
Aalto University

School of Electrical Engineering

Degree Programme in Automation and Systems Technology

Sakari A. Pesonen

An Open and General Numerical Control
and Machine Vision Based Architecture
for Payment Terminal Acceptance Test
Automation

Master’s Thesis

San Jose, Sept 27, 2016

Supervisor: D.Sc. Seppo Sierla, Aalto University

Advisor: M.Sc. Tatu Kairi

Aalto University

School of Electrical Engineering

Degree Programme in Automation and Systems Technology

ABSTRACT OF

MASTER’S THESIS

Author: Sakari A. Pesonen

Title:

An Open and General Numerical Control and Machine Vision Based Architecture

for Payment Terminal Acceptance Test Automation

Date: Sept 27, 2016 Pages: vii + 62

Major: Intelligent Products Code: ETA3006

Supervisor: D.Sc. Seppo Sierla

Advisor: M.Sc. Tatu Kairi

Software testing is a crucial part of modern software development and it is com-

monly accepted fact that the earlier software defects and errors are found, the

lower the cost of correcting those will be. Early detection of errors also increases

the possibility to correct them properly.

Acceptance testing is a process of comparing the developed program to the initial

requirements. Acceptance testing of a system should be executed in an environ-

ment as similar as possible to the production environment of the final product.

This master’s thesis will discuss how to address these in automated acceptance

testing environment of payment terminal software.

This master’s thesis will discuss the theories related to software testing, testing

of embedded systems and the challenges related to the topic. Master’s thesis will

present an architecture for automated acceptance testing of payment terminals

including the needed hardware and software.

Keywords: Automated Acceptance Testing, Software Testing, Payment

Terminal, Robot Framework, Computer Vision, Open Source

Language: English

ii

Aalto-yliopisto

Sähtkötekniikan korkeakoulu

Automaatio- ja systeemitekniikan koulutusohjelma

DIPLOMITYÖN

TIIVISTELMÄ

Tekijä: Sakari A. Pesonen

Työn nimi:

Avoin ja yleispätevä numeeriseen ohjaukseen ja konenäköteknologioihin

pohjautuva maksupäätteiden automaattisen hyväksymistestausympäristön

arkkitehtuuri

Päiväys: 27. syyskuuta 2016 Sivumäärä: vii + 62

Pääaine: Älykkäät tuotteet Koodi: ETA3006

Valvoja: TkT Seppo Sierla

Ohjaaja: FM Tatu Kairi

Ohjelmistotestaus on tärkeä osa modernia ohjelmistotuotantoa ja on yleisesti tun-

nustettu, että mitä aiemmin virheet ohjelmistosta löytyvät, sitä edullisempaa nii-

den korjaaminen tulee olemaan. Aikainen virheiden havaitseminen myös edesaut-

taa virheiden perusteellista ja laadukasta korjaamista.

Hyväksymistestaus on ohjelmistotestauksen vaihe, jossa kehitettyä ohjelmistoa

verrataan alkuperäisiin ohjelmistovaatimuksiin. Ohjelmiston hyväksymistestaus

tulisi suorittaa lopullista tuotantoympäristöä mahdollisimman hyvin vastaavas-

sa ympäristössä. Tämä diplomityö käsittelee näitä ohjeistuksia maksupäätteiden

automaattisen hyväksymistestauksen ympäristössä.

Tämä diplomityö käsittelee ohjelmistotestaukseen liittyvää teoriaa, sulautettu-

jen järjestelmien testausta sekä aiheeseen liittyviä haasteita. Lisäksi diplomityö

esittelee ympäristön maksupäätteiden automaattiseen hyväksymistestaukseen ja

käsittelee siihen tarvittuja ohjelmistoja ja fyysisiä komponentteja.

Asiasanat: Automaattinen hyväksymistestaus, ohjelmistotestaus, mak-

supääte, robot framework, konenäkö, avoin lähdekoodi

Kieli: Englanti

iii

Acknowledgments

I wish to thank my instructor Tatu Kairi and my supervisor Seppo Sierla

for their great help and knowledge throughout the writing process of the

master’s thesis.

I would also like to thank my manager Marko Klemetti for encouraging the

writing process of this master’s thesis. My dearest thanks go towards my

family and the members of !nerdclub for their great support throughout my

studies and the process of writing this master’s thesis.

San Jose, Sept 27, 2016

Sakari A. Pesonen

iv

Abbreviations and Acronyms

AAT Automated Acceptance Test

BDD Behavior-Driven Development

BW Black and White

CCR Cartesian Coordinate Robot

CNC Computer Numeric Control

HMI Human Machine Interface

LCD Liquid Crystal Display

MDF Medium-Density Fibreboard

NFC Near Field Communication

OCR Optical Character Recognition

PIN Personal Identification Number

PLA Polylactic Acid

PWM Pulse Width Modulation

QA Quality Assurance

RF Robot Framework

SUT System Under Test

UI User Interface

USB Universal Serial Bus

v

Contents

Abbreviations and Acronyms v

1 Introduction 1

1.1 Problem Statements . 3

1.2 Structure of the Master’s Thesis 3

2 Payment Terminal Acceptance Testing 5

2.1 Benefits of Open Source Solutions 6

2.2 Common Characteristics Between Payment Terminals 7

2.3 Different Approaches for Test Automation 10

2.4 Test Suite Syntax . 12

3 Proposed Architecture 17

3.1 Overview . 18

3.2 Hardware . 19

3.2.1 The Robot . 19

3.2.2 Computer Vision Hardware 22

3.2.3 Card Feeder . 23

3.3 Software . 25

3.3.1 Test Framework . 25

vi

3.3.2 Test Libraries . 27

4 Results and Evaluation 29

4.1 Hardware Arrangements . 29

4.1.1 The Robot . 30

4.1.2 Computing Hardware 33

4.1.3 Camera Arrangements 34

4.1.4 Card Feeder Arrangements 35

4.2 Software Arrangements . 37

4.2.1 Software Architecture 37

4.2.2 Robot Framework Test Framework 40

4.2.3 Robot Control and Card Feeder Libraries 42

4.2.4 Card Feeder Software 43

4.2.5 Computer Vision Library 44

4.2.6 Test Syntax . 45

4.2.7 Test Results . 46

5 Discussion 50

5.1 Benefits of Open Source . 50

5.2 Characteristics of Payment Terminals 51

5.3 Approaches for Test Automation 52

5.4 Syntax for Test Suites . 52

6 Conclusions 54

Bibliography 56

A Example Test Log 61

vii

Chapter 1

Introduction

Software testing is a crucial part of modern software development and it is

a commonly accepted fact that the earlier defects and errors in the software

are found, the lower the cost of correcting those will be. Early detection of

errors also increases the possibility to correct them properly. (Myers et al.,

2011)

Acceptance testing is the process of comparing the developed program to

the initial requirements of the software (Myers et al., 2011). Automated

acceptance testing (AAT) process should be executed whenever new features

are added. Therefore, especially in agile software development, AAT plays

an important role as new versions of software are being developed rapidly.

Automation can free valuable human resources from this process (Haugset

and Hanssen, 2008) and therefore lower the overall cost of the software.

According to Sommerville (2011), acceptance testing of a system should be

executed in an environment as similar as possible to the production environ-

ment of the final product. System should also be tested with real data rather

1

CHAPTER 1. INTRODUCTION 2

than with a simulated sample. When software is developed for an embedded

system and therefore the production environment is an actual device, also

the acceptance testing should be executed on genuine device with actually

interacting through the user interface (UI) of the machine. Especially when

testing embedded software, this leads to a situation where aspects pointed

out above are in fact being emphasized, as late detection of defects in em-

bedded software can considerably raise the overall cost of the system (Ebert

and Jones, 2009).

Sommerville (2011) states that it is practically impossible to perfectly repli-

cate the system’s working environment. When considering an embedded

system, this can be even harder. Buttons of the device have to be actually

pressed and visual changes on the screen of the device have to be observed.

In order to automate this, a testing environment has to be implemented that

can observe and manipulate the device through the real physical user inter-

face, i.e. not simulating the keystrokes nor reading the LCD communication

line. The testing environment has to incorporate both hardware and software

solutions to mimic real human user as realistically as possible.

This master’s thesis will discuss the theories related to software testing,

testing of embedded systems and the challenges stated above. In addition,

this master’s thesis presents an architecture for automated acceptance test-

ing of payment terminal software including the needed hardware and soft-

ware.

Research presented in this master’s thesis was carried in co-operation with

Eficode Oy and Nets Oy. Internationally Nets is one of the main payment

terminal software providers in the Nordic countries.

CHAPTER 1. INTRODUCTION 3

1.1 Problem Statements

In order to survey the topic of this work at an adequate level, this master’s

thesis presents five different problem statements. Problem statements are as

follows:

1. What are the benefits of using open source software and how can the

architecture be designed to maximally exploit these benefits?

2. What are the distinguishing characteristics between different payment

terminals that have impact on automated acceptance testing and how

can the architecture be designed to adapt these with minimal effort?

3. What kinds of test automation approaches exist and which approach

is best suited for payment terminal acceptance test automation?

4. How should the test syntax be defined in order to make the test suites

compact and understandable while accommodating the needs of differ-

ent payment terminals?

1.2 Structure of the Master’s Thesis

This master’s thesis first discusses the theories and literature related to the

topic and then presents an architecture of automated test environment for

payment terminal software acceptance testing. In the first Chapter of this

master’s thesis, the topic is introduced, problem statements are presented

and structure of this work is explained.

Second Chapter covers the literature review of the topic of the master’s the-

sis. Each problem statements have related sections and individual problem

CHAPTER 1. INTRODUCTION 4

statements are being discussed in those sections. Each section first gives an

introduction from problem statement’s point of view followed by the most

relevant references around the topic. Sections analyze what has been done

earlier and how the fundamental aspects of these previous works can be used

as a basis for this work.

Third Chapter of the master’s thesis presents the proposed architecture for

automated acceptance test environment for payment terminal software based

on the literature review done in the previous Chapter. Chapter presents

the fundamental parts of hardware and software needed for this kind of an

environment. This section has diagrams of proposed software architecture as

well as fundamental design of the needed hardware.

Fourth Chapter describes what was needed in order to achieve the AAT envi-

ronment described in the previous Chapter. Different hardware and software

subsystems of the AAT environment are presented and described. Imple-

mented AAT environment and its subsystems are visualized in this Chapter

using images and diagrams.

Fifth Chapter discusses the presented problem statements based on the pro-

posal and implementation of the AAT environment described in the previous

Chapters. Future research topics are also presented related to each problem

statement.

Sixth and the final section concludes the research done on this master’s the-

sis and will summarize the benefits obtained by this kind of an environ-

ment.

Chapter 2

Payment Terminal Acceptance Test-

ing

When developing software with agile methodologies for payment terminals,

i.e for an embedded system, testing is a crucial part of the process. The

earlier the defects and errors in the software are detected, the lower the cost

and needed effort will be for correcting those (Myers et al., 2011).

Test environment that can be used in acceptance testing of payment terminals

has several challenges to tackle and matters related to physical and techni-

cal aspects of the payment terminals have to be considered. This Chapter

discusses the background of these challenges. Open source technologies were

also preferred by the customer. Therefore, a section discusses the benefits

obtained by using open source software and hardware in acceptance test-

ing environment for payment terminals. Chapter also discusses the different

approaches for acceptance testing as well as how should the test suites be

defined in order to make them understandable and reusable.

5

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 6

2.1 Benefits of Open Source Solutions

When designing an automated acceptance testing environment from scratch,

evaluation and availability of different possible components play a significant

role in terms of development speed and cost. Suitability of one individual

software subsystem is hard to determine just based on a manual or documen-

tation of the product. Software has to be evaluated in terms of functionality,

stability and performance. In addition, different software decisions have to

be compatible with each other. Software components might also need some

modification to suit the needs of the intended environment. All this applies

to the hardware parts as well.

Open source software provides an advantage on these matters over closed

source products as the source code is easily available (Morgan and Finnegan,

2007). As open source software can be accessed free of charge, a component

can be easily evaluated by trying out whether they work for the purpose or

not. The evaluation can also include an analysis about how easily the open

source product can be modified to suit the needs. This especially is hard

to achieve with commercial closed source products as the source code is not

available.

According to Paulson et al. (2004), open source projects usually have fewer

defects than closed source projects. Defects are found and fixed rapidly

as they are reported openly to the open source community. If a defect is

found during evaluation of the product, it can also be corrected by the user.

By doing this, the user can contribute to the project. This, on the other

hand, is hardly never possible with closed software. Paulson et al. (2004)

also state that open source projects foster more creativity than closed source

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 7

counterparts. This means that number of functions added over time is higher

in open source projects. When using the product in some new field of use,

this can be a great advantage as user can report desired features to the

community and it can be added relatively quickly if the feature is considered

needed by the community.

Open-source hardware means that details and plans of the product and its

parts are commonly available (Rubow, 2008; Acosta et al., 2009). This allows

that parts can be manufactured and modified by anyone with knowledge and

skills to suit individual needs. When detailed part descriptions are avail-

able, multiple manufacturers can fabricate the actual parts. This creates

competition and therefore usually lowers the price of individual hardware

components.

As the overall security of the payment terminals is a high priority, use of

open source technologies is seen as an effort to fulfill this requirement. Open

source products provide transparency to the actual users and therefore sup-

port growing trust amongst customers.

2.2 Common Characteristics Between Payment

Terminals

When designing automated test environment for different kinds of payment

terminals, different physical and technical features have to be taken into ac-

count. Environment has to be able to manipulate different types of payment

terminals and test structure has to be designed to adapt to the needs of

different software and their different versions running on the payment termi-

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 8

nals.

Majority of payment terminals share some common characteristics as they

are made for same purpose: handling card payments. Scope of this thesis

is to propose a testing environment for those payment terminals that share

three main features: a keyboard, a screen and a card slot. Different types of

terminals are visualized in Figure 2.1 and Figure 2.2 below.

Screens of the payment terminals differ in terms of size, placement and type.

Test environment has to take into account different screen placements and it

has to support both black and white (BW) and colored displays.

Keyboards of payment terminals share majority of keys together as number

keys are needed for entering a personal identification number (PIN) code

and accept- and decline-buttons are needed for accepting and canceling the

payment. Keyboard layouts, however, differ between different manufacturers

and even amongst different models of the same manufacturer.

Location of the chip card slot is usually on the lower side of the payment

terminal or on top of the screen of the payment terminal. Research done

within this master’s thesis is limited to those terminals that have the chip

card slot at the lower side of the payment terminal as this simplifies the

hardware needed for test environment. This is described more in depth in

section 3.2. This study is also limited to chip card readers and therefore,

magnetic stripe readers and near field communication (NFC) payments are

not addressed.

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 9

(a) Terminal 1 (b) Terminal 2

Figure 2.1: Two examples of payment terminals from different manufactur-

ers. Image for subfigure 2.1a: (Ingenico payment terminal, n.d.)

Figure 2.2: Example of a payment terminal which attaches to a smart phone.

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 10

2.3 Different Approaches for Test Automa-

tion

According to Broekman and Notenboom (2003), testing of embedded systems

and embedded system software can be very different depending on what kind

of system is under testing. Mobile phones have to be tested in a very different

manner than for example cruise control system in cars. Nevertheless, some

general guidelines and similarities exists and should be followed.

Testing of a payment terminal software in an automated way can be viewed

at different levels. Most abstract classification can be seen if the testing

is divided into two levels: white box testing and black box testing. White

box testing is a methodology where the source code is investigated and test

cases are written to test the internal logic of the program. Black box testing,

on the other hand, concentrates only on the inputs and the outputs of the

software. Everything between those is not in the field of interest as black box

testing only focuses on whether the right input produces the wanted output.

(Nguyen, 2001; Myers et al., 2011)

Khan and Khan (2012) distinguishes these methodologies clearly from each

other by stating that white box testing is a process wher,e full knowledge

of source code is needed in order to write the tests. Black box testing is

described in a way that only the inputs and outputs of the application has

to be known and black box testing has no or only little relevance to internal

works of the program (Pressman, 2005). Black box testing methodologies

can be thus seen to apply for testing of working product against the initial

requirements of the software.

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 11

Huizinga and Kolawa (2007), on the other hand, presents that test automa-

tion can be divided into several layers that are unit testing, integration test-

ing, system testing and acceptance testing. Unit testing is defined to cover

testing of a single unit of the software’s source code e.g. individual methods

and functions of the software. Integration testing is described as a testing

phase to verify that different parts of the software work together as a group.

System testing is described as being a testing phase where hardware and

software is integrated and tested to meet the requirements of the system.

This can however include simulated data. Acceptance testing is represented

as highest abstraction level of this classification as it ensures that the final

product meets its acceptance criteria defined by the customers.

However, these classifications are not mutually exclusive as both white box

and black box testing methodologies can be applied to all levels of testing.

For example, when implementing unit tests for a software, individual meth-

ods are commonly being tested in terms of whether a certain input produces

a right output. This can be seen to follow the black box testing method-

ology if the methods tested are simple and small enough. Correspondingly,

acceptance tests can be used to validate whether the system meets the busi-

ness requirements and for this, knowledge about the business logic is needed

(Haugset and Hanssen, 2008). This, on the other hand, can be seen to follow

the white box testing methodology.

As black box testing is based on the external exceptions and behavior of the

software (Khan and Khan, 2012), required acceptance testing of the pay-

ment terminal software can be seen to follow this methodology. Intended

automated testing of the payment terminals seems to also follow the accep-

tance testing phase of the division made by Khan and Khan (2012).

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 12

Ramler et al. (2014) divides the general architecture of an embedded system

into three parts. In this classification the human machine interface (HMI) is

the top layer. This is followed by the software running on the device and the

lowest level are the hardware components of the machine which can be ac-

cessed through different analog and digital interfaces. As this master’s thesis

addresses only the acceptance testing of one instance of an embedded system

and as it only has to verify whether the system fulfills its acceptance testing

requirements, these abstraction levels can be overlooked. System under test

(SUT) can be viewed at a level where only the inputs and the outputs of

the system are considered important. Also for this purpose, the black box

testing methodology seems to be the appropriate testing manner.

Acceptance testing of a payment terminal software can be seen as a testing

phase where the UI of the device and the use cases of the device are tested

at the final production level, i.e. through using the real buttons of the device

under test and observing that the expected messages can be seen through

the screen of the same device. This can be seen as an effort to automate a

real human user using the payment terminal.

2.4 Test Suite Syntax

Test suite syntax plays a significant role in an automated acceptance testing

environment of payment terminals in terms of test readability, reusability and

adaptivity. When building an automated acceptance testing environment,

the tests should be understandable enough that the whole development team

and all of the project’s stakeholders can easily adopt to the test syntax.

According to the well recognized guidelines of test automation by Bach

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 13

(1996), test automation and the process that it automates should be kept

carefully separated. Test automation should be built in a form that it is easy

to review and distinct from the process that it automates. These guidelines

should be taken into account also when determining a suitable test framework

and test suite syntax.

When evaluating suitable test automation frameworks, it should be recog-

nized that simplicity is a key factor of successful test automation. Software

projects usually involve some sort of quality assurance (QA) or even a sep-

arated QA team. Projects also tend to involve fair amount of people with

no technical background or programming skills and yet their responsibilities

can still involve guaranteeing the quality of the software. Mosley and Posey

(2002) recognize that high level test languages help to share the knowledge

amongst the people that are responsible for the product. Sharing informa-

tion and knowledge amongst the project’s stakeholders helps achieving the

objectives of test automation and builds up the morale amongst the people

that are involved.

Lowell and Stell-Smith (2003) state that acceptance tests should be easy as

possible to write or otherwise people working with the project will not write

the tests as the task is seen unpleasant. In order to cope with changing

requirements or updated features, the tests should be easy to maintain as

people have to be able to update them even if they have been written by

someone else. For this reason, the test cases should be human readable

and understandable also to non-technical people. Test steps should be self

explanatory and unambiguous.

Test cases in acceptance testing of a payment terminal contain relatively high

amount of repetition, for example, test step of inserting a PIN code is the

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 14

same whether right or wrong PIN code is inserted or whether the test case

would validate a credit or debit payment. For this reason, test case syntax

should be as modular as possible in order to allow reuse of keywords with

different parameters. Easily reusable keywords also allows fast creation of

new test cases.

Tests can essentially be written in some conventional programming language,

for example Java or Python, or by using some higher level language. There

are many widely used test frameworks available for conventional program-

ming languages, for example jUnit for Java (JUnit, n.d.). This, however,

requires programming experience to some extent in order to be able to un-

derstand and modify existing tests or write new ones. This would mean the

usage of conventional programming language would be opposing the guide-

line for writing the tests as understandable as possible and therefore it would

be opposing the best practices of automated acceptance testing. On the

other hand, test case syntax must be versatile enough to accommodate dif-

ferent kinds of testing scenarios and needs. Efficient use of variables must

be possible and for example use of different kinds of loop structures must be

supported. This leads to a situation where the abstraction level of the test

cases has to be considered carefully.

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 15

Figure 2.3: Example of a jUnit test case that tries to login to website.

In addition to the test frameworks utilizing the use of some conventional

programming language for test cases, there are also couple of well-recognized

tests frameworks available that use a more natural language for writing the

tests. These frameworks usually use the same libraries for interacting with

the system under test as more low-level frameworks, but they allow a higher-

level syntax in the actual test scripts. One popular example of this kind

of higher level test framework is Cucumber (Cucumber, n.d.). Cucumber

is an open source acceptance test framework that utilizes behavior-driven

development (BDD) style. Cucumber uses Gherkin language that is designed

to be human readable without previous knowledge of programming (Gherkin,

n.d.). This means that also non-technical personnel involved with the project

can understand the test cases.

Figure 2.4: Example of a simple Cucumber test scenario and use of Gherkin

language.

CHAPTER 2. PAYMENT TERMINAL ACCEPTANCE TESTING 16

Another good example of a higher level test framework is Robot Framework

(RF). RF is a generic keyword-driven test automation framework that allows

creation of human readable test cases (Robot Framework, n.d.). Reusability

and extendibility of high-level keywords is also made relatively easy (Stresn-

jak and Hocenski, 2011). Robot Framework User Guide (2015) also outlines

that RF has a highly modular software architecture allowing it to be easily

connected to any kind of SUT by using different test libraries.

Example of a Robot Framework test case can be seen in Figure 2.5 below.

It is easy to see the intended test case execution by looking at the test case.

This will be the goal for the environment proposed later on in this master’s

thesis.

Figure 2.5: Example of a simple Robot Framework test suite (Robot Frame-

work, n.d.).

Chapter 3

Proposed Architecture

Based on the requirements pointed out in Chapter 2, this part of the master’s

thesis will present an architecture for automated acceptance testing environ-

ment for payment terminal software. Components of the environment can be

divided into hardware and software components and this Chapter is divided

to sections accordingly.

In order to automate the acceptance testing of the payment terminals, test

environment that can manipulate and observe the device through physical

means has to be created. In other words, environment has to have some

sort of a robot for pressing the buttons and screen of the device has to be

observed. All this must be also controlled by some kind of combination of

software.

Motivation for this research came from a payment terminal software provider

as they needed a cost-efficient and simple automated acceptance test environ-

ment in order to lower the costs and speed up the acceptance testing process

of their software development. Costs of automated acceptance testing can

17

CHAPTER 3. PROPOSED ARCHITECTURE 18

be divided into three parts: environment costs, costs of creating new tests

and maintenance costs (Laapas et al., 2014). This Chapter will present an

automated acceptance testing environment that is intended to minimize the

costs of each part of this division.

Eficode Oy took responsibility of implementing the system according to the

best practices of the industry. This proposal was initial plan for the project

and it will be presented in this Chapter.

3.1 Overview

When planning an automated acceptance test environment for payment ter-

minal software, environment has to be highly adaptive for different types of

hardware and software features of different payment terminal models. This

proposal was done for one payment terminal software provider who had sev-

eral different models of payment terminals and altogether over 50 different

software configurations for those devices.

Security is a top priority of payment terminal electronics and software. There-

fore, it is not possible to access internals of the payment terminal hardware.

This means that AAT environment has to be able to manipulate the phys-

ical interface of the device. This also creates requirement for supporting

different types of keyboard layouts and screen locations. In other words, en-

vironment cannot be dependent of single manufacturer or payment terminal

model.

One of the requirements for the AAT environment was also usage of open

source technologies. For the reasons pointed out in Section 2.1, customer

wanted that the environment is as open as possible. This also creates repu-

CHAPTER 3. PROPOSED ARCHITECTURE 19

tation and visibility regarding the security matters.

Other requirements for the AAT environment was simplicity, low cost, low

need for maintenance and ability to run the tests continuously around the

clock.

3.2 Hardware

Hardware for this proposal was intendedly kept simple and low-cost as pos-

sible. This proposal presents the use of just one Raspberry Pi 2 Mode B

(Raspberry Pi 2, n.d.) computer as a main computer for AAT environment.

Raspberry Pi 2 is proposed as it offers sufficient computing power for this

project with low purchasing costs and can run a full Linux operating system.

It is also small-sized and does not require any cooling equipment. Therefore,

it suites well to this project as it can be situated easily to the environment

and can be run continuously around the clock without concerns about wear-

ing cooling fans for example.

3.2.1 The Robot

As internal electronics of the payment terminals are not accessible for secu-

rity reasons, a robot is needed to be able to manipulate the physical UI of

the payment terminals. The robot should therefore be able to accommodate

different types of payment terminals and be able to press all types of buttons.

Low cost and low need for maintenance are also requirements for this robot,

as required by the customer. The robot should also be able to manipulate

multiple payment terminals at the same time in order to allow parallel ex-

CHAPTER 3. PROPOSED ARCHITECTURE 20

ecution of acceptance tests. This is intended to reduce the time acceptance

testing process takes overall, as the same tests have to be run on different

models of payment terminals. Other option would be to make the changing

of the device under test easy and fast so that the manual work required can

be minimized.

One of the options for automating the pressing of the buttons of the payment

terminals would be to manufacture a frame on top the payment terminal

which would have actuators for pressing each button. This would allow quick

entering of key sequences and simultaneous pressing of multiple buttons.

Hobby-grade servo motors could be used as actuators in order to make this

solution affordable. However, in order to support different kind of keyboard

layouts and different sized payment terminals, the solution would require

advanced mechanical engineering and thus the price of this solution could rise

to become cost-ineffective for the customer. For these reasons, this option

for payment terminal manipulator was not chosen.

Other option for automatically pressing the buttons of the payment terminals

would be utilizing the use of robotic arm. A robotic arm would be able to

emulate a human user accurately and depending on the used robotic arm,

simultaneous pressing of the buttons could also be possible. Drawback on

the use a robotic arm is the relatively high purchasing price of accurate and

powerful robotic arms. This could be overcame by manufacturing the robotic

arm with own resources and using some openly available plans (BCN3D-

Moveo, n.d.) but this would require extensive use of time for building the arm

from bottom up. For these reasons, the use robotic arm was not chosen.

Third option for automating the key strokes of the payment terminal would

be to use a cartesian coordinate robot (CCR). Cartesian coordinate robot

CHAPTER 3. PROPOSED ARCHITECTURE 21

is a robot whose axis of control are linear and are perpendicular to each

other (Costa, 1995). For pressing of one key of the payment terminal at a

time would need a cartesian coordinate robot with at least three degrees of

freedom allowing the robot to move in three dimensional space. For the scope

of this project, this would be enough as it is only required to press one button

of the payment terminal at a time. CCR would also be easily able to adapt

to different kinds of keyboard layouts and payment terminal sizes as it can

travel across any coordinates within its workspace. By choosing a CCR with

a right-sized work space, it could be also possible to accommodate multiple

payment terminals to the workspace at the same time. This would allow the

execution of parallel acceptance tests within several different devices at the

same time. For these reasons, the use of a CCR for manipulating the buttons

of the payment terminals was chosen.

The master’s thesis proposes the use of ShapeOko 2 3-axis Computer Nu-

merical Control (CNC) milling machine (ShapeOko 2, n.d.) to be used as a

manipulator. Even though the machine is intended for milling purposes, it

can be turned into a cartesian coordinate robot when milling tool is removed.

As ShapeOko 2 is a CCR with horizontal member supported at both ends,

it can be also referred as a gantry robot as it resembles a gantry crane.

ShapeOko 2 is an open-source hardware project and plans of the machine

are openly available on their GitHub (ShapeOko 2 Github, n.d.). This allows

easy modifications to the hardware parts of the robot if needed.

ShapeOko 2 is controlled by an Arduino board running a program called

GRBL (GRBL, n.d.). Controlling program is an open-source, high-performance

G-code interpreter and it is used for controlling CNC milling machines in gen-

eral (ShapeOko 2, n.d.). G-code commands are sent from Raspberry Pi 2 to

CHAPTER 3. PROPOSED ARCHITECTURE 22

the Arduino on the robot using serial communication.

Robot should be equipped with a pushing tool that can be manipulate

the buttons. Pushing tool can be easily manufactured using for example

3D-printing techniques. Design of the pushing tool can be seen in Fig-

ure 4.2

3.2.2 Computer Vision Hardware

In order to automate human interaction with the payment terminals, AAT

environment has to be able to observe the changing content on the screen of

the payment terminal. As stated earlier, internal electronics are not accessi-

ble due to the security measures and this disallows for example the possibly

to intercept the LCD communication line of the payment terminal in order

to retrieve the image on the screen programmatically.

Therefore, AAT environment also requires computer vision as changes on the

screen have to be observed visually. Manufacturer of Raspberry Pi offers low-

price solution for this as a form of Raspberry Pi Camera Module (Raspberry

Pi Camera Module, n.d.). This module was chosen for use in computer vision

tasks of the AAT environment.

As the size and the location of the display differs between different models of

payment terminals, optical hardware has to be able to adapt to different kinds

of imaging circumstances. As it is proposed that working area of the robot

could be equipped with several payment terminals at the same time, also the

displays of the payment terminals have to be able to be read regardless of

the number of the devices under test.

One solution for this could be equipping the AAT environment with multiple

CHAPTER 3. PROPOSED ARCHITECTURE 23

stationary cameras, more precisely one camera per each device under test.

If the cameras would be stationary, this would create boundaries for the

location and the size of payment terminal displays depending on the location

of the optical hardware. Cartesian coordinate robot proposed also has a

rigid structure moving on top of the devices under test and this could cause

blocking of the visual contact between camera and the display of the payment

terminal.

Other solution would be having a moving camera that could be driven to a

needed location in order to perform machine vision tasks. Location of the

display could be configured regarding to the payment terminal model and this

solution would adapt easily for different kinds of display layouts. Moving

of the camera equipment can be achieved easily by attaching the camera

directly to the robot. This will however exclude the ability to simultaneously

pressing the buttons and reading the screen as robot has to be driven to

certain position for capturing the image from the display. Regardless of

this limitation, this solution was chosen. More precisely, the camera was

situated to the Z-axis assembly of the robot to the other side in respect to the

pushing tool. This would minimize the required transitions when changing

from pressing the buttons to capturing the images as the displays are typically

located on top the numeric keypads on the payment terminals.

3.2.3 Card Feeder

In addition to the manipulation of the payment terminal buttons, also the

card feeding functionality has to be automated. One option to accomplish

this functionality would be using the ShapeOko 2 robot for inserting and

removing the card from the payment terminal. This would require an at-

CHAPTER 3. PROPOSED ARCHITECTURE 24

tachment to the payment card in order to make the manipulation of the card

possible with the same tool that is used to push the buttons of the devices

under test. The AAT environment software would also require some kind of

reset functionality in case the software would crash and the position of the

card would be lost. Manipulation of the payment cards with the ShapeOko

2 robot would also make overall testing process slower as it would not be

possible to press the buttons while inserting or removing the payment card

to or from the payment terminal.

Other option would be manufacturing generally adaptable card feeders that

could be used with different kinds of payment terminals. This solution would

allow simultaneously inserting and removing of the payment card while ma-

nipulating the buttons with the robot. Advantage of this solution would also

be that card feeders could know their state even if the software would crash

as well as the reset functionality would be more simple to implement.

As insertion and removal of the credit card might be hard to accomplish

in a simple way using just the robot described in previous section. This

work proposes the use of generally designed card feeders to accomplish this

task. Proposed card feeders consist of 3D-printed base plate that attaches

to the payment terminal, servo motor and 3D-printed tray that attaches to

the servo and to the credit card. Design of the card feeder can be seen in

Figure 4.5

Card feeders were designed in a way that they can be used with any types

payment terminals that have the card slot at the bottom side of the device.

Standard hobby servos were used as servo motors in order to keep the cost

of the setup low.

Arduino board will be used to drive the servos as it can easily provide the

CHAPTER 3. PROPOSED ARCHITECTURE 25

needed pulse width modulated (PWM) signal for the servos. Arduino is sug-

gested in order to ensure quality and accuracy of the PWM signal compared

to what can be produced easily with non-real-time operating system running

on the Raspberry Pi. Raspberry Pi on the robot will communicate with

Arduino through serial communication.

3.3 Software

As stated in the section 2.4, automated acceptance tests should be simple and

understandable enough to actually make the automated testing efficient and

beneficial. Open source solutions should be favored as this was requested

by the customer and to achieve benefits described in the Section 2.1. For

these reasons, software decisions of the AAT environment should be carefully

considered in order to achieve good maintainability, compatibility and overall

simplicity.

For software part of this AAT environment, Raspbian Wheezy is proposed

for the operating system. Raspbian is the official supported operating system

for Raspberry Pi by Raspberry Pi Foundation (Raspbian, n.d.). Raspbian

is based on widely-used Debian Unix-like operating system. This allows the

use of components developed for Debian to be used with this AAT environ-

ment.

3.3.1 Test Framework

Based on the guidelines and comparison presented in Section 2.4, the choice

for test framework was considered in order to achieve the best usability,

CHAPTER 3. PROPOSED ARCHITECTURE 26

versatility and functionality. In order to maximize these measures, Robot

Framework was chosen for the test framework. RF is an open-source, generic,

keyword-driven test automation framework that has human readable test case

syntax (Robot Framework User Guide, 2015), (Robot Framework, n.d.).

Robot Framework also has highly modular software architecture (Robot

Framework User Guide, 2015) which allows the framework to be used with

variety of testing libraries to connect to the system under test. This feature

can be seen as a great advantage when implementing test libraries for ma-

chine control and computer vision. Illustration of this modular architecture

can be seen in Figure 3.1 below.

Figure 3.1: Illustration of modular software architecture of Robot Framework

(Robot Framework software architecture, n.d.).

When RF tests are being executed, it generates clear report and log files of

the test case execution results (Robot Framework User Guide, 2015). These

files offer high level view of all test cases and step-by-step descriptions of

individual test cases in order to make the debugging more easy.

Example of a test case can be seen in Figure 3.2. This test case describes

CHAPTER 3. PROPOSED ARCHITECTURE 27

automated RF acceptance test for entering invalid PIN code when trying to

execute card purchase.

Figure 3.2: Example test case for invalid PIN code test

3.3.2 Test Libraries

As can be seen on Figure 3.1, RF requires external libraries to connect to

the system under test. In the case of this AAT environment, those libraries

would be a library for machine control, a library for computer vision and a

library for card feeder manipulation. All these libraries can be written using

CHAPTER 3. PROPOSED ARCHITECTURE 28

Python programming language that is supported out of the box by Robot

Framework (Robot Framework, n.d.).

For machine control library, the environment has to be able to send G-code

commands through universal serial bus (USB) connection to Arduino on

the robot. For this, pySerial Python library is proposed as it includes im-

plementation of the needed serial communication functionalities (pySerial,

n.d.).

For the computer vision tasks of the environment, textual messages on the

display are usually those that need to be verified. For this, character recog-

nition is needed. Open source optical character recognition (OCR) engine

called Tesseract OCR was chosen (Tesseract OCR, n.d.). It was initially de-

veloped by HP but since 2006 it has been developed by Google. In order

to use Tesseract OCR with Python, a library named pytesseract was used

(Pytesseract, n.d.).

Library for controlling the card feeders is the most simplest one of these

three libraries. For this, pySerial Python library was also chosen to send the

serial communication command to the Arduino controlling the card feeders.

Library will handle sending of control commands to the Arduino controlling

the card feeder servo motors.

Chapter 4

Results and Evaluation

This Chapter covers the subsystems and steps taken that were needed to

achieve the testing environment described in Chapter 3. This Chapter first

discusses the arrangements related to the hardware of the framework and

then software related arrangements are presented and described. After pre-

senting the built AAT environment, achieved results are discussed and finally

the test environment presented in this thesis is evaluated based on whether

it fulfilled the requirement of automating the acceptance testing of payment

terminals set by the customer.

4.1 Hardware Arrangements

AAT environment presented in this master’s thesis consists of several different

hardware components. Environment had to be a smooth combination of ma-

nipulation and computing hardware. The hardware architecture is thought

to be modular in the sense that every component has a specific functionality.

29

CHAPTER 4. RESULTS AND EVALUATION 30

This allows easy maintenance and upgrade of each subsystem.

As stated in Chapter 3, one of the requirements for this AAT environment

was affordable price. For this reason, hardware decisions have been made tak-

ing quality/price-ratio into consideration and hobby-grade electronics were

used widely throughout the environment. 3D-printing was also utilized as a

manufacturing technique of custom-made components for its relatively low

manufacturing price and acceptable quality of outputted plastic parts.

Main components of the AAT environment are the robot that handles the

manipulation of the payment terminals, Raspberry Pi 2 Model B single-board

computer which is used as a main computer of the environment, two Arduino

Uno boards for more specific control needs of certain components, camera

for machine vision and 3D-printed payment card feeders for the payment

terminals. These subsystems and components are described in following sec-

tions.

4.1.1 The Robot

As suggested in section 3.2.1, ShapeOko 2 open source 3-axis CNC milling

machine was used as the robot manipulating the payment terminals. ShapeOko

was built according to the instructions found from the homepage of the

project (ShapeOko 2, n.d.). Construction was altered only regarding to the

tool that was used as the spindle motor was substituted by 3D-printed push-

ing tool.

ShapeOko 2 has a working area of about 300 mm x 300 mm x 60 mm which

means that it can accommodate up to three payment terminals at same

time in the working area. This allows parallel test case execution i.e. test

CHAPTER 4. RESULTS AND EVALUATION 31

cases can be run at the same time with different terminals. Arrangement of

the devices was implemented by dividing the work area into three sections.

Each payment terminal was attached to a standard sized MDF-plate and

each section of the working are can accommodate one of these MDF-plates.

Holes were drilled into the working area and nuts were inserted into these

holes at the back of the work bench. MDF-plates attach to these holes with

screws enabling easy installation and removal of plates with different models

of payment terminals. MDF-plates can be seen in Figure 4.6.

Figure 4.1: Robot in its production state.

Each axis of the robot is controlled by stepper motors. Use of stepper motors

instead of servo motors offers affordable way of controlling each axis in a rela-

tively fast and reliable manner. X- and Z- axises are both manipulated using

one stepper motor on each axle and bigger Y-axis is manipulated using two

parallel stepper motors. Manipulation of payment terminal buttons stresses

the machine much less than actual milling of materials that the machine is

designed for and, allowing faster movement of the machine that would be

CHAPTER 4. RESULTS AND EVALUATION 32

possible when executing actual milling job.

The robot was controlled using G-code that was sent from the main com-

puter to an Arduino Uno attached to the robot. Arduino Uno and the main

computer were connected via USB connection. More detailed description of

the electronics can be found from section 4.1.2.

Section 3.2.1 suggested equipping the robot with a pushing tool and this was

implemented to the final solution by 3D-printing the tool from PLA plastic.

Tool consisted of two parts: cylindrical beam and a stem inside of it. Stem

slides inside the beam and the two parts are separated with a spring. Spring

provides the needed attenuation in order to forgive slight misalignments and

too long trajectories when pushing the buttons of the payment terminals.

Pushing tool can be observed in Figure 4.2 and Figure 4.1.

Figure 4.2: CAD design of the pushing tool. Metal spring is inserted inside

to the cylinder and the stem on the right side of the image slides to the

cylinder.

CHAPTER 4. RESULTS AND EVALUATION 33

4.1.2 Computing Hardware

Raspberry Pi 2 Model B single-board computer is used as the main computer

of the AAT environment. Raspberry Pi provides optimal computing power

compared to it’s price and has big community of users and developers world

wide. 3D-printed enclosure was manufactured to protect the computer board

and it was attached to the moving Z-axis assembly of the robot.

In addition to the Raspberry Pi 2, the robot also has two Arduino Uno boards

for handling some specific functionalities of the AAT environment. One Ar-

duino Uno is interpreting the G-code commands sent from the Raspberry

Pi and it is connected to the stepper motors of the robot through a stepper

motor driver shield (grblShield, n.d.).

Second Arduino Uno is handling the servo motor control of the card feeders.

It is connected to the Raspberry Pi via USB connection and control com-

mands to Arduino Uno are sent using serial communication. Arduino Uno

board provides PWM signal to the servo motors and can accommodate three

card feeders at the same time. Self-made circuit board was fabricated and

attached on top of the Arduino Uno board in order to make connecting the

servo motor cables easy.

Connection diagram and main electronic components are visualized in Figure

4.3.

CHAPTER 4. RESULTS AND EVALUATION 34

Figure 4.3: Main electronic components and connection diagram of the robot.

Note that Y-axis is manipulated using two stepper motors.

4.1.3 Camera Arrangements

As suggested in section 3.2.2, Raspberry Pi’s own camera module was used

for machine vision hardware. Camera was attached to the bottom of the

Raspberry Pi’s enclosure and the enclosure was attached to the Z-axis as-

sembly of the robot to the opposite side where the pushing tool is located.

Camera can be moved within the X- and Y-axis while Z-axis movement of

the camera isn’t possible. Depth of focus of the camera provides clear image

of the screen even when the distance between the lens and the screen differs

slightly between different payment terminal models. Camera attachment can

be seen in Figure 4.4.

CHAPTER 4. RESULTS AND EVALUATION 35

Figure 4.4: Camera is attached to the bottom of the Raspberry Pi’s enclosure.

Image also shows the attachment of the Raspberry Pi enclosure to the Z-axis

assembly of the robot.

4.1.4 Card Feeder Arrangements

As suggested in section 3.2.3, card feeder structures were 3D-printed using

PLA plastic. Finalized card feeders consist of bottom plate, payment card

holder and servo motor. Servo motor attaches directly to the bottom plate

and card holder attaches to the arm of the servo motor.

Simplistic design can be used with different kinds of payment terminals which

have the card slot at the bottom side of the device. Flexibility provided by

the plastic structure and the payment card itself allows the solution to be

compatible with most of the payment terminals of this type. Design of the

card feeders is presented in Figure 4.5. Figure 4.6 shows manufactured part

installed to the environment presenting the servo installation and attachment

of the card holder to the servo arm.

CHAPTER 4. RESULTS AND EVALUATION 36

Figure 4.5: CAD design of the card feeder. Servo motor attaches to the

bigger plate on the left and card holder on the right attaches to the arm of

the servo motor. Card holder is designed to fit standard sized payment card.

Figure 4.6: Card feeder installed to the environment. Image also presents

the idea of MDF-plates described in section 4.1.1.

CHAPTER 4. RESULTS AND EVALUATION 37

4.2 Software Arrangements

As proposed in section 3.3, this Chapter describes the decisions and arrange-

ments regarding to the software point of view of the AAT environment. The

initial proposal was followed rather loyally though some additional arrange-

ments had to be implemented to the environment in order to increase usabil-

ity and effectiveness.

The software architecture was implemented in a modular way in order to sup-

port the modularity of the hardware design. Implementation only included

open source or self-made software components from the operating system to

individual software libraries used in the AAT environment.

This section describes the individual software components of the AAT en-

vironment and their usage and function in the whole system. System con-

figuration, test framework and libraries and the final test suite syntax are

presented.

4.2.1 Software Architecture

As suggested in the section 3.3, Raspbian Wheesy Debian-based operating

system was used with the Rasbperry Pi 2 Model B single-board computer.

Operating system was used to run the test framework, test libraries and

other software components and to handle the communication with different

subsystems of the AAT environment.

Robot Framework was used as a test framework for its modularity, simplicity

and versatility. RF was run on top of Python runtime environment and all

test libraries were written using Python programming language (Python,

CHAPTER 4. RESULTS AND EVALUATION 38

n.d.). Python test libraries were implemented to handle the needed serial

communication with the Arduino board on ShapeOko 2 and to the other

Arduino board used for controlling the card feeder servo motors. Picamera

(Picamera, n.d.) Python library was used for providing the needed Python

interface for communication with the Raspberry Pi camera module. Overall

visualization of the software architecture can be observed in Figure 4.7.

Figure 4.7: Software architecture of the AAT environment.

As different keyboard layouts have to be supported, configuration files for

keyboard layouts were implemented. There are two types of configuration

files: one for device locations in the working area of the robot and one for

each keyboard layout. Configuration file for device locations defines the

coordinates of ”number one”-button and the height in respect of Z-axis where

the transitions over the buttons are safe. This is Z-axis coordinate is used

for transitions between pressings of buttons.

CHAPTER 4. RESULTS AND EVALUATION 39

Configuration file for each keyboard layout defines the button locations in

respect to the ”number one”-button. The Z-axis coordinates defined in this

file define the distance from the safe transition height to the full press of

the button. Location of the screen of each device is also defined in these

configuration files and it is used for driving the robot to the optimal place

for capturing the image of the display of the device under test.

By dividing the configuration files, easy modification and addition of new

device configurations is enabled. Desired configurations can be also changed

easily at the test case level. Examples of these configuration files can be

observed in Figure 4.8 and in Figure 4.9.

Figure 4.8: Configuration file for device locations in the working area of the

robot.

Figure 4.9: Example of a configuration file of a device keyboard layout.

CHAPTER 4. RESULTS AND EVALUATION 40

4.2.2 Robot Framework Test Framework

As proposed in section 3.3.1, Robot Framework was used as the test frame-

work for the AAT environment presented in this master’s thesis. RF was

equipped with several different test libraries to achieve the desired function-

ality of the AAT environment.

RF is a generic keyword-driven test framework and this means that the key-

words used for different test steps can be defined at a desired level of abstrac-

tion. Lowest abstraction level would be that one keyword would handle only

one library method and highest would be that one keyword would be respon-

sible for the whole test case. This allows high versatility but also makes the

developer responsible of writing test cases according to commonly accepted

best practices. Test cases developed in the scope of this master’s thesis were

implemented to be as human readable as possible. Also the devision of the

test cases into test steps was intended to be intuitive. This naturally depends

on the person that is planning the test steps but it was attempted to make

each test step as clear as possible.

Test cases and steps were also divided into different keywords in order to

achieve reusability. According to Martin (2009) any code written should be

as readable and understandable as possible and these directions were used as

guidelines when the test cases were implemented. It is also advised that code

should be written in highly modular manner and this was followed when the

keywords were combined in different abstraction levels.

Keywords used in the test cases were defined in three different levels: test

library keywords, shared keywords and test suite specific keywords. Test

library keywords are the most low level keywords and implement the func-

CHAPTER 4. RESULTS AND EVALUATION 41

tionality between RF and SUT using different interfaces. These were written

using Python language. Test suite keywords, on the other hand, are the most

high level keywords. These are defined within the test suite files and are only

used within the particular suite.

AAT environment also introduced a resource file for combining the keywords

that were shared with different test suites. Abstraction level of keywords

found from this file can be qualified as middle or high level. Resource file is

also used for defining common test libraries between test suites and common

set-up and tear-down commands of test cases and suites. Resource file is

imported to each test suite file. Example of partial resource file can be seen

in Figure 4.10

Figure 4.10: An example of a partial resource file for Robot Framework tests.

CHAPTER 4. RESULTS AND EVALUATION 42

4.2.3 Robot Control and Card Feeder Libraries

For sending the control commands to the ShapeOko 2 robot with Robot

Framework, a robot control library was implemented using Python language.

Control commands for the robot are given using G-code commands and those

are being sent using serial communication protocol. The library defines key-

words that can be used within the test cases. As RF supports combining

the low-level keywords into higher level keywords, the library keywords were

implemented to be reasonably generic. This helped to keep the library as

simple and as possible.

Desired G-code commands are being produced according to the configura-

tion files described in section 4.2.1. Library reads the coordinates of the de-

vices and different buttons and by combining these, forms the needed G-code

command to drive the robot into particular location. Library has a go to()-

method which takes the button name as parameter to drive the robot into

the desired position. Press button()-method is used to press the button when

to robot is reached the desired position on top of the button.

Library has methods for setting the home position which is used in the ini-

tialization phase of the library after it has been imported into a RF test

suite. Library also implements methods for going into home position, going

to the right position for image capture and individual methods for lowering

and raising the pushing tool of the robot. These can be used as keywords

within the test cases and they work in respect to the device locations.

For controlling the card feeder, another test library was also implemented

using Python language. Control command for card feeder Arduino board

are being sent using serial communication and library takes care of this in-

CHAPTER 4. RESULTS AND EVALUATION 43

teraction between the RF and the Arduino board. Card feeder library only

implements an update()-method that takes the angle and the card feeder

number as parameters. This method sends the control command to the Ar-

duino board of the card feeders and can be used as a keyword from other RF

keywords or test cases.

Based on the work done in this master’s thesis, open source RF library was

published (Robot Framework CNC Library, n.d.). This library can be used

for easy controlling of devices that use serial communication as a commu-

nication protocol and are controlled using G-code commands. The library

is intended for use in similar circumstances described in this master’s thesis

but can also be used as general G-code control library for Robot Frame-

work.

4.2.4 Card Feeder Software

For controlling the servo motors of the card feeders with an Arduino board,

an Arduino program was developed. As described in the previous section,

the control commands are sent to the Arduino using serial communication.

Messages read by Arduino consists of two parts: card feeder number and

desired angle of the servo. After receiving the message, Arduino program

interprets the device number and angle from it and drives the appropriate

card feeder.

Servo motors of the card feeders are controlled using PWM control signals.

The Arduino program can drive the servo motors to every angle that the

servo motor is capable of moving and the angles of inserting the card and

removing the card can be defined in the test case level.

CHAPTER 4. RESULTS AND EVALUATION 44

4.2.5 Computer Vision Library

As proposed in section 3.3.2, computer vision library was implemented for

extracting the optical features from the display to a format that can be

interpreted programmatically. The main task of the computer vision library

is to interpret the text displayed on the screen of the payment terminal.

Computer vision library was implemented using Python language and Tesser-

act optical character recognition (OCR) engine is used to extract the found

characters to textual format. Image captured by the Raspberry Pi camera

module is slightly manipulated in order to make the text extraction more

efficient and reliable. Image manipulations are made using OpenCV Python

library (OpenCV, n.d.). Image is first being slightly blurred using Gaussian

blur filter in order to reduce the amount of disturbance caused by pixel edges

of the display. Color space of the image is then converted to gray-scale. Fi-

nally, the gray-scale image is converted into binary BW-image by comparing

the pixel value to a certain threshold value. The threshold value is adjusted

according to the screen brightness and lightning conditions of the space where

the robot is situated. These image manipulations produce an image where

text in the display is clearly distinguishable from the other features providing

good foundation for the character recognition.

Tesseract OCR engine can extract any kind of common characters from the

image and this can sometimes cause unwanted noise as small dirt parti-

cles and disturbances in the image can be interpreted as some exotic spe-

cial character. In order to make the task of OCR engine easier in addition

to the binary BW-image, possible characters are white-listed. Final list of

possible characters that are accepted by the OCR engine is: ABCDEFGHI-

CHAPTER 4. RESULTS AND EVALUATION 45

JKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789,e. This

also helps the OCR engine to distinguish right characters from possible sim-

ilar looking foreign-language counterparts.

The computer vision library outputs all found textual features from the

source image and the validation of the right content is being done using

Robot Framework.

4.2.6 Test Syntax

Robot Framework files are divided into different parts that all have specific

functionality and purpose. This helps to observe the different configurations

and used keywords within the test suite in order to gain comprehension

of the functionality of a particular file. As mentioned earlier, the project

structure is divided into a shared resource file and individual test suite files.

Same syntax applies to both kinds of files, only the scope of the definitions

changes according to the type of the file. Resource file is divided into three

sections: settings, variables and keywords. Test suite files are divided into

four sections: settings, variables, test cases and keywords.

The settings section of the file defines all the needed settings for executing

the test cases. This includes all resource and library imports and test setup

and teardown definitions. In this project, all the library imports are done in

the resource file which is imported to the test suites in their settings sections.

Test setup and -teardowns are defined at test suite level.

Variables section defines all the used variables within the test cases. Variables

section of the resource file are used for defining common variables and for

example the used directory paths. In other words, this sections defines the

CHAPTER 4. RESULTS AND EVALUATION 46

location of the image directory used by the computer vision, the location of

the configuration files of the device locations and the configuration files of

different keyboard layouts of the payment terminals. Variables are defined

using RF’s ${variable} annotation.

Test cases section of the test suite files are used for defining all the test cases

within the test suite and all the test steps included in the test cases. Test

cases are defined by naming them in the first line and then defining the test

steps by indenting the names of the used keywords with at least two space

characters or one tab character under the name of the test case.

Keywords are defined in the same way as test cases. Each keyword definition

begins with the name of the keyword followed by indented names of used

lower level keywords or library methods. Keywords can be built modularly

into different layers by using lower level keywords in higher level keyword

definitions. Example test case can be seen in Figure 3.2.

4.2.7 Test Results

For the testing to be actually useful and informative, clear test reports and

error descriptions have to be generated. Robot Framework is useful for this

purpose as it generates by default three types of clear and easily understand-

able test result files after executing the test suite under examination. Two

files are outputted in .html -format making it possible to examine the reports

interactively using web browser. One file is also outputted in .xml -format

making it convenient to integrate the test results into other testing tools.

RF also supports generation of other types of reports out-of-the-box and it is

possible to produce for example xUnit-styled report from the test execution.

(Robot Framework User Guide, 2015)

CHAPTER 4. RESULTS AND EVALUATION 47

Report.html -file can be user to review the overall status of executed test

suites and cases. This report gives an overall view to the testing project and

different outcomes of the tests are marked in bright colors. The green color

represents passed test and red color represents failed test. Example of passed

test report file can be seen in Figure 4.11 and example of failed test report

can be seen in Figure 4.12.

Log.html -file contains more detailed representation of the test cases. Each

test step is shown here and the internal keywords and library methods used

by the keyword are layered under each test step. If test step fails during

the test execution, the stack trace of that particular command is added to

the log file and can be easily observed. Example of log file can be seen in

Appendix A.

Robot Framework also allows tagging the test cases with different kinds of

tags. Tags can be used to group different test cases for test execution and

they can be also be used for marking the criticality of the test case. The

overall result of the test execution is determined based on the passed critical

tests. If any of the test cases that are marked with critical tag fails, the

overall test execution is considered failed. In other words, if the test run

contains tests with critical and non-critical tags, the non-critical tests can

fail without having an effect to the overall result of the test execution. (Robot

Framework User Guide, 2015)

CHAPTER 4. RESULTS AND EVALUATION 48

Figure 4.11: Report of passed tests.

CHAPTER 4. RESULTS AND EVALUATION 49

Figure 4.12: Report of failed tests.

Chapter 5

Discussion

This Chapter will discuss the problem statements based on the proposal

and implementation described in previous Chapters of this master’s thesis.

Possible future research topics around the subject matter of this thesis are

presented related to the research questions.

5.1 Benefits of Open Source

Even though open-source license of a software does not guarantee the quality

and excellence of the product compared to the closed source counterparts,

the usage of open source solutions was beneficial for this project. As overall

budget of the project was set rather low, open source products provided

advantage over proprietary solutions.

Use of open source software provided possibility to evaluate the possible

tools more throughly before actually taking them into the project. This was

especially beneficial in terms of efficiently evaluating the potential tools and

50

CHAPTER 5. DISCUSSION 51

keeping the development time frame short.

Use of open source products also provided benefits to the customer organiza-

tion whom the project was developed for. As the system under testing had

strict security requirements, open source solutions provided visibility and

transparency to the users and developers of the tested product.

Comparison between open source and proprietary products can be done in

numerous different aspects and research done within this master’s thesis was

restricted due to time and cost limitations of the project. Future research

could address this comparison more thoroughly by comparing AAT envi-

ronments developed strictly with either open-source or proprietary compo-

nents.

5.2 Characteristics of Payment Terminals

Different types of payment terminals were examined within this master’s

thesis and it was found out that due to the simple function of the payment

terminal, the design usually involves few common parts: a display, a keypad

and a card slot.

Scope of the master’s thesis was limited to certain types of payment terminals

and more exotic models were left out of consideration. Developed environ-

ment only supports payment terminals using chip card slot for inserting the

payment card and use of other reading methods of the payment card, e.g.

reading of magnetic stripe or NFC-chip, are not supported.

For the future work, possibility to support other reading methods of the

payment card is suggested to being researched.

CHAPTER 5. DISCUSSION 52

5.3 Approaches for Test Automation

Black box testing was used as a testing methodology within the work done

in this master’s thesis. Choice of the methodology was done entirely based

on the definitions found from the literature around this topic. Use of black

box testing methodology in the automated acceptance testing of embedded

systems can be seen as most reasonable option as it imitates the final user

most accurately. Other methodologies would have required more in-depth

knowledge of the underlaying systems of the devices and this would not have

emulated the final human user as accurately as black box testing methodology

did in this case.

Methodology worked well in the AAT environment implemented in this mas-

ter’s thesis. AAT environment imitated final human user to the extent that

it was possible to mostly automate the manual testing of the payment termi-

nal, which was the goal of this project. As the AAT environment presented

in this master’s thesis concentrated on validating only the textual content

of the payment terminal display, other visual validations were still left to be

testes manually.

5.4 Syntax for Test Suites

Robot Framework was selected as a testing framework of the AAT environ-

ment. Choice of the framework and therefore also the test syntax was done

based on literature review and examination of different tools. Robot Frame-

work was selected for its modularity and versatile and human-readable test

syntax. Use of RF proved to be robust and it was able to implement all the

CHAPTER 5. DISCUSSION 53

desired functionalities using the framework.

For future research, it is encouraged to arrange surveys and interviews re-

lated to the different acceptance testing frameworks. Research done within

this master’s thesis did not involve any investigation about current opinion

atmosphere around the topic of acceptance testing tools used in testing of

embedded software. This kind of research would be valuable to the future

projects done in the field of automated acceptance testing. Multiple compet-

itive testing tools exists and as the evaluation of the tools require extensive

usage of different solutions, it would be beneficial if comparative and unbi-

ased data would be widely available.

Chapter 6

Conclusions

This master’s thesis presented a proposal and implementation of automated

acceptance testing environment for payment terminal software and addressed

the theories and problems related to the topic. Presented AAT environment

was joint combination of open source hardware and software and was formed

by the requirements of Eficode Oy’s customer. AAT environment presented

in this thesis was able to fulfill the requirement of automating a majority

of the software testing of the payment terminals which was previously done

manually.

Literature review of this master’s thesis addressed the four problem state-

ments introduced in the beginning of this master’s thesis. Research ques-

tions were also discussed and suggestions for future research were presented

in Chapter 5 after the implemented AAT was introduced in previous Chap-

ters.

Presented architecture and testing solution proved to be adaptive to differ-

ent kinds of payment terminals and also enabled testing of three different

54

CHAPTER 6. CONCLUSIONS 55

payment terminals in parallel setup to reduce the overall duration of the ac-

ceptance testing process. Solution also provided transparency to the users

and developers of the security critical system under testing. As a result of

this project, an open source Robot Framework library was also published for

controlling any kinds of robots supporting serial communication and G-code

commands.

This master’s thesis also lays a promise of how commonly and inexpensively

available components can be used in demanding applications. By combin-

ing different open source products, highly adaptive AAT environment was

created for the needs of automated acceptance testing of payment terminal

software successfully.

Bibliography

Roberto Acosta et al. Open source hardware. PhD thesis, Massachusetts

Institute of Technology, 2009.

James Bach. Test automation snake oil. Windows Tech Journal, 10, 1996.

BCN3D-Moveo. URL https://github.com/BCN3D/BCN3D-Moveo Accessed

5.9.2016, n.d.

Bart Broekman and Edwin Notenboom. Testing embedded software. Pearson

Education, 2003.

Larry J Costa. Three-axis cartesian robot, December 19 1995. US Patent

5,476,358.

Cucumber. URL https://cucumber.io/ Accessed 7.9.2016, n.d.

Christof Ebert and Capers Jones. Embedded software: Facts, figures, and

future. Computer, (4):42–52, 2009.

Gherkin. URL https://github.com/cucumber/cucumber/wiki/Gherkin Ac-

cessed 7.9.2016, n.d.

GRBL. URL https://github.com/grbl/grbl Accessed 15.7.2016, n.d.

56

https://github.com/BCN3D/BCN3D-Moveo
https://cucumber.io/
https://github.com/cucumber/cucumber/wiki/Gherkin
https://github.com/grbl/grbl

BIBLIOGRAPHY 57

grblShield. URL https://www.synthetos.com/project/grblshield/ Ac-

cessed 1.9.2016, n.d.

Borge Haugset and Geir Kjetil Hanssen. Automated acceptance testing: A

literature review and an industrial case study. In Agile, 2008. AGILE’08.

Conference, pages 27–38. IEEE, 2008.

Dorota Huizinga and Adam Kolawa. Automated defect prevention: best prac-

tices in software management. John Wiley & Sons, 2007.

Ingenico payment terminal. URL http://www.netskauppa.fi/images/t/

24-85-PrimaryImage.image.ashx Accessed 4.4.2016, n.d.

JUnit. URL http://junit.org/ Accessed 7.9.2016, n.d.

Mohd Ehmer Khan and Farmeena Khan. A comparative study of white box,

black box and grey box testing techniques. Int. J. Adv. Comput. Sci. Appl,

3(6), 2012.

Antti Laapas et al. Cost-benefit analysis of using test automation in the

development of embedded software. 2014.

Charles Lowell and Jeremy Stell-Smith. Successful automation of gui driven

acceptance testing. In Extreme programming and agile processes in soft-

ware engineering, pages 331–333. Springer, 2003.

R.C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.

Robert C. Martin series. Prentice Hall, 2009. ISBN 9780132350884. URL

https://books.google.com/books?id=hjEFCAAAQBAJ.

Lorraine Morgan and Patrick Finnegan. Benefits and drawbacks of open

source software: an exploratory study of secondary software firms. In Open

https://www.synthetos.com/project/grblshield/
http://www.netskauppa.fi/images/t/24-85-PrimaryImage.image.ashx
http://www.netskauppa.fi/images/t/24-85-PrimaryImage.image.ashx
http://junit.org/
https://books.google.com/books?id=hjEFCAAAQBAJ

BIBLIOGRAPHY 58

Source Development, Adoption and Innovation, pages 307–312. Springer,

2007.

D.J. Mosley and B.A. Posey. Just Enough Software Test Automation. Just

enough series. Prentice Hall PTR, 2002. ISBN 9780130084682. URL https:

//books.google.com/books?id=PEBvfWESIt4C.

G.J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing. IT-

Pro collection. Wiley, 2011. ISBN 9781118133156. URL https://books.

google.fi/books?id=GjyEFPkMCwcC.

Hung Q Nguyen. Testing applications on the Web: Test planning for

Internet-based systems. John Wiley & Sons, 2001.

OpenCV. URL http://opencv.org/ Accessed 18.7.2016, n.d.

James W Paulson, Giancarlo Succi, and Armin Eberlein. An empirical study

of open-source and closed-source software products. Software Engineering,

IEEE Transactions on, 30(4):246–256, 2004.

Picamera. URL http://picamera.readthedocs.io/en/release-1.12/ Ac-

cessed 7.9.2016, n.d.

R.S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-

Hill higher education. Boston, 2005. ISBN 9780073019338. URL https:

//books.google.com/books?id=bL7QZHtWvaUC.

pySerial. URL http://pythonhosted.org/pyserial/ Accessed 4.5.2016, n.d.

Pytesseract. URL https://pypi.python.org/pypi/pytesseract Accessed

4.5.2016, n.d.

Python. URL https://www.python.org/ Accessed 7.9.2016, n.d.

Rudolf Ramler, Werner Putschögl, and Dietmar Winkler. Automated testing

https://books.google.com/books?id=PEBvfWESIt4C
https://books.google.com/books?id=PEBvfWESIt4C
https://books.google.fi/books?id=GjyEFPkMCwcC
https://books.google.fi/books?id=GjyEFPkMCwcC
http://opencv.org/
http://picamera.readthedocs.io/en/release-1.12/
https://books.google.com/books?id=bL7QZHtWvaUC
https://books.google.com/books?id=bL7QZHtWvaUC
http://pythonhosted.org/pyserial/
https://pypi.python.org/pypi/pytesseract
https://www.python.org/

BIBLIOGRAPHY 59

of industrial automation software: Practical receipts and lessons learned.

In Proceedings of the 1st International Workshop on Modern Software En-

gineering Methods for Industrial Automation, MoSEMInA 2014, pages 7–

16, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2851-7. doi:

10.1145/2593783.2593788. URL http://doi.acm.org/10.1145/2593783.

2593788.

Raspberry Pi 2. URL https://www.raspberrypi.org/products/

raspberry-pi-2-model-b/ Accessed 1.6.2016, n.d.

Raspberry Pi Camera Module. URL https://www.raspberrypi.org/

products/camera-module/ Accessed 1.6.2016, n.d.

Raspbian. URL https://www.raspberrypi.org/downloads/raspbian/ Ac-

cessed 4.5.2016, n.d.

Robot Framework. URL http://robotframework.org/ Accessed 1.6.2016,

n.d.

Robot Framework CNC Library. URL https://github.com/Eficode/

robotframework-cnclibrary Accessed 1.8.2016, n.d.

Robot Framework software architecture. URL http://robotframework.org/

img/architecture-big.png Accessed 1.6.2016, n.d.

Robot Framework User Guide. URL http://robotframework.org/

robotframework/latest/RobotFrameworkUserGuide.html/ Accessed

6.5.2016, 2015.

Erik Rubow. Open source hardware. Technical report, Citeseer, 2008.

ShapeOko 2. URL http://www.shapeoko.com/wiki/index.php/ShapeOko_2

Accessed 1.6.2016, n.d.

http://doi.acm.org/10.1145/2593783.2593788
http://doi.acm.org/10.1145/2593783.2593788
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/camera-module/
https://www.raspberrypi.org/products/camera-module/
https://www.raspberrypi.org/downloads/raspbian/
http://robotframework.org/
https://github.com/Eficode/robotframework-cnclibrary
https://github.com/Eficode/robotframework-cnclibrary
http://robotframework.org/img/architecture-big.png
http://robotframework.org/img/architecture-big.png
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html/
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html/
http://www.shapeoko.com/wiki/index.php/ShapeOko_2

BIBLIOGRAPHY 60

ShapeOko 2 Github. URL https://github.com/shapeoko/Shapeoko_2 Ac-

cessed 15.7.2016, n.d.

I. Sommerville. Software Engineering. International Computer Science Series.

Pearson, 2011. ISBN 9780137053469. URL https://books.google.fi/

books?id=l0egcQAACAAJ.

Stanislav Stresnjak and Zeljko Hocenski. Usage of robot framework in au-

tomation of functional test regression. In ICSEA 2011 The Sixth Interna-

tional Conference on Software Engineering Advances, 2011.

Tesseract OCR. URL https://github.com/tesseract-ocr/tesseract Ac-

cessed 4.5.2016, n.d.

https://github.com/shapeoko/Shapeoko_2
https://books.google.fi/books?id=l0egcQAACAAJ
https://books.google.fi/books?id=l0egcQAACAAJ
https://github.com/tesseract-ocr/tesseract

Appendix A

Example Test Log

61

APPENDIX A. EXAMPLE TEST LOG 62

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statements
	1.2 Structure of the Master's Thesis

	2 Payment Terminal Acceptance Testing
	2.1 Benefits of Open Source Solutions
	2.2 Common Characteristics Between Payment Terminals
	2.3 Different Approaches for Test Automation
	2.4 Test Suite Syntax

	3 Proposed Architecture
	3.1 Overview
	3.2 Hardware
	3.2.1 The Robot
	3.2.2 Computer Vision Hardware
	3.2.3 Card Feeder

	3.3 Software
	3.3.1 Test Framework
	3.3.2 Test Libraries

	4 Results and Evaluation
	4.1 Hardware Arrangements
	4.1.1 The Robot
	4.1.2 Computing Hardware
	4.1.3 Camera Arrangements
	4.1.4 Card Feeder Arrangements

	4.2 Software Arrangements
	4.2.1 Software Architecture
	4.2.2 Robot Framework Test Framework
	4.2.3 Robot Control and Card Feeder Libraries
	4.2.4 Card Feeder Software
	4.2.5 Computer Vision Library
	4.2.6 Test Syntax
	4.2.7 Test Results

	5 Discussion
	5.1 Benefits of Open Source
	5.2 Characteristics of Payment Terminals
	5.3 Approaches for Test Automation
	5.4 Syntax for Test Suites

	6 Conclusions
	Bibliography
	A Example Test Log

