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Abbreviations and Acronyms

Abreviations

adv. Adversary or adversarial
e.g. For example
i.e. It is; in other words
ref. References
s.t. Such that
std. Standard
u.a.r. Uniformly at random
w.p. 1 With probability precisely 1.
w.h.p. With high probability. The probability goes to 1 as

n goes to infinity.

Acronyms

BC Broadcasting problem
BE Beeping model
CD Collision detection
FSM Finite state machine
LE Leader election problem
MIS Maximal independent set problem
MP Message passing model class
nFSM Networked finite state machines model
PN Port numbering model
PP Population protocol model class
RN Radio network model
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Chapter 1

Introduction

This chapter introduces the thesis motivation and context. The first
section presents the broader research area, motivation and basic termi-
nology. The second section describes the context of the topic.

1.1 Motivation
Distributed computing networks are a relevant research area with ap-
plications in telecommunications and biology. Models of distributed
computing are essential for understanding the computational power of
distributed networks. Studies of distributed networks evolved from par-
allel network of processors into distributed networks of computing units.
Gradually, with the development of the Internet and telecommunication
networks there was an increasing interest in understanding distributed
computability. Recently the attention has turned to wireless networks,
in which communication conditions and node capabilities are dynamic
and limited. Modeling computation on these networks is relevant for
practical and novel applications.

Different distributed computing models have been developed, moti-
vated by the need to understand computation in real-world networks.
Numerous models have been developed and modified to reflect more
closely the reality of these networks. In this regard, distributed comput-
ing models have been defined in terms of limitations and assumptions,
which are referred to as model features in this work. A precise def-
inition of model features is crucial, since the research findings in a
particular model could differ with any small change to model features.
Conversely, certain assumptions about the underlying network are op-
tional modeling choices, needed both for abstracting irrelevant aspects
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CHAPTER 1. INTRODUCTION 8

or for narrowing down the computability analysis.
Model features and assumptions are the basis for the comparative

analysis of this thesis. This thesis studies two classes of wireless mod-
els, namely radio networks (RN) and population protocols (PP). Both
model classes were designed considering the limitations of real wireless
networks. The two models are fairly different at first glance. Separating
their computational power is neither evident nor trivial. Multiple varia-
tions of these classes have been used to study distributed algorithms.
Comparing the results from these studies is challenging, since they
have considered different features and assumptions. Previous litera-
ture [26, 32, 54] has made isolated comparisons based on particular
features. However, literature on comparing and classifying the models
shall develop further and this work contributes in this regard.

1.2 Context
This thesis is placed in the context of theoretical computer science, com-
putational complexity and distributed algorithms. The focus of this
thesis is comparing the computational power of two weak models of dis-
tributed computing. It is pertinent to clarify that strong models make
stronger assumptions, which in fact are more restrictive from the mod-
eling and computational point of view. Conversely, “weak” models are
said to relax those assumptions and limitations. Consequently, weaker
models are preferred over stronger models. This particularly holds
for networks of agents with limited computation and communication
capabilities.

Concretely, this thesis deals with wireless distributed computing.
A clarification of this aspect is justifiable, since there are different
connotations of the word “wireless”. It can evoke the lack of physical
communication medium, such as cables and other transmitting ma-
terial or substances. In this thesis, wireless refers to its meaning in
the context of theoretical distributed computing and modeling, namely
having unlabeled connections. This has implications for the model
capabilities, removing the ability to transmit messages directly to par-
ticular recipients. In radio networks, computing units have to send the
same message to other reachable units (i.e. broadcast). Similarly, in
population protocols computing units do not send messages directly to
others. Instead they exchange state information during interactions
that happen dynamically.

The remaining chapters are organized as follows: Chapter 2 includes
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definitions of main concepts for audience that is not familiar with the
topic. It also includes definitions for the model features and problems
studied in this thesis. In addition, it presents the main research ques-
tions of this thesis. Chapter 3 reviews results for the port numbering
model. This stronger wired model is a natural starting point for the
analysis for the weaker radio networks models. Chapter 4 reviews
results for multiple variations of radio networks models. It includes
tables summarizing the computational complexity results. Addition-
ally, it discusses the applicability of each algorithm to other models.
Chapter 5 reviews results for population protocol models. Chapter 6
compares the studied models based on the main model features. Finally
the Chapter 7 provides an overall summary of results, contributions
and open questions.



Chapter 2

Definitions

This chapter provides definitions that are used throughout this thesis.
Section 2.1 defines basic concepts of distributed computing. Section 2.2
defines in more detail the elements of distributed computing models.
Readers that are familiar the topic can safely proceed to Section 2.3,
which includes definitions of the essential and optional model features.
Section 2.4 and Section 2.5 provide definitions of the two major model
classes. Section 2.6 defines the distributed computing problems studied
in this thesis. Lastly, Section 2.7 presents the research questions and
Section 2.8 describes the methodology.

2.1 Core concepts
A computing network is a system of independent computing units and
communication links between them. Computing units, also known as
nodes, have local computation capabilities and the ability to commu-
nicate with a set of neighboring units. Communication links are the
channels or connections through which computing units exchange infor-
mation. In distributed computing networks each individual computing
unit has a limited or partial view of the entire network. These units have
access to local memory only, as opposed to parallel computing networks,
in which computing units have access to a shared or global memory.
Distributed computing studies computation in distributed computing
networks. Two central concepts in distributed computing are distributed
computing problem and distributed algorithm. A distributed computing
problem defines a computing problem in distributed networks, along
with a particular network or family of networks to be solved on. A
distributed algorithm or protocol defines the steps, operational rules
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CHAPTER 2. DEFINITIONS 11

and conditions for solving a problem using a particular model. The defi-
nition of an algorithm includes the inputs, computational steps, state
transitions and outputs for each computing unit.

A model of distributed computing is the abstract representation of
the elements and operation of distributed computing networks. A model
is used to define the initialization, communication and protocols running
in a network. Throughout this thesis, a distributed computing model is
simply referred to as a “model”. Models are formally defined in terms of
modeling elements using a particular notation. Typically the elements
of a model include the sets of inputs, states, outputs, transitions and
symbols of an alphabet for encoding information. Inputs represent the
input data received by the protocol, and they are an optional part of a
problem. Outputs are the results of the computation. Each node has
local inputs and outputs, which all together comprise the global inputs
and outputs, respectively. Both inputs and outputs are encoded in some
alphabet, which may be the same or different.

Nodes run a finite state machine (FSM), which is represented by a
set of states and a set of transitions. A state is a snapshot of a node’s
memory at any given time. A node can only be in one state at a time.
For flexibility, models also define input states and output states, which
are the subsets of the state set in which nodes are able to accept inputs
and produce outputs, respectively. A transition function defines the
rules for choosing the new state of the node. A transition is usually
a function of the information exchanged and the current states of a
node and its neighbors. A configuration represents a snapshot of the
network, in particular the global state, which is composed of the states
of the individual nodes. The sequence of configurations from the start of
an algorithm for solving a problem instance is called an execution or a
computation.

Each distributed computing network has an underlying graph. The
graph representation of a network has one node per computing unit and
one edge per communication link. In this thesis, the term “node” refers
to a computing unit. An example of a graph is shown in Figure 2.1. The
same graph can be represented in set notation as G = (V,E), where
V = {1, 2, 3, 4} and E = {{1, 2}, {2, 3}, {3, 4}, {2, 4}}. A graph family is a
set of graphs sharing a particular property. Examples of graph families
are the family of cycle graphs, the family of bipartite graphs and the
family of complete graphs. Both in previous literature and in this
thesis, solving a problem in a graph family is equivalent to solving a
problem in networks with underlying graph belonging to such family.
Lastly, graph properties are commonly used in the study of distributed
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algorithms. These include the network size n (i.e. the number of nodes),
the maximum degree ∆ of any node in the network and the network
diameter D, which is the number of connections separating the most
distant nodes. The properties for the example graph of Figure 2.1 are
n = 4, D = 2 and ∆ = 3. Appendix A includes relevant concepts of graph
theory.

3

4

21

Figure 2.1: Example of a graph-based network.

2.2 Model elements and capabilities
The computational power of a model includes both the computability and
complexity of algorithms for solving specific problems. Computability
refers to whether a given problem can be solved at all in a certain
model. Complexity refers to the resources such as time, memory or
state set size, required by algorithms to solve a problem in a model. In
this thesis, both computability and complexity aspects of a model are
collectively called model capabilities. Complexity analysis of distributed
algorithms is represented in a fashion similar to the complexity of
centralized algorithms. An upper bound on the algorithmic complexity
is represented as O(f), a lower bound as Ω(f) and a tight bound as Θ(f).
Typically f is a function of n, D and/or ∆.

A key research interest of previous literature and of this thesis is
the separation and characterization of model capabilities. Model sepa-
ration is a technique for analysing and highlighting the differences in
model capabilities, by finding problems that are solvable (efficiently) in
one model and not solvable (efficiently) in other models. Model charac-
terization is the formal and precise delimitation of model capabilities,
including computability of mathematical function families and runtime
bounded by specific functions.

A relevant distinction exists between deterministic and non-deter-
ministic distributed algorithms. This is similar to the corresponding dis-
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tinction for centralized algorithms. Given the same inputs and network,
deterministic algorithms are guaranteed to follow the same computation
and reach the same output. Conversely, non-deterministic algorithms
might follow different executions and produce different outputs. This is
reflected in the number of outputs the transition function has for a given
input. For each source state there is only one target state in determin-
istic algorithms, whereas for non-deterministic algorithms there may
be multiple target states. Randomized algorithms are a particular type
of non-deterministic algorithms. Probabilistic analysis of algorithms
studies the transitions of non-deterministic algorithms. Sometimes
assumptions are made with regard to the probability distribution of
such transitions, typically a uniform distribution is assumed. A typical
acceptance criteria for randomized algorithms is with high probability
(w.h.p.), which has a formal meaning of 1 − 1/nC for some constant C.
Finally, two types of randomized algorithms are Las Vegas and Monte
Carlo algorithms. The former produces correct outputs w.p. 1 after an
expected probabilistic runtime. The later might produce correct outputs
with some probability while it has a characterized runtime w.p. 1.

2.3 Model features
This thesis makes instrumental use of the concept of model feature for
comparing models. A model feature is a distinctive attribute or aspect
of a model. Models have both essential features and optional features.
Essential features are an intrinsic part of the model definition. Optional
features are choices that specialize a model for particular purposes.

2.3.1 Essential features
The communication mechanism is the way nodes exchange infor-
mation. Two different mechanisms are messaging and interactions.
Messaging is representative of those networks where symbols are sent
and received through communication links. Interactions are fundamen-
tally different from messaging in the sense that communication links
are not predefined, they are rather established dynamically.

The scheduling policy defines the timing in which communication
happens. Two separating policies are probabilistic and adversarial.
Probabilistic scheduling is based on a probability distribution, a typical
choice is a uniform distribution. Adversarial scheduling defines an
adversary controlling the scheduling of transitions.
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2.3.2 Optional features
The synchrony feature defines the timing in which communication
happens either synchronous or asynchronous. In a synchronous model
all nodes communicate at the same discrete time slots (rounds). In an
asynchronous model nodes can arbitrarily communicate at different
times. An alternative definition of this feature classifies models with
global and local synchronization. In global synchronization, also known
as global clock, the round counters of all nodes are aligned. In local
synchronization, also known as local clock, nodes keep a (different) local
round counter.

The collision detection (CD) feature applies to models in which
communication happens through a shared channel, which is exposed
to collisions. This is the case of radio networks and more generally
broadcast networks, in which nodes are not able to direct messages to
particular neighbors. Collision detection defines whether nodes are able
to distinguish collisions from background noise or not. In the later case,
the node cannot distinguish a round with collision from a round with no
messages received. Carrier sensing is an additional class defined by this
feature, in which nodes are only able to detect whether transmission
is ongoing or not, for instance by detecting presence of energy in the
communication channel.

The activation policy feature defines the mechanism for enabling
of nodes, such that they start their execution. Two activation aspects
considered in previous literature are spontaneity and simultaneity.
Spontaneity defines whether nodes are enabled by themselves or re-
quire some external factor to enable them. Typically models in previous
literature have defined non-spontaneous activation. Simultaneity refers
to whether nodes are enabled at the same time or not. A fully syn-
chronous model defines both global clocks and simultaneous activation.
Non-simultaneous models are further separated depending on whether
nodes are activated by incoming messages or by an adversary. Adver-
sarial scheduling implies adversarial activation, since for any node the
adversary may decide not to enable communication until an arbitrary
later time. Conversely, models that define adversarial activation do not
necessarily define adversarial scheduling.

2.3.3 Model assumptions
In addition to model features, there are model assumptions particu-
lar to each model. The following assumptions may restrict both the
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comparability of results and their applicability to other models:

1. The anonymity assumption refers to whether nodes have unique
IDs or are anonymous.

2. The access to random bits assumption refers to nodes being
able to generate random bits.

3. The graph family assumption restricts the model to correspond-
ing networks. Appendix A provides a list of graph families.

4. A set of bounded resources assumptions refer to limitations
on the global or local resources. Models define them either as
parameters or as functions of other properties such as the network
size n. Local attributes include local memory, message queue size
and state set size. Global attributes include bandwidth, message
size and communication alphabet size.

2.3.4 Modeling dimensions
Modeling dimensions define a containment order of classes, similar to
classes of complexity theory. The containment order indicates that the
set of solvable problems in certain subclass is a subset of the set of solv-
able problems in its containing class. Different dimensions have been
defined in previous literature, including uniformity [60], correctness
[29], class of state machine [37] and adversarial strength [34].

The uniformity dimension refers to the local knowledge of global
attributes, in particular the network size. Uniform protocols are those
that are described independently of the network size. Both positive
and negative results were proven by Chalopin et al. in [18], depending
on complete or partial knowledge of the network size. Different model
classes where characterized by Yamashita and Kameda in [60] based on
the local knowledge. The classes include local knowledge of:

1. Nothing about the network size nor its topology (uniformity) Dno.

2. An upper bound on the network size Dupb.

3. The accurate network size Dacc.

4. The topology of the network Dtop.

The network topology does not include node IDs. This means that nodes
may know the structure of the network, while still being unaware of
the particular node they represent and neighborhood they belong to. A
containment relation was proven by Yamashita and Kameda in [60]:
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Dno ⊆ Dupb ⊆ Dacc ⊆ Dtop. Depending on the problem there is strict a
containment or equivalence relationship in model capabilities.

The correctness dimension refers to restrictions in the correctness
of global outputs. Four classes have been defined based on the correct-
ness requirement. The strongest and weakest classes were studied by
Itai and Rodeh in [38]. The two intermediary classes were presented by
Emek in [29]. Starting from the strongest requirement, the classes are:

1. Terminal correctness (TE) requires nodes to terminate at the time
they produce the first outputs and these outputs must form a
correct and stable global output.

2. Write once outputs (WO), in which the first local outputs must form
a correct and stable global output, while the nodes are allowed to
continue communicating and transitioning states.

3. Rewritable outputs (RW) does not require nodes to terminate.
Nodes can write and rewrite local outputs until a first global
output is produced, which must be correct and stable.

4. Eventual correctness (EC) neither requires nodes to terminate nor
the first global output to be correct. Nodes can write and rewrite
local outputs as long as the global output eventually converges to
a correct solution.

A separation of problems based on this dimension was presented in [29],
along with this containment order: TE ⊆ WO ⊆ WR ⊆ EC.

The classes of state machine presented by Hella et al. in [37]
separate state machines according to the collection of inputs and outputs.
Input collection classes include a vector, a set and a multiset of input
symbols. Similarly, output collections classes include a vector of symbols
(a symbol per outgoing connection) and a single symbol broadcasted
to all reachable neighbors. Different model classes were characterized
in [37] based on the combination of input and output collection types.
These are weaker models derived from the port numbering (PN) model,
referred to as class V Vc. The classes are:

1. V V input ports and output ports are not necessarily connected to
the same neighbor.

2. MV input ports are not numbered and algorithms receive a multi-
set of messages.

3. SV input ports are not numbered and algorithms receive a set of
messages.
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Feature Message Passing Population Protocols
Communication
Mechanism

Port connection forming
a topology, messages
sent through ports.

Dynamic interactions
typically in pairs.

Correctness
Dimension

Either terminal or
eventual correctness.

Eventually converge to
a correct solution.

Scheduling
Policy

Randomized scheduling
is the typical choice in
MP models. Uniform
distribution is the
typical choice.

Adversarial scheduling
is inherently defining
the interactions.
Fairness condition on
reachable
configurations.

Table 2.1: Essential model features in MP and PP model classes.

4. V B output ports are not numbered and algorithms broadcast the
same message to all ports.

5. MB is the combination of MV and V B.

6. SB is the combination of SV and V B.

A containment order was presented by Hella et al. in [37], such that
SB (MB = V B ( SV = MV = V V ( V Vc.

The adversary strength dimension was motivated by the study of
link reliability in wireless radio networks. This feature is out of the
scope of this thesis.

Two major model classes from which many others derive are message-
passing (MP) and population protocols (PP). Essential features are
embodied in the two major classes, and they are summarized in Table
2.1. The following two sections introduce definitions for the two major
model classes and derived models.

2.4 Message-passing models
In message-passing (MP) models nodes communicate by exchanging
messages through communication ports. Early MP models [4, 16, 55]
were defined in terms of parallel computing in networks of processors,
however computability results have been extended to distributed com-
puting. A network is represented as an undirected graph G = (V,E)
with static topology. Each processor i is connected to a set of neighbors
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Vi, with which communication is enabled. These models described net-
works of processors running the same protocol, possibly of infinite states
Zi. Processors communicate by exchanging (passing) messages with
their neighbors and communication happens in synchronous rounds. In
a single round each processor i receives messages m` from its neighbors
` ∈ Vi, does some processing, sends a (possibly different) message mi`

to each neighbor and transitions to another state. Message delivery
is assumed to follow order in which they were sent, guaranteed by an
incoming message queue. Nodes are activated simultaneously upon
receiving a special “START” message. In the plain MP model processors
have an identity and know the connected links, however they do not
know the neighbor identities nor any other global attributes, such as
the size of the network.

The Port Numbering (PN) model introduced in [4] is probably the
most typical anonymous MP model from previous literature. In the
PN model networks are represented as a graph G = (V,E) with locally
labeled connections. The connections are defined by a port numbering
function fv : {u, v} → Zd for each node v ∈ V of degree d = degG(v), that
maps incident edges {v, u} ∈ E to labels Zd = {1, 2, . . . , d}. Given a
set of states Q and alphabet A, the communication function M : Q ×
Zd → A × A × Q defines for (q, i) = (a, b, q′) the possible transitions
from state q to q′ by exchanging message a by b on port i. In this
model, the family of graphs is unrestricted. Inputs and outputs are
defined as vectors ordered by the port numbers. Furthermore nodes are
anonymous, communication is synchronous and correctness is terminal.
Most literature of MP models assume a simple PN network, which
is a PN network without self loops and without multiple connections
between any two nodes. Figure 2.2 shows an example of simple PN
network, which has as underlying graph the one from Figure 2.1. In
this example, the port numbering function is defined as f1 : {{1, 2} → 1},
f2 : {{2, 1} → 2, {2, 3} → 1, {2, 4} → 3}, f3 : {{3, 2} → 2, {3, 4} → 1} and
f4 : {{4, 2} → 2, {4, 3} → 1}. A relevant aspect to highlight is that nodes
were labeled for illustrative purposes, however they are anonymous in
the PN model. Variants of PN include: (a) the LOCAL model, which
adds unique identifiers, (b) the CONGEST model, which limits the
message size, and (c) the randomized PN, in which nodes have access to
randomness.

Wireless models of distributed computing were motivated by wireless
networks including local area networks and packet radio networks. The
following subsection presents definitions for the most typical RN models
in previous literature.
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Node 1

1

Node 3

2
1

Node 4

2
1

Node 2

1

3
2

Figure 2.2: Example of a simple PN.

2.4.1 Radio network models
The Radio Network (RN) models are based on a shared channel over
which all communication is carried. As opposed to PN, in RN nodes are
unable to direct messages to specific neighbors, instead nodes broadcast
the same message to all neighbors (nodes in the transmission range).
Nodes either transmit or receive at any given time. A collision occurs in
case two nodes in the same transmission range decide to transmit at
the same time.

Node 3

Node 1 Node 2

Node 4

Figure 2.3: Example of a simple multi-hop RN.

RN models are classified according to transmission range, collision
detection (CD), synchrony and activation policy. Depending on the trans-
mission range nodes can send messages directly to any other node or
require message routing [36]. In single-hop networks all nodes are in
the same transmission range. Single-hop RN networks are representa-
tive of complete graphs. Conversely, in multi-hop networks there are
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nodes out of the range of other nodes. Figure 2.3 shows an example
of multi-hop RN, which has as underlying graph the one from Figure
2.1. Another classification of RN is based on collision detection. In RN
with CD collisions are represented as nodes receiving a “noise” message,
whereas in RN without CD no message is received (i.e. the channel is
silent). The standard RN considers multi-hop networks with CD [20].
Conversely, other models consider the case without CD [13, 28], which
is referred to as silent RN model in this thesis. Both of these variations
assume synchronous communication and simultaneous activation. In
addition, asynchronous and non-simultaneous models have been studied
in [25, 30, 49]. Figure 2.4 depicts a feature map of RN models.

Standard RN

Silent Std. RN

Fully Sync. BE

Synchronous Asynchronous

With
CD

Without
CD Harsh RN

Sync. Clocks 
BE

nFSM

Carrier
sensing
only

Wake on beep 
BE with CD

Wake on beep 
BE

Activation by adversary Activation by msg.Simultaneous activation

Standard BE

Wake on msg. 
silent RN

Wake on msg. 
standard RN

Figure 2.4: Feature map of RN models.

A weaker version of the RN model known as harsh RN model, was
defined in [49]. This is a multi-hop asynchronous RN without CD. In this
model an adversary activates nodes, as opposed to nodes being activated
by incoming messages. In this model nodes do not know the network
size and the message size is limited to O(log n). This model has been
applied to restricted graph families, with the objective of representing
more closely the reality of RN, including: (a) Unit disk graphs (UD), in
which nodes are placed in an Euclidian space (i.e. two-dimensional) such
that there is a connection between the nodes that are within one unit
distance of their circular transmission range [49]. (b) Bounded growth
graphs (BG), which are a generalization of UD graphs based on a metric
space with constant doubling dimension [53]. (c) Bounded independence
graphs (BI), which are another generalization of UD graphs such that
the size of the 1-hop and 2-hop maximal independent sets (MIS) are
bounded by two variables κ1 and κ2 [50].
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The networked FSM (nFSM) model introduced in [30] is a type of
RN model. It defines a graph basedG = (V,E) broadcast network, where
each node v ∈ V runs an instance of the same FSM and communicate
asynchronously with a set of neighbors N(v) ⊆ V . There is a commu-
nication alphabet Σ defining the possible transmitted messages σ ∈ Σ,
a finite set of states Q and subsets of input states QI ⊆ Q and output
states QO ⊆ Q. Messages sent in step t from a neighbor u ∈ N(v) to v are
stored as a multiset of inputs ψu(v), such that they are guaranteed to be
delivered in the same order sent by u after a delay Dv,t,u. Asynchrony is
represented by the length Lv,t of a step t ∈ Z>0 of a node v. This model is
defined with adversarial scheduling, in which an adversary controls the
transmission delays and step lengths. States are mapped to a “query let-
ter” by a querying function λ : Q→ Σ, such that at each state nodes are
only able to utilize the received messages matching the corresponding
letter. A bounding parameter b is a key characteristic of nFSM, along
with a bounded counter function ](σ) of the symbol σ in the multiset of
received messages of v. The transition function δ : Q × B → 2Q×(Σ∪{ε})

maps the current state Q and bounded counter B = ](λ(Q)) to the next
states and query letters. The authors of [30] presented a synchronizer
protocol and utilized it in their algorithmic solutions.

Lastly, the beeping model (BE) introduced in [25] is another type
of RN model. The BE model is a subtype of RN in which node commu-
nication is entirely based on beeps. Nodes can either be silent or beep.
Collision detection is not available as such, nodes can only distinguish
between no neighbor beeping or at least one neighbor beeping. The
model does not assume unique IDs nor knowledge of global attributes.
This model is closely related to nFSM, as noted in [30], the BE model
is equivalent to nFSM with bounding parameter b = 1. This model
considers adversarial node activation and asynchronous local clocks.
The model considers discrete time intervals, such that beeps occur at
discrete slots and last precisely for the duration of a slot. A variant of
BE with a global clocks was presented in [1]. A parameterized variant
of BE was presented in [35]. It includes parameters for the probabilistic
precision, an lower bound of the network size and an upper bound on the
number of states. This variant was used to study state complexity, and
a trade off was found to exist between state set size and error precision.
In general BE is one of the weakest RN models.
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2.5 Population protocol models
Although Population protocol (PP) models are a wireless model, they
are significantly different from MP models. In PP models nodes commu-
nicate through pair interactions that happen on proximity. A population
is represented as a directed interaction graph G = (V,E), with a set of
agents V and a set of possible interaction pairs E ⊆ V × V . The edge
direction indicates that one agent is the initiator and a different one
is the responder. Edges do not represent established communication
connections, since interactions happen dynamically. PP models were
introduced in [7] with a formal definition that included input alpha-
bet X, output alphabet Y and finite set of sates Q. A input function
I : X → Q maps inputs to states, and an output function O : Q → Y
maps states to outputs. Before an interaction, the pair of participating
agents are in a pair states (p, q), where p is the state of the initiator and
q the state of the responder. And after the interaction, the initiator and
responder change to another pair of states (p′, q′). A transition function
δ : Q×Q → Q×Q defines all possible interactions. A configuration is
a function C : V → Q that maps agents to current states. The origi-
nal model considered passively mobile agents, using the word “passive”
to indicate that nodes have no control on their mobility. A fairness
condition is inherent in the definition of PP, such that every possible
interaction has a chance to occur infinitely often. The number of states
is O(1). Since nodes run the same FSM, and they are anonymous (i.e. do
not have unique IDs). The standard PP model assumes a complete
interaction graph. A global signal activates all the sensors simultane-
ously. An adversary decides the scheduling of interactions. Figure 2.5
shows an example PP, with four nodes and their interactions during
five times after initial activation t0. The underlying interaction graph of
this network corresponds to a complete graph.

The stabilizing inputs PP model was introduced by Angluin et
al. in [5] with the objective of representing real-world scenarios more
closely. Instead of having inputs defined at the beginning of the com-
putation, inputs may change until they stabilize. This allows chaining
protocol outputs as inputs of other protocols, facilitating the model-
ing of algorithmic reductions. Configurations and transitions are ex-
tended to include both a state and a symbol. The configuration func-
tion becomes C : V → (Q × X) and the transition function becomes
δ : (Q×X)× (Q×X)→ Q×Q. An auxiliary projection function is used
to obtain the state π1(C(v)) and the input π2(C(v)). Inputs stabilize
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Figure 2.5: Example of a PP network and node interactions by proximity.

after a finite step k, if for any further step ` the inputs remains exactly
the same π2(Ck) = π2(Cl) for l ≥ k. Additional concepts for the self-
stabilizing PP model were introduced by Angluin et al. in [11]. A trace
T (Z) is an infinite sequence of assignments λi : V → Z for i = 0, 1, . . .
and Z the trace alphabet. There are input traces for Z = X and output
traces for Z = Y . A behavior B(Z) is a set of traces that have the same
alphabet. Similar to traces, there is input behavior Bin(X) and output
behavior Bout(Y ), which ensure respectively that every input or output
traces are contained in the behavior. A stable behaviour BS(Z) = ZB(Z)
is a behavior preceded by a finite sequence prefix. Lastly, the repetition
closure of a trace T (Z) allows one or more repetitions of each assign-
ment λ+

i , and an elastic behavior is the repetition closure of a set of
traces. The later concept is particularly useful for problem reductions,
which can be defined in terms of self-stabilizing inputs and protocol
composition.

The probabilistic PP model (also known as conjugating automata)
was defined in [7]. As opposed to adversarial scheduling, it defines
a probabilistic interaction scheduling with uniform distribution, also
known as randomized interactions. Randomized interactions allow a
fairness condition w.p. 1 as well as algorithms in which the output is
correct only w.h.p. Numerous variations of probabilistic PP models have
been defined in literature, some are of them are described Appendix B
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Figure 2.6 depicts a hierarchy of PP models, including the standard,
stabilizing and probabilistic PP. Subtypes of these models and the other
PP model types are out of the scope of this thesis.

Urn Automata

Pairing 
Automata

Standard PP

Stabilizing PP One-way PP

Observation PP

Delayed 
Transmission PP

Queued PP

Switching PP

PPP

MPP

LVP

ExtendedPP

Mediated PP

PALOMA PP

Community PP

Figure 2.6: PP models hierarchy.

2.6 Problem definitions
Classical distributed computing problems have been repeatedly studied
in previous literature. Table 2.2 defines the set of classical problems
studied in this thesis. An essential part of a problem definition is the
graph family in which the problem has to be solved. The reader can
refer to Appendix A for a list of graph families.

2.7 Research questions
The main research question of this thesis is: How comparable are the
model capabilities of RN and PP?

Concrete questions include:

1. Are the results from the different types of RN models applicable
to other RN models?

2. How do model features affect the capabilities of RN?

3. What are the fundamental differences between RN and PP models
in terms of model features?
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Problem Input Output
Maximal
independent
set (MIS)

I(v) = ∅ O(v) ∈ {0, 1} s.t. I = {v : O(v) = 1} is
independent: {u, v} ∈ E → u /∈ I or
v /∈ I and maximal: @I ′ s.t. I ′ is
independent and I ( I ′

(∆ + 1)-
coloring

I(v) = ∅ O(v) ∈ {1, 2 . . .∆ + 1} s.t.
{u, v} ∈ E → O(v) 6= O(u)

2-hop
coloring

I(v) = ∅ O(v) ∈ {1, 2 . . .∆(∆− 1) + 1} s.t.
{u, v}, {v, w} ∈ E and u 6= v and
u 6= w → O(w) 6= O(u)

Parity I(v) ∈ {0, 1} O(v) = 1 if there are an odd number
of 1’s in the input, and O(v) = 0 if
there are an even number of 1’s in
the input.

Majority I(v) ∈ {0, 1} O(v) = (
∑

u∈V I(u))/|V |
Leader
election (LE)

IDs O(v) = IDl for all v ∈ V s.t. I(u) = IDl

for some u ∈ V
Anonymous
LE

I(v) = ∅ O(v) ∈ {0, 1} s.t. (
∑

u∈V O(u)) = 1

Single source
global
broadcast
(BC)

I(s) = m for
precisely one
source node s,
and I(u) = ε
for u 6= s,
u ∈ V

All nodes must have received m.
Nodes may terminate, and do not
need to know whether BC has
completed

Acknowledged
broadcast

I(s) = m for
precisely one
source node s,
and I(u) = ε
for u 6= s,
u ∈ V

All nodes must have received m. All
nodes know that BC has completed
before terminating

Table 2.2: Problem definitions.
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2.8 Methodology
The present thesis performs a survey through a systematic literature
review. The research process is outlined next:

1. Data collection. Searching by keywords in relevant sources such
as journals of distributed and theoretical computing and academic
publication search engines. The main keywords included the two
major model classes: “radio networks” and “population protocols”.

2. Paper selection. Filtering papers based on the model features and
problems they are solving. This thesis focuses in BC, MIS, LE and
coloring. Studies for other problems such as maximal matching,
vertex cover and consensus were left out. Adversary strategies
were left out of scope. Refining search keywords by combining
model features and problems with the two major model classes:
“maximal independent set in radio networks”, “asynchronous radio
networks”, ”leader election in population protocols”.

3. Initial data processing. Reading the abstract, introduction and
model definition section. Extracting the addressed problems and
model features, including collision detection, synchrony and acti-
vation policy. Listing the underlying model assumptions such as
knowledge of global properties and graph family. Summarizing
the information in tables.

4. Detailed data processing. Studying the algorithm and computa-
tional complexity results. Analysing the algorithm, transcribing
it and complementing it with the following clarification types: (a)
state variables, (b) constants, (c) state transitions, (d) flow control
(conditions and loops). Complementing the tables created in the
previous step with complexity results and references.

5. Analyse applicability. Assessing its applicability to related models,
such as other RN and PP models.

6. Iterative data collection. Looping through related articles from
the authors of the most relevant publications. Deep diving into
relevant references from these publications.

7. Summarize and discuss. Creating comparative tables per model
feature summarizing the computational complexity results. Dis-
cussing the underlying challenges derived from the choices of
model features and assumptions.



Chapter 3

Port numbering model

This chapter provides a review of previous literature in the port num-
bering model (PN). PN is a natural starting point for studying the capa-
bilities of message-passing models (MP). Section 3.1 reviews symmetry
breaking aspects, which are central in the study of MP model capa-
bilities. Two symmetry breaking mechanisms are discussed, namely
unique IDs and randomization. Sections 3.2, 3.3 and 3.4 cover algo-
rithms for solving maximal independent set (MIS), vertex coloring and
leader election (LE), respectively. In general, these three sections focus
on randomized algorithms.

3.1 Symmetry breaking
The concept of symmetry plays a crucial role in understanding com-
putability limitations of MP models. The ability to distinguish different
nodes is crucial for problem solvability. Since nodes in MP models run
the same FSM, nodes that are given the same input are identical from
the perspective of each node. As the execution of a given algorithm
progresses, nodes are able to gather information from the network.
However depending on the input arrangement and topology symmetry,
nodes may or may not be able to break such symmetry (i.e. become
distinguishable). The ability to break symmetry is impossible for anony-
mous MP models, in which nodes do not have labels (i.e. IDs) nor access
to random bits. In distributed computing local symmetry can be de-
fined as two nodes having isomorphic radius-t neighborhood at time
t in the execution of a protocol. Given a pair of nodes with identical
inputs and local symmetry all their state transitions as well as their
output at time t will be identical. Consequently, it is impossible to solve

27
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problems in which solutions require nodes to output different values if
local symmetry holds. A relevant research area in previous literature
is characterizing problems and graph families in which it is possible to
break symmetry.

A seminal study on symmetry breaking was presented by Angluin
[4], which defines the problem in terms of finding a “centered” configura-
tion in the PN model. Graph coverings are used for proving whether it
is possible or not to reach a centered configuration in particular topolo-
gies and graph families. Findings in [4] include positive results for
trees and complete graphs. For trees it is possible to find a centered
configuration by following a bottom-up approach, in which leaf nodes
send acknowledge messages and intermediary nodes wait for collecting
the acknowledge messages from all children. Conversely, [4] includes
negative results for the same problem in the family of cycle graphs,
the family of graphs containing a triangle and graphs having a proper
covering. In these graphs nodes are not able to break local symmetry
nor to propagate a graph anomaly fast enough. These results apply for
problems requiring a centered configuration, including vertex coloring,
MIS and LE. Moreover the results extend to other MP models, including
RN and BE models. The reader may refer to other symmetry breaking
studies in [18, 38], which are also based on graph theory isomorphisms,
such as isomorphism, automorphism and homomorphism (see Appendix
A on graph theory concepts).

As opposed to anonymous MP, symmetry breaking for MP models
with unique IDs is not a crucial challenge. Computability of MP models
with unique IDs has been studied extensively in [44, 51, 55, 59]. A
popular model representative of this feature is the LOCAL model, which
extends the PN model with unique IDs. An upper bound of O(D) for
any function in LOCAL was presented by Linial in [44]. That is the
time it takes for all nodes to gather the entire information about the
entire network, including node IDs and connections. Additionally, Linial
presented in [44] three algorithms for solving the problems of MIS in
directed cycles, 3-coloring directed cycles and coloring trees. Each of
these three algorithms has runtime O(log∗ n). The algorithms followed
the approach of collecting all data locally before proceeding with the pro-
cessing. This reduces the analysis to combinatorial problems, for which
the graph chromatic number is a relevant parameter. The chromatic
number of a graph indicates the least number of colors for which a valid
coloring is possible in the graph.

Randomization is another symmetry breaking mechanism. For com-
plete graphs Angluin proved in [4] that it is possible to find a centered
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configuration using a randomized protocol, in which every node starts
offering a coin-toss with all neighbors, expanding branches in a breadth
first approach, and keeping track of the beaten nodes. Randomization
can be as powerful as unique IDs when the network size n is known,
since it can be used to build unique IDs w.h.p. [58]. The following
sections review randomized algorithms for solving classical problems.
These include Luby’s algorithm for MIS [45], Johansson’s (∆+1)-coloring
algorithm [39], Itai and Rodeh’s algorithm for LE in cycles [38] and Ma-
tias and Afek’s algorithm for LE in arbitrary graphs [46]. All these
algorithms rely on the assumption that n is known. In this regard,
Yamashita and Kameda presented in [60] a separation of graph families,
depending on their level of symmetry and the model uniformity (see
modeling dimensions in Section 2.3.4). The level of graph symmetry
is defined in [60] based on p-factorizations, e.g. cycle graphs have a
2-factor. Lastly, Yamashita and Kameda proved in [60] that an upper
bound of the network size N , as opposed to the actual value, is enough
to solve LE and spanning tree in tree graphs.

The concept of locally checkable problems introduced in [51] is closely
related to local symmetry. The solution to these problems can be vali-
dated locally. Locally checkable algorithms running in constant time are
defined as local algorithms in [59]. In that survey the author summa-
rizes both positive and negative results, also known as non-local prob-
lems. The positive results include a local algorithm for weak 2-coloring.
Impossibility results for cycles and other graph families include con-
structing a spanning tree and finding a stable matching. Classical
problems of distributed computing include locally checkable problems
such as MIS and coloring, as well as a non-local problems such as LE.
The rest of this chapter reviews results for solving these problems in
the PN, highlighting their applicability to RN. The complexity results
are summarized in Table 3.1.

3.2 Maximal independent set
MIS algorithms were originally developed for parallel networks of pro-
cessors [2, 45]. These algorithms consist of phases of two steps: (a) a
choice step, in which processors become part of the MIS with a certain
joining probability, and (b) a validation step, which defines criteria to
prevent two adjacent processors joining the MIS. At each phase, an
auxiliary independent set is built and then combined with a set holding
the partial result. A Las Vegas algorithm was presented by Alon et



CHAPTER 3. PORT NUMBERING MODEL 30

Problem Assumptions Runtime Ref.
MIS Parallel network of processors O(log n) [2, 45]
MIS Synchronous PN O(log n) [48]
Coloring Synchronous PN, memory O(log n) O(log n) [47]
LE Known n, synchronous PN O(n log n) [12]
LE Known n, asynchronous PN O(n2) [12]
LE Known n, asynchronous PN,

eventual correctness
O(n log n) [12]

LE Known n O(n log2 n) [38]
LE Known n, random bits, generated

IDs of size O(log n)
O(D) w.p.
> 1− ε

[46]

Table 3.1: Complexity of classical problems in PN.

al. [2]. Each node u with du > 0 is marked w.p. 1/du. Nodes with du = 0
are always marked. In case an edge is incident to two marked nodes,
one of them u is unmarked w.p. du/(du + dv). A Monte Carlo algorithm
was presented by Luby in [45]. It is also known as Luby’s permutation
algorithm, and it follows an approach that is suitable for distributed
networks: processors generate a random priority number locally and
nodes with local minima are chosen to join the MIS. However a different
approach is required, since distributed networks do not have a shared
memory.

Luby’s permutation algorithm has been adapted to work in the PN
model [1, 48]. The auxiliary and partial result vertex sets stored in
shared memory are replaced by a set of active neighbors stored in
local memory. This allows nodes to perform both the validation and
the choice steps locally. Transmitting large priority numbers between
nodes represents another challenge for the distributed adaptations of
Luby’s algorithm. A direct application of Luby’s permutation algorithm
in the PN model requires making the following strong assumptions:
(a) Message size O(log n) for exchanging priorities, (b) knowledge of
(a bound of) the network size n for generating the priorities, and (c)
synchronous node activation and round execution.

An improved adaptation presented by Métivier et al. [48] drops the
first two assumptions. Informally, the algorithm simulates exchanges
of real number priorities through exchanges of bit strings. Algorithm
C.2 is an abstraction of the original algorithm. Figure 3.1 depicts the
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state transitions, with state set {C, I,M, S} corresponding to candidate,
ineligible, MIS and slave. Nodes generate a random bit b ∼ {0, 1}
per step. The concatenation of the generated bits forms a bit string
equivalent to a random real number. However the algorithm does not
require nodes to hold the bit string in memory. Instead, nodes only keep
the latest bits exchanged and the current states of the neighbors. Nodes
detect local minima in case they generate b = 0 and do not receive any
message with b = 0. These nodes acknowledge their neighbors before
joining the MIS. Nodes that receive such acknowledge move to state
‘slave’. Nodes that generate b = 1 and receive a b = 0 realize they are not
local minima. These nodes move to the ineligible state, and they wait for
the next phase in order to compete again. Each node requires memory
of size ∆, to store the state of its neighbors. The algorithm is applicable
to broadcast networks, since at each step nodes send the same message
to all neighbors. However the algorithm is not directly applicable to RN
networks, since it relies on a fully synchronous and collision free model.
The small message size requirement makes this algorithm adaptable to
models that assume small memory and/or message size, including the
nFSM and BE models. However, special considerations are required for
coping with non-simultaneous activation and asynchronous scheduling.
Non-simultaneous activation requires MIS nodes to keep sending their
state, in order to prevent newly active neighbors from joining the MIS.
Lastly, the algorithm relies on nodes being able to gather all neighbor
bits generated at the same round. Although this works naturally for
models with global clocks, it is not the case for asynchronous models.

MC
(b=1 and ¬mb=0 ) 

or (b =0 and mb=0):
Active-set={u∈N(v):q(u)∉M∪S∪I}

I S

b=1 and 
mb=0
 

b=0 and ¬mb=0 

mM

mMActive-set=∅

Active-set=N(v)

Figure 3.1: MIS in the PN model [48].
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3.3 Leader election
Early LE algorithms were designed for parallel networks of processors.
LE in anonymous cycles was studied by Attiya et al. in [12] for both
synchronous and asynchronous models with runtime O(n log n) and
O(n2) respectively. A variant of the asynchronous model with eventual
termination was presented in [12]. This algorithm has the same runtime
than the synchronous model, and it highlights the trade off between
synchronization and eventual termination. Similarly, Itai and Rodeh
presented in [38] two algorithms for LE in cycles:

1. LE with known n and terminal correctness. The algorithm works
in phases numbered incrementally. At each phase active nodes
choose a random candidate number from {1, . . . , n}, and they sub-
mit their candidacy by sending a wave with the phase number
and candidate number. In addition, the wave has a binary flag
indicating whether the active node is known to be unique or not.
Nodes with maximal candidate number advance to next phases.
The procedure repeats until there is only one wave, which then
reaches the originating candidate from the other side of the cycle.
The algorithm has runtime O(n log2 n) w.h.p.

2. LE with unknown n and eventual correctness. The algorithm
calculates an estimate of n and then proceeds as the first algorithm.
Each node calculates a local estimate, sends it to one side of the
ring and waits for it come back. This algorithm does not terminate,
it eventually converges to a correct solution for LE. To succeed
w.h.p. each node repeats the process r times, where r = 1/ε is
a model parameter. A binary flag is sent along with the wave
to facilitate distinguishing waves from other nodes. Waves are
removed in case the estimate is known to be invalid. Otherwise
they are forwarded with an updated estimate. The estimate is
incremented by one in case the node is certain that the estimation
is both smaller than n and originated by another node.

The LE problem for arbitrary graphs was studied by Matias and
Afek in [46] under three variants of anonymous asynchronous PN by
building spanning trees. The first algorithm assumes that nodes know n
(i.e. there is uniformity) and it has runtime O(D) w.p. > 1− ε. Nodes are
ranked based on a locally generated ID of length O(log n). The ID is a
pair of (a) the number of coin tosses the node makes until it gets heads,
and (b) a number chosen randomly from 1, . . . , d, where d = O(r log r)
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and r = 1/ε. Each node marks the port that links to its parent, the one
from which it received the highest ID. Algorithm C.4 is an abstraction of
the original algorithm. States are represented by the maximum received
ID, and nodes move sequentially from one state to the next one until
converging.

The other two algorithms require a lower bound of network size L.
They differ in the termination detection condition. For the case without
termination detection, nodes become candidates (transmit their ID) only
in case that ID < L. This variant reduces the length of IDs to O(log r),
thus reducing message complexity. However time complexity remains
O(D) w.p. > 1− ε. In addition to a known L, the case with termination
detection requires a known upper bound of the network size N = k · L
The same runtime applies for this case, the only extra step is to verify
termination. For k = 2 termination can be confirmed as long as the tree
size is greater than L since there can only be one such tree in networks
with size L < n ≤ 2L. For calculating the size of the tree, the root node
sends a broadcast wave indicating that it is the root, and it waits for
the acknowledge of all children. All three algorithms are adaptable to
broadcast networks since the same message is sent to all neighbors. The
exchange of large IDs prevents its applicability to models with limited
memory and/or message size, such as nFSM and BE. Lastly, although
these algorithms are adaptable for RN networks the runtime complexity
would differ. Additional rounds are required to broadcast IDs, since
algorithms in RN have to cope with collisions.

3.4 Vertex coloring
A randomized algorithm for (∆ + 1)-coloring in the PN model was pre-
sented by Métivier et al. in [47]. The algorithm works in a fully syn-
chronous model. Nodes are not required to know the actual network
size n nor an upper bound N of the network size. The algorithm has
two parts, the first one colors with an arbitrary number of colors and
the second part reduces the number of colors to ∆ + 1. Algorithm C.3
enriches the original algorithm with state transitions. Figure 3.2 depicts
the state transitions, with state set {A,W,C} corresponding to active,
waiting and colored. In the first part each node u builds a color itera-
tively, by generating a random bit bu and concatenating it to the current
color cu ← cu ‖ bu. Nodes keep in memory a set of labels indicating the
active set neighbors. Nodes exchange their bit at each step, and remove
the nodes with different bit from the active set. This is repeated until
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all nodes have emptied their active set, yielding a valid coloring. At the
same time, nodes build local sets of incoming and outgoing neighbors,
by comparing the bit which differs from their neighbor bu and bv. At
the end of part one, nodes have built an orientation of the graph. The
second part consists of recoloring waves starting from local maxima
nodes. Nodes choose a color u.a.r. from the (∆ + 1) palette, such that it
does not conflict with incoming neighbors, and they acknowledge the
chosen color. This technique was previously presented by Johansson
[39]. The algorithm completes coloring in O(log n) w.h.p. The algorithm
does not apply to nFSM, since nodes need to keep large color values
in memory for the first part. The synchrony requirement restricts its
applicability to synchronous models. In particular, the algorithm re-
quires distinguishing messages coming from different ports, which is
not applicable to any broadcast MP model.

CA

b~ {0,1}; cv←cv || b;
if bv ≠bu s.t. u ∈ N(v): 
(active ← active\{u}
if bv=0: INv←INv ∪{u}
else OUTv←OUTv∪{u})

W

Receive <cw,w> s.t. w ∈ INv

INv←INv \{w}
colors(v)←colors(v)\{cw}

cv←min{colors(v)}
send <cv,v> to 
each w∈OUTv

active ← N(v)
INv ←∅ 
OUTv ←∅ active = ∅ 

PART 1
O(log n)-coloring

PART 2
Reducing to (∆+1)-coloring

INv = ∅ 

Figure 3.2: (∆ + 1)-coloring in the PN [47].
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Radio networks

This chapter reviews the model capabilities of different RN models pre-
sented in previous literature in terms of specific problems. Section 4.1
reviews the key problem of deterministic and randomized broadcast
(BC) under the radio network model (RN) with and without collision
detection (CD). Sections 4.2, 4.3 and 4.4 cover algorithms for solving
maximal independent set (MIS), leader election (LE) and vertex coloring
in different RN and beeping (BE) models.

4.1 Broadcasting
This section reviews single source broadcasting algorithms in RN. Broad-
casting consist of delivering a message from a single source to all other
nodes (see Table 2.2 for a formal definition). BC is a key operation
used as a building block for solving other problems. It has been utilized
both as a subroutine and as a complexity metric TBC (i.e. measuring
complexity in terms of times to broadcast). Among other applications,
BC is used as subroutine to solve LE [13]. The crucial challenge of BC
in RN without CD is to find the optimal scheduling of transmissions
that reduces collisions at the uncovered (i.e. uninformed) nodes. In this
regard, collision detection and determinism play crucial roles in the
computational complexity of BC. Tables 4.1 and 4.2 summarize results
presented in previous literature for randomized and deterministic BC in
RN respectively. The rest of this section reviews different BC algorithms
in detail.

A “decay” approach was presented by Bar-Yehuda et al. in [13] for BC
in the wake on message silent RN model. Nodes compete with neighbor-
ing nodes to become the only transmitter. Their chances of succeeding
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Model Know-
ledge

Graph
family

Runtime Ref.

Std. RN Topology GU Ω(log2 n) [3]

Std. RN N , D G O(D + log6 n) [33]
Silent RN None GU Ω(D log n/D) [43]
Silent RN None GD Ω(D log n/D) [24]
Silent RN D ≤ N1−ε G Ω(D log n) [43]

Silent RN n and D GU O(D log n+ log2 n) [13]

Silent RN N GU O(D logN/D + log2N) [40]

Silent RN n GD O(D log n/D + log2 n) [27]

Silent RN None GD O(D log n/D + log2 n) [24]
Silent RN IDs BG Ω(D log n/D) [54]

Table 4.1: Complexity of randomized BC in RN.

Model Know-
ledge

Graph
family

Runtime Ref.

Std. RN IDs BG O(D log n), Ω(D + log n) [54]
Std. RN IDs GD O(n ·D) [21]
Silent RN IDs GD Ω(D log n) [21]
Silent RN IDs GD Ω(n logD) [24]
Silent RN IDs GU Ω(n) [13, 42]
Silent RN IDs GU Ω(D log n) [17]
Adv. RN IDs GU Ω(n log n) [42]

Silent RN IDs, N GU O(n log n), Ω(n logn
log(n/D)

) [40]

Silent RN IDs BG O(n log n), Ω(n logn/D n) [54]

Silent RN IDs GD O(n11/6) [21]

Silent RN IDs GD O(n log2 n) [23]
Silent RN IDs, n, D GD O(D∆ log(n/∆)) [24]
Silent RN IDs, n GD O(D∆ log n log(n/∆)) [24]

Silent RN IDs GD O(D∆ log(n/∆) log1+α n) [24]

Table 4.2: Complexity of deterministic BC in RN.
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decrease as the rounds of a phase progress. The decay BC algorithm
requires nodes to know the network diameter D and a size estimate
N . Algorithm C.5 extends the original algorithm with state transitions.
Figure 4.1 depicts the state transitions, with state set {W,A,C, P} cor-
responding to waiting, active, competing and passive. Nodes start and
remain in waiting state W until they receive the message then become
active. The active state has the sole purpose of synchronization. The
algorithm proceeds in phases. Nodes use the value of D to calculate
phase limits, in which they move into competing state at the same
time. The value of N defines the number of phases [13]. The algorithm
accomplishes broadcast in time O(D log n + log2 n). Knowledge of N is
a necessary condition for the algorithm to terminate [24], otherwise
nodes would have to run forever in case new nodes are activated. The
algorithm is not directly applicable to the harsh RN model due to the
activation by incoming message assumption and the requirement of
known graph properties. It is not applicable to the nFSM model either,
due to the use of large counters. However, the decay approach has been
largely influential for developing extensions and adaptations that are
applicable to different RN models [27, 32, 40].

P

CA

t ← t +1

W j ← 1; t ← 1

(coin = 0 or j = k) :
j ← j + 1

t = k : t ←0 

j = log (N /ε) 

received message :

t ← t +1

(synchronized)

k ← 2⌈log ∆⌉ 
pT ← 2 - k

coin ← 0 w.p. pT

if(coin=0) transmit

Figure 4.1: BC in silent RN – decay approach [13].

An improvement to decay BC in silent RN was presented and named
“optimal” BC by Kowalski and Pelc [40]. It is based on the observation
that uncovered nodes with a large number of covered neighbors cannot
be informed fast w.h.p. The optimized BC proceeds in phases of logN/D+
2 steps, where N is a known estimate of the network size and D the
network diameter. During the first logN/D + 1 nodes transmit w.p. 2q

and in the last step w.p. pi. The value q = logN/D is chosen such
that nodes with at most N/D informed neighbors receive the message
w.h.p. The value of pi is chosen based on the universal probability
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sequences defined in [40], such that nodes with more than N/D informed
neighbors get informed in the last step. Nodes are not required to know
D, instead they use a “doubling technique” to estimate D in exponential
increments. This estimate is used to decide whether to execute optimal
BC for D > 32N2/3, or the basic decay BC otherwise. The algorithm is
not applicable to nFSM due to the counters needed for iterating over the
steps, however it is applicable to BE. Algorithm C.7 is an abstraction
of the original algorithm. Figure 4.2 depicts the state transitions, with
state set {W,Ai, Pi} corresponding to active, competing and passive, and
i ∈ {d, o} to decay and optimal BC subroutines.

t = q : transmit w.p. pj ; j ← j+1

P
D ≤  32 N 2/3 

Ao Coreceived(msg) : t ← 0

t ← t+1;
transmit w.p. pO

j = 4600 D :
i ← i+1 

D > 32 N 2/3 

CdAd

t ← t+1;
coin ← 0 w.p. pT

if(coin=0) transmit

(coin = 0 or t = k) : j ← j+1

t = k : j ←0 j = log (N / ε) :
i ← i+1

t ← t+1

(synchronized)

t ← t+1; 
if t = q : j ← j+1 

i ← 0; D ← 2i

k ← 2⌈log ∆⌉ 
pT ← 2 - k

j ←1; t ←1

pO ← 2 - q
q ← log N/D

pj ← Universal Probability
Sequence

Figure 4.2: Randomized broadcasting in RN without CD [40].

Improved BC algorithms for silent RN were presented by Czumaj
and Rytter in [27]. They presented the original decay algorithm in
terms of “selecting sequences” for the transmission probabilities. This
clarifies the actual probability with which nodes transmit at each round
during the decay process. At a given round i ∈ {1, . . . , log n} of each
phase, nodes transmit with probability 2i−logn. The improved algorithm
replaces the original sequence with a parameterized sequence based on
λ = log n/D. Algorithm C.6 is a transcription of Czumaj and Rytter’s
linear randomized BC algorithm. Although the algorithm assumes
that nodes know the network size n, the authors make reference to an
estimation technique for removing this assumption.

Deterministic BC algorithms were presented by Chlebus et al. in
[21] for both the standard RN and the silent RN. The algorithm requires
unique IDs, since deterministic symmetry breaking is impossible in
anonymous networks [4]. For the case with CD, Chlebus et al. presented
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an encoded BC algorithm with runtime O(D|σ|) for transmitting a mes-
sage with size σ. Informally, the algorithm encodes the message into
two consecutive bit streams through carrier sensing. A silent round
represents σi = 0 and a non-silent round (i.e. with one message received
or a collision detected) represents σi = 1. In addition, it was proven
that with CD it is possible to accomplish acknowledged BC, whereas
for the case without CD it was proven to be impossible. Acknowledged
BC means that the source is required to know that BC has completed
successfully. Furthermore, Chlebus et al. in [21] presented algorithms
for acknowledged BC in (a) symmetric graphs with runtime O(n), and
(b) strongly connected graphs with runtime O(n|σ|). For the case with-
out CD, Chlebus et al. presented an algorithm with runtime O(n11/6).
Informally, waves of informing nodes progress one hop per phase. Nodes
calculate the transmission schedules in advance by computing a (n, k)-
selective family F . An family F of subsets of [n] is (n, k)-selective if for
every non empty subset Z of [n], s.t. |Z| 6 k, there is a set F ∈ F with
|Z ∩ F | = 1 [24]. An common arbitrary ordering is established. All
nodes have the same subsets and ordering. The algorithms proceed in
j phases, each with k = |F| rounds. Nodes transmit only in rounds for
which their label belongs to the j-th subset.

The previous approach was named “dovetail” and further developed
by Clementti in [24]. The study presented three variations of Chlebus
algorithm, for different assumptions of known graph properties. Algo-
rithm A assumes known n and ∆. It proceeds in phases i = 1, 2, . . . with
an ordered set of families Fi. Nodes start uninformed in the inactive
state. Nodes may only become active at round j of a given phase i,
provided that: (a) its label belongs to the jth set of Fi and (b) they have
been informed for the first time during the previous phase i− 1. This
algorithm was proven to complete broadcast in O(D∆ log(n/∆)). For
the case of known n only, algorithm B proceeds in phases h = 1, 2, . . .
of dlog ne rounds. At round ` of phase h each node runs round h of
algorithm A with ∆ = 2`, s.t. 1 6 ` 6 dlog ne. In addition, nodes
that become inactive while executing algorithm A will move to inactive
state for the remaining of algorithm B. The runtime of algorithm B is
O(D∆ log n log(n/∆)). Lastly, for the case of no global properties known,
algorithm C executes algorithm B with n = 2`, for ` = 1, 2, . . . serving as
estimate. This algorithm has runtime O(D∆ log(n/∆) log1+α n).
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4.2 Maximal independent set
The MIS problem has been extensively studied in a large variety of
models for different graph families. Results and lower bounds vary
depending on the graph, model features and assumptions. This section
reviews results for MIS in RN and BE models. The complexity of these
algorithms is summarized in Table 4.3.

Model Know-
ledge

Graph
family

Runtime Ref.

Harsh RN n UD O(log2 n) w.h.p. [49]

nFSM None G O(log2 n) w.h.p. [30]

BE Known N G O(log3 n) w.h.p. [1]

Wake on beep
BE

None G O(log3 n) w.h.p. [1]

Wake on beep
BE with CD

None G O(log2 n) w.h.p. [1]

Synchronous
clocks BE

None G O(log2 n) w.h.p. [1]

Table 4.3: Complexity of randomized MIS in RN.

Model Know-
ledge

Graph
family

Runtime Ref.

Std. RN IDs, n BG O(log n) [54]
Std. RN non-
simultaneous

IDs, n BG O(log n), Ω(log n) [54]

Table 4.4: Complexity of deterministic MIS in RN.

An algorithm to solve MIS in UD graphs in the harsh RN model
was presented by Moscibroda and Wattenhofer in [49]. Algorithm C.11
is an abstraction of the original algorithm. Figure 4.3 depicts the
state transitions, with state set {W,A,C,M, S} corresponding to waiting,
active, competing, MIS and slave (i.e. the node decided not join the MIS).
The algorithm assumes that nodes have the ability to store and exchange
large counters (large memory and message size) and know the network
size. Different counter thresholds are used as node “filters” before they
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CAW M

S

s ≥ tW s ≥  tA c ≥ tM

mA mC(cu)  and |c-cu| ≥ tC

mA

mM
mM

mM

tA ← λ log n 

tM ← δ log2 n 
tC ← δ log n 

tW ← 4μ δ log2 n 

Figure 4.3: MIS in the harsh RN model [49].

progress to the next state, including tW , tA and tM . The threshold tW has
the purpose of avoiding interference with competing nodes from newly
woken nodes. Thresholds tA and tM are used to break node symmetry,
as opposed to random priority values used by Luby [45] and Métivier
et al. [48]. The threshold tC is used as safety condition before joining
the MIS. Nodes calculate the difference between its counter c and each
neighbor counter cu, such that |c− cu| ≥ tC holds in order to join the MIS.
An important aspect to highlight is that nodes may only terminate in
‘slave’ state, and nodes that joined the MIS run forever claiming their
decision. This algorithm is not applicable to the nFSM model due to
the use of large counters. The complexity is different in the BE model,
which requires transmitting messages as bit streams.

A randomized algorithm for solving MIS in the nFSM model was
presented by Emek and Wattenhofer in [30]. This is a RN model with
asynchronous communication and adversarial scheduling. Addition-
ally, nodes have a small constant memory size, making them unable
to hold large counters. Therefore a different approach is required for
synchronizing nodes, keeping a fairness condition and producing valid
outputs. The algorithm leverages a synchronizer protocol [30] for soft
alignment. This is a partial alignment in which the local time of two
neighboring nodes differs by at most one round. As a trade off, the
model requires a larger state size equal to the square of the original
size. In this partly aligned model, rounds are referred to as turns. In
addition, a pulse variable t ∈ {0, 1, 2} is used to cope with asynchronous
activation. Algorithm C.10 is an abstraction of the original algorithm.
Figure 4.4 depicts the state transitions, with state set {W,A,Ct,M, S}
corresponding to waiting, active, competing, MIS and slave, and t corre-
sponding to the pulse variable. At each turn, nodes broadcast their state
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information, and they receive a multiset of states from their neighbors.
Nodes have access to a bounded counter function β(](q)), that obtains
the occurrences of state q in the multiset received. Nodes start in ac-
tive state and they move to competing state in case no neighbor is in
active state. Depending on a randomly generated bit b and the multiset
of received states nodes either join the MIS or move to waiting state.
Lastly, nodes in waiting state move to the slave state in case a neighbor
has joined the MIS, otherwise they move back to active state. For each
node the number of competing rounds is modeled as an independent
variable, which follows a geometric probability distribution G(p) with
parameter p = 1/2. The sum of all these n variables is at most O(log n)
w.h.p. Active nodes decrease by O(log n) + NB(O(log n), 1 − p) w.h.p.
Combining these results, the algorithm has runtime O(log2 n) w.h.p.
Since the nFSM model assumes guaranteed delivery, this algorithm is
not directly applicable to RN models neither with CD nor without CD.
Lastly, an adaptation is required for applying it to the BE model, in
order to efficiently translate large messages (synchronized version of
state messages) into bit streams.

MCtA

W S

β(♯(M)) > 0

β(♯(W)) = 0

β(♯(Ct+1 mod 3 )))> 0β(♯(M)) = 0

t ∈ {0, 1, 2}

b ~ {0, 1}

b = 0 and (β(♯(Ct)) +

b = 0 and (β(♯(Ct)) +

β(♯(W)) > 0 if b=1 and β(♯(Ct-1)) = 0 then 

β(♯(Ct+1 mod 3 )))=0 

t←t+1 mod 3

Figure 4.4: MIS in the nFSM model [30].

A template for solving MIS in BE was presented in [1], along with
multiple instantiations for variations of the BE model. These variations
depend on the uniformity and sender side CD. The template requires
an estimate of the network size, and makes use of counters for iterat-
ing over phases and rounds. A default instantiation of the template
considers the standard BE model with a known upper bound of the
network size N , and other variations utilize an estimate obtained by
the algorithm. Algorithm C.13 is a modification of the original version,
to highlight state transitions. Figure 4.5 depicts the state transitions,
with state set {W,C,M} corresponding to waiting, competing and MIS.
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Nodes remain in the waiting state for tW = c log2 n rounds. At each
round some neighbor beeps w.p. at most 1/2. Any node that hears a
beep restarts its counter and moves back to waiting state. It follows
that a node beeps alone every tC · tM = O(log2N) rounds w.p. 1/e, and
O(log n) of these events are required to build the MIS. Combining these
results, the algorithm runtime isO(log3 n) w.h.p. The algorithm does not
terminate but eventually converges. MIS nodes keep beeping w.p. 1/2
to claim their place. Since these algorithms use large counters, they are
not applicable to the nFSM model. Lastly, it does not apply to models
without CD.

MCW i ≥ tW: i ← 0; j ← 0

mbeep

i ≥tM

mbeepmbeep 

j ← j+1;
j ≥ tC : ( j←0; i ← i+1)

tM ← log N
tC ← c log N

tW ← c log2 N

i ← i+1
w.p. pM : beep  

i ← 0; j ← 0

w.p. pM : beep  

pM ← 1/2

upon mbeep :(i ← 0; j ← 0) /* restart */

w.p. pM : beep  

Figure 4.5: MIS in BE with known N [1].

Two instantiations of the template for solving MIS were studied by
Afek et al. in [1] for wake on beep variations of BE with and without
sender side CD. Wake on beep refers to assuming that nodes are woken
up by incoming beeps. Algorithms C.14 and C.15 are abstractions of
the original algorithms. Figures 4.6 and 4.7 depict the state transitions,
with states {W,A,C,M, I, S} corresponding to waiting, active, compet-
ing, MIS, inactive and slave. Since both algorithm assume wake on
beep, they have these commonalities: (a) Replace a known upper bound
of the network size N with an estimate N = 2x, where x is the current
phase counter. (b) Create a partial alignment by defining a preliminary
waiting state W , in which nodes wake up, beep and wait for one round.
(c) Perform k exchanges or “challenges” with a number of rounds each.
Since nodes are only partially aligned, at least two rounds are required
for moving into MIS state in case neighbors are one round behind. In-
formally the difference between the two is that the variant with sender
side CD is restrictive, while the variant without sender side CD is per-
missive. With sender-side CD, nodes make sure no neighbor has beeped
recently before they join the MIS. Nodes move from active to competing
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only with a probability pC inversely proportional to the network size
estimate. Without sender-side CD nodes that joined the MIS may later
leave the MIS in case of conflicts. A silent round is enough for nodes
to advance state to competing and to MIS. This difference is reflected
in the termination condition. In the model without CD nodes can only
converge to the correct output, whereas in the model with CD nodes
terminate. Lastly, the algorithm with CD requires k = 4 challenges and
has runtime O(log2 n) w.h.p. The algorithm without CD requires only
k = 3 challenges, however it has runtime O(log3 n) w.h.p.

MCAW

pA

I
m2

beep

¬m2
beep¬m1

beep

m1
beep

¬m3
beep; ( i ← i+1; 

if i = x : x ← x+1)

m3
beep

pA ← 2 - i

mbeep: 
x ← 0 ; i ← 0  

i ← i+1; 
if i = x :
x ← x+1 

Figure 4.6: MIS in BE with wake on beep, without sender side CD [1].
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¬m4
beep: ( i ← i+1; 

if i = x : x ← x+1)

¬ m1
beep and ¬ m2

beep

mbeep:  ( x ← 0 ;
 i ← 0 )

Figure 4.7: MIS in BE with wake on beep and sender side CD [1].

Another instantiation of the template for solving MIS was presented
by Afek et al. in [1] for the synchronized clocks BE. This algorithm
implements the MIS algorithm template based on counters. The algo-
rithm is an extension of Métivier et al. [48] algorithm, which is based
Luby’s permutation algorithm [45]. In this algorithm, state exchange
is accomplished by designating two time slots, corresponding to com-
peting and MIS states. This model assumes synchronized local clocks
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throughout the execution of the algorithm. Similarly to the wake on
beep MIS algorithms, it replaces the need for a known upper bound of
the network size with an estimate k of the priority sizes (i.e. number of
bits). Although the communication is synchronous, node activation is
only decided by an adversary (i.e. nodes are not waken up by beeps). For
coping with adversary activation, this algorithm designates every third
time slot for a restart bit. The restart bit is used to ensure that nodes
have the same estimate k throughout the algorithm. Algorithm C.16 is
an abstraction of the original algorithm. Figure 4.8 depicts the state
transitions, with state set {I, C,M} corresponding to inactive, compet-
ing and MIS. It was proven that for each node its O(log n) neighborhood
is stable during Ω(log2 n) rounds. The algorithm runtime is O(log2 n)
w.h.p., since it performs at most O(log n) executions of Luby’s algorithm,
which has runtime O(log n). This algorithm is not applicable to the
harsh RN model nor to the nFSM model. Firstly, because it assumes
synchronous clocks and secondly, because it relies on large counters.

MCI t ≡ 0 mod k

mrestart : k ← 2·k

mrestart : k ← 2·k

mcompeting : k ← 2·k

t ≡ 0 mod kk ← 6

 mMIS / mcompeting

t ← t+1t ← t+1

Figure 4.8: MIS in BE with synchronous clocks [1].

Lastly, a deterministic algorithm for solving MIS in the synchronous
BE was presented by Schneider and Wattenhofer in [54]. It makes
two assumptions: (a) nodes have unique IDs, and (b) networks have
underlying BI graphs, such that a polynomial function f(r) defines
the size of the maximum independent set in the r radius. Algorithm
C.12 is an abstraction of the original algorithm. Figure 4.9 depicts the
state transitions, with state set {A,C, I,M, S} corresponding to active,
candidate, inactive, MIS and slave. The algorithm iterates for f(f(2)+2)
stages of f(2) phases of log∗ n + 2 competitions. Nodes start in active
state. Each competition consists of two parts. In the first part nodes
transmit their IDs as bit streams. Nodes detect that another node has
higher ID in case a beep is heard during a silent round. The second
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part consists of an update state subroutine with two rounds. In case
an active node does not have a neighbor with a higher ID during the
first phase, it joins the MIS, it listens for one round and it beeps in the
next one. In case an active node does not have a neighbor with a higher
ID during a later phase, it moves to candidate state, it beeps for one
round and listens in the next one. Otherwise, they listen for two rounds,
and they move to inactive and to slave states in case they hear beep
in the first and second rounds respectively. The algorithm runtime is
O(log n), since it takes f(f(2) + 2) stages of log n rounds. The algorithm
was extended for the asynchronous wake on beep BE, without runtime
overhead. It defines a pulse beat, such that every six rounds it executes
a step of the synchronous algorithm. Upon waking up, nodes wait for
seven silent rounds before starting execution. In case they hear two
consecutive beeps they move to slave state, since that means a neighbor
has joined the MIS. MIS nodes beep in the last two rounds (i.e. fifth and
sixth). Other nodes only beep in the first round. The algorithm does not
terminate, it rather converges to a correct output.
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Figure 4.9: Deterministic MIS in fully synchronous BE [54].

4.3 Leader election
LE is a highly relevant problem in distributed computing, since it can
be leveraged for solving other problems. Similarly to BC, LE has been
extensively studied under various RN models. Decisive model features
include determinism, collision detection and synchrony. A recent review
of LE algorithms for different models was presented by Ghaffari and
Haeupler in [32]. In this study, LE is proven to be as hard as BC. For
asynchronous RN, both with and without CD, it was shown that LE
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lower bounds are precisely the lower bounds for BC in the corresponding
setting. The BC lower bounds in Tables 4.2 and 4.1 are closely related
to the LE lower bounds in Tables 4.5 and 4.6.

Model Know-
ledge

Graph
family

Runtime Ref.

Silent RN n, D GU O(D log n+ log2 n) · log n
w.h.p.

[14]

Silent RN n, D GU , GD O(D log n/D + log2 n) ·
√

log n
w.h.p.

[26]

Std. RN or
BE

n,D GD O(D log n) (expected time) [26]

Std. RN or
BE

N , D GU O(D + log n) · O(log2 n log n)
w.h.p.

[32]

Silent RN N , D GU O(D log n/D + log3 n) ·
min{log log n, log n/D} w.h.p.

[32]

Silent RN N GU O(n) w.h.p., Ω(n) [22]

Table 4.5: Complexity of LE in randomized RN.

Model Know-
ledge

Graph
family

Runtime Ref.

BE and wake
on beep BE

IDs GU O(D log n) [31]

Standard RN IDs, N GU Θ(n) [41]
Silent RN IDs, N GU Ω(n log n) [41]

Silent RN IDs, N GU O(n log3/2 n
√

log log n) [22]

Table 4.6: Complexity of LE in deterministic RN.

Multiple approaches to LE in RN have been presented in previous
literature. A “simulation” approach to solve LE in the silent RN was
introduced by Bar-Yehuda et al. in [14]. The authors provided a simu-
lation of single-hop RN with CD from multi-hop RN without CD. The
simulation is applicable to anonymous RN. However it only works for
synchronous RN and not for asynchronous RN. It simulates a round
of a single-hop RN in TBC . It makes use of decay and broadcast proto-
cols, thus requiring nodes to know the network size n and diameter D.
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The actual algorithm for LE was not presented but rather conjectured
in [14]. The claim was based on a previous result of O(log log n) for
single-hop LE with CD and a multiplying factor of TBC . Two different
approaches to LE in RN were presented recently, namely the validating
and clustering approaches. The rest of this section reviews these two
approaches and Table 4.5 summarizes the complexity results.

4.3.1 Validating approach for LE
The “validating” approach to solve LE in RN was presented by Czumaj
and Davies [26]. It assumes that nodes know the network size n and
diameter D. Informally the approach consists of iteratively attempting
to select a single leader and validating the selection. Initially a set of
candidates S is selected at random. Each candidate generates an ID
with length logarithmic in n. Candidates use optimized BC to transmit
their IDs, and they remove their candidacy in case they detect a higher
ID. Other nodes remain in active state forwarding candidate IDs. A
validation condition is defined such that certain “witness” nodes detect
whether there are zero, one or more than one candidates. These nodes
play the special role of informing the rest of the network, such that
other nodes either terminate or start a new iteration (i.e. a new attempt
is made). Two algorithms for solving LE using this approach were
presented in [26], corresponding to the models of silent RN and wake on
beep BE. The remaining of this subsection reviews these two algorithms.
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Figure 4.10: Optimal LE for directed graphs in RN [26].

1. Validating algorithm for LE in the silent RN. Nodes move to the
‘candidate’ state w.p. (4 log n)/n. A multi-BC subroutine is used to
transmit multiple candidate IDs that are ` = log n bits long, such
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that recipients interpret the first received message. It iterates
over two phases: a search phase for finding the highest ID and a
selection phase to validate the existence of a single leader. The
search phase performs multi-BC of IDs bit by bit; only the bits of
the highest ID are forwarded. Candidates that receive a higher
ID remove their candidacy. The selection phase includes two
parts: Firstly, the remaining candidate nodes disseminate their
ID using multi-BC, such that non-candidate nodes keep the first
IDc received. Secondly, nodes validate that a single candidate
remains. The validation consist of i ∈ {1, . . . , 16 log n} rounds of
decay, such that at the i-th round nodes with IDc[i] = 1 perform
decay. It was proven that four iterations of decay are enough for at
least one witness node to detect multiple IDs (i.e. a witness with
IDc[i] = 0 receives a bit 1 in decay rounds). Thereafter witness
nodes perform multi-BC to acknowledge the validation result to
rest of the network. Both the search and the selection phase have
runtimeO(TBC ·

√
log n) each. The overall runtime of this algorithm

is O(TBC ·
√

log n) w.h.p. Algorithm C.17 is an annotated version of
the algorithm. Figure 4.10 depicts the state transitions, with state
set {I, Aq, Cq,W, L, S} corresponding to inactive, active, candidate,
witness, leader and slave and q ∈ {0, 1} to the search and selection
phases, respectively.
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Figure 4.11: Optimal LE for directed graphs in BE [26].

2. Validating algorithm for LE in the wake on beep BE. Initially,
nodes become candidate w.p. 1/n. The algorithm includes a beep-
and-wave subroutine, in which candidate nodes transmit their IDs
as a beep sequence and other nodes repeat the received sequence,
which possibly includes multiple superimposed IDs. These trans-
missions are performed every 3rd round. Candidates choose an
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ID with 4 log n bits, including log n 1’s precisely. Candidate IDs
are broadcasted using beep-and-wave. Witness nodes are able to
detect multiple candidate IDs, in case they hear more than log n
1’s. Thereafter witness nodes acknowledge the rest of the network
by sending a validation flag using beep-and-wave. Both the beep-
and-wave subroutine and the entire algorithm have an expected
runtime of O(D+ log n). Algorithm C.18 is an annotated version of
the algorithm. Figure 4.11 depicts the state transitions, with state
set {I, A, C,W,L, S} corresponding to inactive, active, candidate,
witness, leader and slave.

Figure 4.12 shows an example of the validating approach requir-
ing two iterations of the selection subroutine to find a single leader.
The label inside each node represents its current state. The initial
candidates are numbered sequentially as they appear in first part of
the diagram. In addition, the diagram includes ID labels associated to
each node, representing a candidate ID stored in memory. Each label
ID(Ci) denotes the ID of the i-th candidate node. Labels IDc denote
the first candidate ID received by a non-candidate node. It depicts five
phases: (a) Phase 0 shows the initial candidates with chosen IDs of
length ` = dlog2(18)e = 4 and the result of the search subroutine as first√

log n digits underlined, (b) Phase 1 shows the first multi-BC with all
nodes receiving some candidate ID, (c) Phase 2 shows the result of the
first witness detection, (d) Phase 3 shows the second multi-BC (new
candidate IDs) and the result of the second witness detection, and (e)
Phase 4 shows the final configuration after all nodes have the received
the only remaining candidate ID and no more witness are detected.

4.3.2 Clustering approach for LE
A different “clustering” approach to LE in multi-hop RN was presented
by Ghaffari and Haeupler in [32] as an algorithm template. Algo-
rithm C.19 is modification of the original template to highlight state
transitions. Figure 4.13 depicts the state transitions, with state set
{W,Aq, Cq, U,B, L, S} corresponding to waiting, active, candidate, un-
clustered, boundary, leader and slave, and q ∈ {0, 1} to the clustering
and elimination phases. The algorithm makes the following assump-
tions: (a) nodes know the network size n, (b) the message size is large
enough O(log n) to hold candidate IDs, (c) nodes are activated by in-
coming messages, (d) communication is synchronous through the estab-
lishment of global clocks in TBC with a wake up wave, and (e) nodes
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Figure 4.12: Example execution of validating based LE.
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can calculate a unique ID by sampling Θ(log n) bits. The algorithm
template works on an overlay graph of clusters, abstracted from the
original graph. It consists of two parts:
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clustering over BA1

boundary detection

downlink over

(deg,ID)≠ max(deg,ID)

clustering over

Figure 4.13: Clustering LE in RN and BE [32]

1. Clustering. A small set of candidate nodes are self-elected ran-
domly w.p. (10 log n)/n, and they become cluster centers. Clusters
are formed by broadcasting candidate IDs, such that all clusters
expand at the same speed. Non-candidates are assigned to the
nearest candidate, and nodes with more than one nearest candi-
date are left unassigned. Boundary nodes play a special role in
the algorithm. These nodes are adjacent to nodes from different
clusters or unassigned nodes.

2. Elimination part. Candidates iterate over “debates”, in which
they exchange IDs, calculate their degree and mark themselves
for elimination in case their degree or ID is dominated (i.e. it is
smaller than another candidate’s degree or ID respectively). A
constant number of candidates is eliminated in each debate. After
Θ(log log n) debates precisely one candidate remains and broad-
casts its ID to claim the leadership. Debates are the central part of
the template. They are enabled by three inter cluster operations:
(1) uplink, sending messages from candidates to boundary nodes,
(2) downlink, sending messages from boundary nodes to the candi-
dates, and (3) intercommunication, exchanging messages between
boundary nodes.

Figure 4.14 shows an example of this approach requiring 2 debates
to find a single leader. It depicts four phases: (a) Phase 1 shows the
initial candidates with their chosen IDs of length ` = dlog2(18)e = 4,
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(b) Phase 2 shows the first clustering with some unclustered nodes, (c)
Phase 3 shows the result of the first debate: Clusters 2, 3 and 4 have
degree two, clusters 3 and 4 tie in IDs. After the second clustering there
are new clusters 6 and 7. (d) Phase 4 shows the result of the second
debate: Cluster 8 remains, since it has higher ID.

Two instantiations of this template were presented in [32] for the
silent RN and BE models. Both the clustering and elimination parts
were adapted to the conditions of each model.

1. A clustering based LE algorithm for RN without CD was presented
by Ghaffari and Haeupler in [32]. The algorithm makes use of
BC algorithms for both parts of the template. Initially a small
set of candidates are elected randomly. Clusters are formed by
performing multiple broadcasts of candidate IDs. Non-candidate
nodes join the cluster of the first candidate ID they receive. There
are different BC algorithms, as reviewed in Section 4.1. This
algorithm requires clusters to have rather regular shapes. In
particular this algorithm does not perform fast enough in case
the clustering has “spikes”, in which all adjacent nodes belong
to different clusters. The trade off between two BC approaches
was explained by Ghaffari and Haeupler in [32]. The long decay
BC of Bar-Yehuda et al. [13] allows controlled growth while the
fast decay is faster. The fast decay BC of Czumaj and Rytter [27]
has optimal runtime, however it could produce spike-shaped clus-
ters. The algorithm combines the two BC approaches to ensure
a controlled cluster growth of one hope per phase. Once clus-
tering is completed, the debate part is executed on the overlay
graph of clusters. Candidates debate by exchanging their IDs,
and they eliminate themselves in case they receive a higher ID.
The exchanging of IDs require cluster operations. The uplink and
downlink operations consist of multiple broadcasts initiated from
the candidates and from the boundary nodes, respectively. As
per the debate part, the fast decay BC is suitable for the uplink
and downlink operations, whereas basic decay BC is enough for
the intercommunication operation. The clustering total runtime
is O(TBC) +O(log2 / log(n/D)) · O(log2 n) = O(D + log n/D + log3 n)
w.h.p. In addition, the uplink and downlink operations have run-
time O(TBC), and the intercommunication operation has runtime
O(D+ log n/D+ log3 n). Lastly the debate runtime for RN without
CD is further improved by limiting the number r of competing
candidate IDs to r = 5, which guarantees a constant fraction 2/5
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of candidates is eliminated while remaining at least one.

2. Another clustering based LE algorithm for BE was presented by
Ghaffari and Haeupler in [32]. The algorithm uses beeping waves
for building clusters, in which nodes are numbered with the dis-
tance to the closest candidate. Waves proceed one hop per round,
such that the elapsed time equals the distance to the candidate.
Algorithm C.20 is an annotated version of this clustering algorithm
for BE. Nodes use superimposed codes for estimating degrees by
distinguishing the number of different messages received. Su-
perimposed codes map a set of elements to a binary codeword
such that any superimposition of k or less codewords is unique
and distinct from any superimposition of more than k codewords.
Candidates use superimposed codes for comparing degree and
ID pairs, and deciding whether to mark itself for elimination or
not. All three clustering operations are redefined such that nodes
receive the superimposition of messages, as opposed to separate
messages. Algorithms C.21, C.23 and C.22 are annotated versions
the original algorithms. For improved efficiency, the algorithm
uses (1 + δ)−approximate k-counting superimposed codes of length
` = Θ(logM log k/δ3), with logarithmic dependency on M and k,
and polynomial dependency on 1/δ. For calculating candidate de-
grees, this debate algorithm requires O(D + `) rounds to transmit
IDs of length O(log n) encoded with ` = Θ(log n log log n) bits. The
number of required debates is min{log log n, log n/D}. Combining
the two results, the runtime for LE is O(D + log n) · O(log2 n log n)
w.h.p. Using approximation δ = 0.1 and code length k = O(log n),
the number of different candidate IDs is correct by a 1 + δ = 11/10
factor. Lastly, nodes compare their degree and ID with others by
transmitting them as a bit stream, and they mark themselves in
case they hear beep.

4.3.3 LE in the BE model
The time and state complexity to solve LE in a parameterized BE
model was discussed by Gilbert and Newport in [35]. Firstly, the state
complexity is obtained using a reduction to the (1, k)-loneliness detection
problem w.p. 1 − ε, where k is the network size and ε an error bound.
Loneliness defines two output states: qa (i.e. “I am alone”) and qc (i.e. “I
am in a crowd”). For a network with size n = 1 the single node is
required to enter the qa state, and for networks with size 1 < n < k all
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nodes are required to eventually enter qc. A lower bound is obtained
based on the probability of violating such requirement, for the case
of n > 1 this is the probability of some node reaching state qa. This
could happen after a sequence of state transitions of a given size r.
Each node transitions w.p. 1/q, where q is a precision parameter as
defined in Subsection 2.4.1. The probability that all k nodes follow the
same transition is (1/q)k. The probability of all nodes following the
entire sequence of r state transitions is ((1/q)k)r. The error lower bound
(1/q)k·r ≤ ε is obtained by making the previous probability smaller than
the error ε. The inequality qk·r ≥ (1/ε) follows, along with r · k log q ≥
log(1/ε). A lower bound of r is obtained from the previous inequality
r ≥ log(1/ε)/(k log q). This yields a Ω(logq(1/ε)/k) lower bound for
the number of states to solve loneliness in BE. The reduction of LE
to loneliness is based on the pairs of rounds required for electing and
announcing the leader, followed by a last round for terminating. In this
last round any non-leaders should beep. The round is silent in case the
node is alone, which then moves to state qa. Otherwise all nodes move to
state qc. A lower bound of s = Ω(logq(1/ε)/Ñ) for the number of states to
solve LE in the BE was obtained by Gilbert and Newport in [35] based
on the reduction to the loneliness problem. The value of Ñ is a network
size lower bound constant.

Secondly, a template algorithm for solving LE in the parameterized
BE model was presented by Gilbert and Newport in [35]. The template
consist of iterations of an elimination and a termination subroutines.
Initially all nodes are active. During the elimination subroutine active
nodes beep w.p. 1 − 1/q̂, otherwise they listen and become inactive in
case they hear beep. The termination subroutine receives the active
and knockout flags as parameters, and it returns a termination flag
indicating that it is time to output. After the termination subroutine
only one node remains active w.p. 1− ε, and it elects itself the leader. A
safety condition is proven such that after R = 4 logq̂(max{n, 1/ε}) silent
knockout steps the probability of ending up with more than one leader is
≤ ε/2. By union bound, the total error probability is ≤ ε [35]. The time
complexity of the entire LE algorithm is O(tR), where t is the number
of rounds required to run the termination subroutine. Three variants of
the termination subroutine were presented by Gilbert and Newport in
[35], which highlight the trade off between state and time complexity:

1. A state optimal termination has runtime O(dlogq(1/ε)/Ñe). It dis-
regards the active and knockout parameters. Instead, nodes try to
beep w.p. 1/2 for δ = dc logq̂(1/ε)e rounds, for some constant c ≥ 1.
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After δ silent rounds nodes return true, otherwise they return false.
The runtime grows exponentially with the network size n.

2. A fast termination fixes the precision parameter to the minimum
q = 2 and it requires Θ(log(1/ε)) rounds. In the first round nodes
that are knocked out beep to validates that there is at least one
node. During dlog(2/ε)e rounds active nodes beep w.p. 1/2. Each
node initializes an “alone” flag to true, and it switches it to false in
case it hears a beep. In the final round, the active node with solo =
1 beeps. This validates there is at least one leader. The combined
runtime for LE with a fast termination is O(log(n+ 1/ε) log(1/ε))
w.h.p.

3. A constant termination requires O(1) states and has runtime O(1)
w.h.p. Similarly to the fast termination subroutine, nodes keep a
“alone” flag, and they beep w.p. 1/2. However, the phases last for a
constant number of rounds. The final round is similar to the last
round of the fast termination subroutine. Each attack iteration
takes Θ(log n) rounds. The error probability is 1/nc, for a constant
c and the overall runtime is O(log2 n) w.h.p.

4.4 Vertex Coloring
This section reviews algorithms for vertex coloring in RN. Vertex color-
ing is a locally checkable problem. A typical application of coloring is
exclusive assignment of shared resources, such as time and frequency.
In particular, time slot assignment is useful in RN to avoid collisions.
The rest of this section reviews coloring algorithms for three different
RN models. Table 4.7 summarizes the complexity results.

Model Know-
ledge

Graph
family

Runtime Ref.

Harsh RN n BG Ω(∆ + log n) [54]
Harsh RN with CD n BG Ω(∆ + log n) [54]
nFSM None BD O(log n) [30]
Harsh RN n, ∆ BI O(∆ log n) [50]
Discrete BE Q GU O(log n) [25]

Table 4.7: Complexity of vertex coloring in RN.
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An algorithm for (∆ + 1)-coloring BD graphs in the nFSM model was
presented by Emek et al. in [30]. Each node estimates its degree up
to b, which is a model parameter. The algorithm proceeds in phases
of b + 1 rounds: b − 1 rounds for estimating the degree, a round for
broadcasting this estimate and a final round for running a randomized
coloring subroutine. Only active nodes execute the subroutine, which
consist of three steps: (a) choosing a color u.a.r. from its available
palette, (b) broadcasting the chosen color, and (c) validating that the
chosen color does not conflict with the ones chosen by its neighbors.
Algorithm C.25 corresponds to the description presented in [30]. Figure
4.15 depicts the state transitions, with state set {A,W,C} corresponding
to active, waiting and colored. Similar to the MIS algorithm for nFSM,
this coloring algorithm leverages the synchronizer defined in [30]. The
algorithm has runtime O(log n) w.h.p., since a constant number of nodes
are colored at each round. The algorithm is not directly applicable
neither to the harsh RN nor to the BE models.

CA0

W

dv < b and dv ≥ max (Du) 

dv = calculateDegree; 
Du= exchangeDegrees(dv); 

A1

cv = chooseColor; 
Cu= exchangeColors(cv); 

cv∉Cu  

cv∈Cu  
dv ≥ b or dv < max (Du) 

Cu= listenForColors(cv); 

Cu=∅ 

Figure 4.15: (∆ + 1)-coloring undirected trees in the nFSM model [30].

A randomized algorithm for O(∆) coloring BI graphs in an extended
harsh RN was presented by Moscibroda and Wattenhofer in [50]. This
model inherits the features of the harsh RN model, and it adds the
assumption that nodes know the network size n and maximum degree
∆. In addition the model requires that nodes either have a unique ID or
are able to generate a random ID that is unique w.p. 1/n. In bounded
independence BI graphs, two parameters κ1 and κ2 define the largest
independent sets in the 1-hop and 2-hop neighborhoods respectively.
The algorithm follows a similar approach to the MIS algorithm for
harsh RN presented by the same authors in [49]. Both the MIS and
the coloring algorithms use counters and critical ranges for breaking
symmetry. Algorithms C.26, C.27 and C.28 corresponds to algorithms
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1–3 in [50]. Figure 4.16 depicts the state transitions, with state set
{R,Ai, Ci} corresponding to requesting, active and colored, and i the
chosen color. Upon wake up all nodes are in state A0. The algorithm
proceeds in three stages. In the first stage, a MIS of leaders is chosen
and these move to state C0. Other nodes are assigned to them forming
clusters. These nodes move to requesting state R, in which they request
an intra-cluster color from the respective leader. In the second stage,
active nodes compete for the assigned color with their neighbors. Each
node keeps track of its neighbors’ counters and resets its own counter in
case a neighbor’s counter is within the critical range of it. In the third
stage, colored nodes have moved to some colored state Ci, and transmit
the chosen color i w.p. 1/(κ2∆). This algorithm is not applicable to
nFSM due to the requirement of keeping large counters in memory.
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Figure 4.16: Coloring unstructured RN [50].

A randomized Las Vegas algorithm for Ω(T/∆)-interval coloring in
the standard BE model was presented by Cornejo and Kuhn [25]. In
this model an adversary activates the nodes. The model assumes that
nodes have local clocks with aligned boundaries, such that they proceed
at the same rate without drifting. The algorithm proceeds in phases of
Q slots of length µ, such that Q ≥ ∆ and each phase lasts for T = Qµ.
The Ω(T/∆)-interval coloring problem consist of assigning disjoint time
intervals to neighboring nodes. This problem was proven to be as hard
as O(∆)-vertex coloring in [25]. Nodes calculate an estimate of their
degree d̃v by counting the number of beeps heard in a time period
Q. Informally the algorithm assigns larger intervals to nodes with
higher degree. The algorithm simulates collision detection by adding
a random jitter, such that beeps are delayed by a random offset. In
other words, nodes do not beep exactly within the time slot boundaries,
rather the beeps span two time slots. Algorithm C.29 is a modification
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of the original algorithm. Figure 4.17 depicts the state transitions, with
state set {U,C} corresponding to uncolored and colored. Nodes start
uncolored and switch to colored back and forward, depending on whether
a neighbor has beeped within a safety interval bv. The safety interval
is three time slots, going from one slot before the currently assigned
time slot to two slots after. This actual length of the safety interval is
an inverse factor of the estimated degree. Uncolored nodes search for a
free time intervals (i.e. without any beep) that are at least as large as
the safety interval. They choose one free intervals u.a.r., and they try
to claim it by beeping at that interval. The algorithm correctness was
proven with the argument that uncolored nodes can find a free interval
with constant probability. The algorithm does not terminate, rather it
eventually converges to a correct interval assignment. The algorithm
produces a Ω(T/∆)-interval coloring in O(log n) time, which matches
the lower bound presented in [25].

CU

S ← listen(pv+jitterv-1)
∪ beep ∪ listen(Q-pv-jitterv);

dv←max(|S|,1); bv←η·Q/dv 

S ← listen(pv+jitterv-1)
∪ beep ∪ listen(Q-pv-jitterv);

dv←max(|S|,1); bv←η·Q/dv  

S[pv−bv, pv+bv]=∅ 

S[pv−bv, pv+bv]≠∅ 

listen( ) returns the slot set
where beep was heard. 
pv a random free time slot. 
dv degree estimate. 
bv safety range.

Figure 4.17: Coloring in discrete BE [25].



Chapter 5

Population protocol model

Population protocol models (PP) are distinct from message-passing
models. They eventually reach a correct solution, and they are not
required to terminate. Analysing PP requires considering not only
reachability but also convergence of correct configurations. Seminal
research by Angluin et al. [5, 7–9, 11] characterized the capabilities
of standard PP, and multiple variations of them. The self-stabilizing
PP model is particularly relevant, since it allows modeling chaining
of protocols. Sections 5.1, 5.2 and 5.3 discuss the aspects of eventual
computability, determinism and self-stabilization. Sections 5.4 and 5.5
review the problems of 2-hop coloring and leader election (LE) in PP.

5.1 Eventual computability
Computability in PP models is closely related to eventual computability
from a multiset of inputs. Angluin et al. [10] proved that the predicates
eventually computable with PP models are precisely the same as semi-
linear predicates. The semilinear predicates are the sets defined by
first-order Presburger arithmetic. These include: (a) the Boolean terms
0 and 1, (b) the operators < and +, and (c) the logical quantifiers and
operators. Equivalently, semilinear predicates are characterized by the
Boolean combinations of threshold and modulo predicates.

Based on the previous characterization, an eventually computable
expression language was presented by Angluin et al. in [7]. All pred-
icates that can be expressed in this language are computable in PP.
The language is defined by the Boolean combinations of comparison
predicates involving two terms. Each term consists of constants, sym-
bols and operations. Symbol represent counters, such as the number of

61
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occurrences in the multiset of inputs. The only valid operations in the
language include sum, product, quotient and modulo. The remaining
of this section reviews two example problems of modulo and threshold
predicates, along with their corresponding protocols.

Parity is an example of modulo predicate. In the parity problem
nodes receive an input {0, 1}. All nodes must output the sum of inputs
modulo 2. Nodes keep two state variables: a live bit and a data bit. The
live bit indicates whether its input has been counted or not. Protocol
5.1 is a transcription of the parity protocol from [7]. In case two live
nodes with different counter interact, one sets its data bit to the sum of
their two data bits modulo 2, and the other one turns off its live bit flag.
This repeats until there are no adjacent live nodes. Through the second
rule, live nodes disseminate to the parity result to the adjacent non-live
nodes. For the live nodes, the sum of data bits modulo 2 remains equal
to the sum of the inputs modulo 2. The protocol can be generalized to
any modulo m on the number of 1’s in the input. The protocol runtime
is O(n2 log n) interactions [7].

Protocol 5.1: Parity in the standard PP model [7].
Constants: k = 1 /* To calculate 1/(k + 1) = 1/2 of nodes have input 1 */
State variables: live ∈ {0, 1} /*Live flag*/, d ∈ {0, 1} /*data bit*/
Input: I : {0→ (1, 0), 1→ (1, 1)}
Output: O : {0→ 0, 1→ 1} /*the output is the data bit*/
Transition Rules:
((1, d1), (1, d2))→ ((1, (d1 + d2) mod 2), (0, d2))
((1, d1), (0, d2))→ ((1, d1), (0, d1))

Majority is an example of threshold predicate. In the binary majority
problem nodes receive an input {0, 1}. All nodes must output 1 in case
more than half of the inputs are 1. Otherwise all nodes must output
0. Nodes keep two state variables, a live flag and a counter. The live
flag indicates whether its input has been counted or not. The counter
has values in the range −k, . . . , k. Protocol 5.2 is a transcription of
the majority protocol from [7]. In case two live nodes with different
counter interact, they set their counter to the sum of both counters
and one turns off its live flag. This repeats until all live nodes have
the same counter value. Eventually the protocol stabilizes and the
solution is disseminated from live nodes to the other nodes. This protocol
generalizes to calculate whether at least a fraction 1/(k+1) of the inputs
are 1’s. Throughout the entire execution the sum of counters from live
nodes remains equal to the difference between total number of 1’s and
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the total number of 0’s in the input. This approach generalizes to
predicates involving quotient and modulo.

Protocol 5.2: Majority in the standard PP model [7].
Constants: k = 1 /* Parameter of population fraction 1/(k + 1), which is 1/2 for

majority*/
State variables: live ∈ {0, 1} /*Live flag*/,
c ∈ {−k, . . . , k} /*counter*/
Input: I : {0→ (1,−1), 1→ (1, 1)}
Output: O : {−1→ 0, 0→ 0, 1→ 1}
Transition Rules:
((1, c1), (1, c2))→ ((1, c1 + c2), (0, c1 + c2)) /*if c1 6= c2*/
((1, c1), (0, c2))→ ((1, c1), (0, c1))
/* O(n2 log n) interactions [7].*/

Similarly to MP models, the computability in PP models is highly
dependent on the graph family. However, authors suggest that complete
interaction graphs are the weakest setup, in which nodes are effectively
indistinguishable by their connections. This claim is supported by
the simulation presented by Angluin et al. in [7] of complete graphs
that works for any connected graph. The simulation only requires
an additional state variable with 4 possible values. For comparison
purposes, complete interaction graphs correspond to single-hop in the
radio network model (RN).

Lastly, a simulation of counters in the probabilistic PP model was
presented by Angluin et al. in [7]. Up to O(1) counters of size O(n) are
simulated with a population of n nodes, holding anO(1) array in memory.
At a given time, the value of the i-th counter is the sum over the i-th
elements of all node arrays. Given a LE protocol as input, the leader
decreases or increases the counter by modifying the corresponding array
element of a node. In addition, a protocol for validating that a counter
is greater than zero was presented in [7]. The leader node first sets a
“timer” mark in a node and then starts counting up to k interactions,
such that k is a small constant. In case the timer node was found within
k interactions, the counter is known to be greater than zero. Otherwise,
the counter is assumed to be zero w.p. O((1/n)k−1 log n). The protocol
runs in Θ(nk+1) interactions w.h.p.
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Leader Election Coloring
(Deterministic) (Non Deterministic)

1. (1, 1)→ (0, 1)
2. (1, 0)→ (0, 1)
3. (0, 1)→ (1, 0)
4. (0, 0)→ (0, 0)

1. (i, i)→ (j, k)

Table 5.1: Determinism vs. non-determinism in PP.

5.2 Determinism in PP
Population protocol models have been defined under both types of as-
sumptions, deterministic and non-deterministic. In both cases an adver-
sary actives the interactions with a fairness condition assumption. The
non-deterministic aspect refers to nodes having access to randomization.
Table 5.1 shows this difference with two example protocols. On the left
side there is a deterministic protocol to obtain a single leader. The state
variable is a leader flag ` ∈ {0, 1}, and initially all nodes are set to ` = 1.
The first transition rule eliminates two interacting candidates, until
eventually one candidate remains. The second and third rule circulate
the leader flag, ensuring that the protocol works for non-complete and
directed graphs. On the right side there is a non-deterministic protocol
for coloring. There is only one transition rule for breaking invalid condi-
tions, in which two nodes have the same color. In this case both nodes
choose another color u.a.r. Eventually all nodes have different colors.

The computability for non-deterministic and deterministic protocols
was proven to be the same by Angluin et al. in [11]. The proof leverages
the previous LE protocol, such that leaders make a deterministic choice
by iterating over the possible interactions in a round-robin fashion.
Protocol 5.3 is a transcription of the original determinizer protocol. The
state variables include the leader token `, the simulated protocol states
q, q′ ∈ Q and the stabilizing inputs x, x′ ∈ X.

This deterministic protocol for LE succeeds in reducing the number
of leaders down to one, however it is not able to create one in case there
are no leaders in the input. In other words it is not a self-stabilizing
protocol. The following section reviews self-stabilization in PP.
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Protocol 5.3: Determinizer protocol in the standard PP model [11].
Constants: m = ∆ /*max degree*/
State variables: ` ∈ {∗,−} /*leader flag*/, q /*the current state in the simulated

protocol*/ c ∈ {1, . . . ,m} /*choice counter*/
Initialize: token← ∗; c← 1
Transition Rules:
((∗qc, x), (∗q′c′, x′))→ (−qc, ∗q′c′)
((∗qc, x), (−q′c′, x′))→ (−qc, ∗q′(c′ + 1))
((−q′c′, x′), (∗qc, x))→ (∗q′(c′ + 1),−qc)
((−qc, x), (−q′c′, x′))→ (−rc,−r′c′)
/*r = δ[c] and r′ = δ[c′] respectively. All increments are modulo m*/

5.3 Self-stabilizing PP
The study of self-stabilization in population protocols was initially moti-
vated by modeling interactions of a protocol with an environment, a user
or other protocols. Self-stabilization allows composition (i.e. chaining)
of protocol outputs as inputs to other protocols. Furthermore protocol
composition is utilized for algorithmic reduction in PP. Formal defini-
tions of the self-stabilizing PP model were presented by Angluin et al. in
[5]. This utilizes the concept of stable behavior as defined in Section
2.5, a set of traces having a common sequence prefix after which the
traces are equivalent. A trace is a sequence of assignments from agents
to an alphabet (i.e. input X or output Y alphabets). A protocol that
implements a stable behavior BS is a self-stabilizing implementation of
behavior B.

Protocol composition is performed by concatenating the state infor-
mation of both protocols. A protocol P1 ◦ P2 composed of P1 and P2

defines states with two parts, corresponding to the state of each proto-
col. Protocol P2 has access to the state part that is updated by P1. An
example of self-stabilizing protocol for token circulation in rings given a
LE behavior was presented by Angluin et al. in [5]. The LE behavior
state has a leader flag, and the state for the token circulation behavior
has a token variable and an active flag. Protocol 5.4 is a transcription of
the original protocol.

Additionally, the stabilizing PP model has been utilized to study
decision problems of graph properties. Positive results were presented
by Angluin et al. in [5], showing that protocols with stabilizing inputs
can decide whether a network topology corresponds to a directed line,
cycle, star, tree or bounded degree graph. The results are proved by
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Protocol 5.4: Self-stabilizing token circulation - Protocol 1 in [11].
Input: LE behavior
State variables: (t, b, `) where t ∈ {◦, •} /*token flag*/, b ∈ {0, 1} /*active flag*/,

` ∈ {1, 0} /*Leader flag*/
Transition Rules:
((tb, ` = 0), (tb, ` = 1))→ (◦b, •b)
((tb, `), (tb, ` = 0))→ (◦b, •b)

making use of a leader node, which places marks on neighbors and keeps
track of the number of marks it has placed. Furthermore, self-stabilizing
protocols were proven to solve any predicate in weakly connected graph
that is also possible to solve by self-stabilizing protocols in complete
graphs of the same size [5]. Additionally, they were proven to be able
to compute semilinear predicates (1st order Presburger arithmetic) in
complete graphs. Consequently, they are as powerful as the standard
PP model.

5.4 2-hop coloring
A deterministic and a non-deterministic protocol for 2-hop coloring were
presented in [11]. The protocol is designed for arbitrary graphs (i.e. not
only for complete graphs). A full palette of g = ∆(∆ − 1) + 1 colors
is used, where d is the maximum node degree. The key difference
between the two protocols is in the color selection. Both protocols define
states with two components: coloru the current node color and Fu a color
availability Boolean array of size g, indicating whether each color is
assigned or available. The protocols define two local conditions: (1)
invalid is the case that a node v is connected to two neighbors u and
w that have the same color coloru = colorw, and (2) aligned is the case
that two connected nodes have the same availability flag for the color of
each other Fu[colorv] 6= Fv[coloru]. In addition, a global condition defines
legitimate configuration the case in which all nodes are aligned and no
node is in the invalid condition. Protocol 5.5 is a transcription of the
deterministic protocol.

The protocol defines two cases for interactions, depending whether
the nodes are aligned or not. In the first case, the initiator gets recolored
and aligned, this ensures that nodes will get a different color. In the
second case both nodes flip the availability flag corresponding to the
color of the other node. Switching the availability flags has the purpose
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of detecting invalid conditions. Invalid conditions involve two conflicting
nodes (i.e. with the same color) connected to a common neighbor. After
the common neighbor and a conflicting node switch their flags, the
other conflicting node becomes unaligned. The unaligned node gets
realigned through case one in its next interaction, in which it chooses
some other color. In the deterministic protocol, nodes iterate over the
full palette incrementing the current color or not, according to control
flag ru. The control flag switches between each interaction, such that u
gets recolored in case ru = 1, otherwise node u simply gets aligned. The
non-deterministic protocol is slightly different: nodes choose colors u.a.r.
Both protocols self-stabilize to a legitimate configuration.

Protocol 5.5: Deterministic 2-hop coloring in stabilizing PP[11].
Constants: g ← d(d− 1) + 1 /* color palette */
State variables: cu /*Color of node u*/, Fu /*Bit array of size g*/
if Fu[cv] 6= Fv[cu] then /*Unaligned*/

cu ← (cu + ru) mod g) /*For non-deterministic choose u.a.r. cu ← c′u*/
Fu[cv]← Fv[cu] /* Aligned */

end
/* Detect conflicts */ Fu[cv]← Fu[cv]
Fv[cu]← Fv[cu]
ru ← 1− ru/* Only applies to deterministic*/

5.5 Leader election
A randomized protocol for solving LE in the probabilistic PP was pre-
sented by Angluin et al. in [7]. It follows the simulated counter approach
(Section 5.1), using a timer to determine that there is only one leader
remaining. The state is a tuple (x, c, q,m), corresponding to the input,
counter, state and mark variables. The input value is a non-negative
integer. The counter is an integer c in the range {0, . . . , k}. The state set
is q ∈ {C,D, I,W, V, L}, corresponding to candidate, dominated, initial-
izing, waiting, validating and leader. All states other than dominated
are live states. The mark value set is m ∈ {t, i,−}, corresponding to
timer mark, initialization mark or none. Protocol 5.6 corresponds to the
description presented in [7]. All nodes start as candidates and proceed
with two phases: initialization and validation. In the initialization
phase, candidates set the timer mark m← t to the first node they inter-
act with, which becomes dominated. It then proceeds to count up to k
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interactions, in which the responder nodes set the initialization mark
and become dominated as well. In case a dominated node had placed
a timer, the candidate waits for an interaction with such timer before
restarting its counter. The input variable remains unchanged during
the initialization phase. In the validation phase, leader candidates
simulates a counter machine by decreasing the input variable until the
global counter is zero. Similarly, in case the candidate finds a live node,
one gets dominated and the other restarts the initialization phase after
waiting for a timer mark in case the dominated node had placed one.
The protocol requires Θ(n2) interactions to converge w.h.p. [7].

Protocol 5.6: LE in the self-stabilizing PP model [7].
State variables: x; /*input*/ c; /*counter*/ q; /*state*/ m; /*mark*/
Initialize: xi → xi; ci ← 0; q ← L; /*all nodes are live*/; m← −
/*Initialization phase*/
((x1, c1, L,−)(x2, c2, q2,−))→ ((x1, c1 + 1, nextState(q2),−)(x2, 0, D, t))
((x1, c1, I,−)(x2, c2, q2,−))→ ((x1, c1 + 1, nextState(q2),−)(x2, 0, D, i))
/*Wait for a timer mark*/
((x1, c1,W,−)(x2, 0, D, t))→ ((x1, c1 + 1, I,−)(x2, 0, D, i))
/*Validating phase*/
((x1, k, I,−)(x2, 0, D, ∗))→ ((x1, 0, V,−)(x2, 0, D, ∗))
((x1, c1, V,−)(x2, 0, D, ∗))→ ((x1, 0, V,−)(x2 − 1, 0, D, ∗)) /*s.t. x2 > 0*/
((x1, c1, V,−)(x2, c2, q2 6= D, ∗))→ ((x1, 0, nextState(q2),−)(x2 − 1, 0, D, i))
/*Leader found*/
((x1, c1, V,−)(0, 0, D, ∗))→ ((x1, 0, L,−)(0, 0, D, ∗))
nextState(qu)

if qu = I then return(W)
else return(I)

end

Lastly, a self-stabilizing PP for LE in oriented cycles of odd size was
presented by Angluin et al. in [11]. Protocol C.30 is a transcription of the
original protocol. The input is a value in the range {0, . . . , k} with k = 2.
The protocol defines two concepts: (1) alternating sequences with values
〈0, 1, . . . , k, 0, 1, . . . 〉, and (2) barriers, which are edges connecting two
nodes with the same input (i.e. delimiting sequences). Intuitively the
protocol shifts barriers clockwise repeatedly until they reach another
barrier. Two adjacent barriers cancel out, merging the corresponding
sequences. Eventually a single barrier remains. This is always the
case for an k = 2 in odd size cycles. Additionally, two auxiliary marks
probes and bullets are sent around the ring clockwise from barriers
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and counterclockwise from leaders respectively. Probes ensure that
there is at least one leader, since a new leader is generated in case a
probe reaches a barrier. Bullets ensure that only one leader is elected,
since a leader removes its leader mark in case it is reached by a bullet.
This protocol generalizes for any k ≥ 1 that is a relative prime to n,
such that a barrier edge (u, v) connects nodes with consecutive labels
labelu + 1 ≡ labelv mod k.



Chapter 6

Comparative analysis

This chapter makes a comparison between the variants of radio network
(RN) models, and between RN and population protocols (PP). The com-
parison between RN models is based on three model features. Section 6.1
compares the synchronization and activation features. It discusses the
crucial challenge of non-simultaneous activation. It reviews different
approaches followed by models of previous literature to circumvent the
challenge. Section 6.2 compares the model capabilities with regard
to collision detection. It explains the advantages of having additional
information provided by collision detection and carrier sensing. Sec-
tion 6.3 analyses the key aspects contributing to runtime complexity
from the perspective of determinism. Lastly, Section 6.4 discusses the
key differences between RN and PP from a general perspective.

6.1 Synchronization
Synchronization is a crucial feature in RN models affecting the algo-
rithmic computational complexity. There are two interleaved aspects of
synchronization: activation policy and scheduling policy. Section 2.3 pro-
vides descriptions for these two aspects. In particular, the simultaneity
aspect of activation plays an important role in algorithmic complexity.
In the case of non-simultaneous activation, newly activated nodes may
interfere the communication between neighboring nodes, causing de-
lays in the algorithm. Scheduling policy is closely related to activation
simultaneity, since adversarial scheduling implies non-simultaneous
activation. RN algorithms follow different approaches to cope with this
challenge, depending on the model assumptions for the two aspects. The
approaches include simulation of global clocks, “pulses” (periodic beats)
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and counter thresholds.
Simulating a global clock is possible for models with activation by

incoming messages. A wave-based approach to simulate global clocks
in was presented by Ghaffari and Haeupler in [32]. The wave carries
a time counter, starting from the nodes initially active at time 0, and
incrementing the counter by one per hop. As nodes receive the counter,
they know how many rounds the local clock is behind time 0. It takes D
rounds for the counter to reach all nodes in the network. However for BE
it would require O(D2), since D rounds are required to send a counter
as a bit stream (i.e. one bit per round). Instead, a two wave approach
for global clocks in BE was presented by Ghaffari and Haeupler in [32].
This consists of sending two waves from the initially active nodes each
at different speed. The first wave progresses by one hop per round, while
the second wave progresses by one hop every two rounds. Figure 6.1
shows the simulation in three example graphs. The approach leverages
the additive identity of beeps, which is not applicable to RN without CD.
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Figure 6.1: Simulating global clocks in BE in three example graphs.

A partial synchronizer based on periodic beats was presented by
Emek et al. in [30] for the nFSM model. The model is representative of
activation by adversary. The synchronizer obtains a soft alignment, also
known as locally synchronous environment. It consist of an additional
“pulse” state variable t ∈ {0, . . . , k} for k = 3. The pulse variable is
exchanged in each communication round. Nodes use the received pulse
values to decide whether to proceed with the algorithm or to wait for soft
alignment. Soft alignment for a node u is defined such that any neighbor
v is at most one round behind tv = tu or tv = tu− 1 mod k. A similar soft
alignment technique for the wake on beep BE is utilized by Schneider
and Wattenhofer in [54]. They presented a MIS algorithm that works in
phases of six rounds. Newly woken nodes wait for seven silent rounds
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before starting the algorithm. In addition, a MIS algorithm based on
pulse beats was presented by Afek et al. in [1] for the synchronized clocks
BE. The algorithm designates every third round for a restart bit. The
restart bit ensures that neighboring nodes are aligned with the same
estimate of network size. Having the same estimate is a requirement
for the algorithm to produce a valid MIS. In general, the goal of a
partial synchronizer is similar to the goal of global clock simulation,
both attempt to align local clocks.

Conversely, the counter thresholds approach attempts to separate
local clocks. A MIS algorithm that follows this approach was presented
by Moscibroda and Wattenhofer in [49] for the harsh RN model. The
model defines adversarial activation, and the algorithm assumes UD
graphs. The algorithm utilizes multiple counter thresholds as filters
for advancing states from waiting to active, from active to competing
and from competing to MIS. Section 4.2 reviews this algorithm. After
nodes wake up, they wait for tW rounds in order not to interfere with
competing nodes. Another threshold tA is used to break symmetry
between active nodes for becoming candidates. Two more thresholds tC
and tM are used to separate node clocks, such that only nodes with a
clear advantage (i.e. counter delta) over the neighbors join the MIS. The
threshold values are crucial for the algorithm correctness and runtime
complexity.

6.2 Collision detection
This section discusses another key separating aspects of RN, namely
collision detection. Collision detection (CD) is another key feature
affecting algorithmic complexity of RN. Detecting a collision provides
more information than not detecting it. The same applies to carrier
sensing, which is the case of BE. Nodes are able know whether there
is traffic in the shared channel or not. This additional information
is leveraged both for encoding a single message and for detecting the
number of messages transmitted.

A deterministic BC algorithm that encodes the broadcasted message
with collisions was presented by Chlebus et al. in [21]. Informally, the
algorithm follows the approach of simulating beeping in the standard
RN (with CD). The algorithm encodes messages as a binary stream, such
that silence represents a 0 and either a collision or a single message
received represents a 1. The BC problem separates the runtime of
deterministic algorithms for RN with CD O(n ·D) [21] and without CD
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Ω(n) [13, 42]. A similar separation exists for randomized BC algorithm.
In addition, there are algorithms for the standard RN that allow

sender nodes to overlap multiple messages and receiver nodes to detect
the number of messages. This technique is utilized for solving LE in RN
in the two approaches reviewed in Section 4.3, namely validating and
clustering. For each approach, the referenced authors presented algo-
rithms for the silent RN and wake on beep BE models. Both approaches
require nodes to exchange candidate IDs. In both LE algorithms for
the BE model, multiple candidate IDs are transmitted simultaneously
encoded with superimposed codes. Receivers decode the superimposed
codes to detect the number of IDs transmitted. Similar to BC, the LE
problem separates the runtime for silent RN and wake on beep BE:
(a) In the validating approach the runtime for LE in the silent RN is
O(TBC ·

√
log n) w.h.p., whereas the runtime for LE in wake on beep BE is

O(D + log n) in expectation. For this approach, the silent RN algorithm
presented by Czumaj and Rytter in [26] requires multi-BC of entire IDs
and a subsequent decay based bit-wise BC of IDs. Conversely, their
algorithm for wake on beep BE sends the superimposition of IDs as a
single bit stream. (b) In the clustering approach the runtime for LE
in the silent RN is O(D log n/D + log3 n) · min{log log n, log n/D} w.h.p.,
whereas the runtime for wake on beep BE is O(D+ log n) · O(log2 n log n)
w.h.p. For this approach Ghaffari et al. proved in [32] it is enough for
candidates to capture a subset of IDs. However, this optimization is
neither applicable nor necessary for the wake on beep BE algorithm.

Typically, collision detection benefits only receivers. RN with CD and
BE models assume that nodes are able to either transmit or receive at a
given time, and not both at the same time. A slightly stronger BE model
was defined with the additional assumption of sender side CD. In this
model, transmitter nodes are able detect other transmitters. This subtle
difference differentiates this model from the standard BE model in the
case that n is unknown. The two MIS algorithms presented by Afek et
al. in [1] highlight the difference. Sender-side CD is used to estimate
the probability of a safety guarantee, such that after two silent rounds
nodes joining the MIS are part of a valid solution w.h.p. Otherwise,
nodes that detect a neighbor joined the MIS (i.e. hear a beep in each of
the two rounds) decide not to join the MIS. Conversely, in the standard
BE model, without sender-side CD, nodes are not able to detect such
condition. In this case, it is likely that neighboring nodes with the same
beeping sequence join the MIS. This requires nodes that joined the MIS
to continue beeping at regular intervals to claim their place in the MIS.

Lastly, simulating CD in RN without CD has been studied by Bar-
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Yehuda et al. in [14] and by Kowalski and Pelc in [40]. In the former the
simulation is limited to simulating single-hop RN with CD by adding an
overhead of O(D log n+ log2 n). In the later the simulation does not re-
strict the graphs, however it has a larger overhead of O(nmin{D, log n}).

6.3 Determinism
This section analyses the model capability separation due to determin-
ism in RN. Determinism separates the solvability and computational
complexity in RN. The solvability separation is clear for anonymous
models. Impossibility results from the anonymous PN model apply to
anonymous RN. This includes not only the classical problems of MIS,
LE and coloring but also the fundamental operation of BC. Consider
a 4 node cycle with a source node. The two adjacent nodes have pre-
cisely the same inputs and neighborhood. Their execution is the same
at any round, both nodes either listen or transmit, causing a collision.
Consequently, the message never reaches the uninformed node.

The BC and LE problems separate the computational complexity
of deterministic RN. The separation for the BC problem relies in the
approaches for coping with collisions. Deterministic BC algorithms
avoid collisions completely by calculating an exclusive transmission
schedule in advance. It is based on the concept of selective families and
the assumption of unique IDs. Nodes transmit only in case their ID
belongs to the family corresponding to the current round. Randomized
BC algorithms make use of transmission probability sequences in order
to control the amount of collisions. Section 4.1 reviews three different
randomized BC algorithms. The differences in their runtime complexity
derives from the different transmission probability sequences:

1. The decay BC algorithm of Bar-Yehuda [13] utilizes a sequence
that doubles the probability as the number of competing nodes is
halved. It does not distinguish the network diameter.

2. The “optimal” BC algorithm of Kowalski and Pelc [40] utilizes two
intertwined sequences. It improves the performance of decay BC
by considering separately the case of networks of large diameter.
The first sequence has length log(N/D), and it is meant to inform
nodes with less than N/D informed neighbors. It starts from 1
and it gets halved at each round. The second sequence is based on
universal probability sequences, and it is meant to inform nodes
with more than N/D informed neighbors.
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3. The selecting sequences BC algorithm of Czumaj and Rytter [27]
utilizes a parameterized transmission probability sequence. It
specializes in “shallow” networks of small diameter D ≤ log3 n.

The different probability sequences mark a difference in runtime com-
plexity of randomized BC. The results summarized in Table 6.1 highlight
the separation.

Problem Model Deterministic Non-Deterministic
BC in GU Silent RN Ω(n) [13, 42] and

Ω(D log n) [17]
Θ(D log n/D + log2 n)
[3, 40, 43]

BC in GD Silent RN Ω(D log n) [21] and
Ω(n logD) [24]

Θ(D log n/D + log2 n)
[24, 27]

BC in GD Std. RN Ω(n ·D) [21] Ω(D + log6 n) [33]

LE in GU Silent RN Θ(n) [22] O(n log3/2 n
√

log log n),
Ω(n log n) [22, 41]

LE in GU BE O(D log n) [31] O(D + log n) · O(log2 n
log n) w.h.p. [32]

Table 6.1: Runtime complexity separation by determinism in RN.

Although typically randomized algorithms have faster runtimes,
sometimes they are only able to output correct solutions w.h.p. (Monte
Carlo). Contrarily, deterministic algorithms are able to guarantee cor-
rect solutions all times. This can be observed in the symmetry breaking
mechanism for generating unique IDs. Randomized algorithms can only
guarantee unique IDs w.h.p. An example of deterministic algorithm
that uses unique IDs is the algorithm for solving MIS in the standard
RN, presented by Schneider and Wattenhofer in [54]. The algorithm
is directly applicable to the BE model, since nodes exchange IDs bit
by bit. It requires only O(log n) to output a correct solution and termi-
nate. Conversely, randomized algorithms require a different approach
to solve MIS with the same guarantees (Las Vegas) in the same model.
A randomized algorithm for solving MIS in the wake on beep BE with
CD was presented by Afek et al. [1] The algorithm does not generate
IDs but it uses counters for breaking symmetry. It requires O(log2 n) to
make output a correct solution and terminate.
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6.4 Communication mechanism
The last section of this chapter analyses the differences between RN
and PP based on model features. The communication mechanism of
PP models is fundamentally different from MP models. Particularly,
aspects related to scheduling policy separate the model classes. An
adversary enables communication edges dynamically. Consequently PP
models are not able to terminate, rather PP models can only eventually
converge to correct outputs. Another key difference is that determinism
does not separate PP. Non-deterministic protocols can be simulated with
deterministic protocols using a leader token. A determinizer protocol
was reviewed in Section 5.2. Furthermore, there are no collisions in PP,
since there is only pairwise communication.

Nevertheless, there are commonalities in the model classes from
a general model features perspective. Nodes in PP models exchange
state information, however this is not necessarily a limitation. State
information might include not only state labels but also counters and
other variables. Another potential limitation of PP models is that
communication is restricted to pairs of nodes. In this regard, PP are
similar to PN models, as in both models communication is directed
towards a neighbor. The ability to send messages to all neighbors is
provided by the fairness condition of PP. The condition guarantees that
any possible interaction should be enabled repeatedly often. Lastly, in
the standard PP model, nodes have limited memory, which is similar
to the nFSM and BE models. However variations of PP models have
considered a memory size logarithmic in n.

This concludes the comparative analysis between RN and PP. The
conclusions chapter provides an overall summary of the thesis. It re-
marks the key results of this analysis, and it provides open questions
and directions for future research.



Chapter 7

Conclusions

This thesis reviews and compares the computability of two types of
wireless distributed computing models, namely radio networks and
population protocols. Radio networks (RN) are a subtype of message-
passing models, in which nodes communicate by sending messages
through a shared channel exposed to collisions. Population protocols
(PP) are a different type of wireless models, in which nodes communicate
through interactions by proximity as opposed to sending messages. The
thesis provides a thorough introduction to model features that have been
defined in previous literature. A first contribution is a clear organization
of model types and classes, including the presented feature map for RN.

The analysis starts by highlighting model capabilities that RN in-
herit from the stronger port numbering (PN) model. Impossibility re-
sults related to symmetry breaking hold equally for deterministic anony-
mous networks in both models. A crucial separation exists between
deterministic and non-deterministic algorithms in anonymous networks.
The separation is closely related to symmetry breaking. Unique IDs
and randomization have been used in both models for overcoming graph
symmetry. Typically, deterministic RN algorithms have assumed unique
IDs, whereas randomization has been utilized for generating IDs that
are unique w.h.p. In the later case there is a trade off between output
correctness (Las Vegas) and runtime (Monte Carlo) guarantees.

The thesis further discusses the adaptability of algorithms designed
for the port numbering (PN) model to RN models. PN algorithms that
make use of labeled ports were excluded from the analysis, since they
are not applicable to RN networks. Applicability of PN algorithms that
are suitable for RN networks strives in sending the same message to
all neighbors (as in broadcast), and coping with collisions. For the BE
only algorithms that use bit size messages are directly applicable with
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similar runtime complexity. Similarly, for nFSM the bounded memory
restriction discards the applicability of algorithms that utilize large
messages. In addition, nodes in RN share a common channel, causing
collisions in case neighboring nodes transmit in the same round. Colli-
sions prevent successful broadcasts and affect the runtime complexity.
The complexity overhead depends on the underlying model assumptions
and algorithmic approaches for dealing with collisions.

Broadcasting (BC) is a fundamental operation in RN required for
sending information across the network. The crucial challenge of BC
is finding a transmission schedule with a controlled number of colli-
sions. Efficient transmission scheduling is particularly relevant for
broadcasting. Deterministic algorithms use unique IDs and selective
families calculated in advance for deciding a transmission scheduling
that avoids collisions completely. Conversely, randomization can be
used for deciding whether to transmit or not at a given round, such that
the number of collisions is controlled and correct results are obtained
w.h.p. RN algorithms require assuming either knowledge of the net-
work size or unique IDs to cope with collisions. The runtime complexity
for deterministic algorithms is linear in the network size, whereas for
randomized algorithms is logarithmic in the network size. Studying
the complexity of BC is particularly relevant, since it is used as sub-
routine for solving other non-local problems, such as leader election
(LE). The computational complexity of BC in RN is embedded in the
computational complexity of LE.

Activation simultaneity and collision detection (CD) are crucial fea-
tures affecting the runtime complexity in RN. Non-simultaneity creates
additional overhead depending on the activating factor. In the case of
activation by incoming message, it is possible to simulate global clocks
with an additive D overhead. As per the case of activation by adversary,
only a soft alignment is possible. Informally this approach consists on
defining a schedule with periodic beats. The approach was applied in
nFSM for solving locally checkable problems such as MIS and color-
ing. However, for the maximal matching problem it is only possible to
converge to correct solutions with soft alignment.

Collision detection and carrier sensing separate the model capa-
bilities of RN and BE models. They provide additional information
that can be used for encoding a message and for detecting the number
of messages received. In both the standard RN and BE models, it is
possible to broadcast a message encoded with collisions. The runtime
is a function of the network diameter and the message size. Further-
more, carrier sensing allows encoding information as bit streams. Using
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superimposed codes it is possible for transmitters broadcast multiple
streams and for receivers to detect the number of received messages.
LE algorithms utilize superimposed codes for detecting the presence
of multiple candidate IDs. In general, algorithms for the standard RN
(with CD) and BE have faster runtimes.

Population protocols are fundamentally different than RN models.
An adversary enables the pair-wise communication dynamically. Con-
sequently, protocols converge to a correct solution, as opposed to ter-
minating. Population protocols are not exposed to collisions, since
communication happens in pairs. Determinism does not impact the
solvability of PP models given the determinizer approach presented in
previous literature. Informally it delegates the non-deterministic choice
of transition to the adversary. By definition, population protocols are
provided with symmetry breaking mechanism, which is the directed
interaction relation from initiators to responders. Lastly, protocol com-
putability is focused in complete interaction graphs. Protocols running
in a complete graph can simulate a complete graph with two tokens
moving around the graph.

Multiple research questions are open for future research. There
is room for research in relation to a comparable runtime complexity
metric. This metric shall compensate that a round of RN gives all
nodes a chance to communicate, whereas an interaction in PP models
allows only a pair of nodes to interact. Having a comparable runtime
metric, it is interesting to compare the complexity runtimes between
RN and PP models for classical problems such as BC, LE, MIS and
coloring. Studying state complexity of RN is another interesting area.
Only one of the reviewed studies analyses state complexity. Comparing
state complexity between various RN and PP models will lead to better
understanding of their capabilities.
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Appendix A

Graph theory concepts

A number of algorithms, concepts, models and problems in distributed
computing are closely related to graph theory. The following is a sum-
mary of the main graph theory concepts and notations. Although there
are differences in literature, they are defined in a conventional manner.
A more extensive compilation can be found in [58].

A graph G is a tuple G = (V,E) compound of a finite set of nodes or
vertices v ∈ V and a finite set of connections or edges between pairs
of nodes {u, v} ∈ E. A connected graph is a graph from in which there
is a path for every pair of nodes. A weakly connected graph is such
that replacing all of its directed edges with undirected edges produces
a connected (undirected) graph. Conventionally, the size of a graph
is defined as the number of nodes, denoted n = |V |. The degree of
a vertex v ∈ V for graph G is the number of incident edges, denoted
degG(v) = |{u ∈ V : {u, v} ∈ E}|. The graph degree ∆ is the maximum
degree of a graph. The eccentricity D of a graph is the largest distance
between a source node and any other node in the network. A graph
family is the set of possible graphs that share a pattern or common
structure. Table A.1 provides a summary of typical graph families in
the referenced literature. Typical graph functions include:

• Neighboring N(v) : {u : {u, v} ∈ E}
• Labeling f : V 7→ {1...k} for some integer k

• d-coloring c(v) : v 7→ {1...d}, s.t. v ∈ V and c(v) 6= c(u) for u ∈ N(v)

• Homomorphism f(G) : G 7→ G′ maps two graphs preserving con-
nections. Concretely f(V ) : V 7→ V ′, s.t. {u, v} ∈ E → {u′, v′}

In addition to the graph family, some problems definitions make
use of direction and parity modifiers. A superscript is used to denote
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Notation Graph family
G Unrestricted graphs have arbitrary topology
Q Complete graphs, also known as cliques, have all-pairs

connected
T Tree graphs are graphs with no cycles
T p Pseudo-trees are graphs with exactly one cycle
Kd d-regular graphs have all nodes with degree d
S Cycle graphs are a 2-regular pseudo-tree
T C Cyclic graphs are the complement of tree graphs
∆-BD Bounded degree graphs, s.t. |N(v)| ≤ ∆ for any v ∈ V
UD Unit disk graphs
BG Bounded growth graphs
BI Bounded independence graphs
P Path graphs are connected acyclic graphs with ∆ = 2

B Bipartite graphs do not have a cycle of odd length

Table A.1: Graph families.

direction {D,U}, corresponding to directed and undirected. A subscript
is used to denote parity {E,O}, corresponding to even and odd.

• SO: Cycle graphs of odd size.

• SD: Directed cycle graphs.

• GU : Arbitrary undirected graphs.

• SDO : Directed cycle graphs of odd size.



Appendix B

Other related PP models

This appendix describes additional PP models presented in previous
literature. These include the urn automata, pairing automata, proba-
bilistic PP, one-way PP, switching PP, community protocol, mediated
protocol, chemical abstract machine and chemical reaction network.

The urn automata model was introduced in [6] previous to PP mod-
els. This model is based on agent interactions governed by a separate
controller FSM equipped with an urn and an input tape. The controller
is solely for the purpose of comparison to classical automata theory. The
urn is an unstructured storage composed of a multiset T ∗ of tokens t from
an alphabet T . The input tape works as a stack, and it is provided with
an input set of symbols σ from a separate alphabet Σ. The tape is delim-
ited on the left and right by special symbols ` and r. Similarly to touring
machines, there is an input tape head with operations {`, r,−,>,⊥}
corresponding to moving left, moving right, staying and halting after
accepting or rejecting the input. The controller has a finite state set Q.
A transition relation ∆ ⊆ Q × Σ × T ∗ × Q × T ∗ × {`, r,−,>,⊥} defines
the possible transitions (q, x, i) → (q′, x′, i′). A transition (q, σ, t, q′, t′, o)
from state q to state q′ affects both the urn and input tape. The multiset
of symbols in the urn x changes to (x \ t) ∪ t′, such that t and t′ are the
multiset of tokens withdrawn and deposited respectively. The input
type current symbol σ at position i changes depending on the operation
o. This base model assumed |t| = k, |t| = |t′|, as well as deterministic
transitions and uniform sampling of withdrawn tokens.

The pairing automata model [6] is a variation of an urn automata
with urn of size k = 2. This model represents explicitly a networks of
agents interacting in pairs. In each interaction, each agents updates its
state as a function of the current state of both agents. Consequently,
the controller has one single state. Each token in the urn corresponds
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to an agent state. Interactions are modeled as transitions that sample a
pair of tokens and replace it with another pair.

The one-way PP model introduced in [9] is a hybrid of MP and PP
models. It inherits pairwise interactions from PP models and messaging
from MP models. A key distinction with the standard PP model is
that only receiver agents obtain information from sender agents. Two
variants of this model are transmission and observation, depending on
whether sender agents can detect that an interaction happened. Other
orthogonal variants are defined depending on the message delivery
assumption, namely immediate, delayed and queued delivery. This
distinction is motivated by facilitating the comparison to MP models,
since immediate delivery would be a strong assumption. To support
this distinction a “messages in transit” multiset is introduced and each
transition (p, q) 7→ (p′, q′) is split into send and receive events. The send
event changes an agent state from p to p′ and adds p to messages in
transit. The receive event removes p from messages in transit and
changes the other agent state from q to q′. The delayed variant requires
agents to be ready to receive messages at any time, which may cause
overflow since agents might not have time to react to incoming messages.
In the queued variant agents may enter into a state in which they refuse
to receive messages, which is the complement of receive-enabled states
QR ⊆ Q. Lastly in the observation variant all states are receive-enabled.

Three more PP models were presented by Spirakis et al. in [57],
namely Mediator PP, PAssively mobile LOgaritmic space Machines
(PALOMA) and Community Protocol. The motivation was to expand
the capabilities of PP models while keeping weak assumptions about
the network. The first one uses a global mediator storage, holding a
small space for each arc in the interaction graph. In the PALOMA
extension agents are equipped with memory capacity logarithmic in the
population size. The third extension adds unique IDs to agents.

The switching PP model introduced by Chatzigiannakis et al. in
[19] is a generalization of probabilistic PP. This model considers a com-
plete graph of non-terminating agents, that from time to time “review”
their state and switch (transition) with some probability. It defines the
density xq(t) = nq/n of a state q ∈ Q as the ratio between the number
of nodes in that state nq over the network size n. The population state
or configuration is a vector of state densities ~x(t) = (x1(t), . . . , xk(t)) for
k = 1, . . . , Q. The review time of an agent depends on the population
configuration ~x(t) and its current state. The switching probability at
time t from state qi to state qj is a function pij(~x(t)) = (pi1(~x), . . . , pik(~x)).
Lastly, two variants of switching PP are Markovian PP, in which specifi-
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cations are independent of the configuration, and Linear Viral Protocols,
in which each reviewing agents draw a paring agent at random and
adopt its state.

The Chemical Abstract Machine model defined in [15] was mo-
tivated by modeling parallel computation carried out by interacting
molecules. It defines states as chemical solution multisets, where
molecules interact according to a multiset of reaction rules m1, . . . ,mk →
m′1, . . . ,m

′
l. A “magical” mechanism stirs the solution, allowing possi-

ble contacts between molecules. Reactions are asynchronous and can
occur in parallel. In addition to reaction rules, heating p|q ⇀ p, q and
cooling p|q ↼ p, q rules represent molecule rearrangements between
interactions. As opposed to reaction rules, heating and cooling rules
are reversible and do not change the state of a solution. Furthermore,
this model considers solutions encapsulation thorough “membranes”,
which are sub-solutions that might communicate with their environ-
ment through “pores”.

The Chemical Reaction Network (CRN) model defined in [52] is
a network of chemical species and reaction rules. In a graph G = (V,E)
representation, the set of species Si for i = {1, . . . , N} represent the N =
|V | nodes, and the set of reactions Rj for j = {1, . . . ,M} represent the
M = |E| connections. Reactions are directed from reactant to product
species. The network is represented as a pair v̂ = [vR, vP ] of matrixes
VNM . The elements vij of each of the two matrixes specify whether
specie i participates in reaction j as reactant or product respectively.
An alternative representation of CRN was presented in [56] replacing
the two matrices with vectors ~rj ∈ NN and ~pj ∈ NN of reactants and
products respectively. This notation defines a state vector ~x ∈ NN with
the molecular counts of each specie, which are the preconditions for
a reaction Rj to have enough reactants xi − rij ≥ 0. The transition
of reaction Rj goes from ~x to ~x + ~vj, where ~vj ∈ ZN and ~vj = ~pj − ~rj.
The stochastic CRN presented in [56] extends the CRN model with a
stochastic probability of reactions. In this model, a propensity function
aj(~x)dt defines the probability aj of a reaction Rj occurring any time
after t.



Appendix C

Algorithms appendix

Algorithm C.1: MIS algorithms for networks of processors – Las Vegas
algorithm from [2].

Initialize: I ← ∅; G′ = (V ′, E′)← G = (V,E)
while G′ 6= ∅ do
select(V ′, E′); I ← I ∪ I ′; Y ← I ′ \N(I ′)
G′ = (V ′, E′)← induce(G′, V ′ \ Y )

end
select(V ′, E′)

I ′ ← ∅
for v ∈ V ′ do /*in parallel*/

if dG′(v) = 0 then I ′ ← I ′ ∪ {v}
w.p. 1/dG′(v) do I ′ ← I ′ ∪ {v}

end
for {u, v} ∈ E′ do /*in parallel*/

if u ∈ I ′ and v ∈ I ′ then
w.p. dG′(v)/(dG′(u) + dG′(v)) do I ′ ← I ′ \ {v}
otherwise I ′ ← I ′ \ {u}

end
end

end
/*For Monte Carlo algorithm presented by Luby in [45] use inclusion probability
1/(2dG′(v)) and as validation criteria choose node w with
dG′(w) = max{dG′(u), dG′(v)}*/
/*O(log2 n) phases [2, 45]: It requires O(log n) phases since Ω(|E|) of edges are
removed from E′ at each phase [2, 45]. The validation step requires O(log n) steps.*/
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Algorithm C.2: MIS the PN model – algorithm 2 in [48].
State set: Q : {C, I,M, S}
Initialize: q← C; ActiveSet← {u ∈ N(v) : q(u) /∈M ∪ S}
while q /∈M ∪ S and ActiveSet 6= ∅ do

b ∼ {0, 1}; broadcast(b); ((m))←listen()
if b = 1 and 0 ∈ ((m)) then q← I
if b = 0 and 0 /∈ ((m)) then q←M
broadcast(q); listen()
if received MIS then q← S
else ActiveSet← ActiveSet \ {u ∈ N(v) : q(u) /∈M ∪ S ∪ I}

end
/*O(log n) phases [48]: active edges decrease by a half at each phase*/

Algorithm C.3: Coloring with arbitrary number of colors in the PN
[47].

State set: Q : {A,W,P}
State variables: cv; /*chosen color*/ colorsv; /*color palette*/
activev, INv, OUTv /*neighbor sets*/
Initialize: q← A; cv ← ε; /*uncolored*/
activev ← Nv; /*all neighbors are active*/ INv ← ∅; OUTv ← ∅;
/*Part 1*/
while activev 6= ∅ do

b ∼ {0, 1}
for u ∈ activev do

bu ← exchange(b)
if bu 6= bv then

if bu = 0 then OUTv ← OUTv ∪ {u}
else bu = 1
INv ← INv ∪ {u}

end
end

end
q←W ; colorv ← {1, . . . , |INv|+ |OUTv|} /*degree of v*/
/*Part 2*/
while INv 6= ∅ do

(cw, w)← receive(); INv ← INv \ {w}; colorsv ← colorsv{cw}
end
cv ← min{colorsv}; q← C
for u ∈ OUTv do send(cv, v)
/*O(log n) rounds w.h.p. [47]: For part 1 after 4 log n− 1 rounds a number ≤ 2/n2 of
edges remain. For part 2 the longest path is bounded by a constant and the size of the
message O(log n) dominates the run time. */
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Algorithm C.4: LE in the PN – algorithm ELECT in [46].
Constants: L /*lower bound on the network size*/; r = 1/ε /*inverse of error*/
State set: Q : {Al}, such that l is the largest received ID (current leader at this node)
State variables: IDi; /*chosen ID*/ IDl; /*largest received ID*/
parenti /*pointer to the parent node*/
Initialize: IDi ← choose(); /*ID of length O(r log r)*/ IDl ← IDi; parenti ← 0
broadcast(IDi)
while true do

IDu ← listen()
if IDu > IDl then parenti ← u IDl ← IDu
broadcast(IDl)

end
/*O(D) rounds w.h.p. [46]: It takes D rounds for the largest ID to reach all nodes*/

Algorithm C.5: BC in silent RN – decay approach [13].
Constants: tC = 2dlog ∆e; tP = log(N/ε) /*timeouts*/
State set: Q : {W,A,C, P}
Parameters: N /*network size upper bound*/; ∆ /*maximum degree*/
Initialize: q←W ; t← 0 /*time*/
repeat m← listen() until m 6= ε
q← A
for i ∈ {1, . . . , tP } do

repeat t← t+ 1 until t mod tC ≡ 0
q← C; decay(tC ,m); q← A;

end
q← P ; terminate()
decay(k,m)

j ← 0
repeat
broadcast(m); coin ∼ {0, 1}; j ← j + 1

until j = k or coin = 0

end
/*O((D + log n/ε) · log n) = O(D log n+ log2 n) phases w.p. 1− ε [13]: Each node
requires log(N/ε) phases to broadcast successfully w.p. ≥ 1− ε. It takes O(D)
iterations for the message to propagate, since decay takes k = 2 log ∆.*/
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Algorithm C.6: Randomized BC in silent RN – selective sequences [27].
Constants: λ = log(n/D)

α′k =


1

2λ for 1 6 k 6 λ,
1

2λ · 2
−(k−λ) for λ < k 6 λ+ dlog log ne, k 6 log n,

1
2λ ·

1
logn for λdlog logne < k 6 log n,

1−
∑logn

i=1 α′i for k = 0

(C.1)

State set: Q : {A,P}
Input: J = 〈J1, J2, . . . , 〉 s.t. Pr[Jr = k] = α′k for r ∈ N, k ∈ {1, 2, . . . , log n}
Initialize: q← P
for r ∈ {1, . . . , T} do /*round number*/

if q = A then
w.p. 2−Jr do transmit(m)

else
m← listen()
if m 6= ε then q← A

end
end
/*O(cD log n/D) rounds w.h.p. [27]: It requires O(log n/D) rounds for each layer,
from up to D disjoint layers.*/

Algorithm C.7: BC in silent RN – universal probability sequences [40].
Constants: tC = 32 ·N2/3; tP = logN ; /*timeouts*/
State set: Q : {P,Ad, Cd, Ao, Co} /*d is decay and o is optimized BC*/
Initialize: q← P
for i ∈ {1, . . . , tP } do randomizedBroadcasting(2i)
q← P ; terminate()
randomizedBroadcasting(D)

if D ≤ tC then decayBroadcasting(D,N)
else

for i ∈ {1, . . . , 4600 ·D} do
if q = Ao then q← Co; stage(D, i); q← Ao
else

m← listen();
if m 6= ε then q← Ao

end
end

end
end
/*It continues in Algorithm C.8*/
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Algorithm C.8: BC in silent RN – stage subroutine [40].
stage(D, i)

for l ∈ {0, . . . , log(N/D)} do
w.p. 1/2` do transmit()

end
w.p. pi do transmit()

end
/*O((D · log n/D) + log2 n) rounds w.h.p. [40]: The probability of a node not receiving
the message after D stages is 1/N2. The probability of some node not receiving the
message is r · (1/N2) = 1/N*/

Algorithm C.9: Deterministic BC in silent RN – selective families [21].
Constants: r = dn/6e; /*deterministic sample size*/;
kn = 2dn/6e; /*selective factor*/
fn = |Fn| /*size of selective family*/ tP = d2n/kne /*iterations*/
State set: Q : {A,P}
Input: ` /*node label or ID*/
Initialize: m = ε /*empty message*/
for i ∈ {1, . . . , tP } do q← A; segment(n) q← P ;
segment(n)

for i ∈ {1, . . . , kn} do
for j ∈ {1, . . . , fn} do

if ` ∈ Fj and m 6= ε then transmit(m)
m← listen()

end
end
for i ∈ {1, . . . , `} do m← listen()
transmit(m)

end
/*O(n11/6) rounds w.h.p. [21]: It is based on the size of (n, kn)-selective families
O(25n/6). It iterates over d2n/kne phases of kn · fn + 2n.*/
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Algorithm C.10: MIS in the nFSM model – section 4.1 in [30].
State set: Q : {A,C,M, S,W}
State variables: t ∈ {0, 1, 2} /* pulse for candidate state */; b ∈ {0, 1} /* coin toss*/
Initialize: q← A
while q /∈M ∪ S do /*Double parenthesis denotes multi set of messages*/
broadcast(q); ((q))← listen()
case q = A : if A ∈ ((q)) then q← C0

case q = C :
b ∼ {0, 1}
if b = 1 and Ct−1 ∈ ((q)) then t← t+ 1 mod 3
else

if Ct ∈ ((q)) or C(t+1 mod 3) ∈ ((q)) then q←M else q←W

end
end
case q = W : if M ∈ ((q)) then q← A else q← S

end
/*O(log2 n) w.h.p. [30]: Active nodes decrease by O(log n) +NB(O(log n), 1− p),
since the competing rounds for a node cu ∼ Geom(1/2). For all nodes is ≤ O(log n)*/
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Algorithm C.11: MIS in harsh RN – algorithm 1 in [49].
Constants: µ = 16; /*number of small disks between 1-hop an 2-hop neighborhood*/
α = 6.4; /*value that maximizes clearances (no interference in the neighborhood)*/

λ = 3 · 2α+24
9/4+3µ

2α ; δ = 8·2α
τ ; τ = 9000−1; /*values to achieve high probability */

pC = τ/(2α log n); pM = 2−α; /*probabilities*/
tW = 4µδ log2 n; tA = λ log n; tC = δ log n; tM = δ log2 n /*timeouts*/
State set: Q : {A,C,M, S,W}
Initialize: sv ← 0; cv ← 0; q←W ; pAv ← 2−α−2/n
while true do

for sv = 0, . . . , tW do processMessage(listen())
q← A
repeat

pAv ← 2 · pAv ; for sv = 0, . . . , tA do processMessage(listen())
until pAv
broadcast(mA); q← C
for cv = cv, . . . , tC do
processMessage(listen())
w.p. pC do cv ← max{cv, tC + 1}
broadcast(mC(cv))

end
q←M ; w.p. pM do broadcast(mM)

end
processMessage(m)

case m = mA: : q← A; sv =← 0
case m = mC(cu): : if q = C and |cv − cu| ≤ tC then cv = 0
case m = mM : : q← S; terminate()

end
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Algorithm C.12: Deterministic MIS in BE – algorithm 4.2 in [54].
Constants: r = 2 /*s.t. size of largest independent set in r radious |Nr(v)| ≤ f(r)

for polynomial function f*/
State set: Q : {A,C, I,M, S}
Input: ID /*node label or ID*/
Initialize: q← A
for ` ∈ {1, . . . , f(f(2) + 2)} do

for i ∈ {0, . . . , f(2)} do
r0v ← IDv
for j ∈ {1, . . . , log∗ n+ 2} do

r0j ← log(j) n

for k ∈ {0, . . . , log(j) n} do
if q = A then

if rj−1
v [k] = 1 and rjv = log(j) n then beep()

else
m← listen()
if m 6= ε and rjv = log(j) n then rjv ← k end

end
end

end
updateState(q, j, rj)

end
if q = C then q← A

end
if q = I then q← A

end
updateState(q, j, rj)

if q = A and rjv = log(j) n then
if j = 1 then q←M ; listen(); beep();
else q← C; beep(); listen();

else
m0 ← listen(); if m0 = beep and q = A then q← I end
m1 ← listen(); if m1 = beep then q← S end

end
end
/*O(log n) [54]*/
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Algorithm C.13: MIS in BE with known N – algorithm 1 in [1].
Constants: pM = 1/2; /*probabilities*/ tW = c log2 n; tC = c log n; tM = N

/*timeouts*/
State set: Q : {C,M,W}
Initialize: q←W
wait(tW); q← C
for i ∈ {1, . . . , tM} do

for j ∈ {1, . . . , tC} do
pC ← 2i/(8 ·N); w.p. pC do beep()
listen()

end
end
q←M
forever do

w.p. pM do beep(); listen()
otherwise listen(); beep()

end
/*O(log2N log n) rounds [1]: At each round some neighbor beeps w.p. ≤ 1/2, a node
beeps alone every O(log2N) rounds w.p. 1/e, and O(log n) of these events are
required.*/

Algorithm C.14: MIS in BE with wake on beep and sender side CD –
algorithm 2 in [1].

Constants: tW = 1
State set: Q : {A,C,M, S,W}
Initialize: q←W
upon wake up do beep()/*after woken up by adversary or beep, wake up others*/
wait(tW); x← 0
while q /∈M ∪ S do

x← x+ 1; q← A
for i ∈ {1, . . . , N} do

/*1st exchange*/
m1 ← listen(); pC ← 1/2i; w.p. pC do q← C; beep()
m2 ← listen(); if m1 = beep or m2 = beep then q← A
/*2nd exchange*/
m3 ← listen(); if q = C then q←M ; beep()
m4 ← listen(); if m3 = beep or m4 = beep then q← S

end
end
/*O(log2 n) rounds [1]: Only log n rounds are required after x reaches log n. At each
phase a constant number of edges Ω(|E|) is deleted.*/
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Algorithm C.15: MIS in BE with wake on beep, without sender side
CD – algorithm 3 in [1].

Constants: tW = 1
State set: Q : {A,C, I,M,W}
Initialize: q←W
upon wake up /*by adversary or beep*/ do beep() /*wake up neighbors*/
wait(tW); x← 0
while true do

x← x+ 1; q← A
for i ∈ {1, . . . , N} do

if q = I then pA ← 1/2i w.p. pA do q← A
for j ∈ {1, . . . , c · x} do Xj ∼ {0, 1}
k ∼ {1, . . . , c · x}; Xk ← 1 /*ensure at least one bit is 1*/
for j ∈ {1, . . . , c · x} do
challenge()
if q 6= I and Xj = 1 then challenge() else beep()
challenge()

end
end

end
challenge()
listen(); if mbeep() then q← I

end
/*O(log3 n) rounds [1]: It is similar to wake on beep with sender side CD. It takes an
additional O(log n) to eliminate conflicts.*/
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Algorithm C.16: MIS in the synchronous BE model – algorithm 4 in
[1].

State set: Q : {I, C,M}
Initialize: q← I; next ∼ {0, 1}
while true do

case t mod 3 = 0 :
if t mod k 6= 0 then beep()
else

m← listen()
if m = beep then q← I; k ← 2 · k
else

if q = I then q← C
if q = C then q←M

end
end

end
case t mod 3 = 1 :

if q = M then beep()
else

m← listen()
if m = beep then q← I

end
end
case t mod 3 = 2 :

if q = I then m← listen()
else if q = C then

w.p. 1/2 do beep()
otherwise m← listen()
if m = beep then q← I

end
else if q = M then

if next = 1 then beep(); next ∼ {0, 1}
else

m← listen(); next← 1
if m = beep then q← I; k ← 2 · k

end
end

end
end
/*O(log2 n) rounds [1]: For any given k it takes O(k log n) rounds for the estimate to
synchronize in local O(log n) neighborhoods. During this time the communication is
collision free and nodes can execute Luby’s algorithm. Since there is no additional
overhead, the runtime of this algorithm a multiplicative factor of Luby’s algorithm
runtime, in total O(log2 n).*/
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Algorithm C.17: Optimal LE for directed graphs in RN – algorithms
2,3 and 7 in [26].

Constants: pC = (4 log n)/n /*probabilities*/;
`← log n /*ID length*/;
tE ← 2

√
log n /*Elimination timeout*/

State set: Q : {A,C, S,W} /*active,candidate, eliminated, witness */
Input: n /*network size*/; D /*network diameter*/;
State variables: ID; b /*unique leader flag*/; IDc /*Highest ID*/
while true do

q← A
w.p. pC do q← C

if q = C then ID ∼ {0, 1}`
m← search(q, ID, `) if m[1, . . . , `] 6= ID[1, . . . , `] then q← A
for tE do

(IDc, b)← selection(q, ID)
if b = 1 then Output: IDc
; terminate()
else if IDc > ID then q← S

end
end
search(q, ID, `)

IDc ← 0`

for i ∈ {1, . . . , `} do
if ID[j] = IDc[j] for j < i and IDi = 1 then m← multiBC(q, 1, 1)
else m← multiBC(ε, 1, 1)
if m = ε then IDc[i]← 0
else IDc[i]← 1

end
return(IDc)

end
selection(q, ID, `)

m← multiBC(q, ID, 16 log n)
if m 6= ε then

for i ∈ {1, . . . , 16 log n} do
if m[i] = 1 then for j ∈ {1, . . . , 4} do IDc ← decay(ID)
if m[i] = 0 and IDc[i] = 1 then q←W ;m← max(m, IDc)/*Witness*/

end
IDc ← multiBC(W,m, 16 log n)
if IDc = ε then return(m, 1)
else return(IDc, 0)

end
return(m, 0)

end
/*O(D log n/D + log2 n) [26]: Search takes TBC ·

√
log n, and performing 2 ·

√
log n

iterations of slection takes TBC ·
√

log n.*/
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Algorithm C.18: Optimal LE for undirected graphs in synchronous
clocks BE – algorithms 4 and 8 in [26].

Constants: pC = 1/n /*probabilities*/; `← 4 log n /*ID length*/;
State set: Q : {A,C, S,W} /*active,candidate, eliminated, witness */
Input: n /*network size*/; D /*network diameter*/;
State variables: ID; m; /*Received message from beepWave()*/ IDc /*Highest ID

substring*/
while true do

q← A
w.p. pC do q← C

if q = C then ID ∼ {0, 1}4`, s.t. ID has exactly log n 1s
m← beepWave(q, ID, `)
if m 6= ε then

if m contains more than log n 1s then
q←W ; IDc ← beepWave(q, 1, 1)
if IDc = ε then Output: m
; terminate()

end
end

end
beepWave(q, ID, `)

IDc ← 0`

if q = C then
beep() /*time 0*/
for i ∈ {1, . . . , `} do
listen(); listen() /*Listen 2 times*/
if ID[i] = 1 then beep(); IDc[i] = 1
else listen(); IDc[i] = 0

end
end
else

j ← 0
repeat

m1 ← listen();j ← j + 1
until m1 = beep or j = D · `
beep()
for i ∈ {1, . . . , `} do

m2 ← listen(); m3 ← listen();
/*Received beep at step j + 3i*/
if Message3 = beep then beep(); IDc[i] = 1
else m1 ← listen(); IDc[i] = 0

end
end

end
/*O(D log n/D + log2 n) ·

√
log n for BE, assuming known n [26] */
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Algorithm C.19: Clustering based LE in RN – template of [32].
Constants: pC = (10 log n)/n; /*probabilities*/
State set: Q : {A,C,L, U,B, S, P} /*active, candidate, clustered, unclustered,

boundary, eliminated, passive*/
Input: n /*network size*/; D /*network diameter*/; L /*codeword length*/
State variables: ID /*generated node ID*/; d /*distance to closest candidate*/; t

/*time*/; c /*Cluster ID*/
Initialize: ID ∼ Θ(log n) /*draw ID u.a.r.*/
w.p. pC do q← C
otherwise q← S
for i ∈ θ(log log n) do

if debate(ID, D) then break()
end
if q = C then ID` ← ID; broadcast(ID)
else ID` ← listen()
Output: ID`
q← P
debate(ID, D)

H ← cluster(); /*Build overlay graph*/
exchange(ID, D)
δ = calculateDegree(); exchange((δ, ID), D)
if q = C and (δ, ID) > max{(δv, IDv) : v ∈ NH(u)} then q← S

end
exchange(m, D)

/*Uplink and downlink use network diameter*/
uplink(m, D); intercommunicate(m); downlink(m, D)

end
/*O(D log n/D + log3 n) ·min{log log n, log n/D} for RN without CD and
O(D + log n log logn) · {log logn, log n/D} for BE [32]*/
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Algorithm C.20: Clustering an numbering in BE – algorithm 4 and 5
from [32].
numbering(D)
m← Encode(superimposedCode(1), bitXor(0,ID)) /*SI(1)-code*/
uplink(m)
m′ ← listen()
if m ∈ valid then c← decode(m’); q← L
else c← 0; q← U
for t ∈ {0, . . . , L− 1} do

if m′[t] = 1 then beep(); m← listen()
else m← listen(); beep()
if m = beep then q← B

end
numbering(D)

if q = C then d← 0
for t ∈ {1, . . . , D} do

if q ∈ {A,C} then beep
else

m← listen();
if m = beep and q = L then q← A; d← t

end
end

end
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Algorithm C.21: Uplink BE – algorithm 6 from [32].
uplink(m, D)

if q 6= C then q← P
for t ∈ {0, . . . , D + 3L− 3} do

switch t− d mod 3 do
case 0 : if q = C and m[t/3] = 1 then beep()
m← listen()
case 1 : m← listen()
case 2 :

m← listen();
if m = beep then

m′[b(t− d+ 1)/3c]← 1;
if q 6= C then q← A

end
else

m′[b(t− d+ 1)/3c]← 1;
if q 6= C then q← P

end
end

end
end

end
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Algorithm C.22: Intercommunication in BE – algorithm 7 from [32].
intercommunicate(m)

for t ∈ {0, . . . , L− 1} do
if q = B then

if m[t] = 1 then beep(); beep(); m′′′[t]← 1
else

m0 ← listen();
m1 ← listen()
m′′′[t]← (m0 = beep)or(m1 = beep)

end
end
else

m← listen();
if m = beep then beep()
listen()

end
end

end
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Algorithm C.23: Downlink in BE – algorithm 8 from [32].
downlink(m, D)

if q 6= C then q← P
for t ∈ {D + 3L− 3, . . . , 0} do

switch t− d mod 3 do
case 0 :

if q = B and t− d ∈ [0, 3(L− 1)] and m[b(t− d)/3c] = 1 then
beep()
else m← listen()

end
case 1 : m← listen()
case 2 :

m← listen();
if q 6= C then

if t ∈ [1, 3(L− 1) + 1] then
if m = beep then m′[(t− d− 1)/3]← 1
else m′[(t− d− 1)/3]← 0

end
end
else

if m = beep then q← A
else q← P

end
end

end
end

end
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Algorithm C.24: Max detection in BE – algorithm 9 from [32].
maxDetection(m)

if q = B then
for t ∈ {0, . . . , L− 1} do

if q 6= S then /*Not marked*/
if m[t] = 1 then beep(); beep();
else

m0 ← listen()
m1 ← listen()
if m0 = beep or m1 = beep then q← S

end
end
else

m← listen()
if m = beep then beep()
listen()

end
end

end

Algorithm C.25: (∆ + 1)-coloring undirected trees in the nFSM model
[30].

State set: Q : {W,A,C}
Input: b = 3 /*model bounding parameter*/
Initialize: q← A; cv ← ε; /*uncolored */;
C(v)← {1, . . . , b} /*palette of available colors*/
while q 6= C do
broadcast(q); ((q))← listen() /*Discover*/
dv ← calculateDegree(((q)));
broadcast(dv); ((d))← listen() /*Exchange degrees*/
if max ((d)) ≤ dv < b then
randColor()

else
listen(); /*Just listen while others do randColor()*/
if dv = 1 then q←W

end
((c))← listen(); Cv ← Cv \ ((c)) /*Update palette*/
if q = W and ((c)) 6= ε then q← A

end
randColor()

cv ∼ C(v); broadcast(cv); /*Propose color*/
((c))← listen()
if cv /∈ ((c)) then q← C; broadcast(cv) /*Reserve color*/

end
/*O(log n) rounds w.h.p. [30]: */
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Algorithm C.26: O(∆)-coloring GB graphs in the harsh RN [50].
Constants: σ = 10e2κ2/((1− 1/κ2)(1− 1/(κ2∆)));
γ = 5κ2/((1/e(1− 1/κ2))κ1/κ2(1/e(1− (κ2∆)))1/κ2); /*bound multipliers*/
α ≥ 2γκ2 + σ + 1; β ≥ γ /*timeouts*/
State set: Q : {R,Ai, Ci}, where i is the stage number
Input: ∆ /*network degree*/
State variables: Pv; /*competitor list*/ dv; /*local copy of neighbor’s
counters*/ i /*phase number*/; Lv /*leader ID*/
Asucc /*next state*/; ζ /*degree*/; Q /*queue of requesters*/
Initialize: Pv ← ∅; dv(w)← 0 s.t. w ∈ N(v); i← 0; q← A0; ζ ← 1; Asucc ← R
while q 6= C do
compete() if q = C then playLeader()
ζ ← ∆; Asucc ← Ai+1

end
compete()

for j ∈ dα∆ log ne do
for w ∈ Pv do dv(w)← dv(w) + 1
if mi

A(w, cw) received then Pv ← Pv ∪ {w}; dv(w)← cw
if mi

C(w) received then
q← Asucc; Lv ← w;
if q = R then requestColor()

end
end
cv ← maxχ(Pv) s.t. χ(Pv) /∈ [dv(w)− dγζ log ne, . . . , dv(w) + dγζ log ne] s.t.
w ∈ Pv and χ(Pv) ≤ 0
while q = A do

cv ← cv + 1
for w ∈ Pv do dv(w)← dv(w) + 1
if cv ≥ dσ∆ log ne then q← Ci
else

w.p. 1/(κ2∆) do broadcast(mi
A(v, cv))

if mi
C(w) received then q← Asucc; Lv ← w

if mi
A(w, cw) received then
Pv ← Pv ∪ {w}; dv(w)← cw
if |cv − cw| ≤ dγζ log ne then cv ← χ(Pv)

end
end

end
end
/*O(∆ log n) rounds w.h.p. [50]: */
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Algorithm C.27: requestColor subroutine – algorithm 2 in [50].
requestColor()

repeat
w.p. 1/(κ2∆) do broadcast(mR(v, Lv))

until m0
C(Lv, v, tcv)

q← Atcv ·(κ2+1)

end

Algorithm C.28: playLeader subroutine – algorithm 3 in [50].
playLeader()

cv ← i
if i > 0 then

repeat w.p. 1/(κ2∆) do broadcast(mi
C(v))

until protocol stopped
end
else

tc ← 0; Q ← ∅
repeat

if mR(w, v) received and w /∈ Q then Q ← Q{w}
if Q = ∅ then

w.p. 1/κ2 do broadcast(m0
C(v))

end
else

tc ← tc + 1; w ← pop(Q)
for j ∈ dβ log ne do

w.p. 1/κ2 do broadcast(m0
C(v, w, tc))

end
end

until protocol stopped
end

end
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Algorithm C.29: Interval coloring in BE [25].
Constants: η = 1/16 /*safety boundary factor*/
State set: Q : {A,C}
Initialize: q← A; cv ← ε; /*uncolored */; (d̃v, bv)← Estimate(S)
forever do

if q = A then pv ∼ getFreeSlots(bv)
jitterv ∼ [0, . . . , 1]
S ← listen(pv + jitterv) ∪ beep ∪ listen(Q− pv − jitterv)
cv ← calculateInterval(S)
(d̃v, bv)← Estimate(S)
if beepsHeardInRange(S[pv − bv, pv + bv]) = ∅ then q← C
else if beepsHeardInRange(S[pv − 1, pv + 2]) 6= ∅ then q← A

end
getFreeSlots(bv) /*Leave safety boundaries*/
calculateInterval(S) /*Span free time before beep*/
Estimate(S)

d̃v ← max(|S|, 1)
bv ← η ·Q/d̃v

end
/*O(log n) periods w.h.p. [25]: */

Algorithm C.30: Self-stabilizing LE in odd cycles – protocol 6 in [11].
State variables: bulletu; leaderu; probeu; phaseu /*switch between generating a

probe or moving itself forward*/
if labelu = labelv then

if probeu = 1 then leaderu ← 1; probeu ← 0
if phaseu = 0 then

phaseu ← 1
if leaderv = 0 then probev ← 1

end
else if probev = 0 then

labelv ← labelv; phasev ← 0; bulletv ← 0
end

else if leaderv = 1 then
if bulletv = 1 then leaderv ← 0
else bulletu ← 1; probeu ← 0

else
if bulletv = 1 then bulletv ← 0; bulletu ← 1
if probeu = 1 then probeu ← 0; probev ← 1

end
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