
Design of a horizontally scalable backend
application for online games

Christian Cardin

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 10.10.2016

Thesis supervisor:

Prof. Antti Ylä-Jääski

Thesis advisors:

M.Sc. Teemu Kämäräinen

M.Sc. Mikko Virkkunen

aalto university
school of science

abstract of the
master’s thesis

Author: Christian Cardin

Title: Design of a horizontally scalable backend application for online games

Date: 10.10.2016 Language: English Number of pages: 6+83

Department of Computer Science

Professorship: Mobile Computing - Services and Security

Supervisor: Prof. Antti Ylä-Jääski

Advisors: M.Sc. Teemu Kämäräinen, M.Sc. Mikko Virkkunen

Mobile game market is increasing in popularity year after year, attracting a wide
audience of independent developers who must endure the competition of other more
resourceful game companies. Players expect high quality games and experiences,
while developers strive to monetize. Researches have shown a correlation between
some features of a game and its likelihood to succeed and be a potential candidate
to enter the top grossing lists.
This thesis focuses on identifying the trending features found on the current most
successful games, and proposes the design of a scalable, flexible and modular backend
application which integrates all the services needed for fulfilling the common needs
of a mobile online game.
A microservice oriented architecture have been used as a basis for the system
design, leading to a modular decomposition of features into small, independent,
reusable services. The system and microservices design comply with the Reactive
Manifesto, allowing the application to reach responsivness, elasticity, resiliency and
asynchronicity. For its properties, the application is suitable to serve on a cloud
environment covering the requirements for small games and popular games with
high load of traffic and many concurrent players.
The thesis, in addition to the application and microservices design, includes a
discussion on the technology stack for a possible implementation and recommended
setup for three use case scenarios.

Keywords: scalability; online games; microservices; architectural design

iii

Acknowledgements
I would like to thank Aalto University for the invaluable learning opportunities and
life experiences I had while accomplishing my master studies.

Thanks also to my advisors Mikko Virkkunen and Teemu Kämäräinen for their
feedbacks and guidance on this thesis work.

I am grateful to all my colleagues at Tunnel Ground Oy who gave me the inspiration
for this project and their assistance in everything.

I wish to give a heartily thank to my family and all my dearest friends for the
constant encouragement and support, and for being with me in this awesome adven-
ture.

Otaniemi, 10.10.2016

Christian Cardin

iv

Contents
Abstract ii

Acknowledgements iii

Contents iv

Symbols and abbreviations vi

1 Introduction 1
1.1 Digital Game Market . 1
1.2 Typical requirements for a modern game 1
1.3 Recurrent needs, not a unified way to deal with them 2
1.4 Architectural design challenges . 3
1.5 Thesis Goals . 4

2 Background, literature and theoretical focus 5
2.1 The Gaming industry . 5

2.1.1 Beyond Entertainment . 5
2.1.2 Trends and current evolution of the gaming ecosystem 7
2.1.3 The business side of gaming 9

2.2 Services in games . 14
2.2.1 What users want . 14
2.2.2 Case study: what features make a successful game? 16
2.2.3 Occurrence of features in games 18

2.3 Game production process . 20
2.4 Backend as a Service . 22

2.4.1 Building blocks of cloud computing 22
2.4.2 Cloud computing stack . 25
2.4.3 Load balancing and Resource Virtualization 28

2.5 Achieving horizontal scalability . 30
2.5.1 Overview . 30
2.5.2 Microservice oriented applications 34

3 Feature and requirement survey 37
3.1 Feature analysis of recent successful games 37
3.2 High level requirements . 42
3.3 General Service Requirements . 45

4 Application design 46
4.1 Overview . 46
4.2 Social Service . 50
4.3 Authentication Service . 51
4.4 Shop Service . 54
4.5 Datastore Service . 55

v

4.6 Leaderboard Service . 57
4.7 Chat Service . 59
4.8 Matchmaking service . 61
4.9 Multiplayer Service . 65
4.10 Logger Service . 66

5 Use Cases and technology stack 68
5.1 Use Cases . 68

5.1.1 Use case 1: Minimum setup 68
5.1.2 Use Case 2: Triple redundancy 69
5.1.3 Use case 3: Multiple Datacenters 69

5.2 Technology Stack . 70
5.2.1 Platform and infrastructure 70
5.2.2 Proxies and load balancers . 71
5.2.3 Message Queue . 72
5.2.4 Database . 73
5.2.5 Programming Language . 74

6 Final remarks 76
6.1 Discussion . 76
6.2 Future work . 77
6.3 Conclusion . 78

7 References 79

vi

Symbols and abbreviations

Abbreviations and Acronyms
API Application Program Interface
SDK Software Development Kit
P2P Pay To Play
F2T Free To Play
V2P View To Play
IAP In App Purchases
Ads Advertisements
MMO Massively Online Multiplayer
MMORPG Massively Online Multiplayer Role Playing Game
FPS First Person Shooter
RPG Role Playing Game
RTS Real Time Strategy
RDT Round-trip Delay Time
AI Artificial Intelligence
CRISP-DM Cross Industry Standard Process for Data Mining
SOA Service Oriented Architecture
REST Representational State Transfer
HTTP Hypertext Transfer Protocol
MQTT Message Queue Telemetry Transport
AMQP Advanced Message Queuing Protocol
RMI Remote Method Invocation
IPC Inter Process Communication
TCP Transmission Control Protocol
ACID Atomicity, Consistency, Isolation, Durability
BASE Basic Availability, Soft-state, Eventual consistency
CAP Consistency, Availability, Partition tolerance
XP Experience Points
MMR Matchmaking Rating
QoS Quality of Service
TTL Time To Live
RBI tree Red-Black Interval tree

1

1 Introduction

1.1 Digital Game Market
Games are currently playing a major role in the mobile market ecosystem. With
the advent of new technologies like smartphones, the evolution of the Internet and
social networks, games have seen a drastic change in almost every aspect from
implementation to delivery. One change was the decline of retail shops in favor of
digital downloads from application stores or online games played through a browser
[8]. The contribution of Facebook was particularly significant for the diffusion of
online games since 2007, when it opened its platform to third party developers
and released social APIs to let the player interact with their friends, for example
by sending gifts or inviting other people to play. The “friend” concept begun to
appear directly in the game mechanics, making it part of the core loop and, therefore,
encouraging people to involve as many friends as possible for a better experience
and advantages[13]. Thanks to this particular design, some games became viral and
earned a consistent capital in a very short time. A case example is Farmville, by
Zynga, who reached 10 millions daily active users in only six weeks after the launch
[31]. After Facebook, another great contribution to the ecosystem came from Apple
and Android when they introduced their app stores in 2008. From that moment
onward, games quickly climbed the rankings to the most downloaded apps.

A completely new ecosystem stimulated new ideas and business models for
enhancing the monetization of games. Nowadays there are different models [37]
which suit different market sectors, but the most popular one is the Free to Play,
also referred with the acronym F2P. According to the F2P model, a user can acquire
and play a game free of charge and optionally purchase virtual goods to enhance the
experience. The advantage from the user’s point of view is immediate because he
has access to the product without having to pay beforehand, but for the developer
there’s a bigger risk since the profitability is less certain. Based on the theory of
engagement, the longer a user plays, the more chances he has to buy virtual items, so
developers started to put emphasis on experience as a way to increase their revenue.

1.2 Typical requirements for a modern game
To have a deeper connection with players, the game should emphasize emotional
commitment through narrative techniques, introduce customizable elements, deliver
a high quality gameplay, induce players to come back regularly with assiduity rewards
and new updates. The engagement should be assessed by continuously collecting
analytic data and tuned iteratively. [13] For this reason, modern games have started
to integrate a series of services aimed to enhance the player’s game experience.
Research shows [26, 40, 15] that the most important feature for the majority of
players is the ability to interact with friends, to compete or collaborate with them
towards a goal. A typical way to introduce competition is by ranking players on a
public leaderboard, and compare them with their closest friends or with the other
players in a local geographic area. Instead of competition, there can be cooperation

2

by implementing a mechanic which allow one player to send gifts to his friends, also
contributing at the virality of the game itself. The possibility to create clans and
alliances with other players is a great improvement for the social aspect [38], players
will feel more involved and prone to a long term commitment with the game. For
“collector” players, a common option is to provide achievements and special prizes
when they manage to accomplish a specific goal in the game. This is particularly
useful for increasing the satisfaction and retention. Moreover, people tend to play
games in many devices tied to a specific account, so the progress should be portable
from a device to another, with an option to resolve an eventual conflict between game
states. Online personal inventory is an option that brings a considerable advantage
for both players and the company. From the player side, players can manage their
virtual goods from a browser, purchase directly from an online store, trade and sell
items to others. From the company side, the company gather useful statistics on how
the game is performing and respond quickly to discrepancies in the game design.

At last, there is the multiplayer support. The definition of multiplayer games can
be summarized as a network of social interaction in which players (human actors)
interact both with each other and with the system (nonhuman actors). At the time
of write, summer 2016, multiplayer games ranks on top of the grossing charts of both
Android and iOS, and so they did in 2015 [5]. Games can offer diverse multiplayer
experiences. The most common one is realtime multiplayer, where two or more
players play in the same virtual environment and the action of one player has an
immediate effect on the others. This is the case of massively multiplayer online games
(MMOG) like the famous World of Warcraft where millions of players impersonate
a hero and proceed through quests to gain experience and stronger items. The
players move in a vast virtual world and the actions of one player are instantaneously
synchronized with the other players. There are also turn-based multiplayer games,
like the lucky card game HearthStone. In this type of games, the gameplay proceeds
by discrete actions executed one after another, in turn, by the players. The final
state of the game is synchronized at the end of the turn or after every performed
action. Some of these games need a matchmaker in order to gather the necessary
players together, choosing from a pool of players waiting to join an instance, or
“match” of the game. Lastly, there are other types of games which have real-time
and turn-based elements mixed together.

1.3 Recurrent needs, not a unified way to deal with them
Currently, there are some providers offering similar services to users who integrate
their SDK into the application. The most known are Google Play Games, Apple
GameCenter and Steam. But they are not the only one, there are other less known
providers offering similar content including Amazon GameCircle, Microsoft and
Samsung. All of them expose accessible APIs or distribute an SDK, but with different
interfaces to the services and data formats. Often the feature set changes from a
provider to another, or they only expose a partial set of services. Implementing all the
providers’ technologies into one game is often a desirable business requirement, but
very time consuming for the developers. Integrating many third party development

3

kits in the same project requires an additional layer of abstraction to achieve a
seamless access from the core logic, but it increases the overall complexity. Moreover,
developers have to create special test cases and environments to ensure the same
behaviour in different platforms. Another limiting factor is that most of these services
are not meant to be cross platform. As an example, Apple restricts the use of its
services only to Apple devices. In general, developers who rely on third party services
don’t have full control over the data they collect from the users, not even retain the
ownership. Game companies must adapt to the provider’s terms, conditions and
technical limitations, and accept the compromise between imposed restrictions and
customization freedom.

There are many game Backends-As-A-Service solutions available on the Internet
[41], offering a complete suite of tools to fulfill all the features a modern online game
may require. Although these game backends solve most of the common problems
relative to the backend implementation, they are commercial products and none of
them allows the developer to really customize the system in all its parts. Game BaaS
may be a worthwhile choice for companies without special requirements on backend,
who don’t care about vendor lock-in and ready to invest a consistent capital in the
long run. There is a clear lack of options for those companies who need a tailored
game backend solution, who want full control over the system and the data, who
want to fine-tune performance and scale operations at a microservice level. There
are frameworks which partially address the problem but far from being complete,
the project is discontinued or documentation is not fully available in English, or not
available at all. Example of game frameworks are: Pomelo1, NugServer2 and Scut3.

1.4 Architectural design challenges
There are some technical requirements to take into consideration for implementing a
system capable of providing all the common features desirable in an online game.
First of all, there is the problem of abstraction. Games are so different that it is
not possible to make any assumption on the data model or mechanics. Every aspect
of the system must be designed to be data agnostic, from storage to algorithms,
so the developers can use it regardless of their specific data model. This imposes
a restriction on how the database is accessed, queried, and the kind of operations
that can be done with the game’s specific business data. However, some kind of
data format must be agreed in order to have a clear protocol for interfacing different
services.

It is clear how a distributed and concurrent application is more resilient, reliable
and scalable than a monolithic counterpart. But these advantages come at the price
of simplicity: the architecture becomes more complex as different parts of the systems
could be running on separate machines connected in a network. As a consequence,
the access to resources can’t be controlled and synchronized similarly to a normal
application. Additionally, network communication is expensive in execution time

1http://pomelo.netease.com/
2http://www.nugserver.io/
3http://scutgame.com/

http://pomelo.netease.com/
http://www.nugserver.io/
http://scutgame.com/

4

and can possibly fail due to many reasons, machines can crash and disappear from
the network at any time, the state is not guaranteed to be always consistent. For
mission-critical applications, uptime and recovery from failure is a non negotiable
option which require extensive effort on operational tasks, especially for monitoring
the application status and maintenance of the whole system. These issues become
even more challenging when they are taken into the context of online games, mostly
because of the high number of concurrent users, fast variations in user activity and
near-realtime communication requirements.

1.5 Thesis Goals
The objective of the thesis is the design of a flexible, lightweight horizontally scalable
game backend application that provides developers with many of the most common
services, that they can deploy on commodity hardware or existing IaaS providers.
The goals can be summarized in the following points:

1. Study the current mobile game environment to recognize and classify the most
used services and their use cases.

2. Design a scalable backend application which exposes the aforementioned services.
The design will focus on these five core concepts:

(a) Modularity: the application must be composable and it must be possible
to turn the services on and off on demand.

(b) Flexibility: parts of the application can be customized, and it can also
be extended with additional extra functionalities.

(c) Abstraction: Storage, communication protocols and algorithms must
work with any possible data model, imposing the least restrictions as
possible.

(d) Scalability: parts of the system must be able to scale up and down on
demand in terms of resource utilization.

(e) Concurrency: the system must be able to work concurrently with other
components and able to manage the available resources.

3. Proposal of a setup for a minimal usage, a medium usage and intense usage

4. Technology evaluation for the actual implementation: platform, programming
languages, databases, communication protocols, data formats.

5

2 Background, literature and theoretical focus
This section will introduce the reader to the topic covered in the thesis and explain
the motivation behind the work: why games are important? What are the problems
that games (and game developers) have in common? Why games need a scalable
architecture and who wants it? What does it mean “horizontally scalable architecture”
and why is it better from the others?

2.1 The Gaming industry
This chapter describes, in general, the vision and goals of the modern game industry.
It will focus on the impact that games have in our society and how we benefit
from them, for example for entertainment, learning, scientific and technological
advancement. The chapter will also cover the role of the industry in the economic
market and why there has been an increasing interest in games in the recent years,
the current trends and the possible evolution in the next future given the latest
data available from the recent statistics. Special mention to the current market
distribution and fragmentation, focusing especially in the mobile ecosystem.

2.1.1 Beyond Entertainment

At the time of writing the game industry is riding the wave of a phenomenon that
can be referred as “democratization of game development”. For the first time ever,
the dream of many independent developers, or wannabe game developers, is a reality:
everyone can build a game in his garage. If compared with the situation during the
1990s and 2000s, an age dominated by console and PC games, the idea of creating a
game as a hobby was mostly impracticable. Making a game was a very big deal, only
few studios had the experience, knowledge and production structures required for
the task, and acquiring this knowledge required a considerable investment in terms
of time and money.

However, things have changed dramatically, especially in the last five years when
the first game engines became available for the masses. A special mention goes
to Unity Technologies, which greatly lowered the entry level barriers for the non
specialized developers and game aficionados: they created an easy to use graphical
editor and tutorials for moving the first steps into game programming. Since then,
more and more tools became available throughout the years, more powerful but
more accessible at the same time, that encouraged the flourishing of a vibrant
community currently counting tens of millions of people. Thanks to the new tools
and the increasingly interest around the indie game culture, a profound change has
come bringing new and elaborate concepts, designs, business models and career
opportunities. The economy is moving with the fingertips of game developers.

The influence of videogames on society it’s not only limited at the entertainment
and its relative market sector, but spans over other inherent disciplines as games
improve. For example, games are the main reason for pushing forward the technology
of graphic processors and the science of computer graphics, as new games tend to

6

look more photorealistic than the predecessor. In addition, handheld devices need
more capabilities in order to fulfill the increasing hardware requirements of the
newer games. For this, new algorithms must be researched and optimized to take
full advantge of the limited resources available, also new materials are being tested
for the next generation batteries to guarantee more autonomy. We are living in a
connected world, and also games have evolved to take advantage of the thriving
internet services available nowadays. Fast, reliable and lag-free connection is now an
indispensable requirement for many online games, especially for realtime multiplayer
games. For maintaining this condition, server infrastructures and technologies must
evolve in order to keep the pace with bandwidth usage and ensure the maximum
availability even with millions of daily active users. As a side note, high performance
networks and infrastructures are required for a relatively new way of distributing
high-end games into low-capability devices: cloud gaming.

Another important drive for technological advancement is design. Game designers
are experimenting with innovative gameplay and interactions, which leads to com-
pletely new experiences for the player. Often, for making these interaction possible,
it’s necessary to invent new devices. One remarkable example is Kinect, a motion
sensing input device by Microsoft for Xbox game consoles and PCs. Thanks to
devices like Kinect and other affordable sensors, a research group of Aalto University
is trying to use different body movements for the human-computer interaction, like
jumping, kicking and dancing [22]. Another recent and interest project aims to
develop an augmented climbing wall for bouldering [29] for improving climber’s skills
using also game-like elements; the research included studies on image recognition
and path optimization, but also physiology and psychology. Enhancing performance
in sports, like in climbing, need intense training to practice motion skills, building
strength, endurance, knowledge and so on; it usually takes many repetitions before
the desired level of competence is reached. Fortunately, technology united with
gamification can help to make training less strenuous. Simulation games have come
so closed to reality that games are even used to train professional pilots and drivers.

It’s clear that computer games provide a compelling context for children’s learning.
Research [19] has advanced the idea that games can be effectively applied in a serious
educational context, motivating students to learn in a more effective way that the
traditional frontal lecture. Initially, educational games were not different from the
typical academic exercises (spelling words, solve arithmetic problems), although
somehow more appealing because of a higher degree of interaction, instant feedback
and cool animated payoffs. But the real advantage comes in when the educational
content is truly part of the gameplay, so children can exercise the targeted skills and
knowledge in a natural and seamless way. In addition, this approach encourages
children to see the educational content as useful and fun not because the content is
presented alongside other appealing elements, but because they are having fun and
achieving goals by using the educational content itself.

7

2.1.2 Trends and current evolution of the gaming ecosystem

Understanding the evolution and structure of the game industry has an enormous
strategic and economic implication for all the parties involved in the gaming market
sector. The game business market is highly dynamic thanks to the continuous
technological advancement, which opened the road for a multitude of new participants,
while other had to re-position themselves or adapt for not losing their place.

Compared to the entire entertainment market, video games occupy a relatively
small portion of it, most directly competing against the movie and music industry.
Many trends are promising in the current game industry, especially after the incredible
proliferation of mobile games: in 2006 the industry was generating $10 billion [13]
which grew to $91.8 billion in 2015 and $99.6 billion expected for 2016 (Statista,
2016). Impressive numbers, but still behind the astonishing $286.17 billion revenue
for filmed entertainment. However, game market is expected to grow at a faster rate
(+6.6% yearly) for the period 2015-2019 than film market (“only” +4.5%). While the
film and music industry monetize from many different sources (direct sales, licences
to broadcasters, rentals etc.), video games producers make money by selling directly
to consumers, from subscription fees for online games like MMORPG, or by showing
advertisements. In this context, videogame industry growth is relatively stable.

Figure 1: Distribution of game platforms over the years

Trends starting from 1990 onwards shown a strong constant growth of the gaming
industry, despite the financial crisis of 2007. Previously, when the scene was mainly
dominated by home console, the market worked in cycles of about 5 years: once a
new generation of machine was released, it brought a burst in revenue due to the
hardware sales and new games designed for them. Eventually, the most popular
consoles would engage in “console battles” to gain the biggest piece of the market

8

share. An interesting point is that the bigger console manufacturers (Sony, Nintendo,
Microsoft, Sega, and Atari) aren’t generating much revenue from selling the hardware
itself, since they’re sold on a 5-year cycle. Indeed, the greatest part of the profit is
coming from sales and distribution [36]. The development costs for a (good) console
game rose from 17milliontoabout20 million in the last decade [37], sum that not many
companies can afford. As a consequence, the publishers finance the development of
video games for the platform and take the most of the income, and then pay back
licensing fees to the manufacturer. This is the reason why fighting (and winning)
for the market share is so vital for manufacturers: a large consumer base means
large game sales, which then encourages developers to make more game for a specific
platform.

Figure 2: Global game market forecasts

Until the seventh-generation console cycle (2005), Sony led the market with their
PlayStation 1 and 2, although challenged by the Xbox from Microsoft. Still, it was
Nintendo’s Wii that, after the failure of GameCube, took the lead with most analysts’
surprise. Instead, Xbox 360 and PlayStation 3 fought hard for the close second
place. In the latest console generation it seems Sony has come off to the best start
with the PlayStation 4, whereas both Xbox One and Wii U are struggling to gain
momentum. PlayStation has historically appealed more to the hardcore gamers, and
many non-hardcore gamers are abandoning the consoles in favor of the vast mobile
alternatives [16].

Indeed, mobile platform has seen a continuous, steady rise from 2006, quickly
gaining an important piece of the gaming industry previously dominated by consoles.
Everything changed in the year 2007 when Apple introduced the iPhone, the first
smartphone to become a global hit and bringing also a profound change in the culture
and society. But the merit behind the achievement should not be attributed only at

9

the iPhone itself, but to the App Store: the tightly platform-integrated system that
enabled simple application downloads, management, and payments. The success of
the App Store led to a massive entry of small companies and independent developers,
in addition to encourage other mobile platform manufacturer to develop their own
platform ecosystem. The latter was the case of Android who launched the Play
Store a year later, in 2008. From that moment onward, mobile network operators
lost their influence and control on the mobile ecosystem in favor of mobile platform
manufactures and app developers. A new sector was born. Before, a developer
who wanted to publish an application had to contact a mobile network operator to
have their app visible on the operator’s portal, often the only channel available for
mobile users. But thanks to the introduction of an integrated app store, individual
developers could deliver their products directly to the consumer, cutting all the costs
involved in a longer product chain. App stores became the primary gateway for end
users to mobile applications and content.

Figure 3: Worldwide smartphone operating system market share, based on sales
(Statista, 2016).

After few years, the innovative ecosystem built around Android and iOS platforms
crushed the competitors who didn’t react in time to follow the trend, growing into
the today’s gigantic strongholds of the mobile market. The former bigger player was
Nokia with its Symbian operating system, who ended a flourishing mobile phone
business in April 2014 after ten years of success.

2.1.3 The business side of gaming

The growth of the videogames market favored the flow of an enormous amount of
money making the fortune of many companies in the sector. In this very moment

10

millions of people are playing videogames, most of which are considered casual players.
Casual player is the term used to define the profile of a person that plays games
without a long-term commitment. They are not usually bound to a particular genre,
and tend to prefer games with simple rules and short game loop. A game targeted
to this kind of audience is called casual game. It’s interesting noting that casual
online games appeal are appealing for all audience segments, including hardcore PC
gamers and mid-core players (Fig. 4). The prosperity of the mobile ecosystem, the
popularity of app stores and the shift of interest towards mobile games favored the
birth of new types of business models, pricing and contents. The most common are:
Pay-to-Play (P2P), Free-to-Play (F2P), subscription, early access, hybrid, player to
player trading. The graph shows most popular types of video games according to
worldwide consumers in 2014. Based on Limelight Networks research, approximately
50 percent of respondents chose casual games such as Candy Crush Saga as their
favorite type.

Figure 4: Most popular types of video games according to worldwide consumers in
2014, (Statista, 2016).

The P2P model consists, from the customer’s point of view, in three distinct
phases: first, the player buys the game (monetization), then he plays the game and
discovers the gameplay (acquisition), finally he eventually engage in the game and keep
playing (retention). In this case, the content is sold on a one-time premium purchase
which lets the buyer to enjoy the full experience as a unique and encompassing
service. The retention is only at the end of the process, but it’s important because it
can motivate the player to wait for the sequel or discover other products from the
game’s same franchise. With this model, the producer’s intention is first to create
demand for the product, and then understand the consumer behaviour watching at
the consumption data. Players with willingness-to-pay higher or equal to the P2P
price will buy the game, while others will not.

In contrast, F2P has a different scheme, also described with the ARM funnel [34].
The ARM funnel is a framework for analyzing the performance of a social network

11

game created by the company Kontagent. The player interaction is categorized in
three main stages: Acquisition, Retention and Monetization, from here the acronym
ARM.

Figure 5: Acquisition, Retention, Monetization funnel

The first step, acquisition, is the process of generating new players for the game
through two channels: viral and non-viral. The non-viral channel comprehends the
category of users acquired from advertising campaigns, cross promotion, offer walls
and other services where usually the company invests money in. On the other hand,
the viral channel conveys all the users attracted by other users already in the game
using word of mouth, sharing the game on social networks or by using a built-in
referral system; usually there are no economical costs for the company to withstand.
A good indicator for monitoring the game’s ability on generating users through viral
sources is the K-factor, which describes how many new users are gained through
virality for each user. The second step, retention, measures the game’s ability to
maintain its existing users. Since most of F2P games get most of their revenue from
active players (IAP or Ads), the profitability of the game can be related to how long
a player spend time in the game. The parameters used for the analysis are sessions
per user, average session length, average lifetime, retention rate (how often the player
returns to the game). The final step, monetization, indicates how much revenue is
generated from the players. There are many indicators of monetization, the most
common are the average revenue per user (ARPU) and average revenue per paying
user (ARPPU). Since, in F2P games, many players uninstall the game after the first
time they play it, the number of downloads is not considerate a good indicator for
success. Instead, developer prefer to look at the number of daily/monthly active users
(DAU/MAU). The latter can be then combined with the aforementioned statistic to
get ARPDAU/ARPMAU (average revenue per daily/monthly active users).

12

The main objective of the F2P games is to emphasize the experience before
monetization. Thanks to the app stores, distribution costs for developers is almost
zero, which allows player to get the game at no cost. Being the game free, the
acquisition step is facilitated by the huge amount of potential users which can try
the game at any time with no cost. If the player likes the game he will continue to
play and, depending by his level of engagement, will eventually involve other friends
to play with him. Actually, the first games to adopt the F2P model were online
games directly integrated in social networks just to exploit the virality potential of a
social platform. Based on the theory of engagement, the more a user plays the more
likely is to buy some virtual item; so game designers aim to create more engaging
core loops to lock in the user. This is why a F2P game requires a lot more effort
in design and strategy than a normal P2P game Zynga found a gold mine when
they launched the free-to-play game Farmville in 2009, reaching 10 million active
users in only six months and, at its peak, 32 million people were playing the game
every day [31]. The Farmville’s success is attributed to its strong social component
and they beneficial effect that friends have in progressing with the game. Thanks
to this feature, the game underwent to a viral diffusion among Facebook users. For
example, friends can speed up a player’s progress up by allowing them to plant and
yield crops instantaneously, or use them as helpers to automate some tasks. To cite
Wright Bagwell, FarmVille’s director of design: “This isn’t just a virtual, traditional
game board, It’s a breathing world and everything is really interconnected. I grow
my crops to feed my animals, my animals fertilize my crops, I need water to grow my
crops and my trees, and it tells a nice story that you’re trying to bring this farm back
to life.” When the player is engaged in the game, it may come the monetization step
(M). Indeed, a research conducted by GameAnalytics [12] shows that only about 2%
of the user totality will ever turn into paying users. The results are summarized in
the table 1

Population Amount spent IAP revenue
Non-monetizers 98% $0 0%
Minnows 1% $0 - $5 1%
Dolphins 0.8% $5 - $50 12%
Whales 0.2% More than $50 87%

Table 1: Monetization by user category. eMarketer, Q2 2016

The users are divided in different tiers based on how much they spend in a game.
Minnows are low-core spenders, dolphins are mid-core and whales hard-core spenders.
The big amount of non-monetizers can be explained by a typical behaviour of the
average casual gamer: installing an app, trying it once, and uninstalling it. While
the non-monetizers are prone to play several different games, dolphins and whales
are more committed to a small number of games, in which they decide to invest time
and money in it. A common strategy is try to elevate a non-paying user to the small
group of paying users (becoming a minnow), and then inducing him to invest more
to become a dolphin or a whale. The economic theory suggests that players are more

13

likely to purchase a virtual good if it’s in line with their preference and the way
they’re experiencing the game. But games are complex environments in which the
player’s perception evolves with the game’s progression in a very personal way, so
game developers must must offer a wide variety of differentiated items to capture the
maximum possible value from the users. Even if a player is converted to a paying
user, there are no guarantees that it will continue, it greatly depends by his level of
involvement and how deep the monetization mechanism is built in the game’s core
loop. Still, a large number of users is necessary for monetizing a F2P game. Looking
at data coming from the games in mobile stores [17], 90% of them are free to play
and they generate the majority of gross revenue. There are different monetization
channels, more or less effective. Here are some of them:

Direct monetization: In-App Purchases (IAP)
Also referred as Microtransactions, IAP consist in direct sales through purchase of
virtual goods inside the game. The list of most successful games using IAP as their
primary revenue is usually indicated in the app store’s top charts under the “top
grossing” section. At the time of write, both iOS and Android top grossing charts are
dominated by Pokemon GO (Niantic) generating a revenue of $2M per day, followed
by RTS games like Game of War (Machine Zone), Clash of Clans (Supercell) and
Candy Crush Saga (King).

Indirect monetization: Advertising
The game has some form of advertisement embedded into it. The more the number of
players that plays the game, the more times the ads are impressed and clicked, thus
the revenue from advertising is directly proportional to the user base’s size. A good
way to identify games who are monetizing with ads is looking at the top download
charts. This monetization method is getting a considerable attention lately, so much
that companies started to adopt a new business model focused on the monetization of
video advertisements, called View-to-Play (V2P). The peculiarity about this model
is that ads are not shown intrusively anymore, like static banners or interstitials,
but player choose to watch a 30 seconds long video in exchange of a in-game reward
or advantage. So far, the user reception was overwhelmingly positive with more
than 50% [3] of players stating that it’s their favourite way for “paying” the game.
Once, players used to pay to remove ads, now they value games for having a built-in
V2P mechanism. Revenues coming from this channel exceeded already the revenue
coming from IAP in 2015, because video advertisements are targeted to the 97% of
non paying users. (Futureplay, 2016).

Complementary monetization: Merchandise
As a side note, there are other ways in which a game can monetize. Some of them,
for example, allow the players to create content and sell to other players through an
in-game store in exchange of virtual currency or real money; game creators detain a
percentage from any transaction. This is particularly advantageous for companies be-
cause they don’t have to invest too much in creating the content, since the community
will do it. Some companies with a strong brand can monetize with complementary

14

goods such as merchandise, books, movies or the brand itself. This is the case of Rovio,
who earned the 45% of its $71 million profits from consumer products in 2012. Obvi-
ously, for both of these business model to work, the game must be reasonably popular.

Turns out that, unfortunately, even a free game is not enough to reach the
visibility needed to ignite the monetization machine, especially in the last years. The
app stores are so saturated with free to play games of all sort that one can not simply
publish a game and wait for players to come. Since the mobile game environment is
competitive, developers invest more time to create quality titles in terms of design,
graphics, usability and gameplay. Furthermore, players who are accustomed to this
rise in average game quality tend to be more critical when playing games, eventually
underestimating a good game, relegating it as “cheap”, because it does not have an
AAA graphic. Small studios and individual developers struggle to compete against
the more resourceful companies, and 90% of the startups in the gaming industry
close after 2 years. There are some exception, though. A way for gaining visibility
and acquiring users is through advertisement campaigns. But planning and running
an advertisement campaign is costly and requires specialized knowledge but it’s a
necessary investment for facing the huge competition affecting the mobile market.
Nowadays there are many services and advertisement providers which offer a full
set of features to control and customize a campaign, for example by letting the
developers to choose the target audience who may be more interested in the game.

2.2 Services in games
2.2.1 What users want

Understanding what’s desirable for players gives a direction to game designer for
creating a more enjoyable game that, hopefully, will have a better chance to engage
and retain users. Directions turn into ideas, ideas shape a design, and design
translates into requirements. At the last stage, after that the artistic process is
complete, it’s easier to analyze recurring patterns and find what are the services that
games need in order to give players what they want.

Once upon a time, a japanese game designer with the passion of collecting insects
decided to make a game that he would have liked to play. There was no business
sense included, only his love involved in the creation. Somehow, what he created
for himself managed to appassionate other people in his country, and then people
in other countries as well. The game was not build to sell, nor to become viral. It
was made only for the love of something, and to make something that others can
love. That designer is Satoshi Tajiri, the creator of Pokémon. It’s not possible to tell
empirically what is enjoyable about a game and what is not. Creating experiences
and emotions is an innate process, a form of art, that designers chase using their
intuition and inspiration. For this reason, it’s wrong to study “what players want”
purely from a marketing point of view; a good, original game has always some inner
spark in it, something unique and special that makes it different from anything
else. In general, players don’t want clones of other games, even if the game is “new”

15

in how it looks but the gameplay is not original; however it’s possible to look at
older and successful games as references to better understand what players consider
compelling. Once a correlation between games and players’ preference is found, it’s
easier to divide players in groups and then outline statistics and infer what are the
most influential features in a successful game.

So why people play games, and why some people prefer it at a book or movie?
For Richard Rouse [40] games are way more appealing because they provide some
sort of challenge. Reading a book or watching a movie are passive activities: the user
is the spectator, who lives the experience in third person. A game engages the player
in an entirely different way: in most of the cases the player IS the main character
and he have to actively think for progressing in the story, solving riddles, making
choices which may alter the experience completely. In games, the player lives and
creates the the story in first person. In this context, when a person overcomes a
challenge, that person also learn something which can eventually be applied also in
the real life, even if they don’t realize it (this is the core concept behind educational
games).

It’s true that many games are played alone, in single player mode, but there
are many multiplayer games which makes way more revenue. People seem to enjoy
a social game experience more than a single player one, especially in genres like
first person shooter (FPS), role playing games (RPG) and real time strategy (RTS).
Typically many console and PC titles of this genre offer both a single player campaign
and then a multiplayer option, which is an adaptation of the single mode, both
with the same rules and mechanics. Years ago, common multiplayer tournament
sessions were organized by groups of friends sitting in the same room, with their PCs
physically connected to each other in a LAN network. It was not only an occasion
to play, but also to socialize and doing fun activity together. Eventually, larger
groups would organize big competitive LAN parties, giving birth to what now is the
phenomenon of eSports. Another category of multiplayer games is the “massively
multiplayer online” (MMO), in which a great amount of players meet in a persistent
universe called also “virtual world”, the same for all the player involved, and move
and interact in real time with each other or with characters controlled by the game.
These kind of games are played over the internet, so the only way to socialize is
with the support of in-game features, for example an in-game message system. The
socialization aspect is integrated directly into the game, which encourage players
to meet and organize teams to have a better chances to proceed in the adventure.
This is also possible because, usually, MMO games are more slow-paced than FPS,
and players have the time to chat while playing. Games which take place in virtual
worlds have the potential to attract a large portion of users who are interested in a
multiplayer experience.

One immediate advantage of multiplayer games is that a human opponent is much
more challenging in comparison to a character controlled by an artificial intelligence
(AI). Even if the AI can be well-designed to mimic human behaviour, they turn
to be predictable and easy to beat once the player understood how the bot’s logic
work. But real players are unpredictable, and able to create strategies and react
much better in many different situations. Yet, not all participants in an open world

16

are there for socializing, for example for those players who enjoy a more explorative
experience, or the satisfaction to achieve certain results all by themselves [15]. Still,
the collaborative nature of most activities in the game is the main difference for many
players who engage in multiplayer and, most importantly, for the advantages, rewards
and reputation that this entails. People have a fundamental need of belonging. With
the rise of MMORPG (Massive multiplayer online role-playing games) a number of
institutions have emerged to fulfill this need; guilds are the primary institution to
encourage cooperative gameplay and sharing of success. In World of Warcraft, for
example, 66% of players belongs to a guild, and the rate increases to 90% for advanced
players [30]. All together, these shared experiences can increase the longevity of the
game, more attractive and dynamic. For example, user-created stories and quests can
sometimes be much more appreciated than the normal quests created by designers.
Especially in multiplayer games, players want to win respect from others. People able
to reach important achievement, or able of high performance, will be surely prized
by other in the game community and, sometimes, also in real life. This sensation of
contentment is often correlated with an increase of self esteem, they feel they can
accomplish something that others can’t, and an occasion to show pride for a result
they manage to accomplish.

2.2.2 Case study: what features make a successful game?

The analysis of a game’s features can be done from many points of view, it all
depends by what meaning is given to the word “feature”. There have been studies
in the literature which tried to identify the relationship between in-game features
and successful games [18, 4]. Despite the gap of five years between the cited studies,
outcomes are similar. The study analyzes the trends in the free to play mobile game
market, exploring the features that have the greatest impact for the success of a game.
A list of 37 features was collected [7] using the ARM funnel as a reference model
and then examinated with an approach inspired by CRISP-DM method. The Cross
Industry Standard Process for Data Mining (CRISP-DM) is a method for developing
data mining and knowledge discovery projects subdivided logical sequences of con-
struction steps such as business and data understanding, data preparation, model
building and evaluation. The first phase consisted in collecting business intelligence
data from the top ranking apps in the stores. Filho et al., 2014 considered 30.000
entries sampled from the top downloads and top grossing lists in Google Play in the
period 11.04.2013 - 12.05.2013; Alomari et al., 2016 instead considered 46 entries
from Apple App store top grossing list. Both studies then followed a three steps
procedure for analyzing the data.

First step: modeling of a decision tree
A decision tree is a structure that includes a root node, branches, and leaf nodes,
automatically generated by an algorithm starting from a given dataset. The resulting
top node corresponds to the best predictor from which the tree will continue. Each
internal node denotes a test on an attribute, each branch denotes the outcome of a
test, and each leaf node holds a classification.

17

Figure 6: Decision tree, 2014 research Figure 7: Feature influence, 2014 research

Figure 8: Decision tree, 2016 research Figure 9: Feature influence, 2016 research

In fig 6 there’s the decision tree generated from [18], which shows the feature
“friend help request” as the strongest indicator for game performance in revenue.
The second indicator, in order of importance, is the “unique offer” feature, meaning
that players are more likely to invest in good deals if there is an incentivation for it.
The results indicate that games with a leaderboard are usually ranked higher in the

18

top grossing charts. Fig 8 depicts the produced decision tree from [4] .

Second step: linear regression and evaluation
It may not be as intuitive at a first glance, to get a more meaningful result the authors
performed a linear regression analysis in order to extract additional knowledge about
relationships among predictive and class attributes. Linear regression is a technique
used to infer a relationship of cause-effect between a dependent variable (performance
of the game, in this example) and one or more explanatory variable (game features).
The results of regression are numbers called regression coefficients, which indicates
the significance of each explanatory variable over the output model. In this way, it
is possible to identify most of the representative variables in the problem. Finally,
a performance evaluation is made using the ROC Curve, or “Receiver Operating
Characteristic”. The ROC Curve is a graphical plot illustrating the performance of a
binary classifier system. Accuracy is measured by the area under the ROC curve: a
value equal to 1.0 represents a perfect test; an area of 0.5 represents an unreliable
test. Study [18] has an accounted accuracy of 79% and precision of 86.86%, thus
confirming a reliable outcome for the experiment. Study [4] also presents statistically
significant results, with a level of confidence similar to the first study.

Third step: analysis of results
The result of the two studies are depicted in table 7 and 9. The first table shows,
under the “+” sign, the features who have a positive effect on performance and under
the “-” sign the ones that have a negative impact. Surprisingly, IAP seems to be a
negative feature on games, but it may be an outlier because the study does not take
into account soft and hard currency consumption and consumable goods such as lives
and power-ups. Since freemium gamers spend most of their games on consumables,
the bad performance of this variable makes complete sense. From the second table
it’s evident how “Invite friends” stands at the first place as most significant feature
for a successful game. Skill tree is in second place, and leaderboard stays in third
position. It’s interesting noting that, in the two studies, there have been similar
features among the most important, but in different positions. This difference in
result may be caused by the difference in the initial sample data and because the
mobile game market has evolved during the five years that intercoured between the
two researches.

2.2.3 Occurrence of features in games

The previous section showed what are the features that can make a game poten-
tially successful. However, for having a better understanding of the mobile game
environment, it’s important to know what are the most popular features in terms of
frequency. The goal of this thesis is to study the current mobile game environment
to recognize and classify the most used services and their use cases. An analysis of
game services is presented in chapter 3.1. Figure 10 shows the occurrence of features
for 48 top grossing mobile games, and a short description for each of them in table 2.

19

Ranking Feature Name Description
1.0 Hard currency In-game virtual currency bought by paying with

real money, or redeemed in special occasions
2.0 Leaderboard Ladder where players are uniquely ranked, with the

purpose of comparing them.
3.0 Facebook Facebook’s functionalities are present in the game,

such as login, friend list and other services.
4.0 Soft Currency In-game virtual currency earned while playing, to

be reinvested for progressing
5.0 Invite Friends Social action feature. Often used as play accel-

erator, users may invite their friends to play in
exchange for a reward

6.0 Levels Visual representation of the player’s progress
7.0 Unlock Content The player can unlock some content after some

action/milestone in the game
8.0 Single Player

mode
Typical for premium games. Player can engage in
single-player campaigns, story mode or play against
bots

9.0 Request friend
help

Feature that allows a player to ask the help of a
friend for completing a difficult task or progressing
faster

10.0 Unique offer The game offers a bundle of in-game items in ex-
change of real money, usually at a discounted price,
for a limited time, only once.

11.0 Energy session
restriction

The game loop is restricted by an energy consump-
tion mechanic: energy is consumed by playing and
regenerates over time.

12.0 Random ele-
ments

The game is affected somehow by random choices.

13.0 Event Offer In-game bundles purchasable by real money or hard
currency, available for special events (e.g. Christ-
mas, Summer..)

14.0 Achievement Bonus features, unlocked when the player reaches
certain goals

15.0 Competitive
play

Games with some sort of ranking system which
encourage competition and skill development.

16.0 Power-up up-
grade

Power-up items can be upgraded in the game

17.0 Cumulable
rewards

The game includes rewards which increase in value
over time, usually every day.

18.0 Consumable Items that can be used and have an immediate,
temporary effect. Usually they’re cumulable in an
inventory.

20

19.0 Daily offer A small discount that help to convert users to pay-
ing users.

20.0 Item Upgrade Items can be upgraded in the game
21.0 Status Upgrade Character’s statistics can be upgraded in the came
22.0 non-cumulatives The user receives the same reward for coming back

every day
23.0 Customizable Games with customization options, usually in an

avatar.
24.0 Gambling The game includes gambling mechanisms
25.0 Chat The game includes a chat functionality, which can

be in-game or while meta-game
26.0 Timed boost For a limited amount of time, the player gets a

boost on rewards for playing (double coins or exp)
27.0 Time skip The game uses timers, that the player can decide

to skip by paying currency
28.0 Skill tree Common in RPG, the character evolves following

a tree-like chart with branches; the player decides
the evolution path

29.0 Versus Games with competitive mode which creates one-
to-one competitions.

Table 2: Feature ranking and description

2.3 Game production process
The creation of a game is both a form of art and an engineering challenge, for this
reason the whole process demands a large variety of competences, depending by
the game. But the typical expertise in a gaming company is split into five major
areas: design, art, programming, management and testing. Every project has its own
development time, also in games: from AAA games, which take years to develop
due to their high quality level in every detail, to simple mobile games that can be
developed in few weeks. But all of them follow a similar production line: concept
definition, design, development and testing.

Concept definition Phase The original idea is condensed into concepts. The
team participate in brainstorming sessions to add details to the starting idea until
the main mechanics and goals are decided, in the limits of the team’s resources,
time and capabilities. At this point, the team analyzes the game feasibility, the
producer writes a game proposal to attract funding bodies and a plan for the project
development and budget projections.

Design Phase The design phase transforms the concept into a detailed description
of the game’s features, mechanics, user experience, user interaction and narration.
There are many iterations until a final design is agreed. Also, the graphics style

21

Figure 10: Feature occurrences on top grossing games, 2016

for the game world and the user interface is also decided in this phase. A design
document is written to collect all the directives and salient points from the design,
and it may be different depending the size of the company. Typically, small companies
where most of the team members work closely together don’t need a verbose report,
but big gaming companies with tens of employees need to deliver all the information
to all the interested people at the same time, and the better way is by reporting all
the details in a shared document, so every person involved in the process have the
same reference for continuing their work. Nowadays, one of the best way to proceed
with the design of a game is through prototyping: developers implements a quick
and essential mockup of the feature following the design document specifications, so
that designers can actually see in action the mechanic beforehands, having a better
understanding whether the feature may work or not. At the same time, the technical
team must decide which technology to adopt for the development. This usually
involves the choice of a game engine, a software that provides most of the tools
for creating a game, for example a physics engine, rigidbody and softbody collision
detection, rendering and software compilation. The most used game engines at the
time of writing are Unity3D and Unreal Engine 4. The first has attracted millions of
indie developers with its free licence and an easy to use visual editor. The website
gathers many useful tutorials from the beginner level to more advanced users, and
the engine can be expanded with plugins, purchasable from a well supplied store or
made in-house. It is the most popular because it is a truly multi-purpose engine
for both 3D and 2D games, and targets a wide range of platforms from consoles to
smartphones. The latter was the engine used by Unreal Technology for its Unreal
games, but then opened to the public as a licensed product with a free option; it
focuses on AAA level quality in graphics and it is highly optimized for 3D games,
for consoles and PC. Finally, after that the team concluded the design and tool
selection, the development phase can start.

22

Development phase The beginning of the development usually includes the cre-
ation of a working prototype. A prototype is a fragment of the game with the
intention to demonstrate its main features and a basic playability example. The
purpose is to give developers, marketers, investors, and others a feel for the game,
a good measure of the “fun” factor and a proof that the design and features work
together as expected. Prototyping is the preferred way to correct the design on
the go, before spending resources to refine the game. A good prototype is also
used by developers to secure further funding from publishers. Once the proto-
type has reached a satisfactory progress, the team start with the actual production
process. This task include the creation of the game’s code, graphics and sound,
which can take several weeks to several years depending by its the size and complexity.

Test and release phase After all the different pieces of the game are made, they are
connected together to form the first version of the game, commonly referred as alpha
version. It contains all the elements for being playable, but it lacks of final polishing
and balancing. The alpha version is used internally for further testing and finely
tune the balance and playability. Playtesting is crucial during this phase to check
that the game is actually fun to play, intuitive, challenging and balanced enough
so the player won’t incur in frustration, the worst case for a healthy monetization.
The alpha test ends once all the problems found during the gameplay test have been
corrected, opening the beta testing phase. A Beta version is a refined, almost ready
to publish version of the game that is subjected to further gameplay test conducted
by strangers belonging to the game’s target audience. Testers are invited to play,
while developers observe their interaction, reactions, and collects the final comments.
After the game have been refined even more, incorporating the results from the beta
testing, the game is ready to be published into a limited number of countries, to
study the monetization incomes and gather additional analytics on a larger userbase.
Finally, the game can be correct, if necessary, and released to the public. For many
companies this is not the end of the development process: through the player’s
feedback and the analytics it’s possible to detect problems which need to be fixed.
For this reason, a part of the team may eventually follow the evolution of the game
by creating patches for bugs, additional content for improving the monetization and
many more subsequent changes for reaching a satisfactory level of user engagement,
retention and monetization.

2.4 Backend as a Service
2.4.1 Building blocks of cloud computing

The term “Cloud Computing” can have diverse meanings depending by the context,
but essentially it is an abstraction on top of the physical computing infrastructure for
pooling physical resources and serving them as virtual resources. Virtual resources are
intended as computational power and storage space that can be dynamically allocated,
configured, reconfigured and deallocated as needed. It is a recent shift of paradigm

23

for delivering resources on demand, for staging applications, and for accessing services
independently from the underlying platform, bringing a revolutionary change in the
way enterprise computing is created, deployed and managed. Applications can be
developed and distributed with minimum costs for the companies who utilize the
cloud computing, enabling them the flexibility of scaling the business at will. Cloud
computing must not be confused with grid computing, which is an infrastructure
for dividing large tasks in smaller ones and computing them in parallel on multiple
servers. A standard definition of cloud computing comes from the United States
National Institute of Standard and Technology (NIST) [32] Cloud computing is
a model for enabling convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction.

Figure 11: Cloud computing model, NIST 2012

This cloud model is composed of five essential characteristics, three service models,
and four deployment models, shown in picture 11. In addition, further in the specifi-
cation the NIST requires the support of multi-tenancy and network virtualization.

Essential characteristics

1. On-demand self-service: A consumer in need of computing resources (such
as computation time, network storage, bandwidth) shall acquire them auto-
matically without the need of human intervention.

2. Broad network access: Computing resources shall be delivered over a net-
work, e.g. Internet, and accessed through standard mechanisms to promote
heterogeneous client platforms (such as laptops, smartphones and other smart
devices).

3. Resource pooling: The provider’s physical and virtual resources shall be
pooled and dynamically assigned and reassigned to multiple consumers who

24

demanded them, in compliance with a multi-tenant model. Since the cloud
abstracts the physical resources, the final consumer has no control or knowledge
over the real location of the resource. Nevertheless, he may be able to specify
the location at a higher level, such as continent, country or datacenter level.

4. Rapid elasticity: Consumer’s allocated resources can be rapidly scaled up-
wards or inwards according with demand. From end user’s perspective, resources
appear to be infinite.

5. Measured Service: Resources usage per tenant is monitored, controlled and
reported through a metering system (usually pay-per-use or maximum available
quota) in order to guarantee transparency for both the service provider and
the consumer.

Service Models Although nowadays there are many types of popular cloud services,
NIST categorizes them in three big families.

1. Infrastructure as a Service (IaaS): The cloud service provider has the
responsibility of managing and maintaining the hardware appliances, such
as processing power, storage, network and other computing resources. The
consumer is allowed to install and execute arbitrary software and operating
systems on top of the cloud infrastructure, and has restricted control over
specific networking components (commonly firewalls). In order to efficiently
manage physical resources, IaaS provider make extensive use of virtualization.
Virtualization softwares can deploy virtual machines (VMs) isolated from each
other and independent from the hardware, so that they can be eventually
copied/transferred to different physical locations and adjust the resources
allocated to single VMs to meet the consumer’s demand. Amazon EC2 and
Microsoft Azure are examples of IaaS cloud service.

2. Platform as a Service (Paas): The cloud service provider offers a hosting
and development platform allowing the consumer to deploy consumer-created
applications written in a supported language. In addition, the platform provi-
sions tools, frameworks and middleware to facilitate the development phase.
The user has control on environment settings and the deployed applications.
An example of PaaS is Google AppEngine and Heroku.

3. Software as a Service (SaaS): The consumer has access to an application
running in the provider’s cloud infrastructure through a thin client such a web
browser running on an internet-enabled device. The consumer has no control
on the underlying platform, and the only customization options are the one
available through the application itself. SaaS often employs a multi-tenancy
architecture for minimizing resource consumption. The are countess of SaaS
example currently active, some of them are: Google Docs, Gmail, Adobe
Creative Cloud.

Deployment Models A deployment model defines the purpose of the cloud and
the nature of how the cloud is located.

25

1. Public cloud: Currently the dominant form of cloud computing. The cloud is
available for public use or targeted for large industry groups. The provider has
full control and ownership over the platform, as well as policies and pricing.

2. Private cloud: The private cloud infrastructure is operated exclusively by
a single organization, managed by the organization itself or by a third party
entity. The actual location of the infrastructure could be both in- or off- premise.
The benefits of a private cloud are custom optimization and maximizing the
utilization of internal resources. Secondly, privacy and security concerns may
induce companies to favour a private cloud. Lastly, because organizations
necessitate full control and supervision over mission critical activities.

3. Hybrid cloud: Platform composed of multiple interconnected clouds, of any
type, which share data and information together using proprietary or standard
technologies. Every individual cloud service maintains its identity.

4. Community cloud: It’s a cloud infrastructure used, built and administered
by a community, or group of communities, which share a common vision.

2.4.2 Cloud computing stack

Fig 12 shows in detail the Cloud Reference Model architecture [42], a representation
of the service models in terms of hardware and software stack. The bottom level
comprehends the hardware infrastructure, which has also the lowest level of integration.
Every layer inherits the capabilities of the service model on which relies on; the higher
the position in the stack, the higher is also the level of integrated functionalities.

Cloud computing is built upon the same technologies developed for large dis-
tributed network applications accessible over the Internet. The advantage brought
by cloud computing is the system virtualization in which resources can be pooled
and partitioned on demand; software running in these virtual environment can also
be coupled in multiple different locations. Abstraction through virtualization and
resource metering is the core distinction between cloud computing and a general
n-tier service architecture, where resources can be intended as static.

For the elastic nature of the cloud, an application running on a cloud platform is
usually built from a collection of component, a property called composability. In a
composable system, standard components can be assembled into services targeted
to a specific purpose. For reducing complexity and enabling maximum flexibility, a
component must be modular and stateless. A modular component is a self-contained
and independent unit that can be reused. A stateless component does not keep
data about the external environment; all the information must be provided by the
requester in order to fulfill the task. A component with no dependencies on other
modules brings powerful benefits for the application, as it can be easily upgraded or
replaced with another module, provided that the interface remains the same. Despite
that, there’s no obligation for a component to have stateless transactions, but it surely
increase coupling and accounts for a more complex system. Some cloud computing
solutions manage state using brokers, service buses and transaction monitor; full

26

Figure 12: Cloud computing stack according to the Cloud Reference Model

transactional and stateful system are possible but hard to scale in a distributed
environment. Service Oriented Architecture (SOA) is a design pattern for cloud
applications promoting the use of composable services, which expose a well-defined
interface and communicate together using standard protocols.

Infrastructure IaaS providers, in order to deliver servers that can run appli-
cations, build their cloud systems on top of virtual machines. The virtualization
software can emulate a virtual server and assign to it a defined number of processors,
processor cycles, storage space, ram and network bandwidth. Such virtual servers
are commonly referred as virtual images, or instances. In fig 12 the IaaS stack is
shown in dark grey, and represents the part of the cloud who is closely associated
with “server”. Server farms (i.e. big collection of computer servers) need equipped
facilities to guarantee the proper conduct of operations. One of these requirements
is an energy source able to supply enough power for the computers, combined with
adequate protections against faults, overloads and short circuits. Electrical devices
produce heat, and a server farm yields immense amount of heat which, if not properly
controlled, can cause severe damage. Hence, the facility must be equipped with
cooling systems and security measures against fire accidents. Some companies deploy

27

computer farms on the bottom of the sea or in cold regions, like Greenland, with
the purpose of saving on the costs of cooling. Such appliances are often controver-
sial, because of the environmental issues and pollution risks related to them. As a
consequence, governments and several organizations around the world push towards
an environmentally sustainable IT industry, known as Green Computing. Green
Computing goals are primarily to reduce the use of hazardous materials, maximize
energy efficiency during the product’s lifetime, and promote the recyclability or
biodegradability of defunct products and factory waste. The IT industry is interested
in investing and researching in the Green Computing mostly for reducing the energy
consumption of their appliances, aiming to cut costs in electricity and cooling systems.

Right upon the hardware, a low-level software called Hypervisor (or Virtual
Machine Monitor, VMM) creates virtual instances, runs them in an isolated memory
space, assigns resources to them and directs their I/O. The infrastructure layer
is also responsible for providing connectivity, security and authentication services.
Sometimes, the cloud provider can decide to expose APIs to interact with the lower
layers.

Platform Virtual machines can run any software and operating system desired
by the user. In PaaS clouds, the vendor installs custom services aimed to facilitate
application development, within the range of the platform’s capabilities. For giving
an illustration, services can include: application lifecycle development, simultaneous
collaboration, data management and databases, testing and analytics tools, plain
storage space, transaction management to guarantee data integrity. It’s convenient for
operating system producer to move their development environments on a cloud plat-
form, promoting their proprietary technologies. Microsoft Azure, for example, powers
its platform on Hyper-V VM, integrates a SQL Server and ASP.NET frameworks so
that developers can code using Visual Studio as client application. Platforms include
all the necessary middleware to create, run, maintain and monitor an application.
However, the consumer can not access the platform’s features directly, it is limited
to use the provided APIs.

Virtual Appliances The top layer of the cloud stack are virtual appliances: pre-
configured virtual machines images, runnable on a hypervisor. One substantial
difference between a platform and virtual appliance is that the former is built from
many components and accessed through an API, the latter encapsulate one applica-
tion and the minimum required dependencies, operating system included. Specifically,
virtual appliances can be platform. Virtual appliances can be pre-configured and
optimized for their purpose, so it can be copied and deployed several time without
the need of configuring each virtual machine one by one. They can be used to
assemble more complex systems by interconnecting more virtual appliances. Major
cloud vendor like Amazon has a wide offer of virtual appliances that developers can
deploy, usually they include an operating system, both proprietary and open source,
a series of enterprise software and complete sets of development stack (LAMP: Linux,
Apache, MySQL, PHP is one example). However, virtual appliances are generally
large in size (from 500MB) because they bundle a full environment, including the

28

operating system, making them harder to distribute. The next section will explain in
more detail how virtualization works and compare it with another popular method
for distributing applications: containers.

2.4.3 Load balancing and Resource Virtualization

In order to split resources among several users, the cloud needs a low-level software
called Hypervisor. Hypervisors can be of two types. In Type 1 Hypervisors, the
software is installed directly on the hardware, creating a fully virtualized system.
This is the first type of VVM made, and currently the most performant. Type 2
Hypervisors are applications run on the host’s operating system. Type 2 hypervisors
sometimes does not virtualize a machine completely. For efficiency and simplicity,
some tasks can be processed by the host OS outside the virtual environment through
some APIs exposed by the VVM, but the guest OS must be ported to support these
APIs. Instead, an emulated virtualization simulates all the hardware, removing any
dependency with the host system.

Figure 13: Different techniques of virtualization.

A summarization of virtualization method is shown in fig 13 Emulation is the
technique with the most overhead, in which applications run slower. Generally, every
form of virtualization incorporates some unavoidable overhead, but the advantages
it brings justify the drawbacks. However, a relatively young technology is gaining
popularity, and is quickly being adopted by an increasing number of developers:
container-based virtualization.

Container-based virtualization approaches the problem of abstraction and isolation
in a different way than hypervisors. While hypervisors abstract/emulate hardware,
containers isolate processes at the host’s operating system level, avoiding the overhead
of virtualizing a full guest OS. That said, many containers can be executed on top
of the same host’s operating system kernel, sharing all the OS libraries and kernel
access. A container can run one or more processes, in complete isolation from

29

other container’s processes. Figure 14 shows the main differences in virtualization
architecture [11].

(a) Container based architecture (b) Hypervisor based architecture

Figure 14: Difference between container and virtualization architectures

Due to the less overhead in containerization, it’s possible to reach a higher density
of virtual processes. In addition, without the need of a guest OS, the image size is
smaller and deployment time is much faster compared to a normal hypervisor-based
virtual machine. Researches have shown that containers offer better performance
than hypervisors [33], also confirming how containerization causes no overhead on the
host system. They do come with some payoff and security concerns: at the moment
containers are not portable among different operating systems, and resources are
not completely isolated because the kernel is directly exposed. Nevertheless, con-
tainers is the current buzzword and the technology is evolving in a promising direction.

Load balancing Virtualization is the technology at the cloud core, allowing it
to dynamically assign and dismiss resources on demand while guaranteeing security
and separation between virtual instances. The services in a cloud can be accessed
from a network, and the component responsible for the optimal distribution of
resources to requesters is the load balancer.

Load balancing is an optimization technique used for accomplishing different
goals: decreasing latency time, increasing throughput, distributing load uniformly,
reduce response time. Load balancers can be implemented in software or hardware,
they are an essential part of the cloud infrastructure due to their ability of redirecting
requests in case of failure. Load balancers help to create fault tolerant systems when
coupled with redundancy and failover mechanisms. In its simplest operation mode, a
load balancer uses a scheduling algorithm to match the resource with the requesting
client. Depending on the state (static or dynamic) of the system and who initiated
the process (sender, receiver or symmetric), different algorithms can be applied [2].
A dynamic algorithm always considers the current system status, it never accounts
for past states. In distributed environments, the algorithm is executed in all nodes
and the load is shared among them in a cooperative strategy, trying to increase the
overall performance. However, nodes can also adopt a non-cooperative strategy and

30

aim to optimize the performance on a local scale. In non-distributed environments,
one node can be responsible for balancing all the traffic (centralized algorithm) or,
alternatively, nodes can be distributed in clusters and every cluster elects a master
node to perform the balancing within the cluster.

After the algorithm matched the requester with the resource, a session token is
created to redirect all the subsequent requests from the same source to the same
resource. The token can either be stored by the cloud side and replicated across
multiple load balancers, or it can be sent to the client as a cookie.

2.5 Achieving horizontal scalability
Scalability is one of the most important quality attributes of today’s software systems.
Yet, despite its importance, scalability in applications is poorly understood and there
is no generally accepted definition. This chapter explains what that are the common
techniques to achieve a scalable system, the advantages and the payoffs.

2.5.1 Overview

The concept of scalability has many interpretations depending by the field of ap-
plication. D.Hill [25] unsuccessfully tried to give a definition of scalability in the
year 1990, and by far no formal definition exists. The most widespread meaning of
scalability shared by experts is the non-functional property of a process, system or
network to handle an increasing workload and remain effective in terms of cost and
performance when resources are added. This definition is usually associated to a
distributed system, but it can be applied to a wider context. As an example, an
organization who rely on a scalable business model has the potential to sustain an
economic growth due to a larger volume of sales or services provisioned. Scalability is
a desired feature of a system, but it does not automatically translate in performance,
which is the ability of a system to complete a task in a certain amount of time. If well
designed, a system can reach better performance under high load through scalability,
however not without sacrificing other aspects of the system. There are two ways
in which a system can be scaled: vertically and horizontally. In the case of vertical
scalability, the existing computation node is upgraded with more or better physical
resources to enhance its effectiveness.

Resources can be more CPUs, more memory, more storage, or technology upgrade
(i.e. replace the hard disk drive with a solid state one, buy newer generation RAM
or faster processors). Having more available resources affects directly the number
of virtual machines that the system is capable to run, or the maximum amount of
resources that every machine can get. On the other hand, horizontal scalability
can be accomplished by adding more nodes to the system, in order to distribute
the computation to many similar peers instead of having only one big, powerful
central node of computation. Often, the nodes in this kind of system employ low-
cost commodity hardware that can be conveniently dismissed if any failure occurs.
Hardware costs for infrastructures may seem significant at a first glance, but the
cost of software development for large applications becomes more expensive over

31

time. As a consequence, applications are built in a way that does not require any
additional work when scaling is a necessity. But scaling vertically or horizontally
have a great impact on the cost that a company must face. As seen in picture 15
the cost of scaling vertically does not scale linearly with the amount of processing
power needed. At a certain point, the cost for upgrading a single node would become
unsustainable. Even with a large budget available to face the exponential growth in
costs, there will be a limit imposed by the technology. Anyhow, the major advantage
of scaling vertically is that the application’s architecture is really easy to create, and
does not need any special attention when upgrading the system.

Figure 15: Cost of scaling vertically vs scaling horizontally [23]

On the long run, scaling horizontally using commodity hardware is the only
viable solution. As drawback, many more machines require space, more costs on
maintenance and an unavoidable more complex application structure. Moreover, as
horizontally scalable system are distributed, there are other properties that the system
must satisfy in order to be effectively scaled without running into issues, for example
high availability, reliability and performance. A recurrent feature in distributed
systems that may help an application to scale is concurrency. Concurrency is the
property of a system to be decomposed into units capable of working independently
by the order of execution. This means that the outcome of a certain task remains the
same even if the components are executed in different or overlapping order. It should
not be confused with parallelism, which is the ability of processes to be executed
simultaneously. Concurrent tasks may be executed in parallel, thus increasing system
performance and efficiently scaling out when more resources are added (nodes and/or
CPUs).

Architectural design plays a fundamental role in achieving scalability, the ability
of the system to scale depends on the types of data structures, algorithms and
protocols used by components to communicate and execute business logic. As data
and functions consume memory and execution time, this should be also taken into
account in measuring the scalability of a system. A. Bondi describes four general
types of scalability [10]

32

• Load Scalability: A system capable of remaining functional without unwanted
delays or unnecessary waste of resources during heavy loads. The factors
undermining load scalability can be an inefficient scheduling of shared resources,
inadequate exploitation of parallelism with frequents deadlocks, the scheduling
of a class of resources in a manner that increases its own usage (self-expansion).

• Space scalability: A system in which memory requirements grow at a sublinear
rate when scaled, at most. This concept applies mainly to data structures.

• Space-time scalability: A system is time-space scalable when it implements
algorithms having a reasonable asymptotic complexity, allowing it to function
gracefully as the number of objects it encompasses increases by orders of
magnitude. Space scalability is a necessary requirement to achieve space-time
scalability.

• Structural scalability: A system that is able to increase the number of
components it encompasses independently by the chosen technology, protocols
or implementation. This definition is relative, because a system can be limited
by the current technology. For example, a packet header has a limited size for
the receiver address, which limits the number of possible addressable nodes in
the system.

There are many ways to approach how to think about scalability of a platform,
one useful example is the representation of a three dimensional cube addressing three
approaches to scale that we call the AKF Scale Cube [1].

The AFK Scale Cube represents three characteristics of scalability on the three
spatial axes X, Y and Z. The origin represents the worst case scenario, a monolithic
service completely unable to scale. In a monolithic application all functionally distin-
guishable aspects (I/O, data processing, error handling, and the user interface) are
all interlaced together, rather than contained on architecturally separate components,
and is limited by the finite resources provided by the single machine. On the other
side, the top right corner represent an highly optimized ideal system that can achieve
infinite scalability.

The X axis represent the degree of replicability of the system, useful for spreading
computational load across several nodes. This approach is effective for increasing load
scalability, and it is the solution that most companies implement first. The solution
consists in employing N machines, each of them running the service application,
and place a load balancer in between the client and the multiple servers so that
the load sustained by each node is 1

Nth
of the total. The implementation of node

replicability does not involve significant costs or re-architecturing the application,
unless it makes use of a state preserved in one specific server. Eventually, the system
can be easily refactored to use a centralized state server, to support statelessness or
use sticky sessions in the load balancer. While scaling along the X axis is sufficient
for improving load scaling, it exposes potential bottlenecks like memory constraints
when caching data, since all nodes must access all the data. In addition, it does not
tackle the problem of increasing development and application complexity over time.

33

Figure 16: AKF Scale Cube

The Y axis shows how much the system is split in modular components, each
of them encapsulating a certain function, service or resource. Each module can
implement a set of use-cases, for example for managing a user login and processing
requests for user account information. Rising on the Y axis promotes the distribution
of each task to its specific module, thus distributing the amount of memory required
across the system. More importantly, it localizes the memory on a single module,
optimizing the use of cache. The benefits come with a higher price for architectural
design, which needs to be re-engineered to carefully split the application into modules
of the appropriate size and distribute roles and responsibility accordingly. In large
organizations this approach is preferred because it allows developers to focus on
specific, independent areas and benefit from a more gentle learning curve and better
quality.

Scaling on the Z axis is similar of scaling on the X axis: in both cases there
are cloned nodes executing the same application, with the difference that a node is
responsible for only one portion of the data. Requests are equally routed to nodes
by computing a hash of the request, or by inspecting its type. As a result, the
system becomes fault-isolated since a failure will only affect a limited portion of the
data; the memory would also benefit from a better cache utilization and reduced I/O
traffic per node. Z-scaling is especially useful for sharding (or partitioning) databases
across multiple servers. That said, it can be coupled with X-scaling to replicate each
partition by deploying servers on a master/slave configuration, allowing simultaneous
reads and writes without loss of performance. Amazon has based its DynamoDB
scalability model on data partitioning [14] using consistent hashing, treating nodes

34

as part of a fixed circular space, or "ring".

2.5.2 Microservice oriented applications

Although there are many solutions for achieving scalability depending by the use case,
but the most acclaimed approach is to use a microservice oriented application: units
of modular software with a well-specified interface and well-specified set of roles and
responsibilities, which follow a share-nothing principle. Microservices architecture
is part of a service-based architecture family, the same as SOA (Service-Oriented-
Architecture), distinguishable from other architectural designs for their emphasis on
modular services as primary building blocks for an application. One commonality of
service-based architectures is that they are designed for distributed systems, meaning
that the communication with the single services happen through the use of a remote-
access communication protocol such REST (Representational State Transfer), SOAP
Simple Object Access Protocol), MQTT (Message Queue Telemetry Transport), RMI
(Remote Method Invocation) and many more. A service module (or component)
is a self-contained application that can be individually designed, developed, tested
and deployed with minimum dependency on other services. The difference between
Microservices and SOA is in granularity. While services in SOA can be of any size
and complexity, Microservices are small, single-purpose and highly optimized. While
splitting the architecture to create Microservices, it’s important to consider the
overhead caused by an excessive subdivision. Every message sent from a service to
another implies a small delay due to network communication. If two microservices
exchange too many message, there is the risk of a bottleneck and it’s a clear signal
that maybe the services can be incorporated into one. Microservice architecture
divides the services in two categories, functional services and infrastructure services,
as shown in figure 17.

Figure 17: Microservice architecture model, in a very generic chart [39]

Functional services implement different part of an application business logic, they
are accessed externally by the means of some API and generally are not shared any

35

other services. Infrastructure services are shared services providing non-functional
tasks like authentication, logging and monitoring. They are private and not accessible
from outside the application, typically shared with other services. Since microservices
only provide one very limited functionality, business logic must be implemented by
calling the appropriate services in the right way. There are two main strategies
for managing logic flow in the application: orchestration and choreography. The
differences are shown in fig 18, using the example of a customer service software that
registers the creation of a new customer

(a) Service orchestration (b) Service choreography

Figure 18: Different control flows in microservice architecture [35]

In an orchestrated application there is a central node which drive the execution of
a process, calling the services required through a series of request/response calls. The
central node can keep track of the progress and report any fault during the execution.
Although convenient, this model has drawbacks. The central node can become
large as the application grows, turning into a potential single point of failure. With
choreography, the central node only triggers an asynchronous event. The services
subscribe to the event source and act only when they are informed that a certain thing
happened. A disadvantage of choreography is in the difficulty to backtrack errors
and monitor the system correct behaviour. To overcome the problem, it’s a good
practice to build testing and monitoring tools that explicitly match the application’s
logic, to reproduce the event flow and analyze how the services react. However,
choreographed applications are generally more loosely coupled, tend to be more
flexible and responsive to changes. Microservice architecture favors choreography for
its distributed nature, but too much choreography between functional services can
lead to coupling and inefficiency. For this reason it’s important to divide the system
in services at a right level of modularity, especially if services are organized in a chain:
the longer a chain of service is, the longer it takes for satisfying a request due to the
accumulation of network delay; and also higher chances of failure due to unexpected
errors. A too fine-grained subdivision of tasks can undermine the benefits brought
by a microservice architecture. If two functional services are sharing data with each
other, they could be integrated into a unique one. Eventually, in the case in which a
service is shared with many others, it’s preferable to violate the DRY principle and
incorporate the functionality in the services who require it. This expedient increases
overall performance by reducing the number of remote calls and makes the system

36

more robust because there is less probability of faulty services. Finally, less services
implies less API to maintain, simplifying the development and service maintenance.

A clear advantage of Microservices over monolithic applications is the flexibility
to changes, a component can be redesigned or rewritten in another language without
affecting the whole application; this concept applies even more to microservices, in
which services are split in minimalistic modules. Service-based architectures promote
technology heterogeneity. Every service can be designed and implemented with the
technology that better suits the purpose, also helping the company to adopt new
technologies quickly and incrementally. Microservices help to increase resilience,
if a service fails then only a little portion of the application is damaged. Other
services could then intervene to re-establish the faulty component or mitigate the
functionality gracefully. However, accomplishing a full resilience is a non trivial
task. Compared to a monolithic application, understanding how to react on failure
points is much more difficult, especially when multiple services are involved for the
execution of a higher level task.

Services are usually accessed remotely, so it is important to guarantee a certain
level of security, typically authentication and authorization. In microservices there is
not a middleware which handle security, so every service must handle security by their
own. One approach is having two distinct services for authenticating and authorizing
users, but a better solution is letting every service to handle the authorization by
itself, creating a stronger context within the service and removing a dependency from
another service.

Transactions in service-based architectures is challenging because, in distributed
environments, the ACID (Atomicity, Consistency, Isolation, Durability) consistency
model can not be satisfied. Instead, the predominant model in this context is BASE
(Basic Availability, Soft-state, Eventual consistency). The former guarantees that
every transaction is successfully executed or rolled back in case of failure, every
requests does not overlap, the system remains on a consistent state and data is
persisted even when faults occurs. On the contrary, the latter does not have this
high degree of certainty, but ensures availability and consistency over a period of
time.

37

3 Feature and requirement survey
Firstly, this chapter presents a survey on the common features and use cases for
online games, followed by a list of non-functional requirements that the system must
meet in order to satisfy the thesis goals.

3.1 Feature analysis of recent successful games
In order to have a better understanding of the very current needs of mobile gaming,
the author will examine a selection of the top grossing games available in App Store
and Play store and report the services used by each game. The selection has been
made on date September 1st 2016. The chosen games for the analysis are: Clash
Royale and Clash of Clans from Supercell, Pokemon GO from Niantic Inc, Candy
Crush Saga from King and Hearthstone from Blizzard Entertainment.

Clash Royale Clash Royale is a fast paced multiplayer battle arena, which combine
elements of tower defence with collectible cards. It was released on March 2nd 2016,
and still ranks on the top 10 grossing mobile games since then. Players engage with
other real players over the internet in one versus one matches, trying to defeat the
opponent’s towers using their minions, summoned by using cards randomly extracted
from a deck. In case of victory, the player is rewarded with Trophies, Chests, Crowns
and Coins, otherwise he loses Trophies on defeat. Player can also obtain new cards
and coins by opening Chests; it’s possible to open a chest only after waiting a certain
amount of time depending by the Chest’s type. Skipping the timer by paying with
gems is also possible. Player gets Experience Points (XP) by upgrading minion cards,
some features are unlocked only when the player reaches a certain levels. The major
game elements and features are the following:

• Player Profile: Login with Facebook, Google Play or Apple Game Center.
Player’s progress is tight to the profile, and can be migrated from a device to
another.

• Virtual currencies: Coins (soft currency) are gained by winning matches,
and are used solely for purchasing and upgrading cards. Gems (hard currency)
can be acquired with IAP, and they can be converted into gold or used to buy
Chests. Experience Points can be acquired by upgrading cards. Crowns are
awarded in battle and are spent to get free chests.

• Inventory and upgradeable items: the player can collect Minion Cards and
arrange them to form three decks. Every Minion Card has its own statistics,
type and peculiarity. Cards can be upgraded with coins and with enough Card
Points. Chests are also part of the inventory.

• Real-time multiplayer: players engage in a fast-paced battle where multiple
elements are synchronized in real time. Acceptable Round-trip delay time
(RDT) is in the order of tens of milliseconds.

38

• Matchmaker: players can battle any other player in the world with similar
level and rank.

• Achievements: Rewards are given to players who complete certain tasks.
Achievements are incremental, and can grant a little amount of hard currency.

• Leaderboard: Players are ranked by the number of Trophies accumulated
in battle. The game shows several leaderboards: global, regional, clan and
Facebook friends.

• Alliances: Player is incentivated in joining a Clan, where members in a clan
can engage in friendly battles.

• Chat: Players can chat with all members in the clan in a shared space.

• Gifting and help requests: players can gift or ask for cards among the
alliance.

• Tournaments: The game is suitable for eSports thanks to an embedded
tournament system, allowing the creation of public and private matches.

• Push Notifications: Device receive a notification on specific events

Pokemon GO
Niantic’s Pokemon GO was launched globally in July 6 2016, breaking five world
records after the release for grossing and number of downloads. It is the only game
ever to have grossed $100 million in 20 days, and the most downloaded game ever
in one month. It’s a mobile location-based augmented reality game, it promotes
physical activity through the gameplay. The goal is to find, capture and collect all
the 151 Pokemon by physically walking in the real world. The game exploits the
device’s GPS to track the player’s position, when he approaches a location with
a Pokemon, the Pokemon is revealed and the player can try to catch him. The
Pokemon is shown on a overlay on top of the camera view, giving the impression
that the Pokemon is really there (although all serious players disable this feature
because it makes the capture harder). Players can collect items by going to certain
points of interests (POI) and battle gyms with their Pokemon, claiming its property
for the team they belong.

• Player Profile: Login with Google Play (Android) or Game Center (iOS).
Account is portable between devices.

• Virtual Currencies: Coins (hard currency) can be bought with IAP or
obtained by conquering gyms. Stardust and Candies (soft currency) to power
up Pokemons can be acquired during the gameplay, along with Experience
Points

39

• Inventory and upgradeable items: Pokemon GO is all about collecting.
Pokemons are the most important collectibles, and they can be powered up
with Stardust and Candies, obtainable by capturing Pokemons. Some items
are unlocked after the player have reached a certain level.

• “Almost” real-time single player: player fights other player’s pokemon,
controlled by an AI, for taking control over gyms. After the battle, the new
state is globally visible. Client devices also need constant communication with
the system for receiving Pokemon’s location and for validating the capture.
Acceptable RDT is in terms of one second.

• “Almost” real-time multiplayer: Multiple players of the same team can
join the fight in a gym at the same time. RDT requirements are the same.

• GPS tracking: Eggs can be hatched by walking, the game keeps track of the
distance traveled by the player and its current position in real time, to show
the Pokemon hidden at that location.

• POI and Location Data: Pokestops and Gyms are placed in POIs all over
the world according to their popularity. Data was originally extracted from
popular geo-tagged photos on Google. Pokemons have affinity with the real
environment, the system must be able to determine the physical properties of
a location’s terrain in order to spawn the appropriate type of Pokemon.

• Achievements: Players are awarded with medals after that certain goals are
satisfied. No useful reward is granted to the player.

Candy Crush Saga
Candy Crash, developed by King and released on April 12th 2012, is available in
all the major mobile platforms and as a browser game. It was nominated “Game of
the year” in 2013 after its positive receptions and gross income, it’s been in the top
grossing mobile game charts for years. Candy Crush is a casual match-three puzzle
game where players have to switch candies on a grid to form a line of three or more
candies of the same type. The game is organized in predefined levels of increasing
difficulties, and highly leverages on Facebook’s social features to involve player’s
friends as much as possible.

• Player Profile: Login with Facebook. Account is portable between devices.

• Virtual Currencies: Gold Bars (hard currency) can be bought exclusively
with IAP. Lives can be considered a renewable soft currency, the game poses a
negative feedback after losing a level by subtracting a life. Lives are replenished
over time.

• Inventory: Player can accumulate boosters of different type, usable in levels
for having an help or advantage.

40

• Daily reward: Player is rewarded with boosters of increasing value every day
in a stack.

• Timed offers: discounted bundles available to purchase for a limited amount
of time. Special offers are proposed at special occasions.

• Leaderboard: Every level shows a leaderboard to compare the player’s best
score with the friends’ one. In addition, player’s friends are ranked by number
of level cleared, their icons are shown in the main level map.

• Gifting and help requests: The game strongly encourages gifting to maxi-
mize the chances of virality. Player can gift lives or boosters, and request lifes
from his friends through Facebook messages.

• Social Network Features: The game uses Facebook specific API to interact
with player’s friends and share high scores.

Clash of Clans
Clash of Clans is the most famous game of Supercell, the first of the “Clash” line.
Although it shares some similarities with Clash Royale, the two games are deeply
different. It is a multiplayer strategy game with tower defense elements in which
players build, upgrade and defend a village. In addition, player can train troops to
raid other villages to get resources and Trophies, ranking the global leaderboards.

• Player Profile: Like Clash Royale, players can login with Facebook, Google
Play or Apple Game Center and play freely in any device.

• Virtual currencies: Elixir and Gold are the main soft currencies, generated by
structures and obtainable from raids. Gems (hard currency) can be purchased
with IAP or in other little amounts by playing and completing achievements.
Experience is gained for building and upgrading structures.

• Inventory and upgradeable items: The player’s village can be seen as an
inventory, structures and troops as items that can be upgraded. Also, structures
have an arrangement.

• Indirect Multiplayer: Players perform raids on other people’s villages, trying
to break through their defences. Although the server controls the defensive
structures, only the attacking player is directly involved in the fight. The
defender player will only get the notification of the battle outcome. Since no
real-time multiplayer is involved, the game can easily employ lag compensation
techniques to make the game run smooth also with high RDT.

• Matchmaker: players are matched according to the number of Trophies they
have.

• Achievements: Incremental achievements that grants rewards, including hard
currency.

41

• Leaderboard: Players are ranked by the number of Trophies accumulated in
battle. There are several leaderboards: global players, regional players, global
clans, regional clans and player’s friends.

• Alliances: The game is highly focused on clan battles. Players are encouraged
to create or join clans and collaborate together to rank leaderboards by defeating
other clans.

• Chat: Players can chat with all members in the clan in a shared space, or send
inbox messages to specific people.

• Gifting: There is the option to donate troops to other clan members.

• Push Notifications: Device receive a notification on specific events

Hearthstone
Originally released on PC and successively for mobile, it is a turn-based collectible
card game developed by Blizzard Entertainment. The game borrows the theme of
World of Warcraft with a gameplay typical of a physical card game: player collects
cards by buying and opening virtual card packs. There are nine deck categories, each
of them feature a Hero with different effect in game and can accept maximum 30
cards, both deck-specific or generic. Cards are distinguished by rarity and can be
classified in Minion, Spell and Weapons, each with different usage and effect. Players
contend in head to head random matches. Despite its simplicity, Hearthstone has a
deep gameplay which require strategic thinking and careful deck builds to succeed.

• Player Profile: Login from any device with Battle.net account or Facebook.

• Virtual currency: Gold Coins is the soft currency used to purchase card
packs, arena keys or unlock adventures. Coins can be obtained by completing
daily quests. Arcane Dust can be obtained from duplicate cards, and used to
purchase other cards.

• Shop: The game has no hard currency, instead IAP are used to directly
purchase card packs and unlock adventures.

• Inventory: Cards are the central and most important collectible items in the
game. Decks are arrangements of cards that the player can create and save.

• Turn-based multiplayer: actions are performed turn by turn, orchestrated
by the game. A turn has a maximum duration of 75 seconds with no interaction
with the other player, so the acceptable RDT is in the order of several seconds.

• Matchmaker: Players are matched based on their matchmaking rating (MMR)
score similarity. Also, players can create friendly matches.

42

• Leaderboard: There are different game modes. Ranked mode favours compet-
itive play by granting MMR points to players after each victory, and removing
point after every loss. There are 25 ranks, depending by the player’s score.
Leaderboards are resetted after every month.

• Chat: a simple emote system is available in game with some pre-defined words.
Chatting with friends is possible outside matches.

• Friends: Rewarded referral system. Friendship through Battle.net account.

• Quests: Daily quests are available to complete in exchange of gold.

• Downloadable content: New content is added seamlessly with in-game up-
dates which does not affect the game client. Updates are downloaded from the
server when needed. Adventures and expansion sets are two examples.

Despite the diversity in genre, some features occurs in all five analyzed games. It
can be seen how user profile is an important element for mobile games. Players can
authenticate in few seconds using 3rd party providers, usually Facebook, Google Play
or Apple Game Center. Through authentication, player’s progress can be persisted
online and retrieved in a second moment on another device, allowing true portability
of the user’s information, more security and privacy. Leaderboards and achievements
are cornerstones in modern games, as they increase the player’s engagement and
interest in the game, contributing to a better retention (and monetization). Inventory
and virtual items are very common elements. Virtual Currencies, shops and IAP are
also omnipresent, being one of the major monetization channel for games, together
with rewarded video ads. Depending by the genre, player’s friends can be more or
less important. Some games are built around interaction with friends, incentivizing
players to involve as many friends as possible, like Candy Crush. Others have a
broader concept of friend which is not strictly limited to a social network connection,
and give the opportunity to find other players directly in the game to form alliances.
Anyway, a form of real time chat or inbox is a desirable requirement for allowing
people to communicate. Although not all games involve matches and tournaments,
the opportunity to create multiplayer experiences is appealing to many gaming
companies, but also being a big limitation due to the high complexity of multiplayer
interaction. The next sections describe in detail the requirements that will be used
to compose the final scalable backend application.

3.2 High level requirements
This chapter lists the high level requirement that will be taken into consideration for
the application design. The design will take inspiration from the directives recom-
mended by the Reactive Manifesto4, a collection of best practices and architecture
traits from the industry aimed towards the production of scalable, resilient and highly

4http://www.reactivemanifesto.org/

http://www.reactivemanifesto.org/

43

available software applications. The characteristics of a Reactive system are shown
in picture 19.

Figure 19: System properties according to the Reactive Manifesto

Responsive:
Responsive system are focused in providing high quality of service (QoS) with con-
sistent response time, acceptable delay and well-defined upper bounds in resource
consumption. Responsiveness empowers fidelity on the end user by guaranteeing
usability and service utility.

Elastic: Elasticity ensures the responsiveness of a system under varying workload,
both at high loads and low loads, and to efficiently allocate or dismiss resources
in order to reduce costs for the service provider. Elastic systems are naturally
distributed and avoid central bottlenecks or single point of failures, and consent to
equally partition the workload among replicated or sharded components. Algorithms
and data structures shall meet the elasticity requirement too, in a cost-effective
manner on commodity hardware and software platforms.

Resilient: The system remains responsive even if failure occurs. Ideally, the system
shall become unavailable only after a complete failure of all the components the
system encompasses. Key properties of a resilient system are replication, containment,
isolation and delegation. Single components shall be eligible for replication in order
to increase redundancy and high availability; faults shall be contained within a single
component to isolate other parts of the system from cascading failures. Finally, recov-
ery of faulty nodes is delegated to an external monitoring component where it applies.

Message Driven: System based on asynchronous message passing decrease cou-
pling between components and reinforces isolation. Messages can also be intended as
self-describing events observable by a subscriber component; publisher/subscriber
design pattern is especially suitable for non-blocking communication. In addition,
component’s physical location is transparent to messages, since they can be sent

44

seamlessly to nodes in a network or threads in a process. Message queues are effective
for load balancing and flow control, as well as indicators about the system health.
In case of congestion (e.g. a message queue length exceeds a certain threshold), the
component can gracefully respond to the load by informing the user about the issue.

In addition to the aforementioned properties, the system shall observe the fol-
lowing requirements for facilitating development, operational tasks and deployment.

Modularity: The system shall be designed as a collection of standalone self-contained
services, uniquely defined by a clear API. All data required for the internal operations
must be encapsulated and never exposed with other services, in contemplation of
the share-nothing principle. It must be possible to create non-trivial high-level logic
by composition of single services using the orchestration or choreography approach,
whereas the situation requires. A modular system allows the single components to be
treated individually during development phase, improving testability and lowering
deployment time.

Customization: The system must abstract as much as possible from implementation
details, leaving to developers the task to customize the low-level design according
to their application-specific requirements. This will affect mostly API definition,
communication protocols, data models and database schemas. A good level of con-
figurability ensures flexibility of components, so that they can be used as blueprints
for the most common use cases. Moreover, it shall be possible to easily extend the
system functionalities with new custom ad-hoc components.

Configurability: The application shall work with no restriction regarding the
virtual topology or physical location of single service instances. There shall be no
difference, from the application point of view, to run all the services on a unique
physical machine or a virtualized environment spanning several datacenters. The
final user must be able to configure the virtual topology of the application, deploying
and removing instances at will. Services must adapt to topology changes automati-
cally. Options for automating the deployment and allocation/dismiss of resources
are desirable.

Monitorability: Final user shall be able to access metrics regarding the system at
the component level. Especially, resources consumption (e.g. CPU, memory, storage,
bandwidth) shall be metered and reported for performance tuning. All faults must be
promptly alerted through a notification system, service uptime and congestion levels
shall be monitored continuously. Automatic failure recovery mechanisms are desirable.

Security: Every part of the system must guarantee protection from unauthorized
access and from theft of sensitive data. Connection between system and clients must
be encrypted to prevent basic threats.

45

3.3 General Service Requirements
Services are meant to be highly dynamic components which enclose specific system fea-
tures in an isolated logical space, which expose only the bare minimum APIs to access
business data and operations. The following is a list of required properties for a service

Reactive compliant
The service must observe all the requirements for a Reactive System, already men-
tioned in the previous section.

Standalone A service is a software component that can be developed, tested and
deployed independently of other components in the system. It shall encapsulate all
the data needed for accomplishing the task.

Replicable
Requirement that supports Elasticity: the service must be designed for concurrency,
so that adding more instances of the service increase the performance of the system.
Multiple instances of the same service shall not interfere negatively with each other,
but they may cooperate by sharing resources whereas it is necessary or convenient in
order to enhance performance.

46

4 Application design
The previous chapters have given the motivation and background information for
building a scalable system for online games. The current chapter will show the
architectural design of the system as a whole and the details of every single component.
For each component, specific requirements will be illustrated together with the
necessary UML diagrams. As described in chapter 2.5.2, a microservice-oriented
architecture is especially suitable for achieving horizontal scalability, modularity and
flexibility, thus making it the first choice as reference for the architecture. Abstraction
and concurrency can be achieved with a careful software design.

4.1 Overview
The application is based on standalone microservices that can be replicated as needed,
communicating by the means of asynchronous message exchange as the Event-Driven
Architecture pattern suggests. In this context, messages can be intended as events.
Services create, detect, consume and react to events. An overview is depicted in
figure 20.

Figure 20: High level system architecture

Dashed lines represent asynchronous message exchange, while continuous lines
indicate a persistent connection. Clients do not directly talk to the services, the
application core is placed behind a layer of proxies that handles HTTP traffic and
TCP connections. A reverse proxy has many advantages: it provides security by
obfuscating the internal topology and real addresses of the application, handles
the compression and encryption of requests and acts as a cache for certain type of
contents. Thanks to proxies, the application is more secure because every service
instance can block all traffic from external addresses, and whitelist only the trusted

47

sources. Also, the backend can be relieved from decrypting requests and dealing with
certificates. Additional security can be granted with a firewall as protection from
DDoS attacks and other threats. The Proxies route the incoming traffic requests to
one of the API Gateway servers. The API Gateway is a server (or collection of
servers) with the task to analyze incoming requests and route them to the appropriate
service, at the same time guaranteeing protection against faults and adequate security.
For dynamically routing the requests to the correct service and offering protection
against faults the API Gateway uses a communication channel called Message Bus.
A representation of the message bus is shown in figure 21.

Figure 21: Schematic representation of the Message Bus

The Message Bus is a reusable system to route any type of request in the
application, in the form of message. Message Bus can serve to send messages to
every part of the application and stands as an independent service on its own. This
way, the components are decoupled since they communicate indirectly to each other
through the Message Bus, which can route requests dynamically according to the
current load, exclude faulty nodes and invalidate stale requests. Messages can be
intended as events, which are delivered asynchronously.

• Discovery Service: It’s a service which gathers all the instances of all the
other services running in the application, with their address and port. Every
time that a service is started, it logs itself into the Discovery Service server. It
will then check the health status of all services by sending heartbeat signals
and immediately notify faulty nodes when occurring.

• Load Balanced Routing: Every request should be routed to a service that
can satisfy it. The Router is a simple component that associated request types
to services. For example, requests can arrive in form of HTTP, so they can
be routed according to their URI. With TCP, the protocol should agree on
message types. Once the request is identified, the list of available services is
retrieved from the Discovery Service and one of them is chosen according to
their load and health status.

• Authentication: If a request needs authentication, the player must include
an authentication token with it. Before forwarding the request to the service,
the API Gateway contacts the Authentication Service for checking the user’s
identity and fetch his permission. In case that the authentication fails, the

48

request is denied. For flexibility, authorization is delegated to the specific
service.

• Request mapping: For a reliable system, it’s important to inform the re-
quester about the outcome of the operation. In a distributed system where
messages are passed from service to service asynchronously, there must be a
mechanism for notifying the sender if the request was executed correctly or
generated an error. This can be accomplished by incorporating a request_id
and requester_id in the message, so the reply message can be routed back to
the origin. The requester is usually a service. In case of the API Gateway,
which forwards requests on the player’s behalf, it maps each request with the
incoming connection so it will always able to return the message to the correct
player.

• Fault Tolerancy: Nodes can fail and disappear, network communication can
interrupt, messages can get delayed, processes can overload. If one service
fails completely, there must be mechanisms to prevent cascading failures that
compromise all the application and a graceful service degradation. Effective
techniques for guaranteeing this property are known as circuit breaker and
timeout.

• Monitoring: each time a failure occurs, the system reports the fault to a log
service or supervisor service, who can activate to investigate the cause of the
fault. This is useful for restarting a dead service, killing poisonous processes
and notify the rest of the application that something went wrong, allowing it
to adapt to the new condition. Also, the error log is useful for developers for
debugging purposes.

The sequence for satisfying a request can be seen in the flow diagram in figure 22.

Figure 22: Flow diagram for sending a request to a service

The use of timeout guarantees that even if a service is not responding or a message
is lost for any reason the caller will always be notified of the failure, so it can react

49

accordingly by the case. If the caller is the API Gateway, it will return an error
message to the client. For messages sent by services in the Service Message Bus and
Internal Message Bus the flow is the same, except for the authentication check (since
all the internal services are protected) and the proxying to the gateway. Services can
handle errors in the more appropriate way, eventually returning it on cascade until
the initial caller is met. Actual message exchange is accomplished with Message
Queues: every service has an inbox where messages from other services are collected
waiting for processing. The service constantly checks the inbox for new incoming
messages. Message queues are good for withstanding bursts of requests, they act
similarly to a buffer, collecting tasks waiting that some service will execute them.
If the queue size exceeds an upper limit, then the system can deploy more service
instance to quicken the execution. Is worth noting that every service instance share
the same Message Queue. Unfortunately, services can become overloaded and stop
fetching messages from the queue, leading to an accumulation of requests until when
the queue will be completely full. In this case, messages could be lost if some sort of
fallback mechanism is not in place. A solution to this problem is using the circuit
breaker pattern, shown in figure 23.

Figure 23: Circuit breaker pattern

Essentially, the circuit breaker uses timers and timeouts in case of full queue to
repeatedly retry the delivery of a message in case of full queue. It can be in three
state: close, open and half open. A closed circuit is healthy. At every request, the
message queue is checked and if it’s not full the message is pushed in the queue.
Contrarily, if the queue is full it will try several attempts after waiting a certain
amount of time. If the queue does not recover before the number of attempts exceed
a threshold, the circuit is opened and all subsequent messages will be refused. After
a defined time, the circuit will switch to the half open state, and start to accept
messages again. At this point, if the queue has recovered the circuit will be completely
closed recovering the normal behavior, otherwise it will return to the open state.

50

4.2 Social Service
As games are becoming more and more social, integrating it with the most widespread
social platforms can be problematic to handle for developers. Typically, the inte-
gration between games and social networks happens through a provided SDK that
needs to be included in the client application, so some part of the interfacing must be
handled by the game itself. Nevertheless, many social networks have APIs accessible
from servers. The Social Microservice serves this goal.

Figure 24: Social microservice architecture

The Social Microservice is an infrastructure service, not meant to expose any
public API, but solely communicate through the application’s messaging system.
Figure 24 shows the architectural structure. SocialService is the microservice’s entry
point and responsible to accept incoming requests for tasks and emit results, a list of
possible messages are shown in table 3. The service implements the Factory design
pattern: a SocialPlatform (Worker) is an interface which declare the contracts of
the functionalities provided by the service. SocialService does not need to depend
on specific implementation of a platform, indeed it asks a Factory object to create
them. The created objects implement platform-specific code to fulfill the all the
operations. Since the worker is provided with all the data needed for completing the
task, and all requests are independent by each others, they can run concurrently.
Once the task is completed, the service entry point collects the answer and notifies
about the operation result.

In order for the service to scale, each message must be complete with all the
required information. The platform type and user access token, for instance, are
always mandatory fields. The data carried by the message can vary depending by
the target platform. Messages and answers declare their intent with a verb and a
complement, and carry data. Answers also use semantic to distinguish their type and
carry with them the data retrieved by the service. The service is suitable for infinite
X-axis scalability and Z-axis when messages are routed according to the player’s ID.

51

APIs (prefix: /social)
GET
/:platform/profile

GET
/:platform/friends

GET
/:platform/achievements

DO
/:platform/login

DO
/:platform/share

DO
/:platform/invite

Table 3: Social microservice example APIs

4.3 Authentication Service
Games uniquely identify players in order to offer a customized experience and account
portability among devices. When a user installs the game for the first time, the
game client request the user to perform a login procedure or, in case he has not
done it already, register to the service. User registration and authentication is often
done through a third party identity provider, the most popular being Facebook,
Google Play and Apple Game Center. These services implement custom protocols for
authentication and require different sets of data to deal with. Moreover, in some cases
other registration and authentication strategies are desirable, for example with a
custom username and password database or an anonymous guest account. Functional
requirements for the Identity service are:

1. Player shall authenticate to the service using a given Authentication Strat-
egy. Required authentication data will be provided to the service which
validates the request or returns an error to the client.

2. The service will retrieve the user ID from the identity provider and checks
whether the user ID is already registered in the system. If yes, the system will
return the data associated with player’s identity, completing the login. If not,
the service initiates a registration process.

3. A registration process involves the creation of a newPlayer Identity, identified
by a unique ID, and an Access Token. A new Player Account representing the
authentication strategy used for the registration is also created, and univocally
linked to the Player Identity.

4. A player can have one or more Accounts connected to its Identity, as many as
the supported authentication strategies.

5. Additional accounts can be linked to the Identity after the player has successfully
authenticated to the service and authentication data for the new Account is
provided. Linked accounts allow the service to determine the player’s identity
by using that account’s login information. Unlinking of existing accounts can
be possible if necessary, as long as there is always at least one connected to
the Identity.

6. It must be possible to store player’s related data along with its Identity, the
system shall be able to update this information if required.

52

Figure 25: Data model for Authentication service

The proposed solution for the authentication microservice is a stateless functional
service who exchange asynchronous messages with both the API Gateway and
Message Bus for maximum scalability and flexibility. For conveniency, the service
depends on the Social Service to handle the user’s authentication with the 3rd
party identity providers, but if necessary this functionality can be included under
the Authentication service. If for example, the user choses to authenticate through
Facebook, the Client application will initiate the OAuth2 handshake with Facebook’s
identity servers to obtain an authentication token. The Client will then use the
Facebook token to login to the authorization microservice, who will confirm the
identity and release a token usable for accessing the rest of the system. In the
context of OAuth2, the Client sees the system as the Resource Server. Token-based
authentication enhances security since the system will be able to access 3rd party
services on behalf of the user without knowing its private credentials. From the
functional requirement analysis, four main elements emerge: Authentication Strategy,
Player Identity, Player Account and Player Data. Fig 25 shows the data model
used by the microservice. Player Identity stores the system-specific user unique
identifier and has a one to many relationship with Player Account, connected by
the foreign key PlayerAccount.PlayerId. The latter model contains the information
collected from the 3rd party service during the authentication phase. Both playerData
and accountData fields contain custom application-specific details that developers
may decide to include.

APIs (prefix: /auth)
DO /:strategy/login DO /:strategy/signin DO /:strategy/link
DO /authenticate DO /unlink DO /logout
Events
PUB auth:user_signin PUB auth:user_login PUB auth:user_logout

Table 4: Authentication service example APIs

The table 4 lists the functions exposed by the microservice. Login, Signin and
Link are actions which depend by the type of the chosen authentication provider, so

53

the :strategy parameter must be provided along with all the custom details needed.
The microservice publishes events at the occurrence of certain action, so the other
microservices who subscribed in the topic can react automatically, for example by
caching the user data from the database at login, creating records for new profiles or
dismissing resources at logout.

(a) (b)

Figure 26: Authentication microservice architecture and scalability model

Fig 26a shows the logical structure of the service. The Auth Service is the
microservice entry point, which listens for incoming messages from the API Layer
and delegates other units for their execution. Authenticator can be implemented
as workers who run concurrently, or as a thread pool, each of them satisfying one
request. For requests who require a direct interface with the identity provider, the
Authorization Service must rely on the Social Service, who has the capability to
interact with the platform on behalf of the user. The result of the operation can be
returned asynchronously to any Auth Service instance which eventually propagates it
to the Authenticator for finalizing the operation. Authenticator has the task to create
new Identities, Accounts and perform the link/unlink between them by assigning
a value to the PlayerAccount foreign key. At the operation completion, the Auth
Service can send a message back to the API Gateway informing it of the operation.
The most common query the service will have to satisfy is authenticating the player
given his access token. PlayerIdentity can be stored on a fast in-memory key-value
database using the accessToken as key. Auth Service can check the cache before
calling the Authenticator and return it directly in case of a cache hit. Otherwise, it
will load PlayerInfo when the player logs in. As the service is stateless, every node or
thread is the same. Fig 26b shows the service at maximum scale: the authentication
logic is replicated in multiple nodes, each of them connected to a clustered database
and cache. If the messages are partitioned among nodes using the player’s ID as
partition key, the microservice satisfy the XYZ scalability and each node could have

54

its own database and cache cluster, instead of sharing them with all the other nodes.
In such scenario, the login functionalities shoud be moved from the Social service to
the Authentication Service.

4.4 Shop Service
In App Purchases still play a major role in games monetization. Similarly to Social
Networks, most games rely on external 3rd party SDK to implement a shop feature
directly on the client device. As illicit ways to fool these SDKs with fake purchases
has spread, it’s important that developers protect their economy by validating the
purchases in a secure environment. A Shop microservice is an indispensable tool for
guaranteeing a healthy monetization and preventing cheating. The requirements for
this services are:

• The service shall have a catalog of products available for purchasing. Catalogs
may be different for different versions of the game, platform or provider, but
in general every product will have a unique identifier given by the shopping
platform (iTunes, Google Play, Amazon etc..).

• It shall be possible to validate purchases executed on the client device.

• It shall be possible to manually update the catalog if the shopping platform
does not expose APIs for retrieving the catalog automatically.

• The service shall store all transactions to face eventual complaints from dissat-
isfied customers.

Figure 27: Data model for Shop service

A very simple catalog data model, every Product available for purchase is regis-
tered by the developers and Catalog is populated with the store specific information
about the product. The most important field is Catalog.product_sku which must be
unique in within a single store provider. For example, there can’t be two products
named “gold.100” in the same store, but there can be one product called “gold.100”

55

in Google Play Store and another “gold.100” in the App Store. Every product in
the Catalog must have a corresponding entry in the Product table, in order to easily
query statistics of sales. The IAP table reports all data representing a monetary
transaction, it comprehends the player_id, the original receipt sent from the client
and the result of the validation. Fig 28b shows the sequence diagram for a purchase
operation.

(a) Shop microservice architecture (b) Sequence diagram for purchase operation

Figure 28: Shop Microservice

The architectural design is similar to the Social Service, with a Factory design
pattern for interfacing with an external API provider. It is accessible from the API
layer as a functional service, so it exposes APIs After the completion of a purchase
request, the outcome is written in the database and a purchase event is emitted.
Statelessness is guaranteed because all the information is given with every message,
and the service only executes tasks on demand. Hence, X and Z scalability can be
applied.

APIs (prefix: /shop)
GET /:platform/catalog DO /:platform/validate DO /:platform/purchase
Events
PUB shop:purchase

Table 5: Shop service example APIs

4.5 Datastore Service
Saving player’s data online is fundamental for every game. It allows true account
portability and definitive security for data integrity and prevention from client hacking.

56

Most of the state is persisted within the Datastore microservice, other services can
rely on it to fetch, update or create content depending by the game logic. The
Datastore shall:

1. Store user’s data, including currencies and inventory. Data can be accessed
and modified by the system at any time.

2. Store game business data, non necessarily related to player.

3. Store player’s achievements.

Modeling data to suit every game would be not possible, since a predefined data
model would greatly limit the flexibility. Instead, only a conceptual modeling will be
given in Fig 29. As data needs to be flexible and easily editable, but at the same time
organized in a complex nested structure, a document oriented database would be an
appropriate choice for the underlying persistence technology. The service architecture
is the same as the Authentication service (Fig 26a): a DataService entity listens for
incoming messages and delegates the work to concurrent tasks, which will execute it
and return the result in form of an event.

Figure 29: Datastore microservice architecture

Many modern NoSQL databases expose APIs to perform basic CRUD operation
and also query data in efficient way across sharded nodes; the service’s only duty is
to wrap the specific database APIs to fulfill incoming requests. Examples of APIs are
depicted in table 5. Datastore listens at events generated by Authorization service so
it can allocate new space for the new user and initialize the data with default values.

Examples:
GET /data/users/xyz123/status: will answer with the Status object of the user
xyz123.
SET /data/users/xyz123/wallet?gold=100&gems=50 : will edit the wallet of the user
xyz123 by setting 100 gold and 50 gems.
DO /data/query?select=item&category=weapon: will return all items in the "weapon"
category

57

Figure 30: Data model for Datastore service

APIs (prefix: /data)
GET /users/:id/... SET /users/:id/... DO /query
GET /achievements/ GET users/:id/achievements/ GET users/:id/achievements/
Events
SUB auth:user_signin

Table 6: Datastore service example APIs

4.6 Leaderboard Service
As shown in previous chapters, direct competition and skill improvement can be
considered one of the most important ingredient for a successful game. As a conse-
quence, a tool to better compare players is needed. This tool is the Leaderboard. A
functional and flexible leaderboard should at least fulfill the following requirements:

1. Players are ranked by the means of a score, representing their skill level or
progress in the game.

2. Multiple leaderboards shall be allowed, for different aspects of the game.

3. Players shall be able to compare them with the rest of the whole playerbase,
with players in their same region, and their friends. Players can belong to only
one region.

A leaderboard is stateful, it must preserve the players’ information and their
sorting order. It can be interpreted as a sorted hash set, in which every player is

58

uniquely identified by a key and sorted by a numeric value, representing the rank. In
this setup, it’s trivial for a set of nodes to concurrently process data from a shared
dataset. The use of a clustered key-value in-memory database is the best choice
for this scenario, as it keeps the complexity of state synchronization away from the
service’s logic and maintains very high performance for frequently changing data.

Figure 31: Data model for Leaderboard service

APIs (prefix: /leaderboard)
GET / Get a list of all available leaderboards
GET /:board/players?from=1&to=100 Get players from a global leaderboard. Pa-

rameters should allow to specify a range
(e.g. from position 1 to 100)

GET /:board/players/:id Get one specific player’s rank
GET /:board/players?list=1,2,3 Get ranks of players given in a list
GET /:board/:region/players/ Get players belonging to a specific region
ADD /:board/players Adds a new player to the leaderboard
SET /:board/players/:id?rank=123 Sets the rank of a player

Table 7: Leaderboard service example APIs

Leaderboard can be implemented as separate sorted hashsets, indexed by ID. Each
leaderboard can contain a multitude of entities. There can be many configurations for
organizing the data, each arrangement has influence on the scalability. One possible
setup is using one Sorted HashSets to represent the whole set of leaderboards, and
use lexicographical range queries to get different results. In this case, on a key-value
store, an entry can be modeled as <leaderboard_id:region:player_id, rank>.
For example, getting the list of all players in the leaderboard “boardX” can be
done by querying for “boardX:*:*”. For having the players in Finland the query
will be “boardX:fi:*”. For a specific player, the query will be “boardX:*:player_id”,
assuming that a player is unique in any leaderboard. This approach is good for
optimizing space needed for the data structure, but is not convenient for maintaining
performance. The cost of a lexicographical query is O(log N + M), where N is the
size of the set and M the number of returned elements. As the number of players
scale, having everything in one unique set can become a bottleneck. Moreover, not

59

every database supports lexicographical queries. A better solution would be to have
separate indexed sets to query only when needed, as shown in picture 32

Figure 32: Data structures for Leaderboard Service

This simple data model allows the maximum flexibility and performance for
queries. Having the indexes separated prevent the need for lexicographical queries,
and all requests can be performed with the minimum time possible. Fetching the
player’s rank from a leaderboard can be done in time O(1), getting the rank of M
players costs O(M). For retrieving all the players in a region, the cost is O(1) + O(M)
where M is the number of the players in the region. The first cost is for querying the
player list from the “players per region” set, the second cost for fetching player ranks
from the leaderboard. The microservice will listen for messages coming from both the
API Gateway and the Message Bus. Common requests, like “top 50 global players”
can be cached in memory for a faster response time with a Time to Live (TTL)
dependent by the number of updates (for frequent reads and updates, even 1 second
TTL can greatly save performance). Since the state is preserved in a central clustered
database, it’s possible to achieve X-scalability by replicating the microservice among
different nodes, all connected to the clustered database. Z-scalability can also be
achieved if groups of nodes are partitioned to serve a subset of the leaderboards.
Sharding a single leaderboard in different databases is not convenient, but even with
a very large leaderboard with millions of entries (given that indexes are reasonably
small) a commodity computer can suffice.

4.7 Chat Service
A chat service is the implementation of a message hub which players can connect
to retrieve messages left there by other players, or for instant messaging. Messages
in mailboxes are permanent, while instant messaging are usually non persistent.
Concerns to an efficient chat system are the same as a general message system: it
should be completely distributed and fault tolerant, which is not trivial to accomplish.
For the messaging capabilities, the chat server will reuse a reserved Message Bus
only for delivering messages n between the service nodes. The database is used

60

for persisting the messages sent by the players or the application. The in-memory
database is used for volatile data such as connected user list and for supporting the
implementation of the messaging protocol.

Figure 33: Chat microservice architecture

ChatService dispatches messages to message brokers, which are threads con-
nected to an internal message bus implementing the PUB/SUB pattern. It accepts
and redistributes messages representing the APIs in table 8. MessageBroker is a
concurrent task that accepts messages, interprets them and executes the request. The
main actions will be writing to one of the databases or to the internal message bus,
and returning messages to the Entry Point to propagate to clients or the application.

APIs (prefix: /chat)
CONNECT /players?id=xxx Registers the user as connected to the service.
REGISTER /rooms?id=xxx Creates a room, in which users will be able

to broadcast messages. More options can be
available, for example whether the messages
should be persisted

JOIN /rooms/:room_id?player=id Put a player into a room. It’s equivalent to
SUBSCRIBE, it will start to receive all mes-
sages published in the room

LEAVE /rooms/:room_id?player=id Removes a player from the room, equivalent
to UNSUBSCRIBE. Player won’t receive mes-
sages anymore

SEND /rooms/:room_id Equivalent to PUBLISH into a room. Param-
eters are used to specify the message and the
sender

SEND /players/:player_id/:box Sends a message to a player given its ID. Also
a mailbox must be specified, in case there
are more than one (it can be PM, whisper,
friendlist etc...)

61

DISBAND /rooms/:room_id Forces UNSUBSCRIBE for all the players reg-
istered and removes the room

DISCONNECT /players/:player_id Player disconnected from service

Table 8: Chat service example APIs

The added value of the Chat service is that it can persist messages in an inbox,
waiting for the player to fetch them when it will connect the next time. The data
model for the database is shown in picture 34, it depicts a very simple relationship
between a Mailbox and its messages. An entity (such a player, or a service) can own
several mailboxes, each of them can be categorized with a type and uniquely identify
by an ID. Every message generated must contain both the inbox_id and outbox_id,
by which it’s possible to identify the sender and receiver.

Figure 34: Data model for Chat service

4.8 Matchmaking service
Almost every multiplayer game has a matchmaking feature. Matchmaker is the
software responsible of matching every player with the optimal team so that all players
involved in the match have 50% probability of victory. First of all, a matchmaker relies
on a value known as Matchmaking Rating (MMR), which determines the player’s
skill. It can be the same value used to rank the player in the leaderboard, or another
calculated value in function of his statistics. There are several proven algorithms
for calculating the MMR for a player, some of which derive from the ELO rating
system used to rank chess players based on their skills. Currently, the Glicko2[20]
and TrueSkill [24] algorithms are used in several popular games. Regardless the
algorithm used to calculate the rating, a matchmaking algorithm only needs the
MMR value. The service shall:

1. Create balanced teams so that the discrepancy between the players with
maximum and minimum rating is minimized.

2. On each contending team, the player with the highest MMR should be as close
as possible

62

3. Players can join the queue alone or in teams

4. Players shall be able to set preferences, and be matched with players who chose
the same preferences.

5. Players shall be able to join existing games, if the case allows

6. Wait times should not be too long.

7. “Just let me play!” functionality to throw a player into a separate quick FIFO
queue at the expense of balance.

A Matchmaking algorithm task is to sort players into separate groups under
some conditions. The most simplistic condition is that every member in the group
must have the minimum distance from the group’s calculated average. This is a well
known problem in data mining, and it’s referred as k-means clustering: given a
set of d-dimensional points, divide the set in k groups so that the sum of the distance
functions of each point in the cluster to the center is minimal. Unfortunately, the
problem is categorized as NP-Hard, computationally hard to solve. Many different
variants of the algorithm have been proposed [27] to cover the most widespread
application in data mining, most of them requiring that the initial set of data is
known and static. This does not apply to a multiplayer matchmaker, where players
join and leave waiting queue continuously. A streamed clustering algorithm could be
applied to ensure that elements are partitioned already after one scan [21], but it
would still require prior knowledge about the number k of total groups in which the
set must be partitioned. Since the affluence of players cannot be predicted, k-means
clustering does not represent an optimal solution for multiplayer matchmaking.

A more promising approach is the K-Nearest Neighbour (KNN) with aggrega-
tive algorithm. It starts from considering every single node a cluster by its own,
and then iterate over all clusters by merging them together two by two, according
to some distance metric, for example Euclidean Distance. This method produces
very good approximations [9] but it also require that the initial set is known, and
computation time is large if neighbours are computed for every new entry O(n2).
Instead, another approach is explored using Red-Black Interval Trees, which will
be referred as RBI tree from now on. An Interval tree is a data structure useful for
storing numerical intervals, and efficiently tell if any given interval overlaps with
others. It is similar to binary search trees and executing operations of search, insert
and remove cost O(log N) where N is the size of the entries (in this case, the players
queuing for a match). The red-black property prevents the worst-case scenario in
which the nodes are disposed in long branches; ensuring that the tree is always
balanced improves performance without considerable additional costs. It consists
of attributing a color for each node coded in only one bit of additional information,
and re-balancing the tree when the rule of Red-Black trees are violated.

Every player in the service is represented with its MMR, a weight and a timestamp.
Actually, the service interprets the MMR as an interval of values [MMR−, MMR+]
that expands as the player ages. The interval growth rate can be tuned by developers.
PlayerGroup is an extension of Player, useful for players who want to join a match

63

together. Weight is equal to the player’s count, and MMR range can be calculated as
the average range. A Group is just a container of players with a MMR interval equal
to the average of all the players’ intervals in the list. A static Optimize() function
splits the given group in other optimal sub-Groups containing the best configuration
of teams taken from the original groups. The actual implementation can be left to
developers, since it really depends by the type of game.

Age is surely a parameter to take into consideration when creating matches,
to guarantee that every player have the opportunity to play. If the Group is full
or exceeds the maximum number of allowed players it always returns at least two
sub-Groups, one of which will be eventually confirmed as a match and returned. The
function can return the same group if it does not need optimization. The RBI tree is
easy to implement: the base implementation is the Interval Augmented Tree variant,
at which are added properties of a Red-Black tree in the Add and Remove functions.
A class diagram is shown in figure 35 while in figure 36 there is a schematization of
the microservice structure.

Figure 35: Class diagram for Matchmaking service

The entry point of the service, the MatchmakingService listens at requests
incoming from the application message bus. In addition, it is connected to a high
priority internal Message Bus used to exchange fast notifications only with the other
nodes involved in the matchmaking. It may be useful for synchronization, or in
case in which a player can’t find a match and is aging too much, so the player
is propagated to other queues for better chances to be matched for a game. For
single-node deployments, the internal bus is not needed. It also collects the results
of computation from the active tasks. After a message is received, it is delegated to
one of the appropriate worker or back to the message bus. The service also tracks all

64

running games and players in them in a shared in-memory database, updating the
state every time a game is created, disbanded or players leave.

Figure 36: Matchmaking microservice architecture

PreProcessor is responsible for arranging players into preliminary groups using a
RBI tree. This component helps to relieve the load from Matchmaker and mitigate
bursts of requests, it can run in parallel without sharing memory with the main pro-
cess because the task does not have external dependencies. If parallel computations
are used, players are assigned to threads according to their MMR to increase chances
of a match. After every defined time period, the PreProcessor gathers all the formed
groups, executes the Optimize() function and returns them to the service entry point
for further elaboration.

Matchmaker is responsible for executing the second step of the elaboration. It
contains a RBI tree structure and a list with all the groups (referred as GroupList)
currently waiting for a match. It can also match players with currently running
games if some player is missing from them. The task consists in four main phases
executed in a loop:

1. Fetch: accept the incoming list of pre-processed Groups from the Service and
add them to GroupList. The sorting order is irrelevant. Also read the list of
running games from the in-memory DB, filter out those outside the matchmaker
range, create groups where existing teams are made as a unique PlayerTroop.

2. For every group Gi in the list:

(a) Search: search in the internal RBI tree all the other groups overlapping
with the Gi’s MMR interval. If no group is found, then insert it as a new
node and skip the Match phase.

(b) Match: choose the group Gj with the most similar interval and merge
it with Gi. Remove Gi from GroupList. Save Gj in a temporary list
MergedGroups.

65

3. Optimize: Run Optimize() for every group in MergedGroups. Move the
resulting full groups from GroupList to a temporary list MatchesFound. Add
the newly created groups in GroupList.

4. Report: Return MatchesFound to the MatchmakingService.

It is worth noting that every time that the phase 1 starts, the previous groups
will have a larger MMR interval because of their age increases with time.

FastQueue implements the “Just Let Me Play!” feature: when a “JLMP!” message
arrives, the FastQueue adds the impatient player in a FIFO list stored in a in-memory
database, shared among all the other matchmaking microservices. However, the player
is not removed from the normal matchmaking process for not negatively impacting
the waiting time for players who still want a fair play. If the list is full enough to
accommodate a game, the FastQueue forms a Group containing the players in the list
returns it to the Entry Point. The writes to memory should be synchronized to prevent
multiple insertions at the same time while others are reading, leading to false Matches.

MatchLogger has the task to validate all formed Groups into Matches. This
is a form of synchronization needed for preventing that a player is simultaneously
matched both in the Matchmaker and in the FastQueue. To validate a Group, the
MatchLogger must check from the shared memory that that every player is not
already registered in a Match. If not, it removes those players in the “JLMP!” list
and creates a new Match in the shared memory, marking them as “registered”. If the
validation fails, the misplaced players are removed from the Group and the Group is
reintroduced in the MatchMaker.

4.9 Multiplayer Service
The Multiplayer service is a compound service used to automatically launch a game
instance and let players connect to it. In addition it can create “Rooms”, a virtual
space in which clients connect and exchange real time messages.

Figure 37: Multiplayer microservice architecture

66

The Multiplayer Service entry point listens for requests from the application,
and uses a Launcher to create instances of games and rooms. A Game can be
any software that accepts incoming connection from clients and executes the game
logic. It is a trusted component so it can have access to the application’s internal
message bus for example to fetch the player’s state before beginning the match. A
Room, on the other hand, acts like a hub that only allows connected clients to
exchange fast messages between them. In the latter case, the game logic can be
run completely on the client side. Since delay time should be minimized, clients
should connect directly with them without passing from the application message
bus. Instances can be implemented as containers or virtual machines running in the
same hardware, so to confine clients into a restricted space to enhance security. The
Launcher has the task to create Rooms and Games when required, and register them
on a in-memory database to keep track of all running instances. An instance usually
has a lifetime. This can be decided case by case, but typically an instance is closed
when the game ends or all the players disconnects. Instances could eventually be
pooled to reduce response time. The matchmaker service can create and disband
instances, give information about the status and the list of players in an instance. It
listens from messages from the Matchmaking service to allocate an instance whenever
a match is found, and prepare it according to the desired parameters for the match.
After that an instance is created, a free port is assigned to it. The address and port
are dynamically mapped in the proxy with the instance id, so clients only need to
know the instance id to open a connection.

4.10 Logger Service
Logs and analytics are extremely important for game developers. It helps during the
production phase to collect information on how the players use the game, records
events of all sort and, most importantly, reports all errors and faults of the application,
so it’s possible to understand the causes of faults and promptly find a solution. Such
service is easy to create and implement: it consists on a write-intensive distributed
database with APIs to write different types of events. Table 9 shows possible APIs
for the service, accessible also from the API Gateway.

As usual, the Entry Point is just a message broker and launcher for the real tasks.
Data Compactor receives logs to write, but before writing them there could be
some optimization to do like formatting, validation or additional elaboration. After
the data is processed and ready to store, it can execute the query to the database.
Data Extractor does the opposite: it executes queries from the database and
elaborates the result in meaningful ways, for example to be plotted on a chart for
visualization. The service also serves web pages to authorized users, such as the
development team. An internal file server can be used if multiple microservices are
run at the same time.

67

Figure 38: Logger microservice architecture

APIs (prefix: /log)
GET /web/... Serves static web pages if requester has the authorization
POST /event/:category General event coming from the application. They can spec-

ify a category for the event and additional data related to
it with parameters.

POST
/heatmap/:category

Game-related event with spatial coordinates. It’s useful
to analyze particular events happening in the game, for
example in which point players dies, camp and so.

POST /economy Related to IAP and monetary transaction in general. Data
of interest is from which platform the income is coming,
what is the most popular item and from which country.

POST /ads Advertisement are also a very important source of income
that needs to be kept under control. For example, the
game can send a message every time an AD is shown. This
information can have incredible benefit.

POST /error/:level Errors can be divided in critical, warnings, info and many
other depending by the needs. A string message and source
of error are also saved.

Table 9: Logger service example APIs

68

5 Use Cases and technology stack

5.1 Use Cases
This section shows some possible app configuration by proposing three different use
cases, representing respectively a possible scenario for a small startup, a medium-size
company and a big corporation.

5.1.1 Use case 1: Minimum setup

The first example explains a convenient configuration for a startup with low amount
of expected concurrent players and a limited budget.

Figure 39: Minimal setup for a possible deployment use case

The four machines consist in a software reverse proxy server, a Service server, a
Game server and a Database server. The Multiplayer service has a dedicated machine
because multiplayer capabilities are the most critical and delay sensitive, so it should
be separated from other services for not having negative impact on performance. The
Service server comprehends all the services together, and all of them share the same
in-memory database. The database for storage is kept on a separate machine with
less computing power but more storage capabilities. Eventually, the architecture
can be simplified even more by incorporating the database in the Service server. If
the game does not need the multiplayer feature and the company is not concerned
about external threats, all the system can be reduced to a single machine with the
clients connected directly to the API Gateway. This configuration is still scalable on
multicore machines since the services can run in different cores, and single services

69

could create threads to parallelize some tasks. However, if the hardware fails the
system will be completely unavailable unless manual intervention from an operator.

5.1.2 Use Case 2: Triple redundancy

A good practice to prevent single points of failure is duplicate critical part of the
system. In this case, the most critical parts are the message buses and the databases.
Triple redundancy help to achieve fault resilience and high availability, if a node fails
there are at least another two to sustain the incoming requests while a system utility
will restart the faulty process.

Figure 40: Setup for a discretely successful game

Here, both API Gateway and Service Message Bus span over three machines.
This not only will make the messaging layer resilient to errors, but also performances
increase because the load can be splitted into more computational resources. Database
and in-memory database are clustered in a three node replication and shared with
all the services. Some databases can be configured in master/slave mode, so that the
application could write in the master instance and perform fast reads on slave replicas.
Also, if the game is popular, more power is needed for running game instances and
services can be assigned to more machines to split the load and keep the application
performant.

5.1.3 Use case 3: Multiple Datacenters

For very popular games, world coverage is a necessary step for supplying a high
quality of service and the best possible player experience. In datacenter configuration,
every service is clustered and have a reserved database or clusters of databases,
message buses have dedicated hardware to speed up delivery, and several proxies
accepts incoming traffic from millions of users. Data is replicated among different

70

datacenters for a better protection against disasters. Similarly to service message bus,
a Datacenter Message Bus can be implemented to communicate between datacenter
in different Availability Zones for maximum redundancy and failover in case of severe
faults without affecting the system availability.

Figure 41: Multiple datacenter setup for a very popular game

5.2 Technology Stack
This section briefly provides an overview of the set of tools, protocols and technologies
usable for the application implementation, and a comparison between them whereas
multiple viable solutions are present.

5.2.1 Platform and infrastructure

The application is completely unaware of its physical location, it can run seamlessly
on any physical or virtualized environment, on a single machine or in a cloud.
This flexibility brings the advantage of letting the final customer to choose the
platform to run the application. For their heterogeneous nature, microservices benefit
from containerization for a better and more efficient management. Moreover, many
platforms support containers and provide specific tools to ease the deployment and
operations of containerized applications. Docker5 is the current favourite technology
for application containerization, and it’s also the recommended choice for the amount
of available tools for facilitating the development and deployment of the application,
in addition to the thriving community around the project. The first and most obvious
possibility for an entry-level company is deploying the application on virtual servers
from a IaaS provider. Among the most popular IaaS providers there is Amazon

5https://www.docker.com/

https://www.docker.com/

71

AWS, Microsoft Azure and Google Compute Engine. Azure is convenient
when working with Microsoft service and products, but limited in flexibility. Google’s
platform is a simple yet powerful IaaS that features automatic scaling in and out
and full control over the network. Amazon AWS is the leader in the field of cloud
infrastructure, it features a full set of services and tools for automating many types of
operations, all composable together in a smooth and easy way. The resource scaling
is automatic, and adding more instances is only a matter of few clicks. For companies
willing to manage their resources on a private cloud, viable solutions are many.
OpenStack6 is an open source virtualization platform for cloud computing that can
be installed in datacenter machines to have a unified control on the available resources.
Resources are managed independently by several components, making OpenStack a
great and solution for a flexible and customized private cloud. Unfortunately, this
tool requires an expert operation team to install and maintain. More user friendly
alternatives exist, at the cost of flexibility. CoreOS7 is a minimal Linux based
operating system for clustering containerized applications on distributed computing
resources. It relieves the burden of operational maintenance from the development
team, it promises automation, ease of use, security and scalability. Moreover, it
comes with a built-in mechanism for service discovery and configuration sharing. If
coupled with a container cluster manager like Kubernetes8 or Docker Swarm9

the application can be configured to be fully scalable and highly available.
The best candidate product for the application’s platform is DC/OS10, a dis-

tributed operating system for development, deployment and scaling of containers in
production environment. It’s based on the open source Apache Mesos project, a high
scalable and available distributed kernel. The advantage of DC/OS is that it can
be easily deployed on anything, from bare metal to virtual machines to clouds, and
exposes the distributed resources as they were only one. Instances can be created and
deleted with ease from a GUI or command line, the platform comes with monitoring
tools already implemented or offers the possibility to integrate third party open
source tools as plugins. Also, it has built-in load balancing and service discovery
features, which can be used as base to build the application’s Message Bus.

5.2.2 Proxies and load balancers

Reverse proxies are useful in many ways: for their capability of separating the
application’s interiors from the outer Internet, caching frequently requested content,
dealing with request compression and encryption and balance traffic among different
parts of the application for keeping it responsive. They can be implemented in
software or hardware, but since hardware solutions are expensive, only software
proxies will be considered. Several software proxies and load balancer exist, two of
them are selected for comparison as the best viable possibility for this application:

6http://www.openstack.org/
7https://coreos.com/
8http://kubernetes.io/
9https://docs.docker.com/swarm/

10https://dcos.io/

http://www.openstack.org/
https://coreos.com/
http://kubernetes.io/
https://docs.docker.com/swarm/
https://dcos.io/

72

Nginx11 and HAProxy12. HAProxy is a fast, open source software that focus on
high availability, load balancing, HTTP and TCP proxying. It is suited to application
that must deal with high traffic loads and deployed on clouds, and fits very well to
the application’s needs. It’s lightway since it does not do anything more than that.
HAProxy runs on a single thread using a non blocking event loop, all I/O operations
are blazing fast and scheduled with an priority-based scheduler. The architecture
is optimized for moving data as fast as possible, and it’s possible to configure it to
overcome port exhaustion when more than 64k connection are open at the same
time, thus making it a perfect candidate as part of the applications stack. Nginx is a
fully flavoured, battle tested web server with proxy and load balancing capabilities.
It is probably the most popular tool for developing highly scalable systems and
web applications. Its popularity brings the community to build plugins and several
integrations with third party tools which make Nginx an attractive option. It also
comes with health check features to automatically detect faulty nodes in the backend.
Both Nginx and HAProxy can be integrated with Consul13, a highly available and
distributed service discovery which can span multiple datacenters, making them a
powerful tool not only for sustaining a large number of concurrent client connections,
but also for building the application’s routing and discovery service for inter-process
communication.

5.2.3 Message Queue

As stated in the previous sections, an effective message routing system can be built
exploiting load balancers in conjunction with a service discovery tool like Consul.
However, there are also other possibilities worth exploring. A famous framework that
serves at this purpose is Apache Kafka14, a distributed streaming platform built by
LinkedIn for internal use. Like message queues, Kafka is used to send asynchronous
messages across the application in real time with very high throughput at a very
small resources cost. It supports both publisher/subscriber pattern and the more
classical queue, with an at-least-one message delivery guarantee. Kafka relies on
Zookeeper, a discovery service needed to locate nodes in a distributed cloud, which
has been reported [28] to have issues in recovery from faults in HA setups. On the
other end, RabbitMQ15 is a more mature broker-based solution which guarantees
reliability and flexible routing of messages. It supports many protocols, including
HTTP, Mqtt, STOMP and AMQP and it is very good to deal with messages of any
type. While Kafka is a distributed system, RabbitMQ is centralized, and this can
be a concern in some setups where availability is essential. Other solution include
ZeroMQ16 and its successor, Nanomsg17. These are very lightweight distributed
asynchronous messaging frameworks, with embedded message routing, targeted for

11https://www.nginx.com/
12http://www.haproxy.org/
13https://www.consul.io/
14http://kafka.apache.org/
15https://www.rabbitmq.com/
16http://zeromq.org/
17http://nanomsg.org/

https://www.nginx.com/
http://www.haproxy.org/
https://www.consul.io/
http://kafka.apache.org/
https://www.rabbitmq.com/
http://zeromq.org/
http://nanomsg.org/

73

high throughput and low latency scenarios. Nanomsg is a more compact version
of ZeroMQ, but removes most of its predecessor’s unnecessary complexity to really
focus on performance and features. It exposes several patterns: publisher/subscriber,
request/reply, pair, pipeline, bus, survey. ZeroMQ has more. Due to their flexibility
they don’t impose any specific restriction, they just provide the building blocks for
asynchronous, concurrent application. Nanomsg and ZeroMQ are recommended for
those developers who want to build the Message Bus from scratch, otherwise both
Kafka and RabbitMQ can be equally viable solutions.

5.2.4 Database

Throughout all the application, service make extensive use of databases and in-
memory databases. The first are used for data storage, for preserving the service
state, the second is used as a fast cache and a shared memory space visible by all the
distributed nodes which compose the microservice. Since microservice have different
requirements, the choice for the database vary according to the use case. What
is certain is that all database must be partition tolerant. According to the CAP
theorem, any distributed system can’t be, at the same time, Consistent, Available
and Partition tolerant. And given that a scalable application must be partition
tolerant, the compromise is between consistency and availability. Similarly for the
choice of specific database, every microservice can be implemented as consistent or
available depending by the use cases and the specific game requirements. NoSQL
databases (Not only SQL) approach the issue from different perspectives. There
is indeed an increasing interest in NoSQL databases over the traditional relational
databases, essentially because the traditional models don’t scale well and are not
partition tolerant at all, exception for some special cases. For services who are
mostly writing data, have to deal with large datasets and prefer availability over
consistency, like the Logger service, would benefit from a database like Apache
Cassandra. Cassandra18 is an open source column-based, fully distributed NoSQL
database especially suited for large datasets. It’s based on the Amazon Dynamo
paper [14] consisting in a series of nodes disposed in a ring, communicating with each
other and receiving notifications about changes in the topology thanks to a gossip
communication protocol. In masterless architectures every node is the same, and
it scales linearly by adding more nodes to the cluster. Data is partitioned in nodes
according to a calculated function of the data primary key and a node’s partition key;
data is also automatically replicated in different nodes for maximum fault tolerancy.
What makes Cassandra special, and thus suitable for many purposes, is that it can
also satisfy the consistency property if explicitly required (in spite of availability).
This is particularly useful for services like Shop or Datastore, where consistency is a
must. Alternatively, document-based databases like MongoDB19 shines especially
for services who have to deal with complex data and need querying capabilities,
something not easily practicable in Cassandra. Consistency over availability is a
plus in some cases, where data can be cached or the service is not read-intensive.

18http://cassandra.apache.org/
19https://www.mongodb.com/

http://cassandra.apache.org/
https://www.mongodb.com/

74

Similar to MongoDB is RethinkDB20, a JSON distributed database with a rich
query support and real-time update notifications. About in-memory database in
short: Redis21. Redis is the number one choice for a fast, key-value database meant
to keep all data in memory. It comes with built in data structures like hashtables
and sets for fast lookups and caching. Combined with DynomiteDB22, a dynamo
like distributed and high available database system with pluggable backend, the
system can benefit from a scalable, globally distributed cache. Like Cassandra,
also DynomiteDB is masterless, avoiding the problems coming from a master/slave
architecture (for example, coordination overhead) and preferring high availability
over consistency, indispensable requirement for performance and responsiveness.

5.2.5 Programming Language

As databases, the choice for the right programming language depends on many
factors. Microservice oriented systems are very flexible because they can be devel-
oped separately, with different set of tools and languages. There is a fundamental
consideration to do when dealing with concurrent systems, the programming language
should be able to somehow reflect the concurrency model suggested by the architec-
ture. Concurrent and functional programming languages suitable for scalability are
gaining more and more attention lately, and being widely adopted by both corporates
and mid-sized companies. Functional languages treat computation as evaluation of
mathematical functions, and enforces the use of immutable data and fixed state. The
return value of every function depends only on the input parameters, avoiding invol-
untary side effects elsewhere in the program. Some popular languages that embrace
these characteristics are Scala, Erlang and Go. Scala is a language which promote
concurrency and distribution through the use of Futures and Promises, placeholder
objects that represent the result of an asynchronous operation that will eventually be
completed. It incorporates both the object oriented as well as the functional program-
ming paradigm, it runs on the JVM and it’s fully interoperable with Java. Moreover,
functions are first class objects, meaning that a function can be treated like a variable
and passed around with great flexibility of application. Erlang is another functional
language used principally to build highly scalable, available and real time applications
with features directly supporting distribution and concurrency. Among its features,
there’s the possibility to update the application’s code without any interruption or
restart. Erlang processes are very lightweight and OS independent, making it a cross
platform language. A collection of libraries is also available called OTP, collecting the
patterns and best practices from years of real-world expertise. Go is an open source
programming language, with a concise syntax and built in concurrency primitives:
Channels and Goroutines. Goroutines are similar to threads, with the difference that
they are more lightweight and works efficiently also in single core machines. Channels
are used as message passing mechanism between goroutines, synchronization and
buffers. All the aforementioned languages can fit the application design since the

20https://www.rethinkdb.com/
21http://redis.io/
22http://www.dynomitedb.com/

https://www.rethinkdb.com/
http://redis.io/
http://www.dynomitedb.com/

75

services make extensive use of concurrent tasks that can be parallelized. As a special
side note, also the popular Node.js is a good choice. A node application runs on a
single process, executing requests coming from outside in a loop called Event Loop.
Time consuming I/O operations and network calls are executed asynchronously in
background, and a callback function is registered for execution when the process
returns. When the asynchronous operation completes, it sends an event to the main
process which triggers the callback function. Node.js can be run in cluster mode:
a copy of the application is run for each CPU core, each on one separate process
sharing the same port, and incoming request are distributed between child processes.
In cluster mode, node applications partially avoid the complexity and disadvantages
of multithreading.

76

6 Final remarks
This chapter presents a brief evaluation of the proposed application design, assessing
whether the application could achieve a horizontal scalability according to the thesis
goals. For concluding, the final section will suggest guidelines for a possible future
work and improvements

6.1 Discussion
From the feature list analyzed in chapter 3.1, nine major recurring services were
recognized: multi account user authentication; shopping service with receipt vali-
dation; social service integrated with Facebook, Google Play and Game Center at
least; Datastore service for saving player related data and progress; Achievements,
which was incorporated into the Datastore service because of similar functionalities;
a leaderboard service supporting multiple regions; a chat service for both instant
and permanent messaging, supporting player-to-player communication or broadcast
to all participants in a room; a Matchmaking service to match players according to
their ranking similarity; a Multiplayer service to manage custom game applications
and allow realtime communication between players; a logger service to collect useful
statistics from the clients and application itself.

A microservice oriented architecture was chosen as main design reference due to
the proven capability of microservices to enable highly scalability for their decoupled
nature. The application was designed following the Reactive Manifesto best practices,
which promote responsive, resilient, elastic, message driven systems. Each service
was designed as a separate, standalone application according to the share-nothing
principle. Each of them can be accessed by the means of an API, they collaborate
together exchanging messages in a choreographed manner using the inter-service
message bus. These properties ensure a high level of decoupling, with no direct
dependencies between services. Messaging is realized by a separate component, the
Message Bus, which was designed as a distributed message queue with load balancing
and service discovery capabilities in order to react when nodes are added or removed,
and promptly redirect the traffic to healthy nodes. In addition, fault tolerancy and
resilience are accomplished by implementing a circuit breaker pattern in the message
bus, preventing system overloads and allowing a graceful service degradation and
error handling exploiting message backtracking. All errors can be reported to the
logger service, giving developers insights about the possible bottlenecks and possible
causes of faults.

Services are secured behind a layer of proxies, representing a SSL termination
point that take care of request encryption and decryption, so that the traffic inside
the application can be unencrypted for better performance. Inner services are never
directly exposed to clients, so they can block all traffic coming from nodes outside
the private network. Moreover, each request needs to be authenticated before being
routed. Every service must authorize the player for every request (or before accepting
an incoming connection) by inspecting the player’s permission from an access control
list.

77

Conforming with the AKF Scale Cube, the application can scale in all the X, Y
and Z axis. At a high level, the application complies with Y scalability by splitting
the complexity in modular, separated and encapsulated components. Then, at the
service level, each service can be scaled along the X axis by just replicating it on
new nodes and, similarly, along the Z axis by partitioning the data to elaborate
and to the same group of nodes. The concurrency model chosen for the application
adopts stateless workers with asynchronous message passing, exception made for the
matchmaking service which implements an assembly line [6]. Due to the complexity of
creating a fully automatic elastic system, third party tools will be used for supporting
automatic deployment or disposal of resources according to load. In the same way,
fault recovery will be performed by separate tools.

Threads were chosen to guarantee true scalability also among CPU cores, to
exploit all available resources, and because most programming languages have native
support of threads, or have at least some simple mechanism for parallelizing code
execution. Unfortunately, in some cases threads are not the best way to achieve
high performances due to frequent message-passing between processors and possible
bottlenecks due to possible cache invalidation. Threads are perfect for workers that
have to undergo a huge amount of repetitive work with no frequent message passing,
for example the matchmaking service. In other cases, an unique event loop per
service would be more beneficial for services who only do mostly I/O or network
operations. Environments like Node.js allows a process to run in cluster mode where
a process is run in multiple cores, and a master process load balances the requests
to the child processes via IPC. Since the performances are very implementation
dependent, an interesting experiment would be to implement the same service in
three different ways (with threads, with one event loop and with cluster mode) and
observing its performance under increasing amount of load.

Three possible configuration scenarios were given, respectively for a minimal
deployment, a medium company with a limited number of players and a big company
maintaining a very popular game. Lastly, possible stack technologies are investigated
including the platform, load balancers and proxies, message queue implementation,
databases and programming languages. Preferences about the platform in which the
services will run are also explicated (Docker containers on top of DC/OS).

6.2 Future work
As the thesis only describes the architectural design, the obvious next step for the
future is continuing the project with the implementation phase. Firstly, a simple
prototype should be made using as much available software as possible. The first
tests should be deployed on a configuration resembling the minimum setup shown
in chapter 5.1, aiming to evaluate the actual performance and behaviour of the
system under increasing load. Tests should be developed to measure each service
both independently and together with other services. Tests should report response
time, number of operations performed per second, number of successful requests
and failed requests, time for the system to recover from faults and time needed to
adapt to varying load conditions. The second step will be to fine tune the system

78

and adjust the design to overcome the bottlenecks found during the testing phase,
eventually rewriting services or replacing technologies in the stack, and iterate until a
satisfying level of performance and scalability is met. Successively, new service can be
added to cover even more use cases and necessities which were not considered in this
thesis but are important for the company. Some additional services can be advanced
analytics for advertisement campaigns, a unified channel attribution service to track
application installs, a push notification service, a file storage service for serving static
files (e.g. patch updates, downloadable content), and a dedicated solution for MMO
games.

6.3 Conclusion
Mobile game market is increasing in popularity year after year, attracting a wide
audience of independent developers who must endure the competition of other more
resourceful game companies. Players expect high quality games and experiences,
while developers strive to monetize. Researches have shown a correlation between
some features of a game and its likelihood to succeed and be a potential candidate
to enter the top grossing lists. Some of the currently most popular mobile games
were analyzed in order to recognize the most common services, confirming the results
occurring in precedent researches. There is the need for a comprehensive application
which provides all the services to support the creation of online games, without the
restrictions and costs that many existing service providers impose, so that developers
can concentrate in creating top quality game experiences rather than spending time
and resources in building a backend application for their game. This thesis describes
the architectural design of a horizontally scalable backend application for online
games that provides essential services for mobile games. The design followed the
Reactive Manifesto guidelines to achieve both inwards and outwards horizontal
scalability, modularity and flexibility thanks to a microservice oriented architecture
and an event-driven communication between application components. Services are
designed as stateless, share-nothing parallel tasks to facilitate the implementation
with the current programming languages. As the application is designed to cover
the most common game requirements, is far from being an all-inclusive solution that
can be blindly applied to every mobile game. However, the proposed design and
technology stack can be used as a starting point and adapted in a way that best
suits the specific feature that the game needs. The author encourages to share and
refine the present work, with the hope that it will contribute to the creation of the
next awesome game.

79

7 References
[1] Martin L Abbott and Michael T Fisher. The art of scalability: Scalable web

architecture, processes, and organizations for the modern enterprise. Pearson
Education, 2009.

[2] Ali M Alakeel. A guide to dynamic load balancing in distributed computer
systems. International Journal of Computer Science and Information Security,
10(6):153–160, 2010.

[3] Gamasutra Alex Wawro. Survey: Video ads are the no.1 way players prefer
to ’pay’ for mobile games. http://www.gamasutra.com/view/news/269819/
Survey_Video_ads_are_the_1_way_players_prefer_to_pay_for_mobile_
games.php. Accessed: 2016-08-22.

[4] Khaled Mohammad Alomari, Tariq Rahim Soomro, and Khaled Shaalan. Mobile
gaming trends and revenue models. In International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems, pages 671–
683. Springer, 2016.

[5] App Annie. App annie 2015 retrospective. https://www.appannie.com/
insights/market-data/app-annie-2015-retrospective. Accessed: 2016-
10-02.

[6] Jenkov Aps. Concurrency models tutorial. http://tutorials.jenkov.
com/java-concurrency/concurrency-models.html#parallel-workers. Ac-
cessed: 2016-09-22.

[7] Peter Askelöf. Monetization of social network games in japan and the west.
2013.

[8] Rahul C Basole and Jürgen Karla. On the evolution of mobile platform
ecosystem structure and strategy. Business & Information Systems Engineering,
3(5):313–322, 2011.

[9] Nitin Bhatia et al. Survey of nearest neighbor techniques. arXiv preprint
arXiv:1007.0085, 2010.

[10] André B Bondi. Characteristics of scalability and their impact on performance.
In Proceedings of the 2nd international workshop on Software and performance,
pages 195–203. ACM, 2000.

[11] Thanh Bui. Analysis of docker security. arXiv preprint arXiv:1501.02967, 2015.

[12] GA DataScience. How to identify whales in your game. http://blog.
gameanalytics.com/blog/how-to-identify-whales-in-your-game.html.
Accessed: 2016-08-17.

[13] Myriam Davidovici-Nora. Paid and free digital business models innovations in
the video game industry. Digiworld Economic Journal, (94):83, 2014.

http://www.gamasutra.com/view/news/269819/Survey_Video_ads_are_the_1_way_players_prefer_to_pay_for_mobile_games.php
http://www.gamasutra.com/view/news/269819/Survey_Video_ads_are_the_1_way_players_prefer_to_pay_for_mobile_games.php
http://www.gamasutra.com/view/news/269819/Survey_Video_ads_are_the_1_way_players_prefer_to_pay_for_mobile_games.php
https://www.appannie.com/insights/market-data/app-annie-2015-retrospective
https://www.appannie.com/insights/market-data/app-annie-2015-retrospective
http://tutorials.jenkov.com/java-concurrency/concurrency-models.html#parallel-workers
http://tutorials.jenkov.com/java-concurrency/concurrency-models.html#parallel-workers
http://blog.gameanalytics.com/blog/how-to-identify-whales-in-your-game.html
http://blog.gameanalytics.com/blog/how-to-identify-whales-in-your-game.html

80

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value
store. ACM SIGOPS Operating Systems Review, 41(6):205–220, 2007.

[15] Nicolas Ducheneaut and Robert J Moore. The social side of gaming: a study
of interaction patterns in a massively multiplayer online game. In Proceedings
of the 2004 ACM conference on Computer supported cooperative work, pages
360–369. ACM, 2004.

[16] Simon Egenfeldt-Nielsen, Jonas Heide Smith, and Susana Pajares Tosca. Un-
derstanding video games: The essential introduction. Routledge, 2016.

[17] Statista Felix Richter. Freemium is the no.1 pricing strategy
in most app categories. https://www.statista.com/chart/1733/
app-monetization-strategies/. Accessed: 2016-08-10.

[18] V. V. Filho, Á V. M. Moreira, and G. L. Ramalho. Deepening the understand-
ing of mobile game. In 2014 Brazilian Symposium on Computer Games and
Digital Entertainment, pages 183–192, Nov 2014.

[19] Shalom M. Fisch. Making educational computer games "educational". In
Proceedings of the 2005 Conference on Interaction Design and Children, IDC
’05, pages 56–61, New York, NY, USA, 2005. ACM.

[20] Mark E Glickman. Example of the glicko-2 system. Boston University, 2012.

[21] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clus-
tering data streams. In Foundations of computer science, 2000. proceedings.
41st annual symposium on, pages 359–366. IEEE, 2000.

[22] Perttu Hämäläinen, Joe Marshall, Raine Kajastila, Richard Byrne, and Flo-
rian Floyd Mueller. Utilizing gravity in movement-based games and play. In
Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in
Play, pages 67–77. ACM, 2015.

[23] Cal Henderson. Building scalable web sites. " O’Reilly Media, Inc.", 2006.

[24] Ralf Herbrich, Tom Minka, and Thore Graepel. TrueskillTM: A bayesian skill
rating system. In Advances in neural information processing systems, pages
569–576, 2006.

[25] Mark D Hill. What is scalability? ACM SIGARCH Computer Architecture
News, 18(4):18–21, 1990.

[26] Shang Hwa Hsu, Ming-Hui Wen, and Muh-Cherng Wu. Exploring user experi-
ences as predictors of mmorpg addiction. Computers & Education, 53(3):990–999,
2009.

https://www.statista.com/chart/1733/app-monetization-strategies/
https://www.statista.com/chart/1733/app-monetization-strategies/

81

[27] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition
letters, 31(8):651–666, 2010.

[28] Tomasz Janczuk. From kafka to zeromq for real-time
log aggregation. https://tomasz.janczuk.org/2015/09/
from-kafka-to-zeromq-for-log-aggregation.html. Accessed: 2016-
09-12.

[29] Raine Kajastila and Perttu Hämäläinen. Augmented climbing: interacting with
projected graphics on a climbing wall. In Proceedings of the extended abstracts
of the 32nd annual ACM conference on Human factors in computing systems,
pages 1279–1284. ACM, 2014.

[30] Daniel King, Paul Delfabbro, and Mark Griffiths. Video game structural
characteristics: A new psychological taxonomy. International Journal of Mental
Health and Addiction, 8(1):90–106, 2010.

[31] Tracy Lien. Farmville 2 represents the next generation of social games, says
zynga. http://www.polygon.com/gaming/2012/9/5/3290747/farmville-2.
Accessed: 2016-08-22.

[32] Peter Mell and Tim Grance. The nist definition of cloud computing. 2011.

[33] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs.
lightweight virtualization: a performance comparison. In Cloud Engineer-
ing (IC2E), 2015 IEEE International Conference on, pages 386–393. IEEE,
2015.

[34] SocialTimes Neil Vidyarthi. How lessons learned in social will give
you a head start in mobile. http://www.adweek.com/socialtimes/
how-lessons-learned-in-social-will-give-you-a-head-start-in-mobile/
88692. Accessed: 2016-08-16.

[35] Sam Newman. Building Microservices. " O’Reilly Media, Inc.", 2015.

[36] Investopedia Ravi Srikant. The economics of gaming con-
soles. http://www.investopedia.com/articles/investing/080515/
economics-gaming-consoles.asp. Accessed: 2016-08-11.

[37] Thierry Rayna and Ludmila Striukova. ’few to many’: Change of business model
paradigm in the video game industry. Digiworld Economic Journal, (94):61,
2014.

[38] Matt Ricchetti. Gamasutra: What makes social games social?
http://www.gamasutra.com/view/feature/6735/what_makes_social_
games_social.php. Accessed: 2016-08-05.

[39] Mark Richards. Microservices vs. Service-Oriented Architecture. " O’Reilly
Media, Inc.", 2016.

https://tomasz.janczuk.org/2015/09/from-kafka-to-zeromq-for-log-aggregation.html
https://tomasz.janczuk.org/2015/09/from-kafka-to-zeromq-for-log-aggregation.html
http://www.polygon.com/gaming/2012/9/5/3290747/farmville-2
http://www.adweek.com/socialtimes/how-lessons-learned-in-social-will-give-you-a-head-start-in-mobile/88692
http://www.adweek.com/socialtimes/how-lessons-learned-in-social-will-give-you-a-head-start-in-mobile/88692
http://www.adweek.com/socialtimes/how-lessons-learned-in-social-will-give-you-a-head-start-in-mobile/88692
http://www.investopedia.com/articles/investing/080515/economics-gaming-consoles.asp
http://www.investopedia.com/articles/investing/080515/economics-gaming-consoles.asp
http://www.gamasutra.com/view/feature/6735/what_makes_social_games_social.php
http://www.gamasutra.com/view/feature/6735/what_makes_social_games_social.php

82

[40] Richard Rouse III. Game design: Theory and practice. Jones & Bartlett
Learning, 2010.

[41] Soomla Blog Sid James. Top 10 parse alternatives for your game backend. http:
//blog.soom.la/2016/02/top-10-parse-alternatives-game-backend.
html. Accessed: 2016-07-28.

[42] Barrie Sosinsky. Cloud computing bible, volume 762. John Wiley & Sons, 2010.

http://blog.soom.la/2016/02/top-10-parse-alternatives-game-backend.html
http://blog.soom.la/2016/02/top-10-parse-alternatives-game-backend.html
http://blog.soom.la/2016/02/top-10-parse-alternatives-game-backend.html

	Abstract
	Acknowledgements
	Contents
	Symbols and abbreviations
	Introduction
	Digital Game Market
	Typical requirements for a modern game
	Recurrent needs, not a unified way to deal with them
	Architectural design challenges
	Thesis Goals

	Background, literature and theoretical focus
	The Gaming industry
	Beyond Entertainment
	Trends and current evolution of the gaming ecosystem
	The business side of gaming

	Services in games
	What users want
	Case study: what features make a successful game?
	Occurrence of features in games

	Game production process
	Backend as a Service
	Building blocks of cloud computing
	Cloud computing stack
	Load balancing and Resource Virtualization

	Achieving horizontal scalability
	Overview
	Microservice oriented applications

	Feature and requirement survey
	Feature analysis of recent successful games
	High level requirements
	General Service Requirements

	Application design
	Overview
	Social Service
	Authentication Service
	Shop Service
	Datastore Service
	Leaderboard Service
	Chat Service
	Matchmaking service
	Multiplayer Service
	Logger Service

	Use Cases and technology stack
	Use Cases
	Use case 1: Minimum setup
	Use Case 2: Triple redundancy
	Use case 3: Multiple Datacenters

	Technology Stack
	Platform and infrastructure
	Proxies and load balancers
	Message Queue
	Database
	Programming Language

	Final remarks
	Discussion
	Future work
	Conclusion

	References

