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Chapter 1

Introduction

Recently there is a lot of development to introduce general-purpose type
systems to general-purpose languages: Flow, TypeScript (JavaScript), Hack
(PHP), core.typed (Clojure), Typed Racket (Scheme) [9, 26-28, 67]. This
thesis takes a different route, we try to create a domain specific type system
for a particular domain or program.

Creating a sound type system is a non-trivial task. To overcome that,
we take an expressive enough existing type-system as a basis, but use
only a subset of it. As we work in a particular domain, we have enough
information to elaborate types. This is contrary to usual academic practice,
where new features are added to existing type systems.

In this work we investigate one approach of implementing domain specific
type systems, and the type-inference implementations for them. As an
empirical proof, we use the method twice: for MATLAB and JAVASCRIPT
programs. The approach is mostly theoretical, there are only proof of con-
cept implementations of the type checkers. Further work is needed to make
them ready for production use, and to investigate possible implementation
problems.

We will introduce notation and basic results about type-systems in Chap-
ter 2. In particular we describe simply typed lambda calculus, System
F and dependent type systems. Also we discuss how the type-inference
algorithms can be implemented in Chapter 3.

In Chapter 4 we develop a type system to a subset of MATLAB language.
Cleve Moler developed MATLAB [51], so his students don’t need to learn
FORTRAN to use powerful linear algebra routines. MATLAB is originally
a domain specific language, though it evolved into a more general and
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powerful language.

MATLAB is a dynamically typed language, yet applied linear algebra has
a natural type language: we operate on matrices of different sizes. We
omit types while writing mathematical expressions, as the types and matrix
dimensions could be inferred easily.

Quite often we, the developers, make errors. It’s frustrating to get a matrix
dimensions mismatch run-time error, especially in the middle of long
running computations. These mistakes can be easily caught by the type-
checker, even before a program is run.

As the language of linear algebra is quite simple, we conduct a more
challenging experiment in Chapter 5. We develop a type system to express
types in existing JAVASCRIPT program: JSVERIFY [42]. We show that the
approach of writing domain specific elaborator is possible for complicated
programs as well.

The development is made using the functional programming language
Haskell [39, 46], which has also influenced this work.



Chapter 2

Lambda calculus

In this chapter we introduce untyped and simply typed lambda calculi and
basic results about them. [5, 6, 59]. After that we show more sophisticated
type systems, such as System F and dependent type systems.

2.1 Untyped lambda calculus

Definition 2.1. The set of A-terms is built up from an infinite set of variables
V ={x,y,z,...} using application and abstraction. Using abstract syntax
we can write describe the terms as:

A-CALCULUS TERM e :=x variable
| Ax.e abstraction
| fx application

Definition 2.2. The set of free variables of a term t, written FV/(t), is defined
as follows:
FV(x) = {x}
FV(Ax.e) = FV(e) \ {x}
FV(fx)=FV(f)UFV(x)
Definition 2.3. The term is said to be closed, if the set of free variables is
empty.
FV(Ax.x) = @ = Ax.x is closed
FV(Ax. f x) = {f} = Ax. f x is not closed

3
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Definition 2.4. The result of substitution of N for (the free occurrence of) x
in M, notation [x/N]M, is defined as follows: Below x # y.

[x/N]x=N
[x/Nly =y
[x/NJ (P Q) = ([x/N]P) ([x/N]Q)
[x/N] (Ay. P) = Ay. ([x/N] P)
[x/N] (Ax.P) = Ax.P

The mnemonic, “substitute x with N in M”.

Definition 2.5. The principal evaluation axiom scheme of the A-calculus is
(Ax. M\)N = [x/N|M

for all A-terms M, N. This operation is also called B-reduction, and (Ax. M)N
-term, B-redex, as it can be B-reduced.

It turns out that untyped A-calculus is a powerful model of computation,
being equivalent to Turing machines [65]. Basically, everything which is
computable with a Turing machine is also computable using A-calculus.
The Turing machine is an intuitive model of computation, it’s easy to
imagine an infinite tape and a head reading and writing symbols from the
tape. In that sense, lambda calculus is very abstract. It’s much harder to
imagine how substitution could be implemented by a mechanical device.

We need to use some kind meta language to describe Turing machines.
On the other hand, the A-calculus is quite close to modern (functional)
programming languages. Therefore results about A-calculus are easier to
transfer into "mainstream” programming languages.

Take for an example HASKELL [39, 46], we can view it as an empirical
proof to the above statement. If we omit types from HASKELL programs
(which we can for simple programs), it will resemble the bare A-calculus.
In addition HASKELL has syntax sugar constructs, to make the language
more practical.

Example 2.6 (Haskell and A-calculus). Consider a simple program for
calculation of the value of a second order polynomial.

sq = Ax.mult x x
poly2 = Aa. Ab. Ac. Ac. Ax. plus (mult a (sq x)) (plus (mult b x) c)
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The equivalent HASKELL program is very similar, only the syntax for
lambda abstraction is changed from Ax. M to \x -> M. Also it’s possible
to abstract over multiple variables simultaneously, i.e. Ax. Ay. f x y can be
writtenas \x y -> f x y.

\Xx => mult x x
\a b cx ->plus (mult a (sq x)) (plus (mult b x) c)

sq
poly2

To mention some of the syntax sugar of HASKELL: It is possible to define
infix operators, for example to make writing arithmetic expressions more
convenient. Also top-level function definitions can be written in equational
style: sq = \x -> mult x x can be written as sq x = mult x x. Using
these syntax extensions, we can rewrite above example as:

mult x X
a*sgx+hbxx+c

sq X
poly2 a b ¢ x

We can take this even further and prettify the typeset Haskell-code, then it
will look very much like A-calculus:

sq x = mult x x
poly2abcx =axsqx+bxx+c

Especially with syntax extension A-calculus is already viable as program-
ming language. One missing part is an equivalence of expressions.

Definition 2.7 (x-equivalence). Two expressions are a-equivalent if one can
be obtained from the other by non-clashing substitution of free variable
names.

Example 2.8. Ax.Ay.x y z is a-equivalent to Aa. Ab.a b z, but Ax. Ay.x y z
is equivalent to neither Aa. Ab.a b cnor Aa. Aa.a a z.

Example 2.9 (Church-encoding). We can represent data as expressions in
A-calculus using Church encoding. The Church encoding is not intended as
a practical implementation of primitive data types. Its use is to show that
other primitive data types are not required to represent any calculation. [45]

Let us consider booleans: true and false. We can represent them as expres-
sions:

true t f =t

falset f = f
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In ordinary programming languages we have conditionals, some kind of
if expression or statement taking the condition, the consequence and the
alternative, for example the ternary-operator in JAVASCRIPT:

result = condition ? consequence : alternative;

With Church-encoded booleans the condition itself acts as an conditional-
expression:

result = condition consequence alternative

Example 2.10 (Functions on Church-encoded data). It’s possible to write
functions working with Church-encoded data. Continuing with the booleans
defined in the previous example, we can write the and-function:

andabtf=a(btf)f

This example would work in both HASKELL:

true tf =t

falsetf =f

and abtf=a(btf)f

ex1 = and’ true true True False — True
ex2 = and’ true false True False — False
ex3 = and' false true True False - False
ex4 = and' false false True False - False

and JAVASCRIPT:

function True(t,f) { return t; }
function False(t,f) { return f; }

function and(a,b) {
return function (t,f) {

return a(b(t,f),f);
}

console.log(and(True, True) (true, false)); // true

console.log(and(True, False)(true, false)); // false
console.log(and(False, True) (true, false)); // false
console.log(and(False, False) (true, false)); // false
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Here we had to "reduce" church-encoded data to the languages’ primitive
data, by applying primitive true and false literals. In bare A-calculus setting,
we’d use a-equivalence to determine whether the end result is true or false.

Example 2.11 (Reduction). As the second last example, we’ll show how a
substitution evaluation model works for the and function defined above. It’s
worth noticing that arbitrary A-calculus term reduction may not terminate.

There are two systematic reduction orders:

* Normal order reduction. Reduce the leftmost outermost B-redex first
(call-by-need)

* Applicative order reduction. Reduce the leftmost innermost S-redex first
(call-by-value).

First we substitute definition for their names in the expression, then try
to apply principal evaluation scheme (Ax — M) N =4 [x/N|M (Defini-
tion 2.5) in the applicative order.

and true false
= (/\61 bty fo.a (b tofo)f()) (/\tl fi. t1> ()\tzfz.fz)
=p (Abto fo. (A1 fi-t) (D fo fo) fo) (At fa-f2)
=p (Ab o fo- (M- (bt fo)) fo) (M2 fo-fo)
=B (/\b t()fo. b tofo) (/\tzfz.fz)
=g Ao fo. (A2 fo.f2) to fo
=g Mo fo- (Af2-f2) fo
:ﬁ )Lto fo.fo
=y Atf.f
= false
And another expression shows the normal order reduction. Note how
both function and argument values of some p-redexes aren’t in the normal
form themselves.

and false true
= (Aa bty fo-a (bt fo) fo) (A1 fi-f1) (At2 fo.f2)
=g (Abto fo. (At f1-f1) (b to fo) fo) (A2 fo-f2)
=p Mo fo- (At f1-f1) (A2 f2.f2) to fo) fo
=p Mo fo- (AMf1-f1) fo
=g Mo fo-fo
—  AEFS
= false
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Example 2.12 (Y-combinator). As the last example in this section we will
consider Curry’s paradoxical Y-combinator.

Y = M. (Ax.f (xx)) (Ax.f (x x))
Yf = (xf (vx) (Axf (xx))

This combinator may be used in implementing Curry’s paradox. [18].

As we see the combinator is not in its normal form, there are sub-terms of
the form (Ax.M)N. Let’s try to do a single reduction:

Yf = (Axf (xx)) (Ax.f (xx))
— f (Axf (xx)) (Ax.f (xx))

We'll see that the term is recurring:

Yf=f((Axf (xx)) (Ax.f (xx)))
=fY)=FFX)=FFF X))
= f)(Y)

Using Y-combinator we can represent general recursion, even if we cannot
refer to names recursively in the A-calculus!

Logically A-calculus is inconsistent. We can write non-normalising terms,
and we cannot decide whether terms have normal forms, because of a halt-
ing problem: A-calculus is an universal language. Computationally weaker,
but logically consistent versions were developed. There are various typed
lambda calculi which are total i.e. their reductions will always terminate to
the unique form.

From the pragmatic point of view, types would help programmers to catch
many kinds of errors in the programs. Also if we have to remember types
of the arguments, why not to write that down. Then types would act
as machine-checked documentation. We can use a type-system to encode
various properties of the programs, which hold if the program is well-typed
(for example: termination or correct memory access).

The next sections introduce various typed lambda calculi in increasing
order of expressiveness of the type systems, from simply typed lambda
calculus to a fully dependent type system.

2.2 Simply typed lambda calculus: A~

In this section we introduce the most elementary typed language, simply
typed lambda calculus, STLC or A~ [5].
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There are many reasons to have a type system in the programming lan-
guage: documentation, guiding code generation or ruling out various
program errors. The motivation for development of A~ was of the last type,
to forbid erroneous programs, e.g. Y-combinator.

The simply typed lambda calculus is only a small syntactic extension of the
untyped one. We'll need a small language for types, with primitive types
and function arrow, and also constants of known types. We’ll annotate
lambda abstraction with the type of the variable. The syntax is shown in
Figure 2.1. Usually we omit the parentheses in A-abstraction, and write
Ax:T.e.

TYPES T:=ac B basis type
| T—>1 function
TERMS e:=ceC constant
| x variable
| e1 e application
| AMx:7).e abstraction

Figure 2.1: A syntax

As we can see the language is very similar to untyped lambda calculus.
The typing rules are syntax directed. Given any A~ -expression, it’s trivial
to check whether it’s well-typed.

As we can see, the syntax of terms is very close to untyped lambda calculus.
In fact, the type annotation of the type of the variable in the A-term is not
necessary. Given the type context defining types of the constants, the type
of expression could be easily inferred, as we will see in Chapter 3. The
formulation with explicit type annotations is called Church notation, and
the implicit one is Curry notation.

Definition 2.13 (Rule, Context and Judgment). A judgment is a "meta-
proposition". One writes
a

to mean that | is a judgment that is derivable, i.e. a theorem of the deductive
system.

It may happen that a judgment ] is only derivable under the assumptions
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of certain other judgments Jy, ..., J,. In this case one writes

Ji,--.Jn B .

Hardly ever do we want to write all assumptions we have, so we combine
them in a context, I

Often, however, it is convenient to incorporate hypotheticality into judg-
ments themselves, so that [;,...,], = ] becomes a single hypothetical
judgment. It can then be a consequence of other judgments, or (more im-
portantly) a hypothesis used in concluding other judgments. For instance,
in order to conclude the truth of an implication ¢ = ¢, we must conclude
¢ assuming ¢; thus the introduction rule for implication is

L¢Fy
Trooyp

Remark 2.14. When working with multiple different systems, the subscript
is often used to differentiate in which system judgments are made, for
example | is derivable from I' in system A:

rHAJ.

However, we often omit the subscript when it’s clear from the outer context.

TYPE CONTEXT I'=c¢ empty context
| T,x: 1 extended context

Figure 2.2: Type context

————— CONST START [hx:t WEAKEN
I'Fc:[c] Ix:abx:a ly:okx:t
I'kep: " The: IFx:the:T
e:T—T / T ,X:ThHe T/ ABS
I'kFeyer: T 'FAx.e:T—> 71

Figure 2.3: A type system

The type system of A is presented in the Figure 2.3. The left-hand-side of
the judgments (called the context, Figure 2.2) contains typing declarations of
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variables that might occur freely on the right-hand-side. In the CONST-tule
we use typeof-operator, [-]. Here it means that the type of constants has to
be known a priori. Later we will talk about types of compound expressions.
Alternatively we can omit the CONST rule, and provide constants in the
initial environment. The START is used to conclude typing based on the
right-most typing declarations in the context. To use other declarations
in the context, we use WEAKEN rule to dismiss unnecessary declarations.
This rules may be combined into single

x:ael

—— VAR
I'Hx:w

rule, but we will use more explicit START & WEAKEN -rules. In A~ as
well as in System F covered in Section 2.3 the context is a set; the order of
the judgements in the context doesn’t matter, as they are all independent.
However, in the Pure Type System formalisation, extending to dependent
type systems (Section 2.4), context is a more complicated "dependent list".

The typing judgments feel natural, if we abstract over a variable and then
apply a value, the type of expression will be the same as in the beginning.
Also vice-versa, if we apply a value, and then abstract over it, the type
will again be the same. One can say, that the underlying logic of the A~
type system, the propositional logic, is sound and complete. Informally this
means that the rules are correct and that no other rules are required. !

This language may seem very limited, but it's powerful enough to simulate
C’s or pre-generics Java type systems. In C there are a few polymorphic
operators, like array-access brackets. Also arrays and pointers are poly-
morphic types. But the programmer cannot define similar polymorphic
types or functions. We will cover them in Section 2.3. Actually arrays are
parametrised over their size as well, which would require dependent-types
Section 2.4.

// getSecond : Array 5 Int -> Int

// getSecond = \arr -> [] arr 2

int getSecond(int[5] arr) {
return arr[1];

}

For example in modal logic, defining sound and complete elimination rule for a valid-
ity operator is non-trivial[58]. Alternative definitions are also possible, giving different
structure of the proofs/programs [52]
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Example 2.15. A~ with booleans Now we can type the Boolean example
from the untyped lambda calculus section (Example 2.9). The simply typed
lambda calculus isn’t powerful enough to define booleans using Church-
encoding, so the equivalent values should be in the given constants.

B = {Bool}
C = {true : Bool, false : Bool, boolElimg,, : Bool — Bool — Bool — Bool}

TRUE-ELIM  boolElimp, truet f =t
FALSE-ELIM  boolElimp,, false t f = f

In addition to specifying the type basis and constants, we provide reduction
rules for boolElimp,,. Without them application would be irreducible, in
other words: not very useful.

The type boolElimp,,; is confusing, but it's a well-known if-else-then opera-
tor with boolean as a result (we cannot make it generic i.e. polymorphic in
A7) Using this constant set we can define an and function:

and a b = boolElimp,,; a (boolElimpg,y b true false) false
Or even simpler:
and a b = boolElimp,, a b false
All the interesting stuff is now happening inside the provided constants:

and true false = boolElimp,, true false false = false
and false true = boolElimp,,; false true false = false

Similarly we can define other functions on booleans: or, xor, etc.

Example 2.16 (Y-combinator). To perform arbitrary computations (i.e. to
be Turing complete, generally useful) we need either arbitrary loops or
arbitrary i.e. general recursion. Having general recursion also means that
every type is inhabited by nonterminating computation. This is a com-
promise programming language make, so we can write more programs.
However, having general recursion on the type-level is probably a bad
thing, as type-checking could be nonterminating. Yet many languages with
expressive meta-programming features have Turing-complete type-level
language (C++ [69], SCALA [23], HASKELL with GHC extensions [22]).
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Simple typed lambda calculus doesn’t suffer from Curry paradox. The
evaluation of A7-terms always terminates, in other words A~ is fotal,
given functions in C set are total, as well. We cannot define Y-combinator,
or any other infinitely-evaluating expressions. Yet we can give a type to the
Y-combinator and add it to the C set, specialised to different types:

fixBool : (Bool — Bool) — Bool

whose execution is defined by

fixBool f = f (fix f)
And now we can perfectly write

fixBool (and false)
= and false (fixBool (and false))
= false

However the opposite example:

fixBool (and true)
= and true (fixBool (and true))
= and true (and true (fixBool (and true)))

is not terminating. If we reason equationally:
result = and true result

then both true and false satisfy the equation!

This kind of paradoxes are unfortunate. Especially when we extend type-
systems to allow computation on the type-level, it’s desirable that terms
have an unique type, which is also computable in a finite time.

To back a bit: why cannot we define the Y-combinator? The problem is bet-
ter explained using polymorphic types, so we postpone it until Section 2.3.

For different type-systems we may ask several questions:

e Given x and ¢, does one have - x : 0?
e Given x, does there exists a ¢ such thatt x : 0?

e Given o, does there exists a x such that+ M : 0?
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These three problems are called type-checking, typability and inhabitation
respectively. For the A~ all three problems are decidable? With addition
of the Y-combinator, inhabitation problem for A~ turns into trivial one, as
there is - fix, id, : « term. Chapter 3 will discuss the typability problem.

As C-example shows, the programmers’ abstraction possibilities are lim-
ited. With the introduction of separate languages for the types, we would
like to have abstraction possibilities there, as well. That leads us to the
polymorphic lambda calculus, also known as System F.

2.3 System F: A2

In System F, A2 [31] it is possible to have types universally quantify over
types. As we can see from previous section, A~ is restricted, we cannot
even write generic function boolElim, but have to resort to different specific
functions like

boolElimg,, : Bool — Bool — Bool — Bool,
boolElimy,; : Bool — Int — Int — Int.

But with lambda abstraction over types we could have:
boolElim : Va. Bool — & — & — &.

Such addition to expressiveness comes with the cost, System F types aren’t
inferable. Even the type-checking of Curry-style System F isn’t decidable,
as it’s equivalent to type-inference [72]. The type-checking of Church-style
is decidable, as all needed information is present in the annotations.

The syntax of System F language is shown in Figure 2.4. The type system
is presented in Figure 2.5. The System F is a strict superset of A~ , which
means that every simple type or simply typed expression is a valid System
F type or expression respectively. The type basis and constants are omitted
from above definitions, as they aren’t strictly necessary to write programs
in System F. Basic types like booleans could be defined using Church-
encoding, much like in untyped lambda calculus case. [45]> We can see it
from the typing rules, we added instantiation, INST and generalisation GEN

2For System F (Section 2.3), inhabitation is undecidable, as well as typability and type-
checking of Curry-style System F according to Wells [72]. Church-style systems obviously
have decidable type-checking.

3Leivant defines datatypes directly in A2.
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TYPES T:=T—=T function

| Va.T type abstraction, polymorphic type
TERMS e:=x variable

| e1e2 application

| AM(x:T).e abstraction

| et type application

| Aa.e type abstraction

Figure 2.4: System F syntax

START Fhx:t WEAKEN
Ix:abx:a Ty:tThkx:t
) / ) ) o
I'tFey:71—71 F/l—el.r App Ix:the:T _ Aps
I'keyer: T 'E(Ax:te):Tt—T
'Ex:Va.t T'kx:t a¢gFV(I)
I G
I'txo:fa/o]t NSt I'-Aw.x:Va.t EN

Figure 2.5: System F type system
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rules to deal with polymorphism. Especially the instantiation rule might
look weird, as we "apply" type ¢ to the expression, but that’s exactly what
for example recent TypeApplications GHC HASKELL extension allows us
to do.

Example 2.17 (Booleans). We mentioned above that Church-encoded booleans
are possible in System F. The only difference is that we must have explicit
type abstraction:

type Bool =Va.a — a0 — «
true = Aa. At . Af st
false = Aa. At : . Af ra. f

Let us type-check the expression of true:

START
WEAKEN
ABS

trakt:n

troa, frabta
traFAfrat:n—

eFAM I Afrat i S =
eFAa At o Af et Voo - o — o

ABS

GEN

Using the above definitions we can once again define an and function:

and : Bool — Bool — Bool
and = Ax : Bool. Ay : Bool. x Bool y false.

We can typecheck this example as well, see the derivation in Appendix A.1.
As the term is well-typed, we can erase type annotations and abstractions,
and evaluate the term exactly as in the untyped lambda calculus case.

Example 2.18 (Y-combinator). Continuing from A~ Y-combinator example.
Now we could give a type to a generic fixed-point operator: fix: (x — a) —
«. Yet we cannot fill the missing types in the Y-combinator expression, give
the types to subexpressions: Y = Af — (Ax — f (x x)) (Ax — f (x x))
The problematic part is self-application: x x. Then only applicable typing
judgement is APP:

'Ex:p—a Tkx:pB

APP
I'Fxx:aw

From which we get that the type of x should be both 8 — & and $, which
would require recursive type definition:
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type =8 —«

Such types cannot be expressed in System F. In a type-system with equi-
recursive types, such type could be written as

type f=py.v = a

The equi-recursive style places stronger demands on the typechecker, which
must work with infinite structures. Moreover, the interactions between
equi-recursive types and other advanced typing features can be quite com-
plex, leading to significant theoretical difficulties. [59]

Probably for this reasons Haskell uses iso-recursive types, i.e. requiring
explicit constructor or newtype wrapper:

newtype Nua = Nu (Nu o — «)

Yet for example AGDA and COQ forbids such recursive types*. Types
like Nu would make every type inhabitant, thus making underlying logic
unsound, see Appendix B.1 for Agda example.

Another interesting property of System F is impredicativity. A type system
that allows a polymorphic function to be instantiated at a polymorphic type
is called impredicative, while a predicative system only allows a polymorphic
function to be instantiated with a monomorphic type. Generally, self-
referencing definition is called impredicative.

Definition 2.19 (Impredicativity). More precisely, a definition is said to be
impredicative if it invokes (mentions or quantifies over) the set being defined,
or (more commonly) another set which contains the thing being defined.

Type-inference is much easier in a predicative type systems. In Section 3.3
we will discuss a restriction of System F, which is predicative.

In this section we introduced polymorphic lambda calculus: System E. It's
already a very expressive calculus, which is a basis for modern functional
languages like Haskell or ML. Yet (as always?) this is not the end of story.
More features can be added to the type-systems.

4Recursion can occur only in strictly positive position, loosely speaking "on the right
side of the arrow". for example data Nat = Z | S Nat
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24 Dependent type systems

The natural course of the type-system development is to introduce even
more abstraction mechanisms, making type-system more expressive or/and
robust. There are various ways to arrive there, and we will go through an a
bit artificial path by improving upon System F in the right direction.

2.4.1 System F as a Pure Type System

The method of generating the systems in the A-cube has been generalized
independently by Berardi and Terlouw [7, 66]. This resulted in the notion
of pure type system PTS. Many systems of typed lambda calculus a 14 Church
can be seen as PTSs. Subtle differences between systems can be described
neatly using the notation for PTSs. [5]

If we look at the type-checking judgment of true in Example 2.17, the type
variables occur out of nothing. Also we have unelegant « ¢ FV(I') -check.
The I' context contains only the term-variables (we can interpret other
symbols as constants). There isn’t similar context for type-variables. We
can introduce a kind context, which will change e.g. GEN rule to:

I'tx:t agFV(D) CEN s Aow;Tagbx:t

G
I'FAx.x:Va.1 NTAF Ao x V. T N

Now the type context I' is parametrised by the kind context. A contains
all type-variables which can be used in the types. We could add similar
context, with quite simple rules to check well-scopedness (and closedness)
of untyped lambda calculus terms. Trying to mechanise this approach®you
may notice that the type language resembles A~ very much (compare the
new GEN rule to the ABS rule), the type of types is kinds. You might ask,
what if we would have System F on type level, what will the term language
look like, i.e. what if we will have type of kinds.

There are different ways to make that construction elegantly, where the
simple, yet non-obvious one is to unify types and terms. We will briefly
introduce Pure type systems, describe System F in the new formalism, and
later generate other, more expressive type systems as PTS.

Definition 2.20. The specification of a PTS consists of a triple (S, A, R) where

5See https://gist.github.com/phadej/780c1f5706b6cee8d5bd for System F
and https://gist.github.com/phadej/82084de18b314701fa7e for A~7. Also Ap-
pendix B.5, TYPESSON also has kinds, which are used to construct well-typed type context.


https://gist.github.com/phadej/780c1f5706b6cee805bd
https://gist.github.com/phadej/82084de18b314701fa7e
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e S is subset of constants, called sorts.
o A is a set of axioms of the form ¢ : s wherec € Cand s € S.

e R is a set of rules of the form (s, s, s3) with sq,s5,53 € S.

See Figure 2.6 and Figure 2.7 for the syntax and the typing rules respectively.

PTS-TERMS t:=x variable
c constant

|

| A(x:t).t abstraction
| TI(x:t).t I[1-type, dependent product
| tt application

Figure 2.6: Pure type systems’ syntax

c:sc A
ekc:s AXIOM Ix:abx:« START
'Fx:a THPB:s seS§ WEAKENING
Iy:BFx:«a
I'Fa:s; T,x:akB:isy 51,5,53€R
P
' (TIx:a.pB):s3 ROPUCT
I'-f:(Ilx:a.f) Try:a ADPPLICATION
I fx:[x/y]B
[x:atbe:p TH{IIx:a.f):s seS§
A
' (Ax:a.e): (ITx : a. B) BSTRACTION
'Fx:a THB:s a= ses
p ﬁ"B CONVERSION

'=x:p

Figure 2.7: Pure type system

The rules probably need some explanation. The AXIOM, START, and WEAK-
ENING rules are straight-forward. The PRODUCT rule is about dependent-
product. The non-dependent product is an ordinary function, but in the
dependent variant, the type of the result may depend on the value of the
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argument. The APPLICATION and ABSTRACTION work with dependent
products. See also Remark 2.22. The last rule, CONVERSION is needed be-
cause to compare types, we might need to compute some beta-reductions.

Example 2.21 (System F as PTS). For expressing System F we need only
two constants x and L.

S *,
A *: U
R (%, %, %), (0, %, %)

Judgment T : x can be read as "7 is a type". Respectively, x : [ can be read
as "x is a kind". There are no other kinds then x n System F, but later we
want to talk about type constructors which have kind x — x etc.® Many
type-systems can be described by picking different SAR-triples, for example
A7 is almost the same, except R has only (%, *, x)-rule.

As there are two triples in R, there are also two (dependent-)products, i.e.
what we can abstract over: universal quantification (V) and functions (—).
Thus I1 generalises both:

xn—B=Ilx:ap
Va.p=1la: x. B

Respectively we use A for both A and A of System F.

Remark 2.22. The rules R define which kind of (dependent-) products we
can make, and they determine which abstractions we can make. We can
fuse PRODUCT and ABSTRACTION into one, which may help understand
the idea:

'Fa:s Ix:akFpB:sy

PRODUCT
Ix:atke:p '+ (TIx:a.B):s3
ABSTRACTIO
' (Ax:ace): (Ilx: a.p) BOTRACTION
into
Fa: rake: B
'Fa:s I'x:abe:B:sy PRODABS

'k (Ax:ae): (TTx:a.B) :s3

®We can have type List a, but we cannot talk about non-applied List, we need ((J, [, )
-rule for that. Adding it will give us a Aw system.
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Here we use a shorthand notation: a : b : ctomeana : b, b : c. Let’s take for
example (0, x, %) rule of System F, note how « : [J axiom is essential here
as well.

I'E»:0 Ix:xFe:p:x
I (Ax:ke): (TTx: % B) :

PRODABS-L], %, x

which is the same as the GEN rule in Figure 2.5.

Let us revisit booleans once again:

Bool = I'law : %. 1Tt : . TIf : .t
true = Aa : % At ta Af rat
false = Aw : x At Af ra. f

First we can show that Bool is a type, i.e. € = Bool : %

PR el A

wcx ok JAEE S A ol A
acx, bk wcik b, fratak
Rl B R Sl U A
ek %[ wrx =TI TIf t e %

e Tla s % ITt 0 TIf t oo o

And now we can show that ¢ I~ true : Bool, we omit the type derivation of
type-part of ABSTRACTION rule, as they are the same as above (the first is
e = Bool : x). The complete derivation is shown in Equation (A.3).

aciktiabtia
aiktia, frab-ta
wrxtrabEAfract IIf o :
wixk At Af ract TTE Tt e = Bool :
eF A x At Af ract s Tl s IIE 0 TIf t o

Using the PTS formalism we can easily define new type-systems, by using
different S, A, R triples. With only a single rule: R = (%, x, *) we get A7,
which easily shows that A is a subsystem of System F. By using different
rules we get other type systems, we will explore some of them in the next
sections.
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2.4.2 System Ax

This subsection is a slight detour, to address one innocent looking attempt
to dependent-types. The system Ax in which « is the sort of all types,
including itself, is specified below.

Definition 2.23 (System Ax).

S x
A o,k
R (%, %, %)

All construction possible in AC (which is a fully dependent type system,
Section 2.4.3) and also System F, can be done in Ax by collapsing [ to *.
However, the system Ax turns to be inconsistent in the sense that every
type is inhabited.

The system Ax is also impredicative, as we have type in type. This is
different from impredicative polymorphism of System F discussed previously.

Recent development in Haskell introduced « : % rule, via TypeInType exten-
sion. This rule often causes type checking to be undecidable in dependently
typed language [4, 12]. This axiom permits the expression of divergent
terms - if the type checker tries to reduce them it will loop. However,
these flaws do not concern us in Haskell. Adding dependent-type features
to Haskell is not an attempt to make GHC a proof assistant. All types
are already inhabited, by undefined at the term level, and by the open
type family Any (k :: x) = k at the type level. If having % :: x allows
us another way to inhabit a type, it does not change the properties of the
language. [25, 71].

The * : x axiom, might be a reasonable and simplifying choice in a language
where the type-terms lack normal forms already. On the other hand, uni-
verse hierarchy in CAYENNE [4] is justified by two reasons: first, x : x would
make a type-system unsound as a logic even in the absence of recursion;
second, it would make type-erasure impossible.

The inconsistency following from * : x was first proved by Girard [31],
He also showed that the circularity of x : x is not necessary to derive the
paradox. For this purpose he introduced system AU. A smaller system AU~
is also shown to be inconsistent [40]. The corollary of these proofs is that Ax
is also inconsistent, by applying a contraction f(x) = f(0) = f(A) = %
mapping AU and AU~ onto Ax.
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2.4.3 Calculus of constructions: AC

It’s very natural to ask whether System F could be extended further. Using
PTS framework it’s surprisingly simple. By adding a few rules we get
Calculus of Constructions, AC.

One such extension is to allow some computations on the type-level. One
quite natural way is to fuse terms and types, which will result into Calculus
of constructions [17].

Definition 2.24 (Calculus of constructions as PTS).

S *,
A * 1 [
R (%, %, %), (O,%,%), (x,0,0),(0,00)

There are two new rules in addition to the rules in System F (Example 2.21):
(0,0,0) allows us to abstract over types to produce new types, in other
words write type-level functions. The (%, [, ) is a “fully-dependent-types”
rule making possible types to depend on terms.

Example 2.25 (Length-indexed list). The most used example of dependent
types is the length-indexed vector. As we are still using church encodings
to represent data types, length-indexed vectors are represented similarly as
tuples. We use a shorthand notation: « — b for IT(x : a).b.

** 0

* =k = K

N* O

IN* = %% — (%% = %*) =
Unit : x*

Unit = A(r:*).r —r

*

Vector : o — IN*" —
Vector = A(a:%). A(n:IN*" ). TI(r: %).
n Unit (A(p:+*). A(r i %).a = pr)r
Vector « 0 =TI(r:%).r —r
Vectora 1 =TI(r:x). a —r—r
Vector a2 =TI(r:x). 0 - —r—7r
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And while AC is a very expressive type-system, there are theorems which
cannot be proved in it. In other words (Curry-Howard) there are types for
which terms cannot be constructed.

One very simple example is induction over natural numbers. The non-
dependent induction is trivial, as it’s the church encoding of natural num-
bers:

AMa:x).a— (a—a) —a

Yet we will need dependent-induction to prove even simple theorems about
natural numbers, which are needed for practical programming, not only
for making mathematical proofs.

I[I(P:IN — %).P0— (ITI(n:IN). Pn — P (succn)) — (I1(n : N). P n)
We cannot derive a term with this type [30].

The above is the reason why length-indexed list example uses N*" type,
and not ordinary Church encoded N = IT(a : ).« — (« — &) — a. Even
if we had Vector a : N — %, we’d need dependent induction to define
simple functions such as replicate : T1(a : ) (n : N).a — Vector n.

To resolve this issue inductive types were introduced to the type-theories.
Definition of inductive types adds the elimination function (induction prin-
ciple). It turns out that adding inductive types to AC made it inconsistent.
So Calculus of constructions was also made into a predicative system, re-
sulting into predicative Calculus of inductive constructions, pCIC, which is
used as core of COQ proof-assistant.

The universe hierarchy (PTS rules and axioms, relationship of sorts) of the
system pCIC is complicated. In next subsection we introduce one version
of Intuitionistic type theory which in our opinion is more elegant.

2.4.4 Intuitionistic type theory

The Intuitionistic type theory, is another dependent type-theory. It was
introduced by Per Martin-Lof [48, 49]. Instead of two sorts x and L1, we
have a tower of universes: Uy, Uy, Uy, . ..

Definition 2.26 (ITT as PTS).
S U, nme N
./4 Z/In . Z/[ﬂ+1
R (un/ uI’HI unLIm)/ n,me IN
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where LI is a max function.

Proof-assistant AGDA [54] uses this form of Intuitionistic type theory, we
can see it from a small check.

f:V{nm}—(a: Setn)— (b:a— Setm)— Set (nlm)
fab = (x :a) —>bx

Remark 2.27 (System Fisn’t a subsystem of ITT). AsITT isn’t impredicative,
it’s trivial to see (or try) that even church encoding of natural numbers is
not typable in ITT as we want it:

Nat : Set; — Cannot make Set
Nat = (a : Set) »a— (a —a) —a

But we can define an inductive data type, and its elimination and dependent
induction:

data IN : Set where

zero : IN

succ : N — IN
N-ind : {{: -} >N —>(a:Setl)—a— (a—a)—a
IN-ind zero azs — z

IN-ind (succn)azs = s (N-indnazs)
IN-dep-ind : {¢ : _}
— (P : IN — Set /)
— P zero
— ((n : N) - Pn — P (succn))
— ((n : N) = Pn)
IN-dep-ind P PO PS zero = PO
IN-dep-ind P PO PS (succ n) = PSn (IN-dep-ind P PO PS n)

The ¢ argument used is a universe level. Definitions above are universe
polymorphic, which is a way to work around repeating definitions on the
various levels.

The language with very expressive type-system can and is used as formal
proof assistant. For many practical day-to-day programming applications
such power is not necessary, we want to talk about lists of specific length,
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or work with heterogeneous lists, and that might be enough. However
there is some joy in being able to specify, write down the program and
prove that it satisfies the given specification [53].

We would like to have expressiveness of a fully dependent type system but
convenience of some scripting language. We will use AGDA as our "target"
language, elaborating types from convenient source languages into AGDA.
This is an instance of universe pattern described in the next section.

2.5 Universe pattern

As we have seen, a dependently typed language allows programmers to
write functions that compute types from ordinary data. We say that the
data is a code for the resulting types, and that the collection of types selected
by the codes is a closed universe. Universes can be used for embedded
domain-specific languages, to do safe ad-hoc polymorphism, and to write
generic libraries. We use this approach to implement and reason about
domain-specific type-systems.

We start with an untyped representation of the program, x,s,pes. We
elaborate this representation into a typed variant, x,,,; which has type
Ttyped- 10 see that our domain-specific language with its type-system is
reasonable, we have an embedding into a bigger language: xj,,s; with type

Thost-

The intermediate stop might seem unnecessary, but that intermediate lan-
guage may have properties, such being very specific (so there aren’t acciden-
tally valid programs) and have decidable type-inference. If we can define
all maps (arrows in the figure), and show that they commute, then with a
bit of hand-waving we can prove that our domain-specific type-system is
consistent.

Va. o — « Ila : x. TIx : . &

Ax. x A Ax o x—>Ax i % Ax . x

Figure 2.8: Universe pattern for untyped lambda calculus, HM and AC

Example 2.28 (A-calculi: untyped, Hindley-Milner , and System F). We can
have untyped lambda calculi as an untyped language, HM as the typed
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version of it, and System F as a bigger language where HM is embedded.
The term and type embedding maps are trivial identity maps. We can also
have Calculus of constructions in place of HM, in Figure 2.8 these relations
are shown as a diagram: Hindley-Milnder terms are written with explicit

types.

By proceeding through Hindley-Milner type-system we reject many pro-
grams which could be valid in System F or Calculus of Constructions. On
the other hand, A~ has decidable type-inference, as we will see later.

Example 2.29 (A~ embedded into Agda). We can also embed A~ into
Agda. We omit the representation of and embedding map of terms. The
type encoding, with only natural numbers on the other hand is simple’.
This calculus could be easily extended with e.g. type-level natural numbers
(as in TypedLab Chapter 4, ), which wouldn’t be embeddable into System F
anymore.

module StlcSmall where

data SticType : Set where
nat : Type
_=>_: (ab : Type) — Type
{- Embed stlc type into agda type -}
El : StlcType — Set
Elnat = N
El(a = b) = Ela—Elb

For bigger example see Appendix B.2.

2.6 Conclusion

In this chapter we introduced various lambda calculi, and seen different
type-systems. In many occasions we have mentioned that not all type-
annotations are necessary, in many cases types can be inferred for us. We
will investigate type-inference in the next chapter. Also after discussing
dependent types, we shortly mentioned the universe pattern, which allows
us to concentrate only on the inference of domain specific types, and get
consistency of type-system for free. A larger example is TYPEDLAB which
we cover in Chapter 4.

“thus the name: simply typed lambda calculus



Chapter 3

Type-inference

In many programming languages with a type system, also like calculi in
the previous chapter, it is necessary to manually annotate symbols and
functions with their types. It is then the task of the compiler to verify that
these types are consistent, in other words type-check the program.

In this chapter we discuss constraint based type-inference process. This
process has two distinct phases

1. the generation of constraints in the abstract syntax tree, and

2. the solving of the constraints.

The approach is the same as in HELIUM [35].

In sections 3.1 and 3.2 we use A~ as an example language. After that
we discuss Hindley-Milner type-system in Section 3.3. We conclude the
chapter with generalisation of the constraint based approach in Section 3.4.

3.1 Type constraints of A~

In our description of simply typed lambda calculus, we have explicit type
annotations of the lambda abstraction variable. However, they are not
strictly necessary. We can infer missing type annotations, if the expression
can be well-typed in the first place. Similarly, we could reuse the name of
the function (overload it), and a compiler can pick the right variant based
on the context. There could be various omittable or implicit parts in the
language, which the compiler fills in for us.

28
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Let us concentrate on A~ for a moment. It is quite unnecessary to write
type annotations for parameters in

plus3 = A(x:IN) (y:IN) (z:IN).plus x (plus y z)

Especially if we know that the plus function works only on the type int!

The inference algorithms in this thesis are based on the same and sim-
ple principle: gather constraints, and then solve the resulting constraint
problem.

In the simply typed language case we need only one constraint type: type
equality « = B. The language of constraints is derivable from the typing
rules of the system. Recall typing rules from Figure 2.3. The rules are
syntax-directed, which means that for each syntactical construct, only one
rule is applicable. Each rule also gives rise to constraints, which can be seen
Figure 3.1. The original typing rules are on the left. For each term where we
could apply a rule, we generate a constraints shown on the right. It’s worth
noticing that only a single rule is applicable for each syntactic construct.
This is important, as we’ll see later. We denote fresh type variables with p
letter, and use typeof-operator [-] also to denote the type-variable used to
hold the type of the expression.

[l =p
I'Fc:[c] CONST p =[]
xiael Il = p
Taia O 0 = [4]
TEfit—1v Thrax:T App If xIr =p
Tk fx:7 [flr = [xlr —p
. - _
Ix:the:t _ Aps [Ax.e]r :pl
'FAx.e:t—1 P:P—>[[e]]1"xp’

Figure 3.1: Constraint generation for A~

If we omit the type annotations in the above example:
plus3 = Ax y z.plus x (plus y z)

We can gather constrains easily by traversing the syntactical structure
of the expression. We introduce a new type variable for each expression,
and using the information about types of subexpressions we can tell the
constraints.
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Example 3.1 (Collecting constraints for f x). For example the application

f x. The part of algorithm of constraint gathering can be written in Haskell
as:

collect :: ConstraintMonad m
= [TypeVar] - Type of bounded variables
— Term — Term to type

— m TypeVar — Type variable for the term type
collect ctx (App f x) = do

fIype < collect ctx f
xType < collect ctx x
yType < newVariable

- fType = xType — yType

tellConstraint (typeEqual fType (typeArrow xType yType))
pure yType

The Constraint Monad above offers two actions: generating fresh constraint
variables (State) and ability to gather generated constraints (Writer).

class ConstraintMonad m where
newVariable :: m TypeVar

tellConstraint :: TypeConstraint — m ()

Example 3.2 (Constraints of plus3). When we collect constraints from the
plus3 example above, we get the following constraints:

[plus3] = 11

[plus] =0 [plus] =3
[x] =1 [v] =4 [z] =6
0=N—-IN—-N 0=1—>2 3=N—-N—-N
3=4—5 5=6—>7 2=7—8
9=6-—8 10=4—9 11=1—10

We omit the type-variables of the subexpressions, to one more:: the body of
the function is variable [plus x (plus y z)] = 8.
Formally, to support type annotations, we’ll need to add a new typing rule

'Ex:t ANNOT
FE(x:7):7 .

At this point we’ll relax our formalism, and implicitly include this rule to
all type-systems in this work.
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Example 3.3 (Partial typing). In this approach it’s easy to add full or partial
type annotations, as those would result as additional constraints. For
example we could have a partially typed program

plus3 = A(x:IN) y z.plus x (plus y z)

In addition to the constraints from the previous example, we'll only need
toadd 1 = IN constraint, as we "know" what type of x is.

Alternatively we could write type signature to the whole function, using
underscore for omitted parts of the signature:

plus3:IN — _ — _ — _
plus3 = Ax y z.plus x (plus y z)

In this case also a single additional constraint would be sufficient: 11 =
N—-12-13—-14

After we have gathered constraints, we have to actually find a solution
to the constraint solving problem. In the following section, we’ll discuss
unification, as a method to solve equality constraints.

3.2 Unification

After the constraints are collected, we need a method to solve them. Struc-
tural equality constraints can be solved via unification. The solution of a
unification problem is a substitution, that is, the function from problem’s
variables to the expressions.

For example, using x, y, z as variables, the singleton equation set
cons x (cons x nil) = cons 2 y
is a syntactic first-order unification problem that has the substitution

X2
y — cons 2 nil

as its only solution. The syntactic first-order unification problem

y=cons2y
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has no solution over the set of finite terms that would result into construc-
tion of infinite types, which we disallow. Otherwise Y-combinator would
be typable (see Example 2.12, Example 2.16 and Example 2.18).

The first algorithm is given by Robinson [64] yet more efficient algorithms
are developed [47]. From our perspective, the details of the underlying
algorithm are not important. The library we use, unification-fd, has
powerful abstraction: Unification monad, which frees us from nasty details
of the low-level implementation.

Example 3.4. The idea of unification is simple, let’s take two first constraints
from Example 3.2:

0=N-—>N — NN
0=1—2.

It’s quite obvious that 1 unifies with IN, and 2 with N — IN, because
N —-N —-N=N — (IN — N), i.e. — is a right associative operator.

1— N
2— N — N

Using this substitution, we can simplify some of the remaining equations

2=7—28— N—-N=7—-28
11=1—-10— 11 =N — 10.

From the first equation we get 7 — IN and 8 —— IN. And we can continue
a similar process, until we find a solution or contradiction, like an equation
IN =1 — 2 which don’t unify.

The unification algorithms mentioned above calculate a solution to this
problem in programmable fashion. In the same way as Gauss elimination is
an algorithm to calculate a solution to the system of linear equation, though
a human could spot easier ways to solve the system.

In the A~ case, we would use the unification monad from the library directly
as ConstraintMonad and solve the constraints on the go. Or even infer
the types directly, as they can be decided with only local information, in
A case. Yet, as we'll see later, the separation of concerns as we can use
different techniques for solving different types of constraints. For example
the syntactic structure of the term language could be different or/and we
could use a different constraint solver.



CHAPTER 3. TYPE-INFERENCE 33

Alternatively we can modify the unification procedure (or more general
constraint solver) to dismiss unsatisfiable constraints, generating error on
the go. In such a way we can continue the type-inference process, possibly
reporting multiple errors. [35]

3.3 Hindley-Milner

Hindley-Milner (ML) [19, 37, 50], also known as Damas-Milner or Damas—
Hindley—Milner, is a classical type system for the lambda calculus with
parametric polymorphism. It's a subset language of the System F. Among
HM'’s more notable properties is completeness and its ability to deduce
the most general type of a given program without the need of any type
annotations or other hints supplied by the programmer.

3.3.1 Declarative version

We begin by investigating a declarative version of Hindley-Milner type
system. It’s simple, elegant, and abstract. The syntax-directed variant in
Section 3.3.3 is more bulky, but is more concrete and closed to an algorithm.

Definition 3.5 (HM syntax). The syntax of the HM system is almost the
same as in System F. The additional let case is added, to allow the inference
of polymorphic bindings, called let-generalisation. The types are restricted
to be only of the first rank, the universally quantified arguments aren’t
allowed. The whole syntax is presented in Figure 3.2. The function type is
created by type application, when D =—.

In the vanilla Hindley-Milner system, there aren’t type-annotated lambda
A(x : 0).e. The term syntax is almost the same as in the untyped A-calculus.
Let-expressions are an additional redundant construct, which can be desug-
ared into

letx =e;ine;, +—— (x—e)e

Yet, in the HM-system let-expressions have a special typing rule to allow
type-inference of polymorphic let-bindings.

There are six rules in the declarative version of the Hindley-Milner system,
they are presented in Figure 3.3. Note that types in the context could be
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MONOTYPES T :=« type variable
| Dt...T type application
POLYTYPES 0 :=7 monotype
| Va.o universal quantification
TERMS e:=x variable
| e e application
| Ax.e abstraction
| letx =ejine; let expression

Figure 3.2: Hindley-Milner syntax

x:ocel VAR I'Fey:0 T,x:oFe:T Let
I'kx:0o I'Fletx =eyine; : T
. / : . -
'Ef:7t—=r7 ll"l—x.T App F,x.rl—e.r/ ABS
'Efx:v 'FAxe:t—71
IFe:Va.o 'te:oc agFV(T)
I G
I'ke:la/T|0 et I'Fe:Va.o EN

Figure 3.3: Declarative Hindley-Milner type system
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either mono- or polytypes. In particular we can abstract (ABS) only over
monotypes, but in the LET rule we can introduce polytyped bindings

Rule INST quietly makes a very important point: the system is predicative,
as type variables may range only over monotypes. We can see this from the
fact that the type variables in INST are instantiated by T types, not ¢ types.

Example 3.6 (Typing id). In the Hindley-Milner system the V quantifier is
always the outer one. For example we cannot write a function which takes
the generic id function as an argument, it has to be specialised, yet the type
of the id function itself can be deduced.

X:xex:u

VAR
X:akx:ow ABS
eFAx.x 1 — a & FV(e)
GEN - - VAR
e Ax.x:Va.oo — id:...Fid: ... LeT

ebletid =Ax.xinid : Vo.oo — «

Given the F id : Va.a — o, the expression id id is typable in Hindley-
Milner system, yet there are also other deductions for it in the System F. If
we write down type abstractions and applications explicitly, it will be clear.
First recall the id in System F:

id=Ax.Ax 0. x:Va.ao —

Using it we can add type abstractions and applications at least in two ways
for the id id expression

id id ~ AB.id (B — B) (id B) : VB.p — B (3.1)
idid ~ id (Va.oo — «) id (3.2)

The version in (3.1) is how we can type the expression in Hindley-Milner.
However (3.2) variant isn’t possible in Hindley-Milner, as there we can
instantiate type-variables only with monotypes.

3.3.2 Subsumption and principal type

Odersky and Laufer use the term subsumption for "more polymorphic than"
-relation [44]. For the next sections we’ll need to define such relations

properly.
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Definition 3.7 (¢ < 7 relation). The < relation is between poly- and mono-
type.

oc=xT

means that the outer quantifiers of ¢ can be instantiated to give 7. In-
stantiation is used in the rule INST to instantiate a type of a polymorphic
variable at its occurrence sites. This is a restricted version of < relation
(Definition 3.11), where the right-hand-side is monotype.

Example 3.8. More concretely, taken the type of identity function, we can
instantiate it to work on natural numbers:

Va.wx - a <IN —- IN

One might also need to compare two polytypes. For example:

NLCN
IN — Bool C IN — Bool

Va >aCN-—>N

V.au — a« C VB.List B — List B

Voo = a TVBY.(B,7) = (B7)

Vo B.(a, ) = (&, B) T V. (v, 7) = (1,7)

The third example involves only simple instantiation, but the last three
illustrate the general case. Notice that the number of quantified type

variables in the left-hand type can be the same, or more, or fewer, than in
the right-hand type, as the last three examples demonstrate.

Definition 3.9 (C-relation). Type-inference for arbitrary-rank types would
need C-relation. It can be defined using three rules [57]:
/

C C o
MONG a/Tlc Co SpEC cCo agFV(o)

SKOL
TCT Va.o C o cC Va.o!

Example 3.10. To illustrate the relation, let us see the proof of

V.o = a CVB1.(B,7) — (B,7)

First we’ll use SKOL to skolemise  and 7y, checking that they are not free in
Va.a — a, and then use SPEC to instantiate a with (8, 7).

MONO
(B, v) = (B,y) E(Bv) = (B,7)
Vea oL (B By et P
vaw » a EVY. (By) = (BY) o o)

Voo = a TVB . (B,v) = (B,7)
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However, we rely only on a simpler < -relation in this work. It will be
useful in Section 3.4.

Definition 3.11 (<-relation). ¢ < ¢’ relation means that the some of outer
quantifiers of ¢ can be instantiated to give ¢’. It’s similar to C-relation, but
without SKOL rule:

a/Tlo < o’

SPEC
<7 Va.o <o

The relation symbols act as mnemonic for how "big" the relations are:

cx1T=>0<T
c<od =0C/c

Definition 3.12 (Principal type). The Hindley-Milner rules allow one to
deduce different types for one and the same expression. For example

I'Ax — x:Vax — «
I'FAx — x:IN — IN.

The Hindley-Milner system has the principal types property. In other words,
for all terms typable in a particular context, there is some "best" type for
that term.

If some ¢’ exists such that I' - x : ¢/, then there is ¢ (the principal type of x
in context I' such that

I'tx:0o
Vo' THt: 0" =ocCo”

The principal types are very import in practice. It means that an implemen-
tation can infer a single, principal type for each let-bound variable, that
will work regardless of the contexts in which the variable is subsequently
used.

3.3.3 Syntax directed version

Each rule in Figure 3.3 has a distinct syntactic form in its conclusion, except
for two: GEN (generalisation) and INST (instantiation). Because these two
have the same syntactic form in their premise as in their conclusion, one can
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apply them pretty much anywhere; for example, one could alternate GEN
and INST indefinitely. This flexibility makes it hard to turn the rules into
a type-inference algorithm. For example, given a term, say Ax. x, it is not
clear which rules to use, in which order, to derive a judgment - Ax.x : o
for some ¢.

If all the rules had a distinct syntactic form in their conclusions, the rules
would be in the so-called syntax-directed form, and that would, in turn,
fully determine the shape of the derivation tree for any particular term t.
This is a very desirable state of affairs, because it means that the steps of
a type inference algorithm can be driven by the syntax of the term, rather
than having to search for a valid typing derivation.

A common treatment of HM uses such a syntax-directed rule system due
to Clement [15]. In this system, we merge INST into VAR rule and GEN rule
into LET rule. The resulting rules are shown in Figure 3.4. As the rules
are merged, a variable lookup always produce an instantiated monotype,
and let-bindings will always be generalised. The let-generalisation is also
determined to always produce the most general type by quantifying over
all monotype variables in T, that are not bound in I’

x:cel' o=x1

'Ex:t VAR
. / : . -
I'Ef:t—=7 ll"l—x.r App F,x.rl—e.r/ ABS
'Efx:7 'FAxe:t—7

IT'key:t Tx:Va.thke:7v a=FV(t)—FV()
I'Fletx =epine; : T

LET

~

Figure 3.4: Syntax-directed Hindley-Milner type-system

Example 3.13 (Typing id directed by syntax). Recall Example 3.6, there the
LET rule is followed by the GEN rule. In a syntax directed system these two
derivations will merge into one.

X:wEXxX:a o=«
VAR .
x:abx:w ide... VYa.a—a=p—=p

eFAx.x10 —w ABS id:Vea.o »atid:p—

eFletid =Ax.xinid: p — B

VAR
LET

The Va.a — o < B — B is given by instantiating & with S.
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As we can see, we cannot derive a polymorphic type for the expression
in a syntax-directed system. The syntax-directed system is incomplete.
However, a weaker version of completeness is provable

T |_declamtive e:o=T p-syntax , . - Ao =T

implying that one can derive the principal type for an expression in a syntax
directed type-system, if one generalises the type in the end.

From the point-of-view of this thesis, the ML is a very nice example, where
we sacrifice some of the expressiveness of the parent type-system (System
F) as the trade-off for more powerful tooling. In this case complete type-
inference!

The syntax-directed formulation is very close to actual Algorithm W, but we
leave its presentation, as we will concentrate on constraint based inference
in the next section.

3.3.4 Hindley-Milner as a Pure Type System

The Hindley-Milner type-system can be expressed as a Pure Type Sys-
tem. The key here is to realise that there are two kinds (or sorts) of types:
monotypes, M and polytypes P, instead of just one x. We can abstract over
monotypes, generating polytypes.

We don’t need [] as we don’t abstract over polytypes, especially we cannot
have P : L.

Definition 3.14 (Hindley-Milner as a Pure Type System).
S M, P

A M:P
R (M,M,M),(P,M,P),(P,P,P)

Let’s see what (P, M, P) means in terms of PRODABS (Remark 2.22):

'EFM:P IN'x:MFe:f: M
'k (Ax:M.e): (IIx:M.B) : P

If we abstract over a monomorphic type variable x, we get an expression
of type I'lx : M. B = Vx. B, which is a polymorphic type. The (P, P, P) rule
is similar, but the abstracted type is already polymorphic. The remaining
(M, M, M) is used to form ordinary functions.
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Remark 3.15 (Hindley-Milner is a subsystem of ITT). Take M = U/ and
P = U, i.e. the first and second universes of the ITT universe tower (2.4.4).

Remark 3.16 (Hindley-Milner is a subsystem of System F). This isn’t as
simple as with ITT, as we cannot directly smash monomorphic and poly-
morphic types into just "types", i.e. M = P = x, as we’d get a x : x axiom.
We’d need to make a more complicated simultaneous rewrite

M — %
P %
M:P— x:[]
(P,M,P) — (O,%,%)
(P,P,P) — (O, *,%).

In other words, we’ll rewrite some P to x, and others to [1. We'll omit the
proof that this works, but it’s a straight-forward inductive proof.

Remark 3.15 and Remark 3.16 highlight an interesting fact: Hindley-Milner
is a subsystem of two other type-systems which aren’t comparable to each
other.

3.4 Constraint based inference for higher order
calculi

The Helium Haskell compiler work [35, 36] have shown that the constraint
based approach is viable for polymorphic languages, and can even be
scripted to achieve better type errors. We take this approach even further
where the type-system itself is modified to work better!

As in A7 inference, we'll develop a constraint language from the typing
rules. We will use the syntax directed version (Section 3.3.3). As there are
additional judgments, we’ll need to introduce new types of constraints:

n=n|cTt|Tt<r0C

An equality constraint (71 = 1) is already familiar. The other two kinds of
constraints are used to deal with the polymorphism. An explicit instance
constraint ¢ < T states that T has to be an instance of ¢. This constraint
is related to rule VAR. An implicit instance constraint T <Ir ¢, which
expresses that ¢ should be a generalisation of the monomorphic type T
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with respect to the set of type variables in I, i.e. quantifying over the other
type variables, FV (1) — FV(T'). This constraint is used to deal with LET
rule. This constraint language is a bit different to the one used in the Helium
compiler [35], in particular our <It constraint. The constraint generation is
shown in Figure 3.5. Constraints generated for ABS and APP rule are the
same as in A case (Figure 3.1), the VAR and LET use new, just introduced
constraints.

x:oel c=xT [xe = p
'x:7t VAR o 510
THfit—1 TFx:t A If x]r =
Tl—fx:r’ [fIr = [x]r — p
Ix:The:T Aps [Ax.e]r = p
F'EAx.e:7— T p =0 = [l
IF'kep:t T,x:Va.thke :7T [letx =eoiner]r = p
Fl—letx,—e ine; : 7 LET o = [e]r
S [eo]r <irp’

Figure 3.5: Constraint generation for HM type system

Example 3.17 (Typing id using constraint based inference). Let’s once again
infer a type of id function. First we gather all the constraints:

[letid = Ax.xinid] =1 1 = [id]ig [Ax. x] <, 2
[Ax.x] =3 =4 — [x] 4
[x]xa =5 4<5
[id]ign = 6 2<6

Here we know that variable 4 is monomorphic, so 4 < 5 constraint is
equivalent with 5 = 4. After substituting all type equivalences we get

[letid = Ax.xinid] =6
4 42
2=6

Now all variables on the left side of 4 — 4 <. 2 are almost "solved", i.e.
are present only in that single equation, we can simplify <. constraint
into 2 = Va.ax — «. After that, we can instantiate 6 with fresh variables,
completing the inference process with result [letid = Ax.x inid] =  — .
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For our further developments, we won’t use the full power of Hindley-
Milner inference. We will omit the let-generalisation, as it will simplify the
constraint language. Especially <Ir constraint requires special treatment
in the constraint solver [35]. By type-inferencing bindings one-by-one,
requiring not-yet introduced functions to be given types explicitly (mutual
recursion), and generalising closed types, we will need only a slightly more
type-annotations [70]. Also in higher-order calculi subsumption becomes
even more tricky.

e If the type signature is given: let x : ¢ = ¢ in e;, we generate
constraints p = [e;]r x.c and [eg] = o

letx =¢pine|r =
[[ oiner =p [letx = egineq]r =

o = [erlr xp . o = [e1]r xo
[eolr 0" leolr =0
=0

o if we are on the top level, i.e. context is empty, we infer a type of
leo] = p’, generalise all variables, and continue with type-inference
of e; [x] <e [e]. We can further relax this definition by treating all
closed terms as "top-level" expressions.

* otherwise we use equality constraints, as if let would be desugared
into (Ax.eq) ep.

Using this approach we can still infer types of id or id id. Actually coming
up with a simple and not contrived example where we must give type
signature to local let binding is not trivial.

Example 3.18 (Let should not be generalised). We can start with slightly
modified example from Let should not be generalised [70].

wuggle x = let singleton y = [y|
in (singleton x,singleton *w’ )

If we don’t generalise types of the closed expression, our approach will infer
the type Char — ([Char], [Char]). However singleton definition is a closed
expression, so we can generalise the type, inferring the type wuggle : Vt.t —

([t], [Char]).

We need a definition with local, non-closed binding. Such situations occur
for example when we close over some configuration object:
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pipeline n (xs,ys) =
let process = drop n
in (process xs, process ys)

GHC infers a type pipeline : Va b.Int — ([a], [b]) — ([a], [b]), and the type
of process is obviously process : Vc.[c] — [c]. However with MonoLocalBinds
extension! on, which makes GHC infer less polymorphic types for local
bindings by default, the inferred type is less general pipeline : Va.Int —
([a], [a]) — ([a],[a]), because the process function doesn’t have a closed
type anymore process : [a] — [a], forcing xs and ys to have the same type.
However if we give a type signature to pipeline, we easily spot the invalid
inference result, which is also easy to fix:

pipeline :: Ya b.Int — ([a],[b]) — ([a], [])
pipeline n (xs,ys) =
let process :: Ve.[c] — [c]
process = drop n
in (process xs, process ys)

In our opinion, when working in a language with a powerful (and complex)
type-system, one should always specify the types of the top-level defini-
tions. Even if, it’s well specified, how and what types inference engine
should infer, the behaviour might has surprising corner cases. Also the
implementations of the algorithms aren’t always bug free.

We can adopt the HM approach to work with higher order calculi, like
System F, by switching < in VAR to < or even L, this will give us ability to
pass polymorphic values as arguments.

3.5 Conclusion

In this chapter we have gone through basic ideas behind type-inference.
We introduced a constraint based type-inference approach, which is flexible
enough to be modifiable for different type systems. In the next chapters we
will use it to infer types in new domain specific languages.

Which is implied by commonly used GADTs and TypeFamilies extensions.
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TypedLab

In this chapter, we describe the two variants TYPEDLAB language, suitable
as an intermediate language for a MATLAB linter or compiler. The language
presented here is based on A~ and developed using methods from previous
chapters. Also we’ll see how TYPEDLAB could be extended further.

The reason to use intermediate language here, is to ensure correctness: if
we can elaborate surface language into correct intermediate language code,
the original program is correct to some degree. Also if we later implement
a compiler, intermediate language would simplify that task as well.

Vn.Mnn

{n:N} >Mnn

MATLAB TYPEDLAB AGDA

Figure 4.1: Matlab to Typedlab to Agda

One such pipeline is shown in Figure 4.1. We could compile TYPEDLAB
further into AGDA. As we can describe TYPEDLAB as a closed universe
inside AGDA, we could prove correctness of program transformations.
Alternatively, we could compile MATLAB code to high-performance C++.
These additions are out of the scope of this thesis.

44
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4,1 Matlab

MATLAB is a multi-paradigm numerical computing environment. The
same name is used for an actual programming language used in MATLAB
environment. Considering its origin [51] it’s natural that MATLAB is a
dynamically typed language. Retrofitting the type system for the whole
language is an enormous task. However, for many MATLAB programs,
with mostly linear algebra computations, the needed system is simple.

Example 4.1. MATLAB is a simple imperative language.

rhs = boundaryCondition;
D = problemOperator;
u = D\rhs;

In the listing above, we assign boundaryCondition to variable rhs, and
problemOperator to D. On the last line we use backslash operator (mldivide)
to solve the system of linear equations D * u = rhs.

Here we can infer that D is a n X m matrix, and rhs is a n-vector. However,
there are other, less strict type assignments for this example.

It would be beneficial to have vectors and matrix dimensions in the type-
system, so the type-checker (or dimension-checker in this case) could pre-
vent common mismatching dimensions errors. We are unaware of any widely
used type checking based tools developed particularly for Matlab or Oc-
tavel. There are libraries in other languages 2, which let one specify the
dimensions on the type level, yet all of them require explicit type annota-
tions and/or are somehow limited.

In the rest of the chapter, we will show how to write a simple type-checker
for a subset of MATLAB language, increasing the language step-by-step.

LGNU Octave is a high-level interpreted language, primarily intended for numerical
computations. The Octave language is quite similar to Matlab so that most programs are
easily portable.https://www.gnu.org/software/octave/

2C++: Eigen library has Matrix<typename Scalar, int RowsAtCompileTime, int
ColsAtCompileTime> class. HASKELL: ghc-typelits-natnormalise GHC type-checker
plugins.


https://www.gnu.org/software/octave/
https://eigen.tuxfamily.org/
http://hackage.haskell.org/package/ghc-typelits-natnormalise
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4.2 TypedLab-1: IN indexes

We begin with the simplest system possible which allows us to encode
dimensions in the type system.

INDEX n =X number variable
=0,1,... number constants
TYPE T=Mnn' rectangu]ar matrices
=TT functions
=Vn.t universal quantification over indexes

We have type-level natural numbers to encode the dimensions, and “ordi-
nary” types, which can be scalars, functions, and parametrised by natural
number indexes. This system resembles Hindley-Milner in its structure, but
is simpler as we quantify over type-variables of a totally different kind. This
type-system is quite simple and we can encode it as a Pure Type System.

Definition 4.2 (Typedlab-1 as a Pure Type System).

S *, 0, IN
A *:
R (*, %, %), (IN, x, %)

We also have other axioms: collection of natural number type-indexes,
0:N,1: N etc. Also wehave M : IN — IN — x type constructor
representing square matrices.

The (IN, x, %) PTS rule is quite similar to the rule ([J, x, %) in System F. The
= and IN are, however, unrelated: there isn’t axiom relating them. The
INST and GEN rule analogues are even simpler than in the Hindley-Milner
system. We use N as A analogue, to quantify over IN indexes.
'Fa:vn.p m:N 'tx:a ngFV()

INST-IN

I'tam:[n/m]pB I'FNn.x:Vna GEN-N

This type-system is as subsystem of ITT, and easily embeddable into AGDA,
so we can conclude that this type-system is consistent. The embedding to
AGDA in Appendix B.3.

As previously, we can traverse the syntax tree of the program gathering
constraints. As we take a relaxed, non-let-generalising approach, we’ll need
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only an analogue of < constraint, or create instantiation variables already
during traversal. We’ll need variables of two different kinds: N and * for
dimensions and type-of-terms respectively. Unfortunately unification-fd
library doesn’t support variables of different kinds, so we need to do the
sanity check, after the unification is done.

Remark 4.3 (Higher-order functions). The TYPEDLAB definition allows us
having functions of higher orders, like

Vn.(Vm.M11 —-Mmm) - Mnn

Our constraint approach cannot infer definitions of such functions, and
if we don’t use < constraint, it would be impossible to use them. Yet as
TYPEDLAB is only a proof-of-concept, we didn’t work on higher-order
support.

So far there isn’t anything complicated. This type-system resembles Hindley-
Milner, but is even simpler.

4.3 TypedLab-2: IN constraints

An attentive reader may notice that some of MATLAB-operators are more
flexible, for example the already mentioned backslash operator. If the
matrix on the left is not a square matrix then the equation is solved in the
least squares sense. There are a few options: we can allow any matrices,
making it impossible to catch any dimension bug. Or we can only allow
matrices with more rows than columns, so the least squares solution would
be unique. We can be even more precise by using a special name for the
least squares solution. Anyway we’d need to be able to compare dimension
variables. In Haskell syntax we’d like leastsq to have type

leastsqg : Vmn :IN.m <n=Mmn —-Mm1l—=Mnl
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To allow this, we need to make a slight change to the language, introduce
<-constraints, and allow having them in polymorphic types.

INDEX 71 =X number variable
=0,1,... number constants
CONSTRAINT C =n <wn'  less-than constraints
TYPE T=Mnn' rectangular matrices
=T — T functions
=Vn.t universal quantification over indexes
=C =T constraining indexes

Definition 4.4 (Typedlab-2 as a Pure Type System). We extend Defini-
tion 4.2 by adding constraint sort C

S *,,IN, C
A *:
R (*/ *, *)/ (NI *, *)/ (C/ *, *)

Also we have < : IN — IN — C constraint-constructor, we could have it as
an axiom or in initial environment.

This system is also a subsystem of ITT, the embedding into AGDA is in
Appendix B.4. The most interesting part is fromConstraint which embeds
constraints into the AGDA type system.

The INST/GEN rules generated from (C, *, x) rule are interesting:

'x:n<m=p witness:n <m
I' - x witness : [n < m/witness| B
'Ekn<m:C I''m<m:Cke:pB:%

'+ (Cwitness :n <m.e): (n<m= B):*

INST-C

GEN-C

where witness is a proof term that witness that the constraint is satisfiable.
The Cis A and N analogue, we use different symbol to abstract over different
kinds of terms. We won’t generate the actual proof-values as they are
irrelevant, we are only interested whether any proof exists, i.e. whether
n < m type is inhabited.

Remark 4.5. We don’t have conjuctions in the constraint language, but we
can still accumulate many constraints by chaining them. n < m = n’ <
m' = wisequivalentton < mAn' <m' = a.
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The constraint language at this point is still simple. We must add C also to
the constraint language. We can always simplify constraints by reducing
cycles into equality constraints:

nlSnzg"’Snmgnljn’l:nz:...:nm

If we add also < constraint, then cycles envolving at least one < would
lead to the contradiction: a < b < a = L. However, it’s simpler to use a
ready-made decision procedure for Presburger arithmetic (4.4), so we can
support a much richer constraint language out-of-the-box.

Some decision procedures for Presburger arithmetic support problem sim-
plification [62]. However we discuss what to do, if simplificiation isn’t
built-in. Or we don’t even have the first-order decision procedure. There
are various different approaches to how to deal with newly introduced
constraints:

¢ The simplest approach would be to accumulate the constraints over
the variables, checking them only when they are fully instantiated.
That would lead to many overlapping constraints, like 1 <n A2 <mn
and constraint sets that cannot be satisfied, like 2 < m A m < 1. Also
error messages will occur much later, far from the error source.

* An opposite approach is to check decidable constraints right away.For
example constraints in the Presburger arithmetic. If they are provable,
we can dismiss them. If they are contradictionary, we report an error.
Otherwise we leave them.

* If we have a list of conjuctive constraints, we can try to eliminate
single elements, thus simplifying the overall constraint, by trying
whether the rest of the constraints implies the firstone. 2 <n =1 <
nsol<nA2<n=2<n.

* Ask a user (programmer) to supply a list of constraints, which are
“known” to be true. For example Vi : N.n < n X n cannot be decided
automatically, but the special proof has to be given. As we don’t
need explicit proof terms, only stating additional “axioms” is enough.
Obviously the user of the system might easily break it, by introducing
e.g. 1 = 0 constraint, but that’s the user’s fault then.

In this section we added constraints on the indexes to the TYPEDLAB. In
the next section, we’ll introduce Presburger Arithmetic, a decidable theory
that could be used for the integral constraints. In Section 4.5 we’ll discuss
how the language could be further expanded, if needed.
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4.4 Presburger arithmetic

Presburger arithmetic is the first-order theory of the natural numbers con-
taining addition but no multiplication. It is therefore not as powerful
as Peano arithmetic. However, it is interesting because unlike the case
of Peano arithmetic, there is an algorithm that can decide if any given
statement in Presburger arithmetic is true [16, 61, 62].

Presburger arighmetic consists of the following axioms:

—~(0=x+1)
x+l=y+1—=>x=y
x+0=x
x+(y+1)=(x+y)+1
P(0) A (Vx,P(x) — P(x+1)) — Vy, P(y).

Alternatively, we can say that we can decide P (give a proof term for P V —P)
for all P made from the following syntax:

variables: n,m,...=0]|1|n+m
formulas: P=n<m|VnP|3nP|PAQ|PVQ]|-P.

Example 4.6 (Less-than relation). We can encode less-than relation by using
an existential quantification:

x<y—3dz,x+z=y, xy,z€N

As with the unification, how exactly the satisfiability problem is decided, is
not important, it’s enough to know that there are algorithms for that [8, 16],

which are packages into the libraries®.

Alternatively we can plug-in an SMT-solver. All popular solvers can decide
satisfiability of Presburger arithmetic formulas. Incorporating an SMT-
solver gives us the ability to reason about additional theories almost for
free, this might be useful too.

4.5 TypedLab-3: further extensions

The TYPEDLAB-2 is already a quite powerful system in its domain. There
aren’t obvious additional features needed to work with linear algebra.

3For example: presburger-package
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Yet, we discuss a few extensions which would be easy to add into the
TYPEDLAB-framework.

The first direction is to explore the higher-order functions mentioned in
Remark 4.3. We don’t know how common these are in a software written
in MATLAB. Another direction is to extend base calculus into Hindley-
Milner. This can be done in a straigth-forward way, by having four sorts:
S =M,P,N,C

Integer ring. Some arithmetic with multiplication is also decidable. [32],
for example we can prove identities like (x + y)2 = x? + 2xy + v?, the
latter is sum-of-products form of the former. The sum-of-products form is a
normal form, so we can easily compare expressions for equivalence using
structural equality.

Units of measure. In physical applications, adding units to the matrices
might be sensible, and avoid silly “forgotten unit-conversion” errors. There
are works on decidability of unit calculus [33, 34, 43]. In our framework,
we’d add another sort, ), which would contain units, and change the matrix
type to be parametrised on it as well: M : IN — IN — )V — . Also we’d
need to be able to abstract over units, even to define the addition operation.
The frontend of TYPEDLAB would need only slight modifications, also the
unit-equality constraints could be solved quite independently.

Regular expressions. Regular expressions is an algebraic description of
the regular languages. Regular languages have nice properties: they are
closed under concatenation, union, complement, and intersection. [38]
It’s possible to compare their descriptions for the equivalence, whether
two regular expressions denote the same language, e.g. a*a* =; a*. The
text-book solution is to generate minimal deterministic finite automata
(DFA) of both expressions, and compare them for equality. There also
other approaches [1, 2], the one based on partial derivates has an extremely

simple idea:

* Testing the equivalence of two regular expressions, is the same as
testing that both are greater-or-equal than the other: a = b < a C
bADbCa.

¢ Testing of less-than relation can be done with help of the intersection
operation:a Cb < a—b =0 < aA-b=@. Then the equivalence
relation test becomes a comparison with an empty languge: 1 = b <
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(aA=b)V (—anb) =%

* Without intersection or negation operators the emptyness test of
regular-expressions is a trivial structual check, as every other operator
has an empty regex as either an annihilating or identity element:

D-a=a-0=Q
OVa=aVvVQOD=a
OF =Q@.

A negation operator however requires us to decide if a accepts ev-
erything: # = X*. Formally: —a = @ & a = X*. That’s a difficult
property to decide, consider for example a single character alphabet
¥ = {a} and a regular expression (aa)" V a(aa)”. Equally difficult is
to decide, if the intersection is empty: a A b = @.

* However we can take regular expression derivates, derivates of
derivates, etc. forming a finite set of “states” reachable from the initial
state. The resulting regular expression derivatives are “the rest of the
string accepted from this state”. Brzozowski [10, 56] proved that this
procedure terminates. To decide if the regular expression denotes
empty language 2 = @, it’s enough to check that every state isn’t
terminal, it doesn’t accept an empty string i.e. isnt nullary.

The ordinary strings tagged with regular expression, could be used to
have statically checked enumerations in dynamic languages, where we use
strings to denote different enumeration values. For example eig function
in MATLAB, which returns a column vector containing the generalized
eigenvalues of two square matrice. It may take an algorithm value as a
third option:

eig:Vn.Mnn —-Mnn — S chol|qgz - Mn1
For example, if we use eig incorrectly:
e = eig(A, B, "cho");

the type checker will notice that chol|qz regular expression doesn’t match
"cho"”, and will report a type error.

4The inversion of A to V feels unnatural, but consider a == false && b == false < a
|| b == false



CHAPTER 4. TYPEDLAB 53

Sets. Sets of values with decidable equality is a less expressive version of
regular expressions, we omit kleene star and concatenation. Alternatively
we can leave concatenation, as it’s the kleene star operation which causes
complexity when dealing with regular expressions. The sets of strings
would be enough for an enumeration case mentioned above. However the
kleene star might be useful when the enumeration is infinite, yet not >*,
e.g. valid identifiers are often only a subset of all possible strings.

Sets could be further extended to Finite maps to support anonymous records:

type Person = {name : String, phone : String}
printName : Vr. {name : String} W,

where printName is row polymorphic function, which takes any record with
field name of type String as an argument.

There are various design choices: whether fields can be masked, is there
notion of missing field etc. We do not investigate row polymorphism further
at this point, though it is required to complete the JSVERIFY story.

4.6 Conclusion

The TYPEDLAB is a proof-of-concept example, how one could design a type
system to an isolated part of a bigger language. We have also seen various
options how the type-system could be further expanded, still using the
same tools we developed in the previous chapters.

We discovered recently related work which uses a similar approach by Wiik
and Bostrom [73]. Wiik and Bostrom also use a Hindley-Milner inspired
algorithm to infer types. They also note that dimensions and other types
can be infered separately. Their work restricts the shape-polymorphism
to the first-order, which is what inference can do. Also as they restrict
themselves to the subset of MATLAB suitable for code generation. Higher-
order functions are problematic in that context, because matrix types and
shapes have to be determined statically. Their type-system also doesn’t use
< constraints, but relies on predefined shape functions. In our approach,
we have to use separate names for e.g. scalar-matrix multiplication, yet we
can support leastsq type of functions.

In the next chapter we will go through development of type-system for
JAVASCRIPT as it is used in the JSVERIFY library, used in real world ap-
plications. We'll discuss further type-system extension options and their
implications.



Chapter 5

Typesson

TYPESSON is our attempt to add typing to the JAVASCRIPT language. There
are other attempts to retrofit a type-system to JAVASCRIPT, for example
Dependent JavaScript . DJS is surprisingly expressive, supporting various
challenging features of the language. [13] However the JSVERIFY intro-
duced in Section 5.2 uses only a small portion of language features is used,
there are some conventions probably typical only to that library, which
we’ll discuss in Section 5.3. So in this chapter, and particularly in Section 5.4
we describe a relatively simple, yet expressive enough type-system which
is suitable to type the JSVERIFY library.

5.1 JavaScript

JAVASCRIPT is a high-level, dynamic, untyped, and interpreted program-
ming language. Alongside HTML and CSS, it is one of the three core
technologies of World Wide Web content production; the majority of web-
sites employ it and it is supported by all modern Web browsers without
plug-ins. JavaScript is prototype-based with first-class functions, mak-
ing it a multi-paradigm language, supporting object-oriented, imperative,
and functional programming styles. [29] It has been standardized in the
ECMAScript language specification. It has an API for working with text,
arrays, dates and regular expressions, but does not include any I/0O, such
as networking, storage, or graphics facilities, relying for these upon the
host environment in which it is embedded. [24]

Some of the facilities of ECMAScript are similar to those used in other
programming languages; in particular C, JAVA™, SELF, and SCHEME. [24]

54
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The syntax of JAVASCRIPT is highly influenced by C and Javal:

function hello(name) {

if (name! = null) {
console.log("Hello, " + name);
} else {

console.log("Hello world");

}
1

However, further in this chapter we concentrate on the semantically func-
tional subset, i.e. the part of the language, we think is most influenced by
SCHEME.

5.2 JSVerify

JSVERIFY is a property-based testing library, highly inspired by another
library: QUICKCHECK [14]. While original QUICKCHECK is written in
HASKELL, there are versions written in dynamic languages, for example in
ERLANG [3, 63].

Back then, there wasn’t a QUICKCHECK clone for JAVASCRIPT with enough
features, most notably shrinking. After the library have found a counterex-
ample, it would try to shrink it into hopefully a minimal example, which
would be easier to understand. Randomly generated test-cases tend to have
a lot of irrelevant details. As we leave generating test case to the machine,
we also make it filter out the non-essentials of the failing cases.

Example 5.1 (Boolean function). This example is taken from older revision
of Software Foundations book [60]. We could prove the proposition by
hand, as there are only four distinct Bool — Bool functions. Or we can let
JSVERIFY generate inputs for us.

// torall (f: json -> bool, b: bool), f (f (f b)) = f(b).
var boolFnAppliedThrice =
jsc.forall("bool -> bool", "bool", function (f,b) {

return f(f(f(b))) f(b);

7

!In the idiomatic JAVASCRIPT code there would be name = name || null; assignment
as the first statement of the function , to verify the inputs. TYPESSON makes such checks
unnecessary, especially for the internal functions.
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jsc.assert(boolFnAppliedThrice);
// OK, passed 100 tests

In this case input types are finite, so we could evaluate all possible values
exhaustively. However many practical cases are either infinite, or just
too large, so we randomly generate some inputs, hoping that we’ll find a
counterexample if one exists.

At this point, let’s introduce some types used in JSVERIFY.

* The result of the jsc.forall function is a Property, a thing that JSVERIFY
tries to disproof, by randomly searching for a counter-example.

* Values of the type « for the tests are generated by a Generator «.

¢ If the counter-example is found, we try to make it smaller using
Shrink .

* And at the end we display the counterexamples using Show «.

* The can use these three parts together to build an Arbitrary a. Arbi-
traries are what the user of JSVERIFY works with most of the time. For
example, they could be given to the jsc.forall, though in this example
the small arbitrary specification language. to jsc.forall

In the rest of this chapter we will concentrate on how JSVERIFY is build
internally, so we can “type-check” the implementation. It would be very
unfortunate, if bugs in the code under the test aren’t discovered because of
the buggy test library.

5.3 JavaScript in JSVerify

The language used in JSVERIFY is a functional subset of JAVASCRIPT. While
giving a type system for whole JAVASCRIPT is an enormous task

Example 5.1 illustrates the power of the dynamic typing, the simplified
type of the jsc.forall function is

Va B. [ArbSpec w, ArbSpec B, [a, B] — Bool] — Property
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where « and f are instantiated with (Bool) — Bool and Bool types respec-
tively. The square brackets denote the function argument list. In TYPESSON
we have multi-argument functions. An ArbSpec « is a string specification
of an Arbitrary a. We can see many different language features used in
JSVERIFY, further explained in this section: nominal types (Section 5.3.3)
and heterogeneous functions (Section 5.3.2). One should however note, that
this is a public API?, this work is more interested in the internal uses, where
different features are used like type intersections (Section 5.3.4) and “low-
level” code (Section 5.3.5). Internals are also the part, where we can verify
the typing, i.e. get the benefits of the static typing immediately.

5.3.1 Unused parts of the language

JAVASCRIPT is a pretty big language, and there are many features which
we have found not useful or otherwise problematic for the JSVERIFY devel-
opment. In this section, we'll list some of them.

EcmaScript 6. JavaScript was created at Netscape, which submitted the
language for standardisation to the European Computer Manufacturer’s
Association. Because of trademark issues, the standardized version of the
language was stuck with ECMASCRIPT name. Widely implemented version
3 of the ECMASCRIPT standard was published in 1999.. Version 5 was
published in 2009, and version 6 in 2016.

JSVERIFY uses features from the fifth version. There are useful features in
ECMASCRIPT6. For example spread-operator significantly reduces the cruft
around multivariadic functions.

function sum(...args) {
return [...args|.reduce((x,y) = x +y,0);
}

vararr = [1,2,3];
console.log(sum(1,2,3,...arr)); // 12

Also it makes their usage syntactically obvious, in comparison to the
manual arguments object slicing or apply method usage. We have to use
ad-hoc support to “match” current use-cases in multivariadic functions.

Prototypical inheritance. JAVASCRIPT uses quite simple and powerful
inheritance model. In the dynamic language we could have a blessing

2Applicaﬁon programming interface
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function populating the object with all needed functionality:

function method1() {
console.log(this.field);
}

function bless(obj) {
obj.method1 = method1;
return obyj;

}

function mkObj(v) {
return bless({ field : v });
}

var x = mkObj(42);
x.method1(); // 42

However there is a smarter way. If an accessed object member doesn’t
exist, lookup from the member from its prototype, following the chain until
member is found or there aren’t a prototype specified®.

function Obj(v) {
this.field = v;
1

Obj.prototype.method]l = function () {
console.log(this.field);

var x = new Obj(42);
x.method1(); // 42

For example LUA language [41] uses the same approach, where prototypes
are called metatables, as objects are “tables”;

Yet in JSVERIFY we don’t need inheritance, and we don’t even exploit
prototypes to provide common functionality for objects. There is a very
simple reason for that. We need some of our objects to behave like func-
tions, but we cannot construct function with other prototype than Function.
ECMASCRIPT6 proxies could be used to achieve that functionality, but they
cannot be transpiled to ECMASCRIPTS.

31t seems that prototype of Function is Function itself.
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eval. The eval function is an ultimate dynamism provider. You can construct
part of your program (as a string) and then eval it.

eval("console.log(42)"); // 42

Obviously such feature makes type-checking close to impossible, and there
aren’t justified use for eval in JSVERIFY.

Mutability. We highlighted some of JAVASCRIPT features, we don’t use.
At the end, we have to mention mutability. In JAVASCRIPT everything is
mutable by default. In functional programming immutable structures are
preferred, and there aren’t much mutation going on in JSVERIFY. However
from the point of view of type-checking mutability isn’t a problem, so
occasional use is easy to support, while totally avoiding it might turn out
problematic.

5.3.2 Heterogeneous functions & containers

In Section 5.3.1 we briefly mentioned multiargument functions. In Haskell
and many other statically typed languages we cannot have n-ary functions.
We resolve the problem by introducing new names for variants of different
arities:

zipWith ::(a — b — c) — [a] — [b] —
zipWith3 :: (a - b — ¢ — d) — [a] — [b] — [c] — [d]

and

liftA :: Applicative f = (a — b) —fa—fb
lift A2 :: Applicative f = (a — b — ¢) —fa—fb—fc
liftA3 :: Applicativef = (a - b —c—d) >fa—fb—fc—fd

In the JAVASCRIPT we only have a single zipWith function, using EC-
MASCRIPT6 pseudo syntax*:

function zipWith(...xs,f) {
// implementation
}

It is possible (using type class trickery) to make variadic functions in
HASKELL, but it’s not elegant. But in JAVASCRIPT functions can take an

4in ECMASCRIPT6 spread argument must be the last formal parameter.
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arbitrary amount of parameters, and the function application is always
saturated i.e. all arguments are given. If we treat the argument list as a
heterogenous list, we can write type for zipWith as:

zipWith : Yas B.|...Map List as, FoldFun as B] — List B

The remaining question is: What are Map and FoldFun. The Map f xs could
be written using n-ary product, NP. The name and ideas are influenced by
generics-sop library [20]. Experience shows that NP is better suited than
more direct HList formulation.

data NP (f :: %« — %) (xs:: [x]) where
Nil ::NP f[]
(:):if x = NPfxs— NPf (x"xs)
type family FoldFun (xs:: [*]) (b:: x) where
FoldFun \[] b=1"b
FoldFun (x“:xs) b = x — FoldFun xs b

type family Map (f :: x — ) (xs:: [x]) where

Mapf[] =]
Map f (x“:xs) =f x: Map f xs

Using this definitions, it’s quite simple to write (pseudo-)variadic zipWith
in HASKELL, note how the inner function zipWithN’ structure resembles a
foldl definition:

zipWithN :: NP [| xs — FoldFun xs a — [a]
zipWithN xs f = zipWithN' (repeat f) xs

where
zipWithN' :: [FoldFun ys b] — NP [] ys — [b]
zipWithN' f Nil =f

zipWithN' f (y :::ys) = zipWithN' (zipWith ($) f y) ys
{- Evaluates to [25,37] -}
example :: [Int]
example = zipWithN

([1,2,3] :::[4,5] 2 [6,7] 2 Nil)

$Aabc—a+bxc

It's possible to program using these definitions, but it’s a bit inconvenient.
The goal of TYPESSON, and domain specific type-systems in general, is to
make the usage of advanced type level constructs simple.

More rigidly, NP f : [x] — xand Map f : [x| — [*] have different kinds.
But we only use Map, so the notation is more lightweight. It’s clear from the
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context when we need to insert omitted NP Id°. It turns out that variadic
functions and heterogenous lists are very common in JAVASCRIPT and in the
JSVERIFY codebase in particularly. We add various type-level list constructs
to TYPESSON, to deal with these idioms. The lack of spread-operator makes
identifying some use-sites difficult, but not impossible.

5.3.3 Nominal types

Nominal typing means that two variables are type-compatible if and only if
their declarations name the same type. In JAVASCRIPT and other dynamic
languages, the typing is structural:

e Nominal: Pet

e Structural: {name : String, ...}

The TYPESSON has nominal types. There are only a handful of such types,
and we list them all in the type-system definition. Nominal typing is useful
at preventing accidental type equivalence, which allows better type-safety.

In addition, Nominal and explicitly available types allow us to add very
specific typing rules, as we can treat types differently, even they have similar
structure. As a consequence, we don’t need to introduce row-types and
row-polymorphism into our system, which keeps it conceptually simpler.

Nominal types together with intersections (Section 5.3.4) are used to imple-
ment ad-hoc polymorphism.

5.3.4 Intersections

Another property of dynamic languages is ad-hoc polymorphism using run-
time information. For example we can have functions which uppercases
the strings, and rounds up the numbers:

function adhoc(x) {
if (typeof x "string") {
return x.toUpperCase();
} else {
return Math.ceil(x);

SNP Id (Map f xs) = NP f xs as we will see later.
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}

console.log(adhoc("foo")); // FOO
console.log(adhoc(12.3)); // 13

In HASKELL we use type-class machinery to write ad-hoc polymorphic
functions

class  Adhoc a where adhoc::a — a
instance Adhoc Text ~ where adhoc = Text.toUpper
instance Adhoc Double where adhoc = fromlIntegral o ceiling

ex] :: Text
ex1 = adhoc "foo" —"F00"
ex2 :: Double

ex2 = adhoc 12.3 —-13

We could used something like type-classes to give a type to ad — hoc in
TYPESSON, However, we decided to use anonymous approach: intersection
types. Instead of having class and instance definitions, we have a single
intersection definition:

adhoc : [Number| — Number
N [String] — String

This approach allows us to have type-signatures, which otherwise would
require GHC extensions in HASKELL. Moreover, using unions it’s easy
to write a type for functions which behaves differently when called with
different amount of the arguments.

Intersections introduce non-determinism into constraint solving process.
At the moment we require that intersections are distinct, i.e. that only one
can be satisfied. In the implementation, we use non-determinism monad
as a base monad for the constraint solving, but there is also an additional
reason: it’s not always obvious from the syntax which rule to apply, as the
TYPESSON system cannot be written in a syntax directed form.

Example 5.2 (Partially applicable functions). Contrary to the heterogeneous
functions in Section 5.3.2, we sometimes want functions to be partially
applicable. This is convenient feature, as we can have more concise code,
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as we don’t need to write closures at the use-sites.

shrinkPair : Yo B. (Shrink , Shrink B) — Shrink (Pair a )
N(Shrink «, Shrink B, Pair « B) — List (Pair a p)

It can be used by passing directly three arguments, or only two and then
third one to the returned function:

shrinkPair(shrinkBool, shrinkInt, [true, 1]); // [[false, 1], ...
shrinkPair(shrinkBool, shrinkInt)([true, 1]); // [[false, 1], ...

This kind of auto-currying is handy in practice, as often we construct
Shrink and pass it forward, but sometimes we want to use it right after.

5.3.5 Low-level code

Some of the JSVERIFY code is quite “clever”, taking the full advantage of
the fact JAVASCRIPT is a dynamic language. For example, there are curried2
and curried3 utility functions, which has a complicated types:

curried2 : Vao! B. [[a, '] — B, [, a']] — B
N[[w, 2] = B, [a]] =[] — B

The curried? function takes another function, f, and an argument list, and
based on how many arguments there are, either fully or partially applies
given function. The type is above is not a full truth, as there are ad-hoc
rules to deal with nominal unary type constructors. The curriedN, used to
define curried? and curried3, has very complicated definition

function curriedN(n) {
varnl =n—1;
return function curriedNInstance(result, args) {
if (args.length —n) {
return result(args[nl]);
} else {
return result;
}

b
}

var curried2 = curriedN(2);
var curried3 = curriedN(3);
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and typing it this is non-trivial. These functions are used to define auto-
curried functions, like shrinkPair from the previous section:

function shrinkPair(shrA, shrB) {
var result = shrinkBless(function (pair) {
// use shrA, shrB and pair
1)

return curried3(result, arquments);

}

Giving curriedN a type in our framework isn’t impossible. We’ll need to
make some extension particularly for this single use case though. More
pragmatic approach is to give curriedN way to general type:

curriedN : V. [IN] — «
and don’t type check its implementation. The curried2 and curried3 can still
be successfully type checked.

Here we make a choice telling type checker to trust us, giving the function
too general type. But in some cases, we give too restrictive type. For
example pluck function can be given a correct structural type. However
as it is used only on (heterogenic) arrays of arbitraries, with only three
different “field” names, we can give it a type to cover these cases only:

pluck : Yas. [Map Arbitrary as, S "generator”] — Map Generator as
N[Map Arbitrary as, S "shrink"] — Map Shrink as
N[Map Arbitrary as, S "show”"] — Map Show s

The §”generator” stands for singleton, “literal" string:
var gens = pluck(arbs, "generator");

where we pick the first intersection branch of the pluck type, as a literal
"generator” is the second argument.

5.4 Type system sketch

In this section we’ll summarise the special features of JSVERIFY described
in the previous sections into single coherent presentation. We’d like to have
a type system with
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KINDS « := % monotype
| [*] typelist
TYPESTRINGS s := "str",... type level string
LITERALS [ := Bool, String, . .. nullary types, x
F = List, Promise, ...  unary types,x — x
MONOTYPES T :=ua type variable
| s =T multi-argument function
| TNt disjoint intersection
| 1 literal
| Ft type application
| Ss singleton string
TYPELIST 7Ts = || empty list
| T::71s cons
| Ts::f1 snoc
| Map F Ts type map
POLYTYPES 0 =T monotype
| Va.o universal quantification,
| Vas.o universal quantification, [*]

Figure 5.1: TYPESSON type syntax

Polymorphic types

Type level lists

Multi-argument functions

Intersection types

Built-in nominal types

and literals

By combining all of these requirements, we get syntactically larger type
language than previous ones. The syntax is shown in Figure 5.1. However,
there aren’t much more typing rules than before, as seen in Figure 5.2. As
before, the constraint language can be read directly from typing rules, there
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cel =171 'to a:x a¢gFV(D)
I'Er VAR IFVa.o GEN
I'tskt FeF ABS I'tts—1t Tk 7Ts App
'tts— 1 Tt
— T Nt Lhr TFhws SNOC Frr Thts SNOC
ek ] I'ET1::Ts TEF1sC1
MAP-NIL TrFr T'-Mapk s MAP-CONS
' Map F ] [+ Map F (T Ts)
Lra Tl—ﬁ “Lﬂ‘g INTERSECTION
'Fanp
'Ex:anp THx:anp
'-x:wa FeT 'Ex:pB SND
I' = "foo" : String STRING ' "foo":S "foo" SINGSTR

Figure 5.2: TYPESSON type system

are = and W relation based constraints, in addiction to the type-equality, =.
Also there is a choice in a constraint solver, as typing rules aren’t entirely
syntax-driven. There is a AGDA formalisation of TYPESSON type-system
Appendix B.5, with embedding functions. In the following subsections,
we'll explain the rules, and see some examples.

5.4.1 Basics

We copy two rules, VAR and GEN directly from the syntax-directed Hindley-
Milner type-system (Section 3.3.3). We don’t need arbitrary rank types in
TYPESSON, so HM was a simple choice.

cel o=t o wa:x agFV(T)
| VAR I'EVa.o

GEN

The < relation in VAR rule instantiates both kinds of variables, x and [*], the
extension of the relation is straight-forward. There aren’t let-expressions
in the syntax language, so it doesn’t make sense to have LET rule. We use
GEN rule, to generalise top-level definitions (over the both kinds), i.e. the
generalisation happens outside of the constraint solving. We have the same
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syntax when abstracting over x or %], which let us have single rule. More
pedantically, we could write V(a : k). o, but we omit the kind if there aren’t
possibility for a confusion.

We don’t reuse HM ABS and APP rules, as we’ll need to modify them a
little, which we’ll do in the next section.

5.4.2 Functions

As mentioned before, we want to have multi-argument functions. The type-
level lists are closely related to this need. We implement multi-argument
function rules by starting with single argument function rules, as in other
systems, but abstracting over a heterogeneous lists.

I'tskt FeF ABS I'tts—1t T k7158 App
'tts— 1 |

where F is a collection of various type constructors, which we’ll discuss
properly in Section 5.4.4.

The rules are essentially the same as in the type system described previously,
except that we abstract over a list of arguments. There is a few rules
operating on [x], also, to construct and map over heterogeneous lists:

L 't TF7s SNOC 't TFts SNOC
ek ] [FTTs F'Ets:itt

MAP-NIL TFFr TH Map F s MAP-CONS
I'-MapF || I'-MapF (T :: Ts)

The following example will show how we use these rules.
Example 5.3 (N-ary products). Recall a zipWith function in Section 5.3.2
zipWith : Yas B.|...Map List as, FoldFun as B] — List B
Using our current type language, its type looks like:
zipWith : ¥(as : [x], B : %).Map List as :::" (as — B) — List B

where ::1" is a “snoc” operator, i.e. appending element to the list.

If we have two lists xs, ys : List N and we zip them with plus : [N,IN] — N,
to get List IN:
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zipWith(xs, ys, plus) // : List IN
From the call-site, we can gather a constraints for zipList argument list:
Ts = [[xs] ::: [ys] =i [plus] ::: ]
= List N ::: List N = ([IN,IN] — IN) =22 []
= [List N, List N, [N, N] — IN]

Then, at some point, constraint solver will try to unify that type with
instantiated type of the arguments of zipList:

[List N, List N, [N,IN] — IN| = Map List as :::" (xs — B) — List
Constraint solver is aware of lists, and can deduce the substitution:

as — [IN,IN]
B— N

thus accept the zipList expression above.

We should point out, that if the type lists are formed only by the cons
operation, :::, then the basic unification would be enough to solve the type
list equality constraints. However, in the presence of snoc, :::" and Map
operations, the constraint solver have to be aware of the lists” structure. For
example

Vix:x)(xs:[x]),3y:x)(ys: [x]),x:ixs=ys:' y

equality is needed to deduce the substiution above.

Variadic functions complicate system quite a bit. They don’t bring any
additional expressive power into the type language, which wouldn’t be
possible using intersections, which we discuss next. However, the type
language is more close to the term language, which greatly simplifies both
constraint generation, and to some extend, the constraint solver.

5.4.3 Intersection types

Intersections are useful when giving types to ad-hoc polymorphic functions.
The typing-rules resemble the conjunction rules from the propositional
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logic, however the terms look different.

'Fae THB awp

Trang INTERSECTION
'Ex:anp F'Ex:anp
F
I'Fx:« ST 'Ex:pB SND

The W relation indicates that the two types should be distinct, for example
IN @ String, « ¥ IN, and IN ¥ IN. An equivalent formulation, is that types
should be non-unifiable, « W f < a # B. This is something we can decide as
we have a closed type universe. There is also a paper accepted to the ICFP
2016 by Bruno Oliveira et al. [55] presents disjoint intersection types, the
approach though is very similar, still differs slightly, as we don’t introduce
subtyping relation.

Example 5.4 (Intersection). In Section 5.3.4 we mentioned the adhoc func-
tion. Let’s prove that
adhoc 10.0 : Number

The literal 10.0 is obviously a Number. The rest of the proof follows trivially:
We need to use WE; rule, as even the WE; is applicable, we'll be stuck after
it.
VAR
I' - adhoc : [Number| — Number( ... For NUMBER
I' - adhoc : [Number| — Number ' 10.0 : Number
I' = adhoc 10.0 : Number

It’s possible that someone would write a function, where type variable is
free, leading to the situation:

I'x:at adhoc x : «

We reject such definitions. Because during the constraint solving process, «
would unify with Number or String.

When type-checking a function with an intersection type, we

e Check that intersection halves are distinct, and

* Type-check function specialised to the each half of the intersection.
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5.4.4 Nominal types

The second last part of the TYPESSON type system are the nominal types.
There is a handful of types:

L = {Number, Bool, String, . ..}
F = {List, LazySeq, Arbitrary, Generator, Shrink, Show,
Promise, Trampoline, NotPromise, . . .}

Most of these types we have already encountered. The first ones are stan-
dard JAVASCRIPT types. Then we have truly JSVERIFY domain specific
types. The rest are types from the libraries, we can briefly discuss:

The LazySeq type is a type of lazy sequences. We use it in shrinking, as
lazily producing shrinking results is important for the performance. There
a few dozen functions provided in the separate library®, which can be given
types in TYPESSON system.

The Generator type is twofold. It's a opaque nominal type, but it can be
also used as a function [N] — «. Similar duplicity, is with Shrink and
Show. Essentially, we have informal rule, that we can implicitly coerce these
nominal types, into their function-forms, when looking for the type of the
function. At the moment, this is very ad-hoc approach. Better way, is to
introduce a sub-typing relation, which is used in the APP rule.

The Promise type is a special type” to work with asynchronous computa-
tions in JAVASCRIPT. The Trampoline is a special type to be able to write
functions in chaining style, i.e. similar to promise .then chains, without
overflowing the call-stack. The NotPromise type is everything else. Using
these three types we can write functions on the computation wrappers, like

fmap : Vo B. [Promise o, & — NotPromise B] — Promise p
N[Trampoline o, &« — NotPromise B] — Trampoline f3
N[Trampoline o, &« — NotPromise B] — NotPromise B

This is not as elegant as fimap : Functor f = (0« — B) — f a — f Basin
HASKELL, but we don’t even try to be that general. It's worth noticing
that, in JAVASCRIPT, you shouldn’t be able construct value of a nested type
Promise (Promise «), therefore we have NotPromise sprinkled into many of
the function types.

®https://www.npmjs.com/package/lazy-seq
"https://promisesaplus.com/


https://www.npmjs.com/package/lazy-seq
https://promisesaplus.com/
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Also we have functions with a more tricky and non-uniform types, for
example®:

pure : Y. [Promise «] — Promise
N[Trampoline o] — Trampoline
N[NotPromise a| — Trampoline «

5.4.5 Literals

Literals are the last part of the TYPESSON type-system. Otherwise, they
would be straightforward, as the expression “carries” its type, but we have
a small complication: singleton string types.

- STRING SINGSTR
I' = "foo" : String ' "foo" :S "foo"

Singleton strings are used as tags. As they are different types, they are
disjoint, and can be used to select different branches of intersections. See
pluck example in Section 5.3.5.

There are also other literal types, for booleans and numbers, but we omitted
them for brevity.

5.5 Conclusion

In this chapter we presented the TYPESSON framework, a type-system
tailored for the JSVERIFY library written in JAVASCRIPT. We have positive
experience with the results. There are few silly “forgot to bless” type of
bugs which JSVERIFY successfully caught. For example the shrinkTuple
function was missing the shrinkBless call:

function shrinkTuple(shrinks) {
var shrink = // ...
var result = shrinkBless(shrink);
return utils.curried2 (result, arquments);

}

The incomplete definition wasn’t caught by tests, even JSVERIFY had a
100% coverage test from the beginning.

8We abuse the names on purpose.
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We also feel more confident about correctness about the JSVERIFY main
loop, where we operate on promises and trampolines. There are many
nested pure, fmap and other similar functions, and tracking the types “man-
ually” is quite difficult.

The TYPESSON story isn’t complete, however. There are various features
which could be added: union types to complement the intersections, also
records, maybe using row polymorphism.

TYPESCRIPT’ is a rapidly developed typed version of JAVASCRIPT, and has
many features present in TYPESSON. For example there are String Literal
Types and Intersection Types. On the other hand TYPESCRIPT lacks support
for the heterogeneous functions, which was the major motivation to the
development of TYPESSON in the first place.

Another possible development direction of TYPESSON is to provide a pre-
processing mode. Such we can add dynamic checks for the types, especially
in the functions in the public API. Currently we have manual assert not sys-
tematically added to the code base, they could be added automatically into
debug build. Further, we can do some other type-directed transformations
as well.

https:/ /www.typescriptlang.org/
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Conclusion

In this thesis we have described two type-systems: TYPEDLAB for a subset
of MATLAB, and TYPESSON for a subset of JAVASCRIPT. Both type-systems
have advanced features: a constrained natural number indexing or inter-
section types and type level lists.

To ensure correctness of the type-systems, we show that they are embed-
dable into intuitionistic type theory as implemented in the AGDA program-
ming language. We use a constraint solving based approach to implement
the type-inference for the systems. The constraint language can be read
from the rule specification, which in turn, are given “for free” if we can
formulate the type system as a Pure Type System. Also we discuss how con-
straints can be solved: we explain unification process for the structual type
equality constraints and mention various decision procedures for other
decidable theories.

The implementations of TYPEDLAB and TYPESSON lack proper front-ends,
which would make the type-checking process as easy as running a console
command. Ideally, user could run typesson file.js command to type-
check the file. However, some non-trivial manual steps are required at the
moment. In other words, they aren’t yet ready for the wider use. Finalising
the implementation is one further development topic.

In the future, we would also like to extend either one of the type systems,
or experiment with the approach to implement new domain specific typed
languages. One interesting topic is linear types [11, 21, 68], which can
be used to implement a specification language for concurrent processes.
Another option is to develop a fully type-inferrable typed command line
scripting language with heterogenous functions and regular expressions.
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Appendix B

Code listings

B.1 Nu implies falsehood

If we try to define Nu as

data Nu (a : Set) : Set where
MkNu : (Nua — a) — Nua

we get an error:

Nu is not strictly positive, because it occurs
to the left of an arrow

in the type of the constructor MkNu

in the definition of Nu.

It’s not hard to show, that if such type existed, we can derive falsehood:

data L : Sef where

absurd : {a : Set} — 1L —a
absurd ()
record NuDef : Set; where
constructor mkNuDef
field
Nu : Set — Set
mkNu : {a : Set} — (Nua —a) - Nua
unNu : {a : Set} — Nua — (Nua — a)

nu-unsound : NuDef — 1

III
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nu-unsound (mkNuDef Nu mkNu unNu) = unNu' (unNu’ nu-nu)
where
— we can unwrap Nu:
unNu' : {a : Set} — Nua—a
unNu’ nu = unNu nu nu

— We can create double-Nu from a thin air
nu-nu : {a : Set} — Nu (Nu a)
nu-nu = mkNu (A nn — unNu nn nn)
record NuC (a : Set) : Set; where
constructor mkNuC
field nuc : {b : Set} — (b — a) — b
nuc-1L : {a : Set} - NuCa — L
nuc-1 (mkNuC nuc) = nuc (A x — absurd x)

B.2 STLC embedded into Agda

infixr 7 _=_
data Type : Set where
nat : Type
_=_: (ab : Type) — Type
Cxt = List Type
data Term (T : Cxt) : Type — Set where
var : ¥ {a} (i:a€Tl)—TermTa
lit : IN — Term I nat
suc : Term T (nat = nat)
app : ¥V{ab} - TermT (a=0b) - TermT a — Term T b
lam : ¥ {b} (a : Type) — Term (a =T) b — Term T (a = b)
El : Type — Set
El nat = NN
El(a=b) = Ela— Elb

Env : Cxt — Set
Envl = NPEIT

eval : V{T'a} - TermTa — Envl — Ela
eval (var i) e = lookup€ ei
eval (lit x) e = x
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eval suc e = suc
eval (apptty) e = evalte (eval ty e)
eval (lamat)ey = evalt (y::e)

B.3 TypedLabl

data Index : IN — Set where
IndexConst : {n : N} — IN — Index n
IndexVar : {n : N} — Finn — Index n

data Type : IN — Set where
TypeM : {n : N} — Index n — Index n — Type n
TypeArr : {n : N} — Type n — Type n — Type n
TypeAbs : {n : N} — Type (suc n) — Type n
postulate
M : N — IN — Set

fromIndex : ¥ {n} — Vec N n — Index n — IN

fromIndex _ (IndexConst n) = n

fromIndex v (IndexVar i) = lookup i v

fromType’ : ¥ {n} — Vec Nn — (m : Type n) — Set
fromType’ v (TypeM ij) = M (fromlIndex v i) (fromIndex v j)
fromType’ v (TypeArra b) = fromType’ v a — fromType’ v b
fromType’ v (TypeAbst) = (m : _) — fromType’ (m :: v) t

fromType : ¥V {n} — Type n — Set
fromType {zero} x = fromType’ [] x
fromType {sucn} x = fromType (TypeAbs x)
{- Type of trace: Vvn.Mnn — M1 1. -}
traceType : Type O
traceType = TypeAbs (TypeArr
(TypeM (IndexVar zero) (IndexVar zero))
(TypeM (IndexConst 1) (IndexConst 1)))

{- Type of trace in AGDA -}
traceTypeAgda : Set
traceTypeAgda = (n : N) > Mnn—M11

{- Example, trivial proof that fromType maps the type correctly -}
traceTypeProof : fromType traceType = traceTypeAgda
traceTypeProof = refl



APPENDIX B. CODE LISTINGS VI

B.4 TypedLab2

data Index : IN — Set where
IndexConst : {n : N} — IN — Index n
IndexVar : {n : N} — Finn — Index n

data Constraint : IN — Set where
ConstraintLe : {n : N} — Fin n — Fin n — Constraint n

data Type : IN — Set where
TypeM  : {n : N} — Index n — Index n — Type n
TypeArr : {n : N} — Type n — Type n — Type n
TypeAbs : {n : N} — Type (suc n) — Type n
TypeCons : {n : IN} — Constraint n — Type n — Type n

postulate
M : N — N — Set

fromIndex : ¥ {n} — Vec N n — Index n — N
fromIndex _ (IndexConst n) = n

fromIndex v (IndexVar i) = lookup i v

fromConstraint : ¥ {n} — Vec N n — Constraint n — Set
fromConstraint v (ConstraintLe i j) = lookup i v < lookup j v
fromType’ : ¥ {n} — Vec Nn — (m : Type n) — Set
fromType’ v (TypeM i j) = M (fromIndex v i) (fromIndex v j)
fromType’ v (TypeArrab) = fromType’ va — fromType’ v b
fromType’ v (TypeAbs t) = (m: _) — fromType’ (m ::v) t

fromType’ v (TypeCons c t) = fromConstraint v ¢ — fromType’ v t

fromType : ¥ {n} — Type n — Set
fromType {zero} x = fromType’ [] x
fromType {sucn} x = fromType (TypeAbs x)
{- Type of leastsqg: V.M nn — M 1 1. -}
leastsqType : Type O
leastsqType = TypeAbs (TypeAbs
(TypeCons ¢ (TypeArr mmn (TypeArr mnl mnl))))

where
c = ConstraintLe one zero
mmn = TypeM (IndexVar one) (IndexVar zero)

mnl = TypeM (IndexVar zero) (IndexConst 1)
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{- Type of leastsq in AGDA -}

leastsqTypeAgda : Set

leastsqTypeAgda =
(mn:N)—-m<n—->Mmn—-Mnl—-Mnl

{- Example, trivial proof that fromType maps the type correctly -}

leastsqTypeProof : fromType leastsqType = leastsqTypeAgda

leastsqTypeProof = refl

B.5 Typesson

Data definitions follow directly from the syntax described in Figure 5.1.
The contexts, A are indexed by list of variable kinds.

We omit the definition of polytypes. It’s very straighforward addition, and
doesn’t show anything interesting.

data Kind : Set where
*x : Kind
[*] : Kind

Ctx : Set

Ctx = List Kind

e : Ctx

e = |l

data Nullary : Set where
nullary-IN : Nullary
nullary-Bool  : Nullary
nullary-String : Nullary

data Unary : Set where
unary-List : Unary

data Mono (A : Ctx) : Kind — Set where
mono-var : {k : Kind} - ke A— MonoAk
mono-nullary : Nullary — Mono A %
mono-unary : Unary — Mono A x — Mono A x
mono-sing-str : String — Mono A %
= : Mono A [x] — Mono A x — Mono A %

mono-union : Mono A x — Mono A x — Mono A %
mono-nil : Mono A [x]
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o : Mono A x — Mono A [x] — Mono A [x]
mono-map : Unary — Mono A [x] — Mono A [%]

Let’s also define smart constuctors, for the IN type, and the unary function:

mono-IN : ¥V {A} — Mono A x
mono-N = mono-nullary nullary-IN

mono-arr : ¥V {A} — Mono A * — Mono A * — Mono A *
mono-arr ab = (a :: mono-nil) = b

The most intersting part is the flattening of Mono value into AGDA type.
The procedure is a structural recursion as in previous similar examples. We
separate the type-variable substitution subst-mono and the embedding of
closed type Mono-e—Set. We also expand multi-argument functions into
normal AGDA functions using the auxiliary fold-fun function, in a more
precise formalisation, we’ll need to actually use NP.

Env : Ctx — Set
Env A = NP (Mono €) A

data SingString (s : String) : Set where
ss : SingString s

Kind—Set; : Kind — Set;

Kind—Set; x = Set

Kind—Set; [x] = List Set

Nullary—Set : Nullary — Set
Nullary—Set nullary-IN = NN
Nullary—Set nullary-Bool = Bool
Nullary—Set nullary-String = String

Unary—Set : Unary — Set — Set
Unary—Settca = Lista

fold-fun : List Set — Set — Set
fold-fun [] b =10
fold-fun (a::as) b = a — fold-funas b
subst-mono : V {Ak} — Env A — Mono A k — Mono ¢ k
subst-mono e (mono-var i)
= lookupe e i
subst-mono e (mono-nullary x)
= mono-nullary x
subst-mono e (mono-unary f x)
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= mono-unary f (subst-mono e x)
subst-mono e (mono-sing-str s)

= mono-sing-str s
subst-mono e (as = b)

= subst-mono e as = subst-mono e b
subst-mono e (mono-union a b)

= mono-union (subst-mono e a) (subst-mono e b)
subst-mono e mono-nil

= mono-nil
subst-mono e (h :: t)

= subst-mono e h :: subst-mono e t
subst-mono e (mono-map f as)

= mono-map f (subst-mono e as)

Mono-e—Set : ¥V {k} — Mono ¢ k — Kind—Sety k
Mono-e—Set (mono-var ())
Mono-e—Set (mono-nullary x)

= Nullary—Set x
Mono-e—Set (mono-unary f x)

= Unary—Set f (Mono-e—Set x)
Mono-e—Set (mono-sing-str s)

= SingString s
Mono-e—Set (as = b)

= fold-fun (Mono-e—Set as) (Mono-¢e—Set b)
Mono-e—Set (mono-union a b)

= Mono-e—Set a x Mono-e—Set b
Mono-e—Set mono-nil

= [l
Mono-e—Set (h :: t)

= Mono-e—Set h :: Mono-e—Set t
Mono-e—Set (mono-map f as)

= L.map (Unary—Set f) (Mono-e—Set as)

Mono—Set : V¥V {k A} — Env A — Mono A k — Kind—Set; k
Mono—Set e m = Mono-¢—Set (subst-mono e m)

Example B.1 (zipWith type). We can encode the monotype part of the
zipWith. Given simple environment, it has an expected AGDA type. We use
cons instead of snoc, as we omitted snoc from this formalisation.

zipWith-Mono : Mono (% = [%] == []) *
zipWith-Mono = (f :: as) = mono-unary unary-List b
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where
lists : Mono (x = [*] == []) [*]
lists = mono-var (suc zero)

b : Mono (% :: [x] = []) x

b = mono-var zero

f o Mono (% =[] = []) *

f = lists=1b

as : Mono (* :: [x] = []) [*]

as = mono-map unary-List lists
zipWith-Env : Env (% = [%] = [])
zipWith-Env = mono-IN :: (mono-IN :: mono-IN :: mono-nil) :: []
zipWith-Agda : Set
zipWith-Agda = (N — IN — N) — List N — List N — List N
zipWith-Agda’ : Set
zipWith-Agda” = Mono—Set zipWith-Env zipWith-Mono
zipWith-Example : zipWith-Agda’” = zipWith-Agda
zipWith-Example = refl
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