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This work is devoted to the investigation of the process of Förster resonant energy transfer 

between lead sulphide quantum dots of different size in the porous matrix and on the glass 

surface at both room and decreased temperatures. As a result, we observed quenching of 

photoluminescence (PL) for donors together with flare-up of PL of acceptors, which was 

accompanied by significant increasing of lifetimes of acceptors up to values characteristic for 

donors. This unexpected effect can be explained using three-level model which is based on a 

complex energy structure of PbS quantum dots-donors, which are involved in the energy 

transfer. The observed effect can lead to a significant change in the dynamic characteristics of 

the charge carriers in quantum dot solar cells. 
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Symbols and abbreviations 

 

Symbols 

0A , 
1A , 

2A , 
3A    constant coefficients 

аexc        Bohr radius of the exciton 

A, B       coefficients 

С           the molar concentration 

D          optical density 

avd         average diameter 

E           efficiency of energy transfer 

e            elementary charge 

Eg              energy gap 

            Planck's constant 

ћω         energy of incident radiation 

I             intensity of the incoming beam 

Iov          overlapping integral  

0I               intensity of the passed beam 

DI          donor luminescence intensity without the acceptors 

DAI         donor luminescence intensity in the presence of acceptors 

H

DI            quantum spectral density of the luminescence radiation 

k            coefficient of proportionality 

Bk            Boltzmann constant  

Tk            velocity constant 

l             the optical path length 

n            ratio of PL quenching 

0N         concentration at the initial moment 

R            radius of quantum dot 

r               distance between the donor and the acceptor 

0R             Förster’s radius 

critr         critical radius of the nuclei  

S            degree of solution supersaturation 



 

7 

 

T            temperature 

t             decay time of PL 

1t , 
2t , 

3t               time parameters 

longt , 
D

long             long time-components 

shortt , A

short            short time-components  

U           rate of nucleation 

V           the molecular volume 

mV          molar volume 

              the specific interface energy 

G        change of Helmholtz free energy 

              diectric permittivity 

           extinction coefficient 

A            extinction coefficient 

           wavelength 

           reduced mass of the exciton 

              wave number 

sv             concentrations of saturated solution 

sv             concentrations of supersaturated solution 

d             lifetime of excited state for the donor in absence of the acceptor 

D          donor lifetime in a pure sample 

DA         donor lifetime in the presence of the acceptor 

 

 

Abbreviations 

AFM      atomic force microscopy  

FRET     Förster resonance energy transfer 

IR           infrared 

MPA      3-mercaptopropionic acid  

QD         quantum dot 

PL          photoluminescence 

UV         ultraviolet  
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1. Introduction 

 

The future of mankind is tightly bound to both rational use of natural resources and to 

development of alternative sources of energy which contribute to the electric energy generation 

more and more year after year [1]. For instance, in 2013 one fifth of the global energy demand was 

provided by renewable sources of energy where solar energy played a considerable role [2]. At 

present day, production of solid state photoelectric cells is a costly process and does not always 

ensure success compared to the conventional technologies in power industry. For this reason, it is 

particularly topical now to find new materials and technologies which would reduce the cost of 

solar cells production. 

A successful solution which provides a desirable compromise between efficiency and cost of 

production is an innovative technology of solar cell spray developed in 2014 at Toronto University 

[3]. The SprayLD system is based on spraying colloidal quantum dots (QD) on flexible and 

irregular surfaces which turns them into solar panels. Such a method allows designing large area 

solar cells that are technically challenging and unprofitable for silicon-based solar cells. 

Dependence of QD energy gap width from its geometry allows new photocells to absorb radiation 

in various bands of solar spectrum from ultraviolet (UV) to infrared (IR) range as opposed to 

traditional semiconductor materials which absorb only within a very narrow spectral range.  

The ability of efficient absorption within a wide spectral range covering almost the whole 

spectrum of sun radiation is characteristic for lead sulphide (PbS) QDs which consequently have 

been chosen for the research in this thesis. Besides, colloidal solution of PbS QDs may serve as 

photoelectric material both in ink-jet printing [4] and in roll-to-roll technology [5], and in the 

SprayLD spray system, which reflects the importance of the topic chosen. 

The paper objective is to study fundamental phenomenon of induction-resonance nonradiative 

energy transfer (FRET) between lead sulphide QDs of different sizes. This process may influence 

the efficiency of converting solar radiation into electric energy. That is why understanding its 

qualities may result in improvement of the technologies existing in solar energetics.  
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1. Characteristics, synthesis and application of colloidal quantum dots 

       2.1  Colloidal quantum dots 

 

A quantum dot means any three-dimensional potential energy well which is accompanied by 

the energy spectra quantum size effect. Nanocrystals are conventionally understood as quantum 

dots limited by any matter different from the one they are produced from [6]. In this case presence 

of heterointerfaces leads to formation of three-dimensional spatial delimitation or confinement. 

Beside heterointerfaces, mechanical stresses and deviations of semiconductor layer thickness also 

result in spatial delimitation of electrons, holes and excitons motion. 

There are excitons within semiconductor which represent bound state of electrons and holes, 

have a radius considerably exceeding interatomic spaces due to high dielectric permitivity and, 

consequently, faint electrostatic interaction. Therefore, peculiar spatial scale of an exciton within 

the semiconductor in ground state with 1n   may be estimated as effective Bohr radius [7]:    

                                                          
2exca

e




                                                                               (1) 

Thus, the fullest definition of a quantum dot may be defined in the following way: a quantum 

dot is a semiconductor nanocrystal with characteristic dimensions approximately equal to exciton 

radius, where charge the motion of the carriers is limited in all three dimensions. Thus, electrons 

and holes are localized in a three-dimensional potential energy well. 

We now proceed to review the colloidal QDs class. Colloidal QDs represent semiconductor 

nanocrystals, in most cases coated with organic molecules which play a role of a stabilizer. 

Colloidal QDs generally consist of a considerable number of atoms, about 10
3
-10

5
 of atoms, and 

have a diameter lying in the range from 2 μm to 10 μm. 

Figure 2.1 represents a colloidal QD model with a semiconductor nucleus and organic coating. 

 

Figure 2.1 – а) PbS QD model for the colloidal core-shell [5], b) PbS QD without the shell and      

c) PbS-CdS of the core-shell type without the organic molecules [8]. 
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Colloidal QDs are characterized by composition, size, and shape [9]. QDs functioning as a 

basis for effective photoluminescence (PL) shall be based on a material with a direct band character 

of the spectrum. Depending on the energy gap the semiconductor materials may be subdivided: 

a) Wide-band  – UV band, 

b) Medium-band  – visible band, 

c) Narrow-band – near IR band (0.9 μm - 1.7 μm) PbS QDs belong to this class. 

QDs may have a spherical, ellipsoid, or cubical shape, as well as have a complex geometry, for 

example, a truncated parallelepiped shape [8]. A sphere is an idealized shape, since the QDs 

actually have a more complex shape which may be claimed to be a sphere only in certain 

approximation. The spherical QDs happen to have wider practical application and turn up to be 

easier in production. In most cases, spherical QDs are produced by means of colloidal synthesis. 

Quantum dots may also be multicomponent dots which include: 

1) Alloyed ones,  

2) QDs based on solid solutions, 

3) QDs based on a heterojunction: 

 Type 1 –  when the nucleus is a narrow-band semiconductor with the energy gap inside that of 

the host material.  

 Type 2 – when both the nucleus and the coating have energy gaps with staggered alignment 

against each other. 

 

 

Figure 2.2 – CdTe-CdSe based colloidal quantum dots with heterojunctions of (а) type 1 and         

(b) type 2. 
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2.2    Confinement effect 

 

Restriction of charge carriers’ mobility within a QD resulting in its energy spectrum 

transformation displays the fact that physical properties depend on geometrical dimensions of the 

system. This phenomenon is called a spatial quantization effect and lies in the fact that linear 

contraction of the system or its elementary excitations (excitons) leads to considerable modification 

of its energy spectrum: a quasi-continuous spectrum becomes discrete. 

 

 

Figure 2.3 – a) transformation of quasi-continuous spectrum of a 3D semiconductor into discrete 

spectrum of a QD and b) quasi-continuous spectrum in a 3D material. 

       Discreteness of the spectrum or size quantization of the electron and hole states leads to 

displacement of optical lines within absorption spectra depending on the nanocrystal radius [8]. 

This phenomenon has been experimentally observed for semiconductors of various groups [7]. In 

such a way, electro-optical properties depend on the nanocrystal size, more specifically, on its 

radius R. The second key parameter, which determines quantum size effects of an electron-hole 

pair, is an effective Bohr radius of the exciton, аexc. 

Depending on the correlation of these two values, various localization modes of charge carriers 

within QDs may be identified: 

1) Weak mode - 4excR a  , 

2) Strong mode - 2excR a  , 

3) Intermediate mode - 2 4excR a  .  

In the mode of weak confinement, the electron-hole pair behaves as an exciton but in this case 

its center of mass motion will be quantized. 

In the mode of strong confinement, separate quantization of the kinetic motion of electron and 

hole takes place. It results in a distinct discrete structure of energy levels which results from the fact 

that the interaction of an electron and a hole with a delimited crystal considerably outweighs its 

а                                                                    b 
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electrostatic interaction. In the mode of strong confinement, carriers may be considered 

independent.  

Intermediate mode is the least studied due to lack of experimental data opposed to the two 

extreme cases.  

In such a way different modes of confinement may be realized for the same QD system 

depending on their size, whereas lead sulphide QDs for the particular band fall into the strong 

confinement mode.   

For example, let us look at the absorption spectra of five colloidal solutions of QDs from CdSe 

nanocrystals with various radiuses: 1.2, 1.7, 2.3, 2.8 and 4.1 μm [10]. Peculiarities relating to the 

interband optical transitions connected with different electron and hole states can be clearly seen on 

the spectra. For example, the first two absorption bands are conditioned by transitions 1S1S3/2  

and 1S2S3/2. 

Convergence of the absorption spectra of nanocrystals at high energies ћω to absorption spectra 

of 3D material demonstrates that, in the case of high energies, optical absorption of samples stops 

being dependent on nanocrystal dimensions and is governed exclusively by the used semiconductor 

material. 

The observed spreading of bands which complicates absorption spectra analysis is a result of 

dimensional dispersion in colloidal solutions. That is why it is so important to synthesize 

monodispersed colloidal solutions. 

 

Figure 2.4 – Absorption spectra of CdSe nanocrystals with radii from 1.2 μm to 4.1 μm. [10] 
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2.3  Transfer of energy between quantum dots 

 

Phenomenon of nonradiative energy transfer between QDs in colloidal solution is a 

fundamental process which represents one of the key factors influencing efficiency of solar panels 

based on colloidal QDs. Nonradiative Förster excited state energy transfer from a donor to an 

acceptor which occurs without photons emission and by its nature refers to dipole-dipole 

interaction. QDs of different size serve as donor-acceptor pair. Transfer of energy may be presented 

as a sequence of processes: 

1) Transition into excited state of the donor after laser excitation. 

2) Vibrational relaxation of the donor in excited state. 

3) Transfer of the excited state energy from donor to acceptor. 

4) Vibrational relaxation within the acceptor. 

5) Emission from the acceptor. 

 

The whole process is illustrated in figure 2.5. 

 

 

Figure 2.5 – Scheme of energy transfer according to the FRET mechanism, where arrows stand for 

main transitions. 

 

Förster’s theory states that for efficient transition of energy from a donor to an acceptor the 

following two conditions shall be simultaneously achieved [11]. 

Absorption of light quantum by the donor 

Emitting transition of the donor 

FRET 

Emitting transition of the acceptor 

Vibrational relaxation 
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1) Acceptor’s absorption spectrum and donor’s luminescence shall be overlapped in the way that  

overlapping integral be not equal to zero:    

                                                       4 0H

ov D AI I d                                                             (2) 

2) Distance between the donor and the acceptor shall not exceed the Förster’s radius value 
0R  

wherein energy transfer efficiency equals to 50%, or such transfer will be inefficient. 

Velocity constant of energy transfer within one selected donor-acceptor pair is governed by the 

expression: 

                                                                   

6

01
T

d

R
k

r

 
  

 
                                                               (3)                                     

where 
d  is the excited state lifetime of the donor in absence of the acceptor, r  is the distance 

between the donor and the acceptor, 
0R is the Förster’s radius. Efficiency of energy transfer may be 

estimated by Förster’s formula, presented in [12]:  

                                                                     
6

0

6

0

R
E

R r



                                                                    (4) 

 

Figure 2.6 – Illustration of two conditions necessary for transfer of energy according to the FRET 

mechanism. [13] 

 

2.4  Synthesis of colloidal quantum dots 

 

There are many various ways to synthesize colloidal QDs. However, due to a relatively recent 

development of these methods (from 1990-s, and active development at present day) there are some 

difficulties with classification resulting from constant modification of methods. Most common 

division of synthesis methods is a division by the type of construction of the nanostructures posing 

two main approaches: 

1) “Top-down” approach which is based on getting the nanoscale objects from 3D materials by 

means of fragmentation and atomization (mainly mechanically). 
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2) “Bottom-up” approach based on natural physical, chemical and biological processes which 

result in formation of complex nanoscale objects from separate molecules or ions. Generally these 

methods are connected with the use of complex equipment needed for keeping high-vacuum, 

controlled-temperature conditions and other parameters exercising a decisive influence on growth 

of samples. 

On the whole, “bottom-up” methods are more complex and require more time compared to 

“top-down” methods. Though they allow synthesizing higher quality nanostructures containing 

minimum defects and contaminations and with narrow size distribution, i.e., give a chance to grow 

monodisperse assemblages.  

 

 

2.5 Hot injection synthesis method  

 

       Below we will discuss in more detail one of the bottom-up methods, which turned out to be the 

most successful among the colloidal chemical methods of synthesis, and which allows growing 

monodisperse colloidal QDs. This is the growth method in non-polar media developed by Murray in 

1992 [15], and it has a number of significant advantages: 

a)    The ability to control the growth process of the QDs, for example, by varying temperature. 

b)    The ability of receiving QDs in the form of powder and absence of matrices, which greatly 

simplifies the process of QD purification. 

c)    A narrow distribution of the geometric parameters of the QDs: 

 About 5% for A
2
B

6
 elements; 

 About 10% for A
3
B

5
 elements; 

d) Relatively low process temperatures and, consequently, the absence of complex equipment. 

This method is also known as the hot injection method because of the fact that it is based on the 

following procedure: components containing chemicals with elements of the selected groups are 

injected in a hot, continuously stirred dispersion medium. As a result, there is a fast reaction and 

formation of locally supersaturated solution, leading to the process of forming nuclei of solids, i.e. 

nucleation [16]. 
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Figure 2.7 - a) Schematic of the hot injection method [16] and b) the concentration of the condensed 

agent at the nucleation stages and growth from a highly supersaturated solution. 

 

Nucleation is followed by the growth of the nuclei and Ostwald ripening stage. We describe the 

basic physical processes that are present in each of the three stages [9]. 

 

1)    Nucleation in the supersaturated solution 

According to the theory, nucleation has a spontaneous nature and is based on an ability of 

molecules and ions introduced in the solution to get crystallized and form nuclei in unstable areas of 

the supersaturated solution. The rate of nucleation is described by the following equation: 

                                                              ( )ss s sU kS k v v v                                                            (5) 

where k is a coefficient of proportionality, S is the degree of supersaturation and sv , ssv are the 

concentrations of the saturated and the supersaturated solutions, respectively. 

The larger the value of relative supersaturation ( )ss s sv v v , the faster nucleation occurs, which 

means that more crystallization centers appear leading to a deviation decrease in particle sizes from 

an average value. In the process of nucleation a new phase interface appears, which leads to an 

increase in the free energy of the system. Simultaneously, the system energy decreases because of 

chemical transformations. 

The total change in the free system energy is described by the expression: 

                                     
2 34

4 lnincr decr BG G G r r k T S
V

                                            (6) 

where r  is  the nuclei radius, Bk  is the Boltzmann constant and  is the specific interface energy. 

а                                                         b 
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Thus, at a certain critical size of the nuclei critr
 
the function describing the total change in free 

energy has a point of extremum:  

                                                                
2

3 ln
crit

B

V
r

k T S


                                                                   (7) 

The maximum value of free energy corresponds to the activation energy for nucleation. From 

this equation it follows that nuclei of a smaller size are formed in the supersaturated solution. For 

the solution with a certain degree of supersaturation S all particles of the size larger than the critical 

size will grow, and the rest will be dissolved. 

 

2)    Growth of nuclei 

Within the colloidal theory the link between the crystal shape and the interface energy of its facets 

is considered, from which it follows that the rate of forming crystal facets is high and is determined 

solely by the rate of diffusion. Temperature is the basic governing parameter in the diffusion 

processes. Assuming that the process of the facet growth is slower than the process of supplying the 

substance, the variation law for the concentration of a substance, such as cadmium, can be written 

as: 

                                                            
 

 ( ) ( )t

t

d Cd
kA t Cd N t

dt
                                                    (8) 

Then the growth of nanocrystal radius if assuming spherical shape is described by the formula: 

                                      
3

30

0

4
( )

3
m eq

N rdr
k V Cd Cd k A Br

dt

 
     

 
                                     (9) 

This formula is good for approximating the experimental data, which can be seen in the Figure 2.9 

containing data on the growth of CdSe (A
2
B

6
) QDs [17]. 

 

Figure 2.8 - Dependence of the size of the CdSe nanocrystals on the growth time. [17] 
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3)    Ostwald ripening stage 

In the later time of the system development when the reagents have been exhausted and the 

nucleation stage is completed, the process of Ostwald ripening begins. This process is characterized 

by the growth of large particles due to the dissolution of the smaller ones, and the interface energy 

of the system is reduced due to the dissolution of fine particles having a large surface area in total.  

Every moment of time is characterized by the value of the critical radius which increases with 

the decrease in the supersaturated solution. Particles with sizes greater than the critical value at a 

given time continue to grow according to the macroscopic laws. 

 

 

 

 

Figure 2.9 - Successive stages of Ostwald ripening. 

 

The above processes and their respective physical models underlie the growth of monodisperse 

colloidal QD systems within the hot injection method. 

 

2.6 Applications of quantum dots 

 

The dependence of the energy spectrum on the size gives a great potential for the practical use 

of colloidal QDs, which are increasingly used in various fields from semiconductor devices to 

medical applications and cryptographic security systems. QDs can be considered as an active 

medium for lasers and as a material for LEDs, fluorescent labels and displays that have already 

been put into commercial production. Every year the number of applications and technologies based 

on QDs increases with the growth of research interest to them, as shown by the growth of the QD 

market. 

Another QD feature important in terms of practical use is the ability to exist in the form of sols, 

which makes it easy to obtain coverage from QDs films with such cheap methods as spin-coating 

[5] and ink-jet printing [4], which allow avoiding the use of expensive vacuum technologies applied 

for the production of microelectronic devices and silicon solar cells. Since the main application 

field of colloidal QDs is photovoltaics, below we will give a brief overview of solar cells with the 

basic directions of their development, and we will consider examples of the most successful 

technologies. 
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2.7  Nanostructures in solar energy 

 

Currently, among all kinds of solar cells elements based on crystalline silicon, with a lifetime 

of 25 years and the efficiency of 25.6% [26], which is close to the theoretical limit of 32% [27], are 

still dominating. This type of solar cell refers to the elements of the first generation, the origin of 

which is dated to 1950s. Elements of the second generation are based on amorphous or 

polycrystalline silicon, and characterized by a simple production technology and, consequently, 

lower production cost. Their efficiency is much lower than that of the first generation elements [26]. 

In contrast to the elements of the first and second generation, elements of the third generation 

include many designs based on the use of various technologies. One of the directions is the use of 

nanostructures as the core element in the third generation solar cells. The cost of energy produced 

by the third generation elements is significantly lower than that of the previous generations. 

Among the technologies based on the use of nanostructures, we can distinguish three main 

groups of solar cells: 

1) Photo-electrochemical dye-sensitized solar cells [28], 

2) Polymer solar cells, 

3) Solar cells based on colloidal QDs. 

 

Dye-sensitized solar cell 

 

1) Description 

The element consists of a semiconductor anode and metal cathode immersed in an electrolyte. 

A film 10 µm thick, composed of TiO2 particles having a diameter of about 15 nm, sensitized with a 

dye monolayer, acts as an anode. Using a highly porous material, nanocrystalline TiO2, allows 

increasing the absorbent surface area 780 times compared to a flat anode [28], resulting in a 

significant increase in the share of absorbed photons. 

2) Operating principle  

When dye molecules absorb photons, an electron is transferred from the ground to the excited 

state, and moves to the TiO2 conduction band for a time of about 10
-15

 seconds. Further, electron 

diffuses through the TiO2 film, reaching a glass electrode, and flows through the conductor to the 

second electrode. The dye molecule is reduced, yielding an electron from the iodide ion, which 

turns into the iodine molecule and diffuses to the back-electrode, from which it receives an electron 

and becomes again the iodine ion. 
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Figure 2.10 - a) Operating principle of the dye-sensitized solar cell and b) the system of energy 

levels in each phase. [28] 

 

Thus, the dye-sensitized solar cell is commercially attractive due to the simplicity, low 

production cost and thermal stability. It also has an efficiency of 10-12% limited to the theoretical 

value of 33% [29]. 

 

 

The polymer solar cells 

 

1) Description 

A solar cell consists of thin polymer films inflicted layer-by-layer with different functions. The 

photoactive layer composed of the p- and n-type organic semiconductor where electron-donors are 

conjugated polymers and electron-acceptors are C60 fullerenes and derivatives thereof. 

 

Figure 2.11 - Order of layers in the polymer solar cell. 

2) Operating principle  

The operating principle of polymer solar cells makes up photo-induced charge separation 

between electron-accepting and electron-donor materials of the photoactive layer, which provides 

а                                                                        b 

Sunlight 
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the generation and efficient transport of charge carriers to both electrodes [30]. The operating 

principle of the polymer solar cells can be represented as a sequence of the following physical 

processes: 

1)   When absorbing photons excitons are generated in the photoactive layer. Then they move to the 

p- and n-type semiconductor interface, where exciton dissociation takes place. 

2)  After the exciton dissociation, the electron and the hole remain connected, with the exciton 

transiting to the acceptor, and the hole remaining in the donor phase. Such a system is called a 

charge transfer complex, and can get either completely separated or recombined. 

3)  In the case of dissociation the electron and the hole migrate to the respective electrodes, moving 

only in its phase, so it is important to form continuous channels throughout the photoactive layer. 

4)  The final stage is the process of electrodes collecting charges, which is hindered by potential 

barriers and recombination processes. In this connection, buffer layers are used to minimize these 

two effects. 

The polymer and fullerene solar cells can be applied to flexible surfaces, and may be obtained 

by printing as well [5], which greatly reduces their production cost. Furthermore, they have an 

efficiency of approximately 10% and are environmentally safe, but are prone to degradation. 

 

 

Solar cells based on colloidal QDs 

 

In addition to the unique physical properties QDs have the ability to be integrated in the liquid-

phase technologies, such as roll, printing and SprayLD [3], which greatly simplifies the solar cell 

production process and makes it economically attractive. This combination of practical and 

fundamental properties makes QDs a desirable object of study and explains the variety of designs of 

solar cells, among which there are the following groups: 

 On the basis of Schottky contact (metal / semiconductor transition). 

 With heterojunction (conjugated polymer / quantum dot [31]). 

 Sensitized quantum dots. 

Despite the fact that devices based on QDs haven’t got efficiency values comparable to silicon 

cells yet, the given industry is rapidly developing and there is every reason to believe that higher 

efficiency values will be obtained soon. 

We will consider the factors that play a key role in increasing the efficiency of such solar cells. 

First, in the colloid synthesis process quantum dots are covered with the molecules of surface-active 



 

22 

 

agents (surfactants) to prevent coagulation, and the important step is to replace the original 

stabilizer for new surface ligands, whose usage reduces the distance between QDs, and hence helps 

to increase the charge mobility. The correct choice of ligands can significantly increase the 

conductivity between QDs layers. Secondly, photons of solar radiation are in the energy range from 

0.5 eV to 3.5 eV, and those whose energy exceeds the Eg value of semiconductor QDs lead to the 

appearance of hot charge carriers. Thanks to the discrete structure of QDs energy spectrum, hot 

charge carriers can lead to multi-exciton generation, which minimizes heat losses, which make up 

almost half of all losses in solar cells [29]. 

For example, in PbSe QDs with Eg = 0,636 eV we observed the generation of seven excitons at 

absorbing a photon with energy 7,8 gh E   [32]. 

 

2.8  SprayLD Technology  

 

After analyzing the evolution of the solar cells, it can be concluded that at this stage there is a 

tendency to reduce the device production cost and to simplify production process sometimes even to 

the detriment of efficiency. 

Under such conditions, the methods that, first, meet these two criteria, and secondly, are 

applicable in large-scale industrial products bring the greatest advantage. At present, a large number 

of methods and technologies of producing solar panels on QDs have been developed, but many of 

the technologies, such as spin-coating and dip-coating are limited to the laboratory scale [33]. 

In contrast to these methods, colloidal SprayLD sputtering technology of QDs allows creating 

solar cells with efficiency values of 8.1% [3] on the commercial scale. The authors have developed 

a fully automated system based on sputtering and depositing QDs with an average size of 20 nm on 

specially prepared substrates. Rational use of colloidal QDs is caused by several facts. Firstly, 

colloidal QDs are precipitated from a liquid medium in which they remain stable for a long time, 

and thus are suitable for inexpensive large-scale production, and, secondly, because QDs are 

produced SprayLD under controlled growth conditions, it greatly simplifies the morphological and 

chemical control in subsequent coating processes. However, it requires careful control of spray 

characteristics. The schematic of a colloidal QD spraying tool is presented in Figure 2.14. 
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Figure 2.12 – а) Full setup of layer-by-layer spray deposition. Stage 1 involves the fine mist 

spraying of colloidal QDs. Stages 2 and 3 use commercial air brushes to spray MPA diluted in 

methanol and pure methanol, respectively. In stage 4, an air blade applies a curtain of high pressure 

compressed dry air to aid in drying the solvent; b) A time-lapse series of photos of a square fl 

uorine-doped tin oxide coated glass substrate as it is sprayed with the number of sprayLD layers and             

c) a photograph of a sprayLD sample with 166.7 mm
2
 devices. [3] 

 

A complete cycle of SprayLD method consists of the following steps: 

1)   Synthesis of PbS QDs with the participation of CdCl2. 

2)   Preparation of the substrate to be sprayed. 

3)   Spraying and depositing QDs on the substrate. 

4)   Analysis of the main characteristics of the sample. 

To analyze the resulting structures the atomic force microscopy (AFM) is used, as well as a 

number of photovoltaic measurements performed to make sure the high quality of the sample. 

As can be seen from the comparative analysis of spraying QDs via SprayLD method and with spin-

coating methods gives more durable and smooth films. A more detailed analysis of the samples is 

presented in reference [3]. 

Thus, the method of spraying colloidal QDs with the SprayLD technology is a successful 

example in the production of the third generation solar cells due to low cost and simplicity, which 

can be used on the industrial scale. 

а                                                          

c                                                        

b                                                         
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Figure 2.13 - a) Top and angled views of spin-cast films and sprayLD films obtained using 

AFM, b) minority carrier diffusion length measurements of spin-coated and sprayLD films and          

c) electroluminescence measurements of spin-coated and sprayLD films. [3] 

 

  

2.9  Conclusions 

 

       As a result of analytical review of publications of foreign and domestic literature devoted to the 

synthesis of colloidal QDs and their application in solar power engineering, we can draw the 

following conclusions. 

1)  One of the most successful chemical synthesis methods of monodisperse solutions of colloidal 

QDs enabling to obtain high quality QDs is the hot injection method [15], the advantages of which 

include low temperature of synthesis and the ability to control the growth with the basic parameters. 

2)  Colloidal QDs are promising objects for a wide range of applications, among which solar power 

engineering occupies a special place. Samples of the third generation solar cells based on colloidal 

QDs have reached the efficiency of 8-9% [3 and 29] at the low production cost and simplicity of 

manufacture compared with silicon elements in a very short time. 

3)  One example of a successful solar panel technology is SprayLD method [3], developed in 2014, 

and based on spraying lead sulphide QDs. Its advantages include simplicity, applicability on the 

industrial scale, low cost and the possibility of creating solar cells of a large area and of different 

shapes. 

 

 

 

 

 

 

а                                                          b                                                          c                                                          
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3. Methodology  

 

3.1  Samples with colloidal PbS QDs  

 

To observe the efficiency of energy transfer via FRET mechanism we used non-enveloped PbS 

QDs synthesized by the hot injection method in this work. Within this method Pb-precursors are 

lead salts and organic acids and S-reagents are sulfur complexes oleylamine and the reaction 

medium being a mixture of octadecene, oleylamine and trioctylphosphine oxide. All reactions 

proceed under an argon atmosphere at the temperature of 150-300
 о
С. 

QD size in the solution is determined by the average value of the diameter of the nuclei is a 

parameter that determines the area of optical transitions in quantum dots. To transfer energy in the 

near-IR spectral region, two QD solutions of lead sulphide of different diameters with absorption 

peaks in the range of 900 to 1700 nm have been chosen. The solvent is carbon tetrachloride (CCl4) 

because of the lack of their own absorption band in the considered spectral range in contrast to other 

solvents used when working with PbS QDs. Apart from the size and position of the absorption and 

luminescence peaks, it is important to consider the value of QD concentration in the used solvent as 

well as their quantum fluorescence yield. 

On the basis of two stock solutions of PbS QDs of different sizes two types of samples were 

prepared: the first is QDs introduced in a porous matrix and the second is QDs inflicted on the glass 

surface. 

 

3.2 Research methods 

 

Measurements of the samples were carried out by optical spectroscopy including the absorption 

and luminescence spectroscopy in this work. Methods of absorption spectroscopy allow studying 

both the energy structure and absorbing capacity of samples as well as determining the 

concentration of nanocrystals in colloidal solutions, which cannot be obtained by a direct 

measurement. In this regard, the following algorithm is used to calculate the values of colloidal QD 

concentrations in solutions: 

1)  We have recorded the absorption spectrum of the studied QD solution, representing dependency 

of the density of states D  on the wavelength  . 

2)  From the absorption spectrum we have obtained the wavelength corresponding to the first QDs 

exciton absorption peak and the value of optical density in this peak. 
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3)  We have calculated the average diameter of QDs in the solution using a semi-empirical formula, 

depending on the wavelength value at the maximum of absorbance. 

4)  We have calculated extinction coefficient based on the QD type in the solution, using an 

appropriate empirical formula connecting the extinction coefficient and QD radius. 

5)   Substituting the value of the extinction coefficient and the value of the optical density in the 

first exciton absorption peak under Beer–Lambert–Bouguer law, we have calculated the 

concentration of semiconductor nanocrystals in the colloid solution. 

                               0

ClI I e  , 
0lg

I
D Cl

I


 
  

 
               

D

Cl
                                       (10) 

where D  is optical density, С  is the molar concentration,  is the extinction coefficient (absorption 

coefficient) of the solution and l  is the optical path length (cuvette thickness). 

      In turn, the fluorescent spectroscopy is a universal non-destructive method for studying the 

properties of the electron subsystem of colloidal QDs. It is characterized by high sensitivity and the 

ability to analyze objects placed on the opaque substrates, as in the case of samples with PbS QDs 

in the porous matrix. 

Thus, optical methods such as fluorescent and absorption spectrometry are potent and 

indispensable tools for the study of monodisperse colloidal QDs. 

       For a more complete analysis of the energy transfer process between PbS QD in the studied 

samples we have measured QDs luminescence decay times. The decay time of the PL represents the 

average time during which the QD system is in an excited state. 

 

 

3.3  Stationary measurements 

 

3.3.1 Absorption spectra 

 

In this work, to record absorption spectra of the samples we use Shimadzu UV-3600 

spectrophotometer designed to work over a wide spectral range from UV to the near infrared range 

(185 nm to 3300 nm). UV-3600 Spectrophotometer has both preliminary and main 

monochromators, each of which contains two gratings, two radiation sources and three detectors: a 

photomultiplier and two semiconductor detectors of InGaAs and PbS. The high sensitivity of the 

system in combination with a broad spectral range and different modes of operation allow 
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characterizing with a high degree of accuracy samples based on QDs. Figure 3.1 shows the optical 

scheme of the tool. 

 

Figure 3.1 - Optical scheme of a spectrophotometer of the UV-3600 series [34]. 

D2 is the deuterium lamp; WI is the halogen lamp; F is the filter; G is the diffraction grids;        

S1 is the entrance slot; S2 is the output slot; W is the window-plates; M1-M5 are the mirrors;    

M3 is the half-mirror; L are the lens; Ref is the comparing channel; Sam is the sample channel   

and PD is the photodiode. 

 

The spectra were recorded in the 800 nm to 2000 nm wavelength range with spectral resolution 

0,1 nm. Table 3.1 presents the main technical characteristics of the UV-3600 spectrophotometer. 

 

Table 3.1 - Technical specifications of Shimadzu UV- 3600 spectrophotometer  

Spectral range: 185 nm – 3300 nm 

 

Monochromator:  

Czerny-Turner with the correction of aberrations; 

diffraction grids: 

1200 lines / mm 

1000 lines / mm 

 

Maximum spectral resolution: 

 

0.1 nm 

Optical scheme: Double beam 

Wavelength setting tolerance: ±0.2 nm 

Wavelength setting repeatability: ±0.08 nm 

Measuring range of optical 

densities: 
-6 to 6 
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The maximum noise level: 

500 nm 

900 nm 

1500 nm 

 

0.00005 

0.00008 

0.00003 

Baseline correction: Automatic, retentive, Re-writable baseline 

Excitation source: 
50 W halogen lamp, deuterium lamp; built-in automatic 

positioning of lamps in accordance with the test range 

Radiation receiver (for the visible 

spectrum): 
Photomultiplier “ФЭУ R928’ 

 

 

3.3.2 Luminescence spectra 

 

Studies of PL spectra in the near infrared range are carried out on the original pilot plant, the 

use of which is conditioned by the lack of commercial equipment meeting the highest requirements 

used to precision fluorescent measurements [35]. Figure 3.2 shows the installation diagram. 

This experimental facility is built on an Acton SP-2558 monochromator with an aperture of 

f/6.5, a focal length of 500 mm and a diffraction grating of 150 lines / mm. With the minimum slot 

width the spectral resolution is 0.4 nm. As the excitation source we use a helium-neon laser and a 

solid-state laser with wavelengths of 633 nm and 532 nm and a maximum power of 15 mW. A more 

detailed description of the main functional components of the experimental installation is in the 

operation manual [34], and the description of the tool calibration can be found in [36]. 

 

 

Figure 3.2 - Functional diagram of the used PL measurement setup [34].                                     

L532, L633 are lasers (with a wavelength of 532 nm and 633 nm, respectively); L1 is the lens that 

focuses the laser radiation (f = 10 cm); K is the sample holder; L2, L3 are lens collecting and 
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focusing PL radiation (f = 25 mm and 15 cm, respectively); M is the monochromator;                     

RM is the reclining mirror; PD is the photodiode; VA – voltage amplifier;                                          

IM – signal digitizing interface module and PC is the personal computer. 

 

 

 

3.4  Dynamic measurements 

 

 Dynamic measurements are carried out on a setup using 90° angle between excitation and 

detection, which allows researching both the QDs solutions in the cuvette, and the QDs on surfaces 

and in thin porous matrices. Functional diagram of the installation for dynamic measurement is 

shown in Figure 3.3. 

A solid-state pulsed laser of the model DTL-399QT model capable of generating laser radiation 

at three wavelengths (351 nm, 527 nm and 1053 nm) serves as a source of excitation. In the work 

we use laser radiation with a wavelength of 527 nm, and radiation at other wavelengths was blocked 

by glass filters. The pulse duration is 10 ns at a repetition rate of 4 kHz, which is set by Metex 

MXG-9810A, an external pulse generator. Femto HCA-S-200M-IN, a high-speed photodetector 

with an integrated InGaAs photodiode with a sensitive area diameter of 0.3 mm and sensitive in    

0,9 µm - 1,75 µm is used as a receiver of optical radiation. Additional amplification is provided by 

Stanford Research SR455A, a radiofrequency amplifier with a bandwidth of 350 MHz. Registering 

an amplified signal is carried out by PicoScope 3206A oscilloscope with a bandwidth of 200 MHz 

and a sampling frequency of 500 million samples per second [37]. The time resolution of this 

installation is 3 ns and mainly determined by the amplifier’s speed with a built-in photodiode. 

 

 



 

30 

 

 

 

Figure 3.3 - Functional diagram of the setup for the dynamic analysis of the luminescence of 

nanostructures in the near infrared region of the spectrum [34]. 

L527 is the pulse laser; CU is the laser control unit, PG is the external pulse generator; M is the  

mirror; OSC is the oscilloscope; PC is the personal computer; L1- L4 are lens;                             

VA is the voltage amplifier; PD is the photodiode; F1,2 are filters that block the excitation 

radiation and K is the cuvette / sample. 
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4. Results and discussion 

 

4.1  Characteristics of PbS QDs in solutions of different sizes 

 

Lead sulphide QDs of various sizes are prepared as solutions in CCl4 with a concentration of 

QDs is about 10
-6

 Mole/cm
-3

. For all of the prepared solutions absorption spectra are recorded on 

Shimadzu UV-3600 spectrophotometer, the description of which is in Section 3.3.1 and PL spectra 

are measured on the original setup described in Section 3.3.2. PL decay times in colloidal solutions 

are measured with the setup described in Section 3.4. 

Based on the data obtained from the absorption spectra we have calculated average diameters 

of the QDs using the semi-empirical formula [38]. 

                       
10 3 6 2 37,2 10 1,7 10 5,57 10 0,9avd                                                    (11) 

where   is the wavelength corresponding to the center of the first interband transition in the 

absorption spectrum. The parameters characterizing PbS QDs in colloidal solutions are presented in 

Table 4.1, and the absorption and luminescence spectra and PL decay curves measured at room 

temperature are shown in Figures 4.1-4.6. 

 

Table 4.1 - Characteristics of QDs in colloidal solutions. 

 № Title Diameter, nm  Max abs, nm Max. lum nm t, ms 

1 PbS_925 3.6 955 1050 1.76 

2 PbS_1060 4.3 1110 1175 1.28 

3 PbS_1115 4.4 1120 1205 1.50 

4 PbS_1180 4.6 1180 1270 1.62 

5 PbS_1380 5.5 1355 1130, 1410 1.34 

6 PbS_1640 6.9 1605 1615 0.67 
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Figure 4.1 - a) Absorption and PL spectra and b) the PL decay curve for the sample PbS_925. 

 

 

 

 

 

Figure 4.2 - a) Absorption and PL spectra and b) the PL decay curve for the sample PbS_1060. 
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Figure 4.3 - a) Absorption and PL spectra and b) the PL decay curve for the sample PbS_1115. 

 

 

 

 

 

Figure 4.4 - a) Absorption and PL spectra and b) the PL decay curve for the sample PbS_1180. 
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                           a                                                                        b 

 

Figure 4.5 - a) Absorption and PL spectra and b) the PL decay curve for the sample PbS_1380. 

 

 

 

 

 

 

 

 

 

 

 

 

                            a                                                                        b 

Figure 4.6 - a) Absorption and PL spectra and b) the PL decay curve for the sample PbS_1640.
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The measured lifetimes of lead sulphide QDs are in the range from 0.67 µs to 1.76 µs which is 

much higher than the value predicted by the theory. Furthermore, there is an abnormal dependence, 

which is expressed in a decrease of the luminescence lifetime of QDs with their size increasing. 
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Figure 4.7 - The size dependence of the PL lifetime of PbS QDs. 

 

Figure 4.8 shows the dependence of the maximum luminescence position on the QDs size, 

which shows a linear increase in the PL peak wavelength with the QDs size. 
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Figure 4.8 - Size dependence of the maximum PL peak position of PbS QDs. 
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4.2  Selecting a QD pair and preparing samples for research  

 

  To monitor the energy transfer via the FRET mechanism between lead sulphide QDs of 

different sizes as energy donors colloidal solutions with QDs of the smallest size with a diameter of 

3.6 nm and the absorption peak at 955 nm are selected, and as the energy acceptor QDs with a 

diameter of 4,6 nm and the absorption peak at 1180 nm. The smaller type of QDs is designated as 

QD1 and the larger ones as QD2. 

 

 

Figure 4.9 - Normalized absorption and PL spectra of the QD types QD1 and QD2. 

 

From the overlap of the QD1 luminescence spectrum and the QD2 absorption spectrum we can 

conclude that the first condition required for effective monitoring of energy transfer via FRET 

mechanism is completed, in contrast to the second condition related to the distance between the 

donor points and the acceptor points. As QDs are in the colloidal solution, it is obvious that the 

distance between them will be significantly larger than the value of Förster radius. Ultimately, this 

will lead to a significant lack of energy transfer between QDs in a colloidal solution. Therefore, it 

was decided to prepare such samples using QD1 and QD2 colloidal solutions in which the distance 

between QDs would not be greater than the value of Förster radius. 

To prepare the samples, we used two QD1 colloidal solutions with a concentration of 7.1*10
-6

 

ppm and QD2 with a concentration of 3.8*10
-6

 ppm as well as a mixed solution containing two 

kinds of QDs. 
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Samples of the first type were PbS QDs on the glass surface, which were prepared by layering 

the QDs solutions on glasses which were purified by CCl4. Each sample had at least six layers and 

each subsequent layer applied after drying of the previous. 

Samples of the second-type were PbS QDs introduced in a porous matrix in which a filter paper 

with a thickness of 0.14 mm was used. To produce QD samples in porous matrix the filter paper 

was put in the QD solution for one minute and after drying was attached onto a glass slide. Figure 

4.10 shows photographs of all the samples. 

 

Figure 4.10 - Samples with PbS QDs and the paper structure photo with embedded QDs [39]. 

 

Table 4.2 demonstrates the structure of prepared samples with QDs.  

 

Table 4.2 - Test samples. 

Sample 
QD in solution QD on the glass surface QD in a porous matrix 

1 2 12 1 2 12 1 2 12 

QD1 +  + +  + +  + 

QD2  + +  + +  + + 

 

 

4.3  Energy transfer in the PbS QD system  

 

The efficiency of energy transfer in the system of densely packed QDs can be estimated, first, 

according to the extent of quenching of PL of donors using the following formula. 

                                                                  1 DA

D

E



                                                                (12) 

where DA  is the donor lifetime in the presence of the acceptor  and D is the donor lifetime in a 

pure sample. And, secondly, it is done according to the PL quenching of the donor-points in a 

mixed sample, i.e., by calculating the ratio 
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                                                                     DA

D

I
n

I
                                                                         (13) 

 where DAI  is the donor luminescence intensity in the presence of acceptors and DI  is the donor 

luminescence intensity without the acceptors. 

 

4.3.1 PL spectra 

 

The luminescence spectra of samples with QDs with their approximation under Gaussian 

function are shown in Figures 4.11 - 4.13. This approximation cannot be considered optimal, but it 

allows us to approximately estimate the maximum intensity of individual luminescence bands.  

 

Figure 4.11 – PL spectrum for QD donors in a porous matrix with Gaussian function 

approximation. 

 

 

 

Figure 4.12 – The PL spectrum for QD acceptors in a porous matrix with Gaussian function 

approximation. 
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Figure 4.13 – PL spectrum for QDs in a mixed sample matrix with Gaussian function 

approximation. 

 

Table 4.3 - The amplitude of the signal from various PL bands in individual samples and mixtures. 

QD /sample 

In absolute units, mV In relative units 

Sam_1 Sam_2 Sam_12 Sam_12 

QD1 9790  5410 1,8 ↓ 

QD2  3955 8495 2,1 ↑ 

 

Table 4.3 shows that the energy transfer in a system of densely packed QDs in the porous 

matrix is accompanied by donor quenching by 1.8 times during flare-up of PL acceptors in  2.1 

times. 

 

4.3.2 PL decay times 

 

Decay time is recorded by allocating narrow spectral bands with the width of 40 nm using 

tunable filters collected on the short-focus monochromator [37]. The central wavelength for 

recording the PL signal from QD samples is chosen in accordance with the position of their PL 

peaks and is either 1050 nm or 1270 nm. The PL decay time of the mixed sample is measured 

similarly for each of the two luminescence bands. 

The PL decay curves for the QD on the glass surface and in the porous matrix are recorded at 

room temperature. The measurement results are presented in Figures 4.14 - 4.15 and in Tables 4.4 - 

4.5. 
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Figure 4.14 - PL decay curves of PbS QDs on the glass surface at room temperature. 

 

 

Table 4.4 - The PL decay times of QDs on the glass surface. 

Curve А1 t1 А2 t2 t, ns 

Sam. 1 0,46 465,4 0,52 99,4 394 

Sam. 12 (1050) 0,36 315,7 0,66 81,0 240 

Sam. 2 0,14 124,4 0,92 27,2 67 

Sam. 12 (1270) 0,56 453,4 0,42 70,9 413 

 

Now consider the decay curves for QDs in the porous matrix.  
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Figure 4.15 - PL decay curves of PbS QDs in the porous matrix at room temperature 

 

Table 4.5 - The PL decay times of QDs in the porous matrix 

Curve А1 t1 А2 t2 А3 t3 t, ns 

Sam.1 0.46 89.6 0.47 586.4 - - 520 

Sam.12 (1050) 0.36 461.7 0.59 79.5 - - 377 

Sam.2 0.66 25.1 0.30 204.2 - - 166 

Sam.12 (1270) 0.48 14.4 0.42 855 0.10 450.3 265 

 

 

 

4.3.3 Energy transfer at decreased temperature 

 

PL spectra are measured for the mixed sample in the porous matrix and shown in Figure 4.16 

the PL spectra show that at decreased temperature the PL peaks are shifted to a longer wavelength 

area for both QD1 and QD2 types. Moreover, PL quenching is observed for QDs of a smaller size 

together with a displacement at decreasing temperature. 
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Figure 4.16 - PL spectrum for QDs in the porous matrix at three temperatures. 

 

For a more complete analysis of the energy transfer process between QDs in the porous matrix 

decay times were measured at liquid nitrogen temperature. Samples with QDs were placed in a 

cryostat connected with the Dewar's vessel with liquid nitrogen, the sample temperature was kept 

constant at 77 K. 
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Figure 4.17 - PL decay curves of PbS QDs in the porous matrix at 77 K. 

 

Table 4.6 contains the values of PL lifetimes with coefficients derived from the two-

exponential function approximation:  
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where PL is the decay times being calculated by the following formula 
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                                                                 (15) 

where A1, A2 are the positive coefficients, t1, t2 are the time components. 

 

Table 4.6 - PL decay times of QDs in the porous matrix at 77 K. 

Curve А1 t1 А2 t2 t, ns 

Sam. 1 0.482 266.3 0.401 1420.5 791 

Sam. 12 (1050) 0.351 640.7 0.433 116.6 351 

Sam. 2 0.695 47.3 0.283 303.1 121 

Sam. 12 (1270) 0.393 454.2 0.518 1547.5 1076 

 

At the temperature of 77 K, the lifetime decreases of QD donors in the mixture is about 2 times, 

which indicates that the presence of energy transfer in the system. In addition, increase the lifetime 

of QD acceptors is almost 9 times.  
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                                                                b 

 

                                                                 c 

Figure 4.18 - PL decay curves for donors and acceptors in the porous matrix a) at room 

temperature, b) at the temperature of 175 K and c) at the temperature of 77 K. 

 

4.4  Increase of the acceptor lifetime on the glass surface and in the porous matrix 

 

Both at room temperature and at the temperatures of 77 K and 175 K a sharp increase in the 

lifetime of the acceptors is observed for both QDs in the porous matrix and QDs on the glass 

surface. This effect, in contrast to the effect of reducing the lifetime of the donors is not typical 

and deserves special consideration. An increase of the acceptor lifetime was observed from 67 ns 

to 413 ns for QDs on the glass surface at room temperature, and for QDs in the porous matrix 

from 166 ns to 265 ns. At the temperature of 77 K decay time of acceptors in the porous matrix 

increased from 121 ns to 1076 ns. 

500 1000 1500 2000

0,0

0,2

0,4

0,6

0,8

1,0  175K_1050nm

 175K_1270nm

P
L

 I
n

te
n

s
it
y
(

n
o

rm
. 
)

Time(ns )

1000 2000 3000

0,0

0,2

0,4

0,6

0,8

1,0

 77K_1050нм

 77K_1270нм

P
L

 I
n

te
n

s
it
y
(

n
o

rm
. 
)

Time(ns )



 

45 

 

It is worth noting that in the case of QDs inflicted on the glass surface, and for QDs in the 

porous matrix at 77 K two exponents were enough to approximate the decay curves, i.e., they are 

described by the function 

                                       0 1 2

1 2

exp exp
t t

PL A A A
t t

   
       

   
                                           (16) 

which goes well with the existing theoretical model. While for the QDs in the porous matrix at 

room temperature, only three decay curves could be approximated by two-exponential function, 

and for a curve describing luminescence of QDs acceptors, the best approximation is achieved by 

a three-exponential function 

                              0 1 2 3

1 2 3

exp exp exp
t t t

PL A A A A
t t t

    
          

     
                                   (17) 

 

 

Table 4.7 - Comparison of approximations for QDs mixture in the porous matrix.  
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  Value of Standard Error 

C y0 0,00652 4,11855E-4 

C A1 0,66145 0,00915 

C t1 25,07738 0,68715 

C A2 0,30112 0,00755 

C t2 204,15865 4,89443 

  Value of  Standard Error 

C y0 0,00367 5,07241E-4 

C A1 0,48166 0,01852 

C t1 14,39887 0,82676 

C A2 0,42438 0,01487 

C t2 85,48163 5,01285 

C A3 0,09923 0,00998 

C t3 450,30166 35,00609 

                 t =166 ns                    t =265 ns 

 

It is evident that the function containing three exponents provides a better approximation of the 

acceptor decay curve. 

 

4.5  Three-level model 

 

The observed effect of a sharp increase in the acceptor lifetime both for the samples at room 

temperature and for the QDs in the porous matrix at decreased temperatures can be interpreted in 

the framework of the three-level model. This model is based on a complex energy structure of lead 

sulphide QDs, which contains special long-lived states within the band gap. Since these states are 

involved in the energy transfer, PL decay of acceptors is determined by a long donor lifetime. 

 

Figure 4.19 - Diagram of the electronic structure of PbS QDs of different sizes [40], the blue 

dotted arrows illustrate possible ways of energy transfer. 
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PL decay of pure QDs entered into the porous matrix can be approximated by the sum of two 

exponents with slow and fast component 

                                                   
1 2exp exp

long short

t t
PL A A

t t

   
       

  

                                    (18) 

PL decay of acceptors should be described by a sum of four exponents, two of which are 

related to their own acceptor decay, and the other two are associated with the donor decay in the 

presence of the acceptor. However, the fast component of the donor decay should not affect the 

disintegration of the acceptor, so the final formula that describes the decay in the acceptor consists 

of the sum of three summands  

                            
1 2 3exp exp expA

A A D

long short long

t t t
PL A A A

  

    
            

    

                              (19) 

where the last member corresponds to the long component in the donor decay in the presence of 

the acceptor. These three exponents can be initially determined from the corresponding decay 

curves, that is, from the curve for pure donors, pure acceptors and donors in the presence of 

acceptors. 

Thus, the three-level model allows us to explain the effect of a sharp increase in the lifetime 

of the acceptors to the values characteristic of the QD-donors for PbS QDs in the porous matrix. 
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5.    Conclusion 

 

     In this thesis we have studied the process of nonradiative energy transfer via the FRET 

mechanism between lead sulphide QDs with the diameter of 3.6 nm and 4.6 nm in the porous 

matrix and on the glass surface at room temperature and at decreased temperatures. 

For QDs in the porous matrix studied at liquid nitrogen temperature, we have observed 

quenching of donor QDs by 2 times during the flare-up of PL of acceptor QDs by almost 9 times. 

In addition, we have observed a shift of the PL peaks for the two types of QDs when decreasing 

the sample temperature from room temperature to 77
 
K. 

At room temperature for QDs on the glass surface we have detected PL quenching of donors 

by 1.6 times and increase of the acceptor lifetime by 6.1 times. For QDs in the porous matrix we 

have observed PL quenching of donors by 1.8 times and the flare-up of PL of acceptor QDs by 2.1 

times. In contrast to the glass samples, PL of acceptor-dots in the porous matrix is described by 

three exponents. The need for an additional exponent in the approximation has been explained in 

the framework of the three-level model, which considers the specific long-lived states of donor 

QDs from which the energy is transferred to the acceptor QDs. 

Thus, we have found out a significant PL slowdown both in the samples with QDs inflicted in 

the porous matrix and in the samples with QDs on the glass surface, as well as a sharp increase in 

the PL of acceptor QDs. The observed effect of increasing the lifetime of the lower electronic 

states of QD system can lead to a significant change in the dynamic characteristics of the charge 

carriers in the third generation solar cells, for example, based on QD spray technology applied on 

various surfaces. 
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