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Foreword 

To compare recent visual grasping techniques which are applied on a robotic arm for 

grasping of unknown objects in an indoor environment. This thesis compares the 

algorithm written by David Fischinger on Symmetry Height Accumulated 

Features(SHAF) and the same has been compared with Principal Component 

Analysis(PCA) written by Joni Pajarinen. The work was performed at Intelligent 

Robotics Laboratory of Aalto University and the results were reported in the final 

Presentation delivered on March, 29
th  

2016. 
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Chapter 1  

 Introduction 

1.1 Motivation 

As humans, we always interact with the surrounding environment and take delight in 

it. Our interactions include grasping objects in the environment, holding a hot coffee 

cup or lifting a chair that seem effortless. However, research is being done in the field 

of robotics to perform such tasks. The figure below demonstrates a robot performing 

grasping activity. 

 

            Fig.1.Robot performing grasping activity 
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Grasping of objects is a learned process for humans. By time, we acquire the 

necessary skills to grasp any object. The learning process takes place in children, they 

start with grasping the object using two hands, later with one hand and then if the 

object is light, they are able to lift it up easily with few fingers. Grasping based on 

human experience can be used to imitate in robotics but at the same time we shall not 

limit ourselves to that.  

1.2 Objectives 

In the thesis, visual grasping of unknown objects, a small attempt has been made to 

solve the grasping problem by imitating human experience in robotics. This solving of 

visual grasping problem is limited to theoretical Idea and may or may not be exact in 

its details and may be subject to error. However, the main Objective of the thesis is to 

compare and study the recent visual grasping techniques which are applied on a 

robotic arm. These techniques are applied for grasping of unknown objects in an 

indoor environment and prove some of the assumptions made in the theoretical idea. 

1.3 Background 

The section below presents the theoretical idea discussed in the objectives. Grasping 

through vision is considered in the thesis. It is a fact that grasping without a sense of 

touch is next to impossibility for humans themselves. To prove it, it is very hard for a 

human to perform grasping action with a numb hand.  So, the task of grasping only 

through vision in a robot raises a lot of questions. It is like playing a game of chance. 

It can be related to the claw arcade game shown in the figure below. It is usually 

played during fairs. No matter what point is chosen for grasping, it tends to be a game 

of probability. The only difference between the claw arcade game and Jaco robot [7.1] 

is that the fingers apply more pressure in the case of Jaco robot but not for the 

manipulator in the claw arcade game. 
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Fig.2.Claw Arcade Game  

Now, the question arises how to distinguish between unknown and known objects. 

The known factors of the object through vision are: 

1. Its material (from color and texture) which gives the estimation of the mass of the 

object. 

2. The length, breadth and height of the object which gives estimation about the shape 

of the object. However, the shape of the object was not able to be determined fully 

due to occlusions and self-occlusions. 

3. The surface in which the object is present gives an idea about the frictional force 

present between the surface and the object 

Usually a Grasping method learns from the database about the object and performs 

the necessary grasping but when it comes to unknown object, there is no question of 

learning from a database as the object is itself unknown. 

Another important factor to be considered in grasping is grip. Grip is related to the 

force applied on the object or the force going to be applied on the object. Considering 

the case of humans, for objects beyond a certain size, dragging the object by pushing 

and pulling makes sense as enough force cannot be applied to lift the object. Fingers 

apply the least force, later the palm with fingers applies little more force. Then with 

elbows more force is applied and slowly the whole body starts being used .To carry 

extreme weights the centre of mass of the object and the body trying to carry it is 

aligned. Example: porters in railway station. The material of the object and the 

surface in which the object is present is required to determine the force needed to lift 
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the object. For an unknown object, the object is glanced through vision, a fair guess 

about object weight is made, apply the assumed force and lift the object .Later apply 

the required force to keep the object lifted. If the assumed force is not sufficient again 

a guess is taken and the process continues. Grasping is totally based on grip. Whether 

the fingers of the manipulator has got grip over the object. 

 As there is no torque sensor present in the kinova-jaco robot[7.1.1], the mass and the 

frictional force are not going to be considered. 

1.4 Overview of work 

In this thesis some of the Grasping technique’s like SHAF,PCA were compared by 

implementing them and conducting various tests on them. It was planned to use only 

visual sensor and not any stereo vision or tactile feedback. For the first stage, a recent 

method proposed by Fischinger (et al) was modified. This  is a shape based method 

called ‘symmetry height accumulated features’ which helps in grasping unknown 

objects from a cluttered environment and the method uses a point cloud from a single 

depth camera. The idea behind this method is to define small regions and compare 

average heights using discretized point cloud data. The height difference gives an 

abstraction of the objects shape that enables training of a classifier (supervised 

learning). It determines if grasping will succeed. 

Some simple grasping methods – one, using a PCA based approach was used as a 

baseline for comparison. A second state-of-the-art method was modified in addition to 

Fishinger(et al) known as rectangle representation for doing the comparisons but the 

experiments were not performed using this method. 

The hardware used is Kinova Jaco arm, which is a 6 DOF (Degree of Freedom) 

Robotic arm and it can reach up to 90 cm with a lifting capacity of 1.5kg. The 

gripper of the robotic arm contains 3 individually controlled under actuated fingers, 

which safely handle variety of objects 

For implementation, the source code is reused instead of developing from scratch. 

Then the grasping techniques are applied on the object. Then a note of the successful 

grasps and the failed grasps was made with also the possible reason for failure. Also, 

a grasp is considered to be successful if the robot manipulator is able to keep the 

object in air for 15 seconds. 
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Chapter 2 

Literature Review 

2.1 Overview  

The idea of making a robot to take hold of something in order to perform something is 

known as Grasping. The action of holding a door knob to perform pushing or pulling 

action is also part of grasping process but grasping of objects is only considered in the 

thesis. Again grasping can be performed on stationary or moving objects, in which 

stationary objects are considered for our reference. In stationary objects also, the 

object can be a small ball or a big sofa, so again the restriction is placed to the objects 

that can be lifted by a hand.  

In general, the various environments considered for grasping of objects are cluttered 

and uncluttered environment. The objects can be both unknown and known.  

 

2.2 Grasping Techniques 

Most of the algorithms considered use some kind of learning to obtain a stable grasp. 

In 1994, a group of researchers [20] worked on the grasping problem and created a 

family of simultaneous interacting contour trackers to pick the top object off a file 

from a camera on the end of the robot arm. In this algorithm geometrical information 

is obtained from the analysis of image motion as the robot tries to move around the 

vantage point. Later, the next year Marjan and Ales [21] developed a paradigm of 

purposive vision which works on the principle that one shall extract as much 

information as it is needed. Planar patches are obtained by the recover and select 

paradigm which contains enough information to enable generating object hypothesis 

for grasping of objects. In 1999, Namiki[23] and his team created a high speed 

grasping technique using visual and force feedback. The most important feature of the 
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system was its ability to process sensory feedback at high speed. Later in 2003, an 

algorithm [22] called automatic grasp planning using shape primitives was proposed.  

Some of the researchers have focused their attention on using features of the object or 

the environment. An interesting work [3] was done using cognitive vision system in 

which a representation was built based on edge and texture information. ECV system 

also known as early cognitive vision system has the edge and surface structures 

extracted by means of an extension of the biologically motivated hierarchical vision 

system. It extends the ECV system with a hierarchy of features in the texture domain. 

The proposed feature gives a sparse and abstract but meaningful representation of the 

scene which on one side reduces the search space for grasping and on the other side 

creates additional context information which is relevant for grasping. In this work a 

grasping benchmark was also proposed.  

Further, using only geometric cues, a cloth grasp point detection based on multiple 

views with application to robotic towel folding was proposed by Jeremy and the team 

[14] .This algorithm was specific to the application of automatic laundry folding.   

Another grasping technique proposed was Contact-Reactive Grasping with partial 

shape information[17].A ranked set of grasps were created using heuristics based on 

overall shape of object and its local features. In this technique, the reactive grasping 

component of the system used tactile sensors for a variety of reactive behavior. Some 

of the behaviors were to recover from small positional errors, to grasp objects in a 

way that minimizes unwanted object pushing, and to locally adjust grasps that are 

likely to be marginal. The disadvantage of this method is that it fails in grasps that 

look marginal in terms of their contacts. It fails for objects that are too light to be 

sensed by tactile sensors, for objects too large to fit within the gripper, for flat objects 

and finally for objects that are not easily seen by the sensor generating the objects 

point cloud.  

Taylor and Kleeman [19] suggested an algorithm which used colour, texture and edge 

information, to track objects in cluttered environment. 

In visibility based accessibility analysis of the grasp points for real time manipulation 

[24], the objects were grasped exploiting the plane features and pre-existing object 

models. 

Several researchers have come up with the idea of segmenting the 3D scene and then 

locating the unknown object.  



 

  7 

 

 

Alper[10] using the argument that there is a strong correlation between local 3D 

structure and object placements proposed to capture complex 3D contexts without 

implementing specialized routines. The limitation of this approach is that they 

perform poorly in non typical scenes where contextual expectation does not agree 

with the scene at hand.  

In Detecting and segmenting objects for mobile manipulation [11], Radu proposed to 

interpret the 3D scene using a set of 3D point features and probabilistic graphical 

methods. A scene interpretation algorithm was used in this method, in which 

estimation of fast point feature histograms was used as local 3D point features to 

segment the object into geometric primitives .Then learning and categorizing of 

object classes was done which used the previously estimated primitives at each point. 

Taking into account the contact stability conditions and force closure, a set of 

algorithms was proposed by Antonio[15] to grasp real objects.  

Based on shape and size many algorithms were proposed to grasp the objects.  

In Grasping of unknown objects from a table top[8] ,the authors proposed to find 

grasp candidate based on shape of object and validated it globally by checking 

collisions between gripper and surrounding objects.  

In Grasping novel objects with depth segmentation [9], the authors suggest 

segmenting the cluttered scene with depth information and proposed a shape 

completion and grasp planner method which takes partial 3D information. 

Also, Claire [12] created a rough shape estimation of unknown objects using non 

linear optimization techniques. The goal is to determine the quadric that approximates 

at best the shape of an unknown object using multi-view measurements. Non-linear 

optimization techniques are considered to achieve this goal. Since multiple views are 

necessary, an active vision process is considered in order to minimize the uncertainty 

on the estimated parameters and determine the next best view. 

In a shape matching algorithm for synthesizing humanlike enveloping grasps [16], a 

shape matching algorithm was proposed that can accommodate the sparse shape 

information associated with hand pose.  

Miller et al [4] also employed an automatic grasp planning system “grasp it” which 

modeled objects as sphere, cylinder, cone or box. Then a set of rules was used in this 

algorithm to generate a set of grasp starting positions and pregrasp shapes based on 
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the modeled objects. The grasp was tested using the simulator “GraspIt” and the best 

grasps were presented to the user. 

 

On the other hand, Ben [13] proposed a cloud based grasping for objects having 

uncertainty in shape. This paper explores how Cloud Computing can facilitate 

grasping with shape uncertainty. It considers the most common robot gripper: a pair 

of thin parallel jaws, and a class of objects that can be modeled as extruded polygons. 

It models a conservative class of push-grasps that can enhance object alignment. The 

grasp planning algorithm takes as input an approximate object outline and Gaussian 

uncertainty around each vertex and center of mass. It defines a grasp quality metric 

based on a lower bound on the probability of achieving force closure. It presents a 

highly-parallelizable algorithm to compute this metric using Monte Carlo sampling. 

The algorithm uses Coulomb frictional grasp mechanics and a fast geometric test for 

conservative conditions for force closure. It runs the algorithm on a set of sample 

shapes and compares the grasps with those from a planner that does not model shape 

uncertainty.  

  

Some studies have used a feedback system to grasp unknown objects. Using the 

sensor feedback information, an optimum grasp was calculated in Robotic grasping of 

unmodelled objects using time of flight range data and finger torque information [18]. 

The positive of the approach is that it doesn’t require exploiting object models.  

Some grasping techniques have been applied for cluttered environments.  

In both visually guided grasping in 3D [20] and grasping arbitrarily shaped 3-D 

objects from a pile [21], the object from the top of a pile was picked for grasping 

using machine vision and range sensors respectively. Similarly some grasping 

techniques were applied only for detecting an unknown object and grasping it. These 

techniques ignored about collision with other objects.  

In Robotic grasping of unknown objects: a knowledge based approach [7] of a system 

was developed in which a 3D model of the object was generated by rotating the object 

under a laser range scanner. Then this model was used for grasping. 

Some of the other grasping techniques were proposed by Wang et al, [5] where the 

unknown object was grasped using 3D model reconstruction. 
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In this algorithm, following issues were considered to make a robotic multi fingered 

hand grasp of an unknown object. (a) features of the grasped object (b) grasping 

configuration of the hand (c) contact locations and contact normal vectors between 

the hand and the object (d) appropriate finger forces exerted on the grasped object to 

balance external forces acting on the object , which are subject to friction cone 

constraints. 

Bone et al [6] suggested an approach which used the online silhouette and structured 

light 3D object modeling with online grasp planning. In this approach, a single wrist 

mounted video camera is moved around the stationary object to obtain images from 

multiple viewpoints. Object silhouettes are extracted from these images and used to 

form a 3D solid model of the object. To refine the model, the object’s top surface is 

modeled by scanning with a line laser while recording images. The laser line in each 

image is used to form a 3D surface model that is combined with the silhouette result.  

Then the robot generates a force closure grasp and outputs the required gripper 

position and orientation for grasping the object. 
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Chapter 3 

Factors involved in Grasping Technique 

3.1 Introduction 

The following chapter gives a bird’s eye view of the usual factors involved in the 

grasping techniques.  

3.2 Object Classification 

The objects can be classified based on various ways. Based on deformability of the 

object, it can be classified. Using a balloon filled with different volumes of water 

levels, we can change the deformability. Later, based on flexible material also the 

objects can be defined. In flexible type materials, the objects having linear shape 

geometry are cable, wire, etc .Again in flexible type materials, the objects having 

sheet shape geometry are fabric/Garment, complex composite material, sheet metal, 

leather etc. Finally, flexible type materials having geometry of three dimensional 

shapes are dough, soft tissue etc .The objects can also be classified based on length, 

width and breadth. It can also be classified based on line of symmetry. Two other 

ways of classifying objects are based on depression - projection of objects and finally 

on complexity level of object’s shape. 

3.3 Factors considered while grasping 

Is the object deformable and to what extent? Whether the object is heavy or light?  If 

the object is heavy and the robot is unable to grasp, then we have to consider whether 

to pull or push the object to achieve the task on hand. 

One of the main factor to be considered for grasping of objects is which state of 

matter the object is made of. Later the viscosity of the object also has to be 
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considered. It is also useful to consider which points of the object are near to the arm. 

Is there any manufacture specific grip on the object. Example: a dumbbell is shaped in 

a certain way for easier grasping, if instead a cylindrical shaped smooth heavyweight 

object is used then two hands are required to grasp it. Is there any user specified 

constraints while grasping objects. Example: a bowl containing sauce can never be 

tilted while grasping object. 

3.4 Forces present on a object 

The two forces which are present on the object are the contact force and the frictional 

force. The contact force is perpendicular to the surface of contact and the frictional 

force is parallel to the surface of contact. The contact force is important because 

more the Surface area of the robot, more is the application area of force. So Kids 

always try to use  more surface area for lifting as they  do not have the dexterity or 

strength to apply more force. We as humans sometimes create object which 

facilitates grip, like a difference between a coffee cup and drinking water cup. The 

frictional force is important because we apply different amount of force to grasp the 

same object depending on which surface it is in contact with. That is it depends on 

the friction between the two objects. 

 According to Newton's first law, if the sum of forces acting on a particle is zero then 

and only then the particle remains unaccelerated. i.e. the particle is at rest or at 

constant velocity . So the force to apply on the object to grasp it also depends on this. 

Therefore, an accelerated object requires more amount of force to be applied to grasp 

than the one at rest .Note that Newton’s law is valid only for inertial reference frame 

and earth is not strictly an inertial reference frame. 

Considering the force present on the object, if we determine grasping of object the 

focus will be on mainly 2 things – Firstly, to get more surface area of the 

manipulator’s palm over the object(for more force application ).Secondly, to 

determine the location where the least amount of force has to be applied on the 

object. 
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Chapter 4 

Symmetry Height Accumulated Features 

4.1 Overview of SHAF 

Overview of SHAF is given in the following section, to get a general idea about the 

algorithm which is used in experimenting. The following flowchart provides an 

overview of the breakdown of SHAF.  

                             Fig.3.Breaking down SHAF:Flowchart  

SHAF also known as symmetry height accumulated features is a shape based method 

which helps in grasping unknown objects from a cluttered environment.The method 

Point Cloud of objects  received 

Heightgrid Created 

For each Heightgrid a featurevector 

is created. 

Using SVM with an existing Model 

file, it is predicted if the center of 

the square is a good grasping point. 

For good Grasping point the 

coordinate is noted . 
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uses a point cloud from a single depth camera. The idea behind this method is to 

define small regions and compare average heights using discretized point cloud data. 

The height difference gives an abstraction of the objects shape that enables training of 

a classifier (supervised learning) .It determine if grasping will succeed. 

In this method, the point cloud is discretized that is a height grid is created where each 

cell saves the highest z value with corresponding x and y value. One height 

accumulated feature is defined as the two, three or four region on the height grid 

together with a weighting factor for each region. 

For a feature which has two overlapping regions, the feature value is calculated in a 

way that the feature value is zero if both regions have same average height, bigger 

than zero if the region inside is higher and smaller than zero if the smaller region has 

in average a smaller height. 

 Around 35000 features were created automatically using the above constraint by 

David Fischinger and the team at Vienna university of Technology (Austria) .Also 

500 features was created manually. It was noted that the same feature value can be 

achieved if the centre region height exceeded both regions height by x or if the centre 

region and one side region have equal heights and exceeds the second side region by 

2x.To remove this ambiguity, symmetry features were introduced. It calculated the 

minimum distance of accumulated heights between center regions and side regions, if 

the centre was in average the highest and (–1) otherwise. 

Now to perform the actual grasp, initially a learning process is provided for grasping. 

Then secondly, a weighting method is used to achieve more robust grasp. Then 

thirdly, the SHAF method is used to explore the whole grasp space. Finally grasping 

point and path planning is done to achieve the required grasp. 

For learning purpose, 700 point clouds of a variety of objects were gathered. In which 

450 times the most promising grasp of the scene was labeled and 250 times scenes 

were labeled with positions where no grasp success was possible. Then using methods 

like scaling, mirroring and inverting, around 8300 positive and 12,800 negative 

examples were generated. For all these examples, SHAF (symmetry height 

accumulated features) were calculated and a SVM classifier with radial basis function 

kernel was trained. 

As discussed above, a weighting method is used to obtain a more robust grasp. In a 

real life scene, usually the trained grasp classifier does not return a single grasp point 
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but instead returns a bunch of grasp points in a particular region. Generally, a point 

centered at such a grasp region is a good choice for a stable grasp. Each point 

classified as good grasping position is evaluated by 

, � − ∑ �� � � , . ,� ,�
, €�  

Where r,c indicate the actual row and column of the grasp location in the grid. I is the 

indicator function for a grasp point. �� � � , − {  � �  �  � �� � , �   �  �  � �� � ,  

Thirdly, to explore the whole grasp space, we rotate the point cloud and detect the 

best grasp on the newly calculated height grid and transform the coordinates back to 

the original coordinate frame. 

Finally, using moveit, package path planning and the task of grasping is performed. 

4.2 Implementation of SHAF 

4.2.1 Roadmap to implementation of SHAF 
 
Initially, worked on the old software of jaco robot which had no proper 

documentation .It was also time-consuming to run the software.  

A software later had been developed by a group of aalto students [25] to access jaco 

arm using moveit and ROS hydro. Modified version of Calibration code written from 

ROS Fuerte to ROS Hydro was developed by an aalto phd student [Rajkumar 

Muthuswamy]. 

 

The shaf code [26] first provided was written in Ros fuerte and was written for PR2 

robot.The packages were rosbuild and used outdated versions of pcl, openrave. The 

new code of shaf was requested from the author (David Fischinger) and the author 

provided with SHAF code using Ros hydro for kuka arm and michelangelo hand.  

4.2.2 Implementation of SHAF 

For the implementation, it has to be noted that Explanation and source code of 

symmetry height accumulated features (SHAF) was provided by David Fischinger 

from Vienna university of technology, Austria. The code used kuka arm with ROS 
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Hydro and Openrave interface. As we were using kinova jaco arm in which moveit 

interface has been implemented, the code had to be modified.  

 

                          Fig.4. Flow chart of implementation of SHAF 

Primary implementation of SHAF Packages 

The above flowchart provides the implementation of SHAF. 

Trigger:It publishes a  point cloud for use in grasp detection. 

Point_cloud_edit: It filters, transforms and cuts the point cloud to make it usable (in 

robot coordinate system). 

Pc_to_iv: It transforms the ROS pointcloud(PointCloud2) into an inventor file(for use 

in openrave). 

Calc_grasppoints_svm: It calculates the grasp using svm for learning. 

Manage_grasphypothesis: It collects possible grasp points and selects the best one 

for execution. 

Grasping_unknown_objects: It provides the simulation in openrave and performs 

the fine calculation of grasps. 

Openni_launch 

Trigger Package 

point_cloud_edit 

pc_to_iv 

calc_grasppoints_svm 

manage_grasphypothesis 

grasping_unknown_objects 

lwr_control 

michelango_hand_rospkg 
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Lwr_control: It is an interface to kuka arm(FRI library from Stanford is used to 

communicate with the kuka arm). 

Michelango_hand_rospkg: The given Package controls the manipulator. 

.  

 

 

 

                           Fig.5.Modified flow chart of implementation of SHAF 

Modified implementation of SHAF Packages 

The above flowchart provides the modified implementation of SHAF. 

Trigger: It publishes a point cloud for use in grasp detection. 

Point_cloud_edit: It filters, transforms and cuts the point cloud to make it usable (in 

robot coordinate system). 

Calc_grasppoints_svm Package:The given Package is calculating grasp points from 

a point cloud. In the first step, the point cloud is read from a ROS topic and a 

heightsgrid created. For each 14x14 square of the heightsgrid a featurevector is 

created. Using SVM with an existing model file, it is predicted that the centre of the 

openni_launch 

Trigger Package 

point_cloud_edit Package 

calc_grasppoints_svm 

Package 

Run the launch file in 

jaco_moveit_config  known 

as youbot_kinect.launch 

Run the mrs_jaco_grasp 

package 
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square is a good grasping point. For good grasping points the coordinates are 

published. The approach vector for all the algorithms is by default taken as top down. 

youbot_kinect launch file :It publishes a static transform publisher from 

camera_depth_optical_frame to root of the jaco robot. 

mrs_jaco_grasp: In the given package manipulator moves 25cm above object, turns 

the wrist and moves to the object and closes the gripper and moves 25cm away from 

the object and goes to a random position in an assigned area and opens the gripper. 
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Chapter 5 

Rectangle Representation 

5.1 Overview of Rectangle Representation 

Overview of Rectangle Representation is given in the following section, to get a 

general idea about the algorithm. Given an image and a depth map, the method 

determines the oriented rectangle where grasp is possible. It also provides the 

grasping opening width. 

This algorithm takes an image with 4 values at each pixel namely RGBD and 

produces an optimal grasping rectangle with the 3D location, the 3D orientation and 

the distance between the two fingers. The final result that is the grasping rectangle is 

obtained through a two step process. In the preliminary step, few features are used to 

compute a score function which assigns real number to a rectangle based on its 

features. Then to obtain a rectangle with the highest score in the image, we use some 

more sophisticated features to refine the search. 

We use supervised learning approach, to learn the score function. As there can be 

more than one grasp in an object some grasps tend to be desirable. In the supervised 

learning of a screwdriver, the handle is preferred due to its size than the shaft. During 

training, the good grasps are ranked rather than classified as good ones. 

To efficiently learn the representation, first, we describe a certain class of features that 

makes the inference in the learning algorithm fast. Second, we describe certain 

advanced features that are significantly more accurate but take more time to compute. 

Each step is learned using svm ranking algorithm. With the top results from the first 

step, we run a second classifier that is more accurate in order to find the top choice. 

In the present setting, the robot takes an image along with a point cloud. The 

representation used for learning the grasping point has a sufficient seven dimensional 

statistics (3D location, 3D orientation and distance between fingers). 
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  5.2 Implementation of Rectangle Representation 

For the implementation, the authors provided the code [26] in which the PR2 robot 

was used. The code was written in ROS Fuerte and also used openrave interface. The 

code was modified in ROS Hydro for kinova jaco arm and also using moveit 

interface. The implementation worked only for a certain distance when the kinect was 

kept in the top down view.  After certain distance it stopped detecting the grasping 

rectangles in the object as the view of the kinect included much larger area. To 

perform the grasping the kinect has to be at a certain distance above the robot arm so 

that it won't hit the arm. Hence the experiments were not able to be performed. But 

keeping the kinect at a lower distance, the grasping rectangles of the object were 

obtained. As shown in Fig.6 and Fig.7 the grasping rectangle gives an idea of how the 

grasps would look like. 

 

Fig.6.Top Ten Grasping Rectangles for toy train 
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                          Fig.7.Top Grasping Rectangle for toy train 
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                    Fig.8.Flow chart of the implementation of Rectangle representation    

Implementation of Rectangle Representation Packages 

The above flowchart provides the implementation of Rectangle representation. 

openni_launch 

run the point_cloud_util package 

run rqt_reconfigure for launching 

the dynamic reconfigure 

press write_next box for saving the 

images 

save the background image  

create a rank folder 

place the object where grasping 

has to be performed 

Again run the point_cloud_util 

package 

Again run rqt_reconfigure for 

launching the dynamic reconfigure 

The rank folder contains the 

images with the grasped rectangles 

run grasp_rect package 

run the youbot_kinect launch file 

in  jaco_moveitconfig package 

run mrs_jaco_grasp  package 
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Note: The general modifications of using kinova jaco instead of PR2 robot has not 

been elaborated as the algorithm has not been used in the experiments. 

 Rqt_reconfigure Package: The Package is run for launching the dynamic 

reconfigure. 

 Point_cloud_utils Package:The package opens a dialog box with a write_next box. 

When the user presses the write_next box, the image is saved in /tmp folder of the 

system. To make the algorithm work, the image of the scene without the object is 

taken. Then the required object is placed on the scene and a /tmp/rank folder is 

created manually. The Package runs again and saves the image of the object with the 

calculated grasped rectangles. 

 Grasp_rect Package:   It transforms a point from \"camera_depth_optical_frame\" 

to \"root\".That is it receives the kinect coordinates of the top grasped rectangle and 

converts it to jaco root coordinates. 

youbot_kinect launch file :The file publishes a static transform publisher from 

camera_depth_optical_frame to root of the jaco robot. 

mrs_jaco_grasp: In the given package the manipulator moves 25cm above the 

object, turns the wrist and moves to the object and closes the gripper and moves 25cm 

away from the object and goes to a random position in an assigned area and opens the 

gripper. 
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Chapter 6 

Principal Component Analysis 

6.1 Overview of Principal Component Analysis 

The grasping approach is based on using PCA to find a vector from point cloud data 

for grasping .PCA also known as principal component analysis is a simple approach 

which selects the finger distance and rotation of the robot hand by computing a vector 

at a narrow part of the unknown object with principal component analysis. 

In the PCA based method following steps are performed 

1) projects the point cloud PC1 of the target object hypothesis onto a plane, which is 

parallel to the wrist of the down pointing robot hand. 

2)makes the point density of the projected point cloud uniform to get the point cloud 

PC2 

3)projects the centroid of PC2 towards PC1 along the wrist-plane normal, by the 

distance between the centroids of  PC1 and PC2 to get the grasp centroid. 

 

Then the approach computes the PCA decomposition of PC2. 

In PCA, the first eigenvector aligns to the largest variance in the point cloud data and 

the second eigenvector is orthogonal to the first. Example, for a long object, the first 

eigenvector can be aligned along the length of the object and the second eigenvector 

along the width of the object. Then it uses the second eigenvector to get a narrow 

grasp. 

In more detail, the approach projects two points in opposite directions from the grasp 

centroid, along the computed second eigenvector. Finally the approach selects the two 

points from PC1 which are closest to the projected points as the two grasp contact 

points. In addition , the approach checks whether some part of another object 

hypothesis blocks the direct path up from the two grasp contact points, and if so, sets 

the probability of a successful grasp to zero. 
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   6.2 Implementation of Principal Component Analysis 

The implementation for PCA based approach was already done for the old driver of 

jaco arm and ROS Fuerte was used. It was modified to the new driver of the jaco arm 

which used moveit package and also modified to ROS Hydro. 

 

                                   Fig.9.Flow chart of the implementation of PCA 

The above flowchart provides the implementation of PCA. 

Trigger: It publishes a point cloud for use in grasp detection. 

 Point_cloud_edit: It filters, transforms and cuts the point cloud to make it usable (in 

robot coordinate system). 

 Pca_grasping Package :In pca_grasping Package, It creates a planar coefficient 

model and a projection onto the wrist plane. It also Creates KD-tree for minimum 

distance computation. In this package, it 

 Project’s points onto a plane that goes through robot hand wrist.  (Note that the 

plane is in world coordinates).Then it compute the first two dominating vectors using 

PCA. Later it uses the narrower vector for choosing the grasp points 

openni_launch 

run the trigger Package 

run the Point_cloud_edit 

package 

run the pca_grasping package 

run the youbot_kinect launch file 

in jaco_moveitconfig package 

run mrs_jaco_grasp package 
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youbot_kinect launch file :The file publishes a static transform publisher from 

camera_depth_optical_frame to root of the jaco robot. 

mrs_jaco_grasp: In the given package the manipulator moves 25cm above the object 

, turns the wrist and moves to the object and closes the gripper and moves 25cm away 

from the object and goes to a random position in an assigned area and opens the 

gripper. 
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Chapter 7 

Experiments & Results 

7.1 Experimental setup- Hardware 

 

 

Fig.10.Experimental Setup  

The Hardware used during the experiments was the kinova jaco robotic arm[7.1] for 

manipulating objects and the kinect [7.2] for visually sensing the objects. 

7.1.1 Kinova Jaco Arm 

Kinova started primarily for creating the best assistive robot for upper body disabled 

people. They created a Jaco arm which is a device that enables the user to interact 

efficiently with the environment. It is a light weight robotic manipulator with 6 

degrees of freedom. The Jaco arm weighs 5.6 kg and can reach approximately 90cm 

in all directions and lift objects of up to 1.5kg. Its main structure is entirely made of 
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carbon fibre with an aluminum extruded support that can be affixed to almost any 

surface. The maximum linear arm speed of the arm is 15cm/sec. The gripper of the 

robotic arm has three under-actuated fingers that can be individually controlled. 

Jaco can be controlled with a 3 axis, 7 button joystick or with a computer. The 

control of the arm is both Cartesian  and angular.In the case of Cartesian user only 

controls the movements of and around the hand. In the case of angular it consists of 

moving the robotic arm joint by joint by specifying angles to each of them. It allows 

three different modes: translation, rotation and grip. 

Jaco has two default factory setting positions called the home and retract positions. 

Home refers to the position of the arm when it is ready to use and retract refers to the 

position when it is not in use. 

Three fingered kinova jaco arm can apply a maximum force of 40N in an object and it 

can hold maximum a cylindrical object of diameter 10cm. 

7.1.2 Kinect 

Kinect is a peripheral containing suite of sensors created primarily for Microsoft 

xbox 360 to provide a controller free gaming and entertainment experience. It uses a 

infrared projector,camera and a special microchip to track the movement of objects 

in three dimensions.The depth sensor of the kinect consists of an infrared laser 

projector combined with a monochrome CMOS sensor, which captures video data in 

3D under any ambient light conditions.The sensing range of the depth sensor is 

adjustable, and Kinect software is capable of automatically calibrating the sensor 

based on physical environment.  

The information gathered about kinect is only based on reverse engineering as kinect 

is a closed product. Reverse engineering has determined that the Kinect's various 

sensors output video at a frame rate of ~9 Hz to 30 Hz depending on resolution. The 

default RGB video stream uses 8-bit VGA resolution (640 × 480 pixels) with a Bayer 

color filter, but the hardware is capable of resolutions up to 1280x1024 (at a lower 

frame rate) and other color formats such as UYVY. The monochrome depth sensing 

video stream is in VGA resolution (640 × 480 pixels) with 11-bit depth, which 

provides 2,048 levels of sensitivity. The Kinect can also stream the view from its IR 

camera directly (i.e.: before it has been converted into a depth map) as 640x480 

video, or 1280x1024 at a lower frame rate. The Kinect sensor has a practical ranging 

http://en.wikipedia.org/wiki/Frame_rate
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Bayer_filter
http://en.wikipedia.org/wiki/Bayer_filter
http://en.wikipedia.org/wiki/YUV
http://en.wikipedia.org/wiki/Color_depth
http://en.wikipedia.org/wiki/Ranging
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limit of 1.2–3.5 m (3.9–11.5 ft) distance when used with the Xbox software. The area 

required to play Kinect is roughly 6 m
2
, although the sensor can maintain tracking 

through an extended range of approximately 0.7–6 m (2.3–19.7 ft). The sensor has an 

angular field of view of 57° horizontally and 43° vertically, while the motorized 

pivot is capable of tilting the sensor up to 27° either up or down. The horizontal field 

of the Kinect sensor at the minimum viewing distance of ~0.8 m (2.6 ft) is therefore 

~87 cm (34 in), and the vertical field is ~63 cm (25 in), resulting in a resolution of 

just over 1.3 mm (0.051 in) per pixel. The microphone array features four 

microphone capsules and operates with each channel processing 16-bit audio at a 

sampling rate of 16 kHz. 

  

7.2 Overview of the Experiments   

The calibration is performed between the jaco robotic arm and the kinect, so that 

vision and arm can coordinate with each other. The placement of arm with respect to 

vision also plays an important role. The arm’s reachability and kinect’s vision affects 

the grasping process. So, the result of these algorithms may vary for different 

placement of the kinect and jaco arm. The Calibration is tested to maintain the 

accuracy for grasping process. If there is an offset in the calibration, then the offset is 

added to the algorithms to maintain the accuracy. 

Each of the algorithm is implemented as briefed in the respective chapter[4][5][6]. 

Later, Experiments are performed using each algorithm on each object separately. 

About 30 objects were marked for the experiments which included soft toys and other 

general toys of various shapes and sizes which can be held by a hand. Most of the 

Objects used during the experiments are displayed in the figure below. 

 

http://en.wikipedia.org/wiki/Angle_of_view
http://en.wikipedia.org/wiki/Degree_(angle)
http://en.wikipedia.org/wiki/Tilt_(camera)
http://en.wikipedia.org/wiki/Audio_bit_depth
http://en.wikipedia.org/wiki/Sampling_rate
http://en.wikipedia.org/wiki/Kilohertz
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                                           Fig.11. Objects used in Experiments 

Each of the object was marked as success or failure for each of the attempts of the 

three algorithms. Two attempts were performed on each of the algorithms. For each 

attempt of each algorithm, the percentage of success rate was calculated. Later taking 

the percentage of success rate as the observed proportion and keeping the confidence 

level as 95%, the confidence interval was calculated for each of the algorithm. Later 

the results were compared and a conclusion was reached.   

7.2.1 Constraints while Experimenting with SHAF 

algorithm 

Some of the constraints observed while performing experiments with the SHAF 

algorithm are: 

1. While closing the gripper arm loses the object 

2. Doesn’t pick up the object while grasping 

3.pushes the object while moving to the required position 

4. Throws the object during acceleration to an out of workspace area 

5. The fingers of the arm is not able to grasp the Object 

6. pushes the object while closing the gripper 
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The below figures show the constraints observed in action. 

 

 

           Fig.12.Jaco grasping truck 

 

  Fig.13.Jaco grasping a four wheeler 
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                                  Fig.14.Jaco grasping a toy plane 

 

 

                                    Fig.15.Jaco grasping a toy car 
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                                  Fig.16.Jaco grasping an empty  cardboard box 

 

                                             Fig.17.Jaco grasping a box 
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7.2.2 Constraints while Experimenting with Principal 

Component analysis algorithm 

 

1. The jaco arm doesn’t reach the object’s height. 

2. Object is crashed during the Grasping process. 

3. Pushes the object while reaching to the grasp location. 

4. Reaches the correct grasping position but moves the object while closing the 

fingers. 

The below figures show the constraints observed in action. 

 

 

                                       Fig.18.Jaco grasping a toy plane 
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                                           Fig.19.Jaco grasping a bottle 

 

 

 

                                   Fig.20.Jaco grasping a block of lego 
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                                         Fig.21.Jaco grasping a ball 

 

 

                                      Fig.22.Jaco grasping a soft toy train 
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The above constraints observed in each of the algorithms also prove the importance of 

sense of touch or a need for a tactile sensor. 

7.3 Results 

Observing that there was higher probability of grasping for soft toys, the result of the 

algorithms was calculated separately for soft toys. The final results are displayed in 

the figure shown below:  

 

                     Graph 1. Calculated probability of each of the algorithms 

 ATTEMPT 1  ATTEMPT 2 MEAN 

SHAF ALGORITHM 23.30% 30% 26.65% 

PCA ALGORITHM        20% 33.30% 26.65% 

SHAF (SOFT TOYS) 28.50% 57.10% 42.80% 

PCA (SOFT TOYS) 71.40% 100% 85.70% 

                Table 1. Calculated probability of each of the algorithms 

The Experiments were performed twice on each of the algorithms and the probability 

was calculated. Later the mean probabilities of these two attempts were calculated on 

each of the algorithm. Interestingly, the mean probabilities of SHAF and PCA were 

same. When the probabilities of soft toys for these algorithms were taken separately, 

then it was noted that their probabilities were higher comparatively. The mean 
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probability of PCA algorithm for soft toy was comparatively much higher than the 

mean probability of SHAF algorithm for soft toys. 

Later, taking confidence level as 95%, the population proportion was calculated for 

each of the algorithms. For qualitative variables, the population proportion is a 

parameter of interest. Also it was calculated for soft toys separately for both the 

attempts. Then mean of this population proportion was calculated and displayed in the 

below figure:  

 

 

 

 

Graph 2. Calculated population proportion of each of the algorithms for confidence 

level 95% 

 

 POPULATION PROPORTION  

SHAF ALGORITHM 13.60 – 38.43  

PCA ALGORITHM 16.44 – 34.31  

SHAF(soft toys) 20.40 - 62.03  

PCA(soft toys) 37.90 – 100.0  

Table 2. Calculated population proportion of each of the algorithms for confidence 

level 95% 

0 20 40 60 80 100 120 140

SHAF

PCA

SHAF(soft toy)

PCA (soft toy)

proportion
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The results show that there is not much difference between the population proportion 

intervals of PCA and SHAF algorithm. It seems that the result differs when only soft 

toys are taken and the population proportion interval of PCA algorithm is much 

higher compared to SHAF algorithm. 

 

 

7.4 Analyzing the results 

The results show that the probabilities of both the algorithms doesn’t differ much 

confirming on the notion discussed in the beginning that without tactile sensors the 

grasping problem is like a claw arcade game played at fairs. The result however 

seemed to differ for soft toys with PCA having an advantage over SHAF. One of the 

reasons may be the fact that most soft toys have even height rather than uneven 

heights and PCA algorithm seemed to have advantage over this as SHAF algorithm is 

calculated based on heights. 
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Chapter 8 

Conclusion 

 

This work has studied Visual Grasping over a range of Unknown Objects. The 

experimental conclusion is that the probability of both the algorithm SHAF and PCA 

doesn’t differ much. It confirms the notion that without tactile sensor the grasping 

problem is like a claw arcade game played at fairs. The results have shown that force 

play a huge role in the grasping problem. It will be a good idea to try the same 

algorithms considering tactile sensors and force control robotic arms like the new 

kinova’s robotic arm jaco-2.Initially the force applied for lifting is more than the force 

applied on the fingers for grasping. After the lifting process is over the force applied 

shifts to the fingers and the fingers apply a constant force for grasping objects. As 

discussed previously, through vision we can consider the material of the object (by 

knowing the color and texture of the object) for a fair guess of the mass of the object 

.Through vision we can also consider the placement of the object for a fair guess of  

the frictional force present between the object and it’s contact surface. Considering 

the above factors will give a fair idea about the force to be applied for lifting the 

object .Later using tactile sensors , the real mass can be calculated and a constant 

force be applied. The way fingers are placed while grasping is also extremely 

important. More surface area of hand over the object more the force applied on the 

object. It will be good to consider the above factor for planning grasping. 

  Relevance of the proposed design can be tried on future grasping related techniques.
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