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Abstract

This dissertation explores the interdisciplinary applications of computational methods in quantitative

economics. Particularly, this thesis focuses on problems in productive efficiency analysis and bench-

marking that are hardly approachable or solvable using conventional methods.

In productive efficiency analysis, null or zero values are often produced due to the wrong skewness or

low kurtosis of the inefficiency distribution as against the distributional assumption on the inefficiency

term. This thesis uses the deconvolution technique, which is traditionally used in image processing

for noise removal, to develop a fully non-parametric method for efficiency estimation. Publication I

and Publication II are devoted to this topic, with focus being laid on the cross-sectional case and panel

case, respectively. Through Monte-Carlo simulations and empirical applications to Finnish electricity

distribution network data and Finnish banking data, the results show that the Richardson-Lucy blind

deconvolution method is insensitive to the distributional assumptions, robust to the data noise levels and

heteroscedasticity on efficiency estimation.

In benchmarking, which could be the next step of productive efficiency analysis, the ‘best practice’ target

may not perform under the same operational environment with the DMU under study. This would ren-

der the benchmarks impractical to follow and, consequently, adversely affects the managers to make the

correct decisions on performance improvement of a DMU. This dissertation proposes a clustering-based

benchmarking framework in Publication III. In this framework, we group the DMUs into segments us-

ing clustering methods based on certain metrics under interest, and estimate the efficiencies afterwards

to pin down the segment-specific benchmark for DMUs within each cluster. The empirical study on

Finnish electricity distribution network reveals that the proposed framework novels not only in its effi-

cient consideration on the differences of the operational environment among DMUs, but also its extreme

flexibility, e.g., the clustering and efficiency estimation techniques are user-decided according to their

specific needs and preference. We conducted a comparison analysis on the different combinations of the

clustering and efficiency estimation techniques using computational simulations and empirical applica-

tions to Finnish electricity distribution network data. Based on the results, Publication IV proposes the

combined use of ‘the normal mixture model based clustering’ and ‘the stochastic semi-nonparametric

envelopment of data (StoNED)’. This is because that such a combination could produce more accurate
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1. Background

1.1 Background

1.1.1 Efficiency estimation

According to traditional economics theory, all decision-making units (DMUs) operate efficiently. That

is, DMUs produce the maximum output from given inputs at the lowest cost, which in terms of produc-

tion function, means maximizing their productivity [1]. Thus, by superficial interpretation, the tradi-

tional economics theory means that no DMU is technically inefficient as they would be driven out of the

market otherwise. However, this does not comply with what we observe in reality. Persistent efficiency

differences are pointed out to exist virtually in all types of industries. By examining the determinants of

efficiency differences, Syverson pointed out that the internal differences are determined by factors such

as managerial talent and R&D, and the external divergence refers to the market conditions or operational

environment [2].

The conventional approach in production or cost function estimation uses the linear regression methods

without explicitly acknowledging the presence of technical inefficiency. Though conventional empiri-

cal models do allow deviations from the optimal production, these models usually under-estimate these

deviations by taking them solely as a statistical error (see the discussion in [3]). In other words, the

resulting residuals are considered as the estimation error and the interest focuses on studying the param-

eters of the production function itself. In cases where the residual is interested in, it is collapsed as a

single productivity measure (see e.g. [2, 4], and the study focuses on the factors explaining variations

in this residual but not its magnitude. Thus, it is impractical to decompose the technical inefficiency

part from the residuals through conventional modeling. However, the efficiency needs to be correctly

quantified for the managers to practically evaluate the productivity level of the DMUs and make the cor-

responding managerial decisions. Though approaches allowing explicit modeling of the inefficiencies

are developed correspondingly, issues arisen from discordant distribution assumption on the inefficiency

term have never been bypassed. This has led to the first objective of this thesis, i.e., developing a fully

non-parametric efficiency estimation method.

1.1.2 Benchmarking

Besides efficiency itself, managers also need to be aware of the benchmarking target to make practical

judgements on firm performance. Thus, the operation of DMUs should be compared with the ideal tech-

11



nology outputting the optimal amount of production. However, such theoretical scenarios hardly exist,

and the technology has to be estimated from the observed data and compared with the best observed

practices, namely the benchmark.

Benchmarking, by definition, is the process of comparing the performance metrics of a DMU to the best

practices among all the DMUs. The management often identifies the best DMUs in their industry, or in

another industry where similar processes exist, and compares the results and processes of those targets

with their own. By doing so, they learn how well the targets perform and figure out why these targets

are successful. This allows organizations to develop strategies on how to make improvements or adapt

specific best practices to improve certain aspects of the performance. Though, benchmarking may be a

one-off event, it is a continuous process where DMUs continually seek to improve their practices.

Among various benchmarking methods, DEA has long been used as a standard and important tool. The

standard DEA assumes that all DMUs operate in a relatively similar environment [5] which, however, is

not the case in practice. As the DMUs may seem inefficient given their poor environment, which is not

actually caused by technical deficiency, it is intuitive that the comparison is meaningful only when the

DMUs operate in a relatively similar environment. One major extension for all frontier methods includ-

ing DEA on efficiency estimation is to account for the heterogeneity of the operational environment,

which peels off the frontier in a sequential fashion to group DMUs into classes at different efficiency

levels. However, these methods still could not take segment-wise differences into account, leading to

the second objective of this thesis, i.e., developing strategies encompassing environmental divergence

for benchmarking.

1.2 Objectives

Given the aforementioned background, the objectives of this thesis could be summarized as below:

• Developing a fully non-parametric inefficiency estimation method to 1) improve prediction accuracy

and 2) resolve problems arisen from discordant parametric assumption on the inefficiency term which

are unsolvable using conventional approach

• Developing strategies to output benchmarks that function in the same operational environment as the

DMUs.

With the aforementioned objectives, this thesis focuses on interdisciplinary methods in achieving these

goals. The deconvolution technique, conventionally applied in image processing for noise decomposi-

tion, was used for inefficiency estimation (objective 1), and the clustering method, traditionally used in

12



biology for gene classification, was adopted for benchmarking (objective 2).
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2. Methodologies

2.1 Productive efficiency analysis and deconvolution

2.1.1 Productive efficiency analysis

Productive efficiency analysis, analyzing the productive efficiency of the units under study, is a classic

problem in, e.g., economics, econometrics and statistics [11]. It is comprised of two parts, i.e., frontier

estimation and error decomposition. Two approaches dominate this field, which are data envelopment

analysis (DEA) [6,7] and stochastic frontier analysis (SFA) [8,9]. DEA is a static nonparametric method,

which does not assume any particular functional form of the frontier but relies on the general regularity

properties such as free disposability, convexity and assumptions concerning the returns to scale. This

method, though values in its non-parametric form in frontier estimation, attributes all deviations from

the frontier to the inefficiency, i.e., ignoring any stochastic noise in the data. SFA, on the other hand,

is a parametric regression model, which requires exquisite specification of the functional form of the

frontier. As rarely a specific functional form is justifiable by the economic theory, the flexible functional

forms such as the translog or generalized McFadden are frequently used, which often violate the mono-

tonicity, concavity/convexity, homogeneity conditions and sacrifice the flexibility [10]. However, SFA

adopts a stochastic framework in its treatment of the deviation from the frontier, where the error term is

decomposed into a non-negative inefficiency term and a random disturbance term comprising of random

noise and measurement errors. Thus, the virtues of these two approaches complement each other, with

DEA being nonparametric in frontier estimation and SFA being stochastic in error decomposition.

Many studies have considered DEA and SFA as competing alternatives. There has long been a lively

debate on their relative pros and cons against each other which, though, tends to gain neutral tones

in recent years, has led to the development of extensions of these approaches to account for their de-

fects [11]. Though both methods have significantly evolved from their original forms, neither one clearly

wins, and comparisons over the years only identify different circumstances where each method outper-

forms [12–14].

Efforts on bridging the gap between DEA and SFA have never been stopped ever since 1990s. Many suc-

cess stories have been stemmed from the SFA side. Through replacing the parametric frontier function

by a nonparametric specification estimable using techniques such as kernel regression or local maxi-

mum likelihood, semi-nonparametric stochastic methods were derived. Pioneer studies belonging to

this branch include Fan’s work [15] in the cross-sectional case and the research conducted by Kneip and
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Simar [16] in treating panel data. This set of work employs kernel regression in frontier estimation while

keeping the stochasticity of the SFA part in error decomposition. The distributional assumptions in these

studies are imposed the same way as in SFA when decomposing the conditional expected inefficiency

term from the residuals in the cross-sectional case [15], and are avoided in the panel case by making

use of the information buried in such data [16]. Another set of work include Kumbhakar et al. [17] and

Simar and Zelenyuk [18], which adopts the maximum likelihood method in frontier estimation while pa-

rameterizing the model in a similar way as the standard SFA. All model parameters are approximated by

local polynomials in [17] and extended to multi-output technologies in [18]. In addition, monotonicity

and concavity are imposed by applying DEA to the fitted values of Kumbhakar’s model in [18].

From the DEA side, Banker and Maindiratta [19], in 1992, considered estimating the stochastic frontier

model using maximum likelihood, subject to the global free disposability and convexity axioms adopted

from DEA. This method combines the valuable features of both the classic DEA and SFA models whose

resulting maximum likelihood problem is, however, technically impractical to solve. This bottleneck

has not been solved until 2008, when theoretical links between DEA and the regression techniques were

revealed [20,21]. It is formally shown that DEA can be understood as a constrained special case of non-

parametric least squares subject to shape constraints [20, 21]. Specifically, the classic output-oriented

DEA estimator can be computed in the single-output case by solving the convex nonparametric least

squares (CNLS) problem subject to monotonicity and concavity constraints characterizing the frontier

and a sign constraint on the regression residuals [21]. Thus, Kuosmanen et al. proposed a method

that estimates the model frontier shape using CNLS regression and developed a new two-stage method,

namely stochastic non-smooth envelopment of data (StoNED) [21]. This approach does not assume

any a prior functional form for the regression function. The classic DEA and SFA are both constrained

special cases of this encompassing semiparametric frontier model, assuming that the observed data devi-

ates from a non-parametric, DEA-style piecewise linear frontier production function due to a stochastic

SFA-style composite error term, and such an error term is composed of homoscedastic noise and inef-

ficiencies [22]. In the first stage, CNLS identifies the function best fitting the data from the family of

continuous, monotonic increasing, concave functions that can be non-differentiable. In the second stage,

the variance parameters of the stochastic inefficiency and noise terms are estimated based on the skew-

ness of the CNLS residuals. The skewness of the residuals is attributed to the inefficiency term assuming

that the noise term is symmetric. The variance parameters can be estimated by techniques such as the

method of moments (MM) [8] and pseudolikelihood [15], provided with the parametric distributional

assumptions of the inefficiency and the noise terms. In the cross-sectional setting, the distributional

assumption is indispensable in distinguishing the inefficiency term from the noise. The time-invariant

inefficiency components can be estimated in a fully nonparametric fashion by the standard fixed effects

treatment analogous to the method proposed by Schmidt and Sickles [23] in the panel setting.
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StoNED differs from the parametric or semi/nonparametric SFA in that it does not impose any assump-

tions on the functional form or smoothness, but builds on the global shape constraints which are equiv-

alent to the free disposability and convexity axioms of DEA. On the other hand, it differs from DEA

in its probabilistic treatment of the composite error term employing the entire observations for frontier

estimation without being biased by outliers and noise. Given the advantages of StoNED as compared

with DEA and SFA [24], it has been considered as the most efficient semi-parametric stochastic model

in production efficiency analysis.

Since late 1970s, the field of productive efficiency analysis has undergone a plethora of empirical ap-

plications of DEA, SFA, and recently StoNED. Over the years, the applications of these methods have

ranged from the micro to the aggregate macro level. Fried et al. (2008) identified around 50 different

application areas of these methods [11], including accounting, advertising, auditing, law firms, airports,

air transport, bank branches, bankruptcy prediction, benefit-cost analysis, community and rural health

care, correctional facilities, credit risk evaluation, dentistry, discrimination, primary, secondary and ter-

tiary education, elections, electricity distribution, electricity generation, macro and micro environmental

applications, financial statement analysis, fishing, forestry, gas distribution, hospitals, hotels, inequality

and poverty insurance, internet commerce, labor markets, libraries, location, macroeconomics, merg-

ers, military, municipal services, museums, nursing homes, physicians and physician practices, police,

ports, postal services, public infrastructure, rail transport, real estate investment trusts, refuse collec-

tion and recycling, sports, stocks, mutual funds, hedge funds, tax administration, telecommunications,

urban transit, water distribution, world health organization. Productive efficiency analysis is the first

step of benchmarking, i.e., the efficiencies estimated from productive efficiency analysis could be fur-

ther used for identifying the efficient DMUs in benchmarking. In this thesis, we particularly focus on

applications of efficiency analysis and benchmarking approaches developed on top of StoNED in bank

branches [25–28] and electricity distribution [29–31], given data availability and their wide-applications

in DMU incentivization.

2.1.2 Deconvolution

Deconvolution is a common technique traditionally applied for noise clearance in image processing. The

original or true image is the ideal representation of the observed scene. In other words, the observation

process is never perfect, i.e., uncertainties exist in the measurements which occur as blur, noise and

other degradations in the recorded images. Thus, correct removal of these uncertainties has long been

an important problem in image restoration. Classical approaches used for this purpose seek an estimate

of the true image assuming the blur is known. Blind deconvolution, in contrast, tackles the much more

difficult but realistic scenario where the degradation process is unknown. In general, the degradation is
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nonlinear and spatially varying. However, it is assumed that the observed image is the output of a linear

spatially invariant (LSI) system where noise is added. Thus, the problem becomes a blind deconvolution

problem, with the unknown blur represented as a point spread function (PSF). The concepts involved

and methods commonly used in deconvolution, and particularly blind deconvolution, are described in

detail below.

Deconvolution concepts

Deconvolution is the process of estimating the clean original image from the corrupt noisy image as illus-

trated in Figure 2.1. It is a reverse operation of convolution which is a mathematical way of combining

two signals to form a third signal. Similar with multiplication, addition and integration, convolution is a

formal mathematical operation. Addition takes two numbers and produces a third number, while convo-

lution takes two signals and produces a third signal. Such a notion is illustrated using a linear system in

Figures 2.2 and 2.3, where the impulse response is called PSF in image processing. Expressed in words,

the input signal convolved with PSF is equal to the output signal.

Figure 2.1. Images before and after deconvolution.
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Figure 2.2. Illustration of PSF using a linear system. The delta function is a normalised impulse, which is identified by the
Greek letter delta, δ[n]; the PSF of a linear system is denoted by h[n].

Figure 2.3. Illustration of convolution using a linear system. x[n] and y[n] are the input and output, respectively, of the linear
system, where h[n] is the PSF.

The PSF, by definition, is a function describing the response of an imaging system to a point object [32].

It describes the reaction of a dynamic system in response to some external changes as a function of

time. In the context of economics, impulse response functions are usually called ‘shocks’ and used to

model the reaction of economy in response to exogenous or endogenous impulses over time. Exogenous

impulses include, e.g., changes in fiscal policy parameters such as government spending and tax rates,

monetary policy parameters such as monetary base, technological parameters such as productivity, and

preferences such as degree of impatience. Endogenous variables include, e.g., output, consumption,

investment and employment at the time of shock and over subsequent points in time [33, 34]. For

example, PSF can be used to model the impulse response of gross domestic product (GDP) growth rate

to consumer price index (CPI). If the AR model of GDP is written as yt = μ+ εt +Φ1xt−1 +Φ2xt−2 + · · · ,
where y and x represent GDP and CPI, respectively, Φi can be interpreted as the response of GDP at
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time t, i.e., yt, to the one unit change of CPI at time (t − i), i.e., xt−i, given Φi =
∂yt
∂xt−i

.

To further understand the mathematical background of convolution and deconvolution, two concepts

are indispensable to introduce, i.e., the time domain and the frequency domain. These domains are

used for analyzing mathematical functions with respect to time and frequency, respectively. A time

domain graph shows how a signal changes over time, whereas a frequency domain graph illustrates how

much of a signal lies within each given frequency band over a range of frequencies. A given function

can be converted between the time and frequency domains by a pair of mathematical operators, i.e.,

Fourier transform and its inverse operation. The Fourier transform decomposes a function into the sum

of an infinite number of sine wave frequency components, and the inverse Fourier transform converts

the frequency domain function back to a time function. Thus, convolution is an operation in the time

domain showing the multiplicative operation at the frequency domain. If f (x) and h(x) are the integrable

functions with Fourier transforms F(ω) and H(ω), then G(ω) = F(ω) · H(ω) in the frequency domain

is equivalent to g(x) =
∫ +∞
−∞ f (τ)h(x − τ)dτ = f (x) ⊗ h(x) in the time domain, where ⊗ is the symbol

denoting convolution [35]. Convolution can be viewed as the integral of the product of the two functions

after one is reversed and shifted. Or, one can assume a sliding window which slides from −∞ to +∞,

and convolution is a weighted average of function f (τ) where h(−τ) is the weighting function [36].

By the Fourier theory, a given signal can be synthesized as a summation of sinusoidal waves of various

amplitudes, frequencies and phases [35]. In other words, a time domain signal is represented by an

amplitude spectrum and a phase spectrum using the Fourier transform in the frequency domain [35].

Convolution in the time domain is equivalent to a point-wise multiplication of the amplitude spectra and

an addition of the phase spectra in the frequency domain [36]. Thus, noise, if convolved with the signal,

can be more easily separated from the signal in the frequency domain. In signal and image processing, a

filter is commonly developed to filter out such noises based on their frequency differences as compared

with the signal, and the inverse Fourier transform is applied afterwards to transform the true signal

back to the time domain. Deconvolution is a filtering process which removes a noisy wavelet from the

recorded data by reversing the process of convolution [36].

In summary, Fourier transform and its inverse form a pair of mathematical operators that transform sig-

nals across the time domain and the frequency domain. Convolution and deconvolution form a pair of

reversal processes, i.e., generating a third signal by superimposing two signals on top of each other via

convolution, and decomposing one signal into two through deconvolution. Convolution and deconvo-

lution are operators named in the time domain, representing the processes occurred in the frequency

domain.
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Deconvolution methods

In image processing, a point source of light is considered distorted by convolving with the PSF of the

imaging system [37], as illustrated in Figure 2.4. In economics, the reaction of economy is considered

convolved with the external or internal shocks. The assumption here is that PSF is isoplanatic, i.e.,

the noise is symmetrically distributed in the term of economics. The inefficiency, on the other hand, is

assumed to be positive, as the pixels in an image can not be negative. These allow the deconvolution

system being a perfect model for inefficiency decomposition, which is applied in this thesis to identify

the PSF or shocks from the true image (image processing) or behavior (economics). Considering a

dynamic stochastic system, these problems can be mathematically expressed as (2.1), where f (x) is the

true signal, h(x) is PSF and ε(x) is the random noise.

g(x) = f (x) ⊗ h(x) + ε(x) (2.1)

Figure 2.4. Schematic of a general deconvolution procedure.

Such problems are easy to solve (by directly applying deconvolution to the convolved data) if PSF

is known. This refers to classical deconvolution which comprises of a large body of techniques and

has matured since its inception in the 1960s [38, 39]. These approaches differ primarily in the prior

information they include to perform the restoration task. The earliest algorithms to tackle the blind

deconvolution problem appeared in mid 1970s [40, 41], which attempted to identify known patterns in
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the blur. A small but dedicated effort followed in the late 1980s [42–46] and a resurgence was seen in

the 1990s [47, 48].

In practice, it is often costly, dangerous or physically impossible to obtain a priori information on the

true object or PSF. For example, in astronomy, it is difficult to model the original image which has not

been imaged before; in addition, the degradation from blurring can not be properly specified [49]. Since

1990s, the area has been extensively explored with many blind deconvolution methods developed. Blind

deconvolution, as stated by its name, is the process of recovering the blurred image in the presence

of a poorly determined or unknown PSF. Many algorithms have been developed accordingly, which

can be roughly classified into five categories. These methods, differing mainly by the assumptions

they made on f (x) and h(x), are 1) a priori blur identification methods [41], 2) zero sheet separation

methods [50, 51], 3) autoregressive moving average (ARMA) parameter estimation methods [52], 4)

nonparametric methods based on high order statistics (HOS) [53, 54], and 5) nonparametric iterative

methods [44, 55, 56].

The a priori methods identify the PSF before performing blind deconvolution, which typically assume

a known parametric form for the PSF. This class of deconvolution methods is relatively simple to im-

plement and computationally less complex as compared with other approaches. However, it requires the

prior knowledge of the form of PSF and is sensitive to the additive noise term.

In zero sheet separation methods, the analytically continued Fourier transform of a two-dimensional im-

age vanishes to zero on a two-dimensional surface, which uniquely characterizes the image and is called

a zero sheet. Instead of manipulating a function in multiple-dimensional space, the projections of zero

sheets were calculated (named zero tracks) and used for retrieving the true image and PSF. Techniques as

such outweigh the other methods by providing valuable insights into the blind deconvolution problems

in multiple dimensions. However, they are highly sensitive to noise and prone to inaccuracy for larger

images since the noise term is dropped in the Z-transform of (2.13), as shown in (2.2).

G(ω) = F(ω) · H(ω) (2.2)

ARMA parameter estimation methods model the blurred image as a ARMA process, i.e., modeling the

true image as an autoregressive (AR) process and the PSF as a moving average (MA) process. The

advantage associated with these approaches is the noise-insensitive nature since the noise is already

taken into account by the model. However, these methods have the risk of ill-convergence, and the total

number of parameters can not be very large for practical computations. Also, the deconvolution results

are often not unique unless additional assumptions are made on the PSFs.

Nonparametric methods based on HOS minimize the given cost function that accounts for the probabilis-

tic non-Gaussian nature of the true image. Specifically, the recorded image is passed through a finite
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impulse response (FIR) inverse filter, which yields an estimate of the true image. The parameters of the

FIR filter are updated accordingly to optimize the function that incorporates the HOS model of the true

image. Algorithms belonging to this class include, e.g., minimum entropy deconvolution (MED) [57]

and Bayesian non-minimum phase approaches [54]. The primary advantages of these methods are that

they can identify non-minimum phase PSFs and are robust to noise. However, these approaches re-

quire accurate modeling of the true image by a known non-Gaussian probability distribution and the

algorithms may be trapped in local minima in the estimation process.

Nonparametric iterative methods do not require certain parametric form for the true image or the PSF. Al-

gorithms belonging to this category include, e.g., iterative blind deconvolution (IBD) [44], simulated an-

nealing (SA) [55], and non-negativity and support constraints recursive inverse filtering (NAS-RIF) [56].

There are two common features for approaches of this kind. First, they generally assume certain con-

straints on the original image and PSF. Typical constraints in the spatial domain are 1) the true image

is non-negative, 2) the background image is uniformly black, gray or white, 3) the support size of the

original object is known. Second, they all employ iterative methods to minimize a cost function with

respect to the forward or inverse filter coefficients. Different nonparametric iterative approaches differ in

the objective of minimization and how the cost function is constructed. For example, the cost functions

of IBD and SA are minimized with respect to both f (x) and h(x) simultaneously, and that of NAS-RIF

optimizes the coefficients of the inverse filter h−1(x) that convolves with the blurred image to estimate

the original image (2.3). The main advantage of these methods is that they do not require any prior

knowledge on either the original image or PSF except for the support size. However, the cost function

is not necessarily convex and thus may not always guarantee a global optimization. In particular, IBD

and SA are relatively robust to noise, and NAS-RIF is guaranteed to achieve the global minimal.

f̂ (x) = g(x) ⊗ h−1(x). (2.3)

The definitions of the 5 categories of blind deconvolution methods are summarized in Table 2.1, and

their characteristics are compared in Table 2.2 [47].

Richard-Lucy blind deconvolution

Richard-Lucy blind deconvolution (RLb), applied in this thesis for inefficiency estimation and well

described in (Publication II), belongs to the category of IBD and implies all the assumptions held by

IBD (see the afore section for details). Its iterative nature requires us to set the convergence criteria

to stop the algorithm, which could be the minimum change on the parameters or simply the maximum

number on the iterations. In this thesis, the convergence was set to 10 rounds of iterations based on its
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Class of methods Definition

a priori blur identification methods Algorithms that estimate the PSF priori to image restoration using
known characteristics of the PSF and true image.

Zero sheet separation methods Algorithms that perform blind deconvolution by factoring the
two-dimensional Zero sheet of the blurred image.

ARMA parameter estimation
methods

Algorithms that model the blurred image using an ARMA model and
perform deconvolution by estimating these parameters.

Nonparametric methods based on
HOS

Algorithms that make use of high order statistics information about the
image for restoration.

Nonparametric iterative methods
Algorithms that make deterministic assumptions on the image and
PSF, and estimate them by iteratively minimising a cost function with
respect to the forward or inverse filter coefficients.

Table 2.1. Definitions of major blind deconvolution methods.

convention.

In this thesis, the performance of the RLb method is compared with the MM method. The MM

method computes the inefficiencies according to the Jondrow’s method (section 3.3.3 of [22]), where

the parameters are computed by the method of moment (section 3.3.1 of [22]). The simulation results

of RLb as compared with MM are presented in Figures 2 and 3 of (Publication II), where the true and

estimated inefficiencies obtained from RLb (red circle) and MM (blue star) are plotted along the x and y

axes, respectively. ‘NA’s, missing outputs from MM due to the wrong skewness assumption, are omitted

from the plot. From these results, it is clear that RLb outperforms MM in its robustness to 1) distribution

skewness and kurtosis, 2) distribution assumption, 3) data noise and 4) heteroscedasticity as described

in (Publication II). In certain cases MM shows superiority over RLb (Figure 3 (d) and (e)), however, we

should note that 90% of the MM estimates are non-valid even with the modest inefficiency levels (Table

3); also, the large STD regarding DMUs’ deviation from the true inefficiencies may change their rank,

leading to poor performance in benchmarking. It is also worthwhile to address the issue of shrinkage

here. [58] and [59] have pointed out that we will overestimate ui when it is small, and underestimate it

when u is large and of half or truncated normal distribution. Here, we indeed observed shrinkage on ûi

estimated using MM when ui is of truncated normal (Figure 3 (c)), and a slight trend towards shrinkage

when ui is of half normal distribution (Figure 3 (a)). This might because that all the simulated data points

in Figure 3 (a) are below 1, which could not be considered large and thus be overestimated using the

MM approach overall. Also note that, we do not observe shrinkage in homoscedastic scenarios where all

data points are generated from one distribution and should not vary regarding the bias towards the true

value. In RLb, the parameters are updated iteratively, i.e., ui is not simply estimated from ε and does

not satisfy the precondition of the shrinkage issue. The RLb method, once adjusted for the panel data, is

named cRLb in this thesis. The cRLb estimates the inefficiency at each time point for each firm, which

fits both time-varying and time-invariant panel settings. Also worth mentioning is that, though we show
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Class of
methods

a priori blur
identification
methods

Zero sheet
separation
methods

ARMA
parameter
estimation
methods

Nonparametric
methods based
on HOS

Nonparametric
iterative methods

Assumptions
on true image

possibly contains
edges or point
sources

finite support modelled by an
AR process

accurately
modelled by a
non-Gaussian
probability
distribution

deterministic
constraints such
as non-negativity,
support, blur
invariant edges

Assumptions
on PSF

symmetric and
non-minimum
phase with a
possibly known
parametric form

finite support

symmetric and
modelled by an
MA process of a
possibly known
parametric form

invertible

IBD and SA
(positive with
known finite
support),
NAS-RIF
(invertible)

Complexity Very low High moderate to high moderate low to moderate

Convergence not iterative

sensitive to
numerical
inaccuracies,
results in
ill-convergence

ill-convergence
to local minima,
sensitive to initial
conditions

ill-convergence,
sensitive to initial
estimate

IBD
(ill-convergence,
sensitive to initial
estimate), SA
and NAS-RIF
(converge to
global minima)

Sensitivity to
noise moderate to high high moderate low (Gaussion)

IBD (low), SA
(moderate),
NAS-RIF
(moderate to
high)

Conventional
application
area

astronomy,
industrial x-ray
imaging,
photography

astronomy
photography,
texture image
reconstruction

astronomy,
seismic data
analysis

magnetic
resonance
imaging, position
emission
tomography,
x-ray imaging,
astronomy

Table 2.2. Characteristics of major blind deconvolution methods.

the advantages of RLb and cRLb as compared with the traditional inefficiency estimation approaches,

we could not make any statistical statement on its accuracy without formal mathematical proof which is

left for the future studies.
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2.2 Benchmarking and clustering

2.2.1 Benchmarking

Benchmarking is the process comparing the performance or activities of one unit against that of the ‘best

practice’ units. Productive efficiency is a natural parameter for such performance assessment. Many ex-

isting statistical methods can be used for productive efficiency analysis including both parametric and

non-parametric approaches. CNLS, corrected CNLS (C2NLS), DEA, and StoNED are non-parametric

methods; ordinary least squares (OLS), corrected OLS (COLS), parametric programming (PP), and SFA

are parametric ones. Among these techniques, OLS, COLS, PP, C2NLS and DEA are static which at-

tribute all deviations to the inefficiencies; while SFA and StoNED are stochastic which take noise into

account [22]. Out of these approaches, DEA has gained its popularity in benchmarking due to its non-

parametric nature and flexibility. That is to say, DEA does not require a specific functional form of the

relationship between the inputs and outputs, and it allows for multiple dimensional inputs and different

combinations of products and services to be equally attractive [60]. In addition, DEA directly out-

puts one or a few benchmarks for each decision making unit (DMU) besides the efficiency scores [60].

Although traditional DEA has been widely applied in benchmarking, it does not consider the circum-

stance under which each DMU operates, rendering the benchmarks obtained quite often impossible to

achieve [61]. This leads to the advent of context-dependent DEA which peels off the frontier in a se-

quential fashion to cluster DMUs into groups at different efficiency levels [62]. This method [62] and

its variants [63, 64] allow DMUs finding their achievable goals at each efficiency stage, but do not take

into account the segment heterogeneity. This makes the benchmarking of a DMU from one segment to

another most often impractical, as DMUs belonging to different segments may significantly differ in,

e.g., the operational structure. Thus, a segment-specific benchmarking strategy is called for, which not

only outputs the targets achievable in a step-wise manner but also realistic in the long run.

2.2.2 Clustering

Clustering is the task of grouping a set of objects in a way that objects in the same group (namely a

cluster) are more similar to each other than to those in other groups. It is a main task of data mining,

and a common technique for statistical data analysis used in many fields, including machine learning,

pattern recognition, image analysis, information retrieval and bioinformatics. Clustering is used in this

thesis to classify DMUs into properly defined groups so that the benchmarks are identified (according

to the efficiencies obtained from productive efficiency analysis) among DMUs with similar operational

structure. Below, some basic concepts and traditional methods used in clustering are introduced.
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Clustering concepts

Clustering is the most important unsupervised machine learning method, which identifies a structure

from a collection of unlabeled data. A cluster could be defined as a collection of objects which are

similar among themselves but dissimilar to the objects belonging to the other clusters. Such a concept is

explained in Figure 2.5

Figure 2.5. Illustration of the concept of clustering.

Clustering itself does not refer to a particular algorithm, but a general task, which can be achieved

by various algorithms that differ significantly in their concept of what constitutes a cluster and how to

efficiently find them. Popular concepts of clusters include groups with small distances among the cluster

members, dense areas of the data space, intervals or particular statistical distributions, etc. There is no

absolute ‘best’ criterion on the number of clusters and where the group boundaries should be drawn.

The choice of clustering always depends on its final aim, i.e., the user must supply this criterion in such

a way that the clustering result suits his/her needs. For instance, one might be interested in identifying

representatives for homogeneous groups (dimension reduction), finding ‘natural clusters’ that describe

their distributional properties (data type identification), unveiling useful groupings (data class subtyping)

or identifying unusual data objects (outlier detection).
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Clustering methods

Many methods have been developed for clustering [65–67], with the most commonly used approaches

roughly classified into three categories, i.e., hierarchical methods, partitioning methods, and model-

based methods [68].

Hierarchical methods can be either agglomerative or divisive, which proceeds by recursively fusing or

separating the objects into greater or finer groups to optimize a certain criterion [65]. Different criteria

are developed to serve this purpose, among which single linkage [69], complete linkage [69], average

linkage [69], group average linkage [69], and Ward’s linkage [70] are widely applied [69] (formulas

are shown in (2.4) to (2.8). Distances such as Euclidean distance [71], Mahalanobis distance [72],

Manhattan distance [73], and Hamming distance [74] are generally adopted in these criteria to measure

the cluster dissimilarity. These distances can be computed from (2.9) to (2.12), respectively, where

p (p ∈ {1,∞}) is the dimension of each observation and ‘Cov’ represents the covariance matrix of two

objects (firms are represented as objects here). The accuracy of hierarchical clustering highly depends on

the distance measurement, which requires expert domain knowledge especially for complex data types.

For example, Euclidean distance, which is commonly used when data is representable in vector space, is

not appropriate for high-dimensional text clustering [75]; and semantic similarity measurements, such

as graph-structure based distances and information content based methods, are especially applicable to

gene ontology (GO) based clustering [76]. Further, hierarchical clustering is computationally inefficient,

given that computing distances among all observation pairs requires a complexity of O(n2), where n is

the number of observations [77]. Also, at what granularity should the algorithm stop is an important

issue and could not be naturally determined without prior knowledge or estimation on the number of
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clusters [68].

D(Gi,G j) = min
ra∈Gi,rb∈G j

d(ra, rb) (2.4)

D(Gi,G j) = max
ra∈Gi,rb∈G j

d(ra, rb) (2.5)

D(Gi,G j) =

∑NGi
a=1
∑NG j

b=1 d(ra, rb)

NGi × NG j

(2.6)

D(Gi,G j) = d(
∑NGi

a=1 ra

NGi

,

∑NG j

b=1 rb

NG j

) (2.7)

D(Gi,G j) = ES S (GiG j) − ES S (Gi) − ES S (G j), where (2.8)

ES S (Gi) =
NGi∑
a=1

|ra − 1
NGi

NGi∑
w=1

rw|2

d(ra, rb) =

√√ p∑
w=1

(raw − rbw)2 (2.9)

d(ra, rb) =
√

(ra − rb)T Cov−1(ra − rb) (2.10)

d(ra, rb) =
p∑

w=1

|raw − rbw| (2.11)

d(ra, rb) =
p∑

w=1

κw, κw =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if raw � raw

0 if raw = rbw

(2.12)

Partitioning methods belong to another class of heuristic methods besides hierarchical clustering. The

principle is to iteratively reallocate data points across groups until no further improvement is obtain-

able [66, 68]. K-means [66] is a typical and the most representative partitioning algorithm. It is

based on the criterion that each object belongs to its closest group, where the group is represented

by the mean of its objects. In particular, with a given g, the algorithm partitions N observations,

{r1, r2, . . . , rN}, into g groups (G = {G1,G2, . . .Gg}) by minimizing the total intra-cluster variance, i.e.,

argmin
G

∑g
i=1
∑

rw∈Gi(rw − μi)2, where μi is the average of Gi.

It is seen from K-means that the number of clusters has to be pre-specified or known. Also, the clustering

results may be contaminated by outliers [68]. Successive efforts have been devoted to search their
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remedies which, however, mostly involve techniques out of the domain of partitioning methods. For

example, X-means (extended from K-means) solves the problem of selecting the number of clusters via

using model selection criteria [78].

Despite those disadvantages, partitioning methods are widely applied due to their simplicities. Many al-

gorithms, such as fuzzy C-means [79], quality threshold clustering [80] and partitioning around medoids [81],

also belong to this category. Specifically, ‘fuzzy C-means’ assigns each data point to each cluster

with a certain probability [79]; ‘quality threshold’ only groups data points whose similarities are high

enough [80]; and ‘partitioning around medoids’ minimizes a sum of dissimilarities and allows the user

to choose the number of clusters through graphical display [81].

Hierarchical methods and partitioning methods are also called ‘heuristic methods’, both of which rely

on some heuristics and follow intuitively reasonable procedures [68]. Although considerable research

has been done on these methods, still little associated systematic guidance is available for solving some

practical issues [68]. These include how to specify the number of clusters, how to handle the outliers,

and how to choose or define a good distance for a particular clustering problem.

Model based methods attempt to optimize the fitness between the data and the model where the data

is assumed to be generated [67, 77, 82, 83]. Model based methods can be further classified into finer

groups, including finite mixture models [67], infinite mixture models [82], model based hierarchical

clustering [83], and specialized model based partitioning clustering [77] (e.g., Self Organizing Map

(SOM) [84]), among which finite model based methods are most widely applied.

In finite model based clustering, each observation r is drawn from a finite mixture distributions with the

prior probability πi, component-specific distribution fi and its parameters θi. The formula is given by

f (r;Θ) =
g∑

i=1

πi fi(r; θi), (2.13)

where Θ = {(πi, θi) : i = 1, . . . , g} is used to denote all unknown parameters, and 0 ≤ πi ≤ 1 for any i and∑g
i=1 πi = 1. Note that g is the number of components in this model.

Expectation maximization (EM) algorithm is normally used for the above model-based clustering. The

data log-likelihood can be written as

log L(Θ) =
N∑

j=1

log(

⎡⎢⎢⎢⎢⎢⎣
g∑

i=1

πi fi(r j; θi)

⎤⎥⎥⎥⎥⎥⎦), (2.14)

where R = {r j : j = 1, ..., n} and N is the total number of observations.

Since direct maximization of (2.14) is difficult, the problem can be casted in the framework of incomplete

data. Define I ji as the indicator of whether r j comes from component i, the complete data log-likelihood
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becomes

log Lc(Θ) =
N∑

j=1

g∑
i=1

I ji log (πi fi(r j; θi)). (2.15)

At the mth iteration of the EM algorithm, the E step computes the expectation of the complete data

log-likelihood which is denoted as Q

Q(Θ;Θ(m)) = EΘ(m) (log Lc|R)

=

N∑
j=1

g∑
i=1

τ(m)
ji log (πi fi(I j; θi)), (2.16)

and the M step updates the parameter estimates to maximize Q. The algorithm is iterated until conver-

gence. Note that I’s in (2.15) are replaced with τ’s in (2.16), and the relationship between these two

parameters is τ ji = E[I ji|r j, θ̂1, ..., θ̂g; π̂1, ..., π̂g]. The set of parameter estimates
{
θ̂1, ..., θ̂g; π̂1, ..., π̂g

}
is

a maximizer of the expected log-likelihood for given τ ji’s, and we can assign each r j to its component

based on
{
i0|τ ji0 = maxi τ ji

}
.

One advantage of mixture model based clustering is its automatic determination of the number of clus-

ters. Commonly used model selection criteria can be roughly classified as likelihood-based meth-

ods [85] and approximation-based methods [86–91]. Four approximation-based model selection cri-

teria are widely applied due to their computational efficiency, which are Akaike information criterion

(AIC) [87, 90], modified AIC (AIC3) [89, 90], Bayesian information criterion (BIC) [88, 91], and inte-

grated classification likelihood-BIC (ICL-BIC) [86].

Model based methods can naturally solve the problems generically inherited by heuristic methods [68]

which, e.g., often determine the number of clusters by casting it as the model selection problem and

group the outliers as separate clusters [67, 68]. Further, model based methods outweigh heuristic meth-

ods in their statistical nature [67, 68].

Finite model based clustering is used in this thesis given its statistical nature. In finite mixture model

gene clustering, each observation x j ( j = 1, . . . , n and n is the number of genes) is assumed to be drawn

from finite mixture distributions with the prior probability πδ, component-specific distribution fδ and its

parameters θδ [67]. The formula is shown in (2.17) [67], where θ = {(πδ, θδ) : δ = 1, . . . , g} represents

all the unknown parameters, 0 < πδ ≤ 1 for any δ, and
∑g
δ=1 πδ = 1.

f (x j|θ) =
g∑
δ=1

πδ fδ(x j|θδ) (2.17)
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NMM-StoNED

In this thesis, NMM-StoNED is proposed for clustering-based benchmarking. Two approaches are pro-

posed, i.e., 1) frontier estimation followed by clustering (estimate-cluster-benchmark) and 2) clustering

followed by frontier estimation (cluster-estimate-benchmark). These two approaches differ in their as-

sumptions. The ‘estimate-cluster-benchmark’ approach assumes that all firms have access to and use the

same production technology, and benchmarking is performed over these identified peers. The ‘estimate-

benchmark-cluster’ approach, on the other hand, assumes that the differences across firms are at the

technology level which is taken into account at the frontier estimation stage. In addition, the second

approach needs comparatively more DMUs to apply, with sufficient DMUs fell in each cluster for fron-

tier estimation. Here ‘sufficient’ means that the number of DMUs meets the minimum requirement of

the frontier estimation method such as StoNED. The users should decide on which approach to use

according to the underlying assumptions of each problem. If the assumptions required for the ‘estimate-

cluster-benchmark’ framework hold, but the user mis-applied the ‘cluster-estimate-benchmark’ frame-

work, then the estimates for the individual groups are inefficient, whereas the proposed estimator is

biased the other way around. No matter which approach the user chooses, the variables for clustering

should be pre-selected in the clustering stage. This needs our prior knowledge on, e.g., the operational

structure of firms and traditional efficiency measures.

The strategy of including a clustering stage in benchmarking is close to latent class stochastic frontier

analysis [92]. However, these two methods differ in the assumptions where the heterogeneity comes

from. Specifically, latent class SFA models the heterogeneity using a latent class structure, which as-

sumes that the differences come from the inefficiencies and noise; while the clustering stage of our

proposed framework uses an unsupervised technique to model the differences according to the measures

it takes as the inputs.

The choice of combining NMM and StoNED in this thesis for clustering-based benchmarking is rested

on the following bases. StoNED is selected as the frontier estimator because it is considered the best

practice for benchmark regulation of electricity distribution [24], which is suitable for our empirical

setup. NMM is chosen as the clustering approach due to its superiority over, e.g., the most popular

clustering technique K-means, when combined with StoNED in our study (Publication IV). It would be

interesting to try other combinations in this framework under different problem settings.
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3. Summary

This thesis focuses on interdisciplinary application of computational methods in quantitative economics,

with efforts devoted to two topics, i.e., ‘decompose inefficiency from composite errors using deconvolu-

tion methods’ and ‘find segment-specific benchmarks using clustering techniques’ (Table 3.1).

Techniques Conventional use Problem Article Content

Deconvolution Noise decomposition in
image processing

Efficiency
estimation

Publication I Framework
Publication II Combination choice

Clustering Classification in gene
grouping Benchmarking Publication III Cross-sectional case

Publication IV Panel case

Table 3.1. Summary of the thesis.

In the first topic, the Richardson-Lucy blind deconvolution (RLb) method is used to decompose ineffi-

ciencies from the composite errors in the cross-sectional setting (Publication I) and the corrected RLb

(cRLb) is proposed to solve such problems in the panel setting (Publication II). The RLb method out-

weighs conventional methods such as MM in at least five aspects. First, it is non-parametric. Second, it

never outputs null or zero values due to incorrect skewness or low kurtosis of inefficiency density. Third,

it is insensitive to the distributional assumption of the inefficiency term u. Fourth, it is robust to data

noise level. Fifth, it is insensitive to data heteroscedasticity. The cRLb method inherits all the merits of

RLb, and estimates the inefficiency for each DMU at each time point.

In the second topic, clustering-based benchmarking framework (Publication III), particularly NMM-

StoNED (Publication IV), is proposed to take into account the heterogeneity of firms and their operating

environment in benchmarking. This framework novels in the following four aspects. First, it adjusts

benchmarking according to the intrinsic characteristics of DMUs. Second, it is highly flexible in a sense

that ‘clustering’ and ‘efficiency estimation’ can be tuned or optimized, separately. The efficiencies can

be computed using different frontier models and the inputs can be customized depending on the factors

users wish to evaluate. Also, the algorithms at each step could be freely chosen, modified or developed to

meet the customer needs, allowing more freedom to the users and a better chance of getting the optimal

targets. Third, it provides multiple absolute benchmarks for the inefficient DMUs to choose, and ensures

at least one relative benchmark for each DMU in cases where no DMU achieves 100% efficiency. By

comparing different combinations of clustering techniques and efficiency estimation methods, NMM-

StoNED is proposed given its superior performance as evaluated using both Monte Carlo simulations

and empirical study.

33



34



4. Conclusion

Interdisciplinary application of methods across fields casts novel view on the problems which are hardly

approachable using conventional methods and, quite often, brings surprisingly good solutions. Efforts

encompassed in this thesis show at least the following two advantages of interdisciplinary application of

computational methods in quantitative economics.

• It solves the problems hardly approachable using conventional methods, such as issues derived from

the dependence on the distributional assumption in inefficiency analysis (Publication I and Publication

II).

• It improves the current techniques in addressing problems such as the heterogeneities among firms in

benchmarking (Publication III and Publication IV).

The developed interdisciplinary methods are shown to be efficient tools in solving the afore-discussed

problems in quantitative economics. It would be interesting and useful to deploy these developed meth-

ods to tackle more empirical problems which may offer high values in practice. Also, with the success-

ful stories demonstrated in this thesis, it is worthwhile to explore more techniques commonly applied

in other fields to improve current methodologies in quantitative economics and solve the corresponding

problems.
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1. Introduction

Productive efficiency analysis, which is a quantitative approach

for evaluating the performance of a firm, can, e.g., offer insights into

its performance and help managers make correct decisions. Gener-

ally, a productive efficiency analysis can be viewed as a two-step

process: first, the production or cost frontiers are estimated by us-

ing parametric or non-parametric methods, and then the inefficien-

cies from the residuals estimated in the first step are predicted.

In neoclassical theory based approaches such as Data Envelopment

Analysis (DEA), the residuals are considered to be the inefficien-

cies (Charnes, Cooper, & Rhodes 1978; Farrell, 1957). In frontier pro-

duction models such as Stochastic Frontier Analysis (SFA) (Aigner,

Lovell, & Schmidt 1977; Meeusen and Van den Broeck (1977)) and

the stochastic semi-parametric model Stochastic Non-smooth En-

velopment of Data (StoNED) (Kuosmanen & Kortelainen, 2012), the

residuals are assumed to be a composite of both the inefficiencies

and the random noise. In the single output multiple input setting,

StoNED contains the traditional DEA and SFA as its special cases. In

stochastic frontier models, two-stage strategies are conventionally

used for efficiency estimation, wherein the conditional mean E(y|x)

or the frontier is estimated in the first stage and the disturbance term

∗ School of Biotechnology, JiangNan University, 214122 Wuxi, China. Tel.:

+8618611479958.

E-mail address: xiaofeng.dai@me.com

(difference between the estimated and observed y) is decomposed

into the inefficiency and the random noise in the second stage. In

the first stage, the frontier can be estimated by using parametric or

nonparametric regression techniques. Parametric models postulate a

specific functional form for f and the parameters are estimated using

techniques such as Modified Ordinary Least Squares (MOLS) (Aigner

et al. 1977) and the maximum likelihood (ML) approach, with the lat-

ter being more frequently used. Non-parametric models do not as-

sume a particular functional form but they do need to satisfy cer-

tain regularity axioms, with the frontier being determined using, e.g.,

Convex Nonparametric Least Squares (CNLS) (Kuosmanen & Korte-

lainen 2012). Keshvari and Kuosmanen (2013) relaxed the concavity

assumption of CNLS (Keshvari & Kuosmanen, 2013). Given that semi-

parametric approaches such as StoNED bridge the gap between DEA

and SFA, there is a growing interest in this method. StoNED is a well-

established method that is superior to other existing methods given

its stochastic and semi-parametric nature (Kuosmanen & Kortelainen,

2012). By adopting the StoNED framework and relaxing its paramet-

ric assumptions, a fully nonparametric approach for efficiency iden-

tification that integrates the standard DEA and SFA models can be

developed. In StoNED, techniques such as method of moments (MM)

are conventionally used for identifying efficiencies from the residuals

coming from the first step. Wang et al. (2014) developed a quantile-

version of CNLS and StoNED (Wang, Wang, Dang, & Ge, 2004). How-

ever, these methods heavily depend on the accuracy of the distri-

butional assumption of the error components and thus suffer from

many problems such as wrong skewness (Kuosmanen & Fosgerau,

http://dx.doi.org/10.1016/j.ejor.2015.08.004

0377-2217/© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS).
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2009). In addition to the two-stage strategies, other approaches have

been applied in stochastic frontier models to account for the im-

pact of environmental factors. The frontier inefficiency residuals were

modeled as a function of various causal factors and a random com-

ponent to study the systematic effect of the conditions that con-

tribute to inefficiencies (Reifschneider & Stevenson, 1991). A gener-

alized production frontier approach was reported by (Kumbhakar,

Ghosh, & McGuckin, 1991) to estimate the determinants of inefficien-

cies. Huang and Liu proposed a hybrid of a stochastic frontier regres-

sion: the model combines a stochastic frontier regression and a trun-

cated regression to estimate the production frontier with non-neutral

shifting of the average production function (Huang & Liu, 1994). Con-

ditional efficiency measures, such as conditional FDH, conditional

DEA, conditional order-m and conditional order-α, have rapidly de-
veloped into a useful tool to explore the impact of exogenous factors

on the performance of DMUs in a nonparametric framework (Daraio

& Simar, 2005, 2007a, 2007b). A more recent paper examined the

impact of environmental factors on the production process in a new

two-stage type approach by using conditional measures to avoid the

drawbacks of the traditional two-stage analysis, which provides a

measure of inefficiency whitened from the main effect of the envi-

ronmental factors (Badin, Daraio, & Simar, 2012).

Deconvolution has previously been shown to be a useful statisti-

cal technique for unknown density recovery (Meister 2006) which,

in most cases, requires specifying the measurement error distribu-

tion (Stefanski & Carroll, 1990). For example, Kneip et al. (2012) ap-

plied deconvolution to estimate the boundary of a production set foe

which the measurement error has an unknown variance; however,

a lognormal distribution of the noise term is crucial to ensure the

identifiability in context (Kneip, Simar, & Van Keilegom, 2012). Ad-

ditionally, Schwarz et al. (2010) defined an estimator of the frontier

function where partial information on the error distribution was as-

sumed, i.e., zero-mean Gaussian random variable with an unknown

variance (Schwarz, Van Bellegem, & Florens, 2010). Meister (2006)

relaxed this assumption and consistently estimated both the tar-

get density and the unknown variance of the normal error, assum-

ing that the target density was from the ordinary smooth family

of distributions (Meister, 2006). Although fewer assumptions were

needed for the error term in Meister’s estimator, the target distri-

bution was restricted to distributions such as Laplace, exponential,

and gamma. Other attempts at relaxing constraints were made un-

der a scenario wherein the contaminated errors ε (ε = u + v, u and

v of each stand for the inefficiency and random noise, respectively,

were not directly observable but represented an additive term of a re-

gression model such as y = α + βx + ε (α and β are the coefficients;
x and y are the inputs and output). Horowitz and Markatou (1996)

developed an estimator to handle cases that do not require specify-

ing the component distributions of ε (Horowitz & Markatou, 1996).
However, this method relies on the information along the time-axis

of the panel data to identify densities in the composite error term,

which cannot be applied to cross-sectional data, whose the error den-

sity is rarely entirely known. More importantly, Horrace and Parme-

ter (2011) proposed a cross-section complement of Horowitz and

Markatou’s method, which proved to be semi-uniformly consistent in

identifying target density if u is ordinary smooth (Horrace & Parme-

ter, 2011). As a regression generalization of (Meister, 2006), the con-

straints posed in Meister’s estimator are inherited in this method.

For example, it is semi-parametric because it relies on a distribu-

tional law for v and because the density of u belongs to the ordinary

smooth family. Further, as the methods of (Horowitz & Markatou,

1996) and (Horrace & Parmeter, 2011) work for data of the regres-

sion form, replacing ε with the regression residuals may introduce
frontier estimation errors and can thus lead to a biased estimation of

the inefficiencies.

Unlike the aforementioned efforts for applying deconvolution in

frontier estimation, we are interested in inefficiency estimation us-

ing deconvolution in a non-parametric stochastic setting. To over-

come the difficulty of estimating the expected inefficiency using

kernel deconvolution, we return to the field where deconvolution

is originated and explore the existing techniques. Deconvolution

was originally applied in signal and image processing, where the

point spread function (PSF) is used to describe the response of an

imaging system to a point source (Haykin, 1993). Projected onto

efficiency estimation problems, it is equivalent to the function of

converting the inefficiencies to the observed residuals. Blind decon-

volution is a technique for recovering the blurred object without any

prior knowledge of the PSF (which is often costly or impossible to

obtain). There are five categories of blind deconvolution methods:

a priori blur identification methods (Cannon, 1976), zero sheet sep-

aration methods (Ghiglia, Romero, & Mastin, 1993), autoregressive

moving average (ARMA) parameter estimation methods (Biemond,

Tekalp, & Lagendijk, 1990), nonparametric methods based on high-

order statistics (HOS) (Jacovitti & Neri, 1990; Wu, 1990), and non-

parametric iterative methods (Ayers & Dainty, 1988; Kundur &

Hatzinakos, 1998; McCallum, 1990). These methods differ in their as-

sumptions about the PSF and the true object. After considering the

advantages and limitations of each method, we are left with the non-

parametric iterative methods. We restrict our options in this fashion

because (1) the a priori methods are parametric; (2) zero sheet sep-

aration methods are highly sensitive to noise and prone to inaccu-

racy for large objects; (3) the ARMA parameter estimation methods

may converge poorly and be computationally expensive if the num-

ber of parameters is very large; (4) nonparametric methods based

on HOS require accurate modeling of the true object by a known

non-Gaussian probability distribution and may be trapped in local

minima in the estimation process; and (5) the results from algo-

rithms in the first three categories are usually not unique unless ad-

ditional assumptions are made about the PSF. Nonparametric itera-

tive methods iteratively estimate PSF and the true object without any

prior parametric assumptions. However, several constraints are re-

quired that, in the context of efficiency analysis, are as follows: (1)

the inefficiencies are non-negative, (2) the range of inefficiency is

known (e.g., within 0 and 1), and (3) the background noise is random.

Typical algorithms that belong to this class are non-negativity and

support constraints recursive inverse filtering (NAS–RIF) (Kundur &

Hatzinakos, 1998), simulated annealing (SA) (McCallum, 1990), and

iterative blind deconvolution (IBD) (Ayers & Dainty, 1988), which dif-

fer in their objectives of minimizing the cost functions and how these

functions are constructed. Because NAS–RIF has certain requirements

for the PSF, such as bounded-input bounded-output (BIBO), and be-

cause the choice of iteration parameters (e.g., perturbation scale) in

SA is difficult, which affects its performance and convergence rate,

we return our focus interest to IBD. IBD minimizes the cost func-

tion with respect to both the PSF and the true object simultaneously,

and it is the most widely applied algorithm in blind deconvolution.

The typical algorithms adopted for IBD in its iterative operations in-

clude aWiener-type filter or the Richardson–Lucy (RL) algorithm. Be-

cause the Wiener-type filter assumes stationary noise, we are left

with the RL algorithm. Further appealing is the probabilistic nature of

the RL algorithm. We thus chose to apply the blind RL deconvolution

(Fish, Brinicombe, & Pike, 1995) algorithm (abbreviated as RLb here)

for inefficiency estimation.

The performance of the RLb was tested against that of MM (which

is conventionally used in StoNED) under sixteen simulated scenar-

ios, including those from (Aigner et al., 1977). In the RL deconvo-

lution algorithm, the true object (e.g., inefficiency) was assumed to

follow a Poisson distribution. By approximating a Poisson distribu-

tion using a Gaussian distribution which was assumed for the inef-

ficiency term, we added a sufficiently large term to the inputs and

subtracted it from the deconvoluted results. The results show that

the RLb method outweighs MM in at least 4 aspects. It is (1) non-

parametric and exempted from any distributional assumption, which
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leads to (2) the circumvention of many common issues such as the

wrong skewness problem; (3) it is insensitive to data noise; and (4) it

is robust to data heteroscedasticity. Additionally, we applied the RLb

method to an empirical problem,which used the residuals taken from

the cost frontier estimation of 89 Finnish electricity distributors. We

are among the pioneers in deploying deconvolution in efficiency es-

timation, and we are the first to identify inefficiencies using a fully

non-parametric method.

The rest of the text is organized as below. The non-parametric

three-stage efficiency estimation procedure wherein RLb is used for

firm-specific inefficiency decomposition is described in detail in the

‘Methods’. In the ‘Monte Carlo Simulation’, the data generating pro-

cesses, performance measures and results are described and summa-

rized. The data and results of the real case application are presented

and discussed in the ‘Empirical study’ section. Finally, we summarize

the key findings, contributions, limitations and possible future direc-

tions in ‘Conclusion’.

2. Methods

2.1. Three-stage efficiency estimation

Considering the stochastic frontier model, let yi represent the out-

put of firm i, F denote the production function characterising the

technology, x ∈ �m+ being the vector of inputs and εi showing the

composite errors, the standard econometric production model could

be written as (1),

yi = F(xi) + εi, (1)

where the disturbance term εi of firm i could be decomposed into

inefficiency ui and random noise vi, i.e., εi = vi − ui. The inefficiency
term is composed of two parts, i.e., the expected inefficiency which is

the same across firms μ and the firm-specific inefficiencies ui. Thus,
ui = μ + ui, and εi = vi − μ − ui (μ + ui ≥ 0).
We propose a three-stage strategy to estimate inefficiencies using

the blind Richardson–Lucy deconvolution (Fish et al., 1995) algorithm

(abbreviated as RLb). The core of this strategy is Stage 3 where the

RLb algorithm is used to decompose firm-specific inefficiencies from

the corrected composite errors, which is independent of the form

of the frontier and how the frontier is estimated. We employ CNLS

regression for frontier estimation given its non-parametric nature.

According to the duality theory, the production technology can be

equivalently modeled by, e.g., the cost function (Kuosmanen, 2008),

allowing the application of this algorithm to a wide range of prob-

lems. However, our model may not be feasible for problems with

multiput-output and no cost minimization assumption, such as pub-

lic sector organizations. Here, we use the production frontier model

to illustrate this strategy.

• Stage 1: Estimate the shape of function F by CNLS regression and

obtain the residuals εi, where the model is defined as (1) and F

has no particular functional form but satisfies monotonicity and

concavity.
• Stage 2: Estimate μ for all firms, and correct CNLS residuals by μ,
i.e., εi = εi + μ,where ε i is the corrected CNLS residual of firm i.

• Stage 3: Estimate the firm-specific inefficiencies using RLb, pro-
vided with the corrected CNLS residuals ε i.

In this model, the inefficiency term is assumed to be comprised

of the expected inefficiency shared among all firms (μ) and firm-
specific inefficiencies ui (i refers to firm i). The term μ was not cap-
tured using conventional methods which comprises of, e.g., techno-

logical bottleneck, economic environment, government regulation,

etc. On the other hand, μ could be considered as part of the fron-
tier, which is identified in Stage 2 and used for frontier correction.

The term ui contains the inefficiencies we are interested to identify

which reflects the differences among firms.

2.1.1. Stage 1: CNLS regression

Both parametric and non-parametric models could be used for

frontier estimation in the first stage. It can be analytically represented

by (2) to (5),

min
ε,α,β

N∑
i=1

ε2i such that (2)

yi = αi + β
′
ixi + εi (3)

αi + β
′
ixi ≤ αh + β

′
hxi ∀h, i = 1 . . .N (4)

βi ≥ 0∀i = 1 . . .N (5)

where αi and βi are coefficients specific to observation i, vi (vi = εi +
μ − ui) captures its random noise, and xi is the vector of inputs for

firm i.

For the CNLS estimator, the coefficients α̂i,βi obtained as the opti-

mal solution to (2) to (5) are not necessarily unique. Denote the fam-

ily of alternate optima as F�, the non-uniqueness issue is addressed

by the following lower bound

ĝmin(x) = min
α∈�,β∈�m+

{α + β
′
x|α + β

′
xi ≥ ŷi,∀i = 1, ...,N} (6)

Specifically, ĝmin is the tightest lower bound for the family of func-

tions F�. Note that for the observed data points xi, the fitted values

are always unique, i.e., g(xi) = ĝmin(xi),∀i = 1, . . . ,N.

2.1.2. Stage 2: Hall and Simar method

Many algorithms could be used in the second stage for μ esti-
mation. For example, Hall and Simar have proposed a nonparametric

method for estimating μ (abbreviated as HS) based on the unknown
density of the composite error term (Hall & Simar, 2002), which could

be coupled with RLb for efficiency estimation nonparametrically. In

HS, the kernel density estimator is used for estimating the density

function f, i.e.,

f̂ε(e) = (Nh)−1
N∑
i=1

K

(
e − εi

h

)
(7)

where K(·) is a compactly supported kernel, h is a bandwidth, ε is
the composite error and e is the projection of ε on a line (i.e., the
projected data of ε). Hall and Simar (2002) show that in the neigh-
borhood of μ, the first derivative of the density function of the com-
posite error term ( f

′
ε) is proportional to that of the density func-

tion of the inefficiency term ( f
′
u) (Hall & Simar, 2002). Due to the

assumption that fu has a jump discontinuity at 0, the CNLS resid-

ual ε has a jump discontinuity at −μ (Hall & Simar, 2002). There-
fore, μ̂ = argminε∈ζ ( f̂

′
ε(ε)) provides a nonparametric estimator of

μ, where ζ is a closed interval in the right tail of fε(·). To implement
HS, a bandwidth must be chosen and ζ need to be defined. According
to (Delaigle & Gijbels, 2004), the following iterative procedure could

be adopted to obtain μ̂.

• Step 1 (Initialize h and ζ ): Initialize the bandwidth by h0 ∈ CN− 1
9 ,

where C is a large number, e.g., 10, and ζ0 = [max ε0
i

− h,max ε0
i
].

• Step 2 (Estimate μ): Estimate μ̂0 using h0 and ζ 0.
• Step 3 (Update h and ζ ): Set h1 = 0.85h0 and ζ1 = [μ̂0 − h1, μ̂0 +

h1],which are used to obtain μ̂1.
• Step 4 (Iteration and stop): Repeat steps 2 and 3 by hl = 0.85hl−1
and ζl = [μ̂l−1 − hl , μ̂l−1 + hl] where l is the index of this itera-

tion. Stop the process when |μ̂l − μ̂l−1| ≤ N− 2
5 |μ̂1 − μ̂0|.
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2.1.3. Stage 3: Richardson–Lucy blind deconvolution method

The RLb algorithm (the blind form of the RL algorithm), a nonpara-

metric approach, is proposed here in the third stage to estimate firm-

specific inefficiencies ifμ is adjusted in the residuals, i.e., εi = εi + μ.
The RL algorithm is originally developed for image recovery. Accord-

ing to (Richardson, 1972), given the blurred image B and the clear

image I, the intensity Ip at the pixel location p is computed from the

pixel intensities Bq by P(Ip) = ∑
q P(Ip|Bq)P(Bq) where P(Ip) can be

identified as the distribution of Ip and so forth. Expanding P(Ip|Bq) by

Bayes’s rule, P(Ip) = ∑
q

P(Bq|Ip)P(Ip)∑
z P(Bq|Iz)P(Iz)P(Bq). The best of a bad situa-

tion is used to break the dependency of P(Ip) on both sides, where the

current estimation of P(Ip) is used to approximate P(Ip|Bq). Thus,

P j+1(Ip) =
∑
q

P(Bq|Ip)P j(Ip)∑
z P(Bq|Iz)P j(Iz)

P(Bq)

= P j(Ip)
∑
q

P(Bq|Ip) P(Bq)∑
z P(Bq|Iz)P j(Iz)

, (8)

where j is the index of the RL iteration.

Considering B
′ = ∑

z P(Bq|Iz)P j(Iz) to be the predicted blurry im-
age according to the current estimation of clear image Ij (a more

workable notation for Pj(Iz)), define P(Bq|Iz) = PSF(q, z)), and use

Eq = Bq

B
′
q

to denote the residual errors between the real and predicted

blurry image, we get
∑

q P(Bq|Ip) P(Bq)∑
z P(Bq|Iz)P j(Iz)

= ∑
q P(Bq|Ip)E j

q. If the

isoplanatic condition holds, i.e., PSF is spatially invariant or PSF(q, z) is

the same for all q, B
′ = ∑

z P(Bq|Iz)P j(Iz) = I j ⊗ PSF, and�qP(Bq|Ip)Eq
becomes PSF�Eq, where � and ⊗ are the correlation and convolution
operators, respectively (note that the summation index in the gen-

eration of predicted blurry image, B
′
, is z, and that for the integra-

tion of errors, E, is q). Hence, (8) becomes I j+1 = I j × PSF � B
I j⊗PSF

=
I j × PSF � E j,where E j = B

I j⊗PSF
. In a two-dimensional space, this iso-

planatic condition implies a symmetry condition in the positive re-

gion. Although such an assumption may introduce bias when the in-

efficiency distribution is asymmetric, it circumvents issues raised by

the asymmetric assumption such as the wrong skewness problem

and improves the estimation accuracy regarding the rankings.

In the context of inefficiency estimation, the inefficiency u and the

residual ε could be identified as the clear image I and the blurry im-
age B, respectively, and the noise v could be modelled as PSF. Thus,

the iterative RL algorithm could be reformed as

uj+1
i

= uj
i
× v �

εi

u j
i
⊗ vi

, (9)

The inefficiency estimation problem can be viewed as a projection

of the image processing problem from the three dimension to a two-

dimensional space. In image processing, the disturbance of pixel i on

pixel j is dependent on the distance measuring their physical loca-

tions, while such disturbance is dependent on the distancemeasuring

the similarities between the operational andmanagerial structures of

the firms in inefficiency estimation. The iid (independent and iden-

tically distributed) condition is traditionally assumed using conven-

tional efficiency estimation methods, while no particular assumption

is needed when RL is used, assuring its accuracy and applicability.

In the blind form of the RL algorithm, PSF (i.e., v here) is unknown

and is iteratively estimated together with u. Letm be the index of the

blind iteration, j be the index of the Richardson–Lucy iteration, and

i be the index of firms, the iterative estimation procedure of the RLb

algorithm is summarized step by step below and illustrated in Fig. 1.

The iterative process endows RLb the ‘blindness’ which assures its

non-parametric property.

• Step 1: Initialize v0 = 1 and u0 = ε
• Step 2: For the mth blind iteration, do the following RL iteration
steps until convergence:

Fig. 1. Illustration of the Richardson-Lucy blind deconvolution algorithm.

- Step 2.1: Estimate v for a specified number ( j + 1) of RL itera-
tions: do the jth RL iteration to find v for j + 1 iterations, i.e.,
v j+1
m , assuming u is known from them − 1 iteration.

v j+1
m = v j

m × um−1 �
εi

ui,m−1 ⊗ v j
m

(10)

- Step 2.2: Estimate u for the same number ( j + 1) of RL itera-
tions: do the jth RL iteration to find u for j + 1 iterations, i.e.,
u
j+1
m , given that vm is evaluated from the full iteration of (10).

uj+1
i,m

= uj
i,m

× vm �
εi

u j
i,m

⊗ vm

(11)

• Step 3: Iterate the blind iterations until convergence.

The RLb algorithm (or RL) minimizes the difference between the

original and predicted degraded signals, i.e., argmin j (εi − ε̂i), per
pixel with convergence proven in (Irani & Peleg, 1991; Lucy, 1974), al-

lowing it to identify the optimal inefficiency at each single point (e.g.,

for each firm at each time point in a panel setting). However, this does

not guarantee it to find the global minimum if the frontier function

is not convex. In inefficiency estimation, the frontier is most often

either parametrically determined or non-parametrically constrained

to be convex, resulting in a convex function ε i. Under this context,

RLb is guaranteed to find the global optimal at each data point. In

cases where the frontier is non-parametrically determined and non-

convex, additional techniques are needed to form an improved ver-

sion of RLb which will be the next step. An initial guess of v0 is re-

quired to start the algorithm, which is specified as 1’s with the same

dimension as the residuals here.

The RLb algorithm requires non-negative inputs. For which, we

add a large enough positive constant M to the inputs and subtract

the deconvoluted M afterwards. Note that M is an arbitrary constant

which does not have any particular meaning, so as to the deconvo-

luted M. The results are independent of the choice of M as tested by

simulations. Mathematically, the property of translation invariance is

shown below:

∵ ε(xi + M) = u(xi + M) ⊗ v,M > 0 (12)

= u(xi) ⊗ v + u(M) ⊗ v (13)

= ε(xi) + ε(M) (14)

∴ ε(xi) = ε(xi + M) − ε(M) (15)

u(xi) = u(xi + M) − u(M) (16)

where xi is the input of firm i, v is the noise, ε(xi) and u(xi) are the

corrected composite error and firm-specific inefficiency of firm i.
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2.2. Performance comparison

The performance of RLb is compared with the efficiency de-

composition method used in StoNED, i.e., method of moments

(MM). The second and third stages are estimated together in MM.

In particular, the variance parameters σ 2u , σ 2v are estimated based
on the skewness of the CNLS residuals obtained from Stage 1 with

additional distributional assumptions, and the conditional expected

values of inefficiencies are computed given the parameter estimates

of σ 2u and σ 2v (details provided in Kuosmanen & Kortelainen, 2012).
Thereby, the inefficiencies estimated from ε using RLb and MM are
ui,RLb = ui,RLb + μ and ui,MM, respectively. To make RLb and MM

comparable and exclude the influence of other algorithms such as HS

on performance evaluation, we assume μ = 0 in the simulations and
remove μ in the empirical study by (17), where μ = ūRLb − ūRLb and

ūRLb = ūMM (note that v̄ = E(v) = 0 leads to ū = v̄ − ε̄ − μ = −ε̄ − μ;
thus ū is independent of the estimation method, i.e., ūRLb = ūMM).

ui,RLb = ui,RLb − μ

= ui,RLb − (ūRLb − ūRLb)

= ui,RLb − (ūRLb − ūMM) (17)

3. Monte Carlo simulation

3.1. Data generating process

We designed two sets of simulations to assess the performance of

the RLb method with a sample size of 100 for each simulation. The

first set of simulations are analogous to (Aigner et al., 1977), with

the scenarios designed for different signal to noise ratios (λ = σu
σv
).

The second simulation set is an extension of the first one, with the

aim of testing the influence of different distributional assumptions

on the inefficiency term and data heteroscedasticity on the esti-

mation accuracy. Four distributions in addition to the half normal

distribution, including three continuous densities conventionally

assumed for the inefficiency term (‘truncated normal’, ‘gamma’, ‘ex-

ponential’ Kuosmanen &Kortelainen, 2012) and one discrete distribu-

tion (‘Poisson’). The noise term was assumed to follow normal distri-

bution, with zero mean and a variance of 0.3. The signal to noise ratio

in the second simulation set was set to the middle value (λ = 1.24) of
the first simulation set under all scenarios. Groupwise heteroscedas-

ticity was generated for each heterscedastic data. Particularly, four

equally divided sub-populations were generated, with consecutive

data points being grouped together in their generic order (i.e., the

first 25 data points belong to subgroup 1, points 26 to 50 belong to

subgroup 2, and so on). The RLb method and MM (assuming half nor-

mal distribution for the inefficiency term) were applied to each sce-

nario, with 100 iterations (Table 1).

Each scenario is given a four-digit name. The first letter is the ini-

tial of the inefficiency distribution, i.e., ‘H’, ‘T’, ‘G’, ‘E’, ‘P’ are short

for the half normal, truncated normal, gamma, exponential and Pois-

son distribution, respectively. The second digit shows the signal to

noise ratio, which is represented by λ and defined as λ = σu
σv

, with

2, 1, 0 representing the high, moderate and low levels, respectively.

Here, this statistic is taken from (Aigner et al., 1977), i.e., 2 is equiv-

alent to λ = 1.66, 1 means λ = 1.24, and 0 is short for λ = 0.83. The
third character indicates whether the data is heteroscedastic, where

‘−’ and ‘+’ each means without and with heteroscedasticity. The last
number shows the constant ũwhich is 0 here.

3.2. Performance measures

Mean squared error (MSE) was used to measure the performance

of the algorithm, which is defined as

MSEμu
= 1

N

N∑
i=1

(μ̂ui
− μui

)2, (18)

Table 1

Parameter settings in the simulations. In gamma distribution, μu = θk, σu = θ
√
k. In

exponential distribution, μu = σu = θ
√
k. In Poisson distribution, σu = √

μu . Group-

wise heteroskedasticity (four subgroups) is generated for ‘H1+0’, ‘T1+0’, ‘G1+0’,
‘E1+0’, ‘P1+0’ (consecutive data points are grouped together in their generic order, i.e.,
the first 25 data points belong to subgroup 1 and so on); the elements in the square

brackets are the corresponding parameters in each subgroup; and if more than one pa-

rameter is needed for a particular distribution, the elements are ordered in the same

way in the brackets for different parameters.

Scenario Parameter setting λ Distribution

H2+0 μu = 0, σu = 0.8261 1.66 Half normal

H1+0 μu = 0, σu = 0.6171 1.24 Half normal

H0+0 μu = 0, σu = 0.4131 0.83 Half normal

H1+0 μu = 0, σu = 0.6171 1.24 Half normal

H1+0 μu = [0,0,0,0],
σu = [0.4131,0.5508,0.6884,0.8261]

1.24 Half normal

T1+0 μu = 1, σu = 0.3882 1.24 Truncated normal

T1+0 μu = [0.8,1.2,0.5,1.5],
σu = [0.2598,0.3465,0.4331,0.5197]

1.24 Truncated normal

G1+0 θu = 1, ku = 0.1384 1.24 Gamma

G1+0 θu = [1,1,1,1],
ku = [0.0620,0.1102,0.1722,0.2480]

1.24 Gamma

E1+0 μu = 0.3720 1.24 Exponential

E1+0 μu = [0.2490,0.3320,0.4150,0.4980] 1.24 Exponential

P1+0 μu = 0.1384 1.24 Poisson

P1+0 μu = [0.0620,0.1102,0.1722,0.2480] 1.24 Poisson

All μv = 0, σv = 0.3, data size = 100, iterations = 100

Table 2

Results of simulation set 1. Three scenarios are simulated

in this set. In the scenario names, ‘H2+0’: y = ε, λ = 1.66;
‘H1+0’: y = ε, λ = 1.24; ‘H0+0’: y = ε, λ = 0.83. μv = 0
and σv = 0.3 are used for data generation for all simula-
tions, and 100 simulations are run for each scenario. ‘TRUE’,

‘MSE’, ‘NUM’ are the true value, minimum standard er-

ror and the number of the corresponding statistics. For

MM method, only iterations with no NA and no zero val-

ues are used for statistics computing. ‘Stat’ and ‘Met’ are

short for statistics and method, respectively. All statistics

are rounded to 4 digits.

Type Stat Met H2+0 H1+0 H0+0

TRUE μu 0.6636 0.4945 0.3276

MSE μu RLb 0.0179 0.0176 0.0098

MSE μu MM 0.1462 0.0697 0.0177

TRUE σ u 0.4928 0.3675 0.2485

MSE σ u RLb 0.005 0.0084 0.0114

MSE σ u MM 0.0023 0.0035 0.0041

TRUE λ 1.6774 1.2516 0.8459

MSE λ RLb 0.0567 0.0952 0.1293

MSE λ MM 0.0265 0.0389 0.0463

NUM NA MM 7 1 1

NUM 0 MM 1 2 18

MSEσu
= 1

N

N∑
i=1

(σ̂ui
− σui

)2, (19)

MSEλ = 1

N

N∑
i=1

(λ̂i − λi)
2, (20)

whereμu (mean of u), σ u (standard deviation of u) andλ = σu
σv
(signal

to noise ratio) are estimated over 100 iterations for each simulated

scenario, and i is the index of the data points which is 100 in this

study, i.e., N = 100. In addition, we counted the number of non-valid
and zero estimates from both methods to assess their performance.

3.3. Results and discussions

The statistics of the two sets of simulation results are summarized

in Tables 2 and 3. The estimated and true inefficiencies are plotted

against each other in Figs. 2 and 3, where NA or zeros estimated using

MM are excluded when drawing plots or computing the statistics.
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Table 3

Results of simulation set 2. Ten scenarios are simulated in this set. In the scenario names, ‘H1+0’: half normal, homoscedastic; ‘H1+0’:
half normal, heteroscedastic; ‘T1+0’: truncated normal, homoscedastic; ‘T1+0’: truncated normal, heteroscedastic; ‘G1+0’: gamma, ho-
moscedastic; ‘G1+0’: gamma, heteroscedastic; ‘E1+0’: exponential, homoscedastic; ‘E1+0’: exponential, heteroscedastic; ‘P1+0’: Poisson,
homoscedastic; ‘P1+0’: Poisson, heteroscedastic. y = ε, λ = 1.24, μv = 0, σv = 0.3 are used for data generation for all simulations, and
100 simulations are run for each scenario. ‘TRUE’, ‘MSE’, ‘NUM’ are the true value, minimum standard error and the number of the corre-

sponding statistics. For MM method, only iterations with no NA and no zero values are used for statistics computing. ‘Stat’ and ‘Met’ are

short for statistics and method, respectively. All statistics are rounded to 4 digits.

Type Stat Met H1+0 H1+0 T1+0 T1+0 G1+0 G1+0 E1+0 E1+0 P1+0 P1+0

TRUE μu 0.4944 0.4934 1.0010 1.0172 0.1380 0.1536 0.3666 0.3694 0.1331 0.1436

MSE μu RLb 0.0145 0.0235 0.0008 0.0045 0.07783 0.0799 0.0325 0.0362 0.0683 0.0738

MSE μu MM 0.0481 0.1227 0.0981 0.0177 0.0347 0.0086 0.1293 0.1723 0.2680 0.1873

TRUE σ u 0.3699 0.3728 0.3852 0.3715 0.3508 0.3662 0.3626 0.3549 0.3533 0.3624

MSE σ u RLb 0.0078 0.0087 0.0111 0.0121 0.0094 0.0114 0.0087 0.0087 0.0067 0.0071

MSE σ u MM 0.0043 0.0073 0.0021 0.0164 0.0528 0.0637 0.0064 0.0098 0.0135 0.0152

TRUE λ 1.2380 1.2431 1.2878 1.2407 1.1706 1.2201 1.2122 1.1847 1.1825 1.2095

MSE λ RLb 0.0853 0.0955 0.1225 0.1324 0.1041 0.1269 0.0950 0.0956 0.0727 0.0797

MSE λ MM 0.0468 0.0803 0.0241 0.1842 0.5932 0.7212 0.0706 0.1073 0.1513 0.1731

NUM NA MM 2 19 0 0 88 83 29 34 83 89

NUM 0 MM 3 0 49 6 0 1 1 0 0 0

Fig. 2. Simulation set 1. ‘H2+0’: λ = 1.66, y = ε; ‘H1+0’: λ = 1.24, y = ε; ‘H0+0’: λ = 0.83, y = ε. Half normal distribution. For MM method, only iterations with no NA and no

zero values are used for plotting.

3.3.1. RLb is robust to distribution skewness and kurtosis

As observed from Tables 2 and 3, no NA or zero value was pro-

duced using the RLb method, whereas in the case of MM such non-

valid estimateswere unavoidable and present throughout the simula-

tions. The number of NAs increases with the level of inefficiencies (as

represented by λ as σ v is invariant here) using MM, which indicates

the severity of the wrong skewness problem when estimating large

inefficiencies using conventional methods such as MM. Such prob-

lems become worse when the distribution of the inefficiency is in-

correctly assumed, e.g., almost 90% of theMMestimates are non-valid

for gamma and Poisson distributional assumptions even with modest

inefficiency levels (Table 3). In contrast, the number of zeros increases

as the inefficiency decreases, which suggests of the poor performance

of MM in identifying inefficiencies with low kurtosis. This problem is

particularly severe under truncated normal assumption, with around

half zero estimates being generated with modest λ (Table 3). These
problems could be well circumvented by the RLb method, because of

its ‘blindness’ to the inefficiency distribution as described below.

3.3.2. RLb is robust to distribution assumption

The RLb is insensitive to distribution assumptions, and it always

produces better estimates than MM, even with the NA and zero val-

ues removed. The RLb method works particularly well when the dis-

tribution of inefficiencies is assumed to be truncated normal (Fig 3 (b

and c)). Note that the RLb algorithm assumes isoplanatic conditions

for both u and v which is analogous to the symmetric distributional

assumption of u in a two-dimensional space. This leads to the less

biased results in the case of a truncated normal distribution, where

the density contains symmetric parts in the non-negative region. The

MSE of the RLb estimates (μu) are larger than those fromMM, which,

however, has a much lower MSE of the standard deviation of inef-

ficiencies (σ u) and λ than does MM (Table 3). Given the isoplanatic
constraints on u using RLb, this bias may vanish when the shape pa-

rameter k > 1 (k = 1 here). In the rest of our study cases, both RLb
and MM overestimate the inefficiencies, though the estimates from

RLb deviate less from the true values than do those from MM.

3.3.3. RLb is robust to data noise

The RLb method is more robust to data noise than MM. The dis-

tances between the RLb estimates and the true inefficiencies remain

almost invariant, whereas those forMMchanges linearlywithλ. With
σ v staying invariant, λ increases with the level of inefficiencies. The
divergence of theMM estimates from the true inefficiencies increases

with the inefficiency level, which is greater than that of the RLb

method even at the scenario with the lowest λ (Fig. 2(c)). When an
explicit intercept term is extracted from the model (y = 1+ ε), the
estimates from the RLb method are shifted by the intercept term,

i.e., upwards by one here (Table 2), with no obvious change in σ u

or λ. These results indicate that the RLb method does not remove
constant errors such as the difference between the estimated and

true frontier ( f (x) − f̂ (x)) and that the accuracy of inefficiency recov-
ery depends on the frontier estimation accuracy. Additionally, these

findings demonstrate the robustness of the RLb method to sources

of data noise. Enlarging or shrinking the inefficiency term (assume

u� = u + 1) by a constant does not considerably change the standard
deviation of the estimates or the signal to noise ratio (λ). Note that
when the distribution of inefficiencies is discrete (i.e., Poisson here),

MM performs poorly, with outrageously large estimated standard

deviations and a considerable overestimation of the inefficiencies

observed here. Thereby, RLb outperforms MM in its consistent
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Fig. 3. Simulation set 2. ‘H1+0’: homoscedastic, half normal distribution, y = ε, λ = 1.24 (Fig 2b); ‘H1+0’: heteroscedastic, half normal distribution, y = ε, λ = 1.24 (a); ‘T1+0’:
homoscedastic, truncated normal distribution, y = ε, λ = 1.24 (b); ‘T1+0’: heteroscedastic, truncated normal distribution, y = ε, λ = 1.24 (c); ‘G1+0’: homoscedastic, gamma
distribution, y = ε, λ = 1.24 (d); ‘G1+0’: heteroscedastic, gamma distribution, y = ε, λ = 1.24 (e); ‘E1+0’: homoscedastic, exponential distribution, y = ε, λ = 1.24 (f); ‘E1+0’:
heteroscedastic, exponential distribution, y = ε, λ = 1.24 (g); ‘P1+0’: homoscedastic, Poisson distribution, y = ε, λ = 1.24 (h); ‘P1+0’: heteroscedastic, Poisson distribution, y = ε,

λ = 1.24 (i). For MMmethod, only iterations with no NA and no zero values are used for plotting.

estimation under various distributional assumptions of the ineffi-

ciency term. RLb can produce unbiased results when the ineffi-

ciency distribution has a symmetric part in the positive region, and

it may overestimate the inefficiencies when such symmetry does not

exist.

3.3.4. RLb is robust to data heteroscedasticity

The RLb method is insensitive to data heteroscedasticity. As ob-

served from Table 3, the MSEs of μu, σ u and λ are almost invariant
for RLb estimates between data with and without heteroscedastic-

ity, and these statistics are considerably larger for heterscedastic data

than homoscedastic data for MM estimates.

4. Empirical study

To assess whether and to what extent the use of RLb instead of

MM affects the results in a real world application, RLb is applied to

Finnish electricity distribution networks, where the residuals from

the cost frontier model is used for inefficiency estimation. The cost

frontier model is defined in (21),

ln xi = lnC(yi) + εi, (21)

where C represents the cost function and is modelled as a function of

the output y, and ln means log e.

4.1. Data

The data consists of the six-year average over the period 2005–

2010, which is available in the Energy Market Authority (EMA)

website (www.emvi.fi). In the cost frontier model, the total cost (x)

is used as the single input, three variables, i.e., ‘Energy transmis-

sion’ (GWh of 0.4 kV equivalents, y1), ‘Network length’ (km, y2), and

‘Customer number’ (y3), are specified as the outputs (y), and the

proportion of the underground cables in the total network length

is used as a contextual variable (z) to control the DMUs’ hetero-

geneity and their operating environment. Specifically, x includes
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Table 4

Descriptive statistics of the input, output, and contextual variables of the empirical data. ‘MEAN’, ‘STD’,

‘MIN’, ‘MAX’, ‘KURT’, ‘SKEW’ represent the ‘Mean’, ‘Standard deviation’, ‘Minimum value’, ‘Maximum

value’, ‘Kurtosis’ and ‘Skewness’, respectively. The data are averaged over a six-year period 2005–2010.

Variable MEAN STD MIN MAX KURT SKEW

x = Total cost (1000€ ) 5052 10144 139 64326 22 4

y1 = Energy transmission (GWh) 512 1026.65 15 6978 22 4

y2 = Network length (km) 4370 10465.63 46 68349 26 5

y3 = Customer number 37650 73856.08 24 426769 16 4

z = Underground cable proportion 0.23 0.28 0 1 0.43 1.27

Table 5

Results of empirical study. The 89 units are ordered by the rank of the efficiencies (‘CE’) esti-

mated using RLb and listed in a column-wise fashion from left to right, i.e., the first 30 units

are listed from top to bottom in the left column, and the last 29 units are listed from top to

bottom in the right column. All statistics are rounded to four digits.

DMU CERLb CEMM DMU CERLb CEMM DMU CERLb CEMM

32 1.2337 Inf 80 0.9793 0.9690 69 0.8787 0.9043

70 1.2108 Inf 62 0.9746 0.9660 3 0.8784 0.9041

22 1.2085 Inf 15 0.9723 0.9645 64 0.8754 0.9021

56 1.1429 Inf 31 0.9671 0.9612 87 0.8651 0.8953

37 1.1267 0.9990 63 0.9622 0.9582 89 0.8640 0.8947

59 1.1204 0.9990 58 0.9589 0.9561 1 0.8555 0.8890

28 1.1186 0.9987 79 0.9496 0.9501 55 0.8547 0.8885

38 1.0971 0.9986 33 0.9488 0.9496 48 0.8288 0.8712

57 1.0793 0.9983 60 0.9472 0.9486 43 0.8187 0.8645

50 1.0764 0.9983 71 0.9436 0.9463 67 0.8059 0.8558

61 1.0690 0.9980 76 0.9430 0.9460 53 0.8035 0.8542

73 1.0600 0.9976 35 0.9400 0.9440 78 0.8018 0.8530

39 1.0567 0.9974 81 0.9399 0.9440 25 0.7884 0.8439

46 1.0565 0.9974 30 0.9390 0.9434 17 0.7867 0.8428

49 1.0522 0.9971 7 0.9339 0.9401 36 0.7858 0.8422

83 1.0416 0.9961 40 0.9300 0.9376 8 0.7849 0.8415

75 1.0400 0.9959 4 0.9267 0.9355 29 0.7616 0.8255

45 1.0336 0.9950 77 0.9195 0.9309 5 0.7605 0.8247

6 1.0296 0.9942 41 0.9182 0.9300 54 0.7467 0.8152

82 1.0284 0.9939 42 0.9115 0.9257 13 0.7384 0.8094

24 1.0212 0.9919 19 0.9050 0.9214 14 0.7326 0.8053

16 1.0158 0.9900 85 0.9009 0.9188 9 0.7313 0.8045

44 1.0141 0.9892 26 0.8992 0.9177 34 0.7305 0.8039

20 1.0108 0.9877 2 0.8947 0.9147 27 0.7294 0.8031

10 1.0029 0.9835 86 0.8921 0.9131 51 0.7186 0.7955

74 1.0004 0.9821 72 0.8899 0.9116 18 0.7105 0.7898

66 0.9939 0.9781 11 0.8872 0.9098 23 0.7049 0.7858

12 0.9915 0.9766 52 0.8871 0.9098 65 0.6892 0.7746

68 0.9876 0.9742 84 0.8858 0.9090 88 0.6749 0.7643

21 0.9839 0.9719 47 0.8812 0.9059

the operational expenditure and half of the interruption cost, and

the electricity transmission at different voltage levels is weighted ac-

cording to the average transmission cost such that lower weight is

assigned to high-voltage transmission than low-voltage transmission

in y1. The descriptive statistics of the data are listed in Table 4, with

more detailed description of the variables and the regulatory appli-

cation available in (Kuosmanen, 2012).

4.2. Results and discussions

The cost efficiency score is estimated using CE = exp (ui) for each
unit i and summarized in Table 5. Except for the top 8 DMUs (accord-

ing to RLb estimation), all firms are ranked in the same order using

RLb and MM. The top 4 firms, i.e., 32, 70, 22 and 56, as ranked by RLb,

have no CE score using MM estimation, because the inefficiencies are

estimated to be infinite due to numerical problems. Using MM, the

CE scores are rather close among the 4 DMUs, i.e., they range from

0.9990 to 0.9986, where the differences are more obvious using RLb,

i.e., the DMUs range from 1.1267 to 1.0971. In this model, firm-specific

inefficiencies are separated from the expectation of the inefficiency

which is caused by environmental influences. A firm can balance

such an adverse global impact by adopting superb technological or

managerial renovations, thus exhibiting over-efficiencies in terms of

firm-specific efficiency. The CE scores are plotted in Fig. 4, where CEs

from RLb have larger amplitudes than MM estimates (excluding the

infinite estimates), i.e., the standard deviation of the RLb estimates

(0.1266) is nearly twice that of MM (0.0678), thus rendering the dif-

ferences more distinguishable among DMUs. The average CE score is

similar between RLb and MM (0.9263 for RLb, 0.9201 for MM), which

indicates that the RLb estimates are firm-specific, with μ being ad-
justed and comparable to those from MM. Moreover, RLb is able to

estimate efficiencies without numerical problems and to correctly

distinguish firms that have similar CE scores. The sample correlation

coefficient is close to 1 for CNLS and RLb inefficiency estimates, and it

is 0.9903 when the inefficiencies are estimated using MM. Thus, the

perfect correlation between the CNLS residuals and inefficiencies ob-

tained using MM also applies to the RLb estimator. The key merits of

RLb are that (1) it is non-parametric; (2) it faces no numerical prob-

lems with the outputs, such as values of NA; and (3) it can differenti-

ate similar inefficiencies. Possessing these merits does not affect the

principle properties of the outputs, e.g., the ranking order; therefore,

a good correlation between inefficiencies obtained using RLb andMM

(if not NA) is expected, which supports the precision of RLb given the

wide applicability of MM.
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Fig. 4. Efficiencies estimated in the empirical study using RLb and MM. The x axis

shows the number of the 89 electricity suppliers, and the y axis shows the efficiencies

(CE). The firmswithout efficiencies shown as blue squared dots have infinite estimates.

5. Conclusions

In this study, we deploy a fully non-parametric algorithm, the RL

blind deconvolution method, to decompose firm-specific inefficien-

cies from their composite errors corrected by the expected ineffi-

ciencyμ = 0 in productive efficiency analysis. By comparing the per-
formance of RLb and MM under 13 scenarios assuming μ = 0, we
show that the RLb method outweighs conventional methods such as

MM in four tested aspects. First, it never outputs null or zero val-

ues due to incorrect skewness or low kurtosis of the inefficiency den-

sity. Second, it is insensitive to the distributional assumption of the

inefficiency term u, and it does not require any additional assump-

tions such as iid (independently and identically distributed) samples.

Third, it is robust to data noise levels. Fourth, it gives consistent esti-

mates, regardless of data heteroscedasticity. In addition, we applied

RLb to the Finland electricity distribution network data set, wherein

the efficiencies inestimable using MM are provided and firms with

similar efficiency scores are correctly ranked. We are one of the pi-

oneers in applying deconvolution in inefficiency estimation, and we

are the first to report a fully non-parametric method for composite

error decomposition, compared with other groups, which use kernel

deconvolution techniques.

It is worth noting that the RLb algorithm was initially developed

to solve image degradation problems in a three-dimensional space.

Thus, its utility in panel data warrants further exploration. Addi-

tionally, we could extend RLb to solve cases wherein the frontier is

non-convex and non-parametrically determined. Despite the advan-

tages of RLb, we should be aware of its sensitivity to frontier esti-

mation error, i.e., the inefficiency estimates are shifted by the differ-

ence between the estimated and true frontier. Additionally, the RLb

method is not unbiased because of its isoplanatic assumption on u

and v. Exploring how to overcome these problems and further im-

prove the estimation accuracy are interesting topics next steps. In ad-

dition, applying this more robust tool to solve some empirical prob-

lems may offer high practical values and is suggested here for future

research.
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Abstract

This paper presents a corrected Richardson-Lucy blind deconvolution method (cRLb) to decompose inef-
ficiencies from the composite error coming from frontier estimation in a two-stage inefficiency estimation
procedure. Simulations consisting of 19 scenarios show that cRLb is a non-parametric estimator that could
obtain firm-specific inefficiency estimates, does not require pre-specification of the inefficiency distribution,
is robust to data noise and heteroscedasticity, and generates matrix-form outputs given panel data.
Keywords: data envelopment analysis, corrected Richardson-Lucy blind deconvolution, efficiency estimation,
nonparametric

1 Introduction

Productive efficiency analysis has two major branches, i.e., deterministic nonparametric approaches repre-
sented by DEA (data envelopment analysis) [1, 2] and stochastic parametric methods such as SFA (stochastic
frontier analysis) [3, 4]. StoNED (stochastic semi-nonparametric envelopment of data) [5] builds the bridge
between DEA and SFA and attracts increasing interest due to its semi-nonparametric and stochastic prop-
erties. A two-stage strategy is conventionally used for inefficiency identification when stochastic models are
considered, where the frontier is estimated in the first stage using parametric or nonparametric regression
techniques such as Modified Ordinary Least Squares (MOLS) [3] and Convex Nonparametric Least Squares
(CNLS) [5] and the inefficiency is decomposed from the residuals (from the first stage) in the second stage
using techniques such as method of moments (MM) in a cross-sectional setting or fixed effect approach [6]
(abbreviated as SS here) in a panel setting. However, techniques such as MM and pseudolikelihood estima-
tion require prior knowledge on inefficiency distribution and the fixed effect approach requires panel data to
average out the random noise over time.

Richardson-Lucy blind deconvolution algorithm (RLb), originally developed for image deblurring, could
be applied for inefficiency estimation [7]. The inefficiency term could be accurately decomposed from com-
posite errors without the prior assumption on the distribution of inefficiencies u. Thus, RLb is exempted
from issues such as the wrong skewness problem and is robust to the data noise level and heteroscedastic-
ity [7]. However, estimates from RLb are upward biased by the expected inefficiency μ which is the same
across firms and estimable using the method proposed by Hall and Simar [8, 9] from CNLS residuals in a
three-stage strategy in the cross-section setting [7]. In the case of panel data, two models exist, i.e., the
inefficiency is considered time-varying and time-invariant. If the inefficiencies are time-invariant, the three-
stage strategy is still applicable where each time period is treated as an independent cross-section. However,
when inefficiencies vary with time [10], such a method becomes insufficient. For this, we propose a corrected
RLb algorithm (named cRLb) to remove μ from the inefficiency estimates. The cRLb method relies on a
two-stage framework and fits both time-varying and time-invariant panel data. By simulating 19 scenarios
including those from [3], we show that cRLb could effectively remove the the expected inefficiency when
μ �= 0, and inherits all good properties of RLb such as no distributional assumption on the inefficiency and
robustness to data noise and heteroscedasticity. Moreover, as an approach applied in the second step of the
two-stage inefficiency estimation method, cRLb is easily coupled with any frontier estimation method.

The rest of the paper is organised as follows. The two-stage estimation strategy where cRLb is used for
inefficiency decomposition in the panel setting and the fixed effects approach where the cRLb is evaluated
against are described in the ‘Method’ section (more detailed information previously reported in [7, 11]). The
‘Monte Carlo Simulation’ section describes the data generation process of each tested scenario followed by
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the results and discussion. The paper concludes by highlighting the novelties and contributions, summarizing
the main results, and pointing out the future directions in the ‘Conclusion’ section.

2 Methods

2.1 Two-stage efficiency estimation

In a panel setting, considering the cost frontier model, ci,t = C(yi,t) exp(εi,t), the cost ci,t of firm i at time
t is computed from the cost function C(yi,t), which is defined as the minimum cost of providing service
yi,t. The cost function C is a non-negative and non-decreasing function of the output yi,t. The residual
εi,t could be decomposed into inefficiency ui,t and random noise vi,t, i.e., εi,t = vi,t − ui,t where ui,t ≥ 0.
Mathematically, the problem is expressed as εi,t = ui,t + vi,t, where vi,t represents the noise contaminating
and is independent of ui,t. Note that in cRLb, no assumption is made for any of these parameters.

We consider a two-stage strategy for efficiency estimation. Both parametric and non-parametric models
could be used for frontier estimation in the first step.

• Stage 1: Estimate the shape of cost function C by CNLS regression and obtain the residual ε̂i,t, where
the model is defined as ci,t = C(yi,t) exp(εi,t).

• Stage 2: Estimate the inefficiency ûi,t from the CNLS residuals obtained, using the fixed effects ap-
proach suggested by [6], i.e., the SS approach.

2.1.1 Stage 1: CNLS regression
The first step can be analytically represented by (1),

min
α,β,γ,ε̂

I∑

i=1

T∑

t=1

ε̂2i,t subject to (1)

ln ci,t = ln(αi,t + β
′
i,tyi,t) + γ

′
Zt + ε̂i,t i = 1, . . . , I; t = 1, . . . , T

αi,t + β
′
i,tyi,t ≥ αj,w + β

′
j,wyi,t i, j = 1, . . . , I; t, w = 1, . . . , T

βi,t ≥ 0 i = 1, . . . , I; t = 1, . . . , T

where a contextual variable Z is used to model the inter-temporal relationship within the panel data where
information on each decision making unit (DMU) i at each time point t was recorded [11]; and αi,t = 0 for
all i = 1 . . . I and t = 1 . . . T , under the assumption of constant return to scale (CRS). Note that α and β
characterise tangent hyperplanes of the cost frontier, which provide a consistent estimator of E(c|y) and are
specific to each unit and time period. In particular, β can be interpreted as the marginal costs of the output
y. γ is the coefficient of the contextual variable Z, showing its weight. The set of inequality constraints is
referred to as Afriat inequalities.

2.1.2 Stage 2: Corrected Richardson-Lucy blind deconvolution method

The cRLb method, the corrected blind form of the Richardson-Lucy algorithm applied in efficiency decom-
position, is used in efficiency estimation provided with the residuals from the frontier estimation.

Let’s first briefly go over the RL algorithm in the context of image recovery where it is originally developed
for. According to [12], given the blurred image B and the clear image I, the intensity Ip at the pixel location
p is computed from the pixel intensities Bq by P (Ip) =

∑
q P (Ip|Bq)P (Bq) where P (Ip) can be identified as

the distribution of Ip and so forth. Expanding P (Ip|Bq) by Bayes’s rule, P (Ip) =
∑

q
P (Bq|Ip)P (Ip)∑
z P (Bq|Iz)P (Iz)

P (Bq).

The best of a bad situation is used to break the dependency of P (Ip) on both sides, where the current
estimation of P (Ip) is used to approximate P (Ip|Bq). Thus,

P j+1(Ip) =
∑

q

P (Bq |Ip)P j(Ip)∑
z P (Bq |Iz)P j(Iz)

P (Bq) = P j(Ip)
∑

q

P (Bq |Ip) P (Bq)∑
z P (Bq |Iz)P j(Iz)

, (2)

where j is the RL iteration index.
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Considering B
′
=

∑
z P (Bq|Iz)P j(Iz) as the predicted blurry image according to the current estimation

of clear image Ij (a more workable notation for P j(Iz)), define P (Bq|Iz) = PSF (q, z), and use Eq =
Bq

B′
q

to de-

note the residual errors between the real and predicted blurry image, we obtain
∑

q P (Bq|Ip) P (Bq)∑
z P (Bq|Iz)P j(Iz)

=∑
q P (Bq|Ip)Ej

q . If the isoplanatic condition holds, i.e., PSF is spatially invariant or PSF (q, z) is the same

for all q, then B
′
=

∑
z P (Bq|Iz)P j(Iz) = Ij ⊗ PSF , and

∑
q P (Bq|Ip)Eq becomes PSF � Eq where �

and ⊗ are the correlation and convolution operators, respectively (note that the summation index in the
generation of predicted blurry image, B

′
, is z and for the integration of errors, E, is q). Hence, (2) becomes

Ij+1 = Ij × PSF � B
Ij⊗PSF = Ij × PSF � Ej where Ej = B

Ij⊗PSF . Worth noting that the isoplanatic con-
dition implies a symmetric assumption of the efficiency distribution which is usually asymmetric. Although
the blind form of the RL algorithm is demonstrated to provide more precise inefficiency estimates than MM
regarding the rankings [7], this assumption generally introduces an industry-wise bias which once adjusted
could provide firm-specific inefficiency estimates.

The equations of the RL algorithm in the panel setting are analogous to those in the cross-sectional
setting [7]. By identifying the inefficiency u as the clear image I, the residual ε as the blurry image B, and

the noise v as the PSF, the iterative RL algorithm could be reformed as uj+1
i,t = uj

i,t × v �
ε̂i,t

uj
i,t⊗vi,t

.

In the blind form of the RL algorithm, PSF (i.e., v here) is unknown and is iteratively estimated together
with u. Let m be the index of the blind iteration, vm is computed using (4) assuming that the object is
known from the (m− 1)th blind iteration

uj+1
i,t,m = uj

i,t,m × vm �
ε̂i,t

uj
i,t,m ⊗ vi,t,m

, (3)

vj+1
i,t,m = vji,t,m × um−1 �

ε̂i,t

ui,t,m−1 ⊗ vji,t,m
. (4)

The RLb algorithm minimises the difference between the original and predicted degraded signals, i.e.,
argminj(εi,t− ε̂i,t), each firm at each time point with convergence proven in [13, 14]. However, this does not
guarantee that the algorithm could find the global minimal if the cost function is not convex. In inefficiency
estimation, the frontier is either parametrically determined or non-parametrically constrained to be convex,
resulting in a convex function εi,t. Thus, under this context, RLb is guaranteed to find the global optimal
at each data point. An initial guess of v00 is required to start the algorithm, which is specified as 1’s with the
same dimension as the residuals here. The RLb algorithm requires non-negative inputs. For which, we add
a large enough positive constant M to the inputs and subtract the deconvoluted M afterwards. The results
are independent of the choice of M as tested by simulations.

The corrected form of RLb, i.e., cRLb, adjusts the inefficiency estimates from RLb by the difference
between the average of the inefficiency estimates and that of the residuals over all DMUs in the cross-section
case. It mathematically holds because

û∗i = ûi − u+ u = ûi − u+ u+ v = ûi − (u− ε) (5)

where û∗ is the corrected estimate, u and ε are the averages of u and ε, respectively, across all DMUs, and
u− ε > 0 is the bias corrected by cRLb, assuming E(v) = 0. In [7], this bias is corrected by Hall and Simar
method [8] in the cross-sectional setting.

The cRLb method treats panel data naturally as it is and outputs the results with the same dimension.

Thus, in the panel case, (5) becomes û∗
i,t = ûi,t−(

∑T
t=1 ut

T −
∑T

t=1 εt
T ), and is equivalent to û∗

i,t = ûi,t−(ut−εt)
when u is time-invariant, where T represents the number of time points in the panel data. In this study,
with a 2-dimentional matrix as the input, we obtain the efficiencies for each branch at each time point.

2.2 Fixed effects approach

The performance of cRLb is compared with that of SS [6] for inefficiency identification in the panel setting. In

SS, the periodic performance of the sales unit di,t is modelled as d̂i,t = exp(−ε̂i,t). The average performance

of unit i is obtained by d̂i =
∑T

t
exp(−ε̂i,t)

T and the efficiency is computed as Effi =
ˆ
di

max(
ˆ
di)

. In cRLb, the
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average performance of unit i is obtained by ûi =
∑T

t
−ε̂i,t
T and the inefficiency is computed as Effi =

ûi

max(ûi)
.

3 Monte Carlo Simulation

3.1 Data generation process

With a similar design as in [7], we conducted two sets of simulations to assess the performance of the cRLb
method with a data size of 50 × 100 (50 time points and 100 firms) for each simulation. The first set of
simulations is analogous to [3], with the scenarios designed for different signal to noise ratios (λ = σu

σv
) and

two different models (y = ε and y = 1+ε), and the performance of cRLb is compared with RLb and SS. The
second set of simulations aims at assessing the robustness of cRLb to the distributional assumption and data
heteroscedasticity as compared against SS. Four distributions in addition to the half normal distribution,
including ‘truncated normal’, ‘gamma’, ‘exponential ’ and ‘Poisson’, are tested. The noise term is assumed
to follow normal distribution, with zero mean and a variance of 0.3. The signal to noise ratio in the second
simulation set is set to the middle value (λ = 1.24) of the first simulation set under all scenarios. Group-wise
heterscedasticity is generated for each heterscedastic data. Particularly, four equally divided sub-populations
are generated, with consecutive data points being grouped together in their generic order (i.e., the first 25
data points belong to subgroup 1, points 26 to 50 belong to subgroup 2, and so on). The cRLb method and
SS are applied to each scenario, with 100 iterations (Table 1).

Scenario Parameter setting λ Model Distribution

H2-0 μu = 0, σu = 0.8261 1.66 y = ε half normal
H1-0 μu = 0, σu = 0.6171 1.24 y = ε half normal
H0-0 μu = 0, σu = 0.4131 0.83 y = ε half normal
cH2-0 μu = 0, σu = 0.8261 1.66 y = ε half normal
cH1-0 μu = 0, σu = 0.6171 1.24 y = ε half normal
cH0-0 μu = 0, σu = 0.4131 0.83 y = ε half normal
cH2-1 μu = 0, σu = 0.8261 1.66 y = 1 + ε half normal
cH1-1 μu = 0, σu = 0.6171 1.24 y = 1 + ε half normal
cH0-1 μu = 0, σu = 0.4131 0.83 y = 1 + ε half normal
cH1-0 μu = 0, σu = 0.6171 1.24 y = ε half normal
cH1+0 μu = [0, 0, 0, 0], σu = [0.4131, 0.5508, 0.6884, 0.8261] 1.24 y = ε half normal
cT1-0 μu = 1, σu = 0.3882 1.24 y = ε truncated normal
cT1+0 μu = [0.8, 1.2, 0.5, 1.5], σu = [0.2598, 0.3465, 0.4331, 0.5197] 1.24 y = ε truncated normal
cG1-0 θu = 1, ku = 0.1384 1.24 y = ε gamma
cG1+0 θu = [1, 1, 1, 1], ku = [0.0620, 0.1102, 0.1722, 0.2480] 1.24 y = ε gamma
cE1-0 μu = 0.3720 1.24 y = ε exponential
cE1+0 μu = [0.2490, 0.3320, 0.4150, 0.4980] 1.24 y = ε exponential
cP1-0 μu = 0.1384 1.24 y = ε Poisson
cP1+0 μu = [0.0620, 0.1102, 0.1722, 0.2480] 1.24 y = ε Poisson

All μv = 0, σv = 0.3, data size = 50 × 100, iterations = 100

Table 1: Parameter setting in the simulations. In gamma distribution, μu = θk, σu = θ
√
k. In exponential distribution,

μu = σu = θ
√
k. In Poission distribution, σu =

√
μu. Group-wise heteroskedasticity (four subgroups) is generated for ‘cH1+0’,

‘cT1+0’, ‘cG1+0’, ‘cE1+0’, ‘cP1+0’ (consecutive data points are grouped together in their generic order, i.e., data points of
the first 25 columns (the first 50 × 25 data points) belong to subgroup 1 and so on); the elements in the square brackets are
the corresponding parameters in each subgroup; and if more than one parameter is needed for a particular distribution, the
elements are ordered in the same way in the brackets for different parameters.

Each scenario is given a four-digit name, with the scenarios tested using cRLb having a character ‘c’ in
front. The four-digit name captures four aspects to be tested. Specifically, the first letter is the initial of the
inefficiency distribution, i.e., ‘H’, ‘T’, ‘G’, ‘E’, ‘P’ are short for the half normal, truncated normal, gamma,
exponential and Poisson distribution, respectively. The second digit shows the signal to noise ratio, which
is represented by λ and defined as λ = σu

σv
, with 2, 1, 0 representing the high, moderate and low levels,

respectively. Here, this statistic is taken from [3], i.e., 2 is equivalent to λ = 1.66, 1 means λ = 1.24, and 0 is
short for λ = 0.83. The third character indicates whether the data is heteroscedastic, where ‘-’ and ‘+’ each
means without and with heteroscedasticity. The last digit shows the constant a in the model y = a+ ε, i.e.,
a = 0 is associated with y = ε and a = 1 is equivalent to y = 1 + ε.

3.2 Performance measures

Mean squared errors (MSE) are used to measure the performance of the algorithms in simulations, which

are defined as MSEμu = 1
N

∑N
i=1(μ̂ui − μui)

2,MSEσu = 1
N

∑N
i=1(σ̂ui − σui)

2,MSEλ = 1
N

∑N
i=1(λ̂i − λi)

2,

where μui
(mean of u for DMU i), σui

(standard deviation of u for DMU i) and λi =
σui

σvi
(signal to noise

ratio) are estimated over 100 iterations for each simulated scenario, and N = 100.
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3.3 Results and discussion

The statistics of the two sets of simulation results are summarised in Tables 2 and 3. The estimated and
true inefficiencies are plotted against each other in Fig. 1 and Fig. 2.

Type Stat Met H2-0 H1-0 H0-0 cH2-0 cH1-0 cH0-0 cH2-1 cH1-1 cH0-1

TRUE μu 0.6590 0.4927 0.3300 0.6590 0.4927 0.3300 0.6590 0.4927 0.3300
EST μu cRLb 0.7904 0.6161 0.4280 0.6589 0.4927 0.3299 1.6589 1.4927 1.3299
MSE μu cRLb 0.0173 0.0152 0.0096 1.8E-5 1.7E-5 1.6E-5 0.9999 0.9999 0.9999
MSE μu SS 0.0090 0.0612 0.1378 0.0090 0.0612 0.1378 0.0510 0.1624 0.3293
TRUE σu 0.4935 0.3690 0.2470 0.4935 0.3690 0.2470 0.4935 0.3690 0.2470
EST σu cRLb 0.0789 0.0645 0.0503 0.0787 0.0641 0.0493 0.0811 0.0676 0.0550
MSE σu cRLb 0.1720 0.0928 0.0387 0.1721 0.0930 0.0391 0.1701 0.0909 0.0369
MSE σu SS 0.1571 0.0692 0.0158 0.1571 0.0692 0.01580 0.2000 0.1061 0.0428
TRUE λ 24.0452 17.9775 12.0332 24.0452 17.9775 12.0332 24.0452 17.9775 12.0332
EST λ cRLb 3.8414 3.1388 2.4468 3.8335 3.1212 2.4011 3.9518 3.2923 2.6769
MSE λ cRLb 412.4271 222.4429 92.8938 412.7391 222.9768 93.7841 407.9293 217.8808 88.4964
MSE λ SS 376.7731 165.8115 38.0478 376.7731 165.8115 38.0478 479.5823 254.1508 102.7014

Table 2: Results of simulation set 1. Scenarios with initial ‘c’ are tested using cRLb, and those without are run using RLb.
‘H2-0’, ‘cH2-0’: y = ε, λ = 1.66; ‘H1-0’, ‘cH1-0’: y = ε, λ = 1.24; ‘H0-0’, ‘cH0-0’: y = ε, λ = 0.83; ‘cH2-1’: y = 1 + ε, λ = 1.66;
‘cH1-1’: y = 1+ ε, λ = 1.24; ‘cH0-1’: y = 1+ ε, λ = 0.83. μv = 0 and σv = 0.3 are used for data generation for all simulations.
100 simulations are run for each scenario. ‘TRUE’, ‘EST’, ‘MSE’ are the true value, estimated value, minimum standard error.
‘Stat’, ‘Met’ are short for statistics and method, respectively. Statistics are rounded to 4 digits.

Type Stat Met cH1-0 cH1+0 cT1-0 cT1+0 cG1-0 cG1+0 cE1-0 cE1+0 cP1-0 cP1+0

TRUE μu 0.4926 0.6574 1.0006 1.0308 0.1378 0.2551 0.3722 0.4965 0.1387 0.2548
EST μu cRLb 0.4928 0.6576 1.0007 1.0310 0.1379 0.2552 0.3723 0.4967 0.1388 0.2550
MSE μu cRLb 1.4E-5 1.6E-5 1.6E-5 4.7E-5 1.3E-5 1.9E-5 1.5E-5 1.5E-5 1.2E-5 1.7E-5
MSE μu SS 0.0621 0.0001 0.0234 0.2001 0.0809 0.0375 0.0919 0.0125 0.0842 0.0381
TRUE σu 0.3696 0.4922 0.383 0.4756 0.3507 0.479 0.3667 0.4898 0.3668 0.4902
EST σu cRLb 0.0648 0.0807 0.0686 0.0786 0.0637 0.0792 0.0640 0.0803 0.063 0.078
MSE σu cRLb 0.0929 0.1759 0.0989 0.1648 0.0826 0.1670 0.0917 0.1741 0.0924 0.1765
MSE σu SS 0.0688 0.1726 0.1033 0.1893 0.0198 0.1167 0.0578 0.1540 0.0232 0.1240
TRUE λ 17.9500 23.9363 18.6034 23.1282 17.0303 23.2879 17.8088 23.8133 17.8153 23.8330
EST λ cRLb 3.1454 3.9310 3.3314 3.8245 3.0957 3.8479 3.1071 3.9060 3.0633 3.7952
MSE λ cRLb 221.7659 421.9148 236.0365 395.7472 196.6467 401.0898 218.5740 417.3291 220.0686 423.2477
MSE λ SS 164.3076 414.3089 246.4501 454.8965 46.9563 280.3685 137.7277 369.2917 55.0114 297.2052

Table 3: Results of simulation set 2. ‘cH1-0’: half normal, homoscedastic; ‘cH1+0’: half normal, heteroscedastic; ‘cT1-0’: trun-
cated normal, homoscedastic; ‘cT1+0’: truncated normal, heteroscedastic; ‘cG1-0’: gamma, homoscedastic; ‘cG1+0’: gamma,
heteroscedastic; ‘cE1-0’: exponential, homoscedastic; ‘cE1+0’: exponential, heteroscedastic; ‘cP1-0’: Poisson, homoscedastic;
‘cP1+0’: Poisson, heteroscedastic. y = ε, λ = 1.24, μv = 0, σv = 0.3 are used for data generation for all simulations, and
100 simulations are run for each scenario. ‘TRUE’, ‘EST’, ‘MSE’ are the true value, estimated value, minimum standard error.
‘Stat’ and ‘Met’ are short for statistics and method, respectively. Statistics are rounded to 4 digits.

3.3.1 cRLb removes μ from the inefficiency estimates

As illustrated by Fig. 1 ‘H2-0’ to ‘cH0-0’, cRLb effectively removes the expected inefficiency μ regardless of
the signal to noise ratio (λ). This property applies to data with different distributions of the inefficiency u
and tolerates data heteroscedasticity (Fig. 1 ‘cH1-0’ and Fig. 2). Statistically, the MSE of μu approximates
0 when cRLb is used (‘cH2-0’, ‘cH1-0’, ‘cH0-0’ of Table 2, and all scenarios in Table 3), whereas the MSE
of σu and λ stay unchanged compared with the corresponding results using RLb (‘H2-0’, ‘H1-0’, ‘H0-0’ of
Table 2), suggesting the accuracy of cRLb in correcting the bias introduced by RLb. On the other hand,
cRLb does not correct the error coming from frontier estimation. This is illustrated by Fig. 1 ‘cH2-1’ to
‘cH0-1’, where the estimates are upward shifted by the constant a in y = a + e (a = 1 here). This is also
statistically reflected in Table 2 where the MSEs of μu are almost 1 in ‘cH2-1’, ‘cH1-1’ and ‘cH0-1’. As a
benchmark for evaluating the performance of cRLb, SS always overestimates the inefficiency, and the bias
increases with the decrease of λ.

3.3.2 cRLb inherits the advantages of RLb

RLb is shown to be robust to distribution density, skewness and kurtosis of u, as well as data noise and
heterscedasticity [7]. These nice properties are inherited by cRLb and applicable to panel data. Except for
the wrong skewness and low kurtosis problems (discussed in [7]) which do not exist using SS either, the other
features inherited from RLb make cRLb outperforming SS in various aspects as described below.

As seen from Fig. 1 ‘cH1-0’ and Fig. 2, cRLb is insensitive to the distribution assumption and always
produces the actual firm-specific estimates, whereas the bias introduced by SS is highly affected by the distri-
butional assumption of u. In most cases (gamma, exponential and Poisson distributions), SS overestimates
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Figure 1: Simulation set 1 (half normal, homoscedastic). ‘H2-0’:
RLb, λ = 1.66, y = ε; ‘H1-0’: RLb, λ = 1.24, y = ε; ‘H0-0’:
RLb, λ = 0.83, y = ε; ‘cH2-0’: cRLb, λ = 1.66, y = ε; ‘cH1-0’:
cRLb, λ = 1.24, y = ε; ‘cH0-0’: cRLb, λ = 0.83, y = ε; ‘cH2-1’:
cRLb, λ = 1.66, y = 1 + ε; ‘cH1-1’: cRLb, λ = 1.24, y = 1 + ε;
‘cH0-1’: cRLb, λ = 0.83, y = 1 + ε.
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Figure 2: Simulation set 2 (λ = 1.24, y = ε). ‘cH1-0’:
half normal, homoscedastic (see Fig. 1); ‘cH1+0’: half nor-
mal, heteroscedastic; ‘cT1-0’: truncated normal, homoscedastic;
‘cT1+0’: truncated normal, heteroscedastic; ‘cG1-0’: gamma,
homoscedastic; ‘cG1+0’: gamma, heteroscedastic; ‘cE1-0’: ex-
ponential, homoscedastic; ‘cE1+0’: exponential, heteroscedas-
tic; ‘cP1-0’: Poisson, homoscedastic; ‘cP1+0’: Poisson, het-
eroscedastic.

u with the bias increasing with the standard deviation of the inefficiency σu (Fig. 2 ‘cG1-0’ to ‘cP1+0’).
When u follows truncated normal distribution, SS underestimates u with the bias increasing with σu (Fig. 2
‘cT1+0’). Worth noting that when the distribution of u is half normal and the data is heteroscedastic, SS al-
most performs as equally well as cRLb. This means that when u follows a particular distribution such as half
normal, SS could produce firm-specific inefficiency estimates supplemented with the additional information
stored in the panel data (e.g., the periodic information and heteroscedasticity). Considering the truncated
normal as a special case of half normal with a shifted mean, it is suggested that the bias introduced by SS is
affected by the expected value of u and works best under half normal distribution. While cRLb is unaffected
by such factors and always produces firm-specific estimates.

Inherited from RLb, cRLb is robust to data noise and heteroscedasticity. As illustrated in Fig. 1 ‘cH2-0’
to ‘cH0-0’, estimates from cRLb lie on the line û = u regardless of λ while those from SS lie above and
diverge from the line with the decrease of λ. Pairwise comparisons between the subplots of Fig. 1 ‘cH1-0’
and Fig. 2 show that cRLb is insensitive to data heteroscedasticity, whereas SS is not.

4 Conclusions

This study presents a two-stage non-parametric inefficiency estimator, cRLb, which can produce firm-specific
inefficiencies in the panel setting. The performance is tested under 19 simulated scenarios. The cRLb removes
the expected inefficiency by the difference between the average of residuals ε and that of inefficiencies u over
time for a specific firm in the panel setting, which is achieved by methods such as the non-parametric kernel
estimator proposed by Hall and Simar [8] when RLb is used in the cross-sectional setting [7]. In other words,
cRLb could estimate inefficiencies in a two-step framework provided with the panel data, whereas RLb could
be used in the cross-sectional setting using a three-step strategy. Monte Carlo simulations show that the
expected inefficiency μ could be effectively removed and all good properties of RLb such as non-parametric
modelling, independence of inefficiency distribution, robustness to data noise and heteroscedasticity, are
inherited by cRLb. The cRLb method could be applied to empirical cases such as estimating the inefficiencies
of banking branches under a homogeneous environment or more complex cases such as a more diverse sales
network in the future.
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a b s t r a c t

Data envelopment analysis (DEA) is widely used as a benchmarking tool for improving productive
performance of decision making units (DMUs). The benchmarks produced by DEA are obtained as a side-
product of computing efficiency scores. As a result, the benchmark units may differ from the evaluated
DMU in terms of their input–output profiles and the scale size. Moreover, the DEA benchmarks may
operate in a more favorable environment than the evaluated DMU. Further, DEA is sensitive to stochastic
noise, which can affect the benchmarking exercise. In this paper we propose a new approach to
benchmarking that combines the frontier estimation techniques with clustering methods. More
specifically, we propose to apply some clustering methods to identify groups of DMUs that are similar
in terms of their input–output profiles or other observed characteristics. We then rank DMUs in the
descending order of efficiency within each cluster. The cluster-specific efficiency rankings enable the
management to identify not only the most efficient benchmark, but also other peers that operate more
efficiently within the same cluster. The proposed approach is flexible to combine any clustering method
with any frontier estimation technique. The inputs of clustering and efficiency analysis are user-specified
and can be multi-dimensional. We present a real world application to the regulation of electricity
distribution networks in Finland, where the regulator uses the semi-nonparametric StoNED method
(stochastic non-parametric envelopment of data). StoNED can be seen as a stochastic extension of DEA
that takes the noise term explicitly into account. We find that the cluster-specific efficiency rankings
provide more meaningful benchmarks than the conventional approach of using the intensity weights
obtained as a side-product of efficiency analysis.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of benchmarking is to help the management of a
decision making unit (DMU) to improve performance and pro-
ductivity. The process of the best practice benchmarking involves
the identification of the best firms in an industry or a sector,
comparison of the specific performance metrics or indicators (e.g.,
unit cost, productivity, or efficiency), and learning from the peers
how the business processes could be improved. The benchmarking
process can be repeated continuously to allow DMUs improve
their practices over time.

Data Envelopment Analysis (DEA) [1,2] has been widely applied
for efficiency estimation and benchmarking (see, e.g., Section
3.9 of [3], and the recent surveys of DEA applications [4,5]).
Technically, DEA is mainly geared towards efficiency estimation,
applying input–output weights that maximize the efficiency score
of the evaluated DMU. The conventional benchmarks provided by
DEA can be seen as a side-product of the envelopment problem
where the frontier is constructed as a convex hull of the observed
data points using the so-called intensity weights (reference DMUs
that have strictly positive intensity weights are identified as
benchmarks, see Section 3.9 of [3]), while the benchmarks are
widely considered as an appealing feature of DEA, to our knowl-
edge, there is little evidence about the usefulness of the intensity
weights for benchmarking (let alone their optimality). In the
recent DEA literature (see [3] for an excellent survey), it is well
recognized that units identified as benchmarks can differ from the
evaluated DMU in terms of the input profile (e.g., capital intensity)
or the output structure (economies of specialization versus scope).
Further, the benchmarks can operate at different scale sizes than
the evaluated DMU, particularly when constant returns to scale
(CRS) is assumed. Indeed, if the benchmarks are located far away
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from the evaluated DMU in the input–output space, the benefits of
the benchmarking exercise may be questionable.

The benchmark selection has attracted growing interest in the
recent DEA literature: there is a growing stream of DEA studies on
the identification of closest targets, axiomatic characterization of
benchmarks, and the use of preference information and interactive
procedures (see, e.g., Refs. [6–11] and Section 3.9 of [3] for further
discussion). To our knowledge, however, these recent develop-
ments restrict to the deterministic DEA framework that assumes
away noise. It is well recognized that DEA can be sensitive to
random noise and heterogeneity of DMUs and their operating
environments. In a stochastic environment, some DMUs may
appear more efficient than others due to more favorable opera-
tional conditions or just pure luck (consider, e.g., external demand
factors or weather conditions), while DEA can identify successful
units, it may be difficult to transfer the success recipes to
inefficient DMUs if the success is due to external conditions or
just good fortune.

The motivation of this paper stems from a real-world applica-
tion to the regulation of electricity distribution networks, which is
one of the most significant application areas of DEA and efficiency
analysis. Traditionally, regulators in many countries have applied
DEA to estimate the efficient frontier to serve as the best practice
benchmark in the regulatory framework. In the past decade,
several countries have adopted stochastic frontier analysis (SFA
[12,13]) models to complement DEA. The main advantage of SFA is
that it models the random noise term explicitly in a probabilistic
manner. However, the SFA imposes more restrictive parametric
functional form assumptions than DEA. Recently, the Finnish
regulator (Energiamarkkinavirasto EMV) replaced the conven-
tional DEA and SFA by the new StoNED method (stochastic non-
parametric envelopment of data [14,15]). The StoNED method
combines the appealing features of both DEA and SFA, melding
the axiomatic DEA-style non-parametric frontier with the prob-
abilistic SFA-style treatment of noise. The StoNED method differs
from the semi-parametric extensions of SFA in that it does not
make any assumptions about the functional form or its smooth-
ness (see [14] for a more detailed discussion). Rather, StoNED
builds directly on the axioms of production theory (such as free
disposability and convexity), similar to DEA. Compared to DEA, the
StoNED method differs in its probabilistic treatment of inefficiency
and noise, while the DEA frontier is typically spanned by a small
number of influential observations, which makes it sensitive to
outliers and noise, the StoNED method uses information of all
observations in the data set to estimate the frontier. The StoNED
method can also be applied to panel data (see [14]) and the
observed heterogeneity of units and their operating environments
can be explicitly modeled as an integral part of the estimation (see
[16,17]).

Benchmarking forms an integral part of the frontier based
regulatory regimes. As inefficient energy companies are required
to reduce their total costs, it is necessary to indicate companies
that provide comparable service in a similar environment with a
lower cost. Of course, the conventional approach is to identify
benchmarks based on the intensity weights, and this could be
used equally well in DEA and StoNED. In the present application,
however, many energy companies find the conventional bench-
marks inappropriate. Finland is a sparsely populated country with
a relatively large land area covered by forest and lakes. As a result,
the Finnish electricity distribution sector consists of a very
heterogenous group of firms. Some firms operate in larger cities
such as Helsinki, where underground cables form a large propor-
tion of the electricity grid. A majority of firms operates in rural
areas, using overhead cables. There are also some small firms
which are specialized to supply power to industrial users. The
main problemwith the conventional DEA benchmarks is that often

urban network companies are identified as benchmarks for rural
network firms, and vice versa. It is necessary to take the hetero-
geneity of firms explicitly into account in the benchmarking
procedure.

To identify more appropriate benchmarks, in this paper we
propose a novel approach based on the clustering methods, which
applies equally well to the conventional DEA and SFA as well as to
the recently introduced StoNED method. The proposed approach
can be briefly described as follows. We apply a certain clustering
method to identify a number of mutually exclusive groups from
the original input–output data, or from the input–output vectors
that are first projected to the estimated frontier. In each cluster, we
rank the DMUs in the descending order of efficiency. These cluster-
specific rankings allow managers to identify not only the best
performing DMUs within each group, but also a range of DMUs
that performs better within the same cluster. The full range of
efficiency scores within a cluster can provide managerial insights
into why some DMUs are more efficient than others within the
same cluster, and help the managers to identify the most appro-
priate benchmarks, both in the short run and long run.

We must recognize that clustering methods have been used in
the context of efficiency analysis before. For example, the latent
class SFA models identify groups of DMUs which are interpreted to
operate with different technologies (see, e.g., [18]). O'Donnell et al.
suggested using clustering methods to identify latent classes in the
context of meta-frontier estimation [19]. In the DEA literature, Po
et al. proposed to apply DEA as a clustering technique [20]. Triantis
et al. presented a two-stage strategy for efficiency performance
analysis [21]. Fallah-Fini et al. proposed a bootstrapped non-
parametric meta-frontier approach to measure the efficiency of
highway maintenance contracting strategies [22]. To summarize,
the previous studies that combine clustering approaches with
efficiency analysis restrict to specific clustering method or to
particular applications. To our knowledge, this paper is the first
one to apply clustering methods specifically for benchmarking
purposes.

The general approach to benchmarking proposed in this paper
is highly flexible. It applies to any frontier estimation method,
including DEA, SFA, and StoNED. Further, any appropriate cluster-
ing technique may be applied. Since there exists a large literature
of clustering methods, we present a concise survey of methods,
classified as hierarchical, partitioning, and model-based clustering
methods. The approach is also flexible in terms of the clustering
criteria. One can use the input–output variables, some functions
thereof, or some other observed characteristics of the firm as input
data to clustering. One can apply different techniques or combina-
tions thereof to gain better understanding of which DMUs are
similar to the evaluated unit, and which criteria can best char-
acterize similarity. The choice of the criteria and the clustering
method can be conducted interactively with the management to
ensure the maximum relevance for the decision makers.

The rest of the paper is organized as ‘theory’, ‘application’ and
‘conclusion’. In the next section we introduce the frontier produc-
tion model, briefly review the DEA and StoNED approaches,
summarize the widely used clustering methods, and elaborate
our proposal for the benchmarking framework. Section 3 presents
the real world application for the regulation of electricity distribu-
tion networks in Finland, and discusses some implementation
issues. Finally, Section 4 concludes.

2. Theory

The proposed clustering based benchmarking framework incor-
porates frontier estimation and clustering methods into a unified
flexible framework. As the two main steps in the framework for

X. Dai, T. Kuosmanen / Omega 42 (2014) 179–188180



benchmarking, any frontier estimation and clustering methods
could be employed in principle. Thus, in this section, we first
introduce the widely available techniques in each of the two steps,
and formally present the framework in the end.

2.1. Frontier estimation methods

The field of productive efficiency analysis has been dominated
by non-parametric DEA [1,2] and parametric SFA [12,13]. The
appeal of DEA lies in its non-parametric nature (i.e., no functional
form assumption for the frontier), whereas SFA appeals with its
stochastic treatment of the deviations which is decomposed into a
non-negative inefficiency term and a random noise term. The
emergence of the StoNED framework (stochastic non-parametric
envelopment of data [14]) bridges the gap between DEA and SFA.
StoNED is a semi-parametric method that encompasses DEA and
SFA as its special cases. Any of these methods can be easily
incorporated into the proposed benchmarking framework.

Consider the standard multiple-input xi, single-output yi, cross-
sectional model,

yi ¼ f ðxiÞ þ εi;

¼ f ðxiÞ−ui þ vi; ∀i¼ 1;…;N: ð1Þ
where ui40 is an asymmetric inefficiency term and vi is a
stochastic noise term. DEA, SFA and StoNED are formulated
depending on how the production function f and the random
variables u and v are estimated. In the following we focus on DEA
and StoNED.

2.1.1. DEA
DEA is deterministic in the sense that the stochastic noise term

v is assumed away. Instead of assuming any particular form for the
production function, DEA assumes that f satisfies certain regula-
tory axioms, i.e., monotonicity and concavity. The variable returns
to scale (VRS) DEA estimator of f can be defined as [23,24]

f DEAðxÞ ¼max
λ∈RN

þ
yjy¼ ∑

N

h ¼ 1
λhyh; x≥ ∑

N

h ¼ 1
λhxh; ∑

N

h ¼ 1
λh ¼ 1

( )
; ð2Þ

and the efficiency estimate εDEAi for DMU i can be obtained by
substituting f in (1) by (2), as seen in (3) [24]

εDEAi ¼min
λ;ε

εjyi ¼ ∑
N

h ¼ 1
λhyh þ ε;

(

xi≥ ∑
N

h ¼ 1
λhxh; ∑

N

h ¼ 1
λh ¼ 1; λh≥0; ∀h¼ 1;…;N

)
; ð3Þ

Problem (3) minimizes ε, which represents inefficiency: DMUs
that yield ε¼ 0 are classified as efficient. Problem (3) also includes
intensity weights λ, which are used for constructing convex
combinations of the observed DMUs. Reference units that have a
positive value of weight λ in the optimal solution to (3) are
conventionally used as the benchmarks for the evaluated DMU.
As noted in the introduction (Section 1), however, the input–
output profiles of the evaluated DMU and the units identified as
benchmarks can differ considerably. Further, the evaluated DMU
might operate at different scale sizes than the benchmarks,
especially if CRS is assumed. It can be argued that the further
away the benchmarks are located from the evaluated DMU, the
more difficult it will be to transfer the knowledge and practices of
the benchmark units to the evaluated DMU. Aparicio et al. [25]
recognized this problem, stating the following: “The DEA models
yield targets that are usually determined by the “furthest” efficient
projection to the assessed DMU…. However, we believe, as many
other authors, that the projected point on the efficient frontier
obtained as such may not be a representative projection for the

assessed DMU and that the distance to this efficient projection should
be minimized so that the resulting targets are as much similar as
possible to the inputs and outputs of the assessed DMU. The general
argument behind this idea is that closer targets suggest directions of
improvement for the inputs and outputs of the inefficient units that
may lead them to the efficiency with less effort.” To address the
problem, they proposed methods such as the Euclidean distance-
based measure [26] to obtain the shortest path to the efficient
frontier from the assessed DMU, while Aparicio et al. state their
argument in the context of target setting, in our view, the same
argument applies to benchmarking.

DEA is a deterministic method in the sense that it attributes all
deviations from the frontier to inefficiency u, and hence assumes
away the noise term v, while the presence of stochastic noise is
not necessarily a problem if one is mainly interested in identifying
the best-performing units in the sample, it does affect the benefits
of benchmarking. If the efficiency differences are to a large extent
driven by random factors that are beyond the control of the
management, transferring the good practices becomes challen-
ging. For example, it is possible that DMU A has better practices
than DMU B, but due to random errors, DMU B is classified as DEA
efficient whereas DMU A appears inefficient. Clearly, benchmark-
ing involves risks in a noisy environment. We next consider the
semi-nonparametric StoNED method, which takes the random
noise term v explicitly into account.

2.1.2. StoNED
The StoNED method combines the non-parametric, piece-wise

linear DEA-style frontier with the stochastic SFA-style treatment of
inefficiency and noise. The assumptions of StoNED are milder than
those required by DEA or SFA: both DEA and SFA can be obtained
as constrained special cases of the more general StoNED-model
(see [14]). The less restrictive assumptions directly imply that
StoNED has a wider range of applicability: it is more robust to
uncertainty concerning both the functional form of the frontier
and the stochastic noise. The model is defined as (1), where f has
no particular functional form but satisfies monotonicity and
concavity. A two-stage strategy is used to estimate the determi-
nistic part of the StoNED model in a non-parametric fashion [14].
In the first stage, the shape of the function f is estimated by CNLS
regression, given that DEA can be interpreted as CNLS that is
subject to the sign constraints on residuals. In the second stage, by
imposing additional distributional assumptions, e.g., the asym-
metric distribution for ui with positive mean μ and finite variance
s2u, and a symmetric distribution for vi with zero mean and
constant finite variance s2v , the variances are estimated based on
the skewness of the CNLS residuals obtained from Stage 1 using
the method of moments or pseudo likelihood techniques. The
inefficiency u is then computed from the variance parameter
estimates.

Specifically, the problem can be analytically represented
by (4)–(7) [14],

min
v;α;β

∑
n

i ¼ 1
ε2i such that ð4Þ

yi ¼ αi þ β′ixi þ εi ð5Þ

αi þ β′ixi ≤αh þ βh′xi; ∀h; i¼ 1;…;n ð6Þ

βi≥0; ∀i¼ 1;…;n ð7Þ
where αi and βi are coefficients specific to observation i and vi
captures its random noise.

The inefficiency is then computed using the distribution of the
CNLS residuals ε̂i (note that ε¼ vi þ ui). With the assumption that the
inefficiency and noise follow half-normal and normal distribution,
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respectively, the 2nd and 3rd central moments of the composite error
distribution are

M2 ¼
π−2
π

� �
s2u þ s2v ; ð8Þ

M3 ¼−

ffiffiffi
2
π

r !
4
π
−1

� �
s3u; ð9Þ

which can be estimated using the CNLS residuals

M̂2 ¼ ∑
n

i ¼ 1
ðε̂ i−εÞ2=n; ð10Þ

M̂3 ¼ ∑
n

i ¼ 1
ðε̂ i−εÞ3=n: ð11Þ

Thus, the standard deviations of the inefficiency and error term are

ŝu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂3ffiffiffi
2
π

r !
4
π
−1

� �3

vuuuut ; ð12Þ

ŝv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̂2−

π−2
π

� �
ŝ2
u

s
: ð13Þ

Since the conditional distribution of the inefficiency ui given εi is a
zero-truncated normal distribution with mean μ⋆ ¼ −εis2u=ðs2u þ s2v Þ
and variance s2⋆ ¼ s2us

2
v=ðs2u þ s2v Þ, the conditional mean can be

computed as

EðuijεiÞ ¼ μ⋆ þ s⋆
ϕð−μ⋆=s⋆Þ

1−Φð−μ⋆=s⋆Þ

� �
; ð14Þ

where ϕ and Φ represent the standard normal density function and
the standard normal cumulative distribution function, respectively.

It is worth to note that the frontier characterized by the CNLS
problem (4)–(7) is not necessarily unique. Kuosmanen and Korte-
lainen [14] recognize this problem. The solution they propose is to
use the lower bound of the set of piece-wise linear functions that
solve the problem (4)–(7). Further, in Theorem 3.2 (of [14]) they
formally show that lower bound is obtained by applying the
standard DEA method to the projection points (x, ŷ) of the CNLS
problem. Thus, the intensity weights λ of the DEA problem used
for characterizing the StoNED frontier could be used for bench-
marking purposes in the same way as they are conventionally used
in DEA. However, the arguments presented in Section 2.1.1 still
apply: there is no guarantee that the benchmarks have a similar
input–output structure or scale size as the evaluated DMU.
Furthermore, since the observed DMUs are first projected to the
StoNED frontier before DEA is applied, there is no guarantee that
the DMUs identified as benchmarks are efficient. This observation
motivates us to consider an alternative approach to benchmarking.

2.2. Clustering methods

Clustering is a common technique used in many fields including,
e.g., bioinformatics, image analysis, pattern recognition and informa-
tion retrieval. Specifically, functionally related genes can be grouped
together to reveal novel pathways or new functions of certain genes;
image boundaries can be easily located in image segmentation using
clustering; as an unsupervised pattern recognition method, cluster-
ing can be used to identify patterns based on the similarities within
the data; and information similar to the queries can be retrieved
from documents by clustering. In the proposed benchmarking
framework, DMUs are first clustered into groups from the original
input–output data. The segmentation is dependent on the clustering
algorithm, especially when the group boundaries are ambiguous.
Thus, choosing the appropriate clustering algorithm is fundamental

in obtaining meaningful benchmarking results. Below we review
some widely used clustering algorithms.

2.2.1. Hierarchical methods
There are two types of hierarchical clustering algorithms,

namely the agglomerative method and the divisive method, which
recursively combines or splits a set of objects into bigger or
smaller groups based on a certain criterion [27,28]. Commonly
applied criteria include single linkage [28], complete linkage [28],
average linkage [28], group average linkage [28] and Ward's
linkage [29,28]. The group similarity is often scaled by distance,
for which different measurements can be employed depending on
the purpose and the characteristics of the firms. Among others,
Euclidean distance [30], Mahalanobis distance [31], Manhattan
distance [32], and Hamming distance [33] are most commonly
seen. The formulations of the aforementioned clustering criteria
and the distance measures are presented in Appendix A.

Hierarchical clustering is favored due to its simple yet intui-
tively reasonable principle. However, it requires expert domain
knowledge to define the distance measurement for a particular
problem. For example, Euclidean distance is suitable when the
data is representable in vector space but should be avoided in
high-dimensional text clustering [34]. Moreover, the number of
clusters depends highly on the granularity chosen by the user,
rendering the results subjective to the pre-assumptions [35]. Also,
outliers, if exist, may distort the clustering results.

2.2.2. Partitioning methods
Partitioning methods are another class of heuristic methods

besides hierarchical clustering. The principle is to iteratively reallo-
cate data points across groups until no further improvement is
obtainable [36,35]. K-means [36] is a typical and the most represen-
tative partitioning algorithm. It is based on the criterion that each
object belongs to its closest group, where the group is represented by
the mean of its objects. In particular, with a given g, the algorithm
partitions N observations, fr1; r2;…; rNg, into g groups (G¼
fG1;G2;…Ggg) by minimizing the total intra-cluster variance, i.e.,
argminG ∑

g
i ¼ 1 ∑rw∈Gi

ðrw−μiÞ2, where μi is the mean of Gi.
It is seen from K-means that the number of clusters has to be pre-

specified or known. Also, the clustering results may be contaminated
by outliers [35]. Successive efforts have been devoted to search their
remedies which, however, mostly involve techniques out of the
domain of partitioning methods. For example, X-means (extended
from K-means) solves the problem of selecting the number of
clusters via using model selection criteria [37].

Despite those disadvantages, partitioning methods are widely
applied due to their simplicities. Many algorithms, such as fuzzy C-
means [38], quality threshold clustering [39] and partitioning around
medoids [40], also belong to this category. Specifically, ‘fuzzy
C-means’ assigns each data point to each cluster with a certain
probability [38], ‘quality threshold’ groups data points whose simila-
rities are high enough together [39], and ‘partitioning around
medoids’ minimizes a sum of dissimilarities and allows the user to
choose the number of clusters through graphical display [40].

2.2.3. Model based clustering
Model based methods attempt to optimize the fitness between

the data and the model where the data is assumed to be generated
[41–44]. Model based methods can be further classified into finer
groups, including finite mixture models [41], infinite mixture
models [42], model based hierarchical clustering [43], and specia-
lized model based partitioning clustering [44], among which finite
model based methods are most widely applied.

In finite model based clustering, each observation r is drawn
from finite mixture distributions with the prior probability πi,
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component-specific distribution f i and parameters θi. The formula
is given as

f ðr;ΘÞ ¼ ∑
g

i ¼ 1
πif iðr; θiÞ; ð15Þ

where Θ¼ fðπi; θiÞ : i¼ 1;…; gg is used to denote all unknown
parameters, with the restriction that 0rπir1 for any i and
∑g

i ¼ 1 πi ¼ 1. Note that g is the number of components in
this model.

Expectation Maximization (EM) algorithm is normally used for
the above model based clustering. The data log-likelihood can be
written as

log LðΘÞ ¼ ∑
N

j ¼ 1
log ∑

g

i ¼ 1
πif iðrj; θiÞ

 !
; ð16Þ

where R¼ frj : j¼ 1;…;Ng and N is the total number of
observations.

Since direct maximization of (16) is difficult, the problem can
be casted in the framework of incomplete data. Define Iji as the
indicator of whether rj comes from component i, the complete
data log-likelihood becomes

log LcðΘÞ ¼ ∑
N

j ¼ 1
∑
g

i ¼ 1
Iji log ðπif iðrj; θiÞÞ: ð17Þ

At the mth iteration of the EM algorithm, the E step computes
the expectation of the complete data log-likelihood which is
denoted as Q

Q ðΘ;ΘðmÞÞ ¼ EΘðmÞ ðlog LcjRÞ

¼ ∑
N

j ¼ 1
∑
g

i ¼ 1
τðmÞji log ðπif iðIj; θiÞÞ; ð18Þ

and the M step updates the parameter estimates to maximize Q.
The algorithm is iterated until convergence. Note that I's in (17) are
replaced with τ's in (18), and the relationship between these two
parameters is τji ¼ E½Ijijrj; θ̂1;…; θ̂g; π̂1;…; π̂g�. The set of parameter
estimates fθ̂1; ; θ̂g; π̂1;…; π̂gg is a maximizer of the expected log-
likelihood for given τji 's, and we can assign each rj to its
component based on fi0jτji0 ¼maxi τjig.

One advantage of mixture model based clustering is its auto-
matic determination of the number of clusters. Commonly used
model selection criteria can be roughly classified as likelihood
based methods [45] and approximation based methods [46–51],
where four approximation based model selection criteria are
widely applied due to their computational efficiency, which are
Akaike information criterion (AIC) [47,50], modified AIC (AIC3)
[49,50], Bayesian information criterion (BIC) [48,51], and inte-
grated classification likelihood BIC (ICL-BIC) [46].

2.3. Clustering framework for benchmarking

The proposed benchmarking framework combines clustering
and productive efficiency analysis into a unified framework. It first
clusters the DMUs into groups based on user-specified metrics,
and then identifies relative or absolute benchmarks using produc-
tive efficiency analysis. We define the ‘relative benchmark’ as a
DMU ‘h’ that achieves the highest efficiency in the group but falls
below 100% efficiency; and the ‘absolute benchmark’ as a DMU ‘h’
which achieves at least 100% efficiency.

Mathematically, assume that N DMUs are clustered into g
groups using a particular clustering algorithm, and there are NGj

DMUs in cluster Gj. Let ζi denote the efficiency of DMU i
(i∈1;…;NGj

in group Gj), and denote the frontier DMU(s) as h,

the relative and absolute benchmarks are defined by (19) and (20).

Relative benchmark : h¼ ijmax
NGj

i ¼ 1
ζi

( )
; max

NGj

i ¼ 1
ζio1 ð19Þ

Absolute benchmark : h¼
n
ijζi≥1

o
; max

NGj

i ¼ 1
ζi≥1 ð20Þ

To qualify as absolute benchmark, the DMU must operate with
100% efficiency or higher. It is possible that there are multiple
absolute benchmarks within the same cluster. It is also possible
that all DMUs within a cluster are inefficient. In this case, we
propose to indicate the DMU with the highest efficiency score
within the cluster as a relative benchmark. The rationale of the
relative benchmark is similar to that of the context dependent DEA
discussed in [52].

The ‘relative benchmark’ is provided when none of the DMUs in
a particular group has 100% efficiency due to, e.g., the cluster-wise
operational inefficiencies, ensuring at least one reference for each
inefficient DMU to benchmark against. The ‘absolute benchmark’
must have at least 100% efficiency, allowing multiple choices for a
particular DMU in a given group.

In a step-by-step manner, the clustering based benchmarking
framework runs as below:

� Step 1: efficiency estimation. Compute the efficiency score for
the whole data set using a productive efficiency estimation
method such as StoNED, DEA, and SFA.

� Step 2: clustering. Group the DMUs using a clustering algo-
rithm such as mixture models and K-means. The data used for
clustering can include any user specified metrics such as the
inputs, outputs and efficiency scores from productive efficiency
analysis, depending on the objectives and scope of the bench-
marking application.

� Step 3: benchmarking. Find the absolute or relative benchmark
(s) for DMUs of each group using the efficiency scores com-
puted from the first step.

Alternatively, when the number of DMUs is sufficiently large, the
procedure can be implemented in the reverse order:

� Step 1: clustering. Group the DMUs using a clustering algo-
rithm such as mixture models and K-means. The inputs for
clustering can be any user specified metrics depending on the
aspects needed for benchmarking.

� Step 2: efficiency estimation. Compute the efficiency score
within each group using a productive efficiency estimation
method such as StoNED, DEA, and SFA.

� Step 3: benchmarking. Find the absolute benchmark(s) for
DMUs of each group using the efficiency scores computed from
the second step.

Note that in the second alternative, only the absolute benchmarks
are produced.

In the application to energy regulation, to be described and
discussed in the next section, we prefer to apply the combination
of StoNED for frontier estimation and efficiency analysis and NMM
for clustering. In other applications, one may prefer some other
combination of methods. Indeed, we see the generality and
flexibility of the proposed framework as major advantages of the
proposed framework. The data used in clustering and efficiency
analysis are user-specified, and can be multi-dimensional. The
combination of methods applied for clustering and efficiency
analysis can be chosen to meet the objectives and scope of the
application. Finally, the order in which clustering and efficiency
analysis are applied can be reversed, provided that the sample size
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is sufficiently large such that it is meaningful to apply efficiency
analysis separately in each cluster.

3. Application

3.1. Data and methods

3.1.1. Data
We applied the clustering based cluster-specific benchmarking

framework to Finnish electricity distribution networks. The data
consists of the six-year average over the period 2005–2010, which
is available in the Energy Market Authority (EMA) website (www.
emvi.fi). The cost frontier model has been adopted by EMA, where
the total cost (x) is used as the single input, and three variables, i.
e., ‘Energy transmission’ (GWh of 0.4 kV equivalents, y1), ‘Network
length’ (km, y2), and ‘Customer number’ (y3) are specified as the
outputs (y). Specifically, x includes the operational expenditure
and half of the interruption cost, and the electricity transmission
at different voltage levels is weighted according to the average
transmission cost such that lower weight is assigned to high-
voltage transmission than low-voltage transmission in y1. To
better control the DMUs' heterogeneity and their operating envir-
onment, the proportion of the underground cables in the total
network length is used as a contextual variable (z). The descriptive
statistics of the data are listed in Table 1. A more detailed
description of the variables and the regulatory application is
presented in [15]. The complete set of input and output data used
in this application is provided as supplementary material to this
article, available online at 〈http://www.sciencedirect.com〉.

3.1.2. Methods
StoNED and Normal Mixture Model (NMM) are used for

productive efficiency analysis and group clustering, respectively,
in this empirical study. The results are compared with those from
DEA in Section 3.3.

In the efficiency estimation, the current regulatory model of
EMV, i.e., the cost frontier model, is used. In Finland, underground
cables are widely used in urban and suburban regions but not in
rural areas, we thereby use a contextual variable z to capture the
heterogeneity introduced by the proportion of underground
cables. Following [15], we specify the cost frontier model as

xi ¼ CðyiÞ expðδzi þ ui þ viÞ; ð21Þ
where C denotes the frontier cost function and δ characterizes the
effect of underground cables z on a DMU's total cost. By taking the
natural logarithms on both sides of (21), the parameters can be
estimated by convex programming using the following equations,

min
γ;β;δ;ε

∑
n

i ¼ 1
ε2i such that ð22Þ

ln xi ¼ ln γi þ δzi þ εi; ∀i ð23Þ

γi ¼ β′iyi; ∀i ð24Þ

γi≥βh′yi; ∀h; i ð25Þ

βi≥0; ∀i ð26Þ

where εi ¼ vi þ ui and γi is the CNLS estimator of EðxijyiÞ.
In the present application, we take the stochastic noise term v

explicitly into account in the estimation of the cost frontier C.
However, we must stress that the inefficiency term u is considered
as a random variable: its realization cannot be consistently
estimated based on just a single observation. No consistent
estimator of the inefficiency term u is available in the parametric
SFA literature (in the cross-sectional setting considered here).
Since in the present application the regulator is mainly interested
in the frontier (to specify the efficient cost levels for each DMU),
we measure efficiency as distance from the observed DMU to the
frontier. Note that the data of observed DMUs is also likely to
contain noise. As the purpose is to set targets from the cost
frontier, we do not adjust the efficiency estimates for the noise in
the observed data of units. That is, we measure efficiency as the
ratio of the efficient cost and the actual cost, i.e., CðyiÞ=xi. In this
case, it is possible that these efficiency scores are greater than
100% (due to downward ‘noise’ in xi). Using the terminology of the
DEA literature, this efficiency metric allows for ‘super-efficiency’.

We use the three output–input ratios as the clustering criteria:
‘Energy transmission/Efficient cost’ (r1), ‘Network length/Efficient
cost’ (r2), and ‘Customer number/Efficient cost’ (r3). Note that we
take inefficiencies into account clustering by using the ratios
r1;…; r3 the efficient cost level characterized by the estimated
cost frontier CðyiÞ. Assuming that the ratios r1;…; r3 are normally
distributed, we apply NMM for clustering. Denoting V ¼ diag
ðs21; s22;…; s2pÞ, jV j ¼∏p

v ¼ 1s
2
v and p is the dimension of the observa-

tions, the probability density functions are defined as

f iðrj; θiÞ ¼
1

ð2πÞp=2jV j1=2
exp −

1
2
ðrj−μiÞTV−1ðrj−μiÞ

� �
ð27Þ

where

μ̂ðmþ1Þi ¼ ∑
N

j ¼ 1
τðmÞji rj=∑N

j ¼ 1 τ
ðmÞ
ji ð28Þ

V̂
ðmþ1Þ
i ¼ ∑

N

j ¼ 1
τðmÞji ðrj−μ

ðmþ1Þ
i Þðrj−μðmþ1Þi ÞT= ∑

N

j ¼ 1
τðmÞji ð29Þ

π̂ ðmþ1Þi ¼ ∑
N

j ¼ 1
τðmÞji =N ð30Þ

τðmÞji ¼ πðmÞi f iðrj; θðmÞi Þ
∑g

i ¼ 1 π
ðmÞ
i f iðrj; θðmÞi Þ

ð31Þ

The model parameters are estimated iteratively over (28)–(31) (see
[41] for details). BIC is used for model selection as defined below,

BIC¼−2 log Lðθ̂Þ þ d log ðpNÞ; ð32Þ

where d represents the number of free parameters.

Table 1
Descriptive statistics of the input, output, and contextual variables of the empirical data. ‘MEAN’, ‘STD’, ‘MIN’, ‘MAX’, ‘KURT’, ‘SKEW’ represent the ‘Mean’, ‘Standard deviation’,
‘Minimum value’, ‘Maximum value’, ‘Kurtosis’ and ‘Skewness’, respectively. The data are averaged over a six-year period 2005–2010.

Variable MEAN STD MIN MAX KURT SKEW

x¼total cost ð1000€Þ 5052 10 144 139 64 326 22 4
y1¼energy transmission (GWh) 512 1026.65 15 6978 22 4
y2¼network length (km) 4370 10 465.63 46 68 349 26 5
y3¼customer number 37 650 73 856.08 24 426 769 16 4
z¼underground cable proportion 0.23 0.28 0 1 0.43 1.27
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3.2. Benchmarks obtained with StoNED and NMM

In this application, the NMM algorithm automatically identified
four clusters, which match our prior classification of DMUs as
rural, suburban, urban and industrial network firms. Table 2
reports the benchmark DMUs identified for each group using the
clustering framework described above. For the largest clusters 1, 2,
and 3, we can find several absolute benchmarks with efficiency
scores greater than 100%. In these clusters, inefficient DMUs can
choose one or more super-efficient DMUs to serve as the bench-
mark(s) based on such criteria as the similarity of activity or
output structure, geographic location, or the aspired target level of
efficiency. For the smallest cluster 4, interpreted as the group of
industrial networks, we can only identify a relative benchmark, as
none of the DMUs in this cluster currently operate with 100%
efficiency. As we apply separate methods for efficiency analysis
and clustering, it is possible to identify clusters in which all DMUs
are inefficient.

In Tables 2 and 3 we label the four clusters identified by NMM
as rural, suburban, urban and industrial network firms. This
interpretation is justified by Table 3, where we report some
descriptive statistics of the ratios r1;…; r3 used as inputs to the
NMM algorithm and the ratio of energy transmission to the
network length. We interpret cluster 1 as the group of rural
networks, because the network length is the main cost driver in
the sparsely populated rural areas, while the number of customers
and energy consumption are relatively small. In contrast, cluster
3 is interpreted as the group of urban networks as it has the
highest number of customers relative to the efficient cost. The
characteristics of cluster 2 are generally somewhere between
those of clusters 1 and 3, so we interpret it as the group of
suburban networks. Finally, cluster 4 is identified as the group of
industrial networks as the DMUs in this group have notably higher
energy transmission relative to the network length.

The four clusters are graphically illustrated in the three-
dimensional output space (Fig. 1). The output variables can be
scaled by the efficient cost level because the estimated cost
function exhibits CRS. The observed DMUs belonging to different
clusters are marked by different symbols. Benchmark DMUs are
indicated by filled symbols and the empty ones represent ineffi-
cient DMUs. Note that the benchmarks are located furthest away

from the viewer. Fig. 1 helps us to visualize the four groups
identified by NMM.

Interestingly, we note that the clusters closely follow the
ranking of DMUs according to the ratio of energy transmission to

Table 2
The cluster-specific benchmarking for each group. ‘No. of DMUs’ represent the
number of DMUs in a given group, which all could choose references from the
given benchmarks in the group.

Cluster No. Benchmark Efficiency
(%)

No. of
DMUs

Cluster 1 Koillis-Satakunnan Sähkö Oy 108 26
(rural) Järvi-Suomen Energia Oy 107

Lankosken Sähkö Oy 106
Sallila Sähkönsiirto Oy 105
Kokemäen Sähkö Oy 103
Tornionlaakson Sähkö Oy 101

Cluster 2 Oulun Seudun Sähkö
Verkkopalvelut Oy

119 33

(suburban) Herrfors Nät-Verkko Oy Ab 114
Paneliankosken Voima Oy 111
Tunturiverkko Oy 105
Pellon Sähkö Oy 101

Cluster 3 Oulun Energia Siirto ja Jakelu Oy 109 24
(urban) Jakobstads Energiverk 108

Vantaan Energia Sähköverkot Oy 101

Cluster 4
(industry)

Karhu Voima Oy 84 2

Table 3
Descriptive statistics of clustering based benchmarking. r1;…; r3 represent the
three output–input ratios for the cost frontier model.

Cluster 1
(rural)

Cluster 2
(suburban)

Cluster 3
(urban)

Cluster 4
(industry)

Mean
r1¼Energy
transmission/efficient
cost

0.075 0.124 0.158 0.156

r2¼Network length/
efficient cost

1.403 1.110 0.550 0.117

r3¼Customer number/
efficient cost

5.961 8.219 11.846 0.265

Energy transmission/
network length

0.054 0.114 0.314 1.583

Standard deviation
r1¼energy
transmission/efficient
cost

0.016 0.026 0.020 0.012

r2¼Network length/
efficient cost

0.083 0.131 0.153 0.043

r3¼Customer number/
efficient cost

0.977 1.776 2.281 0.228

Energy transmission/
network length

0.014 0.026 0.108 0.686

Minimum
r1¼Energy
transmission/efficient
cost

0.038 0.096 0.120 0.144

r2¼Network length/
efficient cost

1.226 0.785 0.221 0.074

r3¼Customer number/
efficient cost

3.651 3.763 8.009 0.038

Energy transmission/
eetwork length

0.023 0.079 0.177 0.897

Maximum
r1¼Energy
transmission/efficient
cost

0.102 0.168 0.210 0.168

r2¼Network length/
efficient cost

1.611 1.374 0.801 0.161

r3¼Customer number/
efficient cost

8.410 11.954 18.491 0.493

Energy transmission/
network length

0.078 0.169 0.612 2.269
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Fig. 1. Clustering based benchmarking results. The filled symbols represent the
benchmarks for each corresponding cluster.
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network length. Indeed, this ratio is commonly used as a simple
indicator for distinguishing rural, suburban, and urban firms.
Further, we note from Table 3 that the standard deviation of r3
is relatively high in all clusters, which implies there is a lot of
heterogeneity in the number of customers per efficient cost within
each cluster. In other words, the energy transmission and the
network length are the main outputs that distinguish the clusters.
However, all three output variables are needed to identify these
clusters: we cannot obtain these clusters by simply ranking DMUs
according to any single output variable alone.

3.3. Comparison with DEA benchmarks

For comparison, the benchmarks obtained by DEA (CRS) are
reported in Table 4. DEA identifies only four DMUs as 100%
efficient. In other words, the DEA frontier is spanned by the
four DMUs listed in Table 2. Virtually all previous DEA approaches
to benchmarking identify some subset of these four DMUs as
benchmarks for the inefficient units (one of the few exceptions is
the context dependent DEA discussed in [52]). The weights
assigned to the benchmark DMUs depend on the choice of
orientation and the efficiency metric (e.g., radial, non-radial, or
slack based), and the possible use of value judgments or pre-
ference information to impose weight restrictions. However,
whichever efficiency metric or weight restrictions are used, DEA
approaches identify some subset of these four DMUs as bench-
marks in this application.

Comparing the four DEA benchmarks with those obtained with
the combination of StoNED and NMM (reported in Tables 2 and 4),
we find that all DEA efficient benchmarks are among the super-
efficient DMUs according to StoNED estimation. In addition, the
four DEA efficient benchmarks are included in clusters 1, 2, and
3 identified using the combination of StoNED and NMM. The
results of DEA and StoNED support each other in these respects. In
general, efficient units according to DEA are also efficient accord-
ing to StoNED. However, the DEA efficient units are not necessarily
the most efficient ones according to StoNED, as the comparison of
Tables 2 and 4 illustrates.

The comparison of Tables 2 and 4 also reveals that the
proposed combination of StoNED and NMM can identify a larger
number of efficient benchmarks in each cluster. This is because the
StoNED frontier does not envelop all DMUs, but allows for super-
efficient units to be located above the efficient frontier. Further,
the StoNED efficiency estimates provide a continuous ranking of
efficient DMUs. In the present application we used the distance to
frontier as efficiency metric, allowing for super-efficiency. Alter-
natively, one could apply the conditional expected value to trans-
form the distance metric to efficiency scores restricted to the
interval [0, 1] (as discussed in [14]). The continuous rankings apply
also in the latter case, but all DMUs are classified as inefficient
(with efficiency score less than 100%) by construction.

More detailed DMU-specific benchmarks obtained with DEA
and the combination of StoNED and NMM are provided as
supplementary material to this article, available online at 〈http://
www.sciencedirect.com〉.

4. Conclusions

In this paper, we presented a clustering based benchmarking
framework to take into account the heterogeneity of firms and their
operating environment, which ensures the long-term achievability of
the targets for each DMU. In other words, the targets set for each firm
are realistic given their similarities in, e.g., product, customer, and
operation. The novelty of this framework lies not only in adjusting
the benchmarking according to the intrinsic characteristics of the
DMUs but also in its high flexibility due to the independence of the
two stages, i.e., clustering and productive efficiency analysis, which
can be tuned or optimized, separately, based on the customer needs
or preferences. In particular, the inputs of the clustering and
efficiency estimation are user-defined. Depending on the context
according to which the benchmarking is expected, measure-specific
clustering can be carried out by using a set of specific inputs or
incorporating prior information. The efficiencies can be computed
using different frontier models and the inputs can be customized
depending on the factors users wish to evaluate. Also, the algorithms
at each step could be freely chosen, modified or developed to meet
the customer needs, allowing more freedom and better chance of
getting the optimal targets. Further, the principle for choosing the
frontier at each cluster allows multiple absolute benchmarks, forming
a target pool for each DMU to choose from. In cases where no DMU
achieves 100% efficiency, it ensures at least one reference for each
user by outputting the relative benchmark, which is achievable at
least in the long run since it considers the cluster-wise difference.
Moreover, different clustering algorithms may provide different
segmentations (methods such as fuzzy c-means allows one element
belong to multiple groups), and multiple efficiency estimation
methods can be combined into the proposed framework, both
enlarging the pool size of the benchmarking for each DMU.

We applied the proposed cluster-specific framework to the Finland
electricity distribution network data set, and the results are compared
with those obtained from DEA. The clustering based method is shown
to be able to well characterize each group under interest. Also,
compared with DEA, more references are provided for each DMU,
and targets with higher efficiencies could be identified using the
proposed framework. Finally, the advantage of considering cluster-
wise difference is well demonstrated by the concept of ‘relative
benchmark’which, otherwise, would lead to unrealistic benchmarking
as shown by the references of the 4th group in the DEA outputs.

We believe that the flexible nature of the proposed approach is an
attractive feature for practitioners who are free to choose the most
suitable combination of efficiency assessment and clustering meth-
ods to match the objectives, information needs, and data availability
in specific applications. From the academic point of view, the general
nature of the proposed approach also poses an interesting research
challenge: what is the optimal configuration and specification of the
efficiency analysis and clustering methods when used in combination
for benchmarking purposes? This question could be investigated by
means of Monte Carlo simulations, which we suggest as an interest-
ing avenue for future research.
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Appendix A. Clustering criteria and distance measurements in
hierarchical clustering

There are two types of hierarchical clustering algorithms,
namely the agglomerative method and the divisive method, which

Table 4
DEA benchmarking for each group. ‘No. of DMUs’ represents the number of DMUs
in a given group.

Benchmark Efficiency (%) No. of DMUs

Group 1 Lankosken Sähkö Oy 100 36
Group 2 Oulun Seudun Sähkö Verkkopalvelut Oy 100 25
Group 3 Oulun Energia Siirto ja Jakelu Oy 100 15
Group 4 Herrfors Nät-Verkko Oy Ab 100 9
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recursively combines or splits a set of objects into bigger or
smaller groups based on a certain criterion. Commonly applied
criteria include single linkage, complete linkage, average linkage,
group average linkage and Ward's linkage, which are shown in
(A.1)–(A.5). Notice in these equations that DðGi;GjÞ and dðra; rbÞ
each represents the distance between two clusters (Gi and Gj) and
two firms (ra and rb, ra∈Gi; rb∈Gj), respectively. The number of
firms within groups Gi or Gj is shown as NGi

or NGj
, and ESS is the

abbreviation of ‘error sum of squares’.

DðGi;GjÞ ¼ min
ra∈Gi ;rb∈Gj

dðra; rbÞ ðA:1Þ

DðGi;GjÞ ¼ max
ra∈Gi ;rb∈Gj

dðra; rbÞ ðA:2Þ

DðGi;GjÞ ¼
∑

NGi
a ¼ 1∑

NGj

b ¼ 1dðra; rbÞ
NGi

� NGj

ðA:3Þ

DðGi;GjÞ ¼ d
∑

NGi
a ¼ 1ra
NGi

;
∑

NGj

b ¼ 1rb
NGj

0
@

1
A ðA:4Þ

DðGi;GjÞ ¼ ESSðGiGjÞ−ESSðGiÞ−ESSðGjÞ where

ESSðGiÞ ¼ ∑
NGi

a ¼ 1

���ra− 1
NGi

∑
NGi

w ¼ 1
rw
���2 ðA:5Þ

The group similarity is often scaled by distance, for which different
measurements can be employed depending on the purpose and
the characteristics of the firms. Among others, Euclidean distance,
Mahalanobis distance, Manhattan distance, and Hamming dis-
tance are most commonly seen. These distances can be computed
from (A.(6) to A.9), respectively, where p (p∈f1; ∞g) is the dimen-
sion of each observation and ‘Cov’ represents the covariance
matrix of two objects (firms are represented as objects here).

dðra; rbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
p

w ¼ 1
ðraw−rbwÞ2

s
ðA:6Þ

dðra; rbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðra−rbÞT Cov−1ðra−rbÞ

q
ðA:7Þ

dðra; rbÞ ¼ ∑
p

w ¼ 1
jraw−rbwj ðA:8Þ

dðra; rbÞ ¼ ∑
p

w ¼ 1
κw; κw ¼

1 if raw≠raw
0 if raw ¼ rbw

(
ðA:9Þ

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org.10.1016/j.omega.2013.05.007.
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NMM-StoNED: a normal mixture model based
stochastic semi-parametric benchmarking method

Xiaofeng Dai

Abstract—This paper presents a novel benchmarking tool,
NMM-StoNED, which identifies the best practices closely located
with each decision making unit (DMU) in the input-output space.
Unlike the conventional techniques such as DEA where the
success recepies of the benchmarks may not be transferable
to all DMUs given their differences in, e.g., the operational
scales, best practices identified by this method do not suffer from
these problems and offer more practical values. NMM-StoNED
is a specific configuration of the clustering and efficiency esti-
mation algorithms in the benchmarking framework previously
presented. This combination is able to cluster DMUs into less
ambiguous groups and model the inefficiencies in a stochastic
semi-nonparametric framework, which produces more accurate
results than conventional benchmarking techniques such as DEA
or other combinations such as the integration of K-means and
StoNED. The performance comparison between NMM-StoNED
and DEA has previously been reported, and the superiorities
of StoNED over other productive efficiency analysis methods
have been thoroughly investigated. Here we focus on showing
the advantages of NMM in the clustering based benchmarking
framework, for which, an empirical study using the Finland
energy regulation data was conducted. This study contributes in
its systematic evaluations on the performance of NMM-StoNED
under various conditions which provide solid specifications on
this algorithm, availing its practical use.

Keywords—benchmarking, normal mixture model (NMM),

data envelopment analysis (DEA), stochastic semi-nonparametric

envelopment of data (StoNED)

I. INTRODUCTION

Benchmarking, the process of comparing the performance
of one decision making unit (DMU) against that of the DMUs
with the ‘best practice’, has multiple applications, including
offering the general insight of a given business sector,
facilitating the manager on decision making, and providing
the backbone of incentive provision for the regulators in
the context of multiple agents [1]. DEA (data envelopment
analysis) is conventionally applied in benchmarking, where the
intensity weights strictly positive from the frontier estimation
are considered as the best practices in benchmarking [2].
However, the success formula of the benchmarks identified
may not be transferrable to a given DMU if they differ
greatly on their, e.g., input and output structure. Also, as a
deterministic method geared towards efficiency estimation,
DEA doesn’t take consider the stochasticity in its modelling
framework. Thus, DEA is sensitive to both the heterogeneity
and random noise of the DMUs in benchmarking.

Xiaofeng Dai
JiangNan University
China P. R.
Email: xiaofeng.dai@me.com

We have proposed a clustering based benchmarking frame-
work in [4], where it segments the DMUs into groups based
on user-specified metrics (e.g., the input-output vectors or
their projections on the estimated frontier) using a clustering
technique, and the benchmark(s) are identified according to the
efficiency scores estimated from productive efficiency analysis
within each cluster. We have shown that such a framework
is flexible in choosing the clustering and efficiency analysis
algorithms and these problems could be efficiently solved if
the method at each step is appropriately selected. However, for
what combination this method achieves the best performance
is still left for discussion.

Typical clustering approaches can be classified into three
categories, i.e., the hierarchical methods, the partitioning meth-
ods, and the model-based methods [5]. Hierarchical algorithms
recursively combines or splits a set of objects into bigger or
smaller groups based on a certain distance measurement and
stops when meeting a certain criterion [6]. Methods of this
class are conceptually intuitive and computationally simple
which, however, could not determine the number of groups
automatically, needs expert domain knowledge to define the
distance measurement and is problem-specific. Partitioning
methods iteratively reallocate data points across groups until
no further improvement is obtainable [5], [11], with K-means
being the most representative algorithm of this class [11].
Partitioning methods are widely used due to their computa-
tional simplicity and nonparametric structure which, however,
needs pre-specification of the number of clusters. Model-based
techniques optimise the fitness between the data and the model
where the data is assumed to be generated [14]. Model based
methods are superior over other methods in their automatic
determination of the number of clusters, robustness to outliers,
and probabilistic nature [5]. Among others, NMM (normal
mixture model) is the most widely applied method of this class
since normal distribution is the most commonly encountered
distribution in practice.

Traditional productive efficiency analysis methods can be
grouped based on two properties, i.e., parametric or non-
parametric, and deterministic or stochastic. Many statistical
methods can be used for productive efficiency analysis, with
the most widely applied being DEA and SFA (stochastic fron-
tier analysis), where DEA is non-parametric but deterministic
and SFA is stochastic but parametric [8]. StoNED (stochastic
semi-nonparametric envelopment of data) is a recently de-
veloped technique that melds the merits of DEA and SFA
where the inefficiencies are estimated in a stochastic semi-
nonparametric fashion. Unlike the semiparametric variate of



SFA, StoNED builds directly on the axioms of the production
theory such as free disposability and convexity instead of
making any assumptions on the functional form or smooth-
ness [9]. On the other hand, StoNED uses information of all
observations in the data set to estimate the frontier rather than
a few influential ones as adopted by DEA, making it less
sensitive to outliers than DEA besides its insensitivity to the
random noise.

Given the advantages of NMM and StoNED in clustering
and efficiency estimation, respectively, we are motivated to fit
these two algorithms in the clustering based benchmarking
framework presented in [4]. This method, named NMM-
StoNED here, detects the heterogeneous structure of the
data, groups similar DMUs into unambiguous clusters, and
ranks them within each cluster by the estimated efficiencies
according to which the best practice is identified for each
group. The superiorities of NMM-StoNED over DEA have
been demonstrated in [4] using Finland energy regulation data
from EMA (Energy Market Authority), and the advantages
of StoNED over other efficiency analysis methods such as
DEA and SFA have been studied in [10]. Here we focus on
evaluating the performance of combining NMM with StoNED
as compared with integrating other clustering techniques with
StoNED in benchmarking. For this, we compared NMM with
K-means, the most widely applied clustering technique due
to its simple yet powerful features, in this clustering based
benchmarking framework with an empirical study.

The rest of paper is organized as ‘Method’, ‘Empirical
study’ and ‘Conclusion’. The technical details of NMM
and StoNED are described in the ‘Method’ section. In the
‘Empirical study’, the ‘Data and methods’ and ‘Results and
discussion’ are described by sub-sections. The ‘Conclusion’
section finalizes this paper by summarizing the work and main
contributions, and pointing out the future direction.

II. METHOD

The proposed method, NMM-StoNED, combines the NMM
and StoNED into a unified framework. One can either measure
the efficiencies of all DMUs using the whole data set before
clustering, or compute the efficiencies using segment frontier
after clustering if the number of DMUs in each cluster is
sufficiently large [4]. The first alternative was used here given
the limited size of our empirical data. The estimation process
comprises of 1) estimating the efficiencies of all DMUs from
the whole data set using StoNED; and 2) clustering DMUs
using NMM and identifing the best practices in each group.

A. Efficiency estimation using StoNED

Given the standard multiple-input ri, single-output yi, cross-
sectional productive efficiency analysis model yi = f(ri) −
ui + vi, ∀i = 1, . . . , N. where f satisfies monotonicity and
concavity, ui > 0 is an asymmetric inefficiency term and vi is
a stochastic noise term, StoNED uses a two-stage strategy in
efficiency estimation [9]. In Stage 1, the shape of the function
f is estimated by convex nonparametric least squares (CNLS)
regression. In Stage 2, the inefficiency u is computed from

the variances (σ2
u, σ2

v), which are estimated based on the
skewness of the CNLS residuals (obtained from Stage 1) using,
e.g., the method of moments. In the second stage, additional
distributional assumptions are typically assumed, including,
e.g., the asymmetric distribution for ui with positive mean μ
and finite variance σ2

u, and a symmetric distribution for vi with
zero mean and constant finite variance σ2

v .
Mathematically, the first stage is equivalent to (1) to (4) [9],

min
v,α,β

n∑
i=1

ε
2
i such that (1)

yi = αi + β
′
iri + εi (2)

αi + β
′
iri ≤ αh + β

′
h
ri, ∀h, i = 1 . . . n (3)

βi ≥ 0.∀i = 1 . . . n (4)

where αi and βi are coefficients specific to observation i
and vi captures its random noise. In Stage 2, the inefficiency
is computed using the distribution of the CNLS residuals ε̂i
(note that ε = vi + ui). Assuming that the inefficiency and
noise terms follow the half-normal and normal distributions,
respectively, the 2nd and 3rd central moments of the composite
error distribution are

M2 = [
π − 2

π
]σ

2
u + σ

2
v, M3 = −(

√
2
π

)[ 4
π

− 1]σ3
u, (5)

which can be estimated using the CNLS residuals

M̂2 =

n∑
i=1

(ε̂i − ε)
2
/n, M̂3 =

∑n

i=1
(ε̂i − ε)3/n. (6)

The standard deviations of the inefficiency and error term are
then computed from

σ̂u = 3

√
M̂3

(

√
2
π

)[ 4
π

− 1]

, σ̂v =

√
M̂2 − [

π−2
π

]σ̂2
u. (7)

The conditional distribution of the inefficiency ui given
εi is a zero-truncated normal distribution with mean μ� =
−εiσ

2
u/(σ

2
u + σ2

v) and variance σ2
� = σ2

uσ
2
v/(σ

2
u + σ2

v).
Let φ and Φ represent the standard normal density function
and the standard normal cumulative distribution function,
respectively, the inefficiencies are computed by E(ui|εi) =

μ� + σ�[
φ(−μ�/σ�))

1−Φ(−μ�/σ�)
].

B. Cluster-specific benchmark identification using NMM

In this step, the metrics dominating the heterogeneity of
the data and following (or convertible to) normal distribution
were specified and used as the input of NMM. If the input
does not follow normal distribution or is a composite of
multiple distributions, the mixture model of the corresponding
distribution or a joint mixture model [3] would be required.

Assume that each observation r is drawn from g mixed
normal distributions where, for each normal distribution
fi, it has the prior probability πi and parameters θi,
NMM optimises the fitness between the data and model
f(r; Θ) =

∑g
i=1 πifi(r;θi). Note that Θ = {(πi,θi) : i =

1, . . . , g} denotes all unknown parameters, 0 ≤ πi ≤ 1
for any i and

∑g
i=1 πi = 1. Expectation Maximization

(EM) algorithm is used to iteratively estimate the param-
eters by maximising the data log-likelihood logL(Θ) =∑N

j=1 log([
∑g

i=1 πifi(rj ;θi)]), where R = {rj : j =
1, . . . , N} and N is the total number of observations. The
problem is casted in the framework of incomplete data using a



dummy variable Iji to indicate whether rj comes from compo-
nent i. Thus, logLc(Θ) =

∑N
j=1

∑g
i=1 Iji log (πifi(rj ;θi)).

At the mth iteration of the EM algorithm, the E (expectation)
step computes the expectation of the complete data log-
likelihood Q

Q(Θ; Θ
(m)

) = E
Θ(m) (log Lc|R)

=

N∑
j=1

g∑
i=1

τ
(m)
ji

log (πifi(Ij ; θi)), (8)

and the M (maximisation) step updates the parameter esti-
mates to maximize Q. The algorithm is iterated until con-
vergence. Note that I’s are replaced with τ ’s in (8), where
τji = E[Iji|rj , θ̂1, . . . , θ̂g; π̂1, ..., π̂g]. The set of parameter
estimates

{
θ̂1, . . . , θ̂g; π̂1, ..., π̂g

}
is a maximizer of the ex-

pected log-likelihood for given τji’s, and each rj is assigned
to its component by {i0|τji0 = maxi τji}. In NMM, the
probability density function of fi is defined as fi(rj ; θi) =

1

(2π)
p
2 |V | 12

exp
( − 1

2 (rj − μi)
TV −1(rj − μi)

)
. Note that

V = diag(σ2
1 , σ

2
2 , . . . , σ

2
p), |V | =

∏p
v=1 σ

2
v and p is the

dimension of the observations, whose parameters are estimated
iteratively over the following equations [12].

μ̂
(m+1)
i

=

N∑
j=1

τ
(m)
ji

rj/

N∑
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τ
(m)
ji

V̂
(m+1)
i

=

N∑
j=1

τ
(m)
ji
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(m+1)
i

)(rj − μ
(m+1)
i

)
T

/

N∑
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τ
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ji
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(m+1)
i

=

N∑
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τ
(m)
ji

/N τ
(m)
ji

=
π
(m)
i

fi(rj ;θ
(m)
i

)∑g

i=1
π
(m)
i

fi(rj ;θ
(m)
i

)

Bayesian information criterion (BIC) [13], the most widely
used model selection method, was used here to determine the
best fitting model as well as the optimal number of clusters
if not particularly specified BIC = −2 logL(θ̂) + d log(pN),
where d represents the number of free parameters.

Once the DMUs are properly segregated, we rank the
DMUs within each cluster by their efficiencies, and the best
practice(s) within each cluster are considered the benchmarks
of other units belonging to this group. As pointed out in [4],
the ‘best practice’ may not achieve 100% efficiency, and is
called the ‘relative benchmark’ to differentiate it from the
‘absolute benchmark’ which achieves, and more than one ‘ab-
solute benchmark’ may exist for one group if multiple DMUs
achieve 100% efficiency. Relative benchmark is defined as
h = {i|max

NGj

i=1 ζi},max
NGj

i=1 ζi < 1, and absolute benchmark
is h = {i|ζi ≥ 1},max

NGj

i=1 ζi ≥ 1, where h denotes the
frontier, ζi represents the efficiency of DMU i (i ∈ 1 . . . NGj

in group Gj), N is the number of DMUs, g is the number of
groups identified, and Gj has NGj

DMUs.

III. EMPIRICAL STUDY

A. Data and methods

Our empirical data comes from the Energy Market Authority
(EMA) website (www.emvi.fi), which consists of 85 electricity

suppliers and are the six-year average over the period 2005-
2010 [4], [7]. Recently, EMA has replaced the conventional
DEA and SFA by StoNED after a rigorous evaluation pro-
cess [7]. Also, provided with the advantages of StoNED in
overcoming the pitfalls of DEA and SFA [10], we fitted
StoNED in this framework, and focused on evaluating the
performance of NMM in improving the accuracy of efficiency
estimation when combined with StoNED. For the purpose of
comparison, K-means, a simple yet powerful and most widely
applied clustering technique, was chosen.

We used the cost frontier model, xi = C(yi) · exp(δzi +
ui + vi), as adopted by EMA [7], in this empirical study,
where C denotes the frontier cost function. This model adds
a contextual variable z and its weight δ to the conventional
cost frontier model. The variable z is the proportion of the
underground cables in the total network length which captures
the heterogeneity of the electricity suppliers in Finland, since
the underground cables are widely used in urban and suburban
regions but not in rural areas. In this model, the total cost (x)
is used as the single input, and three variables, i.e., ‘Energy
transmission’ (GWh of 0.4 kV equivalents, y1), ‘Network
length’ (km, y2), and ‘Customer number’ (y3) are specified
as the outputs (y). We used the three output-input ratios from
productive efficiency analysis as the input variables for clus-
tering, i.e., ‘Energy transmission/Efficient cost’ (r1), ‘Network
length/Efficient cost’ (r2), and ‘Customer number/Efficient
cost’ (r3), where the efficient cost is computed as the estimated
cost frontier ‘C(yi)’ to take into account the efficiencies in
segmentation. In addition, the actual cost was used in the
inputs, i.e., ‘Energy transmission/Actual cost’ (r1), ‘Network
length/Actual cost’ (r2), and ‘Customer number/Actual cost’
(r3), to exclude the influence of the efficiencies in the analysis
as a comparison. Note that the efficient cost is computed as
the actual cost multiplied by the firm efficiency. We used the
descriptive statistics of the clustered groups to evaluate the
clustering accuracy, assuming that better clustering results in
more distant inter-group means, less cross-group overlaps and
lower within-group standard deviations.

B. Results and discussion

The 85 firms were grouped into four clusters, which consist
of 26, 33, 24 and 2 DMUs, respectively, for clusters 1 to
4. The descriptive statistics, including mean, standard devia-
tion and parameter ranges of r1 . . . r3 and ‘Energy transmis-
sion/Network length’, are summarized for groups clustered by
NMM and K-means in Table 1. Efficient and actual costs are
used as the denominator of the inputs in the upper and lower
panel of Table 1, respectively.

Let’s first analyze the scenarios where efficient cost is used
for computing the clustering inputs. It is seen that the groups
clustered using NMM are characteristic of the four types of
electricity networks in Finland, but with K-means the statistics
are not as representative as such especially for the 4th cluster
(the industrial network). Specifically, the rural area consumes
less energy than the other regions given its sparse population in
Finland and there is no significant difference among suburban,



urban and industrial customers. This property is represented by
r1, and better captured in NMM-clustered groups than those
clustered by K-means, since the distance between cluster 1 and
the average of the other clusters is (0.124+0.158+0.156)/3-
0.075=0.071 in NMM-clustered groups which is larger than
that of K-means, i.e., (0.137+0.162+0.124)/3-0.095=0.046 (Ta-
ble 1). The distance between the customer and electricity
producer decreases from the rural to the industrial group,
leading to a declining trend in the ‘Network length’ from
clusters 1 to 4. This is well-captured by r2 in NMM-clustered
groups but is violated by the industrial cluster when the groups
are clustered by K-means (i.e., the distance is 0.735 in the
industrial group which is bigger than 0.529, the distance in
the urban cluster). The number of customers increases from
the rural to urban regions, and only a few industrial customers
exist in Finland. This property is captured by r3 in both NMM
and K-means clustered groups. However, as the standard
deviation of the group means is slightly larger in NMM-
clustered groups than that in the K-means case, we’d say that
groups are more clearly separated by NMM than K-means
regarding this parameter. Here, we also examined the ‘Energy
transmission/Network length’, since it merges r1 and r2 (the
parameters that capture the principle differences between
NMM and K-means in separating these groups given their
statistics) and should represent the major distinction between
the four groups as well as different clustering techniques. As
seen from Table 1, the standard deviation of the group means
is much larger in NMM-clustered groups (0.623) than that in
the case of K-means (0.288), the average standard deviation of
the groups is lower in case of NMM (0.209) compared with
K-means (0.285), and there is no adjacent group overlap in
NMM separated clusters but is 0.323 on average in the case
of K-means. Thus, it is concluded that NMM could separate
the four types of electricity suppliers into more appropriate
groups compared with K-means in this empirical study.

The same conclusions can be drawn when the actual cost
is used in the inputs as seen from Table 1. Thus, NMM
performs better than K-means in this real case application
regardless of whether the efficiencies are taken into account
in computing the clustering inputs. However, using efficient
cost in the inputs indeed groups the DMUs into more distant
clusters than using the actual cost no matter whether NMM or
K-means is used. For example, the averages of the standard
deviation and overlapping range are lower in most cases when
the efficient cost is used than those computed using the actual
cost, indicating a higher within-group homogeneity and a
larger inter-group distance when efficiencies are included in
grouping. Also, the standard deviations of the group means
are mostly larger when the efficient cost is used in the inputs
than those computed using the actual cost, which again shows
a larger inter-group distance among the four clusters.

The superiority of NMM over K-means in separating the
rural, urban, suburban and industrial electricity networks in
Finland is also illustrated in Figure 1. In this figure, each color
represents one type of electricity supplier. There is a clear
trend from the rural to urban areas (colored in black, red,
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Figure 1. Comparison of NMM and K-means using EMA data. The
efficient cost (a and b) and actual cost (c and d) are used in the inputs.
The filled dots are the best performing unit for each cluster. ‘Black’,
‘red’, ‘blue’ and ‘green’ represent ‘rural’, ‘suburban’, ‘urban’ and
‘industrial’ networks, respectively.

and blue, respectively) along the three axes and the industrial
cluster (shown in green) is distinctively separated from the
other groups in NMM clustering, regardless of whether the
efficiency is taken into account; yet when K-means is used,
the boundaries become ambiguous especially for the industrial
group where a few units are scattered into the rural cluster.
More importantly, notice that the filled dots (representing the
best performing DMU in a given cluster) may differ when
different clustering techniques are used, resulting in different
benchmarks for a given DMU. Take the industrial group as an
example, its best performing unit is within the rural area in
K-means clustering when efficient cost is used in the inputs
which, once chosen as the benchmark for the industrial group,
will become an unrealistic goal for this cluster given their large
differences in, e.g., the input-output space.

IV. CONCLUSIONS

We present a combination of the NMM based clustering
and the StoNED efficiency estimation technique in the bench-
marking framework previously presented in [4]. It inherits
the advantages of NMM such as automatic determination of
the number of clusters and insensitivity to random noise, and
the benefits of StoNED in its stochastic and semi-parametric
modelling. With one empirical application we show that the
DMUs could be clustered into groups having less ambigu-
ous boundaries than other clustering techniques such as K-
means. The superiorities of StoNED over other productive
efficiency analysis methods such as DEA and SFA have been
previously studied in [10]. Further, the benefits of combining



Efficient cost NMM K-means
Mean Cluster 1 Cluster 2 Cluster 3 Cluster 4 STD(Mean) Cluster 1 Cluster 2 Cluster 3 Cluster 4 STD(Mean)
r1 0.075 0.124 0.158 0.156 0.034 0.095 0.137 0.162 0.124 0.024
r2 1.403 1.110 0.550 0.117 0.497 1.273 0.911 0.529 0.735 0.273
r3 5.961 8.219 11.846 0.265 4.204 6.504 9.785 13.227 1.986 4.149
ET/NL 0.054 0.114 0.314 1.583 0.623 0.080 0.174 0.341 0.827 0.288
STD Mean(STD) Mean(STD)
r1 0.016 0.026 0.020 0.012 0.019 0.027 0.022 0.020 0.041 0.028
r2 0.083 0.131 0.153 0.043 0.103 0.196 0.268 0.177 0.628 0.317
r3 0.977 1.776 2.281 0.228 1.316 1.015 0.784 1.707 1.729 1.309
ET/NL 0.014 0.026 0.108 0.686 0.209 0.039 0.090 0.113 0.898 0.285
[min, max] Mean(OL) Mean(OL)
r1 [0.038,0.102] [0.096,0.168] [0.120,0.210] [0.144,0.168] 0.026 [0.038,0.168] [0.084,0.174] [0.135,0.210] [0.059,0.168] 0.052
r2 [1.226,1.611] [0.785,1.374] [0.221,0.801] [0.074,0.161] 0.055 [0.642,1.611] [0.357,1.374] [0.221,0.923] [0.074,1.506] 0.667
r3 [3.651,8.410] [3.763,11.954] [8.009,18.491] [0.038,0.493] 2.864 [4.552,8.085] [8.297,11.302] [11.612,18.491] [0.038,3.763] 0
ET/NL [0.023,0.078] [0.079,0.169] [0.177,0.612] [0.897,2.269] 0 [0.023,0.237] [0.064,0.489] [0.153,0.612] [0.039,2.269] 0.323

Actual cost NMM K-means
Mean Cluster 1 Cluster 2 Cluster 3 Cluster 4 STD(Mean) Cluster 1 Cluster 2 Cluster 3 Cluster 4 STD(Mean)
r1 0.093 0.137 0.163 0.156 0.027 0.097 0.133 0.163 0.105 0.026
r2 1.269 0.887 0.600 0.117 0.421 1.246 0.903 0.600 0.907 0.229
r3 6.658 9.494 12.915 0.265 4.643 6.572 9.806 12.915 3.105 3.653
ET/NL 0.081 0.188 0.318 1.583 0.607 0.087 0.183 0.318 0.663 0.218
STD Mean(STD) Mean(STD)
r1 0.027 0.023 0.021 0.012 0.021 0.030 0.023 0.021 0.043 0.029
r2 0.228 0.289 0.238 0.043 0.200 0.233 0.306 0.238 0.647 0.356
r3 1.549 1.885 2.278 0.228 1.485 1.307 1.600 2.278 2.437 1.906
ET/NL 0.045 0.109 0.128 0.686 0.242 0.050 0.111 0.128 0.867 0.289
[min, max] Mean(OL) Mean(OL)
r1 [0.038,0.150] [0.095,0.174] [0.135,0.210] [0.144,0.168] 0.053 [0.038,0.168] [0.095,0.174] [0.135,0.210] [0.059,0.168] 0.048
r2 [0.542,1.611] [0.331,1.296] [0.221,1.102] [0.074,0.161] 0.508 [0.542,1.611] [0.331,1.374] [0.221,1.102] [0.074,1.506] 0.828
r3 [3.651,10.579] [5.393,12.803] [8.981,18.491] [0.038,0.493] 3.003 [3.763,9.478] [6.913,12.803] [8.981,18.491] [0.038,5.700] 2.129
ET/NL [0.023,0.266] [0.073,0.489] [0.128,0.612] [0.897,2.269] 0.185 [0.023,0.266] [0.073,0.489] [0.128,0.612] [0.039,2.269] 0.346

Table 1. Descriptive statistics of groups clustered using efficient (upper panel) and actual (lower panel) costs in the inputs. ET/NL is Energy
transmission/Network length. ‘STD(Mean)’ represents the standard deviation of the mean. ‘Mean(STD)’ is the average of the standard
deviation. Overlap is computed between every adjacent 2 ranges, ‘Mean(OL)’ is the average length of 3 overlaps among 4 clusters.

NMM and StoNED as compared with the traditional DEA
in benchmarking has been previously demonstrated by an
empirical application in [4]. Thus, the performance of the
proposed configuration in the clustering based benchmarking
framework [4], i.e., NMM-StoNED, has been well-surrounded
and is suggested to use if no specific needs to meet.

With the metrics selected as the input of clustering, we
obtained four mutually exclusive clusters, each corresponds to
a well-defined type of energy supplier. It is worth mentioning
that with different metrics as the inputs, the clustering results
may differ. Thus, one need to identify the principle statistics
dominating the heterogeneity of the DMUs if not otherwise
specified before clustering. If the input metrics do not follow
or are not convertible to the normal distribution, a mixture
model of the corresponding distribution or a joint mixture
model [3] need to be used. Also, the computational complexity
increases with the number of inputs. Therefore, techniques
such as principle component analysis are needed to capture
the main properties needed for clustering.

This paper successfully applies NMM-StoNED to energy
regulation data which, however, is not restricted to such an
area. It is applicable to any problems where the distribution of
the evaluating metric is or convertible to normal distribution.
Here we focus on applying NMM-StoNED in the cross-section
setting, which could be used for panel data as well. To solve
more practical benchmarking problems especially those that
are problematic using conventional methods, more applications
are worthwhile to explore.
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Abstract

This dissertation explores the interdisciplinary applications of computational methods in quantitative

economics. Particularly, this thesis focuses on problems in productive efficiency analysis and bench-

marking that are hardly approachable or solvable using conventional methods.

In productive efficiency analysis, null or zero values are often produced due to the wrong skewness or

low kurtosis of the inefficiency distribution as against the distributional assumption on the inefficiency

term. This thesis uses the deconvolution technique, which is traditionally used in image processing

for noise removal, to develop a fully non-parametric method for efficiency estimation. Publication I

and Publication II are devoted to this topic, with focus being laid on the cross-sectional case and panel

case, respectively. Through Monte-Carlo simulations and empirical applications to Finnish electricity

distribution network data and Finnish banking data, the results show that the Richardson-Lucy blind

deconvolution method is insensitive to the distributional assumptions, robust to the data noise levels and

heteroscedasticity on efficiency estimation.

In benchmarking, which could be the next step of productive efficiency analysis, the ‘best practice’ target

may not perform under the same operational environment with the DMU under study. This would ren-

der the benchmarks impractical to follow and, consequently, adversely affects the managers to make the

correct decisions on performance improvement of a DMU. This dissertation proposes a clustering-based

benchmarking framework in Publication III. In this framework, we group the DMUs into segments us-

ing clustering methods based on certain metrics under interest, and estimate the efficiencies afterwards

to pin down the segment-specific benchmark for DMUs within each cluster. The empirical study on

Finnish electricity distribution network reveals that the proposed framework novels not only in its effi-

cient consideration on the differences of the operational environment among DMUs, but also its extreme

flexibility, e.g., the clustering and efficiency estimation techniques are user-decided according to their

specific needs and preference. We conducted a comparison analysis on the different combinations of the

clustering and efficiency estimation techniques using computational simulations and empirical applica-

tions to Finnish electricity distribution network data. Based on the results, Publication IV proposes the

combined use of ‘the normal mixture model based clustering’ and ‘the stochastic semi-nonparametric

envelopment of data (StoNED)’. This is because that such a combination could produce more accurate
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