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Model of Magnetic Anisotropy of Non-Oriented Steel Sheets for
Finite Element Method

Floran Martin1, Deepak Singh1, Paavo Rasilo1,2, Anouar Belahcen1, and Antero Arkkio1

1Aalto University, Dept. of Electrical Engineering and Automation, P.O. Box 13000, FI-00076 Espoo, Finland
2Tampere University of Technology, Dept. of Electrical Engineering, P.O. Box 692, FI-33101 Tampere, Finland

Even non-oriented steel sheets present a magnetic anisotropic behavior. From rotational flux density measurements at 5 Hz,
the model of magnetic anisotropy is derived from two surface Basis-cubic splines with the boundary conditions matching with
ferromagnetic theory. Furthermore, the investigation of the magnetic anisotropy shows that the H(B) characteristic is not strictly
monotonous due to the angle difference between the field and the flux density. Hence, standard non-linear solvers would either
diverge or converge towards the closest local minimum. Thus, we propose two different specific solvers: a combined Particle Swarm
Optimization with a relaxed Newton-Raphson and a Modified Newton Method.

Index Terms—Magnetic anisotropy, modified Newton method, Newton Raphson, non-oriented steel sheet, particle swarm
optimization, surface basis-cubic spline

I. INTRODUCTION

NON-ORIENTED (NO) electrical steel sheets are usually
composed of iron doped with silicon. Although their

manufacturing process tends to confer isotropic properties [1],
[2], magnetic anisotropy has been always observed and recently
investigated [3], [4], [5].

Models of magnetic anisotropy derive from different formu-
lations regarding to the target application. Since the magnetic
anisotropy infers a dependence of reluctivity on both amplitude
and direction of the applied flux density, its model can be
developed by interpolating between two adjacent measured B-
H curves [6]. Under rotational applied flux density, Enokizono
and Soda [7] develop a Galerkins formulation based on the
decomposition of the magnetic reluctivity into an isotropic part
and an anisotropic part. Both components of reluctivity are
interpolated and implemented into their numerical method.

Based on energy/coenergy density principle [8], Péra et
al [9] expand a phenomenological model on grain oriented
sheets which needs only the rolling (RD) and the transverse
(TD) direction given by manufacturers. However, the four
magnetization modes introduced by Néel [10] are not fully
described by this phenomenological approach, so data in more
directions are needed to characterize these sheets completely
[5], [11]. Thus, Higuchi et al. [5] model the magnetic energy
density for NO sheets with Fourier series for alternating flux
with 7 different directions. In order to reduce the computational
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effort required by the Fourier series, Martin et al [12] developed
an analytical model of the energy density whith three functional
parameters which are based on Gumbel distribution. However,
reducing the computational effort with analytical models is
usually involving a lower accuracy.

In this paper, we propose to model the polar components
of the magnetic field with two surface Basis-splines depending
on the polar components of the magnetic flux density. Hence
the proposed model should provide a relatively good accuracy
among other approaches. From rotational measurements, the
magnetic losses are first removed and then an extrapolation of
the magnetic loci is performed. Since the phase theory presents
more than a single easy direction, the non-linear solver should
be able to avoid some local minima. In this paper, we propose
two solvers : the first one is a combination of a Particle Swarm
Optimization (PSO) [13] with a relaxed Newton Rapshon
method. The second one is a Modified Newton Method derived
from a continuous Newton method [14].

II. MODEL OF MAGNETIC ANISOTROPY WITH 2 SURFACE
B-CUBIC SPLINES

The magnetic measurements are first extrapolated in order
to extend the definition set for the non-linear solver. Then, the
measurements of the polar components of the magnetic field
(H , φh) are interpolated as a function of the polar components
of the magnetic flux density (B, φb) with two surface B-cubic
splines.

A. Extrapolation of B-H loci

Measurements have been carried out at 5 Hz with a
sampling rate of 10 kHz in a cross shape NO sheet. The
rotating magnetic flux density presents 16 amplitudes from
0.1 T to 1.6 T with a step of 0.1 T and an accuracy of 0.5 %.
For extracting the anisotropy, the magnetic losses are removed
by canceling the phase shift between both fundamental
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components of magnetic flux density and magnetic field [12].

The extrapolation of the magnetic anisotropy is performed
by assuming that the amplitude of the magnetization can be
modeled by the solution of a second order differential equation
with a step source. Only the over-damped case is considered
in order to preserve a strictly monotonous B-H curve. The
amplitude B of the magnetic flux density can be interpolated
by:

B = Ms

[
k1 exp

(
−ω0

[
ξ +

√
ξ2 − 1

]
H
)

+ exp
(
−ω0

[
ξ −

√
ξ2 − 1

]
H
)]

+ µH
(1)

where Ms, k1, ω0, ξ and µ are the model parameters.They are
fitted for every measured angle of the magnetic flux density φb.

In Fig. 1a and Fig. 1c, the proposed analytical extrapolation
can reproduce the trend of the B −H curve with a relatively
good accuracy the non-linear magnetic curve.

(a) Amplitude of H at 0◦ (b) Angle shift φh − φb at 0◦

(c) Amplitude of H at 55◦ (d) Angle shift φh − φb at 55◦

Fig. 1. Extrapolation of the magnetic field components with respect to the
amplitude of the magnetic flux density when the flux density angle is oriented
toward the rolling and the hard direction.

The extrapolation of the polar angle of the magnetic field
is carried out with a similar reasoning. The angle difference
between the magnetic field and the flux density can be extrap-
olated by considering a solution of a second order differential
equation with a non-nil initial condition and without source.
This non-nil initial condition matches with the maximum angle
difference ∆φm(bHD). Depending on the direction of the
magnetic flux density, this angle difference can present either
the same sign as ∆φm(bHD) (over-damped case) or some
oscillations (under-damped case). Thus, the angle difference
∆φ = φh − φb can be modeled as a function of the amplitude
of the magnetic flux density by:

• Over-damped case:

∆φ = ∆φm

[
k̃1 exp

(
−ω̃0

[
ξ̃ +

√
ξ̃2 − 1

]
B

)
+ exp

(
−ω̃0

[
ξ̃ −

√
ξ̃2 − 1

]
B

)]
(2)

• Under-damped case:

∆φ = ∆φm exp
(
−ω̃0ξ̃B

)
cos

(
ω̃0

√
1− ξ̃2B + ϕ̃

)
(3)

where k̃1, ω̃0, ξ̃ and ϕ̃ are parameters of the models. They
are also fitted for every measured angle of the magnetic flux
density φb. In Fig. 1b and Fig. 1d, the proposed analytical
extrapolation can reproduce with a relatively good accuracy
the angle difference between the field and the flux density.

B. Surface spline models for polar components of the mag-
netic field and flux density

The uniformly distributed polar components of the magnetic
flux density are sorted with ascending order. Their indices are
denoted r and h respectively for B and φb. For Br ≤ B ≤
Br+1 and φbh ≤ φb ≤ φbh+1

, a polar component of the
magnetic field S can be modeled with a parametric surface
B-cubic spline, expressed by [15], [16]:

S(u, v) =
1

36

[
u3 u2 u 1

]
CQCT


v3

v2

v

1

 (4)

with

C =


−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0

 (5)

Q =


Qr,h Qr,h+1 Qr,h+2 Qr,h+3

Qr+1,h Qr+1,h+1 Qr+1,h+2 Qr+1,h+3

Qr+2,h Qr+2,h+1 Qr+2,h+2 Qr+2,h+3

Qr+3,h Qr+3,h+1 Qr+3,h+2 Qr+3,h+3

 (6)

where Q contains the control points and C is derived from
[16]. u and v are local coordinates of the amplitude and the
angle of the flux density respectively (u, v) ∈ [0, 1]2.

For n different amplitudes of B and m different angles of B,
the surface B-cubic spline interpolation requires (n+2)(m+2)
unknown control points. The interpolation of a polar compo-
nent of H , composed of the terms Pn(h−1)+r, is ensured by
the following set of nm equations:

Pn(h−1)+r = S(0, 0) (7)

The remaining 2n + 2m + 4 equations are determined by the
boundary conditions which depends on the problem. A set



COMPUMAG 2015 - SESSION PC5 3

of 2n equations is determined in order to ensure a periodic
condition corresponding to φb = 0 and φb = 2π.

∂S(0, 0)

∂v

∣∣∣∣
r,h=1

=
∂S(0, 1)

∂v

∣∣∣∣
r,h=m−1

∂2S(0, 0)

∂v2

∣∣∣∣
r,h=1

=
∂2S(0, 1)

∂v2

∣∣∣∣
r,h=m−1

(8)

For the interpolation of φh, the periodic condition is still hold-
ing so a similar set of 2m equations is considered. Concerning
the interpolation of H , some inflection points exist at 0 T
for any angle φb. Moreover, the material is supposed fully
saturated at 2.7 T. This value can also be chosen higher since
the extrapolation can provide some data for higher value of B.
Thus, it results the set of 2m equations:

∂H(1, 0)

∂u

∣∣∣∣
r=n−1,h

= ν0;
∂2H(0, 0)

∂u2

∣∣∣∣
r=1,h=1

= 0

(9)
The remaining 4 equations for both components of H respect
the symmetry along φb between the 4 boundary corner data
points and the inner data points by imposing 4 “not-a-knot”
conditions. Finally the required control points are determined
by solving this system of (n+2)(m+2) equations.

C. Analysis of the proposed model
In Fig. 2a, the accuracy of the proposed interpolation can

be appreciated. Even if the interpolation of both surface spline
should pass through every data points, a maximum relative
error of -0.03% is reached for the amplitude of H at the corner
(2.7 T, 2π rad). For the interpolation of the angle of H , the
maximum relative error is 4% at the corner (0 T, 0 rad) but
every corner presents some smaller errors.

Moreover, the model H(B) shows some local minima since
the Jacobian ∂H/∂B is not always positive definite. This
phenomenon appears mainly when the angle of H is almost
constant while the angle of B is linearly increasing (Fig. 2b).

III. SOLVERS FOR THE PROPOSED NON-LINEAR
ANISOTROPIC MAGNETIC MODEL

To ensure the convergence toward the global minimum, we
propose two solvers based on the Newton method. A classical
Newton-Raphson method presents a fast convergence but it can
only track the closest minimum. In spite of a slow convergence,
evolutionary algorithms present good performance to track the
global minimum. In order to benefit these two advantages, the
first solver is a combination of a Particle Swarm Optimization
(PSO) [13] with a relaxed Newton method. The second solver
is a Modified Newton Method derived from a continuous
Newton method [14].

A. Combined PSO with a Newton-Raphson method
This main algorithm is the standard Particle Swarm Op-

timization described in [13]. The Newton-Raphson with an
adaptive relaxation factor is launched on the particle holding
the maximum residual only if this residual R remains constant
after 50 iterations. The iterative relaxed Newton-Raphson is
modeled by:

xk+1 = xk − α [J(xk)]
−1

R(xk) (10)

(a) H loci

(b) Zoom in the measurements range

Measurements

Extrapolation

Model

Jacobian < 0

(c) Legend

Fig. 2. Measurements, interpolation and extrapolation of H loci . The axis
denoted hx corresponds to the rolling direction.

where x and R are two explicit functions of the magnetic flux
density B and the magnetic field H respectively, J is the Ja-
cobian given by J = ∂R/∂x and α is the relaxation factor. In
order to ensure the convergence toward the closest minimum,
this relaxation factor is determined so that it minimizes the
residual.

B. Modified Newton Method
The Modified Newton Method is derived from a continuous

Newton method [14]. Thus, its continuous form consists of
solving a set of first order Ordinary Differential Equations
(ODEs) given by:

dx

dt
= − [J(x)]

−1
R(x) with x(0) = x0 (11)

where t is a fictitious variable (0 ≤ t < +∞).
After carrying out the variable transformation s = 1−exp(−t),
the continuous Newton method becomes for 0 ≤ s < 1:

(1− s)J(x)
dx

ds
+ R(x) = 0 with x(0) = x0 (12)

This set of ODEs can be solved with a backward Euler method
by uniformly discretizing s into m̃ sub-intervals:

(1− si)J(xi)m̃ [xi − xi−1] + R(xi) = 0 (13)

Besides, it can be shown that the resolution of a system of
non-linear equations R(x) = 0 can be performed by solving
a nonautonomous first order ODEs given by:

dx

dτ
= − ν

1 + τ
R(x) with x(0) = x0 (14)
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where the roots of the residual are the fixed points of this
equation and τ is a fictitious time variable.

Since (13) depends strongly on its initial condition, it
would converge toward the closest local minimum. In order
to overcome this difficulty, this set of equations can be solved
with the continuous fixed point method given in (14). Finally,
the system of ODEs becomes :

dxi

dτ
= − ν

1 + τ
[(1− si)J(xi)m̃ [xi − xi−1] + R(xi)]

x(0) = x0

(15)
This set of ODEs is solved by a Runge-Kutta method of order
4 with a constant time step ht.

C. Comparison of the proposed solvers

The two different solvers are tested by solving a set of non
linear equations H(B) −H ref = 0, where H ref is composed
of 1 000 random magnetic field components belonging to
the measurements range. The combined PSO with a Newton-
Raphson method is composed of 20 particles. The parameters
of Modified Newton Method are x0 = 0, m̃ = 8, ν = 400 and
ht = 1, 2 .10−7. In Fig. 3, both proposed solvers converge.
The proposed improvement of the PSO significantly decrease
the number of iteration to reach the global minimum. The
improvement only appears when the PSO already converges
near the global minimum. Although, this solver reaches an
acceptable tolerance with few hundreds iterations less than
the Modified Newton Method. it requires more computational
effort than the latter, since at every iteration the residual is
evaluated 5 times more than the Modified Newton Method.

Fig. 3. Evolution of the residual of the proposed solvers

IV. CONCLUSION

The magnetic anisotropy of NO steel sheet is modeled with
a relatively good accuracy by developing two surface B-cubic
splines H(B,φb) and φh(B,φb). Furthermore, the analysis of
this magnetic property shows that the H(B) characteristic
is not strictly monotonous, mainly due to the angle differ-
ence between the field and the flux density. Hence, standard
numerical solvers would either diverge or converge towards
the nearest local minimum. Finally, two specific solvers are
proposed: a combined Particle Swarm Optimization with a
Newton-Raphson and a Modified Newton Method. The former

converges with the minimum number of iterations and the
latter presents the minimum computational effort. In future
work, the ferromagnetic theory should be able to analyze the
source of the non strictly monotonous H(B) characteristic.
Hence, the manufacturing process of NO steel sheet could be
improved by diminishing the effect of this source. Moreover,
the non-linear anisotropic model can be implemented into
finite element analysis in order to investigate its effect on the
specification of electrotechnical applications. Furthermore, the
model could be extended in order to consider the anisotropic
hysteretic behavior. For instance, the anisotropic splines could
be implemented as the anhysteretic curves Man in the Jiles-
Atherton model.
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