
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s): Martin, Floran & Singh, Deepak & Belahcen, Anouar & Rasilo, Paavo
& Arkkio, Antero

Title: Analytical Model for magnetic Anisotropy Dedicated to Non-Oriented
Steel Sheets

Year: 2015

Version: Pre-print

Please cite the original version:
Martin, Floran & Singh, Deepak & Belahcen, Anouar & Rasilo, Paavo & Arkkio, Antero.
2015. Analytical Model for magnetic Anisotropy Dedicated to Non-Oriented Steel Sheets.
COMPEL. Volume  34, Issue 5. 6. DOI: 10.1108/COMPEL-02-2015-0076.

Rights: © 2015 Emerald. This is the pre print version of the following article: Martin, Floran & Singh, Deepak &
Belahcen, Anouar & Rasilo, Paavo & Arkkio, Antero. 2015. Analytical Model for magnetic Anisotropy
Dedicated to Non-Oriented Steel Sheets. COMPEL. Volume  34, Issue 5. 6. DOI:
10.1108/COMPEL-02-2015-0076, which has been published in final form at
http://www.emeraldinsight.com/doi/full/10.1108/COMPEL-02-2015-0076.

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that material may
be duplicated by you for your research use or educational purposes in electronic or print form. You must
obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or
otherwise to anyone who is not an authorised user.

Powered by TCPDF (www.tcpdf.org)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80721368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.aalto.fi/en/
http://aaltodoc.aalto.fi
http://www.tcpdf.org


Analytical Model for Magnetic Anisotropy of Non-Oriented Steel Sheets 

 

Floran Martin, Deepak Singh, Anouar Belahcen, Paavo Rasilo, Ari Haavisto, and Antero Arkkio 

Aalto University, Departement of Electrical Engineering and Automation, Otakaari 5, 02150 Espoo, 

Finland 

 

Abstract— Recent investigations on magnetic properties of Non-Oriented steel sheets enhance the 

comprehension of the magnetic anisotropy behaviour of widely employed electrical sheets. Our 

investigation consists of developing an analytical model to consider these magnetic properties while 

modelling electromagnetic systems. From rotational measurements, the anhysteretic curves are 

interpolated in order to extract the magnetic energy density for different directions and amplitudes of 

the magnetic flux density. Furthermore, the analytical representation of this energy is suggested based 

on statistical distribution which aims to minimize the intrinsic energy of the material. Our model is 

validated by comparing measured and computed values of the magnetic field strength. Finally, it is 

implemented into a finite element method. 

 

1. Introduction 

Non-oriented (NO) electrical steel sheets are usually composed of iron doped with silicon. Although 

their manufacturing process tends to confer isotropic properties (Kedous-Lebouc 2006, Rasilo et al. 

2011), magnetic anisotropy has been always observed and recently investigated (Chwastek 2013, 

Handgruber et al. 2014, Higuchi et al. 2014). Three main intrinsic phenomena involve anisotropic 

characterization of body centred cubic iron (Chikazumi 1997): 

 Shape anisotropy is a purely magnetostatic phenomenon. It depends on the shape of 

ferromagnetic crystal and its magnetic moment. These magnetic moments within the crystal 

produce not only an external magnetic field but also an internal field known as the 

demagnetization field (Osborn  1945). 

 Magnetocrystalline anisotropy is mainly caused by spin-orbit interaction (Cullity  and Graham 

2008). Thus it depends on the molecular structure of the crystal. In grain-oriented (GO) 

electrical steel sheet, the body centred cubic structure for pure iron is enhanced in order to 

bring a hard direction in the diagonal of the cube. With NO steel sheet, this phenomenon is 

diminished. 

 Magnetostriction results by strain due to an external field which rotates magnetic moments 

interaction (Cullity  and Graham 2008). Although, this effect would be neglected in case of 

perfectly spheroidal crystal, the spin- orbit interaction also involves significant 

magnetomechanical effects on electrical sheets (vibration, additional losses, etc.) (Belahcen et 

al. 2014, Cullity  and Graham 2008, Fujisaki et al. 2004, Skomski 2008). 

 

Models of magnetic anisotropy derive from different formulations regarding to the target application. 

The following non-exhaustive literature review considers applications dedicated to finite element 

formulation. Since the magnetic anisotropy infers a dependence of reluctivity on both amplitude and 

direction of the applied flux density, its model can be developed by interpolating between two 

adjacent measured B-H curves (Shirkoohi and Liu 1994). Under rotational applied flux density, 

Enokizono and Soda (1995) develop a Garlerkin’s formulation based on the decomposition of the 

magnetic field into a purely rotational field (isotropic) and an effective field (anisotropic). The 

isotropic reluctivity and components of the effective magnetic field are interpolated and implemented 

into their numerical method. 

 

Derived from magnetocrystalline theory (Skomski 2008), Vernescu-Spornic et al. (2000) develop a 

mixed Preisach/biastroide model. The biaxial anisotropy is considered by minimizing the sum of the 

applied field and the magnetocrystalline anisotropy energy, which depends on the first anisotropy 

constant. Their model was validated by comparison with measurements on NiFe samples at 1.5 T and 

50 Hz under rotating induction, alternating sinusoidal along hard direction and both rolling and 



transverse directions. However discrepancies were noticed at low flux level especially under rotational 

measurements. Considering the phase mode theory (Néel 1944), Fiorillo et al. (2002) investigate the 

impact of experimental setup on magnetic measurements of GO iron steel sheets under alternating 

flux. Their improved model includes not only the first and the second anisotropy constants but also 

hysteresis loops. From 0.4 to 1.5 T, their model fits well with measurements performed on X-stack 

(low effect of shape anisotropy), Epstein frame and Single Sheet Tester. 

 

Based on energy/coenergy density principle (Silvester and Gupta 1991), Péra et al (1993a), (1993b) 

expand a phenomenological model on GO sheets which needs only the rolling (RD) and the transverse 

(TD) direction given by manufacturers. For low value of coenergy density (shape anisotropy), hard 

direction is close to 90 while the hard direction appears, in theory, in the diagonal of a cubic crystal 

(55) for higher coenergy density level. Although, their computational implementation requires some 

numerical derivation based on interpolation, their model matches with alternating flux measurements 

for 4 various directions in the range of 200 A/m to 30 kA/m. However, the four magnetization modes 

introduced by Néel (1944) are not fully described by this phenomenological approach, so data in more 

directions are needed to characterize these sheets completely (Higuchi et al. 2014, Meunier 2008). 

Thus, Higuchi et al. (2014) model the magnetic energy density for NO sheets with Fourier series. 

Their decomposition is based on alternating flux with 7 different cutting angles on Single Sheet Tester 

(Higuchi et al. 2012). Their approach shows that magnetic anisotropy impacts on torque ripples and 

hysteresis losses of an interior permanent magnet motor. 

 

Mainly, the magnetic anisotropy can be modelled with at least one of those three approaches. The first 

one, based on interpolation with piecewise polynomial functions, should grant the best accuracy but it 

would also require the most computational effort and a large amount of measurements. The second 

one, based on material theory, should present a relatively good accuracy depending on the 

assumptions. For instance, the magnetostrive phenomenon and the magneto-mechanical impact on the 

magnetic behaviour are usually neglected. Moreover, those models are usually developed such as the 

magnetization is expressed as a function of the magnetic field strength. Thus, those non-linear models 

would require an inversion process for implementation in finite element methods with magnetic vector 

potential. The third approach should present a relatively correct accuracy since the components of 

magnetic flux density are determined by differentiation of the energy density. Since the energy density 

is a scalar, its representation with piecewise polynomial functions would reduce the computational 

effort compared to an interpolation of every components of the magnetic field. 

 

 

In this paper, we present an original model developed by including Gumbel distribution on energy 

density principle. Originally, Gumbel distribution can be employed to model the distribution of the 

maximum (or the minimum) in many samples characterized with various distributions (Gumbel 1935). 

The arrangement of the grains, containing different crystals within the sheets, depends on 

manufacturing process. Grain size, wall thickness, and magnetic moment orientation differ within the 

NO sheets. While applying an external field, we assume that this macroscopic structure will move in 

order to minimize its intrinsic energy. As energy density is a scalar, its implementation in finite 

element method should result in faster resolution of the energy functional formulation than 

manipulating B and H vectors. Whereas the energy density presents an implicit form in (Bíró et al. 

2010, Péra et al. 1993a), we suggest an explicit formulation in order to ease the computations. The 

proposed model is fitted with 16 parameters from 9 rotational measurements with Gumbel functions. 

Finally, the suggested model is implemented into a 2D finite element method. 

 

2. Extraction of energy density from rotational measurements 

Measurements have been carried out in two cross shape NO sheets (Belkasim 2008). In order to 

reduce the effect of shape anisotropy (Fiorillo et al. 2002), the rolling direction of both sheets is 

shifted by 180 . Every component of B-H loci are measured with 3 072 points at 10 Hz. Rotating 



magnetic flux density presents 9 different amplitudes: 0.2 T, 0.42 T, 0.64 T, 0.87 T, 1.09 T, 1.34 T, 

1.52 T, 1.65 T, and 1.89 T. We are interested in extracting the anisotropic energy density which does 

not produce losses over a cycle. 

 

A. Interpolation of anhysteretic curves 

In order to retrieve the anhysteretic curves, we remove the magnetic losses. The overall magnetic 

losses magp  can be determined by integration over a full period T  (Rasilo et al. 2011): 
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The components of the magnetic flux density xb  and yb  as well as the components of the magnetic 

field strength xh  and yh  can be decomposed in Fourier series:  
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where  is the time pulsation of the supply,  is the phase shift between the harmonic and the 

fundamental. Indices k and p relates to the flux density and the field strength respectively. Index 

meas refers to the measured loci which include the magnetic losses. For simplicity of the calculation, 

we consider one harmonic of the flux density and one harmonic of the field strength. 

 

The expression of the magnetic losses becomes: 

     ykypypykxkxpxpxkkpmag hbhb
k

p 


 sinsin
2

 (3) 

It can be shown that the magnetic losses are non-nil only if pk  . 

Finally, the overall magnetic losses can be removed by setting the phase shift of every harmonic of the 

magnetic field such as: 

xkxp    and 
ykyp    (4) 

 

With perfectly circular B loci, the components measxb   and measyb   are only composed of the 

fundamental and so removing the magnetic losses can be performed by cancelling the phase shift of 

the fundamental of both measxh   and measyh  . 

 

Since the anisotropic angle between magnetic magnitudes present less variation when the material 

approaches its saturation, the reference angle maxh corresponds to the H locus matching with 1.89 T 

B locus. From the 3 072 different directions, we select the amplitude of 9 H loci whose polar angle is 

closest to the reference. While each H amplitude is associated with its corresponding B amplitude, 

H(B) anhysteretic curves (Figure 1) are extracted and interpolated with a shape-preserving piecewise 

cubic polynomial function.  
 



 
Fig. 1. Representation of the method for determining the anhysteretic curves from B-H loci for a given 

direction maxh  

B. Energy density distribution and equal contour of energy density 

The energy density  yx bbw , is computed by integration of the interpolated anhysteretic curves by: 
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Figure 2 represents the extracted energy density from the measurements by the described method. 

 

Fig. 2. Representation of the magnetic energy density  yx bbw ,  extracted from the quasi-static 

measurements 

 

This energy density is interpolated by a surface spline in order to compute equal contour of energy 

density. From the 0.2 T and 1.89 T loci, the highest and the lowest energy density are respectively 

selected for both extrema contours of energy density. With all other loci, average values of energy 

density are retained in order to compute the equal contour of energy with Brent’s method (Brent 

1973). Since the modified elliptic model assumes that the equal contours of energy density are 

orthogonal to both axes (0, xb )  and (0, yb ), we rotate the xb  and yb  components in order to fulfil this 

assumption.  

 





























y

x

ww

ww

yR

xR

b

b

b

b





cossin

sincos
 (6) 

 

 



From our measurements, the rotation angle w is 3.01. This angle can be interpreted as a 

misalignment between the macroscopic rolling direction and the x  axis of the measurements. Figure 3 

represents the equal contours of energy density. 

  
Fig. 3. Contours of equal energy corresponding to the interpolated anhysteretic curves 
 

Since, we aim to improve the modified elliptic model of isolines of energy developed by T. Péra et al. 

(Bíró 2010, Péra 1993a), we compute the value of energy density 0w , the intersection 0xB  and 0yB  

between these contours and both axes  (0, xb ) and (0, yb ) respectively, and the parameter n which is 

equal to 2 in the specific case of elliptic contours (Table I). 

 

Table I. Data of equal energy contours 

0w  [J/m
3
] 0xB [T] 0yB [T] n  

5.13 0.225 0.222 2.000 

13.35 0.410 0.439 1.855 

24.53 0.622 0.695 1.808 

37.93 0.829 0.942 1.792 

55.16 1.035 1.153 1.772 

96.47 1.274 1.347 1.931 

236.85 1.516 1.506 1.976 

628.05 1.677 1.634 1.992 

1105.32 1.761 1.711 1.999 

 

3. Analytical representation based on Gumbel distribution 

The modified elliptic model represents the equal contour of energy density with the following 

assumptions (Bíró 2010, Péra 1993a): 

 B and H are collinear in both rolling and transverse directions so equal contours of energy 

density are orthogonal to these directions; 

  Hysteresis is neglected in order to provide a monotonous implicit function  
xy HH . 

Thus equal contours of energy density can be modelled by the following implicit function F: 
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The 3 functions 0xB , 0yB  and n  can also be calculated as a function of the energy density as in (Bíró 

2010, Péra 1993a). 



A. An improved expression of energy density 

With our approach, we propose an explicit expression of the energy density in order to compute 

components of magnetic field by analytical differentiation. In its general form, energy density could 

be expressed by: 
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where C, D, and n  are 3 functions that only depend on the components of magnetic flux density. 

With the suggested model, equal contours of energy density are linked with the original approach by: 
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By simple identification of (7) and (9), we can notice that functions n  are the same and functions C, 

D can be computed by: 
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These 3 functional parameters can be interpolated by piecewise polynomials but in order to ease the 

computation of energy density differentiations, we suggest an interpolation by Gumbel distributions. 

B. Representation and interpolation of functional parameters 

Considering NO steels, functions C, D, and n  can be expressed as a function of the amplitude of 

magnetic flux density B. Originally, Gumbel distribution aims to approach the maximum value 

corresponding to many samples with different distributions. While applying an external field, we 

assume that grains and walls will move in order to minimize the intrinsic energy. Hence, functional 

parameters C and D could be interpolated with the inverse of a Gumbel function g . The functional 

parameter n  which corresponds to the intrinsic magnetic moment could be modelled with a Gumbel 

function too. Moreover, from the extracted value of n  (Table I), we can notice that the elliptic 

assumption would be correct in both cases: without applied field and when steel reaches its saturation. 

So, we suggest the following interpolated functions: 
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where B is the amplitude of the magnetic flux density,  , b ,  , and k  are the parameters of the 

Gumbel distribution. 

The Gumbel distribution is given by: 
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The functional parameters C, D, and n  are represented in figures 4-6. 



 

Fig. 4. Representation of the function  yx bbn ,  fitted by Gumbel distribution 

 

Fig. 5. Representation of the function  yx bbC ,/1  fitted by Gumbel distribution 

 

Fig. 6. Representation of the function  yx bbD ,/1  fitted by Gumbel distribution 

 

The functional parameters are fitted with a non-linear least squares method that minimizes the 

absolute difference of the residuals, rather than the squared difference. The fitted parameters, error 

and correlation coefficients are given in table II. 

 

 

 

 



Table II. Parameters of the Gumbel distributions to model n , C, and D in the energy density model 

  yx bbn ,2    1
,



yx bbC    1
,



yx bbD  

  0.1149 0.0445 0.0609 

b  0 1.2805 0.7288 

  -0.2114 -0.8186 -0.4040 

k  3.2967 0.4604 1.4435 

Correlation 2r  0.9957 0.9947 0.9941 

Error rmse 0.0059 0.0004 0.0005 

 

First, we can notice that Gumbel distribution provides both good correlation coefficients and small 

root mean square errors for the interpolation of the 3 functional parameters C, D, and n . Since we 

model C, D, and n  to describe the energy density as a function of the amplitude of B, we suppose that 

equal contours of energy are close to circular shape. Hence, the suggested model would not be 

appropriate for material with strong anisotropic behaviour such as GO steel sheets. The parameter k  

which allows a modification of original slopes of Gumbel distribution has been introduced in order to 

improve the interpolation. 

 

4. Investigation on the suggested model 

The H loci can be determined by differentiating the energy density with respect to the components of 

flux density. These computed H loci are compared with the measured loci. A sensitivity analysis is 

introduced to evaluate the effect of uncertainty on flux density measurements. 

 

A. Comparison between measured and computed magnetic field 

Components of magnetic field strength are determined by: 
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These components only depend on the components of magnetic flux density and parameters of 

Gumbel distribution. Hence, H loci can be computed from measured B loci. In Figures 7a-7i, we can 

notice that both measured and computed H loci present similar shapes. For higher value of magnetic 

flux density, the flower shape related to anisotropy is reproduced by the suggested model. For low 

value of magnetic flux density, the model reproduces a quasi-isotropic shape. Then, the average 

relative error between the model and the measurements is 22 %. The highest error is reached for the 

locus corresponding to the amplitude of 1.79 T of magnetic flux density (Figure 7i). Therefore, we 

propose to investigate the impact of errors in the measurements of the magnetic flux density. 

 

B. A sensitivity analysis 

In order to appreciate the comparison between computed and measured H loci, we propose to model 

H loci with an error of +/- 1.6% on the measurements of xb and yb . The grey area in figure 7a-7i 

represents the impact of this error on the computed magnetic field strength. We can notice that for 

1.79 T which contains the maximum error of our proposed model, the impact of uncertainty in 

magnetic flux density measurements is strongly significant. Thus, it may not be relevant to estimate 

the accuracy of the model based on this locus.  

 

Besides, since the B loci are not perfectly circular, their hysteresis angles differ within every locus. 

Hence, the proposed method to extract the B-H anhysteretic curves for different directions also 

presents some error. Although, errors arise from different phenomena, the proposed method models 

the magnetic anisotropy of non-oriented steel sheets with relatively low error (22 %). 



 

 
                       (a) H locus - 0.20 T                                              (b) H locus - 0.42 T 

  
                       (c) H locus - 0.64 T                                              (d) H locus - 0.87 T 

 

                       (e) H locus – 1.09 T                                              (f) H locus – 1.34 T 



 
                       (g) H locus – 1.52 T                                              (h) H locus – 1.65 T 

 
(i) H locus – 1.79 T 

Fig. 7. Comparison of the calculated magnetic field (in red) and the measured field (in blue) from the 

rotating measure at 10 Hz. The grey area corresponds to the impact of +/- 1.6% of error in flux 

density measurements on the computed field. 

 

5. Implementation in finite element method 

In order to enhance our objective, we implement the proposed model into a 2D finite element method. 

The section S of a rotational single sheet tester (Figure 8a) is discretized into first order triangles and 

the magnetostatic problem is defined with the magnetic vector potential A. The governing partial 

differential equation is solved with the Garlekin’s method by minimizing the energy functional F 
given by (Meunier 2008): 
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where J represents the current density sources. 

Since the magnetic properties are anisotropic and non-linear, its minimization requires an iterative 

process. The estimated magnetic vector potential Ak is updated after each k iteration with the Newton-

Raphson method. Its expression is given by: 
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where the residual vector R and the Jacobian matrix P are composed of the terms given by: 
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where Ni is the shape function of the finite element method, i and j are node numbers. 



The incremental reluctivity tensor BH  / is determined by differentiating the energy density w (8). 

Its expression is given by: 
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The windings of three phases supply are modelled with six Dirichlet boundary conditions: 
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where Aa(t), Ab(t) , and Ac(t) corresponds to the three phases supply. They are determinated by: 

 

 tAtAa cos)( max   3/2cos)( max   tAtAb   3/2cos)( max   tAtAc  (19) 

 

where Amax is the amplitude of the magnetic vector potential (Amax=1.7 mT.m) and   is the time 

pulsation corresponding to 50 Hz. One period is discretized into 200 time-steps. 

Those conditions are imposed on the edges of the 6 legs (Figure 8a). 

 

 

 
          (a) Geometry and boundary conditions                          (b) Flux density vectors  

Fig. 8. Representation of the rotational single sheet tester. The flux density vectors are plotted at the 

instant matching with two periods  

 

In Figure 8.b, we can notice that the flux density is not as homogeneous as in isotropic material. The 

flux lines are mainly located in the edges of the rotational sheet tester. At the position indicated in 

Figure 8.b, the  HB curves are represented in Figure 9. We can first observe that the flux density is 

unidirectional in the legs of a rotational sheet tester. Then, for small amplitude of B , the magnetic 

properties are isotropic as it was noticed in table II and section 4. Finally, the suggested model of 

magnetic anisotropy is suitable for its incorporation with finite element methods. 



  
Fig. 9. Representation of the magnetic properties of both components bx(hx) and by(hy) at an arbitrary 

location of the rotational sheet tester 

 

 

 

6. Conclusion 

The suggested model is based on an analytical formulation of the energy depending on the 

components of the magnetic flux density. This formulation is composed of 3 Gumbel distributions. 

Every functional parameters of energy density is formulated with only 4 parameters which are 

calculated by fitting the energy extracted from measurements. The components of the magnetic field 

are then deduced by differentiating the magnetic energy with respect to the components of the 

magnetic flux density. Hence, with this analytical formulation, the determination of H does not 

require any iterative process as it is usually the case with this energy method coupled with implicit 

function. Finally, the proposed model is validated by comparing the computation and the 

measurements of 9 H loci for non-oriented steel sheets at 10 Hz. The proposed analytical model 

shows good agreements with an average relative error of 22 %.  

 

Besides, the suggested model is implemented into a finite element method for a rotational sheet tester. 

Its incorporation is relatively easy. In further work, it could be relevant to improve the measurement 

control in order to apply perfectly circular loci of the rotating flux density.  
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