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Abstract
The cytochrome P450 (CYP) enzyme family is responsible for eliminating exogenous chemicals
from the human body. As most drugs are metabolized by the same small number of CYP isoen-
zymes, the risk of drug-drug interactions grows as the use of drugs increases. Consequently, it is
important to study the metabolic pathways of a new drug candidate as early in the development
pipeline as possible to be able to either modify the molecule or abandon the candidate before con-
tinuing to the cost-intensive clinical stage.

The general aim of this thesis was to develop new immobilization methods for cytochrome P450
enzymes with a view to implementation of immobilized enzyme microreactors for pharmaceutical
applications. Two main approaches for immobilizing CYP-containing human liver microsomes
(HLM) were studied: the immobilization of HLM on commercial streptavidin-coated magnetic
particles and the immobilization of HLM on in-house fabricated thiol-ene based microfluidic
chips. On the basis of literature search, a novel immobilization method utilizing biotin-labelled
fusogenic liposomes (FL) was developed.

When immobilizing HLM on magnetic particles, the use of FL conferred a 3-fold increase in en-
zyme activity compared to a previously published method based on physical adsorption on the
bead surface. The Km value of the immobilized HLM was determined, and was comparable to the
Km of the soluble HLM (2.5 ± 0.49 µM and 0.5-2 µM, respectively), which is essential for the pro-
spective applications in metabolic studies. Enzyme stability remains an issue, as the activity of the
immobilized enzyme quickly decreased with consecutive incubations, probably due to both ther-
mal inactivation and leaching.

Three different methods for HLM immobilization on thiol-ene micropillar chips were studied.
HLM were solubilized on a chip surface functionalized with lipid bilayers and HLM labeled with
biotin using FL was bound on streptavidin-functionalized chip surface. For comparison, HLM was
also immobilized on chip surface by physical adsorption. The highest initial activities could be
achieved by adsorption, but the activity also decreased very rapidly. With the other two methods,
initial reactor activities were lower, but the decline of enzyme activity could be slowed down. How-
ever, the enzyme activity of all reactors faded within 2 hours.

In the future, practical applications based on the developed immobilization approaches could be
developed for in vitro studies of human drug metabolism. Another valid application for these reac-
tors is the in situ preparation of analytical standards of CYP metabolites.

Keywords cytochrome P450, drug metabolism, microfluidics, immobilization
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Tiivistelmä
Sytokromi P450 (CYP) entsyymiperhe vastaa vierasaineiden poistamisesta ihmiskehosta. Koska
useimpien lääkeaineiden metaboliaa katalysoivat samat CYP-isoentsyymit, lääkeaineinteraktioi-
den riski kasvaa, kun lääkkeiden käyttö yhteiskunnassa lisääntyy. Uusien lääkeaineiden metabo-
liareittejä onkin tärkeää kartoittaa jo varhaisessa vaiheessa lääkekehitystä, jotta molekyyliä voi-
daan tarvittaessa muokata tai kehityslinja hylätä kokonaan ennen kallista kliinistä vaihetta.

Tämän työn tavoitteena oli kehittää uusia immobilisointimenetelmiä CYP-entsyymeille farmaseut-
tisia sovelluksia varten. Työssä tutkittiin kahta menetelmää CYP-entsyymejä sisältävien ihmisen
maksamikrosomien (human liver microsomes, HLM) immobilisointiin. Entsyymejä immobilisoi-
tiin sekä kaupallisten, streptavidiinipäällysteisten magneettipartikkeleiden pintaan että itse val-
mistettujen tioleenipohjaisten mikrosirujen pintaan. Tarkoitukseen kehitettiin kirjallisuushaun
perusteella uusi, biotiinileimattuja fusogeenisiä liposomeja hyödyntävä immobilisointimenetelmä.

Fusogeenisten liposomien hyödyntäminen nosti magneettipartikkelien pintaan immobilisoitujen
entsyymien entsyymiaktiivisuutta kolminkertaisesti verrattuna aikaisemmin raportoituun adsorp-
tiopohjaiseen menetelmään. Immobilisoidulle HLM:lle määritetty Km-arvo (2.5 ± 0.49 µM) vastasi
hyvin kirjallisuudessa liukoiselle HLM:lle raportoitua arvoa (0.5-2 µM), mikä on oleellista mah-
dollisten tulevien sovellusten kannalta. Immobilisoidun entsyymin aktiivisuus kuitenkin laski no-
peasti perättäisten inkubointien seurauksena, mikä johtui todennäköisesti sekä entsyymin huuh-
toutumisesta että lämmön aikaansaamasta inaktivaatiosta.

Tioleenipohjaisten mikrosirujen pintaan mikrosomeja immobilisoitiin kolmella menetelmällä.
Mikrosomeja liuotettiin lipidi-kaksoiskerroksella funktionalisoidun kanavan pintaan ja biotiinilla
leimattuja mikrosomeja immobilisoitiin streptavidiinilla funktionalisoidun sirun pintaan. Verrok-
kisirussa HLM immobilisoitiin sirun pintaan fysikaalisen adsorption avulla. Suurin alkuaktiivisuus
saavutettiin adsorptiolla, mutta entsyymiaktiivisuus myös laski nopeasti. Kahta muuta menetel-
mää hyödyntämällä alkuaktiivisuudet olivat matalampia, mutta aktiivisuus myös tippui hitaam-
min. Kaikkien reaktorityyppien aktiivisuus hävisi kahden tunnin sisällä reaktion aloittamisesta.

Tulevaisuudessa työssä kehitettyjä immobilisointimenetelmiä voidaan käyttää pohjana suunnitel-
taessa käytännön sovelluksia ihmisen vierasainemetabolian tutkimiseen. Toinen mahdollinen so-
velluskohde kehitetyille entsyymireaktoreille on analyyttisten metaboliittistandardien tuottami-
nen.

Avainsanat sytokromi P450, lääkeainemetabolia, mikrofluidistiikka, immobilisointi
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Abbreviations and symbols

CLEA cross-linked enzyme aggregates

CLEC cross-linked enzyme crystals

CYP cytochrome P450

DLS dynamic light scattering

DMF digital microfluidics

DMSO dimethyl sulfoxide

DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

DOTAP 1,2-dioleoyl-3-trimethylammonium-propane

EDC (N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride

FDA U.S. Food and Drug Administration

FL fusogenic liposomes

HLM human liver microsomes

HPLC high-performance liquid chromatography

IMER immobilized enzyme microreactor

LC liquid chromatography

LIF laser-induced fluorescence

LUV large unilamellar vesicles

MES 2-(N-morpholino)ethanesulfonic acid

MLV multilamellar vesicles

µTAS micro total analysis systems

MS mass spectrometer

NADPH nicotinamide adenine dinucleotide phosphate

NADPH-CPR NADPH cytochrome P450 reductase

NHS (N-hydroxysuccinimide)

PBS phosphate buffered saline
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PDI polydispersity index

PDMS polydimethylsiloxane

SEM scanning electron microscope

SPE solid phase extraction

SU-8 trademark of an epoxy polymer (glycidyl ether of bisphenol A)

SUV small unilamellar vesicles

Tm lipid phase transition temperature

UV ultraviolet
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1 Introduction

The cytochrome P450 (CYP) enzyme family is responsible for eliminating

exogenous chemicals from the human body. Because most drugs are

metabolized by the same small number of CYP isoenzymes in humans, the risk

of drug-drug interactions is bound to increase as the use of new multiple-drug

therapies and the use of drugs as a whole increase. Therefore, it is of paramount

interest to study the metabolic pathways of new drug candidates as early in the

development pipeline as possible to be able to either modify the molecule or to

abandon the candidate before the cost-intensive clinical stage.

The degradation processes of pharmaceuticals in the environment are presently

poorly understood. The lack of commercial drug metabolite standards is

hampering the efforts to evaluate the full environmental load of a given

pharmaceutical (Celiz et al. 2009). Immobilized CYP microreactors (IMERs) can

also be utilized in in situ analyte preparation.

The research area of micro total analysis systems (µTAS), also known as “lab on

a chip” was established some 25 years ago, and has grown and developed

rapidly ever since. The µTAS technology allows the integration of various

analytical steps, such as sample pretreatment, separation and detection, on a

single chip. Integration and miniaturization bring along many advantages. Only

minute sample volumes are needed for each analysis. Enhanced mass and heat

transfer enabled by shorter diffusion distances mean that µTAS systems run with

higher throughput compared to their bigger counterparts. With smaller volumes,

the amount of waste and the use of costly chemicals are also reduced.

(Culbertson et al. 2014; Kovarik et al. 2012; Vilkner et al. 2004). The prospect of

increased throughput and convenient tailoring by means of miniaturization and

integration have raised special interest in the fields of biological and biomedical

analysis, from where a major part of novel microfluidic applications are stemming

(Culbertson et al. 2014; Kovarik et al. 2012). As a concrete sign of this, published

items using both of the keywords “microfluidics” and “in vitro”, has grown steadily

over the last ten years according to the ISI Web of Knowledge (Figure 1).
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Figure 1. Number of publications per year using the keywords “microfluidics” and
“in vitro” from 2005-2015 (ISI Web of knowledge, https://webofknowledge.com).

Immobilization of enzymes offers many advantages over using soluble enzymes.

By immobilization, the enzyme is compartmentalized in a confined space and

easily separated from the product, which facilitates further handling of the

product. Immobilization also allows for the reuse and recovery of costly enzymes,

which may often be a requisite for economic viability of industrial enzyme-

catalyzed processes (Tischer & Wedekind 1999; Sheldon 2007; Mohamad et al.

2015). An additional benefit is the often enhanced stability towards denaturation

both under storage and in operational conditions (Cabral & Kennedy 1993).

Many challenges still remain in the field of microfluidic metabolic studies. The

detection technology in microfluidics is still to a large extent based on the

conventional, macro-scale instrumentation, which sets certain limitations to

detection sensitivity (Sikanen 2013). The stability of immobilized CYPs is often

very poor, which undermines the effective reuse of CYP reactors. This thesis

attempts to address these issues by the development of novel immobilization

methods for CYP enzymes.

The aim of this study is to develop new immobilization methods for cytochrome

P450 enzymes with a view to implementation of immobilized enzyme

microreactors for pharmaceutical applications. Two main approaches for HLM

immobilization are studied: The immobilization of HLM on commercial

streptavidin-coated magnetic particles and the immobilization of HLM on in-house
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fabricated thiol-ene-based microfluidic pillar channels featuring a dense

micropillar array. In both cases the feasibility of a novel immobilization method

utilizing fusogenic biotin-labelled liposomes is assessed in comparison to

nonspecific adsorption on magnetic particles or on the channel surface.
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2 Literature review

2.1 Human drug metabolism

2.1.1 Overview

Most drugs of clinical use have lipophilic properties, because otherwise they

would not be absorbed in sufficient amounts. Lipophilic substances cannot be

efficiently excreted from the body, and so the continuous uptake of such

chemicals would lead to their accumulation in the body, unless we had an

effective elimination mechanism such as drug metabolizing enzymes. The main

function of drug metabolism is to increase the hydrophilicity of foreign substances

to facilitate their elimination through the kidneys or the intestine (Zanger 2012).

The metabolic pathway of a drug is usually divided into phase I and phase II

reactions. Phase I reactions comprise of functionalization reactions mostly

catalyzed by enzymes belonging to the cytochrome P450 (CYP) family. Phase I

reactions are usually a preparatory step followed by conjugation of the newly

created group to a hydrophilic moiety (e.g. glutathione, glucuronic acid) in phase

II reactions catalyzed by different transferase enzymes. However, it should be

noted that many drugs are cleared only via phase I or phase II reactions, or even

by pathways in the reverse order (Zanger 2012).

2.1.2 Drug-drug interactions

Although phase II reactions also play a significant role in human drug

metabolism, CYP enzymes are the major constituents of metabolic pathways.

According to Guencerich (2008), about 75% of drugs are metabolized primarily

by CYPs. The nomenclature of CYP enzymes employs a three-tiered

classification based on the evolution of the superfamily. The family (40%

homology in amino acid sequence), subfamily (55% homology) and individual

gene are indicated by an Arabic number, capital letter and another Arabic

number, respectively (Nebert et al. 1991).
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The isoenzymes responsible for the majority of hepatic drug metabolism are

CYP3A4, CYP2D6 and CYP2C9 (Shimada et al. 1994). The fact that the majority

of drugs are metabolized by the same CYP isoenzymes can result in metabolic

interactions between co-administered drugs. The alteration in metabolic rates can

lead to clinically significant changes in drug plasma concentrations. The

proportion of metabolic reactions catalyzed by CYP enzymes and the relative

proportions of different CYP isoenzymes are illustrated in Figure 2.

Figure 2. A) Contributions of different enzymes to the metabolism of 200 most
prescribed drug in the US in 2002. UGT: Uridine 5'-diphospho-
glucuronosyltransferase, FMO: flavin-containing monoxygenase, NAT: N-
acetyltransferase and MAO: monoamine oxidase. B) Metabolism reactions of
drugs catalyzed by individual CYP enzymes. (Williams et al. 2004)

Clinically significant drug-drug interactions occur when 2 or more drugs are

metabolized by the same isoenzyme and when the reaction catalyzed by a single

isoenzyme is the major or only elimination pathway of at least one of the drugs.

Two drugs can interfere with each other’s elimination via CYP inhibition or CYP

induction. CYP inhibition is caused by direct interaction of a drug with a given

CYP isoenzyme and can be either reversible or irreversible. Irreversible, or

mechanism-based CYP inhibition involves permanent inactivation of CYP

enzymes. Reversible inhibition can be further classified as competitive, non-

competitive or uncompetitive depending on whether the inhibitor binds directly to

the active site (competitive) or elsewhere (non-competitive or uncompetitive).

Some human CYP isoenzymes are also inducible. CYP induction is a slow

regulatory process that can lower the plasma concentrations of a drug and thus

compromise its efficacy. Induction is mainly caused by an increase in gene
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transcription, but can also be the result of a decrease in CYP protein degradation.

(Lin & Lu 1998; Tanaka 1998; Fowler & Zhang 2008).

In competitive inhibition, both the substrate and the inhibitor bind to the active site

of the free enzyme, and binding of the inhibitor will consequently block the

substrate from binding. Competitive inhibition is usually the mode of interaction

for two drugs metabolized by the same CYP isoenzyme. In noncompetitive

inhibition, the inhibitor binds to another site on the enzyme and has no effect on

substrate binding, but the enzyme-substrate complex is unproductive in the

presence of the inhibitor. In un-competitive inhibition, the inhibitor binds only to

the enzyme-substrate complex, rendering it unproductive (Lin & Lu 1998; Fowler

& Zhang 2008). The effects of all modes of inhibition on the Michaelis-Menten

kinetics parameter values are summarized in Table 1 with equations describing

the percentage of inhibition with given inhibitor and substrate concentrations.

Table 1. Kinetic characteristics of reversible inhibition models. PI = percentage of
inhibition, [I] = inhibitor concentration, [S] = substrate concentration, Ki = inhibition
constant, Km = Michaelis-Menten constant.

Inhibition model Km Vmax Percentage of inhibition

Competitive increases unchanged

=

[ ]

1 + [ ] + [ ]

Non-competitive no effect decreases

=

[ ]

1 + [ ]

Uncompetitive decreases decreases

=

[ ]

1 + [ ] + [S]

As can be seen from the equations in Table 1, the inhibitory effect of an inhibitor

is dictated by its binding affinity to the active site of an enzyme, which is denoted

by  Ki. In the case of competitive inhibition, as in the case of two drugs

metabolized through the same isoenzyme, inhibition is intelligibly also affected by

the Km of the substrate. In light of this, the essential goal of metabolism studies is
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the prediction of in vivo kinetic parameters from in vitro data. When the kinetic

properties of a particular drug or inhibitor are characterized, the information can

be used to predict the enzymes involved in metabolism and/or inhibition at

physiologically relevant concentrations (Korzewka 2008).

The standard approach to screening potential drug interactions is to determine

the effect of a new substance on in vitro probe reactions. The probe reactions

utilize compounds that are highly specific substrates for an individual isoenzyme

and can be used to monitor the activity of that particular metabolic pathway

(Korzewka 2008; Yuan et al. 2002). A list of recommended probe substrates for

each CYP isoenzyme released by the United States Food and Drug

Administration (FDA) can be found in Appendix 1. Coumarin 7-hydroxylation, the

probe reaction used in this study, is a reaction catalyzed specifically by the

CYP2A6 isoenzyme.

2.1.3 Cytochrome P450s

Cytochrome P450 isoenzymes are heme-containing proteins deriving their name

from a characteristic spectral peak at 450 nm, owing to the binding of carbon

monoxide to the ferrous heme iron. The catalytic activity of CYP enzymes

involves binding and splitting molecular oxygen to its constituent atoms, inserting

one of the oxygen atoms into a substrate bound by the CYP active site and

reducing the other oxygen atom to water. The reduction of molecular oxygen

requires a source of free electrons, which in the case of CYP reactions is usually

nicotinamide adenine dinucleotide phosphate (NADPH) (Munro et al. 2013;

Guengerich 2012). CYP enzymes can be categorized as monooxygenases

catalyzing the generalized reaction:

+ + − + → + + −                   (1)

where RH is the substrate and ROH is the hydroxylated product. The classical

reaction catalyzed by CYPs is indeed the hydroxylation of organic substrates.

However, CYP enzymes are immensely versatile enzymes capable of catalyzing

a myriad of different chemical transformations, such as O- and N-dealkylation

(Munro et al. 2013).
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The supply of electrons from NADPH is facilitated by a redox partner protein

called NADPH cytochrome P450 reductase (NADPH-CPR) (Paine et al. 2005;

Munro et al. 2013). In recent times, it has become evident that other proteins,

such as cytochrome b5 may also be involved in the complex redox chains of CYP

reactions (Im & Waskell 2011; Munro et al. 2007). In vivo, all the different

components are embedded in the cell membrane primarily in the endoplasmic

reticulum of hepatocytes. This is facilitated by an N-terminal hydrophobic peptide

sequence that anchors the proteins into the membrane (Munro et al. 2007). The

presence of lipid bilayers is integral to CYP function by ensuring correct

conformational arrangement. Lipid membranes also facilitate the interactions

between CYPs and its redox partners by placing them close together on the

same membrane (Imaoka et al. 1992).

A drug that reversibly binds to a CYP enzyme displays hyperbolic saturation

kinetics. Under steady-state conditions, the velocity of a simple CYP-catalyzed

metabolic reaction can be described by the Michaelis-Menten equation (Equation

2):

= [ ]
[ ]

              (2)

where v is the reaction velocity and Km and Vmax are enzyme-substrate pair

specific constants describing the reaction kinetics. Vmax is the maximal reaction

velocity achieved at saturating substrate concentrations, and Km is the substrate

concentration where the reaction velocity is half of Vmax (Copeland 2000;

Korzewka 2008). It should be noted that many examples of non Michaelis-

Menten kinetics have also been observed for CYP mediated reactions (Fowler &

Zhang 2008).

2.1.4 Cytochrome P450 in vitro models

Several in vitro models have been developed for studying hepatic drug

metabolism. These include supersomes (baculovirus-expressed CYP), liver

microsomal fractions, transgenic cell lines, primary hepatocytes, liver slices and

perfused livers (Brandon et al. 2003). As for the purposes of this thesis, it suffices
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to discuss in detail three of these models that aptly represent the whole variety of

all available models. The discussed models are human liver microsomes (HLM),

human recombinant enzymes and hepatocytes.

HLM is the most popular and widely used model used in metabolic profiling and

drug interaction studies (Fasinu et al. 2012). HLM consist of vesicles of

hepatocyte endoplasmic reticulum that are prepared by using differential

centrifugation. All CYP isoenzymes (as well as NADPH-CPR) can be found in a

microsomal reparation. HLM can be prepared from various sources, such as

fresh human liver and liver cell lines. The variance in HLM activity between

individuals can be tackled by pooling a large bank of liver tissues together. HLM

offer a relatively affordable, very established method for studying drug

metabolism. As studies conducted using HLM are also considered to most

closely simulate the in vivo situation, they are the industry standard for drug

interaction studies (Fowler & Zhang 2008). The use of HLM does have some

drawbacks. While the presence of all isoenzymes may be useful when mimicking

in vivo conditions, it is a disadvantage when determining which enzymes are

involved in the metabolism of a particular drug. Because of the broad substrate

selectivity of CYP enzymes, most reactions can be catalyzed by more than one

enzyme (Korzewka 2008). Also, CYP are enriched in the microsomal fraction,

which results in higher metabolic rates compared to the in vivo situation. This

means that HLM assays cannot be used for direct quantitative estimations. It

should also be noted that because HLM are not composed of intact cells and

therefore lack active gene transcription, they cannot be used to study enzyme

induction by drugs (Brandon et al. 2003; Fasinu et al. 2012).

The most popular way of producing recombinant CYP enzymes is the

baculovirus-based expression in insect cells. As insect cells lack endogenous

CYP activity, it is possible to prepare microsomal vesicles containing recombinant

human CYP enzymes. These microsomes are marketed by the name supersome

(Gentest) or baculosome (Thermo Fischer). Because only the expressed human

CYP isoforms are present, supersomes allow the assessment of individual

isoenzymes and their ability to metabolize the drug in question. However,

recombinant enzymes cannot be used to predict to which extent a given

isoenzyme metabolizes a drug in vivo, as no alternative pathways are present.
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(Fasinu et al. 2012; Brandon et al. 2003). With the use of protein engineering, it is

also possible to manufacture soluble human CYP enzymes that need no lipid

membrane by truncating the hydrophobic membrane N-terminus sequence

(Kumar 2010; Yun et al. 2006). This does not however remove the need for the

auxiliary proteins or an electron source.

Isolated primary hepatocytes are a popular in vitro model owing to their strong

resemblance of in vivo conditions. Hepatocytes are isolated directly from human

liver. Advantages of hepatocytes include preservation of in vivo levels of different

CYP enzymes and the possibility of studying inductive processes, as hepatocytes

are intact cells with active gene expression (Fasinu et al. 2012; Brandon et al.

2003). Hepatocytes can be cryopreserved in liquid nitrogen for extended periods

(McGinnity et al. 2004) but otherwise have a very limited viability from a few

hours in solution to a few weeks with specialized culture techniques (Fasinu et al.

2012; Brandon et al. 2013). Commercial hepatocytes are presently available, but

they are considerably more expensive compared to e.g. HLM.

2.2 Enzyme immobilization

Enzyme immobilization techniques can be generally divided into three main

groups. Enzymes can be (i) bound to an inert support material via physical or

chemical interactions, (ii) entrapped inside a porous matrix or (iii) cross-linked

together to from enzyme aggregates or crystals. The classification of different

enzyme immobilization methods is illustrated in Figure 3.
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Figure 3. Classification of enzyme immobilization methods.

2.2.1 Support binding

Enzymes can be bound to a support material via both covalent and non-covalent

bonds. The non-covalent binding methods based on the adsorption of enzymes

on the support surface can be further divided into physical (hydrophobic and van

der Waals interactions), ionic (electrostatic interactions) and affinity-based (e.g.

biotin-avidin) methods (Wong et al. 2009; Sheldon 2007).

Owing to the low energies associated with non-covalent bonds, enzymes are

easily washed away from the carrier surface, especially in more demanding

conditions, such as elevated temperatures (Wong et al. 2009; Sheldon 2007). On

the other hand, weak interactions do not usually alter the tertiary structure of the

enzymes which helps the enzymes to retain their activity (Jesionowski et al.

2014).

The use of covalent bonds allows for a more stable anchorage between the

enzyme and the carrier surface. The traditional noncovalent binding chemistries

rely on naturally present functional groups (e.g. NH2 and COOH) meaning that

there is no need for prior enzyme modification. As there is no effective control

over where the covalent bond will be formed, conventional covalent

immobilization methods will generate a heterogeneous population of enzyme due

to the random orientation of the immobilized biomolecules. If charged amino acid
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residues are used for immobilization, the alteration of protein surface charge will

also likely affect enzyme activity due to detrimental changes in protein folding

(Wong et al. 2009).

2.2.2 Entrapment

In entrapment, enzymes are immobilized by physically trapping them inside a

natural or synthetic polymer matrix. The polymer network is synthetized in the

presence of the enzyme, and the enzyme is trapped inside the matrix due to

physical restraints caused by the polymer pore size. With entrapment, high

enzyme concentrations per volume can be achieved with relatively mild

immobilization conditions (Kim & Herr 2013; Sumitra et al. 2012). As the method

is not based on e.g. the surface chemistry of the enzyme, it is readily applied to a

variety of different enzymes. The main disadvantages of entrapment are leaching

of entrapped enzyme and impaired diffusion (Sheldon 2007). Impaired diffusion is

due to the steric constraints caused by the polymer matrix that affect substrate

diffusion to the active site of the enzyme. In these cases enzyme kinetics is

usually limited by diffusion rates instead of the enzyme reaction rate itself.

Commonly used entrapment matrices include different kinds of sol-gels and

hydrogels. Sol-gels are formed by drying colloidal solutions of metal oxides.

Typical sol-gel precursors are silicon alkoxides (Sheldon & van Pelt 2013).

Hydrogels are hydrophilic, cross-linked polymer chains. Compared to sol-gels,

hydrogels are more biocompatible and no toxic reagents are needed in the

polymerization process. Hydrogels are also usually transparent, which allows for

the use of different imaging technologies. Commonly used hydrogel polymers

include the synthetic poly(ethylene glycol) diacrylate and polyacrylamide and the

natural polymers chitosan and agarose (Honiger et al. 1995).

2.2.3 Cross-linking

By cross-linking, carrierless macroparticles can be prepared from enzyme

aggregates or crystals. The use of a carrier in methods described in sections

2.1.1 and 2.1.2 leads to ‘dilution’ of enzyme activity, as a large portion of the

reactor volume is filled by non-catalytic material. The use of cross-linked,
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carrierless enzymes enables highly concentrated enzyme activities without the

need for an additional (often expensive) carrier (Sheldon & van Pelt 2013;

Sheldon 2007).

Cross-linking techniques can be divided into two categories depending on the

physical state of the enzyme before cross-linking. Cross-linked enzyme crystals

(CLECs) are prepared by crystallizing the enzymes from an aqueous solution and

cross linking the formed crystals by the addition of a bifunctional reagent, such as

glutaraldehyde. The resulting cross-linked crystals are highly active and stable,

and their particle size can be readily controlled. However, crystallizing proteins is

a laborious procedure that requires enzyme of high purity. This drawback of

CLECs can be avoided by the use of enzyme aggregates as the starting material

for cross-linking. Enzyme aggregates can be easily prepared by the addition of

salts or water miscible organic solvents to aqueous solutions of enzymes without

affecting their tertiary structure. Subsequent cross-linking of these aggregates

generates cross-linked enzyme aggregates (CLEAs). As protein precipitation is

often used for purification, both purification and immobilization can be combined

into a single unit operation that can be used, for example, to immobilize an

enzyme directly from a crude fermentation broth (Sheldon & van Pelt 2013;

Sheldon 2007).

2.2.4 Immobilization of cytochrome P450 enzymes

As discussed in section 2.1.3, CYPs constitute a complex enzymatic system.

Reactions require both the CYP enzymes themselves as well as various redox

partner enzymes. Also the cofactor NADPH and oxygen need to be supplied for

the reactions to occur. All the enzyme components need to be embedded in a

lipid bilayer to ensure catalytic activity. All these aspects place special demands

on immobilization approaches of CYP enzymes. Moreover, when designing

microfluidic applications for in vitro metabolic studies in particular, the system

should accurately resemble in vivo conditions. For example, to draw relevant

conclusions from in vitro studies, the immobilization of the enzyme should not

affect the Km values of the studied analytes, which places even further demands

for the immobilization procedure. As HLM were used as a source for CYP
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enzymes in this thesis, mainly approaches regarding the immobilization of HLM

will be discussed in this section.

Different types of entrapment approaches are the typical immobilization methods

used for human liver microsomes (Zguris et al. 2005; Sakai-Kato et al. 2005; Ma

et al. 2009; Mao et al. 2012). A possible explanation for the preference of

entrapment over other immobilization strategies is that it is best applicable for

membrane-embedded protein structures. Entrapment in sol-gels or hydrogels

does not affect the surface chemistry of the microsomes, as immobilization is

based solely on physical constraints of the polymer network. It could also be

argued that because the proteins in microsomes are embedded within the

phospholipid membrane, the efficiency of covalent immobilization methods based

on the chemistry of amino acids is diminished.

Membrane-bound CYP have also been immobilized on lipid bilayers on solid

supports. This approach was studied also in this thesis on thiol-ene-based

microreactors. Yoshihiro et al. (2007) immobilized microsomes containing rat

CYP1A1 on the surface of micropatterned lipid bilayer membranes on glass

substrates. This approach is similar to the entrapment strategies in the sense that

it targets the whole microsomal vesicle, rather than the CYP enzyme alone. As

an advantage, the immobilized enzymes reside in conditions close to the in vivo

situation. The presence of surfactants is needed to immobilize microsomes to the

bilayer surface (Morigaki, 2008). In this thesis, Pluronic® F-127 poloxamer will be

utilized for this purpose. Pluronic block copolymers have been shown to fluidize

biological membranes (Batrakova et al. 2001).

In the case of human liver microsomes, cross-linking is not easily applicable as

the enzyme system is composed of a lipid membrane. Cross-linking microsomal

vesicles as such would likely result in enzyme inactivation and uncontrollable

aggregation of the microsomes, which in turn would severely limit substrate

diffusion. One could, however, envision a strategy where microsomal membranes

are functionalized with a linker molecule of adequate length, by utilizing for

example the liposome method introduced in this thesis. By tuning the molar ratio

of the linker molecule, stable cross-linked networks of HLM allowing efficient

diffusion could possibly be generated. Soluble bacterial CYP enzymes have been
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immobilized by cross-linking (Tan et al. 2015), but similar studies on soluble

human CYPs could not be found.

Despite its limitations, covalent bonding has also been used in the immobilization

of microsome structures. Nicoli et al. (2008) immobilized recombinant human

CYP liposomes on a liquid chromatography (LC) column functionalized with

neutravidin by labelling the CYP-liposome-structures with biotin. The constructed

IMER was used to conduct on-line drug metabolism studies by coupling the

system to a mass spectrometer (MS). However, the kinetic parameters of the

immobilized enzyme were not discussed in the article. Moreover, the metabolite

solutions had to be concentrated by LC before analysis, which implies a rather

low enzyme activity. The researchers also admit that the experiments had to be

conducted at room temperature, as the immobilized enzyme did not withstand

elevated temperatures. This greatly undermines the method’s utility in simulating

in vivo metabolism.

Soluble recombinant CYPs, from which the hydrophobic membrane N-terminus

sequence has been truncated, have been used more extensively in direct

covalent immobilization (Wollenberg et al. 2013; Ménard et al. 2012; Gannett et

al. 2006). Here bare CYPs are understandably more applicable, as the different

functional groups of the amino acids are more readily available for bonding with

different chemistries. One drawback of this approach is that NADPH-CPR must

be introduced in solution along with the substrate separately for each reaction,

which raises the operational costs considerably. Both CYPs and the redox

partners could also be immobilized on the same carrier. However, the adjustment

of spatial relationships and stoichiometric ratios of the different proteins might

prove challenging. No examples of simultaneous immobilization of CYPs and

their redox partners were found in the literature.

CYP enzymes have also been immobilized on different electrode surfaces

(Schneider & Clark 2012). The utilization of electrodes in CYP immobilization can

obviate the need for NADPH and NADPH-CPR as electrons can be accepted

directly from the electron surface. This way CYPs can be used as biosensors by

monitoring changes in current when exposing the system to different substrates.
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However, it remains uncertain as to what extent does the direct electron transfer

mimic the situation in solution in vitro or even in vivo.

2.3 Liposomes

2.3.1 Overview

Liposomes are spherical vesicles composed of at least one lipid bilayer.

Liposomes have been for long studied as promising and efficient drug- and gene-

delivery systems. A major challenge in the development of new drugs is

delivering the drug to target tissues in therapeutic concentrations without toxic

effects in other parts of the body. Liposomes have shown promise as selective

carriers that can be used with drugs of different lipophilicities. Liposomes

composed of natural phospholipids are biologically inert and weakly

immunogenic, which makes them ideal for clinical use (Akbarzadeh et al. 2013;

Immordino et al. 2006).

Liposomes can be classified according to their size, lamellarity and preparation

method. The diameter of a liposome can vary from tens of nanometers to a

couple of micrometers. On the basis of their size and the number of bilayers,

liposomes can be divided into two categories: multilamellar vesicles (MLV) and

unilamellar vesicles. Unilamellar vesicles comprise of only one lipid bilayer, and

their typical size is in the range of 50-250 nm. Unilamellar vesicles can be further

classified into small unilamellar vesicles (SUV, diameter <100 nm) and large

unilamellar vesicles (LUV, diameter >100 nm). Multilamellar vesicles are onion-

like structures comprising of several concentric lipid bilayers and have diameters

of 1-5 µm. (Akbarzadeh et al. 2013; Immordino et al. 2006; Walde & Ichikawa

2001).

Preparing liposomes involves three basic steps: (i) drying lipids from an organic

solvent, (ii) solubilizing and dispersing the lipid in aqueous media and (iii)

purifying the resultant liposomes (Akbarzadeh et al. 2013). The final size,

lamellarity and physical stability of the liposomes is largely dependent on the

method of vesicle preparation (Walde & Ichikawa 2001). A typical way of

preparing liposomes is to evaporate lipids to a dry film from an organic solvent
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and then solubilizing the film in an aqueous buffer. This yields a relatively

polydisperse suspension of vesicles with mainly large and multilamellar vesicles.

The formation of MLVs is usually a first step in preparing a more defined

population of smaller vesicles. Two commonly used methods in further

processing of liposomes are extrusion and sonication. In the extrusion method,

the MLV suspension is passed repeatedly through a polycarbonate membrane

which contain pores of a defined size. Extrusion results in the formation of

unilamellar vesicles of defined size depending on the membrane pore diameter.

In the sonication method, the MLV suspension is treated with a probe or a bath

sonicator for prolonged times. Sonication leads to the defragmentation of MLVs

into small, unilamellar vesicles of diameters usually below 50 nm. The size

distribution is less defined compared to extruded liposomes (Akbarzadeh et al.

2013; Walde & Ichikawa 2001). All mechanical treatments used during liposome

preparation should be carried out at 5-10 °C above the phase transition

temperature (Tm) of the lipids. Below Tm, the lipids exist mainly in a rigid, gel-like

state. Above Tm, the hydrophobic chains become disordered, making the bilayer

fluid and mechanically treatable (Walde & Ichikawa 2001).

2.3.2 Liposome fusion

Liposomes can also be used to engineer cell surfaces (Dutta et al. 2011). By

fusing tailor-made liposomes functionalized with the chemical moieties of interest,

biological membranes can be easily labelled with e.g. fluorescent molecules. The

range of possible applications for liposome-mediated cell functionalization is

practically limitless.

Membrane fusion is a central phenomenon in a vast range of biological

processes, such as exocytosis, protein trafficking and fetal development. In vivo,

membrane fusion is usually governed by specialized fusion proteins. Usually

even long term contact between protein-free lipid bilayers does not result in

membrane fusion. However, certain conditions have been found that enable

spontaneous lipid bilayer fusion in the absence of fusion proteins (Chernomordik

& Kozlov 2008; Cevc & Richardsen 1999).
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The fusion pathway of protein-free lipids contain two essential intermediates:

hemifusion structures and fusion pores. Hemifusion occurs when the outer layers

of two lipid bilayer connect while the inner leaflets remain distinct. The connection

is often a transient structure that either dissociates (kiss-and-run) or develops into

a fusion pore. A fusion pore connects the aqueous volumes of both vesicles by a

passage involving both the outer and inner leaflets of the membrane

(Chernomordik & Kozlov 2008; Cevc & Richardsen 1999). The fusion pathway of

protein-free lipids is illustrated in Figure 4.

Figure 4. The fusion pathway of protein-free lipids (Chernomordik & Kozlov
2008).

The ability of lipid bilayers to form fusion intermediate states depends on lipid

composition. A major factor defining the impact of given lipid on fusion propensity

is its effective spontaneous curvature, meaning the curvature of a monolayer

formed spontaneously by the lipid. Lipids with a positive curvature (monolayers

bulged in the direction of the polar heads) tend to inhibit the formation of fusion

intermediates, whereas lipids with a negative curvature promote intermediates.

Fusion is also promoted by a sufficiently close contact of the two bilayers

(Chernomordik & Kozlov 2008; Cevc & Richardsen 1999). Liposome contact with

biological membranes can be promoted by using positively charged lipids (Bailey

& Cullis 1997; Chesnoy & Huang 2000). The close contact of the membranes

results in a mutual surface-charge neutralization, which further enhances the

contact by the loss of water bound on the membrane surface by hydrogen

bonding (Bailey & Cullis 1997). A third aspect affecting liposome fusogenicity is

liposome size, with the smallest liposomes being the most fusogenic.

Multilamellar liposomes are also significantly less prone to fusion than unilamellar

liposomes. Increased membrane tension in small liposomes is hypothesized to

drive the evolution of hemifusion structures into fusion pores (Bajoria &

Contractor 1997; Malinin et al. 2002).
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Different cell-labeling applications for fusogenic liposomes (FL) have already

been introduced in the literature. Naumovska et al. (2014) utilized FLs in

functionalizing mammalian membranes with immune cell activating

lipopolysaccharides from Gram-negative bacteria. This labelling approach was

proposed as a future tool for immune-based cell targeting in biomedical

applications. Kleusch et al. (2012) introduced a rapid and efficient method for

fluorescence labelling of mammalian cells using FLs. Fluorescent staining via FLs

was not observed to damage the target cells in any way.  Hersch et al. (2015)

used biotin-conjugated FLs to develop an efficient cell separation mechanism

based on biotin-avidin chemistry. With the developed system the researchers

were able to efficiently separate fibroblasts from myocytes and

cerebromicrovascular endothelial cells from fibroblasts.

2.4 Microfluidics

2.4.1 Overview

As already stated above, the miniaturization of analytical systems can offer many

advantages over conventional methods. The size of the system affects various

parameters. The dependence of some parameters on system size is summarized

in Table 2. By decreasing the reaction volume, sample and reagent consumption

can be dramatically reduced, which in turn lower cost of the analysis. The

increase in surface-to-volume ratio allows for more enzyme to be immobilized per

volume of the reactor. Owing to the short distances in microfluidic channels,

mass and heat transfer times are dramatically reduced. In a microfluidic

environment, fluid flow is laminar almost without exception, which makes the fluid

dynamics well predictable and enables the generation of chemical and thermal

gradients. One key benefit of microfluidic systems, that is not feasible for

conventional systems, is the integration of different unit operations (e.g. reactor,

separation, detection) in the same channel network, which minimizes sample loss

and dead volume between the operations. As a result of the space saved by

miniaturization and the advantages of microfabrication techniques, extensively

parallel systems can be designed, which greatly increases the analytical

throughput (Culbertson et al. 2014; Kovarik et al. 2012; Dittrich & Manz 2006).
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Table 2. Dependence of reaction parameters on system size. D equals a factor of
1000 (Dittrich & Manz 2006).

Parameter Macroscopic
example

Factor change Microfluidic
example

Length of edge 1 mm d 1 µm

Surface 1 mm2 d2 1 µm2

Volume 1 mm3 d3 1 µm3

Number of
molecules

109 d3 1

Diffusion time
over d

15 min d2 1 ms

Linear flow 1 µm/s d 1 mm/s

Separation time 105 s d2 100 ms

2.4.2 Microfabrication

The first miniaturized analytical systems were fabricated by etching from silicon

or glass substrates. However, both of these materials have some drawbacks

regarding their use in microfluidic applications. Silicon etching techniques have

been well-established by the semiconductor industry, but its optical opacity

hinders the use of optical detection methods. Moreover, the conductive nature of

silicon prevents the use of applications utilizing an electrical field, such as

capillary electrophoresis, which is the gold standard of microfluidic separation

systems. Glass lacks these problems, but the microfabrication procedure is much

more demanding (Franssila 2010).

Today, most of the microfluidic applications utilize polymer microfabrication for

facile and low-cost microchip fabrication. The wide selection of polymers offers a

vast variety of material properties, according to which the materials can be

classified into three groups: hard and mechanically strong thermoplastics such as

poly(methyl methacrylate) (PMMA), hard but brittle thermoset plastics such as the

epoxy polymer SU-8 and soft and flexible elastomers such as
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polydimethoxysiloxane (PDMS). Microfabrication techniques can be also divided

into two main categories. Fabrication can either be based on replication from

master or on direct machining. The direct machining methods are usually slower

and need complicated instrumentation, but allow the fabrication of more complex

microstructures than those feasible for replication (Holger & Gärtner 2008;

Franssila 2010).

2.4.3 Microfluidics in metabolic studies

In metabolic studies, replacing conventional in vitro methodologies with analytical

systems comprising microreactors could improve repeatability and reproducibility

by replacing iterative steps and discrete sample treatment by flow injection

systems. The facile implementation of system automation also helps in

eliminating errors stemming from manual sample handling.

Metabolic assays utilizing immobilized enzyme microreactors can accelerate

kinetic assay times significantly. Using an immobilized enzyme microreactor,

substrate and inhibitor concentrations in the reactor can be changed online in a

continuous manner, allowing the determination of kinetic parameters in a single

run. This method has been demonstrated with e.g. protein kinase A (Cohen et al.

1999) and β-galactosidase (Hadd et al. 1997). The modular nature of

microfabricated platforms also allows for easy modification of the experimental

setup. For example, connecting modular microreactors in series could be used to

study the interplay of different enzymes, e.g. enzymes metabolizing phase I and

phase II reactions.
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3 Experimental

3.1 Materials

3.1.1 Chemicals, biochemicals and enzymes

The chemicals and biochemicals used in this study are listed in Table 3. All

chemicals were of analytical grade unless otherwise listed. Deionized water was

purified with a Milli-Q water purification system (Millipore, Molsheim, France).

Human liver microsomes were selected as the source of CYP enzymes for

immobilization because of their affordability and ease of storage. The HLM

preparation used in this study was Corning® Gentest 20-Donor Pool (BD

Biosciences – Discovery Labware, Woburn, MA, USA).
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Table 3. Chemicals and biochemicals used in the study.

Supplier Purpose
Chemicals
7-hydroxycoumarin (umbelliferone) Sigma Aldrich, St. Louis, MO,

USA
analyte

β-Nicotinamide adenine dinucleotide 2′-
phosphate reduced tetrasodium salt hydrate
(NADPH)

Sigma Aldrich, St. Louis, MO,
USA

reagent

Biotin-PEG4-alkyne Sigma Aldrich, St. Louis, MO,
USA

reagent

Coumarin Sigma Aldrich, St. Louis, MO,
USA

analyte

Dimethyl sulfoxide (DMSO) Sigma Aldrich, St. Louis, MO,
USA

solvent

Hydrochloric acid (HClO4) Riedel-de-Haën, Seelze,
Germany

reagent

Irgacure® TPO-L (old Lucirin® TPO-L)
(Ethyl phenyl(2,4,6-
trimethylbenzoyl)phosphinate
(84434-11-7) photoinitiator

BASF, Ludwigshafen, Germany reagent

Magnesium chloride (MgCl2) Riedel-de-Haën, Seelze,
Germany

reagent

MES hydrate Sigma Aldrich, St. Louis, MO,
USA

buffer

N-(3-Dimethylaminopropyl)-N′-
ethylcarbodiimide hydrochloride

Sigma Aldrich, St. Louis, MO,
USA

reagent

N-hydroxysuccinimide Sigma Aldrich, St. Louis, MO,
USA

reagent

Trizma® base Sigma Aldrich, St. Louis, MO,
USA

buffer

Phosphate buffered saline, pH 7.4 Sigma Aldrich, St. Louis, MO,
USA

buffer

Pluronic® F127 BASF, Ludwigshafen, Germany reagent
Rhodamine 110 Sigma Aldrich, St. Louis, MO,

USA
reagent

Biochemicals
1,2-dioleoyl-3-trimethylammonium-propane
(chloride salt) (DOTAP)

Avanti Polar Lipids, Alabaster,
AL, USA

reagent

1,2-dioleoyl-sn-glycero-3-
phophoethanolamine (DOPE)

Avanti Polar Lipids, Alabaster,
AL, USA

reagent

1,2-dioleoyl-sn-glycero-3-
phophoethanolamine-N-(Cap biotinyl)
(sodium salt)

Avanti Polar Lipids, Alabaster,
AL, USA

reagent

1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-(lissamine
rhodamine B sulfonyl) (ammonium salt)

Avanti Polar Lipids, Alabaster,
AL, USA

reagent

1,2-dipalmitoyl-sn-glycero-3-
phosphothioethanol

Avanti Polar Lipids, Alabaster,
AL, USA

reagent

Streptavidin, Alexa Fluor® 488 conjugate Life Technologies, Eugene, OR,
USA

reagent

3.1.2 Microparticles and microfluidic chips

The magnetic particles used in this study were commercial paramagnetic beads

(Dynabeads® M-280 or M-270, Ø = 2.8 µm) manufactured by Invitrogen / Life
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Technologies (Oslo, Norway). The beads were prefunctionalized with streptavidin

(M-280) or with carboxylic acid (M-270). The thiol-ene chips were fabricated and

functionalized in-house. Materials used in microchip fabrication are listed in Table

4.

Table 4. Materials used in microchip fabrication.

Materials Supplier Purpose
1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-
trione

Sigma Aldrich, St. Louis, MO,
USA

chip
fabrication

Pentaerythritol tetrakis(3-
mercaptopropionate),

Sigma Aldrich, St. Louis, MO,
USA

chip
fabrication

Sylgard 184 base elastomer Down Corning Corporation,
Midland, MI, USA

mold
fabrication

Sylgard 184 curing agent Down Corning Corporation,
Midland, MI, USA

mold
fabrication

Trimethylolpropane tris(3-
mercaptopropionate)

Sigma Aldrich, St. Louis, MO,
USA

chip
fabrication

For monitoring of microchannel packing with magnetic beads by fluorescence,

100 µL of M-270 beads was rinsed twice with 100 µL of 25 mM 2-(N-

morpholino)ethanesulfonic acid buffer (MES, pH 5) for 10 min. Solutions of 50

mg/mL each of N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride

(EDC) or N-hydroxysuccinimide (NHS) were freshly prepared in cold 25 mM MES

buffer (pH 5) and 50 µL of both solutions was added to the rinsed beads and

incubated with tilt rotation at room temperature for 30 min. After incubation the

tube was placed on a magnet for 4 min, the supernatant was removed and the

beads were washed twice with 100 µL of 25 mM MES (pH 5). After washing

60 µL of 1 mg/mL rhodamine 110 in 25 mM MES (pH 5) and 40 µL of 25 mM

MES (pH 5) was added onto the beads and incubated with tilt rotation at room

temperature for 30 min. After incubation the beads were washed as before.

The microchip design used in this study featured a 30x4 mm2 array of micropillars

(d=50 µm, h=200 µm). The purpose of the micropillars was to increase the

surface volume of the reactor. The thiol-ene chip fabrication protocol was

previously described by Tähkä et al. (2015). The fabrication protocol comprised

four steps: (a) SU-8 master chip fabrication in cleanroom conditions, (b) casting

of a polydimethylsiloxane (PDMS) mold using the SU-8 master as a template, (c)

fabrication of thiol-ene channel and cover layers using the PDMS mold and (d)

bonding of the thiol-ene layers. SU-8 masters were prefabricated by Dr. Ville
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Jokinen, Department of Materials Science and Engineering, School of Chemical

Technology, Aalto University. The PDMS molds were prepared by mixing the

elastomer and the curing agent in a ratio of 1:10 (w/w). After degassing for 30

min in a desiccator, the PDMS mixture was poured onto the SU-8 master and

cured at 80 °C for 3h or at 70 °C overnight. The chip fabrication protocol is

illustrated in Figure 5.

Figure 5. Schematic presentation of the fabrication steps of the thiol-ene chip
(Kiiski et al. 2016). A PDMS mold was casted using a pre-fabricated SU-8
master. The thiol-ene layers were then casted against the PDMS and cured using
UV light.

For functionalization with lipids, thiol-ene chips were fabricated by mixing two

monomers, trimethylolpropane tris(3-mercaptopropionate) (“thiol”) and 1,3,5-

triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (“ene”) in a molar ratio of 2:3 with

respect to free thiol and allyl groups, resulting in a allyl-rich surface which

enabled chip functionalization with thiol-containing lipids. For streptavidin-

functionalization, pentaerythritol tetrakis(3-mercaptopropionate) was used as the

thiol monomer with a molar ratio of 3:2 with respect to free thiol and allyl groups,

resulting in a thiol-rich surface which enabled chip functionalization with alkyne-

containing biotin. After mixing, the monomer mixture was poured onto the PDMS

mold and the molds were kept under vacuum for 5 min to facilitate the filling of

the cavities on the PDMS molds. Next, the thiol-ene mixture was cured under a

UV lamp (Dymax 5000-EC Series UV flood exposure lamp, Dymax Corporation,

Torrington, CT, USA, nominal power 225 mW/cm2) for 10 min. Both the channel

and the top layer were fabricated in the same manner. Inlet and outlet holes
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(Ø = 1.8 mm) were manually drilled onto the top layer with a finger drill. After

curing, the two layers were laminated together after preheating the chips to

70 °C. Bonding of the layers was finalized by exposing to UV for an additional

2 min. A fabricated pillar chip with a scanning electron microscope (SEM) detail

of the pillar structures can be seen in Figure 6.

Figure 6. Photograph of the final thiol-ene micropillar chip filled with red dye and
a SEM image of the micropillar array (Kiiski et al. 2016). Micropillar dimensions:
d=50 µm, h=200 µm.

3.2 Immobilization protocols

3.2.1 Nonspecific binding of HLM on magnetic particles

Streptavidin-coated superparamagnetic beads (Invitrogen) were pre-treated

according to the manufacturer’s protocol and functionalized with human liver

microsomes.

For HLM functionalization, the desired amount of M-280 beads was rinsed with

an equal volume or at least 1 mL of PBS (phosphate buffered saline), vortexed

for 5 sec and placed on a magnet for 1 min.  Supernatant was discarded and the

beads were resuspended in the initial volume. After pre-treatment, the beads

were divided in 25 µL batches. Beads were separated by an external magnet and

the supernatant was discarded. 25 µL of Tris buffer (0.1 M, pH 7.5 with 3.3 mM

MgCl2) and 15 µL of 10 mg/mL HLM enzyme solution were added onto the beads

and the mixture was incubated at room temperature for 30 min on tilt rotation and
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washed 4 to 5 times with 50 µL of PBS buffer using magnetic separation. After

immobilization the beads were stored in 50 µL of PBS buffer.

3.2.2 Immobilization of HLM on magnetic particles using biotinylated
liposomes

Biotinylated large unilamellar vesicles were prepared according to Hersch et al.

(2015). To prepare biotin-containing fusogenic liposomes, DOPE, DOTAP, biotin-

cap-DOPE and lissamine rhodamine B-DOPE stock solutions in chloroform were

mixed in a weight ratio of 1:1:0.1:0.05, respectively. After mixing the bulk solvent

was evaporated with a gentle stream of nitrogen. To remove any solvent

residues, the lipid mixture was kept in vacuum for 2 h and in a vacuum desiccator

overnight. Next the lipids were solvated in PBS and vortexed for 1 hour to yield a

total lipid concentration of 2 mg/mL and vortexed for 1 hour.

To prepare large unilamellar vesicles (LUVs), the liposome stock solution was

passed through a polycarbonate membrane of a pore size of 100 nm at least 11

times using a benchtop extruder (Avanti Polar Lipids, Alabaster, AL, USA). The

size distribution of the vesicles was determined by dynamic light scattering (DLS)

using a Zetasizer APS (Malvern, Worcestershire, UK).

To fuse the biotin containing liposomes with microsomes, 100 µL of the LUV

dispersion was added to 100 µL of 20 mg/mL HLM and incubated for 15 min at

37 °C.

Two different methods (method 1 and method 2) for immobilization with biotin-

containing FLs were tested. In method 1, HLM was first fused with FLs and then

immobilized on streptavidin coated particles (Figure 7). In method 2, the particles

were coated with the biotin-containing FLs prior to their incubation with HLM.

Method 1

The desired amount of beads was pre-treated according to protocol (see section

4.2.1) and divided into 25 µL aliquots and the supernatant was discarded. 15 or

30 µL of HLM/FL-mixture (10 mg/ml and 1 mg/mL of HLM and lipids,
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respectively) was added onto the beads and the mixture was incubated at room

temperature for 30 min on tilt rotation and washed 4 to 5 times with 50 µL of PBS

using magnetic separation. After immobilization the beads were stored in 50 µL

of PBS buffer.

Figure 7. Schematic of HLM immobilization on streptavidin-coated magnetic
particles using biotin-containing fusogenic liposomes.

Method 2

Desired amount of beads was pre-treated according protocol (see section 4.2.1)

and the supernatant was discarded. An equal volume of 1 mg/mL FL mixture was

added onto the beads and incubated for 30 min at room temperature. Next, the

beads were divided into 25 µL aliquots, the supernatant was discarded and either

15 or 30 µL of 10 mg/mL HLM was added. Samples were incubated for 15 min on

tilt rotation and washed 4 to 5 times with 50 µL of PBS using magnetic

separation. After immobilization the beads were stored in 50 µL of PBS buffer.
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The immobilization yield for method 1 was determined by monitoring lissamine

rhodamine B fluorescence (excitation wavelength 560 nm, emission

wavelength 583, bandwidth 12 nm, measurement time 100 ms) using a

Varioskan Flash microplate reader (Thermo Scientific, Vantaa, Finland)  from the

washing fractions collected after immobilization. A standard curve was prepared

from the HLM-FL-mixture by diluting with PBS. HLM was assumed to immobilize

in the same proportion as the lipids. Because method 1 was selected for further

studies after preliminary experiments, the immobilization yield of method 2 was

not determined.

3.2.3 Immobilization of HLM in thiol-ene pillar channels

After fabrication, the thiol-ene pillar chips were functionalized with either a thiol-

containing lipid (1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol) or a

biotinylated PEG4 alkyne (biotin-PEG4-alkyne). In the case of lipid

functionalization, the chips were fabricated with a 50% molar excess of allyl

groups, and in the case of biotin functionalization, a 50% molar excess of thiol

groups was used. After biotin functionalization, the channel surface was further

coated with a fluorescently labelled streptavidin. HLM fused with biotin-containing

liposomes (protocol described in section 4.2.2) was then bound to the

streptavidin molecules.

For lipid functionalization, the channels were filled with 10 mM 1,2-dipalmitoyl-sn-

glycero-3-phosphothioethanol containing 1% Lucirin photoinitiator in ethanol and

kept under UV for 2 min. Next, the pillar channel was rinsed with 500 µL ethanol

and 500 µL 0.1 M Tris (pH 7.5, 3.3 mM MgCl2) and filled with a 10 mg/mL HLM

solution containing 1% Pluronic® F127 and incubated for 1h at room

temperature. After incubation, the channel was washed with 0.1 M Tris (pH 7.5,

3.3 mM MgCl2). The first 3 fractions (100 µL) of the washing solution were

collected, after which the channel was washed with an additional 500 µL of

washing buffer. The CYP2A6 activity of the collected washing fractions was

determined according to the protocol described in section 4.3.1, and the amount

of immobilized enzyme was evaluated by comparing the enzyme activities to the

activity of a control of known enzyme concentration. Activities with respect to mg

of enzyme were assumed to be identical between the control and the samples.
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As a negative control, HLM were also immobilized onto the bare allyl-rich surface

without prior lipid functionalization. In this case, no Pluronic® F127 was added to

the HLM before incubation. The lipid functionalization protocol is illustrated in

Figure 8.

Figure 8. Schematic of the lipid functionalization of thiol-ene pillar channels
(Kiiski et al. 2016).

For biotin functionalization, the channels were filled with 10 mM (biotin-PEG4-

alkyne containing 1% Lucirin photoinitiator in DMSO and kept under UV light for

2 min. Next, the pillar channel was rinsed with 1 mL of PBS and filled with

0.66 mg/mL Alexa Fluor® Streptavidin in PBS and incubated for 45 min at room

temperature. After incubation, the channels were washed with 1 mL of PBS and

loaded with liposome-HLM mixture (1 and 10 mg/mL of lipids and HLM,

respectively) and incubated for 30 min. After incubation, the channel was washed

and the CYP2A6 activity of the wash fractions was determined in similar manner

as in the lipid functionalization protocol. The biotin-streptavidin functionalization

protocol is illustrated in Figure 9.
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Figure 9. Schematic of the biotin-streptavidin functionalization of thiol-ene pillar
channels.

3.3 Enzyme activity assays

3.3.1 Enzyme incubations

For method development, coumarin 7-hydroxylation via CYP2A6 (Figure 10) was

selected as the model CYP activity in HLM. CYP2A6 was selected because it can

be easily and specifically assayed using fluorescence spectroscopy. Coumarin by

itself is non-fluorescent, but umbelliferone emits a strong fluorescence in the blue

region of the visible spectrum (Fink & Koehler 1970). The fluorescence can be

readily and selectively monitored even by simple well-plate methods. CYP2A6 is

the only CYP isoenzyme catalyzing coumarin metabolism (Pelkonen et al. 2000),

which allows for quantitative comparison of the different immobilized enzyme

systems.

Figure 10. CYP2A6 mediated 7-hydroxylation of coumarin.



35

Enzyme incubation with soluble enzymes

Control enzyme activity assays were conducted in Tris buffer (0.1 M, pH 7.5 with

3.3 mM MgCl2) in a total volume of 100 µL. NADPH was used as a cofactor at

1 mM. Enzyme concentration had been previously optimized to 0.4 mg/mL.

Enzyme and substrate were mixed and preincubated for 5 min at 37 °C.

Reactions were initiated by pipetting the cofactor into the preincubated reaction

mixtures. Reactions were stopped by the addition of 1/10 of the reaction volume

of 4 M perchloric acid (HClO4). Samples were kept on ice for 20 min and

centrifuged at 16 000 g for 10 min.

Enzyme incubation on magnetic beads

Enzyme activity assays for enzyme immobilized on magnetic particles were

conducted in Tris buffer (0.1 M, pH 7.5 with 3.3 mM MgCl2) in a total volume of

100 µL. NADPH was used as a cofactor at 1mM. 0.25 mg of particles were used

per reaction. The magnetic particles were separated from washing buffer by an

external magnet and the supernatant was discarded. The beads were then mixed

with buffer and substrate and pre-incubated for 5 min at 37 °C. Reactions were

initiated by pipetting the cofactor into the pre-incubated reaction mixtures.

Reactions were stopped by separating the beads with an external magnet and

collecting the supernatant for further analysis. The beads were washed once with

50 µL of PBS and stored at 4 °C in 50 µL PBS.

Enzyme incubation on mircrofluidic devices

The CYP activity of the immobilized enzyme reactors was assessed by pumping

a reaction solution containing 1 mM of NADPH and 50 µM of coumarin in Tris

buffer (0.1 M, pH 7.5 with 3.3 mM MgCl2) through the reactor at different flow

rates using a programmable syringe pump and monitoring the coumarin-7-

hydroxylation rate off-line from the collected fractions. Solutions were fed and

collected through Teflon® capillaries connected to the chip via NanoPort

connectors (Upchurch Scientific). NanoPort connectors were fastened to the chip

using 3D-printed holders fabricated and designed in-house. The reactors were

heated to physiological temperature using a resistive heater (R = 0.5 Ω)
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connected to an external voltage source (heating power 0.6–0.8 W). Temperature

was measured from the top surface of the chip with a thermocouple connected to

a multimeter. On the basis of a prior work (Sikanen et al. 2008), the temperature

on the chip surface was approximately 2 degrees lower than that inside the

channel and thus the measured temperature was targeted at 35 °C. A picture of

the IMER setup can be seen in Figure 11.

Figure 11. Photograph of the experimental IMER setup with fluidic couplings, a
resistive heater and a thermocouple for recording the temperature on the
reactor’s top surface (Kiiski et al. 2016).

3.3.2 Metabolite quantitation

Umbelliferone was quantitated by fluorescence spectroscopy (excitation

wavelength 325 nm, emission wavelength 470 nm, bandwidth 12 nm,

measurement time 100 ms) using a Varioskan Flash microplate reader (Thermo

Scientific, Vantaa, Finland). As NADPH gave a considerable fluorescence signal

in neutral pH, all neutral samples were acidified prior to analysis by adding 1/10

of sample volume of 4 M HClO4.
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4 Results

4.1 HLM Stability and characterization

In order to confirm the stability of HLM over time periods required for

immobilization protocols, the enzyme activity was determined over a period of

120 min from a HLM sample stored at room temperature. Results are shown in

Figure 12. According to the results, HLM activity did not significantly drop over

short storage periods of time at room temperature.

Figure 12. Relative CYP2A6 activity (coumarin 7-hydroxylation) of HLM stored at
room temperature. The error bars represent one standard deviation from the
mean. n=2

To examine how the enzyme activity of HLM is preserved over extended storing

periods, enzyme activity of HLM stored in the fridge (4°C) was determined over a

period of 9 days according to the protocol described in section 4.3.1. Results are

shown in Figure 13. It should be noted that as the microparticles do not tolerate

freezing (Anon. 2016a), the HLM-functionalized beads should be stored at 4 °C.

According to the results, HLM can be stored for extended periods at 4 °C without

significant loss of enzyme activity.
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Figure 13. Relative CYP2A6 activity (coumarin 7-hydroxylation) of HLM stored at
4 °C. The error bars represent one standard deviation from the mean. n=2

To assess the influence of thermal inactivation on the loss of enzyme activity in

immobilized enzymes, a 4 mg/mL solution of HLM was incubated at 37 °C and on

designated time points 10 µL of the enzyme was added to a reaction solution.

Next, the assay was carried out as per protocol described in section 4.3.1. As can

be seen from the results (Figure 14), bare HLM in solution tolerates incubation in

physiological temperatures reasonably well without any significant thermal

inactivation. This must be taken into account when assessing the possible

reasons for activity loss when using immobilized HLM.
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Figure 14. Relative CYP2A6 activity (coumarin 7-hydroxylation) of HLM
incubated at 37 °C. The error bars represent one standard deviation from the
mean. n=2.

The zeta potential and vesicle size distribution of stock HLM solution was

measured with Zetasizer Nano ZS (Malvern, Worcestershire, UK) using a HLM

concentration of 0.125 mg/mL in de-ionized water. The size distribution of HLM

can be seen in Figure 15. According to the data, HLM is distributed to three

distinct fractions by vesicle diameter. The zeta potential of HLM was measured to

be -44.3 mV. As discussed in the literature review (section 2.3), the negative

charge of the HLM membrane surface promotes the close contact between HLM

and FL as a result of electrostatic interactions.
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Figure 15. Size distribution by scattering intensity of HLM according to dynamic
light scattering measurements.

4.2 Liposome preparation and fusion with HLM

The decrease in liposome size after extrusion was monitored both

microscopically and with dynamic light scattering analysis. The size distribution

data from the dynamic light scattering measurements before and after extrusion

are shown in Figure 16. The polydispersity index (PDI) of the liposome solution

decreased from 0.176 to 0.094 as a result of the extrusion process. The z-

average value, which denotes the average hydrodynamic radius of the sample

particle population, decreased from 662 nm to 240 nm. It should be noted that

because the z-average gives only a single average value for the whole particle

population, it does not accurately describe the size distribution of the

polydisperse pre-extrusion sample.
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Figure 16. Size distribution of fusogenic liposome solution by scattering intensity
according to dynamic light scattering measurements A) before extrusion B) after
extrusion (51x through a 100 nm membrane).

The liposome samples were imaged using a microscope (Zeiss Axio Scope A1,

broadband halogen lamp with an excitation filter 546 ± 5 nm and an emission

filter 545-700 nm) by exploiting the fluorescence originating from the lissamine

rhodamine B derivatized lipids. Microscopic images of the liposomes before and

after the extrusion are shown in Figure 17. The drop in the average size of the

liposomes was apparent from the pictures.
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Figure 17. Fusogenic liposomes A) before extrusion B) after extrusion (50 x
through a 100 nm membrane) visualized using lissamine rhodamine B
fluorophore. Magnification 20x, excitation wavelength 546 nm, emission
wavelength 583 nm.

After fusing the HLM with the fusogenic liposomes, the mixture was again

examined microscopically (Figure 18). The fluorescence signal can be seen

enriched on the surface of the microsomal membranes.
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Figure 18. HLM fused with fusogenic liposomes visualized using lissamine
rhodamine B fluorophore. Magnification 20x, excitation wavelength 546 nm,
emission wavelength 583 nm.

4.3 Immobilization of HLM on magnetic microparticles

4.3.1 Nonspecific method

The nonspecific adsorption of HLM on streptavidin-coated magnetic

microparticles was first used to roughly optimize the immobilization conditions in

terms of the enzyme vs. particle ratio and the incubation volume during

immobilization.

First, the effect of incubation volume during immobilization was assessed by

changing incubation volume from “small” to “large” using two different enzyme-to-

particle ratios, 1:1 (volumes of 25 and 100 µL) and 2:1 (volumes of 50 and

100 µL). According to the results (Figure 19), the incubation volume during

immobilization does not significantly affect the CYP2A6 activity of the immobilized

HLM. On these grounds, results from experiments using different immobilization

volumes could be compared with each other.
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Figure 19. The effect of incubation volume during immobilization (25/50 vs. 100
µL) on sample CYP2A6 activity (coumarin 7-hydroxylation) with two different
enzyme-to-particle ratios.

With the tested ratios, the enzyme-to-particle ratio had no effect on CYP2A6

activity of the immobilized HLM (Figure 20). This is likely because the adsorption

of HLM on the particles saturates at very low levels of enzyme. Enzyme

consumption per particle sample was minimized based on these results to lower

enzyme consumption.
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Figure 20. The effect of enzyme-to-particle ratio during immobilization on sample
CYP2A6 activity (coumarin 7-hydroxylation). n=1 particle batch.

The effect of the amount of particles used for immobilization (at fixed HLM

amount of 1 mg total protein) was also examined. According to the results, the

CYP2A6 activity of the samples with respect to mg of particles is not significantly

affected by the amount of particles used (Figure 21). Thus, 0.25 mg of beads per

sample was used in further experiments to minimize bead consumption.
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Figure 21. The effect of particle amount in immobilization on the CYP2A6 activity
(coumarin 7-hydroxylation) of the samples. n=1 particle batch.

An attempt was made to determine the immobilization yield of the nonspecific

immobilization method by measuring the amount of non-immobilized HLM with

the bicinchonic acid (BCA) assay (Thermo Scientific, Rockford, IL, USA).

However, the sensitivity of the assay was not adequate for determining such

minute enzyme concentrations, as the inter-sample variation was greater than the

concentrations to be measured.

To assess the effect of immobilization on enzyme kinetics, the Michaelis-Menten

kinetic parameters (Vmax and Km) for coumarin 7-hydroxylation were determined

for the nonspecifically immobilized enzyme using coumarin concentrations of 1,

2, 4, 8, 16, 32 and 64 µM. Two parallel incubations were performed at each

substrate concentration. The kinetic parameters were calculated using GraphPad

Prism software (GraphPad Software Inc., CA, USA). The calculated Vmax and Km

values were 15.2 ± 0.6 pmol/min/mg and 1.2 ± 0.25 µM respectively. The Km

values for coumarin 7-hydroxylation reported in the literature range from 0.5 to

2.0 µM (Yuan et al. 2002), which are comparable to the values determined for the

immobilized HLM. It should be noted that the Vmax value is reported in relation to

mg of particles, not enzyme. Thus it cannot be directly compared with the values

given for the soluble enzyme in literature. The Michaelis-Menten plot of coumarin

7-hydroxylation for the nonspecifically immobilized HLM is shown in Figure 22.
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Figure 22. Michaelis-Menten plot of coumarin 7-hydroxylation for HLM
nonspecifically immobilized on streptavidin-coated magnetic particles.The solid
line represents the nonlinear least-squares best fit to the Michaelis-Menten
equation. n=2 parallel incubations at each substrate concentration

The stability of HLM immobilized with the nonspecific method was examined by

storing the particles after HLM immobilization at 4 °C and determining the

enzyme activity daily over a period of 3 days. To differentiate between loss of

activity during the enzyme reaction and during storage, one sample was stored at

4 °C for three days before the initial activity measurement. According to the

results (Figure 23), the beads can be stored at 4 °C for extended periods of time

without any significant loss of enzyme activity. Rather, the activity loss was linked

to heating and stirring of the particles during the enzyme incubation.
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Figure 23. Relative CYP2A6 activity (coumarin 7-hydroxylation) of magnetic
particles immobilized with HLM using the nonspecific method. The activity was
measured on the day of immobilization and daily over a period of 3 days. One
sample was stored for 3 days before enzyme activity assay. The error bars
represent one standard deviation from the mean. n=4 particle batches.

To identify the critical points affecting the loss of enzyme activity over

time/repeated use of particles after immobilization, the enzyme activity of wash

solutions was determined (following the enzyme incubation protocol used for the

soluble enzyme). To assess the effect of incubation at elevated temperatures on

enzyme leaching, one sample was incubated in 37 °C for 20 min, after which the

CYP2A6 activity of the supernatant was determined (see wash fraction after

reaction, Figure 24). It should be noted that the assay method cannot be used to

actually quantitate the amount of lost enzyme, as no standard enzyme solutions

were used. The amount of generated metabolite gives only a rough estimate on

the extent of enzyme loss at different points. The method also allows only the

detection of active enzyme.
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Figure 24. CYP2A6 activities (coumarin 7-hydroxylation) of washing fractions
collected at different points of the immobilization/incubation protocol. n=4 particle
batches.

4.3.2 Immobilization with biotinylated liposomes

To roughly assess the effect of the enzyme-to-particle ratio on immobilization

efficiency, the immobilization protocol was carried out using two different ratios of

particles and the HLM-FL mixture (10 mg/mL HLM, 1 mg/mL LUV). According to

the results, the ratio did not affect the CYP2A6 activity of the particles

(Figure 25). Compared to the nonspecific immobilization method, the utilization of

FLs confers a 3-fold increase in CYP2A6 activity.
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Figure 25. CYP2A6 activity (coumarin 7-hydroxylation) of magnetic particles
immobilized with HLM fused with biotin-containing fusogenic liposomes (FL).
Method 1: HLM fused with FL prior to immobilization, Method 2: FL immobilized
on magnetic particles prior to adding HLM. Typical activity achieved with the
nonspecific immobilization method is included for reference. The error bars
represent one standard deviation from the mean. n=4 particle batches.

The beads immobilized with method 2 showed a noticeable change in their

appearance after incubation with the liposomes. The beads had a tendency to

aggregate, which may be due to changes in the bead surface charge or

hydrophobicity. The aggregation resulted in rapid sedimentation of the particles.

Because of this and the slightly lower activity of beads immobilized with

method 2, method 1 was selected for further studies.

The stability of magnetic particles functionalized with immobilized HLM according

to method 1 was assessed by measuring the initial activity after immobilization

and repeating the enzyme assay twice after storing the samples for 6 days at

4 °C. Storing the samples for extended periods did not seem to effect the activity

much, but after repeated incubations, the activity started to diminish (Figure 26).
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Figure 26. Relative CYP2A6 activity (coumarin 7-hydroxylation) of magnetic
particles immobilized with HLM fused with biotin-containing fusogenic liposomes
(FL). The activity was measured on the day of immobilization and twice after six
days of storing at 4 °C. The error bars represent one standard deviation from the
mean. n = 4 particle batches.

The Michaelis-Menten kinetic parameters were determined in a similar manner to

the nonspecific method. Two parallel incubations were performed at each

substrate concentration The calculated Vmax and Km values  were  24.3  ±

1.1 pmol/min/mg and 2.5 ± 0.49 µM respectively. The Km value for CYP2A6-

mediated coumarin 7-hydroxylation is reported to be 0.5-2 µM in the literature

(Yuan et al. 2002), which is comparable to the values determined for the

immobilized HLM. The Michaelis-Menten plot of coumarin 7-hydroxylation for the

nonspecifically immobilized HLM is shown in Figure 27.
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Figure 27. Michaelis-Menten plot of coumarin 7-hydroxylation for HLM
immobilized on streptavidin-coated magnetic particles using biotin-containing
liposomes. The solid line represents the nonlinear least-squares best fit to the
Michaelis-Menten equation. n=2 parallel incubations at each substrate
concentration.

The immobilization yield of method 1 was determined by measuring lissamine

rhodamine B fluorescence (excitation wavelength 560 nm, emission

wavelength 583) from the washing fractions collected after immobilization and

subtracting the measured lipid content from the amount of lipids used in the

immobilization. The BCA assay was not used, as the excitation of lissamine

rhodamine B present in the samples would surely interfere with the assay as it is

based on measuring absorbance at 562 nm (Smith et al. 1985). HLM was

assumed to immobilize in the same proportion as the lipids. The obtained

immobilization yield was 15.3%. Vmax calculated with the corresponding enzyme

content was 270 pmol/min/mg of HLM.

4.3.3 Particle packing in microfluidic channels

Packing of magnetic particles inside a microfluidic channel was briefly tested in a

straight thiol-ene channel (50% allyl excess) with dimensions of

45 x 0.6 x 0.05 mm. Rhodamine 110-labelled particles (0.75 mg) were loaded

inside the channel manually using a syringe. The beads were retained inside the

channel by placing a neodymium block magnet (10 x 10 x 5 mm, magnetization

grade N42, Supermagnete, Gottmadingen, Germany) on top of the channel. After
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loading the beads, a liquid flow was initiated using a syringe pump, starting at

0.5 µL/min. Particles were monitored with a microscope using laser-induced

fluorescence (LIF, argon laser 488 nm, 20mW).

Using the block magnet for bead retention resulted in generation of a relatively

high backpressure as the flow was initiated. The increasing pressure eventually

ejected the particles out of the channel. To prevent the generation of

backpressure, another magnet configuration was tested to pack the particles

more loosely in the channel. Ten neodymium block magnets (5 x 4 x 1 mm,

magnetization grade N50, Supermagnete, Gottmadingen, Germany) were placed

on top of the channel in a 5 x 2 configuration along the channel length, with the

longer side of the magnet parallel to the sides of the channel. With this

configuration, 0.75 mg of magnetic particles could be held inside the channel with

a flow rate of up to 3 µL/min. Using this magnet configuration, the beads were

also imaged with a confocal microscope (Leica TCS SP5 MP, blue laser,

excitation wavelength 496 nm) after applying a liquid flow of 2 µL/min to study the

spatial distribution of the beads. A 780 x 600 µm slab spanning the whole width

(600 µm) of the channel was imaged. A 3D surface plot generated from the

confocal microscopy data using Fiji image-processing software (Schindelin et al.

2012) is shown in Figure 28. The beads can be seen concentrated on the right

side of the channel.
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Figure 28. 3D surface plot of a generated from confocal microscopy (Leica TCS
SP5 MP, 20x magnification) data on distribution of magnetic particles fixed inside
a microfluidic channel using an external magnet. A 780 x 600 µm slab spanning
the whole width (600 µm) of the channel is seen on the plot. The beads can be
seen concentrated on the right side of the channel. The direction of flow is
denoted by an arrow. Units on the Z-axis are arbitrary.

4.4 Thiol-ene CYP-IMERs

Three different methods for HLM immobilization on thiol-ene micropillar chips

were studied. The thiol-ene surface was functionalized with either streptavidin or

a lipid bilayer, to which HLM were subsequently immobilized. For comparison,

HLM were also immobilized nonspecifically onto non-modified allyl-rich

micropillars via physical adsorption. The immobilization yield of the different

approaches was examined by determining the enzyme activity left in the washing

fractions collected from the reactor after HLM immobilization. The protein

contents of the collected wash fractions in relation to the amount of protein

loaded to the reactor for the three different immobilization methods are shown in

Figure 29. The immobilization yields for the different immobilization approaches

were 33, 21 and 43% for the nonspecific, lipid-assisted and the streptavidin-biotin

approach, respectively.
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Figure 29. Relative protein content of wash fractions vs. protein amount loaded
to the IMER during HLM immobilization. The error bars represent one standard
deviation from the mean. n=3 reactors for nonspecific and lipid-assisted
immobilization, n=1 reactor for streptavidin-biotin immobilization.

To assess the effect of flow rate on reactor activity, 50 µL fractions of the reaction

solution were collected with incrementally increasing flow rates and the

umbelliferone concentration of the fractions was determined. A reactor with HLM

immobilized using the nonspecific method was used for this purpose. To account

for the gradual loss of enzyme activity during the experiment, fractions with the

initial flow rate of 5 µL/min were collected at the end of the run also. Results are

shown in Figure 30. The activity of the reactor seems to decrease with increasing

flow rates. As the flow rate was restored to 5 µL/min, an increase in enzyme

activity was observed. Based on the results, the flow rate of 5 µL/min was

selected for further studies.
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Figure 30. The effect of reaction solution flow rate on the reactor CYP2A6 activity
(coumarin 7-hydroxylation). Two additional fractions with the flow rate of 5 µL/min
were collected after running the reactor for 1 and 2 hours.

The activity of the IMERs was monitored by collecting 50 µL fractions of the

reaction solution with a flow rate of 5 µL/min. The CYP2A6 activity of the reactors

with different immobilization approaches as a function of time is shown in

Figure 31. The low initial activity of the biotin-streptavidin method is due to

incorrect flow rate in the beginning of the run. The average initial activities for the

different immobilization approaches were 93, 51 and 32 pmol/min/mg for the

nonspecific, lipid-assisted and the streptavidin-biotin approach, respectively. The

activities for the nonspecific and lipid-assisted method were determined as the

average from 3 individual reactors, and the activity of the streptavidin-biotin

method was determined from a single reactor.
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Figure 31. The loss of enzyme activity (as per coumarin 7-hydroxylation via
CYP2A6 isoenzyme) as a function of time for CYP-IMERs with different
immobilization approaches. To measure the activity, 50 µL fractions of the
reaction solution were collected with a flow rate of 5 µL/min. n=1 reactor per
immobilization approach.

As reaction temperature can affect CYP activity and even the enzyme kinetic

parameters (Zaijan et al. 2012), stable heating is of paramount importance when

performing in vitro metabolic studies. Thus, an infrared (IR) camera (FLIR,

Wilsonville, OR, USA) was used to confirm uniform heating of the chip at varying

flow rates. The IR thermographs of the heated chip with flow rates of 0.5 and

20 µL/min are shown in Figure 32. The chip surface is evenly heated, with the

increased flow rate having no apparent effect on the temperature. The small

fluctuations of the chip surface temperature are probably due to reflections of IR

radiation from the uneven surface of the chip.
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Figure 32. IR thermographs of a thiol-ene pillar chip illustrating the local heating
of the chip surface when heated with a resistive heater (R = 0.5 Ω, heating power
0.6 - 0.8 W). A) flow rate 0.5 µL/min B) flow rate 20 µL/min.
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5 Discussion

5.1 HLM fusion with fusogenic liposomes

On the basis of literature search, a novel immobilization approach utilizing biotin-

labelled fusogenic liposomes was developed. According to Csiszár et al. (2010)

liposome fusion should not affect cell behavior, which makes it an ideal approach

for immobilization of cell-like human liver microsomes. Hypothetically, by utilizing

fusogenic liposomes, the strong bonding energies of conventional covalent

immobilization can be achieved without its downside of affecting the enzyme

activity. The actual immobilization chemistry is based on the strong, specific

bonding of biotin and avidin. Avidin is a protein that specifically binds biotin via an

extremely strong non-covalent bond. The dissociation constant of the biotin-

avidin bond is measured to be KD ≈ 10-15 M, making it one of the strongest known

non-covalent bonds (Green 1975).

The lipid composition of the FLs was tailored based on literature (Hersch et al.

2015) to favor spontaneous fusion with biological membranes. 1,2-dioleoyl-sn-

glycero-3-phophoethanolamine (DOPE) is a neutral lipid with a net negative

curvature promoting fusion intermediate states. 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) has a positive charge in the polar

headgroup that interacts with the negatively charged cell membrane decreasing

the distance between the two membranes consequently increasing the probability

of fusion. The polarization of the delocalized π-electrons in the rhodamine

moieties is hypothesized to induce membrane instabilities and disorders (Csiszár

et al. 2010). According to Cevc & Richardsen (1999) such effects could promote

membrane fusion.

The size reduction of the fusogenic liposomes after extrusion was monitored both

by dynamic light scattering and fluorescence microscopy. The resulting size

distribution was somewhat contradictory to expectations, as a size distribution in

the range of 100 nm should be expected with the used membrane (Walde &

Ichikawa 2001). The manufacturer was also contacted but could not give any

clear explanation as to the reason for the unexpected size distribution of the

liposomes. One possible explanation is that the membrane is damaged during
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the extrusion as a result of excessive backpressure. To prevent this, it is

sometimes advisable to extrude the liposome vesicles through multiple

membranes with incrementally decreasing pore size (Walde & Ichikawa 2001).

Size distribution of the microsomal vesicles in the HLM solution was also

examined using dynamic light scattering. In DLS, vesicle sizes are determined by

measuring the scattering of light passing through a sample. The intensity of the

scattered light can be calculated from the Rayleigh law (Equation 3):

= (3)

where R is the distance to the particle, d is the particle diameter, n is the

refractive index of the particle material and θ is the scattering angle. As the

scattering intensity is proportional to the 6th power of the particle diameter,

scattering from large particles easily suppresses signals coming from smaller

particles in the sample (Li et al. 2011). Taking this into account, the contribution

of the smallest size fraction in the range of 100-200 nm to the total size

distribution is much more prominent than what can be directly inferred from the

data.

On the microscopic images taken after the fusion of FLs with HLM, the

enrichment of the fluorescence signal on the HLM membrane can clearly be

seen. On the basis of the pictures, the fluorescence signal seems to be

concentrated on the larger microsomal vesicles. This is likely to hamper the

efficiency of HLM biotinylation, as according to the DLS data, the larger

microsomal vesicles comprise only a small fraction of the whole vesicle

population. This means that a substantial part of CYP activity resides in the small

vesicles with a diameter in the range of 100-200 nm.

It is not totally clear whether the FLs of the size used in this study can in fact fuse

with the smallest microsomal vesicles. It could be argued that the interaction of

two vesicle systems of the same size does not provide sufficient contact area for

membrane fusion. In literature, FLs have been used extensively on whole cells

(Hersch et al. 2015; Naumovska et al. 2014; Kleusch et al. 2012), in which case,

the membrane to be functionalized is considerably larger than the fusogenic
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liposome. No research papers on liposome fusion with subcellular fractions could

be found. To improve fusion efficacy, the effect of decreasing the size of the

liposomes further should be studied. This could be done by extruding through

smaller membranes or by using sonication instead of extrusion.

To the best of my knowledge, FLs have not been utilized in HLM functionalization

prior to this thesis. The use of FLs in HLM functionalization offers a flexible

method for immobilizing microsomal CYP enzymes exploiting different

immobilization chemistries. As recombinant-CYP-containing supersomes do not

significantly differ from HLMs in terms of biological structure, the technologies

developed in this thesis can in principle be easily extended to recombinant CYP

models as well.

5.2 HLM immobilization on magnetic particles

The use of streptavidin-coated magnetic beads in immobilizing HLM has been

previously described by Kampe et al. (2014). The researchers immobilized HLM

on the magnetic beads via a nonspecific mechanism that was not discussed in

detail. This nonspecific binding was taken as a starting point in this thesis and

used to roughly optimize the immobilization conditions and to act as a reference

to the techniques based on biotin-avidin chemistry.

The nonspecific method constituted a facile and fast method of immobilizing

HLM, but the low immobilization yields limit its utilization on analytical

applications.  In the study by Kampe et al. (2014) 3.15 mg of beads were used

per one reactor to allow sufficient enzyme activities (cf. 0.25 mg per reaction

used in this thesis). The excess consumption of beads compromises the cost-

effectiveness of the method, especially if the beads must be frequently replaced

due to enzyme inactivation.

By using the novel immobilization method comprising biotin-containing fusogenic

liposomes, the enzyme activity of the beads could be increased 3-fold compared

to the nonspecific immobilization. By increasing the efficiency of liposome-HLM

fusion by the means discussed in the previous chapter, activity could be further

improved. Increasing the bead specific activity means that smaller amounts of
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beads can be used for generating the same amount of metabolites, which will

alleviate the design of microfluidic applications.

The enzyme stability with repeated enzyme incubation cycles remains an issue

even with the new immobilization method. According to the results, the

immobilized HLM can be stored at 4 °C for extended periods without significant

activity loss. Based on this observation, immobilized beads could potentially be

prepared in large batches, stored in the refrigerator and used on demand, which

facilitates their use. With repeated incubation cycles, activity of the beads drops

radically. Thermal inactivation is likely one of the reasons for the loss of enzyme

activity. However, according to the preliminary studies conducted on soluble

HLM, the enzyme could be incubated at 37 °C for up to 80 min without notable

loss of activity, which would suggest that other mechanisms play a greater role.

The leaching of enzyme was studied qualitatively with the nonspecific method of

immobilization. CYP activity was found in all the tested fractions, which indicates

enzyme leaching during all the different steps of the protocol. The gradual loss of

activity could be thus explained by leaching, as the particles are exposed to

repetitive cycles of heating and mixing. The stronger binding of the biotin-labelled

microsomes on the particle surface should hypothetically alleviate the leaching,

but the data from the stability studies did not support this hypothesis.

Holmberg et al. (2005) showed that biotin-labelled DNA could be reversibly

dissociated from streptavidin-coated particles using just elevated temperatures.

Rapid and complete elution of the bound biotin was achieved at 70 °C in nonionic

aqueous solutions, but significant elution occurred even with lower temperatures

in the range of the incubation temperature used in this study.  The dissociation of

biotin from streptavidin caused by the elevated temperature might partly explain

the observed loss of activity. However, the investigators also reported that the

presence of salts, especially divalent salts such as MgCl2 used in the incubation

buffer in this study, greatly decreased the release of biotin from streptavidin.

Taking this into account, it is likely that other forms of inactivation or leaching play

a greater role in the observed loss of enzyme activity.

The Km values of the immobilized enzyme are in good agreement with the values

reported in the literature for the soluble enzyme. This is understandable, as the
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enzyme resides on the surface of the magnetic particles, with no apparent

diffusional constraints or steric blockage of the enzyme. For example, with

enzymes immobilized on monolithic supports, Km is usually increased, as the

diffusion of the substrate to the active site is limited (Vlakh et al. 2013). The

unaffected Km allows the direct comparison of kinetic studies performed with the

immobilized HLM to the results obtained with soluble HLM, which is imperative if

this method is to be used in analytical applications. Vmax was calculated based on

the immobilization yield (calculated based on lissamine rhodamine B

fluorescence) to be approximately 25% of that of the soluble enzyme. One

example was found in the literature, where the effect of immobilization on

microsomal enzyme activity was studied (Fernandez-Salquero et al. 1993). In the

study, the Vmax was also about 25% of that observed for the soluble enzyme.

The packing of magnetic particles in microfluidic channels proved difficult.

Packing the particles too firmly resulted in the generation of backpressure and

consequent ejection of the particles from the channel. On another magnet

configuration, the particles could be retained in the channel with flow rates of up

to 3 µL/min. However, the particles could not be evenly packed inside the reactor.

The particles tended to form meandering patterns, concentrating on the channel

sides, probably due to lower flow rates in the boundary layer. The uneven

packing was confirmed by confocal microscopy imaging. The difficulties in

uniform particle packing could lead to reproducibility issues in final applications.

The efficiency of the reactor is also compromised, as the whole enzyme capacity

is not fully utilized due to inhomogeneous perfusion through the particle mass.

As a solution to the problems in particle packing, a new reactor design

(Figure 33) was sketched with AutoCAD® design software according to a design

introduced by Tabnaoui et al. (2012). The design comprises a magnetically-

driven fluidized bed reactor, where the magnetic particles are confined in a

steady-state between a magnetic force generated by an external magnet and the

hydrodynamic drag forces of the liquid. The fluidized bed design should

overcome the limitations of the conventional plug-type reactor, namely the

uneven packing and high backpressure. Due to time limitations, the design could

not be tested out in practice.
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Figure 33. A schematic drawing of the fluidized bed reactor design. 1-3: inlets for
e.g. substrate, cosubstrate and inhibitor solutions, 4: inlet for acid, 5: outlet for
detection. The direction of flow is denoted by an arrow.

As the uniform packing of magnetic particles inside microfluidic channels is

considerably challenging, the direct immobilization of HLM on the functionalized

reactor surface might offer a more feasible and straightforward way to preparing

CYP-IMERs. However, the use of magnetic particles also has its strengths. For

example, IMERs based on direct immobilization have to be disposed of after the

enzyme activity has declined, as the immobilized enzyme cannot be renewed. On

the contrary, in IMERs comprising magnetic particles, the enzyme content of the

can be readily exchanged and particles functionalized with different CYP isoforms

can be used in the same channel. On the other hand, when using relatively

inexpensive polymers such as thiol-enes in the microchip fabrication process, the

disposable nature of the IMERs might not be a significant problem.

Magnetic particles immobilized with HLM could also be readily utilized in digital

microfluidics (DMF). In digital microfluidics, discrete droplets are manipulated by

controlling the hydrophilicity of a dielectric surface by the application electrical

fields (Kirby 2010). With this technology, the droplets can be easily transported,

mixed, reacted and analyzed in a highly automated manner. The manipulation of

magnetic particles on DMF platforms has been already demonstrated (Choi et al.
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2013). The use of DMF would allow easy implementation of several parallel

metabolic reactions simultaneously with excellent reproducibility. In DMF

applications, the cumbersome packing stage the particles is also bypassed.

5.3 CYP-IMERs

Three different immobilization approaches were studied for immobilizing HLM on

in-house fabricated thiol-ene chips. The monomer composition of the thiol-ene

chip allowed for facile tuning of the surface chemistry for functionalization by

manipulating the ratio of thiol and allyl monomers.

The immobilization yields of different methods were compared by determining the

enzyme activity of washing fractions collected from the reactor after

immobilization and using this data to calculate the amount of enzyme remaining

in the reactor. The specific enzyme activity of the eluted fractions was assumed

to be the same as the control activity. This assumption likely generated some

error to the results, as some activity is presumably lost during the washing

process. However, because all the reactors were handled identically, the method

allowed the qualitative comparison of the different methods in terms of

immobilization efficiency.

The highest initial activity was achieved by binding HLM nonspecifically on the

thiol-ene surface (50% allyl excess). A thiol-ene surface with a 50% excess of

allyl groups is relatively hydrophilic, with a water contact angle of approximately

75 degrees (Tähkä et al. 2015). This probably facilitates interactions with the

polar ends of the phospholipids on the microsomes and leads to relatively

effective adsorption of the microsomes on the thiol-ene surface. The interaction

of phospholipid bilayers with hydrophilic substrates, such as glass, is used

routinely in preparing lipid bilayer-coated surfaces (Rädler et al. 1995; Yang et al.

2001). However, the activity of nonspecifically bound HLM also drops

dramatically over time. The rate of decrease in activity is greater compared to the

other two tested immobilization methods. This is likely due to greater leaching, as

HLM is bound to the reactor surface only by weak interactions. Despite the high

initial activity, the nonspecific immobilization method is not likely to be feasible in

future applications owing to the rapid drop in activity.



66

Although the initial activity of the HLM immobilized on the lipid bilayer is

considerably lower compared to the nonspecific immobilization method, the

decrease in enzyme activity over time seems to be somewhat hampered. It

should be noted that because the lipid coating of the reactors was not monitored

in any way, the presence of a lipid bilayer cannot be verified with certainty. On

the other hand, based on the differences in initial activities and enzyme stability

between functionalized and non-functionalized reactors, some difference in the

surface chemistries of the two reactors is to be presumed. The phase transition

temperature Tm for the thiol-containing lipid used in this study is approximately

60 °C (Anon. 2016b). The immobilization of HLM and the reaction were carried

out at temperatures well under Tm, which undoubtedly affected HLM solubilization

into the lipid membrane. As temperatures over 60 °C cannot be used due to HLM

inactivation, alternative solutions for lipid functionalization of the reactors should

be studied in the future.

As the biotin-streptavidin method of immobilization could only be tested once due

to time limitations, no definite conclusions can be made. However, it seemed that

the decrease in enzyme activity with time could be slowed down by this approach

also. Additionally, the fraction of immobilized enzyme was increased with this

immobilization method. However, enzyme activity of the reactor was not

increased in the same proportion. Further studies are needed to assess the

feasibility of this approach for CYP-IMER preparation.

Thermal inactivation likely played a role in the decrease of enzyme activity, as the

activity of all reactors faded within 2 hours. The temperature of the reactors was

controlled manually by adjusting the output voltage of the voltage supply

according to the measured temperature on the reactor surface. The manual

control may have led to temporary overheating of the reactor. To level the

possible temperature fluctuations, the voltage supply could be attached to a

proportional-integral-derivative (PID) controller in the future. Due to the minute

reactor volumes, heating power is not an issue with microreactors. The IR

thermographs shown in Figure 32 support this, as the channel is uniformly heated

even with excessive flow rates. To assess the proportional relevance of enzyme

leaching and thermal inactivation, the enzyme activity of the outflowing solution

could be determined. The shelf life of the reactors after immobilization was not
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studied, but based on the initial experiments on HLM stability, CYP-IMERs could

also be prepared in larger batches and stored in the refrigerator for future use, as

was envisioned for the magnetic particles. This would greatly facilitate their use,

as parallel chips can be easily prepared simultaneously.

Flow rate of the reaction solution affected the reactor activity. As the flow rate

was increased, the activity of the reactor started to drop. At 25 µL/min, almost no

umbelliferone was detected. Gradual inactivation of the enzyme arguably

contributed to the differences in activities observed with different flow rates.

However, the increase in activity after restoring the flow rate to 5 µL/min indicates

that metabolite production is hampered by high flow rates. This is at least partly

explained by the laminar nature of fluid flow in microfluidic environments. In

laminar conditions, mixing occurs by diffusion alone, which may result in

exceedingly long mixing times (Squires & Quake 2005). As a result, the reaction

kinetics of the reactor were presumably limited by diffusion, which sets strict

requirements on fluid residence time.

Future work should concentrate on increasing enzyme stability over time by

optimizing the immobilization protocols and enhancing temperature control.

Possible applications of the CYP-IMER could include drug-drug interaction

screening and in situ metabolite production for analytical standards. For the use

in in vitro metabolic studies, the kinetic characteristics of the immobilized HLM

should be carefully assessed to ensure correspondence with soluble enzyme

assays. In the case of metabolite production, metabolite yields should be

optimized.

5.4 Future prospects

Currently, high-performance liquid chromatography (HPLC) is unquestionably the

gold standard of pharmaceutical analysis (Görög 2007). The popularity of HPLC

is easily understood as it offers a robust and relatively fast means of analyzing

complex samples, especially when coupled to a mass spectrometer. However,

there are several drawbacks in the traditional analytical methods that are slowing

down drug development. A standard HPLC instrument generates over 1 liter of

chemical waste on a daily basis (Welch et al. 2010). The throughput capacity of
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LC-based analysis systems is limited by the fact that increasing sample

throughput simultaneously decreases the coverage of detected compounds due

to e.g. incomplete resolution of the analytes (de Raad et al. 2016). Presently, a

typical CYP inhibition assay is performed on a well plate and includes many steps

of manual pipetting (Wang & Bell 2012), which greatly limits the throughput of the

analysis and generates potential error in the final results.

A drawback of microfluidic systems has been the difficulty of coupling the devices

to macro-scale devices such as detectors. This has limited the detection methods

that can be used within microfluidic frameworks. Mostly optical detection

methods, such as fluorescence detection have been used, which limits the

universality of the systems (Wang et al. 2015). Recently, there have been several

promising reports of on-line microfluidic-MS analyses (Petersen et al. 2012; Gao

et al. 2012; Nordman et al. 2011). Coupling microfluidic systems to MS offers a

method of universal and highly sensitive analyte detection, and is very likely to

become more common in the future.

With the inherent advantages of microfluidic technology and the recent

technological advantages such as facile coupling of microfluidic systems to MS,

one could envision a highly parallel microfluidic system for metabolic studies that

in addition to a CYP microreactor includes a separation channel and an on-line

interface to a mass spectrometer. By using tubing to introduce reagents to the

reactor, the amount of manual pipetting could be reduced, increasing analysis

accuracy. The use of multiple fluid inlets would also enable the generation of

concentration gradients by adjusting flow rates. Combined with on-line detection,

this would allow rapid determination of enzyme kinetic parameters. Coupling the

reactor to MS would offer a nearly universal approach for detection, with no need

for separate, potentially expensive, fluorescent or luminescent probes. With these

potential advantages, it is not hard to see microfluidic platforms eventually

replacing conventional HPLC assays. If the microreactors developed in this thesis

are to be used in in situ metabolite production, the ease of integrating different

unit operations together in microfluidic devices would allow the reactor to be

coupled to e.g. a miniaturized solid phase extraction (SPE) column for facile

isolation of the analytes.
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One prominent trend in microfluidic metabolic studies is the development of more

intricate systems mimicking the in vivo conditions with high fidelity. In the so-

called organs-on-chips approach, physiological features of tissues and organs

are modelled in continuously perfused, micrometer-sized devices. As aspects

such as tissue-tissue interfaces and fluid shear stress, which greatly influence

organ function, can easily be implemented on microfluidic organ models, they

offer a superior model of living tissues when compared to the conventional 2D

cell models. Organs-on-chips models can also be linked together to build

complex models for studying e.g. drug distribution in vitro (Bhatia & Ingber 2014).

Even comprehensive human-on-a-chip systems comprising several interlinking

microfluidic organ models have been envisioned (van Noort et al. 2014) However,

it should be noted that there is a trade-off between in vivo resemblance and

throughput/cost-effectiveness. Even if increasingly complex models are being

developed, there is still a demand for systems with lesser in vivo resemblance,

such as the microreactors studied in this thesis, because of their capability for

high-throughput analysis. This is especially true for the early stages of drug

development, where thousands of drug candidates have to be screened at the

same time and the assays are typically of routine nature, e.g. basic inhibition

assays (Materne et al. 2015).

Microfluidics has characteristically been a highly technology-driven area of

research. Despite its virtually limitless technological possibilities, it has not yet

penetrated into the mainstream market. In the pharmaceutical industry, one

obstacle in the adaptation of microfluidic technologies are the strict regulatory

requirements on method validation, which hamper the adoption of novel

technologies (Görög 2007). Additionally, as the microfluidic research still has a

very strong academic emphasis, researchers are not often interested in studying

e.g. chip-to-chip or batch-to-batch variability, which on the other hand is of utmost

importance to the pharmaceutical analysis applications (Volpatti & Yetisen 2014).

As the capabilities of microfluidics are more fully realized, the interest of the

industry will likely shift the focus of research towards implementation.
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6 Conclusions

The aim of this work was to develop novel approaches for creating immobilized

enzyme microreactors for studying human drug metabolism on microfluidic

platforms. Two main approaches were studied: The immobilization of HLM on

commercial streptavidin-coated magnetic particles and the immobilization of HLM

on in-house fabricated thiol-ene-based microchips comprising micropillars. As a

result, a novel immobilization approach was developed. The developed method

was based on biotinylation of HLM with biotin-containing fusogenic liposomes.

With the magnetic particle approach, the use of fusogenic liposomes conferred a

3-fold increase in enzyme activity compared to a previously published method

based on nonspecific adsorption. The enzyme kinetic parameters of the

immobilized enzyme were comparable to the parameters of soluble HLM

obtained from the literature, which is essential for prospective applications in

metabolic screening. Enzyme stability remains an issue, as enzymatic activity

rapidly decreased with repetitive incubations, likely due to both enzyme leaching

and thermal inactivation.

Three different immobilization methods were tested for immobilizing HLM on in-

house fabricated thiol-ene microchips. HLM were solubilized on a chip surface

functionalized with lipid bilayers and HLM labeled with biotin using fusogenic

liposomes was bound on streptavidin-functionalized chip surface. As a control,

HLM was also nonspecifically bound on chip surface by physical adsorption. The

highest initial activities could be achieved with the nonspecific immobilization

method, likely due to the hydrophilic nature of the thiol-ene surface, which

facilitates interactions with the polar ends of the lipid bilayers of HLM. With the

other two methods, the initial reactor activities were lower, but the gradual decline

of enzyme activity could be slowed down, probably due to stronger interactions

between the chip surface and HLM. However, the enzyme activity of all the

different types of reactors faded within 2 hours. In the future, enzyme stability

should be enhanced via improved temperature control of the reactor and

optimizing the developed immobilization protocols.
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In the future, practical applications utilizing the developed immobilization

approaches could be developed for in vitro studies of human drug metabolism.

The use of magnetic particles could be easily implemented on digital microfluidic

platforms, or the particles could also be packed inside microfluidic channels

comprising magnetic fluidized bed microreactors envisaged in this thesis. For

analytical applications, more intricate microfluidic systems comprising separation

and on-line MS-detection could be implemented. The thiol-ene microreactors

could also be used in metabolic screening. Another valid application for these

reactors is the in situ preparation of analytical standards of CYP metabolites by

optimizing the product yield of the reactors.
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