of those tests should still be done manually.

Simple tests are easy to automate. This leads to low power and easy to run
automated tests which do not find faults. Kaner estimates that automated tests are
responsible only for 6–30 % of all the faults found. Automation can also lead to hard
to detect false positives if the automated tests themselves have faults. These effects
can be negated with correct test automation process with reviews and verifications
of the automated tests.

37

The amount of required human interaction with automated test cases can be
easily underestimated. Interpreting results and changing tests when specifications
change requires always a person. Also running tests and reporting results can rarely
be fully automated. This has to be taken into account in test automation resourcing.

With these pitfalls in mind it is possible to build sensible and effective test
automation. Bach lists principles to help in automating test cases:

• There is a distinction between test automation and the test case that it auto-
mates. The latter should be in a form that is easy to review.

• Test automation should be considered as a baseline test suite which is used
along manual testing rather than as a total replacement of manual testing.

• The product must be mature enough so that implementation changes that
require changes to test cases do not increase test automation costs too high.

With a good test automation process and decisions about what to automate,
test automation drawbacks can be minimized. Oliveira et al. [52] list benefits of
test automation that might not be intuitive in their 2006 paper.

Testing especially towards the end of software projects is under a tight time
pressure, and that situation human errors are likely. Automated test cases function
the same way from one run to another and can reduce possible manual mistakes.

Automation increases testing efficiency as multiple test cases can be run simul-
taneously, during manual test run, a tester can only concentrate on one test at a
time. Automated test cases can also run without interruptions and at times when
there are no testers present.

Test automation can include some level of result analysis so that tester does
not have to go through every step and verify each test case result separately. For
reporting, automation can generate a higher level abstraction of test a run’s status.

In order to verify the efficiency of testing in general, some metrics for testing
must be used. The subject is introduced in the following section.

4.8 Testing metrics

Kan et al. [53] show different proven software testing metrics in their 2001 article.
This section introduces three testing metrics from that article: test progress S curve,
test defect arrivals over time and test defect backlog.

Test progress S curve is recommended for test progress tracking. It includes
graphs of the amount of run and completed test cases relative to time along with
planned progress. With this kind of graph, management can notice early if test
actions start to fall behind, and take action. Figure 18 shows an example curve
with run and successfully completed test cases as bars, and planned progress as a
line. This graph can be further modified by adding weights on the test cases, so
that the more important a test is, the more it will affect the bars. Weighing can
be done based on experience, or automatically based on coverage for example. The

38

 0

 20

 40

 60

 80

 100

n
u
m

b
er

 o
f
te

st
s

days to release

planned
executed

passed

Figure 18: Test progress S-curve, following [53]

39

time scale is good to tie to the tested software’s release date, so that S curves from
different projects can be easily compared with each other.

Defect arrivals over time give some insight on when defects can be expected to
be found during testing. For graphing this behavior, there should again be time
relative to release date on x-scale, and the number of found defects per time unit on
y-scale along with the same metric from an earlier project. Figure 19 is an example
of this metric.

 0

 5

 10

 15

 20

-50 -40 -30 -20 -10 0

d
ef

ec
ts

days to release

project 1
project 2

Figure 19: Defect arrivals over time, following [53]

Test defect backlog over time shows the amount of open (non-fixed) defects
compared to time. Having this metric graphed can explain something about the
two previous graphs: a large number of open defects can slow down the testing
process (S curve) and also delay the finding of new defects (defect arrivals over
time). The graph should be similar to defect arrivals over time, but instead of
cumulated defects it should show the number of open defects. Again, comparison
with previous projects will make this metric more valuable. Figure 20 is an example
of this metric.

These three metrics can be easily used to measure testing process per projects.
Moreover, the metrics can be used to confirm or deny the success of enhancing tests
or testing processes. These metrics also support the intuition that having testing
done earlier is better for the software project.

40

 0

 2

 4

 6

 8

 10

-50 -40 -30 -20 -10 0

d
ef

ec
ts

days to release

project 1
project 2

Figure 20: Test defect backlog, following [53]

41

5 Requirements and planning

Testing packet switched network synchronization is cumbersome if done manually.
There are lots of changing variables and configurable devices in tests, and the test
duration can vary from tens of minutes to days. Lots of post-processing is also
required in order to represent the measured results in a suitable way, and finally all
the results have to be archived for possible further use. If regression testing of packet
synchronization can be automated, performance results can be obtained much more
often and thus reacting to impacts on performance is faster.

Automated packet synchronization testing can also enable new test cases being
done as the workload from manual testing can be shifted to test case design. For
example running tests in special environments (e.g. interoperability with third-party
devices, customer network packet delay variation, etc.) would be easier if the cost
of setting up synchronization testing is reduced by automation.

The objective for this automated testing system is to be able to test ITU-T recom-
mendation G.8261 Appendix VI performance test cases 12 through 17 for Precision
Time Protocol and calculate Maximum Time Interval Error (MTIE) graphs for re-
sults. These test cases load both forward and reverse directions with two different
background traffic profiles.

The hypothesis is that automating this testing allows testing wider range of
network elements in a tight software release schedule than what could be achieved
with manual testing. This section discusses the design of all the testing system
parts, different MTIE algorithms and synchronization quality requirements.

5.1 Designing an automated test system

All the general packet synchronization test cases can be abstracted to these phases:

1. Configure master and slave devices, impairment generation and measurement
device.

2. Wait for the slave device timing to lock.

3. Start impairments (background traffic or packet delay variation (PDV) profile
on network emulator).

4. Wait for stabilization period.

5. Start TIE measurement.

6. Wait for measurement period.

7. Stop measurement.

8. Calculate MTIE based on the results.

9. Plot TIE and MTIE.

42

10. Compare MTIE to appropriate mask(s).

11. Generate a report and store the results.

This process is investigated in this section from the end to beginning: result
reporting, graph plotting, packet delay variation (PDV) generation and finally the
measurement itself. MTIE calculation is a larger subject, and is investigated more
thoroughly in Section 5.2.

5.1.1 Reporting

As well as for all the other testing, also packet synchronization test results should
be clearly presented and easy to read. For G.8261 testing this means that for each
test case, there should be a TIE and an MTIE figure of the results with appropriate
masks. As higher level abstraction there should also be a list of the test cases with
pass/fail indication so that the reader does not have to interpret the graphs herself.

Being a regression test that is run for various different software versions, test
results should be archived. Accessing earlier results should be straightforward and
they should not take up too much disk space. For possible further investigation of
test results, the measurement data should be saved along with the resulting report.
Requirements with possible solutions are listed in Table 7.

Table 7: Requirements for reporting and comparison of solutions

Requirement TestNET
Text-presentation of results yes
Support for graphs yes
MTIE calculation no
Result archiving no
Graph generation no

In practice there is only one option for reporting. An in-house built test au-
tomation environment, TestNET is used. This environment contains interfaces to
communicate with network elements and measurement equipment, framework for
test logic and test result reporting. The final result is a HyperText Markup Lan-
guage (HTML) file, or multiple files depending on test configuration. TestNET is
controlled with Tool Command Language (Tcl) [54], which is an interpreted script
language commonly used in testing. An object-oriented extension called [incr Tcl]
[55] is also used.

Comparing with requirements, TestNET generates text-presentation of results
automatically and has support for graphs as images via user-defineable HTML.
MTIE calculation is not supported. Results are given as flat files and it is up to the
test engineer to archive them correctly. Graph generation from text-formatted data
is not supported.

43

MTIE calculation itself has various different options for algorithms and those
are investigated further in Section 5.2. Graph generation is investigated in the next
section.

5.1.2 Graph plotting

Graph generation from text-formatted data is essential for MTIE and TIE presen-
tation. As TestNET does not support this, another solution must be found. Main
required functionality is that graph plotting from text-based data can be automated
and that output graphs are in a format that is understood by modern web browsers.
For convenience, a graphing utility could resize graphs automatically based on the
given data.

Table 8: Requirements for graph plotting

Office
Requirement Spreadsheet gnuplot GD
Automated plotting yes yes no
Reasonable output format no yes no
Automatic resize yes yes no

Table 8 compares three options for graph plotting: Office spreadsheet programs,
gnuplot [56] and GD Graphics library [57]. Office spreadsheet programs such as
Microsoft Excel [58] or Apache OpenOffice Calc [59] are generally used in light-
weight graph calculation and presentation. They are very efficient and easy to use
when a graph has to be created for the first time from arbitrary source data. In this
case the source data is always in the same format and multiple graphs have to be
generated for each test run, so this option is not optimal. Spreadsheet programs have
their own scripting capabilities with macros, but they are diverse and dependent on
the used program.

gnuplot [56] is a command-line graphing utility available for all major operating
systems. It was originally created as plotting software for the academic world, and
has grown since to support various different uses and output formats. gnuplot is
controlled with specific configuration files and plots can be drawn from arbitrary
plot data or mathematical functions.

GD Graphics Library [57] is a graphics software library originated from American
National Standards Institute (ANSI) C but has nowadays interfaces for multiple
other programming languages, including Tcl. It includes various commands for
creating and manipulating raster images. Increased flexibility has a downside for
graph plotting use however: it is much more cumbersome to use than gnuplot or
spreadsheet programs as all the plotting functions, axes, etc. would have to be
created from scratch.

Because of its relative easy to setup, portability, flexibility and performance in
repeated plotting with very little changes to setup, gnuplot is clearly the best option
of these three.

44

5.1.3 Generating packet delay variation

ITU-T recommendation G.8261 test cases require varying impairment traffic to be
present in each of the tests. Details about the type of background traffic are defined
in G.8261 Appendix VI [1]. Two different traffic models consist of three different
packet flows: two constant bit rate (CBR) flows with different packet sizes and one
bursty flow with maximum packet size.

As defined in the standard, generating this background traffic requires a 10-
switch network and a packet generator that can supply those switches with the
correct type of packets. Spirent AX/4000 [60] test system with ethernet modules is
one candidate of this type.

As the tests are defined in an appendix and thus are not normative, background
traffic can be emulated for easier and repeatable testing. Emulating the impairment
caused by this background traffic can be done by delaying individual packets of the
flow-of-interest in the same way as they would be delayed in a switch network with
specified background traffic. Calnex Paragon [61] and Ixia XGEM [62] are network
emulators with this capability.

Requirements for packet delay variation (PDV) generation are quite simple. The
process must be possible to be automated, the PDV profile should be exactly the
same from one test run to another and the profiles should be readily available. Table
9 shows the three options compared by these requirements.

Table 9: Requirements for PDV generation

Spirent AX/4000
Requirement with a switch network Calnex Paragon Anue XGEM
Automated usage yes yes yes
Repeatability no yes yes
PDV profile availability no yes yes

AX/4000 with switch network is remote-controllable via Tcl but it lacks repeata-
bility as the packets are randomized differently between runs. Also Spirent does not
provide PDV profiles as it is: they would have to be scripted independently. Cal-
nex Paragon and Ixia XGEM are similar devices in features and both support these
requirements. Calnex Paragon was chosen due to schedule and other non-technical
reasons over Ixia XGEM.

5.1.4 Measurement

The last important part in synchronization testing setup is the measurement device.
It has to be able to compare the input synchronization signal to a reference clock
signal and record the Time Interval Error (TIE). After this TIE data from a test is
recorded, it can be further analyzed for MTIE, TDEV and other values.

Important features in measurement devices are automated usage and supported
interfaces. Even if the test system is not concerned about the differences in synchro-
nization quality between different interfaces, the clock signal must be transferred to

45

the measurement device somehow. Most common options in the devices are clock
signals (e.g. 2.048MHz or 10MHz) and data signals (e.g. E1, Digital Signal 1 (DS1),
Synchronous Transport Module level-1 (STM-1) or Synchronous Ethernet). Scala-
bility is measured by the cost of adding another measurement to be run in parallel.
Table 10 shows three possible measurement devices compared by these requirements.

Table 10: Requirements for TIE measurement

JDSU Pendulum Calnex
Requirement ANT-20 CNT-90 Paragon
Automated usage yes yes yes
SDH/SONET supported yes no no
2.048/1.544MHz square wave supported yes yes no
Synchronous Ethernet supported no no yes
Scalability 2nd 1st 3rd

JDSU ANT-20 [63] is a measurement device for SDH and PDH networks sup-
porting both ANSI and ETSI defined carrier systems. Automating measurement
with ANT-20 works via a telnet (Transmission Control Protocol / Internet Protocol,
or TCP/IP) connection with a text-based communication protocol using Standard
Commands for Programmable Instruments (SCPI).

Pendulum CNT-90 [64] is a frequency counter/analyzer used for measuring fre-
quency, time interval or phase. Like ANT-20, Pendulum CNT-90 also uses SCPI
protocol. It can be used remotely via the General Purpose Interface Bus (GPIB) for
automated measurements. Personal computers (PC) do not generally have a GPIB
interface, so an additional device is required for connecting to a GPIB device from a
PC. One possibility is to use a GPIB to TCP/IP gateway, such as Agilent E5810A
[65]. It will allow the GPIB devices to be used with a telnet (TCP/IP) connection,
which is very flexible to program.

Calnex Paragon [61] is a newer device for testing packet-based synchronization.
It supports also Synchronous Ethernet and its control software is remote controllable
via Tcl scripting. Due to its support of only Synchronous Ethernet interfaces, it
cannot be used for as wide range of testing as the other options.

In initial testing, ANT-20’s remote control software was found to be unreliable,
which made CNT-90 a better choice for measurement device. It is also the best to
scale from these options (i.e. the most inexpensive device).

After TIE measurement, processing is required to present the results as MTIE
graphs. This problem is addressed in the following section.

5.2 Maximum Time Interval Error algorithms

Theory for MTIE calculation was introduced in Section 2.2. Three algorithms for
calculating MTIE are presented here: naive, Extreme Fix by Dobrogowski and Kasz-
nia [66] and Binary Decomposition by Bregni [4]. They each differ in computation

46

speed and memory used. Implementations and efficiency comparison is discussed in
Section 6.3.

5.2.1 Naive algorithm

Naive algorithm searches for the minimum and maximum sample value for all win-
dow positions. This will become very computationally intensive if there is lots of
data (i.e. long measurement and/or high sampling frequency), or if MTIE is calcu-
lated for lots of window sizes.

Algorithm is described more thoroughly as flowchart in Figure 21, where
N is total number of samples
n(i) is TIE value at position i

k is observation window size
x is window starting position
i is current sample position
p-p(k, x) is a peak-to-peak value with k at x
MTIE(k) is the maximum peak-to-peak value with k

start

k = 2

k = k + 1

k > N?
no

MTIE calculated

yes

find p-p(k, x)find MTIE(k)

x = 0

MTIE(k)= 0

MTIE(k) =
max(MTIE(k),
p-p(k, x)

x = x + 1

x + k > N

return MTIE(k)

start

no

yes

start

i = x

min = n(i)
max = n(i)

max =max(max, n(i))
min =min(min, n(i))

i > x + k

p-p(k, x)= max − min

return p-p(k, x)

no

yes

i = i + 1

Figure 21: Naive algorithm flowchart

47

5.2.2 Extreme fix

Dobrogowski and Kasznia have presented more efficient versions for calculating
MTIE [66]. Extreme Fix algorithm is based on the idea of moving the window
all the way to the point when MTIE value can actually change.

For example, in Figure 22 at window position x the peaks are at p1 (minimum)
and p2 (maximum). The samples between x and p1 become uninteresting as they
cannot effect the overall peak-to-peak value in any way. Window positions x + 1,
x+2, ..., p1−1 can have greater peak-to-peak value than position x, but they cannot
be greater than at position p1. Therefore it is enough to search for peak values at
p1 after x. In case either peak value is at the beginning of the window, for example
at position p1, the window is moved by one sample, here to p1 + 1.

p1

p2

x

MTIE

TIE

time

p1 + 1

Figure 22: Extreme Fix algorithm

Comparing with naive algorithm, Extreme Fix is different in the Figure 23
flowchart’s second and third column. The additions require only a small amount
of more memory for two extra variables and a small amount of extra operations
when deciding the next x. Saved number of calculations depends on input data. In
worst case (the measured samples are increasing or decreasing through the whole
data set), Extreme Fix’s performance is reduced to that of naive algorithm.

5.2.3 Binary decomposition

The Binary Decomposition algorithm described by Bregni [4] has a different ap-
proach. It reduces the amount of calculations by using the minimum and maximum
TIE values from previous rounds of iteration. A drawback with using this algorithm
is that it can calculate MTIE for only k = 2j sample windows. The algorithm
consumes also more memory than Extreme Fix or naive.

An example of this algorithm with 16 TIE samples is illustrated in Figure 24.
On first round (j = 1, i.e. k = 2) this algorithm doesn’t differ from naive as all

48

start

k = 2

k = k + 1

k > N?
no

MTIE calculated

yes

find p-p(k, x)find MTIE(k)

x = 0

MTIE(k)= 0

MTIE(k) =
max(MTIE(k),
p-p(k, x))

x + k > N?

return MTIE(k)

start

yes

start

i = x

min = n(i)
max = n(i)

max =max(max, n(i))
min =min(min, n(i))
p1 =pos(min)
p2 =pos(max)

i > x + k?

p-p(k, x)= max − min

no

yes

i = i + 1

x = x2?

x = x + 1 x = x2

x2 =min(p1, p2,

N − (x + k))

no

no

yes

return p-p(k, x),
p1, p2

Figure 23: Extreme Fix algorithm flowchart

49

the samples have to be gone through. Peak values are saved in a 2 by N-1 matrix.
From second round onwards (j > 1), the previous round’s peak values are searched
for minimum and maximum for each window position.

54 23 10 25 47 34 59 11 7 15 35 42 40 20 1524x

max

min

max

min

max

min

max

min

54

24

54

23

23

10

25

10

47

25

47

34

59

34

59

11

11

7

15

7

35

15

42

35

42

40

40

20

20

15

54 54 47 47 59 59 59 59 35 42 42 42 42

10 10 10 10 25 11 7 7 7 7 15 20 15

59 59 59 59 59 59 59 59 42

10 10 7 7 7 7 7 7 7

59

7

MTIE(16) = 52

MTIE(8) = 52

MTIE(4) = 52

MTIE(2) = 48

i 1 2 3 4 65 7 8 9 10 11 12 13 14 15 16

j = 1,
k = 2

j = 2,
k = 4

j = 3,
k = 8

j = 4,
k = 16

...

...

...

Figure 24: Binary Decomposition algorithm

5.2.4 Mask matching

Most standards define synchronization quality requirements as MTIE masks (for
example ITU-T recommendation G.8261 [1]). Deciding whether an implementation
meets the standards’ requirements, a test system must be able to compare MTIE
results with appropriate masks.

A test is passed if for all calculation points the MTIE value is smaller than
allowed mask value. In practice, these masks are given as a coordinate tables or as a
function depending on the observation window size. Measurement results’ resolution
then again depends on the MTIE calculation parameters.

Comparing measured MTIE points that have mask defined at the same window
size is trivial, as is comparing measured MTIE with two mask points that have both
either smaller or greater values. If a calculated MTIE is between the closest mask’s
values as in Figure 25: (xm1 < x < xm2) ∧ (ym1 < y < ym2), equation (15) can be
used to calculate ym3, which can be then compared to y.

50

(xm1, ym1)

(xm2, ym2)

(x, ym3)

(x, y)

Window size (s)

MTIE

Figure 25: Mask matching

51

ym3 =

(

ym2 − ym1

xm2 − xm1

)

x+

[

ym1 −

(

ym2 − ym1

xm2 − xm1

)

xm1

]

(15)

Comparing results with appropriate masks this way, MTIE graphs can be abstracted
to pass/fail status. This will simplify the interpretation of results and will also make
the results applicable to TestNET reporting format.

5.3 Synchronization quality requirements

After MTIE has been calculated, it is of course very important to know what to
compare it to. This section will introduce some relevant synchronization require-
ments.

ITU-T recommendation G.8261 [1] defines different deployment cases with spe-
cific synchronization budgets, which are shown in Figure 26. Deployment case 1
has the Circuit Emulation Service (CES) located as an island between two SDH
segments, while deployment case 2 has CES on the edge of a network.

From this thesis’ perspective, the main application of PTP is to synchronize
base stations on the edge of operators’ networks, so the applicable deployment case
is the second one. Deployment case 2 has also two applications, A and B, where
application B is synchronized from a TDM signal and is therefore not applicable
here. ITU-T recommendation G.8261 Deployment case 2A wander budget is shown
in Table 11, and is graphed in in Figure 27. Wander budged has been defined
for observation window sizes from 0.05 s (exclusive) to 1000 s (inclusive). MRTIE
requirement depends on observation window size on size range 0.05 s < τ ≤ 0.2 s:
40τ µs, and 32 s < τ ≤ 64 s: 0.25τ µs, and is constant in size ranges 0.2 s < τ ≤ 32 s:
8µs, and 64 s < τ ≤ 1000 s: 16µs.

PRC

Synchronization
network

Equipment
w/ slip-buffer
termination

SDH
Island 1

IWF IWF
Packet
network

CES Island

Wander budget
for the CES, Case 1

SDH
Island N-1

PRC

Synchronization
network

IWF

IWF

Packet
Network

Wander budget
for the CES, Case 2

CES Island

Equipment
w/ slip-buffer
termination

End equipmentN = 4 for networks based on 2048 kbit/s hierarchy
N = 8 for networks based on 1544 kbit/s hierarchy

Figure 26: ITU-T recommendation G.8261 Network models for traffic and clock
wander accumulation, Deployment Case 1 and Case 2 [1]

52

Table 11: ITU-T recommendation G.8261 Deployment case 2A: 2048 kbit/s interface
wander budget [1]

Observation time (s) MRTIE requirement (µs)
0.05 < τ ≤ 0.2 40τ
0.2 < τ ≤ 32 8
32 < τ ≤ 64 0.25τ
64 < τ ≤ 1000 16

 1

 10

 100

 0.01 0.1 1 10 100 1000 10000

M
T

IE
 (

µs
)

Observation interval (s)

ITU-T G.8261 Deployment case 2A

Figure 27: ITU-T recommendation G.8261 Deployment case 2A: 2048 kbit/s inter-
face wander budget [1]

53

6 Implementation

Testing system was implemented with the components selected in Section 5. Test
case design follows the principles enforced by TestNET: each test consists of test
cases which include steps. Results from these are given in one report for each test.

This section will go through the implementation details of used test network and
its components, control and reporting and different MTIE algorithm comparison.

6.1 Test network

Test network is illustrated in Figure 28. The used PTP master device, Symmetri-
com TP-5000 [67] is synchronized to a GPS timing reference and it distributes the
reference clock signal to the rest of the network. PDV is generated with an emula-
tor, Calnex Paragon [61], which is situated between master and slave devices. The
device under test (DUT) is Tellabs 8605 [68], a mobile backhaul access router. TIE
measurement is done with Pendulum CNT-90 [64] frequency counter/analyzer.

Slave and master devices, and PDV emulator are connected to each other with
1000Base-LX (gigabit single-mode optical) Ethernet. The network has two parallel
reference clock signals: 2.048MHz and 10MHz due to the devices’ clock input re-
quirements. Measurement is done with a 2.048MHz clock signal from DUT clock
output port.

Symmetricom TP-5000 [67] is used as a PTP master device. It is configured
to use negotiation so that slave devices can request PTP streams with different
parameters dynamically. Because of this, it doesn’t require any configuration or
commanding during the test execution.

Calnex Paragon [61] was selected as network emulator to introduce packet de-
lays. Calnex provides PDV emulation playback profiles for G.8261 Appendix VI
performance test cases 12 through 17 for both master to slave and slave to master
directions. Paragon is controlled through a graphical user interface (GUI) software
from a Windows PC. Calnex supplies a Tcl interface to control this GUI, which is
used through the TestNET scripts.

Tellabs 8605 [68] mobile backhaul access router is configured with a Tellabs
proprietary management protocol through TestNET. It will request a 128pps two-
way PTP connection and use that to synchronize its internal clock. Output clock
port is also enabled.

Pendulum CNT-90 [64] is controlled with SCPI commands through an Agilent
E5810A [65] GPIB–TCP/IP gateway. It is configured to measure time interval error
between its input ports (one for DUT, the other for reference). Results are fetched
frequently during the test. Practically, controlling is done with a telnet connection
from TestNET, and some minor library functions are created for this communication.

6.2 Test control and reporting

The device under test is controlled and test result reports are created with an in-
house test automation system TestNET, which was introduced in Section 5.1.1.

54

Reference

clock

PTP Master

Device under test

Wander

measurement

Timing

reference

PDV Emulator

Recovered timing

PTP packet flow

Impaired PTP packet flow

Figure 28: Test network

55

Tests are organized into three files with following categories: main script file, test
parameters and test cases. Additionally there are libraries for test steps, which then
again use libraries for communicating with the devices.

General architecture is is illustrated in Figure 29. Steps for each test case are
similar to the principle introduced in Section 5.1.

Main script file Test case

Setup measurement device

Setup PDV generation

Wait for stabilization time

Measure

Stop PDV generation

Start PDV generation

Finalize measurement

Calculate MTIE

Plot TIE and MTIE

Add test case results to report

Setup test-specific parametersSetup device and test

Start timer

Query TIE values

Return if test is done

Finalize test and report

Test case 12

Test case 13, model 1

Test case 13, model 2

Test case 17, model 1

Test case 17, model 2

...

Figure 29: Test control architecture

6.2.1 Data processing

When raw TIE data is acquired from the measurement, it has to be processed to
obtain TIE and MTIE graphs, and resulting MTIE has to be compared to appropri-
ate masks. These results have to be presented in a clear way and both results and
original measurement data have to be archived efficiently for possible further use.

TIE data from measurement contains two types of information: timestamps and
corresponding TIE values. They are used in plotting TIE graph and calculating
MTIE which are both unrelated to the measurement process itself and are run as
separate programs.

56

For easy usage, TIE data is first saved as comma-separated values (CSV) plain-
text and afterwards compressed. Data is gathered from one test set (G.8261 test
cases 12..17) for each tested device type and software version, and stored along with
graphs and MTIE CSV data. Due to the nature of raw TIE data (American Stan-
dard Code for Information Interchange (ASCII) formatted text), compressing with
zip algorithm yields a disk space save of around 90 %, as can be seen from Table 12.

Table 12: Disk space saved with TIE data compression

File size Archived size Reduction
Sample 1 5.9 MiB 553 KiB 90.7 %
Sample 2 26 MiB 2.9 MiB 89.1 %
Sample 3 92 MiB 8.3 MiB 91.0 %

6.2.2 Graph plotting

Both TIE and MTIE graph plotting is done using gnuplot, which is controlled with
specific commands given to the program as a text-file. TIE graph presentation does
not have any special configurations. Its header shows the DUT software version
used, test case, date and data filename. MTIE graph has the same information
and additionally it is shown in logarithmic scale both in x and y-axis, and has the
appropriate masks plotted along with MTIE results. The masks are given as CSV
files according to standards’ definitions.

Output format was chosen to be a fixed-size Portable Network Graphics (PNG)
file. For this kind of data, a vector graphics format would have been most suited
because of portable scaling and file size. However the most common format, Scalable
Vector Graphics (SVG) is not currently supported Internet Explorer version 6 or 7,
which are both commonly used to view test results. In most common raster formats,
Joint Photographic Experts Group (JPEG) and PNG file size difference (roughly
100KiB vs. 10KiB) was the main reason for choosing PNG as TIE and MTIE graph
format.

gnuplot command files are generated with the main Tcl test script. Changing
values are title, input and output file names and included masks. After the command
file generation is done, gnuplot is executed from the test script.

Figure 30 shows an example output of gnuplot with TIE data from certain mea-
surement. The graph’s both axis are scaled automatically by gnuplot and header’s
missing fields are generated on per measurement basis from Tcl. Figure 31 has an
example MTIE graph with previously introduced masks along with a calculated
measurement result.

6.3 Maximum Time Interval Error calculation

The algorithms introduced in Chapter 5.2 were implemented one at a time. As the
measurement times are long and calculating MTIE is not trivial, the most crucial
aspect in implementation is the execution time.

57

-2

-1.5

-1

-0.5

 0

 0.5

 1

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00

T
IE

 (
µs

)

Time (hh:mm)

Time Interval Error
sample3.dat

20.07.2011 13:23

result

Figure 30: Example TIE figure

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100 1000 10000 100000

M
T

IE
 (

µs
)

Observation interval (s)

Maximum Time Interval Error
sample3-mtie.csv
20.07.2011 13:23

ITU-T G.8261 Deployment case 2A
result

Figure 31: Example MTIE figure

58

Naive algorithm was quickly discovered to be unusable in real-world scenarios
due to its poor performance. Extreme Fix algorithm was then implemented first in
Tcl, and although it gave a huge boost in speed, it wasn’t still fast enough. It was
converted to C++ and compiled with two different compilers. Both were consider-
ably faster than the Tcl implementation, and also a bit surprisingly Visual Studio
(VS) [69] compiled version was notably faster than the one compiled with GNU
Compiler Collection (GCC) [70]. Binary Decomposition algorithm was also imple-
mented in C++ for further speedup, but it didn’t have any benefit over Extreme Fix.
These three different algorithms were compared with three different measurement
sets. Results from these tests are show in Table 13.

First of all it can be noted that in the sample 1 data set, Extreme Fix algorithm
reduces execution time by over 95 % compared to naive algorithm.

Comparing different implementations of Extreme Fix algorithm shows that Tcl
is not designed to be used in calculation heavy programming. Where sample 2 data
set took 15 hours with Tcl implementation, it took around one minute with both
C++ implementations. While both GCC and Visual Studio compiled versions of
the C++ Extreme Fix are usable, it is still notable that GCC version is roughly
50 % slower than Visual Studio version on large data sets (samples 2 and 3). This
is probably due to heavier optimization parameters in the default configuration of
Visual Studio.

Table 13: Comparison of different MTIE calculation algorithms and implementa-
tions

Sample 1 Sample 2 Sample 3
Measurement duration 01:40:00 07:15:00 25:00:00
Number of samples 180 228 783 516 2 701 038

Algotithm execution time
Naive (Tcl) 102:24:30 N/A N/A
Extreme Fix (Tcl) 1:56:15 31:27:00 N/A
Extreme Fix (C++, GCC) 0:00:16 0:02:14 0:05:38
Extreme Fix (C++, VS) 0:00:06 0:01:04 0:02:30
Binary Decomposition (C++, GCC) 0:06:16 1:49:50 21:39:43

59

7 Evaluation

The most obvious benefit of this test automation is that nighttime can be used
better when running the tests. Manually each test must be started during office
hours, and depending on the duration of the tests, most will finish a lot before the
next morning. This is shown in Table 14, taking into account the following schedule
overheads along with PDV profile durations:

• Each test requires a stabilization period of 30 minutes before starting PDV
profile.

• Both automatic and manual calculation of MTIE takes 5 minutes.

• Other test setup tasks take additional 5 minutes before each test.

• Testing can be done manually for 8 hours, and then it has to be paused until
the next time divisible by 24 hours (the next morning).

• The fastest way to run this test set manually is to leave TC13s for the night
as they take the longest time under 16 hours. “Manual optimized” in Table 14
is done like this.

• Test set completion has to happen at “daytime” because test analysis and
continuing with different tests requires manual work.

From these results it can be seen that automated testing is 21 % faster than
manual testing even when the use of nighttime is optimized. In practice, this result
varies depending on when the test set is started, but automated testing will always
be faster than manual because at least one nighttime can not be fully utilized when
testing manually.

Previous result was calculated for one run of the G.8261 test set. Software
projects however require this test set to be done for various different hardware
platforms with different PTP settings. The speed gain effect will of course cumulate
when the test set has to be run multiple times, and weekends introduce an even
bigger delay than nighttime when test sets are executed manually.

Figure 32 shows a testing S-curve introduced in Section 4.8 when this test set has
to be run ten times. Here the results for 10 sequential runs are ready 10 days earlier
when using automated testing. The graphed data is rough and purely theoretical,
but it can be seen that the delays caused by weekends on manual testing increase
the time savings of automation from 20 % to over 40 %.

Along with getting the results earlier, using automated testing frees the test
engineer to do something else while the tests are running. Also, running automated
tests require less technical knowledge from test engineers as they no longer required
to know all the test equipment specifics themselves. These two factors lead directly
to cost savings in testing packet synchronization testing.

60

Table 14: Comparison of automated and manual runs of G.8261 test set

Automated Manual Manual optimized
Start 0:00 Start 0:00 Start 0:00
TC12 1:40 TC12 1:40 TC14A 24:40
TC13A 8:20 TC13A 8:20 TC14B 49:20
TC13B 15:00 TC13B 15:00 TC15A 50:45
TC14A 39:40 Nighttime 24:00 TC15B 52:10
TC14B 64:20 TC14A 48:40 TC16A 53:35
TC15A 65:45 TC14B 73:20 TC16B 55:00
TC15B 67:10 TC15A 74:45 TC13A 61:40
TC16A 68:35 TC15B 76:10 Nighttime 72:00
TC16B 70:00 TC16A 77:35 TC17A10 73:25
TC17A10 71:25 TC16B 79:00 TC17A200 74:50
TC17A200 72:50 TC17A10 80:25 TC17B10 76:15
TC17B10 74:15 Nighttime 96:00 TC17B200 77:40
TC17B200 75:40 TC17A200 97:25 TC12 79:20

TC17B10 98:50 TC13B 86:00
TC17B200 100:15 Nighttime 96:00

Finished at 3 days, 3:40 4 days, 4:15 4 days, 0:00

Speed gain with automated testing 24:35 20:20
25 % 21 %

 0

 50

 100

 150

-70 -60 -50 -40 -30 -20 -10 0

n
u
m

b
er

 o
f
te

st
s

ru
n

days to release

automated
manual

Figure 32: Test progress S-curve with 10 runs of G.8261 test set

61

8 Conclusions

The objective of this thesis was to create test automation for ITU-T recommenda-
tion G.8261 Appendix VI performance test cases 12 through 17 for Precision Time
Protocol and calculate Maximum Time Interval Error (MTIE) graphs for results.
First, a theoretical study for communications network synchronization in general,
packet switched network synchronization and software testing was done. Then, the
testing system was planned and different components for implementation were com-
pared and after that the system was built. Finally the system’s performance was
compared with the situation where the same test suite was executed manually.

Evaluation showed that testing using the automated system required less human
interaction and the test suite could be executed faster than if the tests were done
manually. One test suite run has a speed gain of roughly 20 % when using the
automated system, and with an example of ten test suite runs and taking weekends
into account, this translates to 35 days faster time to market.

The next step in making the testing process even more faster would be to study
if the test sets could be run in parallel for multiple devices under test. In embedded
software design, it is common to have the same software release done for multi-
ple hardware platforms at the same time. Synchronization with PTP is especially
dependent on both the hardware and software, so all different hardware platforms
will have to be tested with each software release. As the test sets are the same for
different platforms, executing them in parallel could be beneficial, but is left outside
the scope of this thesis.

While most implementation decisions were fairly straightforward, choosing the
algorithm for MTIE calculation required some exploring. First of all, the most
obvious algorithm implemented in Tcl was unusable even for the shortest tests as
it took some 50 times more time to calculate the MTIE result than what was the
duration of the test. A more clever algorithm reduced this ratio to around 1:1, which
still seemed like a tremendous waste of time. Implementing the same algorithm in
C++ reduced the calculation duration to a fraction of what it was. A third algorithm
was also tried out, but it didn’t yield any performance increase.

The best MTIE algorithm implementation could calculate a 25-hour measure-
ment result in less than 3 minutes. This is of course still far from instantaneous,
but as the automated system was not meant to be used interactively, it doesn’t
matter if the calculation doesn’t give any results before a final result is calculated.
However, if the MTIE result was to be shown interactively, it would be good to
have an inaccurate result as soon as possible. This speedup at the cost of accuracy
could be achieved with reducing the number of samples and different observation
window sizes included in the calculation. Observation window count can be easily
manipulated with the selected MTIE algorithm, but sample selection would require
further study.

62

References

[1] Timing and synchronization aspects in packet networks, ITU-T recommenda-
tion G.8261/Y.1361, 2008.

[2] Vocabulary of digital transmission and multiplexing, and pulse code modulation
(PCM) terms, ITU-T recommendation G.701, 1993.

[3] Definitions and terminology for synchronization in packet networks, ITU-T rec-
ommendation G.8260, 2010.

[4] S. Bregni, Synchronization of digital telecommunications networks. Chichester:
John Wiley, 2002, ISBN: 0-471-61550-1.

[5] Timing jitter and wander measuring equipment for digital systems which are
based on the plesiochronous digital hierarchy (PDH), ITU-T recommendation
O.171, 1997.

[6] Jitter and wander measuring equipment for digital systems which are based on
the synchronous digital hierarchy (SDH), ITU-T recommendation O.172, 2005.

[7] Jitter measuring equipment for digital systems which are based on the optical
transport network, ITU-T recommendation O.173, 2012.

[8] Jitter and wander measuring equipment for digital systems which are based on
synchronous Ethernet technology, ITU-T recommendation O.174, 2009.

[9] Jitter measuring equipment for digital systems based on XG-PON, ITU-T rec-
ommendation O.175, 2012.

[10] Digital cellular telecommunications system (Phase 2+); Radio subsystem syn-
chronization (3GPP TS 45.010 version 8.4.0 Release 8), ETSI technical speci-
fication 145 010, 2009.

[11] Universal Mobile Telecommunications System (UMTS); Base Station (BS) ra-
dio transmission and reception (FDD) (3GPP TS 25.104 version 8.8.0 Release
8), ETSI technical specification 125 104, 2009.

[12] Universal Mobile Telecommunications System (UMTS); Base Station (BS) ra-
dio transmission and reception (TDD) (3GPP TS 25.105 version 8.4.0 Release
8), ETSI technical specification 125 105, 2009.

[13] Recommended Minimum Performance Standards for cdma2000 Spread Spec-
trum Base Stations, 3GPP2 standard C.S0010-B, 2004.

[14] Physical Layer Standard for cdma2000 Spread Spectrum Systems, 3GPP2 stan-
dard C.S0002-C, 2004.

[15] Definitions and terminology for synchronization networks, ITU-T recommen-
dation G.810, 1996.

63

[16] Time and frequency from A to Z: A to Al. National Institute of Standards and
Technology. Accessed July 1, 2013. [Online]. Available: http://www.nist.gov/
pml/div688/grp40/glossary.cfm

[17] O. Tipmongkolsilp, S. Zaghloul, and A. Jukan, “The evolution of cellular back-
haul technologies: current issues and future trends,” Communications Surveys
& Tutorials, IEEE, vol. 13, no. 1, pp. 97–113, 2011.

[18] Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP),
IETF request for comments 4553, 2006.

[19] Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation Service
over Packet Switched Network (CESoPSN), IETF request for comments 5086,
2007.

[20] IEEE Std 802.3 - 2005 Part 3: Carrier sense multiple access with collision
detection (CSMA/CD) access method and physical layer specifications, IEEE
standard 802.3, 2005.

[21] Timing characteristics of synchronous Ethernet equipment slave clock (EEC),
ITU-T recommendation G.8262, 2007.

[22] Network Time Protocol Version 4: Protocol and Algorithms Specification, IETF
request for comments 5905, 2010.

[23] IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems, IEEE standard 1588, 2008.

[24] B. Choi, S. Moon, Z. Zhang, K. Papagiannaki, and C. Diot, “Analysis of point-
to-point packet delay in an operational network,” in INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and Communications So-
cieties, vol. 3. IEEE, 2004, pp. 1797–1807.

[25] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot, “Measurement
and analysis of single-hop delay on an ip backbone network,” Selected Areas in
Communications, IEEE Journal on, vol. 21, no. 6, pp. 908–921, 2003.

[26] IEEE Standard for Local and metropolitan area networks Part 16: Air Interface
for Broadband Wireless Access Systems, IEEE standard 802.16, 2009.

[27] The control of jitter and wander within digital networks which are based on the
2048 kbit/s hierarchy, ITU-T recommendation G.823, 2000.

[28] The control of jitter and wander within digital networks which are based on the
1544 kbit/s hierarchy, ITU-T recommendation G.824, 2000.

[29] NodeB Synchronization for TDD, 3GPP technical report 25.836, 2000.

[30] Abstract Test Suite for Circuit Emulation Services over Ethernet based on MEF
8, MEF technical specification 18, 2007.

http://www.nist.gov/pml/div688/grp40/glossary.cfm
http://www.nist.gov/pml/div688/grp40/glossary.cfm

64

[31] Implementation Agreement for the Emulation of PDH Circuits over Metro Eth-
ernet Networks, MEF technical specification 8, 2004.

[32] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of software
testing, 2nd ed. Hoboken, N.J: John Wiley & Sons, 2004, ISBN: 0-47146-912-2.

[33] IEEE Standard glossary of software engineering terminology, IEEE standard
610.12, 1990.

[34] I. Burnstein, Practical software testing : a process-oriented approach. New
York: Springer, 2003, ISBN: 0-387-95131-8 (printed), ISBN: 978-6-61-018845-1
(electronic).

[35] P. Jorgensen, Software testing: a craftsman’s approach, 2nd ed. CRC Press,
2002, ISBN: 0-84930-809-7.

[36] W. Royce, “Managing the development of large software systems,” in proceedings
of IEEE WESCON, vol. 26, no. 8. Los Angeles, 1970.

[37] I. Sommerville, “Software process models,” ACM Computing Surveys (CSUR),
vol. 28, no. 1, pp. 269–271, 1996.

[38] V-modell xt. Accessed February 2, 2013. [Online]. Available: http://v-modell.
iabg.de/v-modell-xt-html-english/index.html

[39] M. Fowler and J. Highsmith, “The agile manifesto,” Software Development,
vol. 9, no. 8, pp. 28–35, 2001.

[40] M. Beedle, M. Devos, Y. Sharon, K. Schwaber, and J. Sutherland, “Scrum: An
extension pattern language for hyperproductive software development,” Pattern
Languages of Program Design, vol. 4, pp. 637–651, 1999.

[41] K. Beck, “Embracing change with extreme programming,” Computer, vol. 32,
no. 10, pp. 70–77, 1999.

[42] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, Agile software develop-
ment methods: Review and analysis. VTT Finland, 2002, ISBN: 951-38-6009-4
(printed), ISBN: 951-38-6010-8 (electronic).

[43] A. Cockburn, Crystal clear: a human-powered methodology for small teams.
Boston (Mass.): Addison-Wesley, 2005, ISBN: 0-201-69947-8.

[44] J. Vanhanen, J. Jartti, and T. Kähkönen, “Practical experiences of agility in
the telecom industry,” Extreme Programming and Agile Processes in Software
Engineering, pp. 1015–1015, 2003.

[45] M. Puleio, “How not to do agile testing,” in Agile Conference, 2006. IEEE,
2006, pp. 7–pp.

http://v-modell.iabg.de/v-modell-xt-html-english/index.html
http://v-modell.iabg.de/v-modell-xt-html-english/index.html

65

[46] G. Rothermel and M. Harrold, “Analyzing regression test selection techniques,”
Software Engineering, IEEE Transactions on, vol. 22, no. 8, pp. 529–551, 1996.

[47] H. Leung and L. White, “A study of integration testing and software regres-
sion at the integration level,” in Software Maintenance, 1990., Proceedings.,
Conference on. IEEE, 1990, pp. 290–301.

[48] G. Rothermel and M. Harrold, “A safe, efficient algorithm for regression test
selection,” in Software Maintenance, 1993. CSM-93, Proceedings., Conference
on. IEEE, 1993, pp. 358–367.

[49] Y. Chen, D. Rosenblum, and K. Vo, “Testtube: A system for selective regression
testing,” in Software Engineering, 1994. Proceedings. ICSE-16., 16th Interna-
tional Conference on. IEEE, 1994, pp. 211–220.

[50] C. Kaner, “Pitfalls and strategies in automated testing,” Computer, vol. 30,
no. 4, pp. 114–116, 1997.

[51] J. Bach, “Test automation snake oil,” in 14th International Conference and
Exposition on Testing Computer Software, Washington, DC, 1999.

[52] J. de Oliveira, C. Gouveia, and R. Quidute Filho, “Test automation viability
analysis method,” in LATW2006: Proceedings of the 7th IEEE Latin American
Test Workshop, 2006, p. 6.

[53] S. Kan, J. Parrish, and D. Manlove, “In-process metrics for software testing,”
IBM Systems Journal, vol. 40, no. 1, pp. 220–241, 2001.

[54] Tcl Developer Xchange. Accessed November 20, 2013. [Online]. Available:
http://www.tcl.tk/

[55] [incr Tcl] - Object-Oriented Programming in Tcl/Tk. Accessed November 20,
2013. [Online]. Available: http://incrtcl.sourceforge.net/itcl/

[56] gnuplot homepage. Accessed November 20, 2013. [Online]. Available: http://
www.gnuplot.info/

[57] GD Graphics Library. Accessed November 20, 2013. [Online]. Available:
http://www.libgd.org/

[58] Microsoft Excel spreadsheet software - Office.com. Accessed November 20,
2013. [Online]. Available: http://office.microsoft.com/en-001/excel/

[59] Apache OpenOffice Calc - OpenOffice.org. Accessed November 20, 2013.
[Online]. Available: http://www.openoffice.org/product/calc.html

[60] Spirent AX/4000. Accessed November 20, 2013. [Online]. Available: http://
www.spirentfederal.com/IP/Products/AX_4000/Overview/

http://www.tcl.tk/
http://incrtcl.sourceforge.net/itcl/
http://www.gnuplot.info/
http://www.gnuplot.info/
http://www.libgd.org/
http://office.microsoft.com/en-001/excel/
http://www.openoffice.org/product/calc.html
http://www.spirentfederal.com/IP/Products/AX_4000/Overview/
http://www.spirentfederal.com/IP/Products/AX_4000/Overview/

66

[61] Calnex Paragon-X. Accessed November 20, 2013. [Online]. Available: http://
www.calnexsol.com/products/paragon-x.html

[62] Ixia Ethernet Network Emulators GEM, XGEM. Accessed November 20, 2013.
[Online]. Available: http://www.ixiacom.com/products/network_test/load_
modules/network_emulators/gem_xgem/

[63] JDSU ANT Advanced Network Tester family. Accessed November
20, 2013. [Online]. Available: http://www.jdsu.com/productliterature/ant-
consolidated_ds_opt_tm_ae.pdf

[64] Pendulum CNT-90 Frequency Timer/Counter/Analyzer. Accessed
November 20, 2013. [Online]. Available: http://www.spectracomcorp.
com/ProductsServices/SignalTest/FrequencyAnalyzersCounters/CNT-
90TimerCounterAnalyzer/tabid/1280/Default.aspx

[65] Agilent Technologies E5810A LAN/GPIB Gateway. Accessed November 20,
2013. [Online]. Available: http://www.home.agilent.com/en/pd-1000004557
%3Aepsg%3Apro-pn-E5810A/lan-gpib-gateway?&cc=FI&lc=fin

[66] A. Dobrogowski and M. Kasznia, “Time effective methods of calculation of max-
imum time interval error,” Instrumentation and Measurement, IEEE Transac-
tions on, vol. 50, no. 3, pp. 732–741, 2001.

[67] Symmetricom TimeProvider 5000. Accessed November 20, 2013. [Online]. Avail-
able: http://www.symmetricom.com/products/time-frequency-references/
telecom-primary-reference-sources/timeprovider-5000/#.Uo0sN2QY1vY

[68] Tellabs 8605 Smart Router. Accessed November 20, 2013. [Online]. Available:
http://www.tellabs.com/products/8000/tlab8605sr.pdf

[69] Visual Studio. Accessed November 20, 2013. [Online]. Available: http://www.
visualstudio.com/

[70] GCC, the GNU Compiler Collection. Accessed November 20, 2013. [Online].
Available: http://gcc.gnu.org/

http://www.calnexsol.com/products/paragon-x.html
http://www.calnexsol.com/products/paragon-x.html
http://www.ixiacom.com/products/network_test/load_modules/network_emulators/gem_xgem/
http://www.ixiacom.com/products/network_test/load_modules/network_emulators/gem_xgem/
http://www.jdsu.com/productliterature/ant-consolidated_ds_opt_tm_ae.pdf
http://www.jdsu.com/productliterature/ant-consolidated_ds_opt_tm_ae.pdf
http://www.spectracomcorp.com/ProductsServices/SignalTest/FrequencyAnalyzersCounters/CNT-90TimerCounterAnalyzer/tabid/1280/Default.aspx
http://www.spectracomcorp.com/ProductsServices/SignalTest/FrequencyAnalyzersCounters/CNT-90TimerCounterAnalyzer/tabid/1280/Default.aspx
http://www.spectracomcorp.com/ProductsServices/SignalTest/FrequencyAnalyzersCounters/CNT-90TimerCounterAnalyzer/tabid/1280/Default.aspx
http://www.home.agilent.com/en/pd-1000004557%3Aepsg%3Apro-pn-E5810A/lan-gpib-gateway?&cc=FI&lc=fin
http://www.home.agilent.com/en/pd-1000004557%3Aepsg%3Apro-pn-E5810A/lan-gpib-gateway?&cc=FI&lc=fin
http://www.symmetricom.com/products/time-frequency-references/telecom-primary-reference-sources/timeprovider-5000/#.Uo0sN2QY1vY
http://www.symmetricom.com/products/time-frequency-references/telecom-primary-reference-sources/timeprovider-5000/#.Uo0sN2QY1vY
http://www.tellabs.com/products/8000/tlab8605sr.pdf
http://www.visualstudio.com/
http://www.visualstudio.com/
http://gcc.gnu.org/

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Symbols and abbreviations
	Introduction
	Background
	Objectives
	Structure of the thesis

	Communication network synchronization
	Terminology
	Measurement definitions
	Time Error
	Time Interval Error
	Maximum Time Interval Error
	Time Deviation
	Allan Deviation

	Network synchronization

	Packet switched network synchronization
	Precision Time Protocol
	Packet delay and impairments
	Equal-cost multi-path effect
	Minimum path transit time
	Random delay variation
	Low frequency delay variation
	Systematic delay variation
	Routing changes
	Congestion effects
	Topology-dependent blocking mechanisms

	Mobile technologies' synchronization requirements
	Packet synchronization testing
	ITU-T recommendation G.8261
	MEF Technical specification 18

	Software testing
	Terminology
	Testing Maturity Model
	Strategies
	Functional testing
	Structural testing

	Test-case design
	Equivalence partitioning
	Boundary-value analysis
	Decision tables

	Software development process models
	Waterfall model
	V-Model
	Agile software development

	Regression testing
	Firewall test selection
	Graph walk test selection
	Modified entity test selection

	Test automation
	Testing metrics

	Requirements and planning
	Designing an automated test system
	Reporting
	Graph plotting
	Generating packet delay variation
	Measurement

	Maximum Time Interval Error algorithms
	Naive algorithm
	Extreme fix
	Binary decomposition
	Mask matching

	Synchronization quality requirements

	Implementation
	Test network
	Test control and reporting
	Data processing
	Graph plotting

	Maximum Time Interval Error calculation

	Evaluation
	Conclusions
	References

