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The loss of an upper limb is a life-altering accident which makes everyday life more difficult. 
A multifunctional prosthetic hand with an user-friendly control interface may significantly 
improve the life quality of amputees. However, many amputees do not use their prosthetic 
hand regularly because of its low functionality, and low controllability. This situation calls 
for the development of versatile prosthetic limbs that allow amputees to perform tasks that 
are necessary for activities of daily living.  

The non-pattern based control scheme of the commercial state-of art prosthesis is rather poor 
and non-natural. Usually, a pair of muscles is used to control one degree of freedom. A 
promising alternative to the conventional control methods is the pattern-recognition-based 
control that identifies different intended hand postures of the prosthesis by utilizing the 
information of the surface electromyography (sEMG) signals. Therefore, the control of the 
prosthesis becomes natural and easy.  

The objective of this thesis was to find the features that yield the highest classification 
accuracy in identifying 7 classes of hand postures in the context of Linear Discriminant 
Classifier. The sEMG signals were measured on the skin surface of the forearm of the 8 able-
bodied subjects. The following features were investigated: 16 time-domain features, two 
time-serial-domain features, the Fast Fourier Transform (FFT), and the Discrete Wavelet 
Transform (DWT). The second objective of this thesis was to study the effect of the sampling 
rate to the classification accuracy. A preprocessing technique, Independent Component 
Analysis (ICA), was also shortly examined. The classification was based on the steady state 
signal. The signal processing, features, and classification were implemented with Matlab. 

The results of this study suggest that DWT and FFT did not outperform the simple and 
computationally efficient time domain features in the classification accuracy. Thus, at least in 
noise free environment, the high classification accuracy (> 90 %) can be achieved with a 
small number of simple TD features. A more reliable control may be achieved if the features 
are selected individually of a subset of the effective features. Using the sampling rate of 400 
Hz instead of commonly used 1 kHz may not only save the data processing time and the 
memory of the prosthesis controller but also slightly improve the classification accuracy. 
ICA was not found to improve the classification accuracy, which may be because the 
measurement channels were placed relatively far from each other. 
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Yläraaja-amputaatio vaikuttaa suuresti päivittäiseen elämään. Helposti ohjattavalla toimin-
nallisilla proteeseilla amputoitujen henkilöiden elämänlaatua voitaisiin parantaa merkittäväs-
ti. Suurin osa amputoiduista henkilöistä ei kuitenkaan käytä proteesiaan säännöllisesti pro-
teesin vähäisten toimintojen ja vaikean ohjattavuuden vuoksi. Olisikin tärkeää kehittää hel-
posti ohjattava ja riittävästi toimintoja sisältävä proteesi, joka mahdollistaisi päivittäisessä 
elämässä välttämättömien tehtävien suorittamisen.  
 
Markkinoilla olevat lihassähköiset yläraajaproteesit perustuvat yksinkertaiseen hahmontun-
nistusta hyödyntämättömään ohjaukseen, jossa lihasparilla ohjataan yleensä yhtä proteesin 
vapausastetta. Lupaava vaihtoehto perinteisille ohjausmenetelmille on hahmontunnistukseen 
pohjautuva ohjaus. Se tunnistaa käyttäjän käden asennot käsivarren iholta mitatun lihassäh-
kösignaalin sisältämän informaation avulla mahdollistaen helpon ja luonnollisen ohjauksen. 
  
Tämän diplomityön tavoitteena oli löytää piirteet, jolla seitsemän erilaista käden asentoa pys-
tytään luokittelemaan mahdollisimman tarkasti lineaarisella diskriminantti luokittelijalla. 
Lihassähkösignaalit mitattiin kahdeksan ei-amputoidun koehenkilön käsivarresta ihon pin-
nalle kiinnitetyillä elektrodeilla. Työssä vertailtiin seuraavia piirteitä: 16 aika-alueen piirret-
tä, kaksi aikasarja-alueen piirrettä, nopea Fourier-muunnos (FFT), diskreetti Aalloke-
muunnos (DWT). Työn toinen tavoite oli tutkia näytteenottotaajuuden vaikutusta luokittelu-
tarkkuuteen. Myös esiprosessointia riippumattomien komponenttien analyysillä tutkittiin 
lyhyesti. Luokittelu tehtiin staattisen lihassupistuksen aikana mitatun signaalin perusteella. 
Signaalin prosessointi, piirteet ja luokittelu toteutettiin Matlabilla.  
 
Tämän tutkimuksen tulokset osoittivat, etteivät diskreetti Aalloke-muunnos ja nopea Fourier- 
muunnos yllä laskennallisesti tehokkaampia aika-alueen piirteitä parempaan luokittelutark-
kuuteen. Pienellä määrällä yksinkertaisia aika-alueen piirteitä voidaan saavuttaa hyvä luokit-
telutarkkuus (>90 %). Luokittelutarkkuutta voitaneen edelleen parantaa valitsemalla opti-
maaliset piirteet yksilöllisesti pienestä joukosta hyviksi havaittuja piirteitä. Käyttämällä 400 
Hz:n näytteenottotaajuutta yleisesti käytetyn 1 kHz:n sijasta, voidaan sekä säästää proses-
sointiaikaa ja proteesin prosessorin muistia että myös parantaa hieman luokittelutarkkuutta. 
Esiprosessointi riippumattomien komponenttien analyysillä ei parantanut luokittelutarkkuut-
ta, mikä johtunee siitä, että mittauskanavat olivat suhteellisen kaukana toisistaan. 
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1 Introduction 

1.1 The need for the upper limb prostheses 
 
 
Little is known about the number of persons currently living with the loss of a limb. A 
deep analysis has been performed by NHI in United States in 1988 and 1996. At that 
time, approximately 133 735 people have undergone an amputation per year.[1] Most 
recent estimates of the number of amputations in United States are from the year 2005 
[2]. According to these estimates, 1.6 million persons were living with the loss of the 
limb, and the number of amputations per year was 185 000. The number living with the 
loss of an upper limb, excluding finger amputations, was 41 000. According to Miscera 
et al. the amount of upper-limb amputations in European countries ranges from 50 to 
270 per year, with about 1900 traumatic upper-limb amputees per year and a total of 94 
000 upper-limb amputees in Europe [3]. In contrast with lower-limb amputations, which 
were usually due to vascular diseases, upper-limb amputations are mostly trauma-
related (68% out of all). After accidents and injuries, certain diseases, such as tumors, 
vascular diseases, and infections are the most common reasons for upper limb amputa-
tions. [1] Table 1 shows numbers and causes of upper and lower limb amputations in 
United States in the year 2005. 
 
The loss of an upper limb is a life-altering accident. After an amputation, even the sim-
plest everyday tasks may become difficult, time-consuming, or fully impossible. A psy-
chological adaption to a new situation is a long and difficult process. Thus, it is easy to 
see the great need for a low-cost and functional prosthetic arm for these people. Howev-
er, a survey from 2002 revealed that  44% of all 70 amputees participated in the study 
do not use their prosthetic hand regularly due to its low functionality, poor cosmetic and 
unnatural appearance, lack of sensory feedback, and low controllability [4] . This situa-
tion calls for the development of versatile prosthetic limbs that will allow amputees to 
perform tasks that are necessary for activities of daily living.    
 
Table 1: Estimated Prelevance by Type and Level of Limb Loss and Etiology (in thousands): 
Year 2005, United States.  United States. (Totals may not equal sum because of rounding.) [2] 
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1.2 Myoelectric Information for Upper-Limb Prosthesis Control 
 

Upper-limb prostheses can be controlled either by gross body movements (body-
powered prostheses) or by using the information from myoelectric signals (myoelectric 
prostheses). A body-powered prosthesis captures the movements (usually of the shoul-
der, upper arm, or chest) by a harness system and uses them to pull a cable that is con-
nected to a prosthesic hand or a hook. A myoelectric prosthesis utilizes the electrical 
action potential of the muscles of the residual limb that are emitted during muscular 
contractions. The emissions are picked up by electrodes and are amplified for use as 
control signals to the functional elements of the prosthesis. The electrodes can be either 
implantable electrodes (placed under the skin) or surface electrodes (places on the skin 
surface). [3] The myoelectric control using surface electrodes, i.e. surface electromyog-
raphy (sEMG) seems to be the most used approach for the upper limb prostheses. For 
amputees lacking adequate dual EMG output or control, or for prostheses that require 
additional inputs to control more degrees of freedom the following control methods can 
be used: single-site electrode control schemes, servo control, linear potentiometers, lin-
ear transducers, force-sensing resistors, push-buttons, and harness switch control mech-
anisms.    
 
sEMG has several advantages over other input types. Unlike body powered prostheses 
or mechanical switch control prostheses, myoelectrical prostheses do not need straps or 
other harnesses. In addition, body-powered prostheses are limited in utility, frustratingly 
slow to operate, awkward to maintain, and they can operate only one joint a time. The 
muscle activity required to provide control signals is relatively small and can resemble 
the effort required of an intact limb. When compared to implantable electrodes, the ma-
jor advantage is noninvasiveness: the signal can be detected on the skin surface without 
any injury for the patient. sEMG is also relatively low cost method to control the pros-
thesis. [3] 
 
However, myoelectric control has also limitations. The random nature of myoelectric 
signal and limits on prosthesis activation delay make fine control difficult. The other 
disadvantage is lack of robustness in the processing of the input to specify the output 
and the disparity of the means of manipulation from natural motor control and learning. 
[3, 5] In addition, noise can affect sEMG signals degrading the signal to noise ratio 
(SNR). Noise can be due to different factors such as inherent noise in electronics 
equipment, motion artifacts, inherent stability of signal (signal is affected by the firing 
rate of motor units which, in most conditions, fire in the frequency of 0 to 20 Hz) and 
crosstalk (the signal is detected over a muscle but generated by another muscle close to 
the first one).  
 
Implantable electrodes may solve many problems related to surface electrodes and im-
prove the MES quality: They are not affected by crosstalk and provide more stabile and 
independent control sites. In addition, the tissue filter effect is reduced because there is 
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no fat between the signal source and the electrode. However, it is somewhat unclear 
whether the local information of intramuscular recordings outweighs the loss of the 
more global information contained in the sEMG. Two present studies have compared 
the performance of needle and surface sEMG for prostheses control application. Farrel 
et al. found that it may be possible to improve the classification accuracy by acquiring 
the EMG intramuscularly. The improvement in classification accuracy was 9 % when 
Root mean square (RMS) was used as a feature but only 2.0 % when root mean square 
and autoregressive (AR) coefficients were used. [6] Hargrowe et al. compared six dif-
ferent feature set/classifier combinations and suggested that the benefits associated with 
intramuscular EMG do not outweigh the more global information contained in the 
sEMG recordings for myoelectric control. Although, sEMG has higher inter-channel 
correlation than the intramuscular EMG, the classification accuracy remained high for 
both cases in their study. [7] Fig. 1 shows the results achieved in the study by Hargrove 
et al. 
 
 
 

 
 
Fig. 1. The average classification accuracy and standard derivation for the six different cases. 
Type I refers to intramuscular recordings and type S refers to surface measurements. The classi-
fiers used were Linear Discriminant Classifier (LDA) and a multilayer perception (MPL) artifi-
cial neural network classifier with 12 hidden layer nodes. The following features/ feature sets 
were used: the time domain statistics (TD), a sixth-order AR model plus the RMS signal value, 
and concatenated TD and sixth-order AR (TDAR).  Features are described more detail in Chap-
ter 3.6.2. [7]  
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1.3 Commercial Myoelectric Prosthesis 
 
The concept of sEMG-based control of artificial devices was introduced several decades 
ago, in the 1940s. The first commercial arm was developed in 1960 by the Central Pros-
thetic Research Institute of the USSR. It had one degree of freedom and a control prin-
ciple (opening and closing based on the strong contraction of antagonistic muscles, re-
spectively) that is still state of art. [3] A multifunctional myoelectric hand was devel-
oped in Japan in 1969, and the first myoelectric elbow prosthesis was developed in the 
United States in 1970s. Beginning in the 1970s, the powered upper-limb myoelectric 
prostheses were clinically and routinely fitted to upper-limb amputees. [8] Before 1975, 
the common control scheme was based upon the identification of active muscle rem-
nants in the stump of the amputee and the coding of two, at most three levels of activity 
of each remnant of prosthetic control. From the mid-seventies pattern-recognition-based 
methods began to be used. The pattern-recognition-based control allows an amputee to 
command a grasp posture of the prosthesis just by performing the corresponding action 
with the phantom limb. Thus, the pattern-based control is much more intuitive than non-
pattern-based control where an amputee must learn to associate muscle remnants actions 
to unrelated postures of the prosthesis.  In addition, non-pattern based control does not 
permit effective control of multiple joints, and the control may also become very diffi-
cult if the number of possible grasps shapes in the prosthesis is high. The significant 
breakthrough over the past years is connected to technological advances including de-
velopment of new electrodes, hardware systems for sEMG signal acquisition, personal 
computers and embedded systems for off-line and on-line processing. [9]  
 
To date, the most advanced upper-limb prostheses on the market are the i-limb ultra by 
Touch Bionics [10] and the Bebionic hand [11] by RLS Steeper. They are a real break-
through with respect to the previous state-of –art, Otto Bock’s SensorHand Speed, 
which is essentially an open-close mechanism. Each finger of the i-limb ultra moves 
independently and bends at the natural joints so that it can accurately adapt to fit around 
the shape of the object. The i-limb ultra also allows the user to create custom gestures. 
In addition, it is the only prosthetic hand that is able to gradually increase the strength of 
its grip on an object. However, the non-pattern-based control scheme employed in the 
bebionic hand and the i-limb ultra is still rather poor, using one or two electrodes to 
choose among a five predefined grasp shapes. [4] In addition of Touch Bionics and RLS 
Steeper, electronic prostheses and their components are sold by several companies, in-
cluding Otto Bock, Liberating Technologies, TRS Inc, Centri, and Shanghai Kesheng 
Prostheses Co.  
 
The commercial prostheses are still far from the state-of –art non-prosthetic mechanical 
hands, such as the Shadow Dexterous Hand by Shadow Robot Company Ltd with 20 
degrees of freedom (DOFs) [12]. These hands cannot be used as prostheses, because 
their actuation and control system are too heavy and bulky. The power-weight ratio is a 
problem for the prosthetic hands, because the motor is placed on the base of the hand, 
which, in order to increase the motor torque, resulting in a heavier device. Two com-
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mercial prosthetic hands, the i-limb ultra and SensorHand Speed, and a robotic hand 
The Shadow Dexterous Hand are shown in Fig. 2.  
 

                       
 
Fig. 2: a) Touch Bionics’s i-limb ultra prosthetic hand; b) The Shadow Dexterous Hand; c) Otto 
Bock’s SensorHand Speed prosthetic hand. [13] 

 
Table 2 presents a comparison among some commercially available prosthestic hands a 
robotic hand, and human hand. The natural forearm consists of five fingers, palm, and 
wrist joint. Each finger has three joints and 4 DOF. The palm has many joints, but the 
motive freedom is integrated into one DOF. The wrist joint has 3 DOF. Thus, the ideal 
prosthetic hand should have 24 DOF. However, because of their physical restrictions, 
such as weight, size, and power, the DOFs of commercial prostheses to five. Sensor 
Hand Speed has Autograsp feature that enables the hand to sense a change in the center 
of gravity and re-adjusts its grip automatically [14]. In many prosthesis the control 
speed and grip force are determined by the level of the muscle signal. Usually, only the 
open-close –function can be controlled with myoelectric signals and wrist rotation is 
passive. In order to make the appearance closer to human arm, prosthesis is usually cov-
ered with an artificial skin. The prostheses are available with different size and skin 
colors. 
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1.4 Objective of the Thesis  
 
 
This thesis examines the pattern-recognition-based control of myoelectric prosthesis. 
The EMG signals of the forearm muscles vary between different hand postures. The 
pattern-recognition-based control identifies different intended hand postures of the pros-
thesis by utilizing the information of the EMG signals. Thus, the pattern-recognition-
based approach enables much more natural and easy control than the non-pattern-based 
control strategy used in commercial prosthesis. The aim of this thesis is to find the fea-
ture vector that yield the highest classification accuracy when the EMG signals, meas-
ured on the forearm of the subject during six hand postures and resting state, are classi-
fied with Linear Discriminant Analysis (LDA) classifier. The selection of appropriate 
features is very important because the feature set has a significant effect on the classifi-
cation accuracy. LDA classifier is used in this study because it has shown to be the most 
suitable classifier for hand posture classification of sEMG signals.  
 
The second goal was to investigate whether it is possible to use lower sampling rate 
than the commonly used 1000 Hz. Lower sampling rate is desired because it saves the 
data processing time and memory of the prosthesis controller. In addition, Independent 
Component analysis is examined as a preprocessing method because it has shown to be 
promising to eliminate crosstalk artifacts. The effect of a postprocessing method, Major-
ity voting, is also demonstrated. The measurements are collected with surface electrodes 
on the right forearm of eight able-bodied subjects. 
 

The thesis is organized as follows. Firstly, we introduce the anatomy and physiology of 
the muscles in the human forearm. The formation of the sEMG signal and the most 
common artifacts related to sEMG are also described. In addition, we examine electrode 
types and review previous studies about optimal electrode placement. Secondly, we 
study the preprocessing of the EMG signal by discussing an optimal cut-off frequency 
and an optimal sampling rate as well as two preprocessing algorithms, Independent 
Component Analysis and Classwise Principal Component Analysis. We present the two 
control methods used in myoelectric prostheses: a pattern-based method and a non-
pattern-based method. However, because the focus of this study is on the pattern-based 
approach, the non-pattern-based control scheme is described only briefly. The pattern-
based control is described step by step: segmentation, feature extraction, feature normal-
ization, dimensionality reduction, classification, and postprocessing. Evaluating meth-
ods for classification accuracy are also discussed. Thirdly, we present the measurement 
system, electrode placement, and experimental setup used in this study. Data prepro-
cessing and representation as well as feature selection are also described. Finally, the 
results are presented and discussed.   
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2 Application Area 

2.1 Anatomy and Physiology of the Arm Muscles 
 
The aim of this chapter is to give an overview of anatomy and physiology of the fore-
arm muscles. The physiology of the muscle contraction is the basis of sEMG. The elec-
trical model for the motor action potential, described in this chapter, reveals how the 
sEMG signals provide a quantitative, reliable, and objective means of accessing muscu-
lar information. The knowledge of anatomy of the human arm is important when opti-
mal electrode placement is determined. Thus, the anatomy of the human forearm and 
function of each forearm muscle are introduced. 
 

2.1.1 Action Potential 
 

An action potential is a sequence of rapidly occurred events that reverse the membrane 
potential, and then eventually restore it to the resting state. When muscle fibers become 
innervated, the diffusion characteristics on the muscle fiber membrane are briefly modi-
fied, and sodium ions flow into muscle cell membranes resulting in depolarization. As a 
result of the inflow of positively charged sodium ions the membrane potential changes 
from -80 mV to +30 mV.  At the peak of the action potential the inside of the cell is 30 
mV more positive than the outside. After this, sodium channels close and potassium 
channels open. Some potassium ions leave a neuron, and a few negative charges begin 
to buildup along the inside surface of the membrane restoring immediately the ionic 
equilibrium through the repolarization process which lasts typically 2-3ms. [21] Follow-
ing the repolarization there may be an after-hyperpolarization phase where the mem-
brane potential temporarily becomes more negative than the resting state. Action poten-
tial is illustrated in Fig. 3. 
 
A nerve action potential elicits a muscle action potential similar to the action potential 
in neurons. Muscle action potential begins from the motor end plates, and spreads 
across the muscle fibers in both directions at a propagation speed of 2-6 m/s. The action 
potential causes a release of calcium ions in the intracellular fluid, and produces a 
chemical response resulting in a shortening of the contractile elements of the muscle 
cells. [21] 
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Fig. 3: a) General shape of an Action Potential. b) Three phases of action potential. [22] 
 

2.1.2 Muscle Contraction  
 

A skeletal muscle consists of individual muscle fibers each of which is a single cylin-
drical muscle cell. Fibers are bundled into fascicles and surrounded by three connective 
tissue layers that are extensions of the fascia. Muscle fibres consist of the myofibrils, 
the contractile elements, which contain overlapping thick and thin filaments. The fila-
ments inside a myofibril are arranged in components called sarcomeres, which are basic 
functional units of a myofibril. Narrow, plate-shaped regions of dense protein material 
called Z-disks separate one sarcomere from the next. Organization of skeletal muscle 
and its connective tissue coverings is illustrated in Fig. 4.  [21] 
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                            Fig. 4: Organization of skeletal muscle. [21] 
 
Each skeletal muscle fibre is controlled by a neuron at a single neuromuscular junction 
midway along the length of the fibre. A motor neuron and the muscle fibers it inner-
vates form a motor unit. Muscle contraction begins when a motoneuron cell is activated 
induced by the central nervous system or as a result of reflex. Secondly, impulses trig-
gered by integrating center propagate along the axon of motor nerve to the motor end-
plates where neurotransmitters are released. Arrival of the nerve impulse at the synaptic 
end bulbs causes many synaptic vesicles to fuse with the motor neuron’s plasma mem-
brane, liberating a neurotransmitter Acetylcholine (ACh) into the synaptic cleft. The 
ACh diffuses across the synaptic cleft between the motor neuron and the motor end 
plate. Binding of ACh molecules to the receptors on the motor end plate opens ion 
channels in the ACh receptors allowing sodium ions (Na+) to flow across the mem-
brane. As a result of the sudden inrush of sodium ions the inside of the muscle fiber 
become more positive which triggers a muscle action potential. A muscle action poten-

tial propagating along the sarcolemma causes +2Ca channels to open and the +2Ca ions 
to flow out of the sarcoplastic reticulum into the cytosol around the tick and thin fila-

ments. An increase in +2Ca concentration in the cytosol starts muscle contraction and a 
decrease stops it. The calcium ions combine with tropomyosin. As a result tropomyosin 
changes its shape and moves away from the myosin-binding sites on actin. Myosin 
heads bind to these free binding sites, and the concentration cycle begins. [21]    
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Four steps of the contraction cycle can be seen in Fig. 5. Muscle contraction occurs 
when myosin heads attach to and slide along the thin filaments at both ends of a sarco-
mere, progressively pulling the thin filaments toward the middle of the sarcomere (M-
line). Thin filaments slide inward and meet at the center of the sarcomere. As a result, 
the Z discs come closer together, and the sarcomere and shortens, causing shortening of 
the whole muscle fiber, which in turn leads to shortening of the entire muscle. This can 
culminate in the whole muscle shortering by as much as 50 %. [21]   
 

         
               Fig. 5: Contraction cycle. [21] 
 

2.1.3 Anatomy of Human Arm 
 
The forearm muscles act on the elbow and wrist joints and on those of digits. These 
muscles can be divided into flexor-pronator and extensor-supinator groups. The anterior 
forearm muscles are divided into three muscular layers, a deep layer, intermediate layer 
and superficial layer, as can be seen from Fig. 6. A septum of deep fascia separates the 
deep layer of the flexor muscles from the superficial and intermediate layers. The mus-
cles of the posterior of the forearm are divided into the superficial and deep groups. 
These muscle layers are shown in Fig 7.  Table 3 describes the action of each arm mus-
cle.  
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Fig. 6: The anterior compartment muscles of the forearm that move the wrist, hand, and fingers. 
a) Superficial view b) Intermediate view c) Deep view [21] 
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Fig. 7: The posterior compartment muscles of the forearm that move the wrist, hand, and fin-
gers. a) Superficial view b) Deep view [21] 

 
Most of the muscles that move the forearm and hand originate within the forearm. This 
is not the case with the biceps bachii and triceps brachii however, which insert from the 
arm. Contraction of the biceps brachii flexes the elbow and supinates the forearm and 
contraction of the triceps brachii extends the elbow. The brachialis and brachioradialis 
flex the elbow and are opposed by the anoconeus and the triceps brachii respectively. 
The flexor capri radialis flexes and abducts the wrist, whereas the flexor capri ulnaris 
flexes and adducts. The Palmaris longus aid the flexor capri radialis and flexor capri 
ulnaris in the flexion of the wrist. The extensor capri radialis produces extension and 
abduction of the wrist and the extensor capri ulnaris produces extension and abduction. 
The pronator teres and the supinator rotate the radius without either flexing or extending 
the elbow. They arise on both the humerus and forearm. The pronator quadratus arises 
on the ulna and assist the pronator teres in opposing the actions of the supinator or bi-
ceps brachii.  [23]  
 
Several superficial and deep muscles of the forearm move the digits in various ways. 
These so called extrinsic muscles stop before reaching the wrist and only their tendons 
cross over into the hand. The tendons pass through tendon sheaths that reduce friction 
and keep the tendons lubricated. This provides the hand and wrist with maximum mo-
bility, while at the same time providing muscle forces far in excess of those which the 
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intrinsic muscles of the hand are able to generate. The extrinsic muscles produce power-
ful but crude movements of the hand and fingers. Weak but fine control of the hand is 
performed by the intrinsic muscles which originate on the carpal and metacarpal bones. 
No muscle originates on the phalanges, and only tendons extend across the distal joints 
of the fingers. [23] 
 
Table 3:The actions of arm muscles 
Muscle name Function 
Flexor capri radialis Flexes and abducts hand (radial derivation) at wrist joint. 
Palmaris longus Weakly flexes hand at wrist joint. 
Flexor capri ulnaris  Flexes and adducts hand at wrist joint. 
Flexor digitorum 
superficialis 

Flexes middle phalanx of each finger at proximal interphalangeal joint, prox-
imal phalanx of each finger at metacarpophalangeal joint, and hand at wrist 
joint.  

Flexor pollicis longus Flexes distal phalanx of thumb at interphalangeal joint.  
Flexor digitorum 
superficials 

Flexes distal and middle phalanges of each finger at interphalangeal joints, 
proximal phalanx of each finger at metacarpophalangeal joint, and hand at 
wrist joint. 

Extensor Capri Radialis 
longus 

Extends and abducts hand at wrist joint. 

Extensor Capri radialis 
brevis 

Extends and abducts hand at wrist joint. 

Extensor digitorum Extends distal and middle phalanges of each finger at interphalangeal joints, 
proximal phalanx of each finger at metacarpophalangeal joint, and hand at 
wrist joint. 

Extensor digiti minimi Extends proximal phalanx of little finger at metacarpophalangeal joint and 
hand at wrist joint. 

Extensor Capri ulnaris Extends and adducts hand at wrist joint. 
Abductor pollicis longus Abducts and extends thumb at carpometacarpal joint and abducts hand at wrist 

joint. 
Extensor pollicis brevis Extends proximal phalanx of thumb at metacarpophalangeal joint, first meta-

carpal of thumb at carpometacarpal joint, and hand at wrist joint. 
Extensor pollicis longus Extends distal phalanx of thumb at interphalangeal joint, first metacarpal of 

thumb at carpometacarpal joint, and abducts hand at wrist joint. 
Extensor indicis Extends distal and middle phalanges of index finger at interphalangeal joints, 

proximal phalanx of index finger at metacarpophalangeal joint, and hand at 
wrist joint. 

Pronator teres Pronation of forearm, flexes elbow 
Pronator Quadratus Pronates the forearm 
 

2.2 Surface Electromyography  
 
This Chapter introduces the principles of sEMG, a noninvasive technique for detecting 
the electrical activity produced by electrically or neurologically activated skeletal mus-
cle cells. The formation of sEMG-signal is firstly described. After that, the typical fea-
tures and artifacts of the sEMG signal are examined. 
 

2.2.1 Formation of sEMG signal 
 
sEMG measures the actiopotential, described in the previous chapter. A depolarization-
repolarization process is a monopolar action potential that travels across the surface of 
the muscle fiber. Electrodes in contact with this wave front present a bipolar signal to 



 

 

the sEMG differential amplifiers because the electrodes are measuring the difference 
between two points along the direction of propagation of the wave front. 
electrodes are not very selective,
motor unit action potential trains (MUAPT) 
[24] modeled the sEMG signal 
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Fig. 8: Formation of EMG signal. a) The central nervous system sends a nerve impulse to the 
working muscle, causing it to contract. b) Electrodes 
tion potentials of several motor units. c) Usually, b
two adjacent electrodes) are used to eliminate the noise. In addition, the signal is amplified. d) 
The final signal is superposition of many motor unit action potentials.

 

EMG differential amplifiers because the electrodes are measuring the difference 
between two points along the direction of propagation of the wave front. 

not very selective, the sEMG signal is formed by a superposition
motor unit action potential trains (MUAPT) from many muscle fibers.

sEMG signal s(t) as 

indicates the specific motor unit,   is an amplitude factor, 

nce times of the MUAPs of the motor unit,  is a scaling factor, and 
noise. The formation of sEMG signals is illustrated in Fig. 8.  

: Formation of EMG signal. a) The central nervous system sends a nerve impulse to the 
working muscle, causing it to contract. b) Electrodes at the surface of the skin measure the a
tion potentials of several motor units. c) Usually, bipolar measurements (i.e. differe
two adjacent electrodes) are used to eliminate the noise. In addition, the signal is amplified. d) 

s superposition of many motor unit action potentials. [22] 
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EMG differential amplifiers because the electrodes are measuring the difference 
between two points along the direction of propagation of the wave front. Because these 

superposition of the 
from many muscle fibers. [8,7] Merlo et al. 

                     

is an amplitude factor,  are the occur-

is a scaling factor, and n(t) is additive 

 
: Formation of EMG signal. a) The central nervous system sends a nerve impulse to the 
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ipolar measurements (i.e. difference between 

two adjacent electrodes) are used to eliminate the noise. In addition, the signal is amplified. d) 
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The amplitude of the sEMG signal is about 10 mV (peak to peak). However, sEMG 
signal is strongly influenced by physiological, anatomical and biochemical factors. The 
strength of the EMG signal is depending on the size of the muscle that is measured and 
its position relative to the electrode. Thus with different electrode placements the EMG 
amplitude at maximum force production of underlying muscles may be very different. 
Because of a high number of overlapped MUAPs, and the irregular nature of motor unit 
discharge, the signal may be considered a complex and non-stationary stochastic signal. 
Because of the inherent physiology of the organ, sEMG signal is non-stationary, even 
during a constant voluntary contraction. However, during low-level (20-30% of the 
Maximum Voluntary Contraction, MVC) and short-time contractions (20-40 s), sEMG 
signal can be assumed to be wide-sense stationary (i.e. the mean of the process can be 
assumed to be a constant, the autocorrelation ����, �� can be assumed to depend only on 
the difference � � �, and the variance of the process can be assumed to be finite [25]. 
Higher level contractions (50-80% MVC) can be assumed locally stationary for a period 
of 500-1500 ms. Thus, sEMG can be assumed to be stationary in real-time applications. 
The level and duration of contraction, muscle states (constant or dynamic), muscle fa-
tigue, and sweat from skin determine the characteristics of the signal. Especially, sEMG 
signals at higher contraction levels are usually assumed to be a zero-mean Gaussian 
processes. At low-level contractions signals can be assumed zero-mean Laplacian pro-
cesses. [26] Clancy et al. found that a myoelectric signal model for a constant-force, 
constant-posture, non-fatiguing contractions falls between Gaussian and Laplacian 
models, but on average Gaussian model fits better. [27] 
 
Fig. 9 illustrates the effect of the grasping force to the signal amplitude. The subject 
increased the grasping force in four steps. This can be clearly seen from the signal: The 
amplitude increases in four steps from very small to high. As it is apparent from Fig. 9, 
the amplitude of EMG signal is correlated with the force generated by the muscle. 
However, estimating this force in general is challenging because of the difficulties in 
activating a single muscle in isolation, isolating the signal generated by a muscle from 
the signals of its neighbors (muscle crosstalk), and other associated problems.  

 
Fig. 9: Effect of the muscle contraction force to the sEMG signal amplitude. 
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2.2.2 The Raw EMG Signal 
 

An unfiltered and unprocessed EMG signal is called a raw EMG signal. In Fig. 10 a raw 
recording was done for three static contractions of the biceps brachii muscle. When the 
muscle is relaxed, an EMG baseline can be seen. The healthy relaxed muscle shows no 
significant EMG activity. Raw EMG spikes are of random shapes and thus one raw re-
cording burst cannot be precisely reproduced in exact shape. This is because the actual 
set of recruited motor units constantly changes within the matrix and diameter of avail-
able motor units. [22] 
 

                     
Fig. 10: The raw EMG recording of three static contractions of the biceps brachii muscle.[22] 
 

2.2.3 Surface EMG Artifacts 
 

An artifact is unwanted information contained within a signal. An EMG signal is very 
tiny and thus sensitive to artifacts. The most common sEMG artifact is the line interfer-
ence of 50/60 Hz noise. It originates from the power line and is transmitted by the elec-
trical devices placed near the EMG data acquisition device. An example of line interfer-
ence is shown in Fig. 11. [22] 
 
                  

 
 Fig. 11:50 Hz noise in the signal. 
 

Another very common type of artifact is a movement artifact. Movement artifacts occur 
when patient moves and the electrode slips around on the surface of the skin. Any 
change of distance between signal origin and detection site will alter the EMG reading. 
Movement artifacts are inherent problems of all dynamic movement studies and can 
also be caused by external pressure. They can be avoided by affixing leads to the subject 
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with tape or wraps. Electrodes should also be prevented from being struck. The use of 
strong high-pass filter in post-processing may eliminate this type of artifacts. [22] Fig. 
12 shows a movement artifact when the electrode is moving with respect to the skin.    
                   

 
 Fig. 12: Artifact when the electrode is moving with respect to the skin. 
 

When the muscle is moving, the body will show some movements as well. As a result 
the cable may move in the space between the electrode and the input of the amplifier 
causing movement artifacts shown in Fig. 13.  [28] 
 
                   

 
Fig. 13: Movement artifact when the cable is moving. 
 

The difference in the impedance between the skin and the electrodes may cause DC 
offset artifacts. It adds an offset to the raw signal which is normally centered on zero. 
Usually proper skin preparation and firm placement of electrodes on the skin prevent 
the problem. [22] 
 
Electrocardiography (ECG) artifact occurs when recording near the heart. ECG has 
higher voltages than EMG. ECG artifacts are difficult to remove from the EMG signal 
but they can be avoided by placing the electrodes so that they are not aligned with the 
axis of the heart activity.[22] Electrodes should also be placed as far away from the 
heart as possible and on the same side of the body. Proper electrode and cable fixation 
and very good skin preparation can solve these problems.[29] ECG artifact can be seen 
in Fig. 14. 
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Fig. 14: EMG raw recording with ECG spikes. [29]  
 

Muscle crosstalk is due to EMG signals coming from other muscles than the ones being 
monitored. Crosstalk can be reduced by placing electrodes at the middle of the muscle 
belly as well as choosing the appropriate inter-electrode distance (around 2 cm). [22] 
Also a preprocessing by independent component analysis or classwise principal compo-
nent analysis may reduce crosstalk artifacts [30, 31]. 
 

2.3 Electrodes 
 

A good acquisition of sEMG signal by electrodes is prerequisite for good signal pro-
cessing. This chapter introduces different electrode types used to measure sEMG signal 
as well as the optimal electrode placement on the surface of the skin. Secondly, the ef-
fect of electrode structure and configuration to the signal is described. Thirdly, we re-
view some recent studies that have been done to optimize the electrode placement to 
identify different hand postures.  
 

2.3.1 Electrode Types 
 

sEMG electrode can be defined either as a sensor of the electrical activity of a muscle or 
as a transducer of the ionic current, flowing in the tissue, into the electronic current, 
flowing in the metal wires. Two types of sEMG electrodes exist: floating electrodes and 
dry electrodes. Floating or wet electrodes have a layer of conductive gel as a chemical 
interface between the skin and the metallic part of the electrode. Dry electrodes are in 
direct contact with the skin, and they can be made of noble metals, carbon, sintered sil-
ver or silver chloride. Another classification is based on electro-chemical behavior. On 
this basis, it is possible to distinguish between polarizable and non-polarizable elec-
trodes. In polarizable electrodes no actual charge crosses the electrode-electrolyte inter-
face (e.g. Platinum electrode), but non-polarizable electrodes allow current freely pass 
across the interface (e.g Ag/AgCl electrode). Non-polarizable electrodes are, however, 
not suitable to record sEMG because of the risk of motion artifacts. [32] Electrodes are 
often accomplished by miniature pre-amplifiers to differentiate small signals of interest. 
[3] 
 



 
 

20 
 

 

2.3.2 The effect of Electrode Placement on the EMG-signal 
 

The importance of electrode structure and configuration lies in their effect on classifica-
tion accuracy, and prosthesis production cost. The number of electrodes also affect the 
processing time of the data. Thus, a configuration that yields high classification accura-
cy with few electrodes would be a very useful in prosthetic control. [33] The electrode 
configuration describes the area and shape of the electrode detection surfaces which 
determine the number of active motor units that are detected by virtue of the number of 
muscle fibers in the vicinity. In addition, the electrode configuration includes the dis-
tance between electrode detection surfaces which influences the bandwidth of the dif-
ferential electrode configuration. The location of the electrode with respect to the motor 
points in the muscle and myotendonous junction determines the amplitude and frequen-
cy characteristics of the detected signal. The location of the electrode on the surface of 
the muscle with respect to the lateral edge of the muscle determines the possible amount 
of crosstalk that may be detected by the electrode. The orientation of the detection sur-
faces with respect to the muscle fibers affects the value of the measured conduction ve-
locity of the action potentials and the amplitude and frequency content of the signal. 
Fig. 15 displays the influence of the electrode location on the amplitude and frequency 
spectrum of the signal. [34] 

                          
Fig. 15: The amplitude and frequency spectrum of the EMG signal is affected by the location of 
the electrode with respect to the innervation zone (top electrode), the myotendonous junction 
(bottom electrode) and the lateral edge of the muscle (middle right electrode). The preferred 
location, where the EMG signal with the greatest amplitude is detected, is in the midline of the 
belly of the muscle between the nearest innervation zone and the myotendonous junction. [34] 
 

Two alternative configurations commonly used to acquire sEMG signals are a 
monopolar configuration and a bipolar configuration. In the monopolar configuration an 
electrode is placed over the skin along the muscle, and the sEMG signal is recorded 
with respect to a reference electrode located to away on a neutral part of the skin. In the 
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bipolar configuration the signal recorded at two sites, the two signals are subtracted and 
the difference is amplified, as illustrated in Fig 8. Therefore, the signals that are com-
mon to both recording sites will cancel each other and only the signals that are different 
at the two sites will have a differentiate. Common signals originate from far away from 
the detection sites, whereas signals in the vicinity of the recording site will be different. 
As a result, relatively distant power lines noise signals will be removed and relatively 
local EMG signals will be amplified. The other advantage of the bipolar measurements 
is that because they have no single reference site, amplification can occur at the record-
ing site, before noise becomes introduced into the system. [3] 
 

2.3.3 Studies for Optimizing Electrode Placement for Electromyographic Control  
 

Despite of the importance of the electrode configuration to the quality of the EMG re-
cordings, only few researchers have studied an optimal electrode placement for EMG 
control of prosthesis. This is because EMG is generally limited to on/off control. While 
it has been shown that EMG can be used to identify different hand postures, or to con-
trol single fingers, the issue has been the number and location of electrode sites on fore-
arm.  
 
Walbarn et al. have shown that electrode sites can be optimized in order to provide max-
imum accuracy control actuation. They created a silicon mould of a human hand with an 
array of electrodes embedded within it and recorded data from each electrode site. The 
sites that provide the greatest difference in signal strength from resting to activation 
were identified. Several points in the extensor compartment of the forearm were found 
to be useful in recognizing hand postures, while several points in the flexor compart-
ment of the forearm were found to be useful in differentiating between hand postures. 
Some of their results are shown in Fig. 16. The figures show an unrolled coordinates of 
the electrodes in the silicon armband. Positive θ refers to the flexor muscles (under the 
forearm), and negative θ refers to the extensor muscles (on top of the forearm). [35] 
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Fig. 16: a) Optimal electrode positions found using longitudinal derivates for discriminating 
between cylinder grasp and relaxing. b) Optimal electrode positions found using radial derivates 
for discriminating between cylinder grasp and relaxing. c) Optimal electrode positions found 
using radial derivates for discriminating between pinch grasp and relaxing. d) Optimal electrode 
positions found using longitudinal derivates for discriminating between pinch grasp and relax-
ing. [35] 
 

Walbarn et al. have also extended their study to identify the optimal sites for grasp con-
trol, between different grasp types. They collected and processed data from 128 sites on 
a human forearm while two different grasps (a pinch grasp and a cylindrical grasp) were 
performed. Two feature extraction methods were used to gain different representations 
of the data: integral of absolute value (IAV) and differential absolute value (DAV). The 
regions around the wrist seemed to be best for using circumferential derivates (circles 
and squares), while regions around the elbow seemed to be best for using longitudinal 
derivates. [36] 
 

As the thumb is responsible for a majority of the grasp forming, it is likely that optimal 
electrode places would be found in the wrist region, the only place where the thumb 
muscles are close to the surface of the skin. The signals from that area would be ex-
pected to show large changes when a grasp type is changed. This can be seen in the cir-
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cumferential data. However, for longitudinal derivates the majority of the useful sites 
are found closer to the elbow. These derivates would be expected to represent action 
potentials running the length of the muscle fiber. This could represent a region where 
rotator muscles run or it is possible that there are subject specific characteristics with the 
subjects.[36] Fig.17 shows the regions which would be best for using circumferential 
derivates (circles and squares) and the regions suggested to be best for using longitudi-
nal derivates (triangles left and right.) 

                         
Fig. 17: The regions which would be best for using circumferential derivates and the 
regions which would be best for using longitudinal derivates. [36] 
      
Andrews et al. investigated the effect of the number and location of electrodes on finger 
movement classification during a typing task [33, 37]. They found that optimal classifi-
cation systems [37] and the best-performing electrode arrangement for each array size 
may be subject-dependent. They also suggested that for many subjects an array size of 
three electrodes can provide comparable classification performance to array sizes of up 
to eight electrodes. The effect of an array size on classification accuracy can be seen in 
Fig. 18. Dashed lines represent individual subjects and the solid line shows the average 
over all subjects. [33] 
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Fig. 18: The effect of array size on classification accuracy: individual subjects (dashed lines), 
average over all subjects (solid line). [33] 

 
Andrews et al. found also some trends associated with the electrode positions. Fig. 18 
shows the electrode placement on the posterior (top) surface and anterior (bottom) sur-
face of the forearm. In array sizes of six or fewer electrodes, positions 1 and 7 were 
most commonly selected while locations 4, 5 and 8 were least commonly selected. Elec-
trodes at positions 7 and 8 would be expected to receive similar signals because both of 
them are placed approximately over the flexor digitorum profundus, a muscle that is 
responsible for finger movement. The difference in their performance may be due to the 
proximity of position 8 to the ulna, so that position 7 yielded a stronger signal and was 
therefore often favored over position 8. Positions 4 and 5 were located farther from the 
finger movement muscles than many of the other electrode positions. The good perfor-
mance of position 1 may be due to its proximity to the extensor digitorum communis 
muscle and its proximity to fewer muscles tan positions 2 and 3 that are unrelated to 
finger movement (for example supinator and extensor Capri radialis longus), which 
would have affected signal-to-noise ratio. [33] 
 
Hargrove et al. determined the optimal electrode placement locations for their study 
where they compared the surface and intramuscular myoelectric signal classification. 
They found that surface electrodes placed over the extensor/supinator, flexor Capri 
ulnaris, and flexor digitorum subliminus are essential in providing good classification 
accuracy. These locations are shown in Fig. 19. There was some variation in the manner 
the surface electrode was applied between subjects because of the need to insert around 
the intramuscular fine-wire electrodes and the differences in the physical dimensions of 
the subjects forearm. Therefore, more judicious surface electrode placement strategy 
may result in more precise optimal channel locations. However, it can be seen that gen-
eral regions may provide better discrimination information for the 10 hand posture in-
vestigated. [7] 
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Figure 19: A cross section of the upper forearm. The light regions of the ring surrounding the 
forearm indicate electrode placement areas which were most useful for classification. [7] 
 

Previous studies have placed the electrodes either with reference to particular muscles 
[6, 13, 38, 39] or equidistantly over an area of interest [6, 40]. The number of electrodes 
vary between 1 [41] to 35 [42]. However, the effect of electrode configuration on classi-
fication accuracy cannot be clearly deduced through comparison of these studies be-
cause of differences in the study details.  
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3 Methods 

3.1 Pre-processing 
 
The goal of pre-processing is to maximize the quality of the acquired signals in terms of 
SNR and minimize possible distortion. Usually, this is done by using amplifiers. In ad-
dition, classification accuracy can be improved by using preprocessing algorithms 
whose aim is to suppress undesired distortions or enhances important features for fur-
ther processing. This chapter introduces the typical filters and two algorithms, Inde-
pendent Component Analysis (ICA) and Classwise Principal Component Analysis 
(cPCA), which have been used to preprocess the data in hand gesture classification. 
 

3.2 Filters 
 
The interferences and noise are eliminated from the sEMG signals by band-pass filter-
ing the signal. A low-pass filter attenuates the unwanted high-frequency components. 
The cut-off frequency of the low-pass filter is usually determined by the requirement of 
Nyqvist sampling theory. [43] According to Nyqvist rule, the cut-off frequency should 
be equal or less than sampling frequency. Otherwise, less than two samples are acquired 
per cycle of the signal which results a phenomenon called aliasing. Aliasing means the 
presence of unwanted components in the reconstructed signal. These components were 
not present when the original signal was sampled. In addition, some of the frequencies 
in the original signal may be lost in the reconstructed signal. Aliasing results because 
signal frequencies can overlap due to the too low sampling frequency.  
 
High-pass cut-off frequency is determined according to the need to eliminate slow var-
iations in the signal caused by the motion artifacts. The cut-off frequencies, used in pre-
vious studies, range between 5-20 Hz. The lower frequency components of sEMG spec-
trum mainly contain the information of firing rates of active motor units. These compo-
nents may not make a significant contribution to the hand movement classification. [43] 
The typical frequency range of cable motion artifacts is 1-50 Hz, and the power density 
of electrode motion artifacts is up to 20 Hz. In addition, ambient electromagnetic fields 
exist in the vicinity of AC 120 V (or 230 V) power lines and electric equipment. The 
frequency of these fields is the frequency of the AC power supply (50 Hz in Europe) 
and its harmonics. [44] Therefore, a high-pass filter with higher cut-off frequency than 
commonly used 2-50 Hz is needed to effectively attenuate the motion artifacts and al-
ternating current power interferences. Although, properly choosing the frequency band 
for the band-pass filter may significantly increase the control accuracy and stability of a 
myoelectric prosthesis, only one study [43] has considered this issue. In the study it was 
found that the low-frequency components in the sEMG recordings may provide limited 
information for the classification of hand movements. The frequency band components 
of 20-100 Hz only slightly improved the classification accuracy for able bodied subjects 
(0.25%) and transradial amputees (1.6%). For shoulder disarticulation amputees, the 
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accuracy did not benefit from the information below 25 Hz. The study suggests a high-
pass cut-off frequency of 60 Hz an optimal for sEMG classification.  
 

3.3 Sampling Frequency 
 
The dominant energy (about 95%) of sEMG signal is accounted for by harmonics up to 
400-500 Hz, and most of the components with the frequencies over 500 Hz are noise. 
According to the Nyqvist rule, the sampling frequency should be equal to twice the 
highest frequency of interest contained within the signal. Therefore, the sampling rate of 
1000 Hz is commonly used in sEMG studies. The same sampling frequency is usually 
used also in most studies of sEMG pattern recognition for prosthetic control. However, 
these studies have not considered if a lower sampling rate still preserves sufficient neu-
ral control information for accurate classification of movements. Although, the signal 
sampled with higher frequency may contain more high-frequency information, the high 
sampling rate also adds more processing and computational complexity to the controller 
of a prostheses. Therefore, it would be desirable to use a low sampling frequency with-
out compromising much of classification accuracy. Only one previous study has inves-
tigated the effects of sampling rate on the performance of sEMG pattern recognition in 
identifying hand postures. The study shows that, at least by using the feature subset of 
mean absolute value, number of zero crossings, waveform length and number of slope 
sign changes, lower than 1 kHz sampling rate is possible for accurate classification of 
11 hand postures. Compared to a 1 kHz sampling rate, a sampling rate of 500 Hz de-
creased the classification accuracy only 0.8 % in able-bodied subjects and 2.2 % in am-
putees, but saved 50 % storing memory and halved data processing time.[43] However, 
more investigations are needed to determine an optimal sampling rate for sEMG pattern 
recognition. 
 

3.4 Independent Component Analysis 
 

Independent component analysis (ICA) is a powerful statistical method applied to the 
field of biomedical signal processing. ICA estimates the set of independent signals from 
the mixture of the given signals by estimating un-mixing matrix. It has been successful-
ly used for source extraction to isolate brain activity related to specific brain functions 
and artifact removal from Electroencephalogram (EEG) and Magnetoencephalogram 
(MEG) data. [45] 
 
As mentioned in Chapter 2.2.3 crosstalk may be a problem in sEMG-recordings. Espe-
cially, when the muscle activity and therefore also signal strength is small, the impact of 
crosstalk is very high. ICA can be used as a preprocessing technique for hand gesture 
identification in order to reduce the crosstalk effect. It assumes that observed signals are 
n linear mixtures ��,…�  of n independent components expressed as 
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                                                         � ! "#,                                                                   (2) 
 
where x is the vector whose elements are the measured signals ��,…� , s is the vector 
with original sources #�,…# , and A is the mixing matrix. The goal of ICA is transform 
the vector of measurements into a signal space where the signals are statistically inde-
pendent. To separate the measured signals from the original signals, ICA will search the 
un-mixing matrix W by which observations can be linearly translated to form Independ-
ent output components [45] 
 
                                                   #��� ! $���� ! $"#���.                                           (3)  
 
Thus, ICA describes how the observed signals are generated by a process of mixing 
components s. Both s and A are unknown and we must estimate them using observations 
x under as general assumptions as possible. In ICA it is assumed that the components 
are statistically independent and have non Gaussian distributions. In addition, the mix-
ing matrix is assumed to be square. [45] 
 
Before applying the ICA algorithm on the data x, the data x is centered by subtracting its 
mean vector so as to make x a zero-mean variable. Another useful preprocessing method 
is to whiten the observed data. After centering the data is linearly transformed so that it 
becomes white, i.e. its components are uncorrelated and their variances equal unity. 
Additionally, the success of ICA may depend on performing some application-
dependent preprocessing steps, such as band-pass filtering. [45] 
 
Many ICA algorithms have been developed, such as, second order blind identification 
(SOBI), Temporal Decorrelation Source Separation (TDSEP), FastICA, and information 
maximization algorithm (Infomax). Ganesh et al. [46] compared the performance of 
different ICA algorithms for isometric hand gesture identification using four channel 
sEMG. TDSEP yielded the best performance for an analysis window of 1 s duration. 
However, 1s analysis window cannot be used in myoelectric control because it exceeds 
the optimal controller delay of 50-400 ms. Al-Timemy et al. [31] found that FastICA 
preprocessing technique increased the classification accuracy for different window 
length from 88 % to 93 %. FastICA is used also in this study because it is relatively 
simple, has very fast convergence, and no step-size parameters are required to be cho-
sen. In addition, the sEMG data has showed to be super Gaussian [31] which matches 
the FastICA assumption about the non-gaussianity.  
 
The basic form of the FastICA algorithm for one unit is as follows: 
 

1. Choose an initial weight vector w. 
2. �& ! '(�)��*��+ � '(),��*��+ 
3. Let � ! �&/|�&|  
4. If not converged, go back to 2. 

 



 
 

29 
 

FactICA for several units run the one-unit FastICA algorithm using several units with 
weight vectors �� … , � . The outputs ����, … , � �� are decorrelated after the every 
iteration to prevent different vectors from converging to the same maxima. [45] 
 

3.5 Classwise  Principal Component Analysis 
 
Principal Component Analysis (PCA), or sometimes also termed as universal PCA 
(uPCA) or global PCA [47], is a linear transformation that linearly decorrelates multi-
variate data and projects it onto a new coordinate system such that the greatest variance 
of the data lies on the first coordinate while the least variance of the data lies on the last 
coordinate.  However, PCA and the other global dimensionality reduction techniques 
are suboptimal for classification purposes because they utilize the statistical properties 
of common data distribution, while ignoring class-conditional statistics. [48] Addition-
ally, some of the methods are computationally expensive when applied to large-scale 
biomedical data analysis.    
 
Das and Nenadic introduced a computationally efficient, locally adaptive feature extrac-
tion and classification method Classwise PCA (cPCA), also referred as Individual PCA 
(iPCA)[47] that is suitable for statistical data under small sample size conditions. While 
PCA approximates data by using a single low-dimensional subspace, cPCA generates c 
subspaces for c-class problem and represents the data points from class ω1 in its local 
subspace 21 Thus, each class has a separate projection matrix, which approximate some 
nonlinear low-dimensional data manifold. Because cPCA effectively tunes the data pri-
or to classification, it has improved classification accuracies for some pattern recogni-
tion problems. [48] 
 
Fig. 20 illustrates the principle of cPCA on a two-class example. Two-dimensional data 
is confined to a one-dimensional manifold, and thus the class-specific one-dimensional 
subspaces, 2� and 23, can be seen as a piecewise linear approximation of the data mani-
fold. Both classes and an unlabelled test data x are projected to 2� and 23. The member-
ship of x is determined by performing statistical tests within each subspace, and the final 
decision is taken from the subspace that provides the strongest decision evidence. [48]  
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Fig. 20: A) Data from two classes, ω� and ω3, are confine to a 1D manifold. B) Projection of 
the data to the 1D principal component subspace S�of class ω�. f�· |ω��� and f�· |ω3�� are Gauss-
ian fits of classes ω�and ω3, respectively, and x�is the projection of the test data. C) Projection 
of class ω3 to the principal component subspace S2, with Gaussian fits f�· |ω��� and f�· |ω3��, 
and the projection, x3, of the test data. D) Projection of the data to the global principal compo-
nent subspace. [48] 
 

For c-class problem, cPCA generates c subspaces {2�, 23,…, 28}. Presumably, data be-
longing to a class random variable �1, (i=1,2,3,…,c) will be on average best represented 
in its corresponding principal component subspace 21, although this does not necessarily 
hold for classification and further tests are required. Information from the other sub-
spaces may also be needed to correctly classify the data from �1.  [48] 
 

The first step of cPCA is to calculate the between-class scatter matrix  

                                              ,))(()(
1

nnT
iib

C

i
i RP ×

=

∈−−=∑ ∑ µµµµω
                         (4)

 

where )( iP ω is the class probability, iµ  is the sample mean of class iω , is the sample 

mean, defined by 
 

                                                         ,)(
1

1
∑

=

×∈=
C

i

n
ii RP µωµ

                                          (5)
 

 



 
 

31 
 

and n is the dimension of the data vector. It follows from equations 4 and 5 that the 

number of linearly independent columns of ∑b
is at most c-1, and therefore d 1−≤ c . 

[48] 
 

The next step is to calculate the principal component subspacesiS . The '
im  principal 

eigenvectors of the class covariance ∑b
are taken as the columns of the matrix

'
imnCPCA

i RW ×∈ , which forms the basis of iS . Usually, '
im  is selected such that

ndmi ≤+' . Therefore, the small sample size problem and curse of dimensionality are 

no longer concerns when data is projected to a basis defined by matrix iE  that is com-

puted concatenating matrixes CPCA
iW and bW . However, calculating bW  is optional and if 

it is omitted, the definition of iE  reduces to =iE  CPCA
iW . Matrix bW  is calculated such 

that its columns form an orthonormal basis for the range of ∑b
, defined as {

∑∑ ∈∀=∈=
b

nn

b
RRR ηηξξ ,:)( }. Including the matrix bW  in the algorithm is 

useful if discriminatory information lies in the class means and not in the class 
covariances. [48] 
 
Finally, we need to compute the feature extraction matrix which is defined as

DEF
iii TEF = , where ii mdmDEF

i RT ×+∈ )( '

is a feature extraction matrix of the chosen linear 

discriminant feature extraction (DFE) technique, and im is the final size of the feature 

space. Calculating   DEF
iT  is optional and if it is omitted, the feature extraction matrix is 

simply ii EF = . In any case, the algorithm finally gives c feature extraction matrixes, 

whose columns provide bases for c subspaces. [48]  
 
Hargrowe et al. have used a cPCA as a preprocessing step for pattern-recognition based 
prosthetic system. The raw sEMG data are rotated by class specific PCA matrixes to 
spatially decorrelate the data before features are extracted. This “tunes” the data so that 
a classifier can discriminate the test motions better. Because cPCA algorithm increases 
the number of inputs by a factor of C where C is the total number of classes, it is very 
likely that some of the output channels contain some redundant information and there-
fore the number of linearly combined channels can be reduced. Hargrove et al. used 
iterative sequential backward selection (SBS) algorithm to reduce the dimensionality. 
They showed that by using cPCA, the analysis window length can be cut from 256 ms 
to 128 ms without affecting the classification accuracy. [49] In the other study 
Hargrowe et al. found that when cPCA is used, classification errors reduced significant-
ly for both intact-limbed and amputee subjects. Fig. 21 displays the effect of cPCA and 
uPCA to the classification error in for amputees on a subject-by-subject basis. All other 
control systems showed similar trends: cPCA yields the smallest classification error. 
uPCA was not expected to improve the classification accuracy because it orders the 
components by the amount of variance each component explained and not by a discrim-
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inatory power. However, it was somewhat surprising that the accuracies were even low-
er when uPCA is used. [47]    
 

                       
Fig. 21:The classification error for the six-channel, seven-class problem for amputees on a 
subject by subject basi. Preprocessing with iPCA/cPCA outperforms other preprocessing 
methods.It is interesting that uPCA yields lower classification accuracy than no PCA 
preprocessing.[47]  
 

3.6 Pattern Recognition-based Myoelectric Control 
 
Myoelectric control systems can be divided into two groups: pattern recognition- and 
non-pattern recognition-based systems. Fig. 22 shows the schematic diagram of the 
structures of the two systems. [3] In the following subsections both of these methods are 
described. However, because pattern-recognition-based classifier is used in this study, 
non-pattern-based methods are described only briefly.  
 

 
                    Fig. 22: Pattern and nonpattern based myoelectric control methods.[26] 
 
 
 
A control approach using pattern recognition of EMG signals yields a significant im-
provement in control over the conventional non-pattern recognition based myoelectric 
control strategy. It is grounded on the assumption that the patterns of EMG signals in 
the forearm contain information about many desired movements of the hand and wrist, 
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and this information can be used to identify a variety of different intended movements 
of the prosthesis. Even though the sEMG signals are stochastic, repeatable EMG pat-
terns can be observed from different muscle contractions. This can also be seen in am-
putees, even though they may not have fully functioning muscles. In the pattern recog-
nition based myoelectric control features, extracted from different time segments of the 
acquired sEMG signal, are used as input to a classifier for the recognition of muscle 
activation or for the prediction of different hand motions. Once a pattern has been clas-
sified, a command is sent to a prosthesis controller to implement the movement. This 
approach is also intuitive, as the intended movement matches the prosthesis function. 
[11, 2] Next sections describe each stage of pattern-recognition-based control: data 
segmentation, feature extraction, feature normalization, and classification.    
 

3.6.1 Segmentation  
 

A segment is a time section used to analysis and feature extraction of sEMG data. Three 
issues that need to be considered before segmentation are windowing technique, seg-
ment length and state of data. These issues are discussed in this chapter. 
 

3.6.1.1 Windowing Technique 
 

Data windowing technique deals with the continuous classifier that is able to classify 
continuous stream of steady-state data instead of acting on a series of disjoint record-
ings. The benefit of the continuous classification is that an amputee does not need to 
elicit a contraction from rest. The continuous classifier can deal either with adjacent or 
overlapped windows. In the former case custom length adjacent segments are used for 
analysis and feature extraction. Because of high-speed processors, the processing time is 
usually less than the duration of time segment, as can be seen in Fig. 23a. As a conse-
quence, there remains a certain amount of time that the processor is idle. In the overlap-
ping windowing technique, the idle time is used for acquiring more data to be pro-
cessed. As Fig. 23b illustrates, each segment slides over the one before. The overlapped 
window approach produces a more constant controller delay and decreases the maxi-
mum delay.[50]  
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Fig. 23: Adjacent windowing technique. For each analysis window (W1, W2, and W3) a classi-
fication decision (D1, D2, and D3) is made t seconds later, where t is the processing time re-
quired of the classifier. b) Overlapped windowing technique that maximally utilizes computing 
capacity and produces a decision stream that is as dense as possible. [51, 52] 
 

3.6.1.2 Segment Length and Real Time Constraint 
 

Performing feature extraction and pattern recognition on larger data windows increases 
the classification accuracy, but the drawback is that more time is required to collect and 
process the larger data set. Thus, trade-off has to be done between real-time constrains 
and classification performance. Previous studies have used variety of analysis window 
attributes for their prosthesis controllers but most of them have little regard for the 
overall delay. If a particular classifier may increase classification accuracy, this increase 
in accuracy must be done in a reasonable amount of time. For example, in the study of 
Peleg et al. the time between the onset of the contraction and the classification decision 
is 1.4 seconds, which would be quite frustrating for the user. The estimates of optimal 
delay, which does not make the prosthesis feel sluggish and unresponsiveness to the 
user, range between 50 to 400 ms [53]. The large range indicates that it is not quite clear 
what the optimal length for the delay would be, and the optimal delay may also be de-
pending on the individual anatomy and physiology. It should also be noted that the min-
imum interval between distinct contractions is approximately 200 ms which suggests 
that, theoretically, a segment of equal or more than 200 ms contains enough information 
to estimate motion states of hand [54]. 
 
In the case of commonly used windowing strategies, the delay can vary substantially. 
Researches in virtual environment has shown that performance tends to degrade as the 
variability of the delay increases, and thus difference in delay between the best and the 
worst case should be small. Farrel presented equations to estimate worst-, average- and 
best-case delays as well as delay ranges in the context of different segmentation strate-
gies [55]. These equations are presented in Table 4. As can be seen from the equations, 
the delay is not only the function of window length but also a function of the processing 
time, the amount of window overlap, and the number of majority votes used. Majority 
voting (MV) is a postprocessing technique that aims to increase the overall classifica-
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tion accuracy by analyzing the current class decision along with the n-1 previous class 
decisions. The class that occurs most frequently is selected as the controller output. MV 
is described more detail in Chapter 3.6.6 
 
Table 4: The equations for worst-case, average, and best-case delays with delay ranges. 
[55] 

 
 
The window shift * 9� is related to processing time τ which is determined by the analy-
sis window length *:, processor, memory, type of features, algorithms used to extract 
features and perform pattern recognition, and number of EMG channels. Thus, the only 
parameters under the designer’s direct control for a given feature set are the window 
length and number of majority votes. It has been indicated that no remarkable difference 
exist in classification accuracy whether it is used a large window with small number of 
votes or a small window with a large number of votes. [55] 
 

3.6.1.3 State of Data 
 

A sEMG signal consists of two states: a transient state and a steady state. The transient 
state emanate from burst of fibers, as a muscle goes from rest to voluntary contraction 
level. In the steady state a muscle is constantly under contraction. Previous studies have 
shown that the features extracted during the steady state data can be classified more 
accurately than the features extracted during transient state. In addition, steady state data 
allows faster system response because the degradation of classification accuracy is not 
as profound when the window length is decreased.  The main weakness in using transi-
ent state is that contractions should initialize from rest, thus reducing the ability to 
quickly switch from one state or hand task to another. [11,13] 
 

3.6.2 Feature Extraction 
 

A raw myoelectric sEMG-signal is not a suitable input for a classifier because of the 
large number of inputs, randomness of the signal and large dimension of the input vec-
tor. Especially, when the signal is used to control a prosthesis, the length of the input 
vector have to be reduced as much as possible because controllers of the prosthesis must 
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meet very strict real time constrains, and the classifiers they implement perform much 
faster when handling small input vectors. For this reasons raw signals have to be 
mapped into smaller dimension vectors, feature vectors.  A feature of the EMG signal is 
a measurable characteristic of the signal that can be observed or described qualitatively, 
such as being fast or slow, large or small, spiky or smooth. Features can be grouped into 
four categories: 
 

1. time domain (TD) 
2. time serial domain (TSD) 
3. frequency (spectral) domain (FD) 
4. time-scale (time-frequency) domain  (TSCD) 

 
Feature selection is a very important step because the effect of the feature set on the 
classification accuracy is even greater than the effect of the type of the classifier. An 
optimal feature set can be determined using wider variety of methods than the other 
system elements. Three properties determine the quality of EMG feature space: maxi-
mum class separability, robustness and complexity. A high quality feature space results 
in clusters with maximum class separability or a minimum overlap thus minimizing the 
misclassification rate. Robustness means that the feature space preserves the cluster 
separability in noisy environment as much as possible. The computational complexity 
of the feature set should be low such that the related procedure can be implemented with 
reasonable hardware and in real-time. This task is easier if the window size is small. 
Another advantage of the small window size is that it improves the stationary of the 
signal. The following chapters introduce some features commonly used to classify 
sEMG signals. Comparative studies of features and feature subsets are also revived.    
  

3.6.2.1 Time Domain Features 
 
TD features are the most popular in myoelectric classification because of their accessi-
bility and computational simplicity. The major advantage of TD features is that they do 
not need a mathematical transformation, thus being quickly to calculate. TD features 
based on time-amplitude representation of the signal, and can indicate measures like 
signal energy, force, and duration. [5, 26] A disadvantage of TD features is that they are 
sensitive to interference that is acquired during the recording. TD features assume the 
signal to be stationary, and therefore variation in this group may be largely obtained if 
EMG signal is recorded from dynamic movements. However, features in this group are 
widely used to classify steady state signals due to their classification performance in 
low noise environments and their low computational complexity.[56] 
 
Integrated EMG (IEMG) is a sum of the absolute values of the sEMG signal amplitude, 
which can be expressed as 
                                                             
                                                         ;'<= ! ∑ |�1|>1?� .                                                  (6) 
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IEMG is generally used as an onset detection index in sEMG non-pattern recognition 
and in clinical applications. It is related to the sEMG signal sequence firing point. [56] 
 
Mean absolute value (MAV) is an estimate of the mean absolute value of the signal �1 
in a segment i of N samples length. It is given by: 

 

                                                        <"@ ! �> ∑ |�1|>1?� .                                                 (7) 

 
MAV is one of the most commonly used in EMG analysis. [56] 
 
Modified mean absolute value 1 (MAV1) is an extension of MAV that uses the 
weighted window function �1 to improve the robustness of MAV. [56] It is shown as  
 

                                                           <"@1 ! �> ∑ �1| �1>1?� |,                                                (8) 

 

                                       where �1 ! B 1, C� 0.25G H C H 0.75G0.5, J�KL��C#L M. 
  
Modified mean absolute value 2 (MAV2) is similar to MAV1. [56] However, the 
smooth window is improved in this method using continuous weighting window func-
tion �1. MAV2 is expressed as   
                                                           <"@2 ! �> ∑ �1| �1>1?� |,                                                (9) 

 

                                       where  �1 ! NO
P1, C� 0.25G H C H 0.75GQ1> , L�#LC� C H 0.25GQ�1R>�> , J�KL��C#L M 

 
Mean absolute value slope (MAVS) represents the difference in mean absolute value 
between adjacent segments k and k+1: 
 
                             <"@2S ! <"@S&� � <"@S, � ! 1, … , T � 1,                              (10) 

 

where K is the number of segments covering the sEMG signal. [56] 
 

Simple Square Integral (SSI) captures the energy of the EMG signal as a feature. [56] 
SSI is usually defined as an energy index. It is summation of square values of the EMG 
signal amplitude, which is claculated as  
 
                                                                      22; ! ∑ �13>1?� .                                                    (11) 
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Variance of the EMG is another measure of its power. Generally, it is defined as an av-
erage of square values of the derivation of that variable. However, mean value of EMG 
is close to zero. In consequence, variance of EMG is defined as 
 

                                                         @"U ! �>R� ∑ �13>1?�                                                (12) 

 
Absolute value of the 3rd, 4th, and 5th temporal moment were firstly used in control of a 
prosthetic arm by Saridis and Gootee in 1982 [57]. The definition of their equations can 
be respectively expressed as  
 

                                                                   *<3 ! W�> ∑ �1X>1?� W,                                               (13) 

 

                                                          *<4 ! �> ∑ �1Z>1?� ,                                               (14) 

 

                                                        *<5 ! W�> ∑ �1Z>1?� W.                                              (15) 

 
The absolute value is taken to greatly reduce the within class separation for the odd 
moment case. The first moment and the second moment are similar to the MAV and 
VAR features, respectively. [57,56] 
 
Root Mean Square (RMS) is modeled as amplitude modulated Gaussian random process 
whose RMS is related to the constant force and non-fatigue contraction. [56] RMS is 
commonly used feature an analysis of EMG signal. It is mathematically defined as 
 

                                                       U<2 ! [�> ∑ �13>1?� .                                               (16) 

 
Clancy et al. have compared the MAV and the RMS [27, 27]. They suggested that when 
a signal is modeled as a Gaussian process, as is the case in high level contraction, RMS 
fits better. MAV fits well when signal is modeled as a Laplacian process i.e. during low 
level contractions. However, Clancy et al. found that a model for a constant force and 
constant posture, non-fatiguing contraction is between Gaussian and Laplacian. There-
fore, MAV may give at least as justified estimate for the amplitude as RMS, and there is 
little reason to argue between them.  
 
v-Order is a non-linear detector that implicitly estimates muscle contraction force �1. It 
is defined from a functional mathematical model of the EMG signal generation, given 
by 
 
                                                           �1 ! �\�1]��1,                                                    (17) 
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where \ and ̂  are constants, and �1 is �1 denotes class of the ergodic Gaussian process-
es. Theoretical value for ^ is 0.5, but the experimental results have showed that it is 
ranged between 1 and 1.75. v-feature is mathematically defined as  
 

                                                        @ ! _�> ∑ �1̀>1?� abc.                                                 (18) 

 
The best value for v has been reported to be 2, which leads to the definition of the EMG 
v-Order feature as the same as RMS feature. [56, 58] 
 
Log-Derector (LOGDET) is another estimate for the muscle contraction force. Howev-
er, definition of the nonlinear detector is changed to be based on logarithm and log de-
tector feature, which can be expressed as 
 

                                                    de=f'* ! L bg ∑ hijgklb �|�k|�.                                       (19) 
 
Waveform length (WL) is the cumulative length of the waveform over the time seg-
ment. It represents a combined measure of amplitude, frequency, and duration in a sin-
gle parameter. WL appreciates the waveform complexity in each window. [56] WL is 
defined as the sum of absolute voltage differences between each pair of adjacent sam-
ples within the classification window, and can be expressed mathematically as 
   
                                                                  $d ! ∑ |�1&� � �1|.>R�1?�                                                  (12) 
 
 Average amplitude change (AAC) is similar to WL with the exception that wavelength 
is averaged. It is formulated as 
 

                                                                ""� ! �> ∑ |�1&� � �1>R�1?� |                                      (21)          
 
Difference absolute standard derivation value (DASDV) is a standard derivation value 
of the wavelength, defined as  [59]                                 
 

                                                f"2f@ ! [ �
>R� ∑ ��1&� � �1�3>R�1?�                                       (22) 

 
Zero crossing (ZC) is a measure of frequency information of the EMG signal that is 
defined in time domain. It is the number of times the waveform crosses zero. A thresh-
old must be included in order to reduce the noise induced zero crossings, and it is typi-
cally selected between the range of 50-100 µV. Thus, a pair of consecutive samples 
constitutes a zero-crossing only if their absolute difference exceeds both a noise thresh-
old and their absolute sum.  Mathematically ZC is expressed as 
 

                                       m� ! ∑ sgn��1>R�1?� q �1&��r|M�1 M � �1&�| s �K�L#KJ�t,             (23)  
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                                       with #)���� ! B1, C� � s �K�L#KJ�t0, J�KL��C#L M. [60, 61] 

 
Myopulse Percentage Rate (MYOP) is an average value of myopulse output. It is de-
fined as one when the absolute value of the EMG signal exceeds a threshold value, and 
as zero otherwise. The typical value of the threshold is between 50 µV and 100 mV. 
The MYOP is the average value of the myopulse output. [56]  Mathematically, it is de-
fined as  
 

                                                             <uev ! �> ∑ w�>1?� ��1�x                                            (24) 

 
Wilson amplitude (WAMP) is the number of times that the difference between two con-
secutive amplitudes is a time segment exceeds a threshold of 50 µV–100 mV. Mathe-
matically, is can be formulated as 
 
                                            $"<v ! ∑ w��|� � � &�|�>R�y?� x,                                    (25) 
 

                                     where           ���� ! B1, C� � s �K�L#KJ�t0, J�KL��C#L M  .                             
 
WAMP is commonly used in classification of hand motions. It measures the frequency 
information of the sEMG signal same as ZC. It is also an indicator of firing of motor 
unit action potentials and thus it is related to the muscle contraction force.[2, 56, 61] 
 
Slope sign change (SSC) is another method to represent the frequency domain proper-
ties of sEMG signal. It is related to ZC, MYOP, and WAMP. It is the number of times 
the signal that slope of the sEMG signal changes sign. The number of changes between 
positive and negative slope among three sequential segments are performed with 
threshold function for avoiding background noise. SSC can be given by 
 
                                        22� ! ∑ w��|��1 � �1R�� q ��1 � �1&��|>R�y?3 x,                      (26) 
 

                                         where           ���� ! B1, C� � s �K�L#KJ�t0, J�KL��C#L M. 
 
Similarly as for ZC, WAMP, and MYOP, the threshold value for SSC is also selected 
within the range of 50 µV and 100 mV. It is depending on the setting gain value of the 
instrument and on level of background noises. [56]   
 
Histogram (HIST) is determines the number of signal samples in different equally 
spaced amplitude levels in a time segment, and is an extension of ZC and WAMP, both 
of which compare a single threshold to the EMG signal.  Previous studies have set the 
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number of levels to 9 because the performance has been shown to improve significantly 
as the number of levels was increased to 9. [2, 56, 61] 
 

3.6.2.2 Time Serial Domain 
 

Autoregressive coefficients (AR) is the simplest time-series model. It estimates signal 
samples by linear combination of their P earlier samples and is given by  
 
                                                      "U ! ∑ 
z{z?� �1Rz | �1 .                                               (27)                                            

 
In classification of the EMG signal, coefficients of the AR model have been used as a 
features. EMG spectrum changes with muscle contraction level, resulting in changes in 
AR coefficients. The larger the autoregressive model the greater computation time is 
needed to determine the AR coefficients. Thus, the model should be kept as small as 
possible without sacrificing classification accuracy. Depending on the survey best re-
sults have been achieved with 3rd[6], 4th[62] or 6th [63] order model. 

 
The Cepstrum of a signal is the inverse Fourier Transform of the logarithm of the mag-
nitude of the power spectrum of the signal. They can be derived from AR coefficients as 
follows: 
 

                                                     �� ! �
z � ∑ �1 �zR�
1?�

�
z�
z}zR�                                    (28) 

 
where }z is the pth order coefficients of the Cepstral analysis (CC) and 1 H � H v. 

From the provided definition, CC can be considered as a time domain feature because it 
does not need a Fourier transform in process. The most important characteristic of CC is 
the deconvolution of a signal into two main parts so that each can be extracted by im-
posing a lifter in the cepstrum domain. [56, 61] 
 

3.6.2.3 Frequency Domain Features  
 

Frequency or spectral domain features are usually used to study muscle fatigue, and 
infer changes in MU recruitment, but they are not vary common in hand movement 
classification. Different statistical properties were applied to the Power spectral density 
(PSD) which is the Furrier transform of the autocorrelation function of the EMG signal. 
It can be estimated using Preiodogram or parametric methods, i.e., the AR model. A 
signal spectrum is influenced by the firing rate of a recruited MU in the low-frequency 
range (below 40 Hz, and the morphology of the action potential travelling along a mus-
cle fiber in a high frequency range (above 40 Hz). It is non-stationary and directly de-
pends on the contraction force, muscle fatigue, and inter-electrode distance.  
Phinyomark et al. investigated in their study eleven frequency domain features, and 
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showed that they are not suitable for hand movement classification.[26, 56] However, 
let’s examine briefly some most common frequency domain features. 
 
Mean Frequency (MF) is an average frequency defined as a sum of product of the 
sEMG power spectrum and the frequency divided by total sum of the spectrum density. 
Mathematically, it can be expressed as  
 

                                                      <G~ ! ∑ ��v���?� / ∑ v���?� ,                                            (29) 

 
where �� denotes the frequency of the spectrum at frequency bin j, v� the EMG power 

spectrum at the frequency bin j, and M the length of the frequency bin. [56]  
 
Median power (MNP) is an average power of the EMG power spectrum. It can be calcu-
lated as [56] 
 
 
                                                     <Gv ! ∑ v���?� <⁄                                                   (30)                                                                     

 
Frequency ratio (FR) was proposed in order to distinguish between contraction and re-
laxation of the muscle using ratio between the low frequency components and the high 
frequency components of the sEMG signal. It can be expressed as 
 

                                                ~U ! ∑ v�����?��� ∑ v�����?����                                             (31) 

 
where ULC and LLC are upper- and lower-cutoff frequency of the low frequency band 
and UHC and LHC are upper- and lower-cutoff frequency of the high-frequency band, 
respectively. [56] The threshold for dividing between low frequencies and high frequen-
cies can be determined either through the experiments [64] or by using the value of MF 
feature [65].   

3.6.2.4 Time-scale (time-frequency) Domain Features 
  
Fourier transform, Wavelet transform and Wavelet Packet transform are included in the 
category of time-scale domain features. Fourier Transform (FT) is used to transform an 
expression of a continuous time domain function into a continuous frequency-domain 
function. It decomposes a signal to complex exponential functions of different frequen-
cies. FT is defined as 
                                                    

                                                     ���� ! � ����LR�3��yt��R� ,                                     (32) 
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where t stands for time and f stands for frequency. According to Euler’s rule, a complex 
exponential can be broken down into real and imaginary sinusoidal components as fol-
lows: 
 
                                              LR�3��y ! cos�2���� | C#C��2����,                              (33) 
 
As can be seen from the equations 32 and 33, the signal is multiplied with the sinusoidal 
term of frequency f. If the signal has a high amplitude component of the same frequency 
f, then that component and the sinusoidal term coincide, and the product of them is rela-
tively high value. Moreover, if the signal does not have a frequency component of f or if 
the amplitude component of f is low, the product will give zero or relatively small value 
respectively. When the integral in 32 is calculated for every value of f, we get complex 
valued scalars, the Fourier coefficients, which summarize the similarity between the two 
signals. However, the limitation of FT is that it only tells whether a certain frequency 
component exists or not in the signal, but gives no information where in time the fre-
quency component exists. Thus, FT is not suitable if the signal has time varying fre-
quency, i.e. the signal is non-stationary. [66] 

 
To compute the FT with a microprocessor or digital signal processing based system we 
need a discrete-time to discrete-frequency transformation. This can be done by using the 
Discrete Fourier Transform (DFT), a discrete version of FFT. It is defined as 
 
                                                   ���� ! ∑ ����LR�3� �/>>R� ?� .                                 (34) 
 
The disadvantage of DFT is that is it very inefficient: The number of complex multipli-
cations and additions required to implement Eq. 34 is proportional to G3. For every 
���� that is calculated, we need to use all x�0�, … , ��G � 1� and there are N ����’s to 
calculate. Therefore, a faster version of DFT, so called Fast Fourier Transform (FFT) 
has been implemented. It reduces the number of multiplication and addition operations 
to e�G �J)3 G�. FFT can be implemented in number of different ways, but the most 
important FFT is the Cooley-Turkey algorithm. It breaks down a DFT of composite size � ! ���3 into smaller DFTs of sizes �� and �3, and can be combined arbitrary with any 
other FFT algorithm.  A radix-2 decimation-in –time (DIT) algorithm is the simplest 
and most common Cooley-Turkey algorithm. It divides a DFT of size N into two DFTs 
of the even-indexed inputs �3� (��,�3,…,�>R3) and of the odd-indexed inputs �3�R� 
(��,�X,…,�>R�), both of size N/2. The two results are then combined to produce the 
DFT of the whole sequence. When this idea is performed recursively, the overall 
runtime can be reduced to e �G �J) G�. The algorithm assumes N to be a power of 
two.[66, 67] 
 
To capture also time varying information of the data, a revised version of FT, Short 
Time FT (STFT) has been developed. It divides the non-stationary signal into small 
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segments, where the signal is assumed to be stationary. STFT is defined as the FT of the 
signal multiplied by a window function that is nonzero for only a short period of time 
 

                                         ���, �� ! � ������� � ��LR��yt��
R� ,                                 (35) 

 
where ���� is the signal and ���� is the window function. The width of the window 
function must be equal to the segment of the signal where its stationary is valid. The FT 
of the signal is taken as the window is slid along the time axis. Because the transform is 
a function of both time and frequency, the result is a two-dimensional representation of 
the signal.   
 
The discretized version of the STFT of a signal ���� is 
 
                                            ���, �� ! ∑ ������� � ��LR�� �R� ,                              (36) 
 
where � is the discrete time variable and ω is continuous frequency. The discrete STFT 
divides the data into frames which usually overlap. Each of the frames is Fourier trans-
formed and the complex result is added to a matrix, which records magnitude and phase 
for each point in time and frequency.  
 
The problem with STFT is that according to Heisenberg Uncertainty Principle it is not 
possible to know the exact time-frequency representation of the signal. STFT does not 
tell what spectral components exist at what instances of times, but only the time inter-
vals in which certain band of frequencies exist. When choosing a window length, 
tradeoff must be done between time and frequency resolution. Narrow window results 
in good time resolution and poor frequency resolution; wide window results in good 
frequency resolution and poor time resolution. In addition, wide windows may violate 
the condition of stationary.  
 
Continuous Wavelet Transform (CWT) was developed as an alternative approach to the 
STFT to overcome the resolution problem. Multiresolution analysis makes it possible to 
analyze a signal at different frequencies with different resolutions. The constant resolu-
tion time-frequency plane of STFT and multiresolution time-frequency plane of CWT 
are schematically displayed in Fig. 24. In CWT the signal is multiplied with a function 
that is similar to the window function in STFT, and the transform is computed for each 
segment of the time-domain signal. However, the window function of the CWT can be 
chosen with more freedom, without the need of using sine-forms. In CWT the width of 
the window is changed as the transform is computed for every single spectral compo-
nent. The definition of CWT is as follows: 
 

                                 �	
, �; ����, ����� ! � ���� �√: �� _yR�: a t��R� ,                           (37) 

 



 
 

45 
 

where b is translation, a denotes scale, and � is the transforming function, so called 
mother wavelet. For the CWT several kinds of mother wavelets are developed. The term 
wavelet i.e. a small wave describes the characteristics of window function: Smallness 
refers to the limited duration of the window function and wave describes the condition 
that function is oscillatory. Wavelets have an average value of zero and nonzero norm. 
All the wavelet functions used in the transformation are derived from the mother wave-
let trough translation (shifting) and scaling (compression). Scaling is a mathematical 
operator that either dilates or compresses a signal. If the scale # � 1, it compresses the 
target function and if # � 1, scaling dilates the function. However, because in CWT the 
scaling term is in the denominator, opposite statements hold, i.e., scales  # � 1 dilate 
and scales # � 1 compress the signal. [68, 69]     

                    
Fig. 24: a) Constant resolution time-frequency plane of STFT. b)Multiresolution time-frequency 
plane of WT.[68] 

 
The computation of CWT may consume a significant amount of time and resources, 
depending on the resolution required. The Discrete Wavelet transform (DWT) yield a 
fast computation of WT. It is easy to implement as well as reduces the computation time 
and resources required. DWT computes a time-scale representation of the digital signal 
by using digital filtering techniques. DWT of a signal is calculated by passing it through 
a series of lowpass and highpass filters. At each decomposition level, the half band fil-
ters produce signals spanning only half the frequency band. The high-scale, low fre-
quency components of the signal are called approximation coefficients, and the low 
scale, high frequency components detail coefficients. As a result of filtering, uncertainty 
in frequency is reduced by half and thus the frequency resolution is doubled. If the orig-
inal signal has a highest frequency of ω, it requires, according to the Nyqvist rule, a 
sampling frequency of 2 ω. The filtering reduces the highest frequency of the signal to 
the half of the original allowing us to subsample the signal at a frequency of ω radians. 
This subsampling by 2 halves the time resolution as the entire signal is represented by 
only half of the number of samples. Therefore, while the half band lowpass filtering 
removes half of the frequencies and thus halves the resolution, the subsampling by 2 
doubles the scale. The time resolution becomes good at high frequencies, while the fre-
quency resolution becomes good at low frequencies. The filtering and subsampling pro-
cess is continued until the desired level is reached. The maximum number of levels is 
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depending on the length of the signal. The DWT of the signal is obtained by concatenat-
ing all the coefficients starting from the last level of decomposition. [68, 69] 
 
A wavelet packet transform (WPT) is a generalization of DWT where the signal is 
passed through more filters than in DWT. In DWT, a signal is split into an approxima-
tion and detail coefficients. The approximation coefficients are then further split into a 
second-level approximation and detail coefficients, and the process is repeated. For an 
n-level decomposition, the signal can be decomposed or encoded in n+1 possible ways. 
In WPT analysis, both detail coefficients and also approximation coefficients can be 

split, yielding over 2�3 R�� possible ways to encode the signal.[69] DWT and WPT de-
composition over 3 levels are shown in Fig. 25.  
 

                            
                       Fig 25: Decomposition tree over 3 levels for DWT and WPT. [67] 

 

3.6.2.5 Comparison of Features  
 
Many studies have evaluated and compared EMG features which are used to control 
prostheses. However, usually the performance of features has been evaluated inde-
pendently, and only few combinations of TD features have been tested. Boostani and 
Moradi compared 19 features from ten amputees. Their results illustrate that energy of 
WPC, energy of wavelet coefficients and cepstrum coefficients of EMG signals present 
the best results from the classification and noise tolerance view points respectively. [61] 
However, the drawback of wavelet transform and especially of wavelet packet trans-
form is computational complexity. Oskoei et al. compared the relative performance of 
various single features and feature sets. They found that so called Hudgin’s feature set 
or TD feature set (i.e., MAV, WL, ZC and SSC), first introduced by Hudgins et al. in 
1993, is superior to other features because of its relatively high rate of accuracy, stabil-
ity against changes in segment length, low discrepancy over several sessions, and com-
putational simplicity. WL outperforms single features because of its high rate of accura-
cy and stability to changes in segmentation method. [54] Du et al. yielded good results 
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by using feature set of IEMG, VAR, WL, ZC, SSC, and WAMP [70]. Englehart et al. 
showed that the feature set of AR and RMS significantly outperforms Hudgins’s TD 
feature set in context of a Gaussian mixture model classifier. [71] Phinyomark et al. 
compared the classification performance of several individual time and frequency do-
main features as well as the performance of Hudgins’s and Du’s feature sets in context 
of the LDA classifier.  They found that frequency domain features may not be suitable 
[60] Tkach et al. discovered that selecting appropriate feature combination can over-
come the impact of electrode location shift, variation in muscle contraction effort, and 
muscle fatigue on EMG pattern classification to a certain extent. However, simple selec-
tion of these features cannot fully solve the problem. Stabilizing electrode contact loca-
tions and developing effective classifier training strategies are also needed to circum-
vent these undesired disturbances and minimize their effect on EMG pattern classifica-
tion. [58]  
 
As mentioned in Chapter 2.2.1, we can assume sEMG signal as a WSS process during 
short time intervals when a subject performs static contraction. Consequently, the 
STFT, DWT, and WPT coefficients calculated of the steady state signal do not have any 
temporal information of time-frequency plane. Additionally, all of these transformations 
are computationally expensive and impose time delay. TD features are simply to com-
pute allowing fast response that is crucial in real time applications. They have also yield 
equally high classification accuracy as STFT, DWT, and WPT. However, DWT coeffi-
cients are commonly used in hand posture classification because they are more tolerant 
to noise. Chu et al. also argued WPT coefficients to be superior to TD features because 
the wavelet functions resemble the MUAPs that constitute the gross sEMG signal [72].  
Karlsson et al. [73] investigated DWT and WPT for myoelectric signal analysis during 
static and dynamic contractions. Wavelet shrinkage method has shown to be a very use-
ful method in signal analysis during static contractions, because of its de-noising char-
acteristics. Wavelet shrinkage in WPT and FFT significantly reduced the mean squared 
error of spectral estimates. However, few studies have investigated DWT in the context 
of steady state sEMG signal, and therefore it remains still somewhat unclear whether 
DWT coefficients outperform simply TD features.  
 

3.6.3 Feature Normalization 
 

If the values of features lie within different dynamic ranges, features with large values 
may have more influence in the cost function than features with small ones, although 
this does not necessarily reflect their perspective significance in the design of the classi-
fier. Thus, features are usually normalized to represent their values within similar rang-
es. Normalization methods may be linear or nonlinear. A commonly used linear normal-
ization technique is normalization via the respective estimates of the mean and variance. 
This method results normalized features with zero mean and unit variance. For N data of 
the kth feature, normalization may be done as follows: 
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The alternating method for normalization is min-max normalization method that can be 
shown as 
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where feat and normfeat are original and normalized feature, respectively. The normfeat 
is range between 1 and 0. The min and max are the maximum and minimum value of 
every features in each dimension i. Also other linear techniques exists and they use 
proper scaling to limit the feature values in the range of [0,1] or [-1,1]. [56] 
 
Nonlinear methods transform the data within specified intervals with nonlinear func-
tions, such as logarithmic or sigmoid functions. Popular softmax scaling consists of the 
following steps: 
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As a squashing function, this limits the data between the interval [0,1]. This is approxi-
mately a linear function with respect to �1S if y has small values. The standard deriva-
tion and the factor r defined by the user determine the range of values of �1S that corre-
sponds to the linear section. Values away from the mean squash exponentially. [74]   
 

3.6.4 Dimensionality Reduction 
 

The feature extraction methods transform the initial input space in a more adequate one, 
but not necessary in a smaller dimension. The dimensionality reduction is needed to 
retain the most important information for class discrimination and discard what is irrel-
evant information [75]. This is important especially in the case of STFT, CWT, DWT, 
and WPT, because they yield a high-dimensional feature vector, that generally causes an 
increase in the learning parameters of a classifier. Additionally, the classification per-
formance resulting using all the coefficients of the time-domain and time-scale trans-
formations is very poor due to both high computation cost and poor classification accu-
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racy. Dimensionality reduction also improves the generalization of the classifier, reduce 
its complexity, and help to avoid overfitting. 
 
Dimensionality reduction methods can be divided in feature projection and feature se-
lection methods. In addition to these methods, the dimensionality of the time-domain 
and time-scale transformations can be reduced by calculating TD features of the trans-
formed signal [76]. Feature projection methods reduce the dimension by linear or non-
linear projection of a feature vector onto lower dimensional feature vector. These meth-
ods include PCA, LDA, and ICA. [65, 77] Feature selection methods select a subset of 
original features. Usually the number of possible combinations of the features is unfea-
sible, and therefore a search procedure needs to be used.[65] Several search strategies 
have been developed, and they are divided into exponential, sequential and randomized 
algorithms. Exponential algorithms evaluate a number of subsets that grows exponen-
tially with the dimensionality of the search space. This group of search algorithms in-
cludes for example Exhaustive Search, Branch and Bound, and Beam Search. Sequen-
tial algorithms add or remove features sequentially. They have a tendency to become 
trapped in a local minimum. Exemplars from this group are Sequential Forward Selec-
tion and Sequential Backward selection. Randomized algorithms incorporate random-
ness into the search procedure avoiding trapping in local minima. Genetic Algorithms is 
the most common method in this group. In this thesis Sequential Forward selection is 
used to select candidate subsets. It is described more detail in Chapter 4.8. In addition of 
search strategy, we need also an objective function that evaluates the candidate subsets. 
Objective functions are divided in filters and wrappers. Filters evaluate based on their 
information content, such as interclass distance or statistical dependence. Wrappers use 
a classifier to evaluate subsets by their predictive accuracy or cross-validation. In this 
study the classification accuracy of the LDA classifier is used as an evaluation criterion. 
[78]      
 

3.6.5 EMG Pattern Classification 
 

In order to recognition of desired motion patterns extracted features need to be classi-
fied. Both the nature of myoelectric signal and external factors such as changes in elec-
trode position, fatigue, and sweat cause changes in signal over time. The changes may 
cause a large variation in a particular feature, and thus a classifier should be able to cope 
with such varying patterns optimally, as well as prevent over fitting. In addition, a suit-
able classifier has to meet real-time contractions and it has to be adequate efficient to in 
classifying novel patterns. [26] 
 
EMG pattern classification has been investigated for neural control of upper-limb pros-
theses for decades and several possible classification algorithms exist. Examples of the-
se classification methods are Neural Networks [79], Linear Discriminant Analysis, 
Bayes classifier [11], Fuzzy logic [80], Neuro-Fuzzy systems [28], Support Vector Ma-
chines [24], Hidden Markov Models and Gaussian Mixture Models [11]. However, it 
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has been demonstrated that a simple LDA classifier has equally high classification accu-
racy as more complex classifiers [7, 54, 81]. The results from a comparative study are 
presented in Fig. 26. Because the LDA classifier is also much simpler to implement as 
well as much faster to train, it have been selected to use it in this study. The following 
Chapter introduces the principles of the LDA classifier. 

 
Fig. 26:Comparison of common classification techniques using conventional classification er-
ror. Results illustrate the average over seven hand postures collected from five transradial ampu-
tee. The error bars show the standard derivation across the subjects. [81] 

 

3.6.5.1 Two Class Linear Discriminant Analysis  
 

Linear Discriminant Analysis (LDA) is a commonly used method for data classification 
and dimensionality reduction, introduced first for two classes by Fisher in 1936. LDA 
transforms the multivariate observations x to univariate observations y such that the y’s 
derived from the two classes were separated as much as possible. [82] 
 

Suppose that we have a set of m p-dimensional samples mxxx ,...,, 21  (where 

)),...,( 1 ipii xxx =  from two classes 1c  and 2c . To maximize separability of the projec-

tions of the classes, we want projected means far from each other. However, as it can be 
seen in Fig. 27, the difference of the projected means |��-�3| is not a good measure of 
separability because it does not take into account the variance of the classes. Fisher’s 
solution was to normalize the difference by scatter of both Class 1 and scatter of Class 
2. For the two classes, the scatter matrices are defined as 
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The inter-class scatter matrix is calculated with the equation  
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Scatter measures the same thing as variance, spread around the mean. Scatter is just on 
different scale than variance. To ensure a good separability of classes, the scatters of the 
classes should be as small as possible, i.e. samples of Class 1 and Class 2 cluster around 
the projected means �� and �3, respectively. Fisher’s criterion suggested the linear 
transformation φ  that maximizes the ratio of the determinant of the between-class scat-

ter matrix of the projected samples to the within-class scatter matrix of the projected 
samples. 
 
Thus, LDA projects all the data points into a new, normally lower dimensional, space, 
which maximizes the between-class separability while minimizing their within-class 

variability. If ∑
w

is non-singular, equation x can be solved as a conventional eigenval-

ue problem and φ is given by the eigenvectors of matrix ∑∑
−1

w b

. [82] 

 

 
Fig. 27:The classes are not well separated if only the difference of the means of projections of 
classes 1 and 2 is used as a measure of separation. The problem with the difference of the pro-
jected means |u1-u2| is that it does not consider the variance of classes. If we normalize |u1-u2| 
by a factor which is proportional to variance, the classes are much better separated, even though 
their projected means are less far apart.  

3.6.5.2 Multi-class Linear Discriminant Analysis  
 
The multi-class LDA is an extension of Fisher Linear discriminant that is used if the 
number of classes is more than two. The principle of the multi-class LDA is similar to 
two-class case: the projection is from high dimensional space to lower dimensional 
space and the ratio of intra-class scatter to the inter-class scatter is minimized. The dif-
ference between these two methods is that in multiclass case, the maximization should 
be done among several competing classes.  
 
If we have n classes, the intra-class scatter matrix is calculated similar to Eq. 44: 
 
                                           ∑ ! ∑ ∑ �� � ��1��� � ��1�,.��8k

 1?��                                           (46) 

 
The inter-class scatter matrix in inter-class case is slightly different 
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                                           ∑ ! ∑ �1���1 � ������1 � ���� 1?��                                         (47) 
 
where �1 represents the number the number of training samples for each class, �1 is the 
mean for each class and x is total mean vector calculated as   
 
To maximize the between-class measure while minimizing the within-class measure, we 
should still maximize the equation x. It can be shown that the transformation can be 
obtained by solving the generalized eigenvalue problem: 
 

     ∑ � ! � ∑ ���                                                   (48) 
 
When the transformationφ  is known, the samples are classified in the transformed 

space based on some distance metric, such as Euclidean distance

∑ −=
i ii yxyxd 2)(),( .  The new instance c is classified to ),,(minarg φφ kxzd  

where �S is the centroid of kth class.  The running time of LDA consists of evaluating 
the inner and between covariance matrixes, eigenvalue decomposition, and selecting 
discriminanting features. The computational complexity of evaluating the covariance 

matrixes is 2mp , where m is the number of instances and p is the number of features. 

[82] 
 

3.6.6 Majority Voting (MV) 
 

Majority voting (MV) is a postprocessing technique that analyzes the current class deci-
sion along with the n-1 (n is the number of majority votes) previous class decisions, and 
selects the class that occurs most frequently in those n decisions as the controller output. 
MV increases the overall classification accuracy by averaging out errors. It also allows 
using very short analysis windows without compromising the classification accuracy. 
As a result, much less storage space is needed for the necessary computations. The 
number of votes used in MV is determined by the acceptable delay *� and the pro-
cessing time � as follows 
 

                                                                � H ��
�                                                           (48) 

 
Table 4 in Chapter 3.6.1.2 shows the equations for the controller delay when MV is 
used.[51, 55] 
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3.7 Non-pattern Based Control 
 
Proportional control, threshold control, and finite state machines are approaches includ-
ed in the category of conventional or a non-pattern control. [83] Exemplars of the non-
pattern based approach are illustrated in Fig 28. Proportional control is usually used in 
conjunction with either pattern recognition-based, or non-pattern recognition based 
methods. The combination increases the accuracy of positioning and force control. The 
prosthesis may for example have two modes: proportional mode and on/off mode. In the 
on/off mode the speed of the prosthetic is constant where as in the proportional mode 
the level of contraction of a muscle controls the speed or force of a prosthesis limb. [26]  
 
In threshold control the amplitude range generated from a relaxed muscle state to the 
full contraction is divided into two or three segments that have an associated amplitude 
threshold. Each segment corresponds to a specific movement of the prosthetic. To per-
form a specific movement function, the user must produce a constant contraction to 
keep the EMG amplitude in the range of the associated segment. In practice, the user 
can control with acceptable accuracy only two functions per control muscle. [5]  
 
In Finite state machine based control, finite number of states, transition between them, 
and commands are used to describe the control. The states usually represent predefined 
motion commands and transition roles are associated with the signal features. Fig. 28 c) 
illustrates the simple hand opening/closing state machine. H is the part of the sensing 
vector related to hand opening/closing. Negative values of H close the hand and positive 
open it. The absolute value of the signal determines the force applied in Squeeze state. 
States with a dashed border are exited automatically when no signal is received.[84] For 
higher level amputees, who have limited number of muscles available after amputation, 
it may be difficult to control multiple DOFs using this control method. For instance, a 
transhumeral amputee only has parts of biceps and triceps which can serve as EMG sig-
nal sites to control the prosthesic movements. If all the three joint DOFs of elbow, wrist, 
and hand are required, the user must trigger a mode switch such as making a co-
contraction of the agonist/antagonist muscle pair to select which of the joist is desired to 
be actuated.    
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Fig. 28: a) Two channel amplitude coded myoelectric control; b) One channel amplitude coded 
myoelectric control; c) Hand opening/closing state machine.[84,modified] 
 

Most of the commercial prosthetic hands use non-pattern-based control methods. For 
example, the Otto Bock two-state system incorporated this technique to assign each 
prosthetic limb function to a separate control muscle. Usually, a pair of muscles is used 
to control one DOF, one signal from flexor muscle and one from an extensor muscle. 
Each of two movements in a joint DOF is assigned to a separate control muscle, for 
example hand opening to biceps and hand closing to triceps. When the EMG amplitude 
from the control muscle exceeds the predefined threshold, the associated prosthetic 
movement is selected and performed. The number of functions that can be controlled by 
non-pattern recognition-based controllers is limited in comparison to pattern recognition 
based controllers. This is because the function per muscle is limited to two. The struc-
ture of nonpattern based control methods is simple, and they are mostly employed in 
ON/OFF control.  
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3.8 Classification Performance Evaluation  
 

Resubstitution method uses the same data first for testing and then for training. This 
method provides an optimistic estimate of the true error probability. The amount of bias 
of the resubstitution estimate is a function of the ratio of the set size and the dimension 
of the feature space. The variance is inverse proportional to the data size.  [85] 
 

Because of overfitting the resubstitution method is not recommended. Instead, the most 
common methods for accuracy estimation is cross-validation. Cross-validation methods 
remove some of the data before training, and use the removed data to test the perfor-
mance of the learned model as an unseen data. The simplest version of cross-validation 
is the hold out method that separates the data into training set and testing set. The classi-
fier is trained using training set only. The classification accuracy of the classifier is test-
ed by using the data in the testing set. The major drawback of this method is that the 
size of both training and testing data is reduced. Sometimes a random subsampling is 
used and the hold out method is performed a few times. The accuracy of each repetition 
is used to calculate the mean accuracy and its standard derivation. However, in the ran-
dom subsampling method the data of the training and test set are not independent from 
each other which may influence the estimation of the accuracy. [85] 
 
K-Fold cross-validation divides the dataset in K folds. K-1 folds are used for training 
and the remaining one for testing. The advantage of this method is that all the exemplars 
in the dataset are eventually used for both training and testing. [85] 
 
Leave-one-out cross-validation is a special case of K-fold cross-validation. It performs 
N experiments for a dataset with N exemplars. For each experiment N-1 examples is 
used for training and the remaining example for testing. Thus, training is achieved using 
all samples, and at the same time independence between training and testing sets is 
maintained. The major drawback of this method is its high computational complexity. 
[85] 
 
The benefit of using a large number of folds is that the bias of the true error rate estima-
tor will be small. However, the variance of the true error rate estimator will be large. 
The other disadvantage is that more computation time is needed. With a small number 
of folds the number of experiments and, thus, also computation time is reduced. The 
variance of the estimator will be small but the bias will be large. In practice, the choice 
of the number of folds depends on the size of the dataset. For large datasets, even 3-fold 
cross-validation will be quite accurate, but for very sparse datasets, we may have to use 
leave-one-out in order to train on as many exemplars as possible. Some indications exist 
that a ten-fold cross-validation is sufficiently appropriate, and it has also been a com-
mon choice for model selection.  [85] 
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4   Implementation 
 

In this Chapter the hardware used in the EMG-measurements is firstly described. Sec-
ondly, the hand postures, investigated in this study, are presented. After that, we show 
the electrode placement and describe the experiment setup.  Data preprocessing and 
feature selection are also described. Signal processing, features, and all tests in this 
study are implemented with Matlab. 
 

4.1 SEMG Measurement System 
 
EMG-measurements were made with BioSemi biopotential measurement system 
ActiveTwo. The hardware includes AD-box, battery-box, USB2 Receiver, and Laptop, 
as can be seen in Fig. 29. The AD-box can digitize up to 256 sensor-signals with 24 bit 
resolution. Each AD-box channel consist of a low noise DC coupled post-amplifier, 
with a first order anti-aliasing filter, followed by a Delta-Sigma modulator with an over-
sampling rate of 64, and decimination filter with a steep fifth order sinc response and 
high resolution 24-bit output. The digital outputs of all the AD converters are digitally 
multiplexed and sent to the PC via single optical fiber. The power supply of AD-box 
and electrodes is the battery-box. The receiver converts the optical data from the AD-
box to an USB2 output. The electrodes were flat-type active electrodes (11 mm width, 
17 mm length, 4.5 mm height) with individual leads. The electrodes are sintered with 
Ag-AgCl to gain low noise minimal offset potentials and better DC-stability. They were 
attached to the skin with electrode paste and paper tape is used to hold the electrodes in 
place. The Common Mode Sense (CMS) and Driven Right Leg (DRL) electrodes drive 
the average potential of the patient as close as possible to the AD-box reference poten-
tial. The used software was BioSemi acquisition software ActiView. It is an acquisition 
program designed to display all ActiveTwo channels on screen and save all the data to 
disk in .BDF format (BioSemi Data Format).  [86,87] In this study, the sampling rate 
was set at 2048 Hz. 
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Fig. 29: Measurement system: 1. PC/laptop, 2. USB2 Receiver, 3. AD box, 4. electrode gel, 5. 
adhesive disks, 6. electrodes, 7. battery box 
 

4.2 Subject Information 
 

The data were collected from the right forearm of eight able-bodied subjects between 
the ages of 26-71. Five of the subjects were male and three were female. Subject 4 was 
left-handed. The detail information of each subject is presented in Table 5. 
  
Table 5: Subject Information 
subject 1 2 3 4 5 6 7 8 

gender male male female female male male female male 

age 27 26 52 29 27 29 58 71 

Weight/kg 63 71 76 65 88 71 69 90 

Height/cm 182 170 164 167 180 178 163 181 

right-/ left 
handed 

right right right left right right right right 
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4.3 Selecting the Hand Postures 
 
Although, the natural human hand is able to perform several hand postures, usually only 
the most common grasps are considered for the prostheses. This study investigates the 
six hand postures shown in Fig. 30 as a subset of the possible hand postures the human 
hand can make. The hand postures were selected because they are common in everyday 
life and they were also investigated in many prior studies. 
 

          
Fig. 30: Six daily-life upper-limb motions investigated in this study: a) hand open, b) hand 
close, c) precision grip, d) index point, e) wrist flexion, f) wrist extension 

 

4.4 Selecting the Electrode Positions 
 
The average positions of the electrodes were selected according to the anatomical chart 
of the muscles in the human forearm. In addition, the results of previous studies are also 
considered. The precise electrode positions were determined individually for each sub-
ject by viewing the signals online, and selecting the place that seemed to give the best 
signal. Data was recorded with 9 channels. Because we used bipolar measurements, two 
electrodes form a channel. Bipolar recordings were estimated by from unipolar record-
ings by taking spatial derivates, i.e. the rate of change of surface potential recordings 
with respect to their location on the forearm. The channel positions and specific muscles 
were:  
 
The posterior compartment of the forearm: 

1. Extensor pollicis brevis: CH1 
2. Extensor digitorum: CH2 
3. Extensor indicis: CH3 
4. Flexor capri ulnaris: CH4 
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The anterior compartment of the forearm: 
5. Brachioradialis: CH5 
6. Flexor capri radialis: CH6  
7. Flexor digitorum superficialis: CH7 
8. Flexor pollicis longus:  CH8  
 

Fig. 31 shows the approximate location of the channels on the target muscles in the 
forearm.   
 
 

 
Fig. 31:Placement of electrodes on the forearm. [21, modified]  
 

The CMS electrode is best located approximately in the center of the electrodes. In 
practice, the exact location is, however, not very critical and the best method to find the 
suitable place is by trying where to get the best signal. The DRL electrode can be locat-
ed anywhere on the body. [86] In this study, CMS and DRL electrodes were placed on 
the biceps brachii. 
 

4.5 Measurements 
 

To prevent the baseline shifts the skin of the subject was cleaned with alcohol. After 
firstly theoretically estimating the optimal electrode sites, the exact locations were se-
lected experimentally by placing the electrode in the area of interest, and examining 
where to get the best signal. The standard recommendations for electrode placement as 
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established by the Surface EMG for Non-Invasive Assessment of Muscles (SENIAM) 
specified that the size of the electrodes should not exceed 10 mm when placed in the 
direction of the target muscles and that the inter-electrode distance should not go be-
yond 20 mm. [88] In this study, the distance between the electrodes was approximately 
1.5 cm. In order to get the greatest amplitude, the electrodes were tried to position so 
that the imaginary line connecting two electrodes is in parallel with the muscle group 
and the electrodepair is in the midline of the belly of the muscle between the nearest 
innervation zone and the myotendonous junction. After applying the electrodes, we 
waited a few minutes so that the chemical reactions in the electrode-gel-skin interface 
reach a stabile equilibrium and the baseline drift and noise have settled. During the 
measurement, the arm was resting on the support as can be seen in Fig. 32. This reduces 
movement artifacts because the electrodes are not pressed by the table.  
 

 
Fig. 32: The forearm was resting on the support during the measurement.  
 
During the experiment the volunteers performed the six upper limb postures presented 
in Chapter 4.3. Additionally, the resting state was investigated. Totally 35 hand pos-
tures, including resting states, were performed. The first seven hand postures were used 
as a testing set and the rest of the data is used as a training set. The subjects maintained 
each posture for approximately five seconds, and the dynamic states between grasps 
were short (less than 1 second).   
 
When the classification accuracy is evaluated, both the predicted class and the actual 
class need to be known.  To determine the actual classes, the tests were recorded using a 
video camera. After starting the EMG measurement, we generated an impulse to the 
trigger channel by pressing a button, and at the same time the led turns on. Thus, we can 
see on the video the exact time instant when the impulse is generated on the trigger 
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channel. When we know a sampling rate of the equipment, we can calculate the time 
instants of the transient states and steady states accuracy out to milliseconds.  
 

4.6 Data Preprocessing  
 
The first step of the preprocessing is an estimation of the bipolar measurements from 
the 16 unipolar recordings. This is done with Matlab by taking the spatial derivatives of 
every sensing electrode pair. Secondly, we need to determine the time instants when the 
grasps start and end from the video recordings. When we know the time instants and 
sapling rate, we can calculate the state and class of the sample intervals as follows: 
 

                          ����L� J� #
���L# �L� C��L��
� !  yizR y:¡y :�zh1 j ¡:y9                         (49) 

 
where start and stop refers to the time instants when hand postures/dynamic states start 
and stop, respectively.  
 
Secondly, the signal is subsampled. The sampling rate of the measurement system was 
set to 2048 Hz. However, the frequency range of EMG is 0-1000 Hz, and the dominant 
energy is concentrated in the frequencies of 20-500 Hz. Most of the remaining signal 
power is contributed by electrode and equipment noise. As mentioned in Chapter 3.3, 
little attention has been paid to the effect of sampling rate to the classification accuracy. 
In this thesis, we investigated the effect of different sampling frequencies to the classifi-
cation accuracy when individual TD features were used. To avoid the aliasing, the sig-
nals higher than half the sample rate were filtered out. 
 
The end of the dynamic period is evaluated by adding a delay to the time instant when a 
movement stops. The time instants when the movements start and stop are determined 
by watching the videos recorded during the test. The delay is calculated by using the 
equations presented in Table 4. The data is assumed to be correctly classified if the class 
changes within the dynamic period and do not return to the previous class after once 
changed to the next class. If the data is classified to some other class than the class be-
fore or after dynamic period, misclassification is assumed to be occurring. Total accura-
cy describes the classification accuracy of the data during both steady and dynamic 
states. 
 
The classification accuracies were calculated by 10-fold cross-validation. Because the 
classification is based on the steady state data, the dynamic states between grasps need 
to be removed before 10-fold cross-validation. The data need also to be balanced so that 
it includes an equal number of records per class. Additionally, the classification accura-
cies have been evaluated by using the data that contains both steady and transient states. 
In this case, a holdout method is used and the data is divided into two set: a training set 
and a test set. Transients are removed from the training data, and an equal number of 
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records per class are selected in it. An estimate for classification accuracy is calculated 
as follows  
 

        ��
##C�C}
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}}��
}¢ !  £��9¡ i� 8i¡¡98yh¤ 8h:  1�19�  :�zh9 �iy:h  £��9¡ i� y9 y1 j  :�zh9  q 100�%�    (50) 

 
In addition of the total classification error, the error estimates were also calculated sepa-
rately for the steady and the transient state. The sample is assumed to be correctly clas-
sified during the dynamic state if it is not classified to the class before the dynamic state 
after once classified to the class after dynamic state. If the sample is classified to some 
other class than the class before or after the dynamic state, it is, of course, assumed to be 
misclassified. The end of the dynamic period is evaluated by adding a delay to the time 
instant when a movement stops.  The time instants when the movements start and stop 
are determined by watching the videos recorded during the test. The delay is calculated 
by using the equations presented in Table 4. When average classification accuracies 
were calculated over all subjects, the error bounds were obtained using the standard 
derivation as follows: 

                                                 � ! _ � R� ∑ ��1 � ���3 1?� ab¦                                           (51) 

 

4.7 Data Representation 
 
Features are extracted from overlapped segments. The EMG features in the matrix form 
can be expressed as 
 

                                                  �L
���L �
��C� ! §��� ¨ ���© ª ©�1� ¨ �1� «.                                   (52) 

 
Features of each 8 channels are represented as (8q 1)-dimensional vectors �1�. In the 

feature matrix, j represents the window number (1 H ¬ H , J=L/N, N is the length of 
the window size function and L is the whole data set length) and i feature number 
(1 H C H ;, I is the number of features). Each column in the feature matrix represents a 
feature vector that is to be classified. The length of the feature vectors (i.e. the number 
of rows in the feature matrix) is depending on the type and number of features. For ex-
ample, if we have two features, MAV and RMS, the length of the feature vector is 16 
(eight channels and two features per channel). If AR(6) coefficients is used as a feature, 
the total length of the feature vector will be 48 (eight channels and seven AR coeffi-
cients per channel). Feature matrix was normalized by Eq. 41.  
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4.8 Feature Selection 
    
Most of the previous studies have compared only few combinations of TD features, or if 
the larger number of TD features have been compared, the performance of them has 
been evaluated independently with statistical methods. However, the feature vector con-
sisting of the best M features evaluated separately rarely gives an optimal solution since 
it does not account for the feature dependence, as illustrates in Fig. 33. In addition, the 
classification accuracy achieved with the feature vector is depending on the classifier. If 
we want to find an optimal feature set for the classifier, the best way would be to com-
pare classification accuracies instead of using statistical methods.  
 
One of the objectives of this thesis is to find the optimal feature set among 16 TD fea-
tures and two TSD features in context of an LDA classifier. The more detailed descrip-
tion of the features is given in Chapter 3.6.2. An ideal method to find the optimal fea-
ture subsets would be to form all combinations of the features, classify them with an 
LDA classifier, and compare the classification accuracies. However, the number of the 
all possible combinations of the 16 features is 65 536 (2�® � 1). Calculating all these 
combinations is extremely time consuming, and therefore it is needed to use a local op-
timization technique that involves examining only a subset of all possible combinations. 
However, it should be noted that the local optimization algorithms do no guarantee the 
selection of the globally best subset. 
 

                                
Fig. 33: 4D problem with 5 classes. If evaluated separately, f1 is the best feature (separates 
C1,C2, C3 and {C4,C5}), x2 and x3 are equivalent (separate classes in three groups) and f4 is 
the worst feature (separates only C4 from C5). Thus, if we choose features according to the 
individual scores, we would pick f1 and either f2 or f3, leaving classes C4 and C5 non-
separable. However, the optimal feature subset would be the combination of f1 and f4, because 
f4 provides the only information that f1 needs: discrimination between classes C1 and C2.   
 

In this study a Sequential Forward Selection (SFS) algorithm have been used to find an 
optimal feature set. It starts with zero features, and sequentially adds the feature that 
yields the best performance when combined with the features already selected. This 
cycle repeats until no improvement is obtained from extending the current subset. [89] 
The SFS algorithm is selected to use in this study because it is relatively simple to im-
plement and performs well when the optimal subset is small. In addition, it turned out 
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that several alternative feature sets yield approximately equal high classification accura-
cy, and therefore more advanced algorithms, such as Genetic Algorithms, will not give 
any benefit.  
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5 Results and Discussion 
 

This Chapter introduces and analyses the results achieved in this study. Firstly, the de-
termination of the values for free parameters is described. Secondly, the classification 
accuracies achieved with different sampling rates are presented. We also examine the 
effect of ICA to the classification accuracy. After that different feature vectors are com-
pared. Postprocessing with MV is also demonstrated. In addition, we present estimates 
for time delays. Finally, we discuss some problems related to the control of myoelectric 
prostheses. 
 
Example of the sEMG signal acquired from the forearm of Subject 2 during six differ-
ent hand postures is shown in Fig. 34. Rest periods are at the beginning and end of the 
recording. The hand postures are made in the following order: hand open, hand close, 
precision grip, index point, wrist flexion, and wrist extension. Dynamic states are 
marked with red. The amplitude of rest periods is small in all signals. Combinations of 
the amplitudes of the signals are different in each motion. This foundation suggests that 
the amplitude related features may yield the high classification accuracy. 
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Fig. 34: Eight-channel  sEMG signals acquired from the forearm of Subject 2 measured during 
he was performing six grasps in the following order: hand open, hand close, precision grip, in-
dex point, wrist flexion, and wrist extension. At the beginning and end of each signal is rest 
period. Dynamic states between grasps are marked with red. 
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5.1 Determination of Values for Free Parameters 
   
Before comparing the performance of the features, we need to determine the values for 
the free parameters. The free parameters for features were determined separately for 
each frequency and for each subject. Fig. 35 demonstrates the significant effect of the 
ZC threshold value and the AR order to the classification accuracy. As described in 
Chapter 3.6.2.3, previous studies have suggested 3, 4 or 6 to be optimal values for AR 
order. In this study, the classification accuracy was rather poor for AR order 3, but in-
creased significantly when the order is increased to 4. No significant increase in classi-
fication accuracy was observed with the order numbers over six, and therefore the 
AR(6) model is selected to use in this study. Appendix 1 includes the figures illustrating 
the effect of the threshold values of WAMP and MYOP as well as the effect the order of 
CC has to the classification accuracy.  The values in Fig. 35 and in Appendix 1 are an 
average values calculated of the data from the eight subjects, but is should be noted that 
the optimal values also differ between subjects. However, for AR order and CC order 
the variation between subjects was not significant. 
 

 
Fig. 35: The effect of the ZC threshold value and the AR order to the classification accuracy 
 

5.2 Optimal Sampling Frequency 
 
Most of the sEMG signal power lies in the frequency band below 500 Hz. This is 
demonstrated in Fig. 36 that shows the power spectra of the sEMG signal acquired from 
Subject 1 when he was holding his hand open. The same observation was made of the 
power spectra of the other hand movements for all subjects. The power spectra of the 
other hand movements for Subject 1 can be found in Appendix 2. However, it is unclear 
whether all these frequencies contain important information for movement classifica-
tion. As discussed in Chapter 3.3, Li et al. found that the frequency components above 
250 Hz may be rejected without compromising too much the classification accuracy, 
and therefore a sampling rate of 500 Hz, or even 400 Hz may be used instead of com-
monly used 1000 Hz [43, 90].  
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Fig. 36: The power spectra of the sEMG signal from 8 channels for Subject 1.  
 

The classification accuracy for 18 features with seven different sampling rates is shown 
in Table 6. The classification accuracies are an average values calculated of the data 
collected from the seven subjects. The classification accuracies achieved with the data 
from Subject 8 were much lower than the results achieved with the data from the other 
subjects. Therefore, Subject 8 was excluded when average classification accuracies 
were calculated in Table 6. The window length was set to 100 samples with an overlap 
of 50 %.  
 
The results in Table 6 agree the results reported by Li et al.: The sampling rate can be 
significantly decreased from the commonly used sampling rate of 1000 Hz. However, 
perhaps somewhat surprisingly, with respect to the most features the average classifica-
tion accuracy is even slowly increasing up to 400 Hz. After 400 Hz the classification 
accuracy starts to decrease. Thus, an optimal sampling frequency for most of the fea-
tures seems to be 400 Hz. These results suggest that using lower sampling frequency 
than commonly used 1000 Hz may not only improve the real-time properties, but also 
the classification accuracy. However, this does not apply for the all features. The classi-
fication accuracy of AR and CC is best at the frequency of 800 Hz. When the sampling 
rate is decreased from 800 Hz to 400 Hz, the classification accuracy decreases about 
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2.67 percentage points for AR and 3.60 percentage points for CC. SSC has the best 
classification accuracy at 1000 Hz, and at the sampling rate of 400 Hz it has decreased 
1.58 percentage points. TM4 and TM5 yield the best accuracy with relatively low sam-
pling rate, at 300 Hz. The error bounds are usually lowest at 400 Hz which means that at 
this frequency the discrepancy across the subjects is low.  
 
Table 6: The classification accuracy for 18 features with seven different sampling rates 
frequency 
(Hz) 300 400 600 800 1000 1500 2000 

MAV 
93.13±6.1 94.24±5.3 93.41±6.9 92.98±7.7 92.6±7.9 90.77±8.9 89.49±9.5 

MAV1 
92.75±6.2 93.75±5.8 93.14±6.9 92.21±8.1 91.92±8.2 90.22±9.2 88.92±9.5 

MAV2 
79.24±9.9 81.27±9.7 78.73±10 75.74±10 72.51±9.5 66.92±8.6 63.35±8.3 

VAR 
84.52±8.3 81.97±8.6 80.38±9.0 79.49±9.1 78.58±9.0 76.73±9.2 74.51±9.5 

RMS 
93.12±6.0 94.30±5.4 93.85±6.5 93.49±7.4 93.10±7.9 91.42±8.7 89.91±9.3 

TM3 
54.45±6.8 55.85±5.2 54.38±3.2 53.66±4.0 53.07±3.7 50.71±5.3 49.06±4.6 

TM4 
55.78±5.4 52.78±3.3 51.74±3.6 51.32±3.3 52.26±3.4 48.84±4.2 47.27±4.5 

TM5 
55.78±5.4 52.78±3.3 51.74±3.6 51.32±3.3 52.26±3.4 48.84±4.2 47.27±4.5 

AAC 
92.68±6.4 93.59±6.3 92.76±7.0 92.12±8.1 91.53±8.3 88.39±9.2 85.70±9.3 

DASDV 
93.14±5.8 94.00±5.9 93.51±7.0 92.99±7.7 92.56±8.2 90.50±8.8 88.54±9.2 

V-ORDER 
92.11±6.7 93.68±6.3 93.24±7.1 92.96±7.6 92.52±8.1 90.76±9.0 89.18±9.6 

LOGDET 
91.54±7.3 91.95±7.3 91.01±8.5 90.22±9.1 89.89±9.4 87.99±9.9 86.72±10 

WAMP 
87.83±11 93.27±5.9 93.17±6.4 93.34±7.1 93.65±6.9 93.00±7.1 90.70±8.1 

MYOP 
86.27±11 91.70±7.8 91.77±7.5 91.08±8.2 91.84±7.8 91.10±8.2 89.48±9.0 

ZC 
77.10±16 90.40±7.7 89.80±7.8 89.29±8.3 85.55±11 86.00±10 85.48±9.9 

SSC 
84.92±11 88.50±10 88.76±8.8 89.69±8.2 90.08±7.7 89.41±8.1 88.00±8.4 

AR 82.17±8.1 90.36±6.2 92.71±6.2 93.03±7.5 92.49±7.5 92.53±7 91.95±7.7 

CC 80.55±7.7 89.54±6.3 92.46±6.6 93.14±6.8 92.55±7.3 92.51±7.1 91.80±7.9 

 

5.3 Preprocessing with FastICA 
 
Fast ICA was tested as a preprocessing technique in order to eliminate muscle crosstalk. 
The correlation matrix in Table 7 illustrates the amount of crosstalk between channels 
before ICA. After ICA the correlation coefficients were about zero. However, the classi-
fication accuracy was not improved after ICA. This may be because the channels were 
placed relatively far from each other, and therefore the amount of crosstalk is not signif-
icant. The correlation matrix in Table 7 shows that the correlations are in general small 
(-0.0022–0.3312) between different channels which indicates that the amount of cross-
talk is relatively low. The correlation matrix is calculated by using the data from Subject 
3, but the correlation coefficients calculated of the data from the other subjects were at 
the same size range. The two previous studies [31, 91] that have shown ICA to signifi-
cantly improve the classification accuracy placed the channels much nearer to each oth-
er than they were placed in this study. In this study the distances between channels were 
several centimeters whereas in the study of Sueaseenak et al. the distance between two 
channels was only 10 mm, and the correlation coefficient between these two measure-
ments was 0.4710 before ICA [91]. Al-Timemy et al. placed sixteen channels near to 
each other around the upper part of the forearm around the circumference. He has not 
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reported the exact distance between electrodes, but it was obviously smaller than in this 
study [31].  
 
Table 7: Correlation matrix of the data from Subject 3. 
channel 1 2 3 4 5 6 7 8 

1 1        

2 -0.0183 1       

3 0.0079 -0.0906 1      

4 -0.0022 0.0508 -0.0259 1     

5 -0.0304 0.1887 -0.1025 0.1435 1    

6 0.0171 0.0227 -0.0244 0.1284 0.1064 1   

7 0.0528 0.0135 0.0178 -0.0428 0.0139 -0.0514 1  

8 0.3312 -0.0361 -0.0209 -0.0026 -0.0357 0.0151 0.0830 1 

 

5.4 TD Feature Set Comparison 
 
Secondly, we determined an optimal feature subset for each subject by using the sam-
pling rate of 400 Hz, the cut-off frequency of 60 Hz, and the window length of 100 
samples with the 50 % overlap. Optimal subsets were formed by using SFS algorithm. 
The results are presented in Table 8. The classification accuracies were calculated by 
using 10 fold crossvalidation. The results in Table 8 suggest two to be an optimal num-
ber of features in the feature set. The classification accuracy for six of eight subjects 
was not increased significantly when more features were added. This result is in con-
sistent with the study by Phinyomark et al. [56] where it was found only a slight in-
crease in the classification accuracy when the number of features in Hudgins’s had Du’s 
feature sets was greater than two.  
 
                            Table 8: The results of SFS algorithm for each subject. 

subject feature set 

1 RMS, WAMP 

2 DASDV, VAR 

3 RMS, VAR, CC 

4 RMS, VAR, CC, WAMP 

5 RMS,VAR,CC 

6 DASDV, VAR 

7 RMS, WAMP, VAR 

8 RMS, WAMP 

 
No any feature set outperformed the others, but instead the feature set that yielded to the 
highest classification accuracy seemed to be depending on the subject. However, some 
features seemed to be selected more often than the others. For example, VAR was in-
cluded in seven, RMS in six and WAMP in four feature sets. Thus, a combination of 
some of these features may yield relatively high classification accuracy for all subjects. 
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A good subset may be RMS and WAMP, because they describe different signal proper-
ties: RMS is a measure of power and WAMP describes the frequency properties. Addi-
tionally, these two features have a different distribution in space, as can be seen in Fig 
37. Thus, it can be assumed that both of the features give some new information. An-
other good alternative would be a combination of VAR and WAMP. RMS, WAMP, and 
VAR have also been very commonly used in sEMG classification.  
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Fig. 37. Scatter plots for 2 channels and 7 movements (i.e. rest, hand open, hand close, precision 
grasp, index point, flexion, and extension) of Subject 1 by applying RMS, WAPM, and VAR. 
The classes are linearly separable which suggests that they could be effectively separated by the 
LDA classifier. 
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Table 9 compares the classification accuracies achieved by using the following feature 
sets: 
 

- two feature sets, WAMP-RMS and WAMP-VAR, which are suggested 
by the results achieved in this study 

- Hudgins’s TD feature set (MAV-WL-ZC-SSC) and the feature set sug-
gested by Englehart (AR-RMS), both of which are frequently used in the 
previous studies 

- The feature set that SFS algorithm suggested to be an optimal for an in-
dividual 

 
In addition, MAV, RMS, DASDV, and V-order were also investigated individually be-
cause Table 9 indicates that these features may yield the high classification accuracy. 
The data is divided into two sets, of which the smaller includes the first seven grasps 
(test set) of the trial and the other includes the rest grasps (training set). Four types of 
classification accuracies have been evaluated. The steady state accuracy and the dynam-
ic state accuracy have been evaluated by using separate data for training and testing. 
The steady state accuracy describes the classification accuracy during constant contrac-
tions whereas the dynamic state accuracy describes the classification accuracy during 
the periods when a subject switches from a hand posture to another. A dynamic period 
was assumed to begin when the hand of a subject starts to move. The cross-validation 
accuracy is calculated by applying 10 fold cross-validation on the training data. The 
error types are described more detail in Chapter 4.6. When separate training and testing 
sets were used, MV has been used to improve the classification accuracy.  
 
Summary of the comparison of the feature sets and some individual features is present-
ed in Table 9. The more detail table is presented in Appendix 3. As it is apparent from 
Table 9, there is no significant difference between the performance of the five feature 
subsets and the single features. This result is in consistent with the observation of 
Osokei et al. [54] who compared the performance of 14 individual features and four 
feature sets by using disjoint segments of 200 samples, 1000 Hz sampling rate and SVM 
classifier. However, Osokei et al. also found that the feature sets provide much lower 
discrepancy in accuracy during several independent attempts across different subjects. 
Thus, the range of classification accuracy for feature sets, in several independent obser-
vations, is significantly narrower than the range of classification accuracy for single 
features. Osokei et al. named this as the major advantage of using feature sets instead if 
single features. In this study, however, the same effect was not observed.  
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Table 9: Classification accuracies  
all subjects in-

cluded 
SFS 

WAMP-

RMS 

WAMP-

VAR 

MAV-WL-ZC-

SSC 

AR-

RMS 
MAV RMS 

DASD

V 

V-

Order 

total avg. 88.4 86.6 83.2 81.7 86.1 79.9 85.9 82.3 84.9 

total sd. 12.7 13.8 15.5 19.0 16.1 20.8 17.7 18.6 17.9 

crossval. avg. 87.7 85.4 82.9 85.3 85.5 83.9 82.6 80.0 81.4 

crossval. sd. 13.0 13.8 14.5 15.1 15.7 15.2 15.2 16.0 14.7 

subject 8 excluded         

total avg. 92.3 90.1 87.2 87.4 91.4 85.9 91.9 87.5 90.8 

total sd. 7.00 10.1 11.5 10.9 6.20 12.9 6.00 12.4 6.40 

crossval. avg. 89.8 87.1 84.7 87.6 87.4 86.3 84.4 82.0 83.2 

crossval. sd. 12.6 13.9 14.6 14.7 15.9 14.7 15.4 16.1 14.9 

subject 5 & 8 excluded         

total avg. 94.6 93.6 90.9 90.6 93.3 89.7 92.8 91.6 91.6 

total sd. 3.60 4.90 6.30 7.50 4.10 8.80 6.00 6.8 6.70 

crossval. avg. 94.3 91.3 89.2 92.8 93.3 91.6 90.0 86.8 88.5 

crossval. sd. 4.00 9.50 9.40 5.20 3.80 4.40 4.60 10.9 5.20 

 
The classification accuracy varies significantly between subjects, as the high standard 
derivations indicate in Table 9. The large range in the classification accuracies between 
individuals may be due to the fact that the electrical conductivity varies with tissue type, 
thickness, physiological changes and temperature, and these conditions can greatly vary 
between subjects. For Subject 8 the classification accuracy was rather poor: the total 
classification accuracy was at highest 61.4 %. This classification accuracy was achieved 
by using the feature set suggested by the SFS algorithm. It seemed that for the other 
feature sets and single features the classifier was not able to classify the signal. Howev-
er, the classification accuracy given by cross-validation is much higher, between 65.7 % 
and 73.3 %. This indicates that something may be wrong in the testing data. For in-
stance, the lower muscle contraction force during testing set than during training set 
may result poor classification accuracy. For Subject 5 the classification accuracy was at 
highest 86.6 %, and the classification accuracies for the all other subjects were over 90 
%, at least for some of the features or feature sets. The hand postures that were most 
commonly mislabeled one as another were precision grip, index point and hand close. 
This would be expected, because these postures are somewhat similar.  
 

5.5 Fast Fourier Transform 
 
The results from FFT based classification are shown in Table 10. PCA was used to re-
duce the dimensionality of the feature vectors. As it is apparent from Table 10, the clas-
sification accuracies are at the same size as the accuracies obtained by TD-feature vec-
tors. This result is agrees with the previous studies. The classification accuracy for Sub-
ject 8 was again significantly poorer compared to the classification accuracies for the 
other subjects. The window lengths were 32 samples. However, for Subjects 5 and Sub-
ject 6, the window length of 64 was used because it increased the classification accuracy 
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significantly (the total accuracy increased from 77.3 % to 94.6 % for Subject 6 and from 
68.5 % to 83.6 % for subject 5). Overlap was 50 % of the window length, the window 
function was Hamming-window, and the data was postprocessed with MV. 
 
               Table 10: Results from FFT based classification. 

subject steady state transient total crossv. 

1 99.5 86.8 98.0 97.0 

2 98.3 81.0 96.6 91.1 

3 87.6 81.6 86.9 85.9 

4 90.3 97.2 90.9 85.2 

5 81.2 100.0 83.6 70.1 

6 96.0 87.4 94.6 93.0 

7 83.1 52.1 78.4 74.4 

8 51.7 31.0 47.5 60.2 

avg. 86.0±15.4 77.1±23.6 84.6±16.4 82.1±12.7 

avg. * 90.9±7.3 83.7±15.7 89.9±7.2 85.2±9.8 

                              *Subject 8 excluded 
 

5.6 Discrete Wavelet Transform 
 
The classification accuracies obtained by using third level DWT are summarized in Ta-
ble 11. We tested several wavelet functions from the following wavelet families: 
Daubechies (db), Symlets (sym), Coiflets (coif), and BiorSplines (bior). Daubechies 44 
is the most similar mother wavelet function across a variety of biological signals. How-
ever, the similar wavelet function is not necessarily the proper choice for hand posture 
classification because wavelet functions in wavelet-based processors also depends on 
problem’s parameters.[92] According to the results obtained in this study the suitable 
wavelet functions for hand posture classification seemed to be db4, bd7, db10, coif4, 
sym4, bior4.4 or bior4.5. These wavelet functions have also been suggested in previous 
studies [76, 92, 93, 94]. We obtained good results also by using db44, but it did not out-
perform the more simple wavelets. The results in Table 11 are obtained by using db7, 
that is suggested to be the suitable wavelet function also in previously [76].  
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   Table 11: Results from DWT based classification. 
subject steady transient total crossv. 

1 99.3 93.4 98.6 98.3 

2 98.6 96.4 98.4 94.5 

3 94.6 94.4 94.6 84.8 

4 97.4 57.0 92.5 88.0 

5 74.8 78.8 75.3 52.6 

6 88.3 79.7 87.2 90.8 

7 84.1 51.6 79.2 79.6 

8 50.0 77.1 54.7 66.1 

avg. 85.9±17.0 78.6±17.0 85.1±14.8 81.8±15.6 

avg.* 91.0±9.1 78.8±18.2 89.4±9.2 84.1±15.2 

                           *Subject 8 excluded 
 
 

5.7 Dimensionality Reduction 
 
PCA was used to reduce the dimensionality of the feature sets. The classification accu-
racy was not improved after applying PCA to the TD feature sets, instead it was found 
to decrease. This may be because the dimensionality of TD feature sets is somewhat low 
(two TD features form 16-dimensional feature vector). However, the classification accu-
racy was improved dramatically for FFT after PCA. Before PCA the feature vectors 
were 136-dimensional with window length of 32 samples and 264-dimensional with 
window length of 64. By using PCA we reduced the dimensionality to 15 or 20, depend-
ing on the classification results. The average delay estimate for the window length of 32 
samples (80 ms) is 160 ms and the delay range is 40 ms. Corresponding values for the 
window length of 64 samples (160 ms) are 320 ms and 80 ms. Fig 38 displays the clas-
sifier outputs for four different combinations of the feature dimension and the window 
length. 
 
The dimensionality of DWT is reduced by calculating RMS from the detail coefficients 
of each three level as well as from approximation coefficients. The dimensionality re-
duction using PCA was also tested. However, the classification accuracies after PCA 
dimensionality reduction were poor.  
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Fig 38. The output of the classifier for Subject 5 by using  a) window length of 32 sample and 
reducing the dimensionality to 15; b) window length of 32 samples and reducing the dimension-
ality to 20; c) window length of 64 and the dimensionality to 20 d) window length of 64 and 
reducing the dimensionality to15. The classes describe the hand postures as follows: 1. rest, 2. 
open hand, 3. close hand, 4. precision grip, 5. index point, 6. wrist flexion, 7. wrist extension 
 

5.8 Majority voting, Window Length and Delay  
 
Fig. 39 shows the effect of MV on the classification accuracy for each subject in the 
case of TD features presented in Table 8 in Chapter 5.4. MV improved the classification 
accuracy significantly: The average classification accuracy of all subjects increased 11.3 
percentage points (from 76.1 % to 87.4 %). The classification accuracy was increased 
clearly for each subject. However, there were great differences in the amount of the in-
crease of classification accuracy between individuals. The range of the increase was 
from 4.6 percentage points to 21.2 percentage points. The increase in classification ac-
curacy was the most significant for the subjects whose unprocessed sEMG signals were 
poorly classified. For example, for Subject 5 the classification accuracy increased from 
57.2 % to 78.4 %. Fig. 40 illustrates the effect of MV on the classification accuracy for 
Subject 5. The clear improvement in classification accuracy after MV was observed also 
when using STFT and DWT.  
 
The standard derivations for classification accuracies were high both for the data before 
and after MV, 18.2 and 14.0 respectively. After applying MV on the data the standard 
derivation of the total classification accuracy decreased 4.2 percentage points. The de-
tail information of the effect of MV on the classification accuracy can be found in Ap-
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pendix 4. This study uses 5 or 6 points in MV decision, depending on the subject. These 
values give the best classification accuracy with acceptable delay.  
 

                          
Fig. 39: The effect of majority voting on the classification accuracy using the window length of 
40 samples with 50 % overlap, sampling rate of 400 Hz, and the feature vectors presented in 
Table 8.  
 
The previous studies have also reported on the improvement in the classification accu-
racy after applying MV on the data [51, 77, 95, 96]. However, the improvement in accu-
racy in most of the studies has been only at highest two percentage points. This may be 
because MV is particularly effective for small windows, and most of the previous stud-
ies have used the window length of 200 samples or 256 samples, which is much larger 
than the window length of 40 samples used in this study. Englehart and Hudgins [51] 
demonstrated the effect of MV on the classification error by using different window 
lengths between 8 ms (8 samples) and 256 ms (256 samples). For window lengths be-
tween 128 ms and 256 ms the increase in classification accuracy was only about one 
percentage point or less while for the window lengths of 8-64 ms the increase in classi-
fication accuracy is much higher, approximately 2-14 percentage points.    
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Fig. 40: Output of the continuous LDA classifier for Subject 5 a) without and b) with MV. Out-
put of the classifier is marked with blue, and the actual classes with red. The values for window 
length and increment are 40 samples and 20 samples, respectively. The number of votes is 5. 
Clearly, the majority vote processing has eliminated the spurious errors present in the unpro-
cessed decision stream.  

MV makes it possible to use the shorter windows without degrading substantially the 
classification accuracy. Fig. 41 illustrates the rapid degrading of the classification accu-
racy of the unprocessed data with decreasing analysis window length. If MV averaging 
is used, this degradation is prevented, due to more decisions available in the shorter 
windows.  

                   
 
Fig. 41: Effect of analysis window length on the classification accuracy with unprocessed data. 
 
In this study, the window length of 40 samples (100 ms) at 400 Hz sampling rate was 
found to yield relatively high classification accuracy without compromising the delay 
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too much. Table 12 compares the theoretical time delay estimates with and without MV. 
The estimates were calculated by using the equations in Table 4 presented in Chapter 
3.6.1.2. By using these values the delay range is also somewhat small. However, it 
should be noted that because we did not have the real application to use, the processing 
time in the equations is assumed to be zero.  
 
Table 12: Worst case, best case and average case delays for window lengths of 30, 40 and 60 
samples with 50 % overlap. The delays are estimated by using the equations in Table x. The 
processing time is assumed to be zero.     

MV      

win  

(samp-

les) 

win 

(ms) 

worst case delay 

(ms) 

average case delay 

(ms) 

best case de-

lay(ms) 

delay range 

(ms) 

30 75 159 131 113 37,5 

40 100 200 175 150 50 

60 150 300 263 225 75 

no MV      

30 75 75 56,3 37,5 37,5 

40 100 100 75 50 50 

60 150 150 113 150 75 

 

5.9 Further Research 
 
The results achieved in this study indicate that it is possible to classify sEMG signals, 
measured from able-bodied subjects during they performed seven hand motions, accu-
rately in noise free environment with small subset of TD features. FFT and DWT were 
also able to classify the sEMG signals accurately, but they did not outperform the classi-
fication accuracies achieved by using the simple and computationally efficient TD fea-
tures. In addition, it was shown that the sampling rate may be significantly reduced 
from the commonly used 1000 Hz. The optimal size of the feature set seems to be two, 
and even some individual features yield high classification accuracies. However, many 
issues and challenges related to prosthetic control need yet to be solved.  
 
This study compares the features only based on classification accuracy. However, in 
real time applications the computational complexity of the features should also be con-
sidered. Previous studies have shown TDS features, and especially simple TD features 
to be fast to calculate, but the more complicate wavelet transform has dropped dramati-
cally through calculating run time [61]. To ensure the efficient responsibilities, the cal-
culation times of the features should also be investigated, especially in the chase of 
wavelet transform. The other important property of the feature space that needs further 
investigation is its sensitivity to noise. The classification accuracies achieved in this 
study may probably be much lower if noise is present, especially for TD features that 
are relatively sensitive to noise. Thus, further research is needed to select the feature set 
that yields high classification accuracy, but is also noise tolerant, and computationally 
efficient.    
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Another limitation of this thesis is that, similarly as most investigations of sEMG pat-
tern recognition, this study used subjects with intact limbs instead of those with limb 
deficiencies. For an amputee several confounding factors introduced by limb deficiency, 
such as scar tissue, variation in muscle geometry, and possible changes in cortical repre-
sentation and motor pathways, may affect the classification accuracy. The other issues 
to consider are the age of operation, the type of amputation and the previous use of my-
oelectric prosthesis. The examination of previous studies reveals that it is not clear if 
high classification accuracies achieved for healthy subjects guarantees high classifica-
tion accuracies for amputees. Castellini et al. [9] investigated the ability of SVM classi-
fier to classify sEMG signals collected from the forearm of three amputees while they 
performed various grasping postures and forces with their phantom limbs. In agreement 
with recent neurological studies on cortical plasticity they found that amputees operated 
decades ago can still produce distinct and stabile signals for each posture and force. The 
SVM classified the postures up to a precision of 95 % and approximated the force with 
an error of 7 %. The results were in line with the results Castellini et al. previously ob-
tained by healthy subjects while feed-forward controlling a dexterous hand. Tenore et al 
[40] showed that it is possible to decode individual flexion and extension movements of 
each finger with over 90 % accuracy in a transradial amputee. They found no statistical-
ly significant difference in decoding accuracy from a transradial amputee and able-
bodied subjects. However, some studies have also found the decrease in classification 
accuracy with amputee subjects. Liu et al. [63] evaluated classification performance of 
four time-domain features and AR coefficients and their combination in identifying 11 
classes of arm and hand movements in both able-bodied subjects and amputees. Their 
results suggest that the classification accuracy achieved with able-bodied subjects might 
not apply in amputees: the classification accuracy was about 20 % lower for amputees. 
In the study of Li et al. [97] five unilateral patients performed 10 wrist and hand mo-
tions using both their amputated and intact arms. According to their results, muscles in 
the residual forearm produce sufficient myoelectric information for real-time wrist con-
trol but not for performing multiple hand grasps. Englehart et al. [98] compared the per-
formance of 11 classifiers, including an LDA classifier, with 10 nondisabled subjects 
and 5 transradial-amputation subjects. They showed that the absolute average perfor-
mance differs between nondisabled and amputee subjects. The difference in the out-
comes between the previous studies indicates that the classification accuracy is depend-
ing on the uniqueness of each single stump. This may also challenge the general ap-
plicability of the method. As the results from previous studies indicate, the classification 
accuracies achieved in this thesis may not be directly generalizable to amputees. Proba-
bly, the results for amputees may expect to be at least somewhat poorer.  
 
When comparing the performance of 11 classifiers Englehart et al.[98] also made an-
other interesting observation: The relative performance of the classifiers was fairly con-
sistent between amputees and nondisabled population. This result implies an LDA clas-
sifier, which is also used in this thesis, is the most suitable for hand movement classifi-
cation, and may be generalized to amputees. The same result was observed when differ-
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ent feature sets are compared: the relative performance of the feature sets is consistent 
between nondisabled individuals and amputees. According to these results, the features 
and feature sets that were suggest to yield highest classification accuracy in this thesis 
would be expected to give the highest classification accuracies also for amputees.  
 
In this study, the sEMG measurements were made with eight channels. However, it has 
been demonstrated that, using optimal channel subset selection, no significant increase 
in classification accuracy was achieved by adding more than three channels [6]. Thus, 
by optimizing the electrode placement, the number of channels may be reduced which 
makes the computation much faster and improves the responsiveness of the prosthetic.  
 
Major challenges toward clinical robustness include electrode shift, variation in muscle 
contraction force, and variation in position of limb. Misalignment inevitably occurs dur-
ing prosthesis donning and doffing, producing a shift in electrode contact locations. The 
shift may also occur during use because of loading and positioning of the limb. As 
would be expected, the studies have found electrode shifts perpendicular to muscle fi-
bres to damage the pattern recognition system much more than shifts in a direction per-
pendicular to the muscle fibers [99, 100]. A shift of 1 cm of four electrodes placed cir-
cumferentially about the forearm increases the classification error from roughly 5 % to 
20 % if sifted distally and to 40 % if rotated about the forearm. However, the classifica-
tion accuracy can be improved dramatically by training the classifier with data that rep-
resents possible displacements.[99] Increasing the size of the electrode detection surface 
was also observed to reduce classification accuracy sensitivity to electrode shift [100]. 
Variability in electrode position may necessitate a daily training session when prosthetic 
is being donned. 
 
The second issue that may cause problems in practical use is variation in contraction 
force. Conventional control schemes usually utilize a natural variation in contraction 
strength by mapping it to velocity or position of a device. Pattern-recognition control, 
however, aims to identify repeatable patterns of an EMG activity into discernible clas-
ses. Thus, contractions performed at different force levels present a challenge to the 
classifier because they may be very different from one to another. The impact of varia-
tion in muscle force has been studied in an experiment where subjects performed nine 
classes of motion using a contraction force of 20 % to 80 % of the strongest contraction 
they felt comfortable producing. An LDA classifier was trained and tested using a TD 
feature set calculated from the data from each force level. The best accuracy was 
achieved when the classifier was tested and trained at the same force level. When con-
tractions from unseen force levels were added in the test set, the error increased consid-
erably, to the point where the system would be unusable (error of greater than 32 %). As 
would be expected, the performance further decreased when the classifier was tested 
only with unseen force levels. To avoid the degradation in performance, exemplars from 
all force levels should be included in the training set. In this chase the error drops sub-
stantially to 17 %, which is not ideal, but approaching a usable system. However, it is 
not desirable that amputees have to undergo an extensive training session, and therefore 
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a restricted protocol using only the lowest and highest force levels is investigated. By 
using this method, the error increased only marginally (to 19 %) from training with all 
levels. [101] 
 
In this study, the forearm of the subject was resting on the support during the experi-
ment. However, the clinical use of the prosthesis necessitates using the limb in a variety 
of positions. For transradial and transhumeral amputees, this may impose a loading of 
the muscles from which sEMG signals are being recorded. As a result, the nature of the 
sEMG signal may alter due to compression of the muscle, and elicitation of eccentric 
contraction or mechanical stimulation of the muscle. Different gravitational forces dur-
ing various positions may also cause electrode shifting. A study by Scheme et al. [102] 
shows that the EMG classification accuracy is strongly dependent on limb position. 
EMG data was collected from eight healthy subjects, and processed with TD features 
and an LDA classifier. As would be expected, the average interposition error was con-
siderably worse than the average intraposition error, 35 % and 6.9 %, respectively. By 
training the classifier with exemplars from each position, an average error was de-
creased to 7.4 %. Thus, it may be insufficient to train a classifier with a data collected in 
a single position and expect it to translate well in multi position-use. The degradation 
due to variety in limb positions may contribute to the differences seen between the clas-
sification accuracies achieved in this thesis and observed clinical performance.   
 
Although, lot of effort in the past has been carried out to make the upper-limb prosthetic 
devices near to the human hand there is still a huge gap to achieve the target. With its 24 
DOFs, 38 muscles, and thousands of sensory organs, the human hand is mechanically 
incredibly complex. The challenge is to make a prosthesis that is light, but has also 
many DOFs. Furthermore, with added complexity comes added cost and lower durabil-
ity. A recent Internet survey of myoelectric prosthetic users concluded that 79 % con-
sidered their device to be too heavy. Reducing the number of actuators is one of the 
basic objectives in the design of prosthetic device [103, 104].     
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6 Conclusion 
 
The loss of an upper limb is a life-altering accident which makes the everyday life more 
difficult. A psychological adaption to the new situation is a long and difficult process. 
Thus, it is easy to see the great need for a low-cost and functional prosthetic arm for 
these people. However, many amputees do not use their prosthetic hand regularly due to 
its low functionality, poor cosmetic and unnatural appearance, lack of sensory feedback, 
and low controllability. This situation calls for the development of versatile prosthetic 
limbs that will allow amputees to perform tasks that are necessary for activities of daily 
living.    
 
The non-pattern based control scheme of commercial state-of art prosthesis is rather 
poor, using one or two electrodes to choose among predefined hand postures. A promis-
ing alternative to the conventional control method is the pattern-recognition-based con-
trol that identifies different intended hand postures of the prosthesis by utilizing the in-
formation of the EMG signals. Thus, the control of the prosthesis becomes natural and 
easy.  
 
Feature selection is the most important step in the control of the prosthesis because its 
effect on the classification accuracy is even greater than the effect of the type of the 
classifier. Most of the previous studies have compared only few combinations of fea-
tures, or if the larger number of features is compared, the performance of them has been 
evaluated independently with statistical criteria (for example Mahalonobius distance, 
Battacharia distance and maximum entropy). However, the feature vector consisting of 
the best features evaluated separately may not provide the highest classification accura-
cy since it does not account for the feature dependence. The optimal feature depends 
also the type of the classifier.  
 
The objective of this thesis was to find the features that yield the highest classification 
accuracy in the context of the LDA classifier, the most suitable classifier for hand pos-
ture classification. The following features were studied: 16 TD features, two TSD fea-
tures, FFT and DWT. These features were selected to comparison because they have 
shown to be successful in the hand motion classification in previous studies.  
 
The second objective of this thesis was to investigate whether it is possible to use lower 
sampling rate than 1 kHz that is commonly used in EMG analysis. The lower sampling 
rate is desired because it saves the processing time as well as the memory of the control-
ler of the prosthesis. Thus, the time delays of the prosthesis become shorter and the 
prosthetic device becomes lighter. A preprocessing technique, ICA, was also shortly 
examined. 
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sEMG signals were measured with eight channels on the skin surface of the forearm of 
eight able-bodied subjects during they performed seven hand postures. Bipolar meas-
urements were estimated from the unipolar recordings. PCA was used to reduce the di-
mensionality of the FFT vectors. The data was postprocessed by MV. The classification 
was based on the steady state signal. The signal processing, features, and classification 
were implemented with Matlab. 
 
The results of this study suggest the optimal feature set to be depending on the subject. 
However, some features, such as RMS, VAR, and WAMP, yielded the high classifica-
tion accuracy more often than the others. A good method to select an optimal feature set 
would be to select the features individually from the small number of features of which 
each describes a different property of the signal and have usually yield the high classifi-
cation accuracy. The optimal size of feature set turned out to be small: two features or 
even one feature seems to be enough for reliable classification.  The classification accu-
racy achieved by using FFT and DWT was also high. However, in least in noise free 
environment, they did not outperform the computationally more efficient TD features.   
 
The effect of sampling rates of the range between 300-2000 Hz was investigated. The 
sampling rate of 400 Hz seemed to be the most optimal in hand posture classification. 
Perhaps surprisingly, the classification accuracy even slightly improved when the sam-
pling frequency was decreased from the commonly used 1000 Hz to 400 Hz.    
  
The ICA did not improve the classification accuracy in this study. This may be because 
the channels were placed somewhat far from each other, and therefore the correlations 
between them were small. MV improved the classification accuracy dramatically. This 
corroborates the previous studies that have reported a significant increase in classifica-
tion accuracy after applying MV on the data.     
 
However, many issues and challenges related to prosthetic control remains still un-
solved. The limitation of this study is that the features have been compared only based 
on classification accuracy. Because low response times and are important in upper-limb 
prostheses, the computational complexity of the features should also be considered. In 
this study we have calculated theoretical estimates for time delays. However, these es-
timates are overoptimistic, because they assume the controller delay to be zero. We did 
not have a real application to use, and therefore we could not estimate the true pro-
cessing delay. A tolerance for noise is another property of the feature space that needs 
yet to be investigated. It should be studied especially in the case of TD features that are 
relatively sensitive to noise. Thus, further research is needed to select the feature set that 
yields high classification accuracy, but is also noise tolerant, and computationally effi-
cient.    
 
Another limitation of this study is that subjects with intact limbs have been used instead 
of those with limb deficiencies. The results from the previous studies indicate, that the 
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classification accuracies achieved in this thesis may not be straightforward generalized 
to amputees, but, the results for amputees may expect to be at least somewhat poorer. 
However, the relative performance of the feature sets has been shown to be consistent 
between nondisabled individuals and amputees. Thus, it would be expected that the fea-
tures that have yield the best results in this study would yield the highest classification 
accuracy also for amputees.  
 
Major unsolved problems toward clinical robustness include electrode shift, variation in 
muscle contraction force, and variation in position of limb. The optimal number of 
measurement channels needs also further investigation. In addition, the human hand is 
mechanically incredibly complex, and making a prosthetic device that is light, but has 
also many DOFs is a very challenging issue.  
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Appendix 1: Effect of the free parameters to the classification accuracy 
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Appendix 2: Power spectra for Subject 2 of seven hand movements 
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      Appendix 3: Classification accuraties claculated by using the 
individual feature sets 

  SFS 

WAMP-

RMS 

WAMP-

VAR 

MAV-WL-

ZC-SSC 

AR-

RMS MAV RMS 

DASD

V 

V-

Order 

subject 1                   

steady  100 100 99.7 99.7 99.0 99.8 99.8 99.7 99.8 

dynamic state 100 100 100 100 100 100 100 100 100 

total 100 100 99.8 99.8 99.1 99.8 99.8 99.8 99.8 

crossval. 98.9 98.9 98.4 96.3 97.3 96.3 96.3 95.9 96.3 

subject 2                   

steady state 98.8 98.9 96.3 98.8 98.1 98.5 93.7 98.6 93.05 

dynamic state 77.6 77.6 71.6 95.7 76.7 77.6 93.3 76.7 94.4 

total 96.6 96.7 93.8 95.7 95.9 96.4 93.7 96.4 93.2 

crossval. 97.1 98.0 94.5 96.8 96.1 94.8 84.2 94.2 84.4 

subject 3                   

steady state 92.8 92.9 95.5 94.7 93.2 92.5 97.2 96.3 96.3 

dynamic state 100 93.9 81.6 67.3 92.9 81.6 79.2 81.6 88.8 

total 93.8 93.0 93.7 91.1 93.1 91.1 94.9 94.3 95.3 

crossval. 96.3 95.1 90.9 90.2 93.3 90.0 91.2 88.8 90.6 

subject 4                   

steady state 95.2 95.7 83.2 93.8 94 92.7 97.2 90.2 93.1 

dynamic state 100 93.3 84.4 93.3 94.4 94.4 79.6 93.3 94.4 

total 95.7 95.5 83.4 93.7 94.1 92.9 94.9 90.5 93.2 

crossval. 91.1 86.1 85.2 83.4 86.5 83.7 91.2 82.7 84.3 

subject 5                   

steady state 78.3 68.5 64.5 66.7 80.3 60.8 86.3 61.1 86.3 

dynamic state 79.0 79.0 65.4 79.0 79.0 79.0 88.9 79.0 88.9 

total 78.4 69.7 64.7 68.3 80.2 62.9 86.6 63.2 86.6 

crossval. 62.5 62.4 57.9 56.0 52.2 54.2 50.7 53.4 51.1 

subject 6                   

steady state 91.1 95.3 96.6 85.1 90.5 83.2 92.6 91.1 92.2 

dynamic state 84.9 53.2 55.6 60.3 75.4 63.5 84.9 65.9 57.1 

total 90.3 89.4 90.8 81.7 88.4 80.4 91.5 87.6 87.2 

crossval. 94.2 95.3 93.9 93.9 92.8 92.6 92.2 92.4 92.0 

subject 7                   

steady state 91.5 88.7 86.7 85.2 90.1 84.2 86.3 85.8 82.0 

dynamic state 87.7 74.0 66.7 57.7 82.9 36.6 52.8 48.8 52.0 

total 91.0 86.7 84.0 81.5 89.1 77.8 81.8 80.8 80.6 

crossval. 88.3 74.2 72.1 96.3 93.5 92.4 85.1 66.6 83.5 

subject 8                   

steady state 60.4 60.4 56.1 37.3 45.6 32.4 46.5 42.6 45.2 

dynamic state 65.7 65.7 50.0 61.9 62.7 61.9 33.9 61.9 33.9 

total 61.4 61.4 55.1 41.8 48.8 37.8 44.3 46.1 43.2 

crossval. 73.3 73.3 70.3 69.3 72.0 67.1 70.2 65.7 69.3 
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Appendix 4: Classification accuracies with and without MV 
 

majority voting 1 2 3 4 5 6 7 8 avg sd 

steady state accuracy 100.0 98.8 97.8 95.2 78.3 91.1 91.5 60.4 87.9 15.0 

dynamic state accuracy 100.0 77.6 70.4 100.0 79.0 84.9 87.7 65.7 83.2 12.6 

total accuracy 100.0 96.6 94.2 95.7 78.4 90.3 91.0 61.4 87.4 14.0 

no mojority voting           

steady state accuracy 97.5 94.4 92.5 84.1 53.9 79.4 84.4 46.1 78.6 19.8 

dynamic state accuracy 80.2 63.8 56.1 55.6 82.7 46.0 57.8 36.4 59.1 14.5 

total accuracy 95.4 91.2 87.8 81.3 57.2 74.7 80.9 44.5 76.1 18.2 

increase in total accuracy 4.6 5.4 6.4 14.4 21.2 15.6 10.1 16.9 11.3 -4.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


