Convolutional Neural Networks for Named
Entity Recognition in Images of
Documents

Jan van de Kerkhof

School of Science
Master’s Programme in ICT Innovation

Thesis submitted for examination for the degree of Master of
Science in Technology.

Stockholm 25.8.2016

Thesis supervisor:

Prof. Juha Karhunen

Thesis advisors:

M. Sc. Roelof Pieters

Prof. Tapani Raiko

A’, Aalto University

AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF SCIENCE MASTER’S THESIS

Author: Jan van de Kerkhof

Title: Convolutional Neural Networks for Named Entity Recognition in Images
of Documents

Date: 25.8.2016 Language: English Number of pages: 0+45

Department of Computer Science and Engineering

Professorship: Deep Learning

Supervisor: Prof. Juha Karhunen

Advisors: M. Sc. Roelof Pieters, Prof. Tapani Raiko

This work researches named entity recognition (NER) with respect to images
of documents with a domain-specific layout, by means of Convolutional Neural
Networks (CNNs). Examples of such documents are receipts, invoices, forms
and scientific papers, the latter of which are used in this work. An NER task is
first performed statically, where a static number of entity classes is extracted per
document. Networks based on the deep VGG-16 network are used for this task.
Here, experimental evaluation shows that framing the task as a classification task,
where the network classifies each bounding box coordinate separately, leads to
the best network performance. Also, a multi-headed architecture is introduced,
where the network has an independent fully-connected classification head per entity.
VGG-16 achieves better performance with the multi-headed architecture than
with its default, single-headed architecture. Additionally, it is shown that transfer
learning does not improve performance of these networks. Analysis suggests that
the networks trained for the static NER task learn to recognise document templates,
rather than the entities themselves, and therefore do not generalize well to new,
unseen templates.

For a dynamic NER task, where the type and number of entity classes vary per
document, experimental evaluation shows that, on large entities in the document,
the Faster R-CNN object detection framework achieves comparable performance
to the networks trained on the static task. Analysis suggests that Faster R-CNN
generalizes better to new templates than the networks trained for the static task, as
Faster R-CNN is trained on local features rather than the full document template.
Finally, analysis shows that Faster R-CNN performs poorly on small entities in
the image and suggestions are made to improve its performance.

Keywords: Named Entity Recognition, Convolutional Neural Networks, Faster
R-CNN, Images, Documents

Acknowledgements

I would like to thank Roelof Pieters for his expert supervision and help in finding
a great interning position, as well as Erik Rehn and David Hallvig at Dooer AB
for their supervision and for providing me with the necessary resources to complete
this project successfully, and Sam Nurmi for all the good times there. I would like
to thank Andrej Karpathy and Nando de Freitas for their amazing lectures, as half
a year ago I knew nothing about Deep Learning. Also, I would like to thank Ross
B. Girshick for making his Faster R-CNN code available and would like to thank
Francois Chollet and everybody else that contributed to the Keras Deep Learning
library for their awesome code. Finally, I would like to thank Marc Romeyn for
convincing me to pursue Deep Learning and for the endless hours of inspiring and at
times downright silly back and forth that contributed to making this work what it is.

Contents

Abstract
Acknowledgements
Contents
1 Introduction
2 Ethics and sustainability
3 Background
3.1 Backpropagation
3.2 Convolutional neural networks
3.3 Rectified Linear Units
3.4 Max-pooling
3.5 Dropout
3.6 Classification
3.7 Image classification oo oo
3.8 Object detection
3.9 Document classification o000
4 Network Architectures for NER
4.1 Static number of classes
4.1.1 Transferring the features from VGG
4.1.2 Regression versus softmax
4.1.3 Fully connected heads
4.1.4 Layers, filters and image resolution
4.2 Dynamic classeso
5 Dataset
5.1 Data augmentation Lo Lo
5.2 Normalization L
5.3 Filtering the dataset for static classes
6 Experiments and results

6.1 Metrics for evaluation
6.2 Static classes

6.3

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Number and arrangement of layers
Network heads
Transfer learning L.
Resolution of the input image
Analysis of learned features through saliency maps

Dynamic classes - Faster R-CNN

6.3.1

Interpreting the Faster R-CNN predictions

10
11
12
13
14
14
15
16
17

19
19
19
20
20
21
22

23
23
25
25

7 Discussion

8 Conclusions

9 Future work

36

38

39

1 Introduction

The area of named entity recognition (NER) is a region of natural language processing
that involves extracting useful information from free text and dividing this information
into several predefined categories, such as Persons, Organisations, Locations and
Values. NER has traditionally been performed solely on a text basis, where language
models are used to label entities. These are probabilistic models that are trained on
hand-crafted features or rules and are currently the state of the art in the MUC-7
and CoNLL-2003 large-scale NER challenges [20, 5].

Recently, Recurrent Neural Networks (RNNs) have reported near state-of-the-art
results on an NER dataset, showing that artificial neural networks can also be
used for NER [17]. Moreover, Convolutional Neural Networks (CNNs), or convnets,
have been shown able to understand text from nothing more than character-level
encodings of sentences, obsoleting the need for handcrafted features like the ones
used in traditional NER systems [32]. Convnets, in turn, have been dominating
image classification and object detection for the last couple of years, breaking record
after record in several large-scale image classification and object detection challenges
[19, 27, 25, 8]. Convnets are big, multi-layered artificial neural networks that have
been shown able to recognise and extract high level object features from images,
when trained properly. Furthermore, convnets have been successful at classifying a
wide range of documents [11], showing that convnets can learn so-called "landmark"
features that define documents, like headings, salutations and addresses [28]. Also,
it has been shown by Zhu et al. that, in the context of expense reimbursement for
receipts and invoices, hand-crafted, layout based features can be leveraged efficiently
to extract named regions by means of a probabilistic model [33]. While the layout
features used in their work are not completely independent from the textual ones, this
research shows that a lot of valuable information about the entities in a document
can be extracted from the layout itself.

These findings give thought to the possibility of using convnets purely on the
pixel representation of documents with a domain-specific layout to do named entity
recognition. Such documents are receipts, invoices, forms and scientific documents
and an NER task could consist of extracting titles, authors, addresses, amounts,
etc., from these documents. Since convnets have been able to understand text solely
from the character representations of sentences, they may just as easily do so based
on the pixel representation of the document itself, as shown from their ability to
learn high-level document features. More so, in documents with a domain-specific
layout, we do not have to depend solely on textual features to do NER. Here, the
network may be able to recognise entities based on a combination of textual features
(characters and words) and layout features (spacing, alignment, font size, boldness).
Furthermore, a small network might be able to perform just as well as the very deep
networks that are used for image classification, as the network might have to learn
significantly less features than networks used for 1000-way image classification. Also,
the high level features that the network learns might be very different from those used
for image classification, as the document domain is inherently different from that
of image classification. In this work, convolutional neural networks are researched

with regards to an NER task on document images. If a convnet can be successfully
trained to perform this task visually, this would obsolete the need for complex NER
systems like the ones developed by Zhu et al. [33], that depend on hand-crafted
features for entity recognition. An automated NER system for documents with a
domain-specific layout could then be developed simply by training a convnet on
ample annotated data samples. This would facilitate the development of such systems
and such an approach would easily scale to different types of documents, since the
training procedure is similar for any type of document. Specifically, this work tries
to answer the following research questions:

e How effective are convolutional neural networks in extracting a static set of
names entities from images of textual documents, and what is the best network
architecture for this task?

e Does fine-tuning a network initialized with learned features from an image
classification task (ImageNet), as opposed to training the network from scratch,
lead to better performance of the network?

e How can the dynamic object detection framework Faster R-CNN (Regions with
convolutional features) be applied to named entity recognition on documents
and how well does it perform compared to static CNNs?

e What is the difference between the features learned by the static networks and
those learned by a Faster R-CNN network and what is the practical applicability
of both methods?

The remainder of this work is as follows. First, section 2 provides a discussion
of the ethics and sustainability of this works, after which section 3 provides a small
overview of artificial neural networks and the history of convnets. Then, section 4
discusses the different network architectures used in the experiments and section
5 explains the dataset that the networks are trained on and the limitations of it.
Section 6 discusses the experiments and the results in detail after which section 7
discusses the findings from both approaches and provides a comparison between
them. Then, conclusions are drawn with regards to the research questions and the
practical applicability of both approaches in section 8 and finally some suggestions
for future work are given in section 9.

2 Ethics and sustainability

This work adds to the development of efficient entity recognition systems, while
simultaneously adding to the research in computer vision and deep learning.

Firstly, improving the efficiency with which companies and individuals are able
to perform entity recognition adds to the white collar automation that society has
been seeing in the past decades. Improvements in entity recognition will improve the
processing speed for documents for many different areas of industry, amongst which
are accounting, law and finance. On the one side, this will clear up resources that could
be invested elsewhere, making the industry more efficient. This increase in efficiency
will hopefully lead to an increase in efficiency of society as a whole, as less resources
will be required for many tasks. On the other side, increased automation might result
in job losses for people who make a living out of annotating and processing documents.
Whether this kind of automation is unethical, is something that is still a subject of
discussion, and cases can be made for and against, as addressed by M. Ford in his
book Rise of the Robots [6]. A supporting case is that it is a natural way of society
to progress, improving our economic efficiency and developing a society in which
life can be supported comfortably, without requiring much human effort, allowing
human kind to prosper and focus on scientific progress. A case against is that on the
short term, automating away white collar jobs will make the economy implode, as
unemployment soars and the working class will not have enough buying power to
sustain the economy. There are, however, measures to counter this implosion effect,
such as a basic income. However, the discussion about this subject remains open.

Secondly, contributing to the research in computer vision and deep learning will
contribute to developments in the field of Machine Learning and Artificial Intelligence
(AI). An increase in Al can lead to many benefits in society, with many different
applications for computer vision alone. However, there is much discussion about
whether an increase in Al is good for humanity. Here, there is a fear that once
strong Al is developed (an Al that is equally smart as or smarter than humans), it
might obsolete human participation in society or destroy human kind overall. The
technologies used in this work, however, are considered as narrow Al, and are very
limited in their capabilities. They can only be used for good, or evil, once they are
combined within a larger system, the impact of which is completely dependent on
the system itself and the intentions of the creators, and the discussion of which is a
different discussion altogether.

3 Background

In the last decade there have been many advances in the field of image classification
and object detection in images, most of which can be attributed to research into
convolutional neural networks (CNNs), or convnets. Convnets are a type of artificial
neural network. Artificial neural networks, which will be referred to as neural networks
from now on, are pattern recognition and classification tools that are characterised
by their ability to learn from data and adapt to new training data. Neural networks
are inspired by biology [15] and consist of one or multiple layers of artificial neurons
that take real-valued numbers as input and produce real-valued numbers as output.
An artificial neuron, as illustrated in figure 1a, is a unit that takes multiple inputs
that are fed in through weighted connection. The neuron then outputs a value, or
"fires", based on an activation function of the sum of the inputs multiplied by their
respective weights.

Figure 1: Neural network fundamentals

X, W,
> hyp(x) iy
X3 W, .
W,
b
+1

(a) An artificial neuron [1]

3

(b) Sigmoid activation function [1]

In figure la, 1 23 are the inputs into the neuron and w; 23 are the weights with
which they are multiplied. The +1 input symbolises the bias node, that always
inputs 1. The bias node, multiplied by its weight w;,, determines the bias b that is
fed into the neuron. A typical activation function is the sigmoid activation function,
where hy, () = H% and z = wx + b, i.e. the sum of the inputs multiplied by the
weights plus the bias. The bias enables the activation function to be centered around
different thresholds. As illustrated in figure 1b, the sigmoid activation function
mostly outputs values close to 0 or 1, where the threshold is centered around 0. The
addition of the bias node makes sure the activation function is centered around the
value of b, rather than 0, allowing for more flexibility.

An artificial neural network can be built by connecting one or multiple of these
layers to each other and attaching an input layer and an output layer. The layers
in between the input and output layers are called hidden layers. Such a network is
illustrated in figure 2. The network takes the inputs from the input layer and feeds
them through each layer of the network, at each step computing the activations of
the neurons (al@) here indicates the activation of neuron ¢ at layer 2) . This forward
computation of activations is also referred to as the forward pass. It has been shown
that networks with as few as one hidden layer are able to approximate any real-valued

function to any arbitrary level [16], making them great learning tools.

Figure 2: A feedforward neural network with one hidden layer [1].

hw,b()()

Layer L,

+1

Layer L, Layer L,

The feedforward neural network is the simplest type of neural network in terms of
architecture and understanding. Other commonly used types are Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks (CNNs or convnets), from
which the latter will be the main focus of this work.

3.1 Backpropagation

The real power of neural networks comes from training by backpropagation [13].
Backpropagation, or backprop, is a learning technique that allows a neural network
to learn from a training set of labeled data samples. Backprop obsoletes the need for
complex handcrafted features and allows the network to learn when provided with
ample labeled data. The weights of the network are then initialized semi-randomly
(there are multiple methods for this) and data examples are fed in either one-by-one
or in so-called mini-batches, where the calculations are done batch-wise to avoid
expensive computation. Based on the provided labels for the data samples and the
output of the network, a loss function computes a real-valued number indication
how "wrong" the network was in its prediction. The loss function should be designed
so that the more the network is wrong, the higher the loss is. Since the activation
functions in the nodes are differentiable, the loss can be computed with respect to
every node in the network and the weights in between the layers. By computing
the loss gradient layer by layer from the output layer to the input layer, the loss is
"backpropagated" throughout the network. At every backprop step, every weight is
updated in the opposite direction of the loss gradient by some measure «, which
is called the learning rate. If the learning rate is set correctly, every backwards
pass should decrease the loss function by some small margin, until the loss function
converges to an optimum. This process is also called gradient descent. There are
multiple ways by which these gradient updates can be done to improve the efficiency
and speed with which the network converges to an optimum. Such a method is also
referred to as an optimizer. Most networks in this work are trained by means of the
Adam optimizer [18], as this optimizer gives the quickest and best convergence. The

10

explanation of Adam is beyond the scope of this work. The reader is referred to the
literature for a detailed explanation.

3.2 Convolutional neural networks

Convnets find their origin in the 1980’s, when Fukushima et al. introduced the
Neocognitron [7], a neural network model intended to do visual pattern recognition
that exploits geometric similarity and that is invariant to positional shifts. The
Neocognitron is inspired by the way the human visual cortex does pattern recognition.
As opposed to regular feedforward neural networks [13], which consist of several
layers of fully connected nodes, the Neocognitron has convolutional layers. Every
convolutional layer of the Neocognitron consist of 2-dimensional weight vectors,
or filters, that shift step-by-step over the input space, producing a 2-dimensional
mapping of the inner product between the input space and the filters weight matrix.
The network is made up out of several convolutional layers, where the first layer
is connected to the pixel values of the input image and each subsequent layer is
connected to the output mappings of the previous layer. This way, the filters in the
first layer of the network respond to low-level features in the image, while layers
deeper in the network are able to model more high-level, abstract features. The
overall architecture of the Neocognitron is illustrated in figure 3a and an illustration
of a weight vector is given in figure 3b.

Figure 3: The neocognitron [7]

(b) Interconnection of cells between two layers
(a) Architecture of the Neocognitron of the Neocognitron

Since its introduction in 1980, several improvements have been made to the
Neocognitron and multiple Neocognitron-inspired network architectures have emerged.
Modern convolutional layers are no longer 2-dimensional, but 3-dimensional. Also,
the image input into the network is 3-dimensional, where the depth comes from
the RGB-color scale of the pixels in the image. The filters of a convolutional layer
are then made up out of 3-dimensional weight matrices that span the entire depth
of the output volume of the previous layer and are shifted over the volume of the
remaining two dimensions, which are width and height. Each of these filters then
produces a two-dimensional activation map, that is also referred to as a feature map,
because each filter usually responds to a different feature in the image. The feature
maps output by filters at the same layer have the same size and can therefore be

11

concatenated in the depth dimension, producing a 3-dimensional output volume for
each layer of the network. This output volume is then fed into the next layer of the
network. An example of a convolutional layer is given in figure 4.

Figure 4: A convolutional layer [1]

0000

3

The size of the filters in a layer is called the receptive field. Popular choices are
1x1, 3x3, 5x5 and 7x7 pixels. One of the earliest large-scale convnets, AlexNet, had
filters with an 11x11 receptive field. Large receptive fields have since then become
less popular, as it has been shown that a stack of multiple smaller layers will lead to
better performance. Such a stack will have the same receptive field, but will have
more favorable properties [25]. For instance, such a stack contains fewer parameters
while allowing for more non-linearity’s in the approximation function, increasing the
expressing power of the network.

The step-size with which a filter is shifted over the input volume is called the
stride, which largely determines the size of the output volume. For example, with
stride 2, the filter will compute an output every two pixels. A common thing to
do is to add zero-padding to the input volume, to make the filter size, stride and
input volume match. Figure 5 illustrates a pass of a 3x3 convolutional filter over a
5x5 input volume with a stride of 2 in both horizontal and vertical direction and a
zero-padding of size 1. This pass creates an output volume of 3x3. A thing to note
is that with a stride of 1 and a zero-padding of 1, a 3x3 filter will produce a feature
map of the same size (in width and height dimension) as the input volume. This is
used in the very deep VGG network to retain the same output volume at every step
of the network, which will be explained in more detail in section 3.7.

3.3 Rectified Linear Units

A problem that arises when training deep (3 layer or more) neural networks through
backpropagation is that of vanishing gradients. Vanishing gradients are a direct
result of sigmoid or tanh activation functions, which have a buffering effect, meaning
they get "saturated" at inputs that differ moderately from the threshold value (or
bias). Once the sigmoid has been saturated, any additional increase in input will
only result in a minuscule increase in output value. When the gradient is then
computed with regards to the input values, the influence of each of the input values
is also going to be minuscule. If these gradients are then backpropagated through
several more layers, the gradient will become very close to zero, making training
slow and inefficient. To address this problem, nodes in a convnet have a linear

12

Figure 5: A convolutional pass visualised for one filter [4]

-

1 '
Ilcloclolioicliolio!
Ledacdlaclbadacalad
eI cIcIcIcIoIe

| F [MY I N M

'olotltoclcl'oc'oc

P00 0Y0 0
daa

=r="
T
-l

S

“r=a--r

=EE-RE-FE-NE-EN-N

“r-acore

T

Iciociociocliociocio!
Ladodaabada ot
IcIocIoaIcIcIoIen

ocl'loclolocloclo'o
Ledacdectbadacaalad
r=1--=-

r
-

-

- T

IcIcIcIoIcIoIo)
-

el e Bl

r-T-

activation with a rectifier, hence the name Rectified Linear Units, or RelLu nodes.
These nodes were first introduced by Nair et al [21]. A ReLu unit has the activation
function f(z) = max(0, z), where z = wz + b. This allows each node to express more
information while also having a thresholding mechanism. The error is backpropagated
through these nodes only when z > 0.

3.4 Max-pooling

Another layer that is frequently used in convnets is the max-pooling layer. A max-
pooling layer takes the maximum activation per filter over an n-by-n region, where
n is usually 2 and the stride 2-by-2. Max-pooling has been introduced to improve
the robustness against spatial shifts [30], which results from taking the maximum
activation per region rather then all the individual activations. The max-pooling layer
can be backpropagated through by computing the loss gradient only with respect to
the node that caused the maximum activation. Since the max-pooling layer causes
for a loss in information spatially, the number of filters is usually increased after the
max-pooling layer to make up for the compression along the width and height axis
of the input volume.

13

3.5 Dropout

Dropout has also been introduced to fight overfitting in large networks, by preventing
the co-adaptations of feature detectors to the input space [14]. Overfitting is the
phenomenon of a classifier over-adapting to the training data, making it generalize
poorly to new, unseen data. With dropout, some of the feature detectors (neurons)
are randomly omitted during training for each forward pass. This is usually set to
half of the feature detectors. This essentially transform the network into an ensemble
of different networks during training and forces the network to develop a wide variety
of features by which to classify the image and teaches the network to not depend
upon all features for classification. During test time, dropout is disabled and the full
network is used. Dropout increases the time it takes for a network to converge to its
optimum and is therefore not added to all the layers in the network but only in the
second-to-last layer of the network.

3.6 Classification

To do classification, convnets need to be able to go from the feature maps of the
last convolutional layer to an output layer that indicates to which class the input
image belongs. This is done by connecting a classification head to every node of the
feature maps of the last convolutional layer (after max-pooling). The classification
head traditionally consists of two ReLu layers that are fully connected to each other
and one softmax classification layer of n nodes, where n is the number of classes in
the classification task. The softmax function produces a probability distribution over
all classes. Here, each class score can be interpreted as the confidence the network
has that the image belongs to that class. More specifically, softmax is defined as

efvi
>, el

where y; is the truth value for class 7, f,, is the output value of the node that belongs
to class ¢ and P(y;|xz; W) is the chance of y; parametrised by the input image z
and the network weights W. The class labels of the examples are represented by
one-hot vectors, vectors of size n with all 0’s and one 1 indicating the correct class
label. The loss function that is used for softmax is the Hinge Loss, or cross-entropy
loss. Cross-entropy is a term that comes from information theory and measures the
minimum amount of information (in bits) required to go from one distribution to the
other. Specifically, the Hinge Loss H (p, q) between distributions p and ¢ is defined as

H(p,q) = =) p(x)logq(x)

P(%WW) =

During training, this loss is used to calculate the amount of information needed to
go from the softmax output to the labels one-hot "distribution". This way, the closer
the network is into having 100% "belief" in the correct class label, the lower the loss
will be, and vice versa. At test-time, classification is done by taking the class label
that has the maximum output of the softmax layer.

14

3.7 Image classification

Halfway through the last decade, in 2006, a backprop trained CNN broke the record
in the MNIST hand-written digit recognition challenge [22]. This was also the year
that saw the first GPU-based implementation of a CNN, allowing for much faster
training of these large networks [3]. Since 2012, deep convolutional neural networks
such as AlexNet [19], GoogLeNet [27] , VGG [25] and more recently ResNet [12]
have reported state of the art results on several image classification challenges, such
as the ImageNet ILSVRC challenge, that consists of around a million images labeled
in 1000 different object classes. AlexNet, illustrated in figure 6, was the first large

Figure 6: AlexNet architecture. The computation was split over 2 GPUs, which is
why the image contains two convolutional stacks. [4]

ENS .
\\J 5| S o #
48 192 192 128 204t 2048 \dense
5
13 \ 13
224 5| A ENRE 3|1
1 - EIRNEESS 13 dense’| |dense]
N \ 55 A 1000
1 192 192 128 Max || L
i 204 2048
228\(liStride Max 128 Max pooling
of 4 pooling pooling

scale convolutional neural network (60 million parameters) to take first place in the
ImageNET challenge. It consists of alternating convolutional and max pooling layers,
followed by two fully connected layers and a softmax output layer that is used for
classification. The network has 5 convolutional layers in total, out of which the first
on has a very large receptive field (11x11 pixels). Large receptive fields were replaced
by stacks of smaller layers, which was first introduced in the much deeper VGG-16
network, a network with 13 convolutional layers, 2 fully connected layers and 1
softmax output layer. VGG-16 has much more parameters than AlexNet, namely 138
million. GoogLeNet is a 22-layer deep network that employs a different architecture
with so-called "inception modules", these are layers that simultaneously use 1x1,
3x3 and 5x5 convolutions and then concatenate the filter outputs. The motivation
behind this is to be able to add more layers while keeping the computation between
layers sparse, so as to not waste any computational resources. Finally, Microsoft
takes it one step further with ResNet, a network that is up to 152 layers deep, that
uses "shortcut connections" between layers in the network to prevent vanishing or
exploding gradients, a problem that arises during backpropagation in large-scale
networks. By doing so, these shortcut connections allow for much deeper models
during training. While Googl.eNet and ResNet have achieved a better performance
on ImageNET than VGG, VGG will be used for reference in this work because of its
simplicity and wide availability in implementations.

15

3.8 Object detection

Large-scale convnets have not only been successful in image classification tasks,
but also in object detection tasks. Because convnets excel at classification of an
image, they have been combined with image patching and cropping schemes to
perform classification on parts of images. This translates to object detection. In
2013, a system called OverFeat [24] won the ImageNet ILSVRC2013 object detection
challenge, which is different from the image classification challenge, by efficiently
computing thousands of different crops per image and classifying them with a single
convnet (AlexNet). This record was then broken by Girschik et al. [10] when they
introduced Regions with CNN features (R-CNN) and achieved around a 30% better
mean Average Precision (mAP) on the PASCAL-VOC 2012 and ILSVRC2013 object
detection challenges. The R-CNN pipeline is illustrated in figure 7. R-CNN uses a
method called selective search to generate, for each image, around 2000 (2k) different
region proposals (image crops). These region proposals are then fed through a convnet
(VGG-16), which computes the convolutional features for each image. Class-specific
SVM classifiers, including one for a catch-all "background" class, are then trained
to classify each image crop by using the features of the last convolutional layer
of the network. The increase in performance against OverFeat results from using
class-specific classifiers and the more advanced object proposals of selective search.

Figure 7: R-CNN pipeline [10].

S warped region ﬁ{aeroplanc? no. |
g i 4@5 \A = :’- ------------------ -,: E
1 : - : :BW‘JE@EI '=>{person? yes. |
= o CNN» :
‘ , tvmonitor? no. |
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

In a later version of R-CNN, called fast R-CNN [8], the image is first fed into a
convnet after which for each object proposal a region of interest (Rol) is obtained
from the features of the last convolutional layer of the network. By doing so, the
convolutional features only have to be computed once per image, rather then once per
object proposal. Once extracted, the Rols are fed into a fully connected classification
head that produces a Rol feature vector for every Rol. These feature vectors are
then fed into a classification layer and a bounding box regression layer, that produces
real-valued bounding box coordinates for all the classes. The softmax classification
along with the regressed coordinates make up the predictions of the framework. The
pipeline is illustrated in figure 8. This has been shown to be both faster and more
effective than normal R-CNN, with a 9x speedup during training and 231x speedup
during testing and a mAP of 66% versus 62%.

16

Figure 8: Fast R-CNN pipeline [10].

Outouts bbox
softmax regressor
Rol ':'f"c v:ll;fc
pooling
layer 1)
iH
Conv l Rol feature
feature map Vector . .onax

Finally, faster R-CNN has been proposed by Ren et al. [23], which integrates a
Region Proposal Network (RPN) into the CNN. The RPN, illustrated in figure 9,
replaces selective search as a way of generating region proposals. The RPN shares
its weights with the CNN used for feature extraction, and slides an n x n window
over the features of the last layer of the convnet, proposing k different regions at
each position of the feature map. Because the RPN shares its weights with the
CNN, generating region proposals becomes almost costless and thus an even bigger
speedup is achieved, while retaining the same accuracy. For more details about the
implementation of Fast R-CNN and Faster R-CNN, the reader is referred to the
literature.

l 2k scores I | 4k coordinates I <mm K anchor boxes

cls layer ‘ ' reg layer

256-d D

t intermediate layer

sliding window

conv feature map

Figure 9: Image taken from Faster R-CNN paper [23]. "Left: Region Proposal
Network. Right: Example detections using RPN proposals on PASCAL VOC 2007
test."

3.9 Document classification

While NER has not been done on images of documents by means of CNNs, they
have been researched in the area of document classification. Harley et al. [11]
evaluate the performance of AlexNet-like CNNs with respect to a classification task
on a "labelled subset of the IIT-CDIP collection of tobacco litigation documents,
containing 400,000 document images across 16 categories." The authors show that
CNNs perform better than methods that use handcrafted features and also show that
features learned from a large-scale image classification task like ImageNET can be
leveraged through transfer learning to improve the classification accuracy even more.

17

In transfer learning, instead of learning all the weights through backpropagation, a
network is initialized with the weights obtained after training it on a different dataset
and task, in most cases the ImageNet classification task. This training procedure
is lengthy, so usually a pre-trained network that is made available by researchers
is downloaded and used for this. The pre-trained network is then fine-tuned on a
different dataset and task by training it with a learning rate one or two magnitudes
smaller than during the initial training, in order to keep most of the learned filters
intact and benefit from the learned feature extractors of the previous task. The results
from Harley et al. show that through transfer learning and fine-tuning, CNNs are
able to learn to recognise 'landmark" features, like addresses, headers and salutations,
in images of documents and use these features to perform classification.

18

4 Network Architectures for NER

Named entity recognition, when performed on images of documents, is essentially
object detection. Object detection is done by means of outputting a bounding
box around the object of interest along with a class label. This is also the way
data examples are annotated in the PASCAL-VOC and ImageNET object detection
challenges. In this work, NER will be done visually on documents in a similar way,
where each relevant entity is annotated by means of a bounding box and a class
label. Different network architectures will be compared by means of experimental
evaluation, where the bounding boxes output by each network will be compared in
terms of precision and recall.

Section 4.1 discusses several different convnet architectures that can be used to
recognise a static number of classes in the document. The very deep VGG-16 network
will be taken as the main inspiration for the network architectures and will be used
as means of comparison and as network to test the effect of transfer learning. Then,
section 4.2 discusses the limitations of these architectures and proposes ways to do
NER by means of the Faster R-CNN framework.

4.1 Static number of classes

One of the aspects that mostly determines the architecture of the network is whether
we are looking for one specific entity in the image or whether the amount of entities
that we are looking for varies. In images of receipts and invoices, for instance, there
is only one date, one credit card number, one expense total, etc. When looking to
recognise a static number of classes per image, a relatively simple network architecture
can be used, where a single bounding box per entity is output. A bounding box
is then defined as four real-valued coordinates specifying the upper-left x and y
coordinate and the lower-right x and y coordinate of corners of the bounding box.

4.1.1 Transferring the features from VGG

Transfer learning has been shown to be effective in the document domain by Harley et
al. [11]. The authors fine-tuned a pre-trained AlexNet to do document classification
and achieved superior performance over all custom networks that they trained from
scratch. The authors argue that for any classification or detection task, fine-tuning a
pre-trained network should be considered as a possible solution. The same approach
can be taken for VGG-16, where the pre-trained networks weights of the convolutional
layers are loaded and only the classification head of the network is adjusted or replaced.
Depending on the head of the network, on which will be elaborated in section 4.1.2,
the network weights can be loaded until the final classification layer. Based on the
results from Harley et al., such a fine-tuned network should yield the best results
and will provide a good baseline to compare other solutions against.

19

Figure 10: Difference in fully-connected (FC) head for regression and classification
for a 224 x 224 image. SM-224 stands for a softmax activation layer of 224 nodes.

Max pooling

Last conv map

Max pooling

[[SM-224 (x1)] [SM-224 (1)] [SM~224 (x2)] [smzaa (v2)]] xK

(a) Regression head (b) Softmax head

4.1.2 Regression versus softmax

One way of outputting bounding boxes is by means of regression. instead of a
softmax classification layer, the final layer of the network will be a regression layer
consisting of 4k nodes with a linear activation, where k£ is the number of entities
that we are looking to recognise. A typical regression loss to use for regression is the
mean-squared-error loss. This is used for instance in (Faster) R-CNN to update the
coordinates for each of the bounding boxes that are output. While straightforward,
regression has as a downside that it is very sensitive to a small change in the input
values, as the inputs into the nodes contribute linearly to the activation. This means
that the network will have to find a delicate balance between feature activations in
order to output exactly the right coordinate.

This sensitivity is less present in softmax classification. Because of the exponential
factor in the activation function, a small change in any of the input values will not
lead to a big change in activation. This allows the network to put more confidence in
a certain class without influencing the outcome completely. When given a constant
image size of n-by-m, the network can be "tricked" into performing classification
instead of regression. This can be done by replacing each regression coordinate by
a softmax activation layer of size n or m, for an x or a y coordinate, respectively.
The network can then output the coordinates of the bounding box by "classifying"
that the coordinate belongs to a certain pixel. This architecture will result in four
softmax layers per bounding box, two of n and two of m nodes. A downside to the
softmax activation function and cross-entropy loss is that there is no extra penalty
when the network is off by a larger margin, as there is with the mean-squared-error
loss, where the difference between the output value and the true value is squared.
The difference in architectures is shown in figure 11.

4.1.3 Fully connected heads

In terms of network heads, two different architectures are considered. The first
architecture is the traditional architecture, where a single fully-connected head is
appended to the last convolutional layer, after max-pooling. When the network is
trained with one head, all classes share the same parameters and the fully-connected

20

Figure 11: Left: a single-headed regression architecture that has 768 nodes per
FC-layer. Right: a multi-headed regression architecture that has 256 nodes per
FC-layer. The networks have around the same number of parameters.

Last conv map Last conv map

Max pooling Max pooling

(roo] [(rom] (=]

oroout [oo [oo
v

(rom] [rom] [rem |

l l I
4k coordinates [4 coordinates] [4 coordinatesJ [4 coordinates]

(a) Single-headed (b) Multi-headed

head is trained simultaneously for all classes. When outputting bounding boxes, this
architecture might make it hard for the network to create a clear distinction between
the features used for defining each bounding box separately.

An alternative architecture would be to append a smaller fully-connected head per
bounding box with its own, separate set of parameters. Then, only the convolutional
layers are shared between the classes. Because each fully-connected head is then
trained class-specifically, it seems reasonable that such a head needs far less parameters
than an all-class fully-connected head.

Most of the parameters in the network are in the connection between the final
convolutional layer and the first fully-connected layer(s), as all of the filters have to
be connected to all of the nodes in the fully-connected head(s). For instance, for
VGG, 102 million of its 138 million parameters are contained here [1]. Whether a
multi-headed architecture leads to more parameters is thus dependent on the amount
of classes and the number of parameters per fully-connected layer.

4.1.4 Layers, filters and image resolution

There are two motivations as for why an alternate layer architecture might perform
equally well or better compared to VGG-16. The first motivation is that the input
domain is limited to images of black and white documents. This domain is less
varied than the ILSVRC domain that consists of 1M images in 1000 classes, in terms
of the low-level features that the network needs to be able to extract. Also, the
high-level features might not need to be as complex as those in VGG, where some
nodes have been shows to recognise complex concepts such as reflecting surfaces
[31]. Because of this, a network with significantly fewer filters and layers might be
able to perform as well or better than a very deep network with many filters. The
second motivation behind having fewer layers in the network is that for an NER
task on images, fine-grained spatial information about the position of the entities
in the document is required. Intuitively, this information is contained in the width
and height dimensions of the final feature map of the last convolutional layer. With
VGG-16, the image is first warped to 224x224 pixels before it is fed through the

21

network. As a result, the final feature map is only 7-by-7 in the width and height
dimension, with a depth of 512 filters. This means that the spatial information is
reduced by a factor 32, which might result in valuable positional information being
lost. One way of increasing the final feature map spatially is by reducing the amount
of max pooling layers in the network. This means that either the convolutional layers
will have to be stacked in bigger stacks (3, 4 or 5 layers) in between max pooling
layers or that the network will have to contain less convolutional layers in total.
A second way to retain more spatial information is by increasing the resolution of
the input image. Increasing the size of the final conv map will greatly increase the
number of parameters in the network. This leads to a longer training time and a
slower convergence.

4.2 Dynamic classes

The architectures discussed so far have a strong limitation, namely that they only
work for a predetermined (static) number of class occurrences. When looking for
an entity that can occur multiple times or not at all, like for instance a line item in
a receipt, this becomes problematic. A suboptimal way to solve this problem is by
outputting many bounding boxes per class to "buffer" the amount of possible class
occurrences, where each bounding box has an objectness score to indicate whether
the class is present or not. This would, however, make the network unnecessarily
large and would not scale well to many different classes. A better solution would be to
use an object detection network like Faster R-CNN (section 3.8), which dynamically
detects and classifies regions of interest in the input image. This way, the network
architecture remains the same regardless of the amount of classes that are being
classified. Also, the amount of bounding boxes output by the network becomes
dynamic. Faster R-CNN’s default convnet is VGG-16, pre-trained on ImageNet.
Because the network is pre-trained on ImageNet, it will have to be fine-tuned towards
the document domain before the high-level features become very meaningful. This is
also done by Harley et al., who fine-tuned a pre-trained AlexNet to do document
classification [11]. While the training procedure for faster R-CNN involves fine-tuning
the convnet together with a Region Proposal Network (RPN), the training procedure
is different from regular fine-tuning, as the RPN is trained jointly. This may result
in VGG-16 not being able to adapt properly to the new problem domain, as the
transition to the new task becomes too large. instead, replacing VGG-16 with the
fine-tuned AlexNet from Harley et al. might lead to better performance, as the
network will already have been to recognise document features.

22

5 Dataset

To train the networks for entity recognition, an annotated set of documents with
consistent entities and a domain-specific layout is required. Optimally, this would
be a dataset of receipts or invoices, as in the work of Zhu et al. [33]. Here, a
lot of the entities are approximately the same size and the network will have to
learn to distinguish them based on the layout of the documents and the content of
the entity. To the author’s knowledge, this dataset, or any like it, is not publicly
available. Therefore, the Ground Truth for Open Access Publications (GROTOAP2)
dataset of ground truth annotated scientific documents [29] has been used for this
work. From the authors’ personal inspection, it seems that scientific documents
are a good candidate when it comes to a correlated layout and a consistent set of
entities, as each publisher has its own template and resulting layout, but almost every
document contains the same set of entities. GROTOAP2 contains 13,210 life sciences
publications from 208 different publishers. The ground truth of each document has
been created by Tkaczyk et al. by performing Optical Character Recognition (OCR)
on each document and classifying the "zones" in the document into 22 different
zone classes, by matching the metadata of each document to the content obtained
by the OCR. Each of these document zones indicates a textual entity, like title
or author, that is present in the document by annotating the zone with bounding
boxes. The annotations are hierarchical and go as detailed as one bounding box
per character, but for the purpose of this work only zone-level bounding boxes are
used. The documents have been annotated algorithmically by comparing each of
the zones to the available metadata by means of classifiers and heuristics. Human
experts have evaluated the results by taking a random sample of 50 documents and
thus determined the accuracy and recall of the overall zone classification, which are
around 95% and 91% respectively. The annotation is not flawless but still serves
the exploratory purpose of this work. Most of the variation in zones and layout is
contained on the first page of the publication, so only the first page of each document
has been used for training. Figure 12 shows two examples of annotated front pages
of documents contained in the GROTOAP2 dataset.

5.1 Data augmentation

Since the data set is small (13,210 documents), the networks are prone to overfitting
when the data is fed in without any alterations. Early experiments, that have been
omitted here, have shown that overfitting occurs when the data is fed in without
augmentation. Therefore, in all the experiments in this section, each minibatch has
been augmented by randomly shifting the documents horizontally and vertically
across the image plane. Pixels that are shifted out one side of the image are "rolled"
on to the other side of the image. The amount of pixels by which the documents are
shifted is limited by how far the document can be shifted whilst keeping all relevant
entities and bounding boxes intact (not rolled to the other side). Specifically, early
experiments have shown that the networks converge best when the maximal amount
of random shift in both the horizontal and vertical directions is set to 15% of the

23

Figure 12: 380x500 pixel images of the first page of publications with annotations
taken from GROTOAP2 [10].

as 2 cause of tibiotalar impingement syndrome: a current Article
review

P State of Type 1 Diabetes
m—-m
Pﬁ—:—vm—'—,ﬂ

m«uu-‘w-‘-w—-l

ﬂ--—_mﬁ_hlnﬁmu

ATTFL) is possible cause of msleror impungemest

e obypoctive of D artache win 30 reveew the lieratere |
frmceiming e anatomy, paibopencus. smpiome and|
[reatmont of the AITFL impingoment and finally t
[ormalsie teatment recommendations. The AFTYL|
fearts froe the datal titea, 3 mn @ sverage sbove el
hrexcular surface. asd deacends obbgacly betwoen thel
pliscent margions of (he Ubia and Sbela. amierior tof
e syndesmosis to the asterior aspect of the latenl|
prallcodus. The inckience of (he mocessory faschoke|
{ilory very widicly in the several studhes. The prescnce|
4 the dmal tascicle of the ATTYL aad alo the comtact|

prom houk book for the Cnitenia desarited 5o decide

rosection|

phether it is and

Pave & sabic ankle. mormal plais radiographs. and|

lhﬁ'-l--.lm;u

.--n-—'vd.—-—nn—--—-l

g e
‘Muw-—@-mm el s e

.

w—mhhwbwd-.‘—-ﬂ“m
| rhsking secpae w0 the clasc. Viry recemt phuse [T tridh with the Tnding apt, & humaniad snti CT15 avbody, call il
Y

P

bt asery mmars. Thes puper wal hughiighe the perciacal

s T
content_0
y_content 1 ntent_0 body content 2
frscoen or woll timse mpuagermest and cas be anlenor, § ntent 1 4 and are drvded wwte) prougs based on thev|
pescrolaieral. o postersor [, 75) Ankle GRS S TRy Jhar kytokine production peofiles: pesinflammatory Thi and|
Gaaned by the fricton| pterinod by hyperglycernia woderia by o sigaificast bows of| 1017 and anti-inflammatory Th The balancr of Th ool
P joimt Siwses. which are boch the cause and ihel Pasereat producing beta coll man. Even though| . gl mrmene wtem|
fifoct of alieeed joint biomachamics [14]. The leading| s achioved with ::nh had & ofin examined afer
cwomn ank. -

ancoromedal
folaseral aspoct of the ankle jount Some ywelling and|

[page_nr

Actvated sstorcatwe T crlh ane the medutor of beta ol
flestruction and theron & prime thirapeutc tanget. Ochur |

ol help desermane e sesprmsvencn

24

maximal distance in either direction. This is done for all the static experiments.

5.2 Normalization

After the augmentation step, it is custom to perform a normalization step before
feeding the images into the network. For VGG-16 and AlexNet, this step consists
of subtracting the mean RGB pixel activation values for each of the respective
pixels in the image. In experiments that involve transfer learning from VGG, this
normalization step is replicated for compatibility. For all other experiments, initial
experiments have shown that the trained networks obtain the best results when the
documents are first converted to greyscale and then each image is scaled so that all
the pixels in the image have zero mean and unit variance per image. This process is
also called whitening.

5.3 Filtering the dataset for static classes

To train the networks to extract a single entity per class, all of the documents in
the training and test set need to have that class available as a singleton. Entities in
the document are often annotated in a fragmented manner, as can be seen from the
annotation of the body content zone in figure 12. So, for experiments with static
classes, zones of the same class are merged together if their merged bounding box
does not overlap with any of the other classes. Still, for many classes the number of
times they occur in the front page of the document varies greatly, even after merging
zones. The most consistent singleton classes are title, author and abstract. Thus, in
the context of static classes, the networks have been trained solely on these three
classes. It occurs sometimes that a document has none or multiple title or author
annotations. This is due to the document template itself or due to faults in the
annotation, in which case the document will not be used. In the case of abstract, it
happens often that there are two annotations, as the abstract is often split across
two columns. An example of this can be seen from the left document in figure 12. In
this case, the network is trained to only classify the leftmost column of the abstract,
to keep the number of workable samples in the dataset to a maximum. Overall, this
filtering reduces process reduced the amount of workable samples for static NER in
the dataset to 10,461 as opposed to 13,179 documents for the dynamic experiments.

25

6 Experiments and results

This section describes the experiments that have been performed and the correspond-
ing results. The experiments shall be discussed in the order in which they were
performed, in an alternating chain of experiments and results. Firstly, the way the
performance of the networks is evaluated is discussed in section 6.1. Secondly, the set
of experiments that concern static classes is discussed in section 6.2. Lastly, the set
of experiments regarding dynamic classes and Faster R-CNN is discussed in section
6.3.

6.1 Metrics for evaluation

The crossentropy and mean squared error loss used for training the networks serves
as a means of determining how "close" the network is to outputting perfect bounding
boxes, but says nothing about how well the network actually extracts each type
of entity. Therefore, it makes sense to measure network performance in terms of
how many words of the entity the network is able to classify correctly. A predicted
entity is then defined as the words that are contained within, or intersect with, the
predicted bounding box. Since the ground truth for all the words in the document is
known, the performance of the network can be measured in terms of precision and
recall for every class for every document. So, to measure network performance, the
average precision and recall are taken document-wise over all the entities in the test
set.

6.2 Static classes

The experiments in this section (and the data augmentation steps) have been imple-
mented by the author in Python with help of the numpy, scipy and scikit-learn
libraries. The implementation and training of the convnets has been done by means
of the Keras deep learning library®.

To test the performance of convnets with regards to NER, several different
parameters have been firstly been evaluated in a random search and then in a
couple of fine-tuned grid searches. The main architecture for the networks has been
based on the VGG-16 network. All of the networks that have been tested consist
of alternating stacks of 3x3 convolutional layers and max-pooling layers, followed
by one or more fully-connected heads. For clarity, the heads will from now on be
denoted as {single | multi}-n-{softmax | regression}. Here, single or multi indicates
whether the network has a single head or multiple heads. n indicates the number of
nodes per fully-connected layer per head and softmax and regression indicate the
output format and training loss.

The initial set of experiments have been performed to test the influence of
many different hyperparameters on the performance of the network. Since these
hyperparameters are heavily correlated, an initial random grid search has been
performed to determine reasonable values for some of the hyperparameters so that

Thttp://keras.io/

26

they could be frozen for the rest of the experiments. For brevity, the details of these
experiments are omitted and only their results are briefly reported on. All networks
have have been trained to convergence by following a scheme where the learning rate
is halved if the validation loss has not improved for 5 epochs. The learning rate is
then frozen for a minimum of 3 epochs. Training stops when the validation loss has
not improved for 15 epochs or the learning rate is decreased by a factor of 2000. To
keep computational time down and to keep the experiments compatible with VGG,
the networks were trained on images that were warped to 224x224 pixels. Each
experiment has trained the network until convergence, which takes approximately
12 hours on a single Nvidia Titan X GPU. Run-time fluctuated by up to 3 hours,
depending on the network, since the exact run-time of an experiment mostly depends
on the number of parameters in the network. Due to computational limitations
and time restraints, each experiment has been performed once, on a single train-
validation-test split of 80%, 10% and 10%, respectively. The split and random seeds
have been kept consistent throughout the experiments. As mentioned in section 5.3,
the networks were trained to extract one entity each of title, author and abstract.

Figure 13: Example predictions from an experiment with static classes.

title

From the initial random search, the optimal way of performing data augmentation
and normalization, as described in sections 5.1 and 5.2, have been determined.
Training the network with the Adam optimizer [18] and a minibatch size of 8 was
found to lead to good results. Also, a good amount of filters for the custom networks
was found, which was set at 50 filters for the initial layers of the network, doubling
in size after every consecutive max-pooling layer and with a maximum of 400 filters

27

for the final layers. This is very close to the amount of filters that VGG has and
could possibly be set lower to reduce network size, but 50 has been chosen as a safety
margin to make sure that a lack of filters does not affect performance. From the
initial random search it was found that a multi-n-softmax head gave the best results
and setting n to 256 worked better than 128 or 512.

6.2.1 Number and arrangement of layers

The first hyperparameters that were extensively tested in a grid search are the
number of layers and the arrangement of layers. This was done by freezing the head
of the network to a multi-256-softmax and keeping the rest of the parameters fixed
as mentioned earlier, so that a good base network could be obtained on which the
different heads can be compared. The number of layers were tested from a minimum
of 5 layers to a maximum of 11 layers, with the first stack of layers containing 2
convolutional layers, followed by 1-5 stacks containing either 2 or 3 convolutional
layers. Each stack of network layers has a 2x2 max-pooling layer in between. For
reference, VGG-16 has 13 convolutional layers with a 2-2-3-3-3 layer stack, with a
max-pooling layer in between each stack. The results are shown in table 1.

Table 1: Results showing the average precision (AP), average recall (AR) per class
and mean average precision (mAP), mean average recall (mAR) and the F1 measure
per arrangement of network layers. The units are shown in percentages.

Layer AP AR AP AR AP AR
stack Author Author Abstract Abstract Title Title | mAPmARF1
2-3 96.20 94.08 95.93 92.91 98.65 98.76 | 97.44 95.83 96.63

2-2-2 97.18 94.85 96.86 94.07 98.29 98.57 | 96.93 95.25 96.08
2-3-3 96.49 95.15 96.84 94.62 98.57 98.90 | 97.30 96.22 96.75
2-2-2-2 96.07 94.96 97.17 95.12 98.78 98.88 | 97.34 96.32 96.83
2-3-3-3 96.85 95.56 97.17 95.27 98.97 99.09 | 97.66 96.6497.15
2-2-2-2-2 | 97.18 95.41 97.16 94.91 98.72 98.81 | 97.6996.38 97.03

The results show that for almost all of the classes, the 2-3-3-3 stack has the best
precision and recall, and has the best F1 measure overall. This is also the setup that
has the most layers. These results invalidate the hypothesis that having more spatial
information in the last feature map increases performance, as can be seen from the
comparison of the 2-3-3 architecture versus the 2-2-2-2 architecture. Both networks
have the same number of layers, where the latter has an additional max-pooling
layer, decreasing the spatial output by a factor 2. This is also the network that has
better performance.

6.2.2 Network heads

Since the 2-3-3-3 layer layout worked best for the custom networks, this arrangement
of layers was frozen when performing a grid search for the performance of network

28

heads. Softmax and regression heads were experimented with in both a single as
multi-headed arrangement. For the single-headed networks, the amount of nodes per
layer was set to 768, as this is 3 times the amount of nodes that was found optimal
for the multi-headed version in the initial random search, which was 256 nodes per
layer. This way, networks with similar size but different arrangements were compared
against each other.

Table 2: Results showing the average precision (AP), average recall (AR) per class
and mean average precision (mAP), mean average recall (mAR) and the F1 measure
per network head on a network with 2-3-3-3 layer arrangement.

Type and number | AP AR AP AR AP AR
of heads Author Author AbstracAbstractitle Title | mAP mAR F1
single-768-regression | 88.44 88.43 94.94 89.87 97.42 97.70| 93.60 92.00 92.78
single-768-softmax | 95.21 93.44 96.14 94.71 98.43 98.54 | 96.59 95.57 96.08
multi-256-regression | 2.66 15.15 17.6 2.45 45.09 45.42 | 21.80 21.01 18.03
multi-256-softmax 96.85 95.56 97.17 95.27 98.97 99.09| 97.66 96.64 97.15

These results show that the multi-256-softmax outperforms all regression setups
by a large margin and also leads to better performance than a single headed softmax
network of comparable size. This shows that the network benefits from having a
seperate set of parameters per bounding box. The poor performance of regression is
most likely to blame on the sensitivity in the activation function, where the output
needs to be balanced between nodes, especially during training time when half of the
activations is eliminated through dropout. Potentially, this is the reason why the
multi-headed approach works so poorly, because the lack of nodes in the heads makes
the activation much more volatile, as each node has a bigger relative contribution to
the activation.

6.2.3 Transfer learning

To test the efficiency of transfer learning against the custom networks that were
trained from scratch, VGG-16 was loaded with pre-trained weights on the ImageNET
ILSVRC task and fine-tuned on the new NER task. Transfer learning was tested in
multiple ways. Firstly, the weights of the network were loaded up to and including
the final two fully-connected layers of 4096 nodes of the original classification head,
after which the 1000-way softmax layer was replaced by multiple softmax layers,
making the network have a single head. Since most of the parameters of VGG are
contained from the last convolutional layer to the last fully-connected layer, it makes
sense to transfer these weights along with the feature extractors, as they might
contain valuable information about how to do classification properly. Secondly, the
weights of VGG were loaded until the last convolutional layer, after which VGG’s
4096-node classification head was replaced with the best performing head from the
experiments in section 6.2.2, which was a multi-256-softmax head. This way, only
the convolutional features from VGG were used in the new task, providing an insight

29

into the efficiency of the features from VGG. Finally, VGG was trained from scratch
with a multi-256-softmax head and data normalization as in the static experiments,
to see if transfer learning has any effect. The networks that were pre-loaded with
the VGG weights were trained with the Adam optimizer set initially to 1/10*" the
normal learning rate.

Table 3: Results showing the average precision (AP), average recall (AR) per class and
mean average precision (mAP), mean average recall (mAR) and the F1 measure for
several arrangements of the VGG network with and without transferring pre-trained
features. The best performing network so far has been provided as comparison.

Layer pre-loaded | AP AR AP AR AP AR

Layout weights AuthoAuthoAbstragbstrdfitle Title) mAPmARF1
VGG single-4096-softmax yes 96.28 94.91 97.57 95.33 98.94 98.59 97.60 96.27 96.93
VGG multi-256-softmax yes 97.9096.5097.68 95.3998.84 98.67 98.14 96.8597.49
VGG multi-256-softmax no 96.81 96.21 98.1195.30 99.0098.92 98.1796.81 97.44
2-3-3-3 multi-256-softmax no 96.85 95.56 97.17 95.27 98.97 99.0P97.66 96.64 97.14

From the results in table 3, it becomes apparent that firstly, adjusting VGG
by appending a multi-256-softmax head gives better performance than VGG with
the original head and weights loaded until the final fully-connected layer. Secondly,
transferring the features from VGG does not give the network any better performance
in the new task domain, since this network achieves almost exactly the same F1
performance when the pre-trained weights are loaded as when the network is trained
from scratch. This shows that the network is learning features that are inherently
different from the image classification domain. Finally, the deeper VGG network has
a better performance than the custom networks that were trained so far, adding to
the the result from section 6.2.1, showing that more layers lead to better performance.

6.2.4 Resolution of the input image

The networks, so far, were trained on 224x224 images. At this resolution, the network
is likely to depend almost solely on layout based features, as almost all of the text in
the image is not legible. Also, the amount of spatial information that is retained in
the last convolutional layer of the network is fairly limited, as this feature map is
only 7x7 spatially (512 in depth). The network might be able to benefit from being
able to distinguish words or having more spatial information in the final feature map.
To test whether this holds true, the best performing network so far was trained on
images with a resolution of 380x500 pixels, which is just enough to be able to read
most of the text. This is also the standard size of images for PASCAL-VOC 2007,
which will be discussed a bit more in section 6.3. Figure 18 in the Appendix shows
the difference between the two resolutions. The best performing network so far was
VGG-16 with pre-trained features and a multi-256-softmax head, so this network was
trained on bigger images to see if it would perform better. Note that this increase
in resolution increased the training time by a factor 4, as the input to the network
increases by a factor 4. The results show that an increase in resolution does not lead

30

to an increase in performance. This shows that the network does not depend on
fine-grained spatial information or on legible words in the input image.

Table 4: Results showing the effect of scaling up the resolution for VGG-16 with a
multi-256-softmax head.

AP AR AP AR AP AR
Resolution Author Author Abstract Abstract Title Title mAP mAR F1

224x224 pixels | 97.90 96.50 97.68 95.39 98.84 98.67 | 98.14 96.85 97.49

380x500 pixels | 97.48 95.71 97.83 9491 9850 98.34 | 97.94 96.32 97.12

6.2.5 Analysis of learned features through saliency maps

It is possible to analyse the features learned by the convnet through Guided Back-
propagation [26]. In short, guided backpropagation is a method with which we can
compute an imputed version of the gradient back through the network from the class
node in the last classification layer. This method augments the pixels in the input
image that led the network to classify the image as belonging to a certain class. These
mappings are also called saliency maps. In order to determine which areas of the
image caused the network to output the bounding box coordinates, we can use guided
backprop to compute the gradient against all four of the classified coordinates of the
bounding box. An example of guided backprop is shown in figure 14. By looking
at the saliency maps, it becomes apparent that the network has mostly learned to
respond to layout features like alignment, line spacing and line-height. It does not
seem to look at the content of any of the bounding boxes. This makes it probable that
the network is learning how to recognise certain templates of documents, rather than
understanding what the entity truly is. This would also explain why scaling up the
image resolution does not increase performance, as all of the template information is
already available at lower resolution.

31

Figure 14: Saliency map showing the absolute saliency per bounding box per class.

Saliency for title

input

Or P! 0
50 | 50
100 | 100
150 - 150
200 200

L

0 50 100 150 200

Saliency for abstract

Saliency for author

100

32

6.3 Dynamic classes - Faster R-CNN

To classify dynamic classes, the Faster R-CNN framework was tested under two
different settings, to give some exploratory findings about the potential for using
this framework in the context of NER on document images. Faster R-CNN is a
complex framework that has many different hyperparameters that might be tweaked
to increase performance, but this is beyond the scope of this work. The Python
implementation of Faster R-CNN that is available on GitHub [2] was used in the
experiments. Both experiments trained the network using the approximate joint
training method, which is explained in detail in slides provided by R. Girshick
[9]. The same train-validation-test split of 80%, 10% and 10% was used for these
experiments. The first experiment trained Faster R-CNN with the default VGG-
network and default settings on all the classes in the document, which are 22 classes
in total. As mentioned before, the joint training procedure of the convnet together
with an RPN is different from normal fine-tuning of a convnet to a new domain. As
a result, VGG might not be able to adapt properly to the new domain. To test this
theory, VGG was replaced by the AlexNet that was pre-trained by Harley et al. [11]
to classify 400,000 documents in 16 different classes. The same training procedure
was followed as for the VGG experiment.

6.3.1 Interpreting the Faster R-CNN predictions

Faster R-CNN uses the PASCAL-VOC 07 metric to evaluate its predictions. This
metric measures the intersection over union (IoU) between the predicted bounding
boxes and the ground truth bounding boxes, counting a prediction correct if it overlaps
at least 50%. However, the data in the dataset is often fragemented inconsistently,
so the IoU measure between the predictions made by the network and those in the
ground truth are not representative of the true performance of the network, as a
prediction can encapsulate a zone correctly that is fragmented into multiple zones
in the ground truth, and thus will be classified incorrectly due to a low IoU with
any of the fragmented zones. Alternatively, the results can be interpreted in the
same way as for the experiments with static classes, where the amount of correctly
classified words per class is taken as a me<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>