
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Cesar Pereida Garcia

Cache-Timing Techniques:

Exploiting the DSA Algorithm

Master’s Thesis
Espoo, June 30, 2016

Supervisors: Prof. N. Asokan, Aalto University
Prof. Dominique Unruh, University of Tartu

Advisor: Prof. Billy Bob Brumley, Tampere University of Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80720419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Cesar Pereida Garcia

Title:
Cache-Timing Techniques: Exploiting the DSA Algorithm

Date: June 30, 2016 Pages: viii + 70

Major: Security and Mobile Computing Code: T-110

Supervisors: Professor N. Asokan
Professor Dominique Unruh

Advisor: Professor Billy Bob Brumley

Side-channel information is any type of information leaked through unexpected
channels due to physical features of a system dealing with data. The memory
cache can be used as a side-channel, leakage and exploitation of side-channel
information from the executing processes is possible, leading to the recovery of
secret information. Cache-based side-channel attacks represent a serious threat to
implementations of several cryptographic primitives, especially in shared libraries.

This work explains some of the cache-timing techniques commonly used to exploit
vulnerable software. Using a particular combination of techniques and exploiting
a vulnerability found in the implementation of the DSA signature scheme in the
OpenSSL shared library, a cache-timing attack is performed against the DSA’s
sliding window exponentiation algorithm.

Moreover, the attack is expanded to show that it is possible to perform cache-
timing attacks against protocols relying on the DSA signature scheme. SSH and
TLS are attacked, leading to a key-recovery attack: 260 SSH-2 handshakes to
extract a 1024/160-bit DSA hostkey from an OpenSSH server, and 580 TLS 1.2
handshakes to extract a 2048/256-bit DSA key from an stunnel server.

Keywords: applied cryptography; digital signatures; side-channel analy-
sis; timing attacks; cache-timing attacks; DSA; OpenSSL

Language: English

ii

Acknowledgements

This work was supported by TEKES as part of the Cyber Trust program of
DIGILE (the Finnish Strategic Center for Science, Technology and Innova-
tion in the field of ICT and digital business).

The present thesis work has been carried out during the spring semester of
2016 at the Security System Group of Aalto University, Finland as part of the
Erasmus Mundus Master’s Programme in Security and Mobile Computing
(NordSecMob). The thesis is presented at Department of Computer Science,
Aalto University Finland, and Institute of Computer Science at University
of Tartu (UT) Estonia.

The thesis work was conducted by the author under the guidance and
collaboration of Dr. Billy Bob Brumley (Tampere University of Technology),
under the supervision of Dr. N. Asokan (Aalto University), Dr. Dominique
Unruh (University of Tartu) and in collaboration with Dr. Yuval Yarom
(University of Adelaide).

Firstly, I would like to extend my dearest gratitude to Billy and Asokan for
their guidance, collaboration, patience, support and time during the thesis.
I would also like to thank Yuval for providing his mathematical expertise
and collaborating with me. And I would like to thank Dr. Dominique for
the support to extend the submission deadline and the feedback provided
allowing me to improve the quality of this work.

Secondly, I would like to thank all my dearest friends, colleagues, peers
and my study coordinator Aino. All of them motivated me and supported
me to complete this work.

A special thanks goes to my two families: my Mexican family for all
the moral support, love and motivation through my whole life; my Estonian
family for a place of rest, growth and reflection.

Espoo, June 30, 2016

Cesar Pereida Garcia

iii

Abbreviations and Acronyms

AES Advanced Encryption Standard
AMD Advanced Micro Devices
API Application Programming Interface
ARM Advanced RISC Machines
ASLR Address Space Layout Randomization
BDD Basic Bounded Decoding
BIGNUM Arbitrary-Precision data structure
CDH Computational Diffie-Hellman
CPU Central Processing Unit
CVE Common Vulnerabilities and Exposures
CVP Closest Vector Problem
DER Distinguished Encoding Rules
DES Data Encryption Standard
DL Discrete Logarithm
DDH Decisional Diffie-Hellman
DH Diffie-Hellman key exchange
DOS Denial of Service
DSA Digital Signature Algorithm
dcache data cache
ECDSA Elliptic Curve Digital Signature Algorithm
ECC Elliptic Curve Cryptography
EM Electromagnetic
GF Galois Field
GMR Goldwasser, Micali and Rivest
HMM Hidden Markov Model
HNP Hidden Number Problem
IP Internet Protocol
icache instruction cache
KB Kilobyte, 1024 bytes
KEX Key Exchange

iv

L1 First Level Cache
L2 Second Level Cache
LFU Least Frequently Used
LLC Last Level Cache
LRU Least Recently Used
LSB Least Significant Bit
MAC Message Authentication Code
MRU Most Recently Used
MSB Most Significant Bit
NAF Non-Adjacent Form
NP Nearest Plane
RSA Rivest, Shamir and Adleman public key cryptosystem
SHA-1 Secure Hash Algorithm 1
SHA-256 Secure Hash Algorithm 2, 256 bits variant
SHA-512 Secure Hash Algorithm 2, 512 bits variant
SM Square and Multiply
SMT Simultaneous Multi-Threading
SSH Secure Shell
SWE Sliding Window Exponentiation
TCP Transmission Control Protocol
TLS Transport Layer Security
VQ Vector Quantization
X11 X Window System

v

Contents

Abbreviations and Acronyms iv

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3
1.3 Contributions . 3
1.4 Structure of the Thesis . 4

2 Background 5
2.1 Digital Signature Schemes . 5

2.1.1 Domain Parameters . 6
2.2 Discrete Logarithm Problem and Related Problems 7

2.2.1 Computational Diffie-Hellman Assumption 7
2.2.2 Decisional Diffie-Hellman problem. 8

2.3 The Digital Signature Algorithm (DSA) 8
2.3.1 DSA Parameters . 8
2.3.2 DSA Private-Public Key Pairs 8
2.3.3 Signing . 8
2.3.4 Verifying . 9
2.3.5 DSA in Practice . 9

2.4 DSA’s Sliding Window Exponentiation 12
2.5 Protocols . 13

2.5.1 SSH . 14
2.5.2 TLS . 15

2.6 Memory Hierarchy . 16
2.6.1 Cache architecture . 16
2.6.2 Cache Replacement Policies 18
2.6.3 Address Space Layout Randomization 19

2.7 Covert Channels . 19
2.7.1 Memory Cache as a Covert Channel 20

2.8 Cryptographic Attacks . 20

vi

2.8.1 Implementation Attacks 20
2.8.2 Side-Channel Attacks 21

3 Cache-Timing Attacks 22
3.1 Cache-Timing Techniques . 23

3.1.1 The Evict+Time Technique 23
3.1.2 The Prime+Probe Technique 24
3.1.3 The Flush+Reload Technique 25
3.1.4 The Spy Process . 27
3.1.5 Performance Degradation Technique 29
3.1.6 The Degrading Process 30

3.2 Partial key disclosure . 31
3.2.1 The Hidden Number Problem 31
3.2.2 Lattice attack . 32

3.3 Cache-Timing Data Processing 33
3.3.1 Vector Quantization 33
3.3.2 Hidden Markov Models 33
3.3.3 Cache-Timing Data Analysis for DSA 34

4 Related Work 36

5 Implementation 38
5.1 A New Software Defect . 38
5.2 Exploiting the Defect . 42
5.3 Victimizing Applications . 45

5.3.1 Attacking TLS . 45
5.3.2 Attacking SSH . 47
5.3.3 Observations . 48

5.4 Recovering the private key . 50
5.4.1 Extracting the least significant bits 50
5.4.2 Lattice attack implementation 51

6 Results 54

7 Discussion 56
7.1 Challenges . 56
7.2 Mitigation . 57
7.3 Disclosure of the Attack . 58

8 Conclusions 60
8.1 Future work . 61

vii

A First appendix 67

viii

Chapter 1

Introduction

Often there is a big gap between theoretical and applied cryptography due
to the problems of translating the theoretical security proofs to real world
software and hardware implementations. On one hand, theorists define and
prove in paper the strong security of cryptographic primitives and proto-
cols. On the other hand, engineers have to implement cryptography that is
strongly secure and efficient at the same time. Unfortunately, it is hard to
find middle ground where strong security of actual implementations can be
proved.

In order for cryptographic primitives to be standardized, they must prove
strong theoretical security and resistance to known cryptanalytic techniques
such as linear and differential cryptanalysis, but as it is in the world of
cryptography, theoretical security is based on the assumptions about the
power and abilities that an adversary has. These abilities are, at least in
paper, powerful enough to cover a strong adversary. Unfortunately when the
cryptographic primitives are implemented in software, the adversaries acquire
new and unexpected abilities that were never considered from a theoretical
perspective.

Cryptanalysis is one important branch in cryptology, which is the science
of analyzing and breaking cryptographic primitives and protocols. Tradi-
tional cryptanalytic techniques try to break the security of primitives and
protocols by studying them from a purely mathematical point of view, iso-
lated from the system in which they are implemented and executed. However,
it is far from being a complete approach since the systems where cryptogra-
phy is executed plays an important role to determine its security.

Cryptographic primitives are built, most of the time, using well known
components that are easy to implement or using predefined instructions tai-
lored specifically for the microprocessors in which they are running. The
fact that cryptographic primitives depend on multiple layers and components

1

CHAPTER 1. INTRODUCTION 2

makes it hard to guarantee the security of the software implementations and
often this leads to serious vulnerabilities. The analysis of the information
leaked from the software and hardware components is called side-channel
analysis.

Side-channel analysis is a cryptanalytic technique born from practice.
Original side-channel timing analysis, and the most well known technique in
this area, was first discussed by Kocher [30] back in 1996. This technique un-
derstands and derives private information from the side-channel information
collected from physical power analysis. The main goal of side-channel attacks
is to obtain complete or partial information of the internal state of a system
by measuring and analyzing physical properties—e.g. power consumption,
time, electromagnetic radiation, acoustic emanation and temperature varia-
tion.

A type of side-channel analysis focused on software implementations, is
timing attacks. Timing attacks exploit timing information leaked from soft-
ware implementations that do not run in constant time, thus by measuring
the time it takes for an algorithm to complete, an attacker can deduce infor-
mation that otherwise should be secret.

The main topic of this thesis is a specific type of timing attack that ex-
ploits the caching components commonly found in modern microprocessors.
Cache-timing attacks exploit the availability of data in the cache, then the
information is correlated to the running cryptographic algorithm to finally
achieve secret key recovery.

1.1 Motivation

Digital signatures are essential for data authentication, thus attacking this
cryptographic primitive allows malicious parties to authenticate any data
they want. Digital signatures are a cryptographic building block and side-
channel resistant algorithms must be used to ensure the security and authen-
tication of the communications in the Internet.

The work presented here is motivated by the ongoing and young field of
research trying to exploit leakage of side-channel information to mount key
recovery attacks against hardware and software implementations of crypto-
graphic primitives.

Side-channel information leakage is hard to detect by software developers
as it requires a high level of expertise about the techniques and the system
hardware underneath. Additionally, tests used to discover or detect side-
channel information leakage are not part of the standard developer practices
and therefore is hard to detect these types of vulnerabilities. Nevertheless,

CHAPTER 1. INTRODUCTION 3

side-channel attacks represent a serious and immediate threat to the security
of Internet.

Moreover, using well known open source and audited cryptographic li-
braries is a two-edged sword — as it is shown in this work. On one hand,
vulnerabilities are reduced by having many people auditing the code. On the
other hand if a vulnerability is found, it affects all the software depending
on that library.

1.2 Goals

This thesis work focuses in detailing current cache-timing techniques used to
exploit software implementations of cryptographic primitives.

Moreover, the work presented here serves the following purposes:

• To summarize the categorization of implementation attacks and define
side-channel attacks.

• To define cache-timing attacks and explain current techniques used to
exploit this type of attack.

• To show what small defects in software implementing cryptographic
primitives can do to the security of communications.

• To demonstrate that cache-timing attacks are practical and they rep-
resent a real threat for the Internet users.

The ultimate goal is to demonstrate that software implementation of
constant-time cryptographic primitives is not a trivial task to do and small
software defects may introduce serious vulnerabilities that might go unno-
ticed for very long periods of time.

1.3 Contributions

The work presented in this document started as an overview and analysis
of side-channel attacks and then evolved into a cache-timing attack imple-
mentation, exploiting a software defect in the OpenSSL implementation of
the DSA algorithm. Several sections of Chapter 5 and Chapter 6 presented
here are a collaborative work among researchers at Aalto University, Tam-
pere University of Technology and University of Adelaide. Therefore, the
wording in those chapters is switched to the plural form. The author of this

CHAPTER 1. INTRODUCTION 4

work made several contributions to the collaborative work, including timing-
measurement process, spy process, protocol client, software fix, responsible
disclosure.

1.4 Structure of the Thesis

The thesis is structured as follows: Chapter 2 presents the background infor-
mation fundamental to understand cache-timing attacks, the topics presented
include cryptography and protocols relevant for this work, the memory hier-
archy, covert channels and categorization of implementation attacks. Chap-
ter 3 goes deeper into cache-timing attacks by explaining some of the tech-
niques used to exploit and analyze cache side-channel information. Chapter 4
discusses related publications relevant to cache-timing attacks and relevant
to this work in general. Chapter 5 demonstrates how a software defect intro-
duced in OpenSSL’s DSA code allowed to exploit both, the DSA algorithm
and the protocols using it. Chapter 6 shows the results of the experiments
performed during this work. Chapter 7 discuses challenges, mitigation tech-
niques, disclosure of the vulnerability and future work. Chapter 8 examines
the outcome and the lessons learned in this work. Appendix A contains
the code provided to OpenSSL, LibreSSL and BoringSSL to fix the software
defect.

Chapter 2

Background

This chapter summarizes the background information, concepts, algorithms
and techniques used during the analysis, development and evaluation of the
present work. Section 2.1 discusses signature schemes. Section 2.2 explains
the discrete logarithm (DL) problem and the assumptions associated to the
problem for digital signature schemes. Section 2.3 explains in detail the
Digital Signature Algorithm (DSA) signature scheme — parameter genera-
tion, key generation, signing and verification. Section 2.4 explains the Sliding
Window Exponentiation (SWE) algorithm used in DSA to compute exponen-
tiations with modular arithmetic. Section 2.5 briefly explains the commu-
nication protocols exploited in this work, detailing the information relevant
for the cache-timing attack. Section 2.6 gives an overview of the memory
hierarchy and additionally, it mentions some features fundamental for un-
derstanding cache-timing attacks. Section 2.7 defines the concept of covert
channels and explains the cache as a covert channel. Finally, Section 2.8
discusses the categorization of cryptographic attacks.

2.1 Digital Signature Schemes

Digital signature schemes are the digital analogue to handwritten signatures
and their main goal is to provide authentication, data integrity and non-
repudiation. In the case of digital communications, an important use of digi-
tal signatures is to provide authentication and integrity of messages between
two communicating parties. Typically, this is done through the use of cryp-
tographic algorithms. Such algorithms use randomness and public-private
key pairs to sign and verify messages.

As in handwritten signatures, the digital signatures should be impossible
to fake if private information of the signature is never revealed — such as

5

CHAPTER 2. BACKGROUND 6

position, grip and color.
A digital signature scheme consists of four algorithms:

• A domain parameter generation algorithm that generates the set D of
required parameters for the scheme.

• A key generation algorithm that takes as input the parameters D and
generates the public-private key pairs (y, α).

• A signature generation algorithm that takes as input the set D, private
key α and message m. Outputs a signature Σ.

• A signature verification algorithm that takes as inputs the set D, public
key y, message m and signature Σ and accepts or rejects the signature.

Assuming the set of parameters D and the public key y are valid, the sig-
nature verification algorithm always accepts if Σ is generated by the signature
generation algorithm using the appropriate parameters.

Ideally, a digital signature scheme must be secure. Security is difficult
to define since it is a function of the goals desired to achieve. Goldwasser,
Micali and Rivest (GMR) [21] offer a strong security definition for digital
signatures, such definition states that a signature scheme is said to be GMR-
secure if it exists an adversary who can obtain digital signatures for messages
of its choice from a signer and still it is unable to forge a signature for any
new message for which it has not already requested previously.

2.1.1 Domain Parameters

Public domain parameters are a set of parameters (p, q, g) associated with a
key-pair and these parameters are used in signature or encryption schemes.
Domain parameters are called public because generally they are shared by
many entities, and depending on the application and implementation, they
may be specific to each entity. The parameters should be, and generally they
are, chosen in a mathematical group where the discrete logarithm problem
and the associated mathematical assumptions are hard to break.

In general, Hankerson et al. [25] [P. 9 Sec 1.2.2] define the parameters as
follows:

• p is a prime integer.

• q is a prime divisor of p− 1.

• g ∈ [1, p− 1] is a generator of order q, where q is the smallest positive
integer satisfying gq = 1 (mod p).

Algorithm 1 shows the procedure to generate correct domain parameters.

CHAPTER 2. BACKGROUND 7

Algorithm 1: DL domain parameter generation

Input: Security parameters l, t.
Result: DL domain parameters (p, q, g)

1 begin
2 p← l-bit prime;
3 q ← t-bit prime such that q divides p− 1
4 h← [1, p− 1]

5 g ← h(p−1)/q mod p
6 while g = 1 do
7 h← [1, p− 1]

8 g ← h(p−1)/q mod p

9 return(p, q, g)

2.2 Discrete Logarithm Problem and Related

Problems

The security of all discrete logarithm (DL) schemes — such as ElGamal and
DSA, is based in the DL problem. The hardness of this number-theoretical
problem has proved to be essential for the security of public-key crypto-
graphic schemes and therefore, allowing secure communications on the Inter-
net.

The DL problem defined over multiplicative cyclic groups states that
given a multiplicative cyclic group G, a generator g of the group and an
element h ∈ G, find the integer α ∈ G such that gα = h. The integer α
is the discrete logarithm of h to the base g, or more commonly defined as
α = logg h.

The hardness of the DL problem provides some level of security for the
cryptographic schemes but it is not sufficient, for that reason, additional
assumptions related to the DL problem are used to prove the security of
different cryptographic schemes.

2.2.1 Computational Diffie-Hellman Assumption

The Computational Diffie-Hellman (CDH) assumption states that for a
cyclic group G of order q, given a triplet (g, ga, gb) for a randomly chosen
generator g and random integers a, b ∈ {0, ..., q − 1} it is computationally
intractable to compute gab.

CHAPTER 2. BACKGROUND 8

2.2.2 Decisional Diffie-Hellman problem.

The Decisional Diffie-Hellman (DDH) assumption states that given two
elements ga, gb for independent uniformly chosen a, b ∈ Zq, the integer gab is
computationally indistinguishable from gc for a randomly and independently
chosen c ∈ Zq.

Choosing the correct security parameters described in Section 2.1.1 pre-
vents known attacks on cryptographic schemes based on the DL problem,
CDH assumption and DDH assumption.

2.3 The Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) is a variant of the ElGamal signa-
ture scheme [19], DSA was first proposed by the U.S. National Institute of
Standards and Technology (NIST). DSA uses the multiplicative group of a
finite field. This work uses the following notation for the DSA.

2.3.1 DSA Parameters

Primes p, q such that q divides (p− 1), a generator g of multiplicative order
q in GF (p) and an approved hash function h — e.g. SHA-1, SHA-256.

2.3.2 DSA Private-Public Key Pairs

The private key α is an integer uniformly chosen such that 0 < α < q and
the corresponding public key y is given by y = gα mod p. Calculating the
private key given the public key requires solving the DL problem and for
correctly chosen parameters, this is an intractable problem.

Algorithm 2 demonstrates the procedure for generating valid DSA key-
pairs. Note that this procedure generates only a key-pair therefore it should
be performed by each of the parties involved.

2.3.3 Signing

A given party, Alice, wants to send a signed message m to Bob — the message
m is not necessarily encrypted. Using her public-private key pair {αA, yA},
Alice performs the Algorithm 3 to sign the message m and attaches the
signature (r, s) to the original message m. At the end Alice sends to Bob
(m, r, s).

CHAPTER 2. BACKGROUND 9

Algorithm 2: Key Generation for DSA

Input: DSA domain parameters (p, q, g).
Result: DSA key pair (α, y)

1 begin
2 α ∈R [1, q − 1] ;
3 y ← gα mod p
4 return(α, y)

Algorithm 3: DSA Signature Generation

Input: Message m, private key αA, domain parameters (p, q, g),
secure hash H.

Result: DSA signature (r, s)

1 begin
2 k ∈R [1, q − 1] ;
3 r ← (gk mod p) mod q ;
4 if r = 0 then
5 goto 1

6 h← H(m);
7 s← k−1(h+ αAr) mod q;
8 if s = 0 then
9 goto 1

10 return(m, r, s)

2.3.4 Verifying

Bob wants to be sure the message m he received comes from Alice — a valid
signature gives a strong evidence of authenticity. Bob performs the procedure
in Algorithm 4 to verify Alice’s signature.

2.3.5 DSA in Practice

Putting it mildly, there is no consensus on key sizes, and furthermore keys
seen in the wild and used in ubiquitous protocols have varying sizes—sometimes
dictated by existing and deployed standards. For example, NIST defines
1024-bit p with 160-bit q as “legacy-use” and 2048-bit p with 256-bit q as
“acceptable” [6]. This two parameter sets are the focus on this work.

CHAPTER 2. BACKGROUND 10

Algorithm 4: DSA Signature Verification

Input: Message m, public key yA, domain parameters (p, q, g), secure
hash H.

Result: Accept or Reject DSA signature.

1 begin
2 if 0 < r < q and 0 < s < q then
3 h← H(m);
4 w ← s−1 mod q;
5 u1 ← hw mod q;
6 u2 ← rw mod q;
7 r′ ← (gu1yu2A mod p) mod q ;
8 if r = r′ then
9 return Accept;

10 else
11 return Reject;

12 else
13 return Reject;

SSH’s Transport Layer Protocol1 lists DSA key type ssh-dss as “re-
quired” and defines r and s as 160-bit integers, implying 160-bit q. In fact,
the OpenSSH tool ssh-keygen defaults to 160-bit q and 1024-bit p for these
key types, not allowing the user to override that option, and using the same
parameters to generate the server’s host key. It is worth noting that recently
as of version 7.0, OpenSSH disables host server DSA keys by a configurable
default option2, but of course this does not affect already deployed solutions.

As a countermeasure to previous timing attacks, OpenSSL’s DSA imple-
mentation pads nonces by adding either q or 2q to k, the padding guarantees
a fixed bit size exponent. The claim is the following

gk = gk+q

= gk+2q

= gkgq

= gkg2q

1https://tools.ietf.org/html/rfc4253
2http://www.openssh.com/legacy.html

https://tools.ietf.org/html/rfc4253
http://www.openssh.com/legacy.html

CHAPTER 2. BACKGROUND 11

The original signing algorithm computes r = (gk mod p) mod q, recall

h = [1, p− 1]

g = h(p−1)/q mod p

gq = h
q(p−1)

q mod p

= h(p−1) mod p

By Fermat’s little theorem,

h(p−1) mod p = 1 mod p

Therefore,

r = (gk mod p) mod q

= (gkgq mod p) mod q

= (gkg2q mod p) mod q

For the DSA signing algorithm, Step 2 is the performance bottleneck and
the exponentiation algorithm used will prove to be of extreme importance to
later collect side-channel information in Section 5.2.

Implementations that fail to produce random nonces or that reuse the
nonce k, are vulnerable to the recovery of the secret key. Given two different
signatures (r, sA), (r, sB) using the same secret nonce k, generated from two
different messages — therefore H(mA) 6= H(mB), it is possible to compute
k as follows:

sA = k−1(H(mA) + αr) mod q

sB = k−1(H(mB) + αr) mod q

Subtracting the two signatures,

sA − sB = k−1(H(mA) + αr)− k−1(H(mB) + αr) mod q

= k−1(H(mA) + αr −H(mB)− αr) mod q

= k−1(H(mA)−H(mB)) mod q

Thus,

k =
(H(mA)−H(mB))

(sA − sB)
mod q

Successfully recovering the nonce k using only two signatures. Now, once
the nonce k is known and given a signature (m, r, s), it is trivial to recover
the secret key α using the following formula.

α = r−1(sk −H(m)) mod q

CHAPTER 2. BACKGROUND 12

2.4 DSA’s Sliding Window Exponentiation

Sliding window exponentiation (SWE) is a widely implemented software
method to perform integer exponentiations — featured alongside other meth-
ods in the OpenSSL codebase. SWE is fairly popular due to its performance
since it reduces the amount of pre-computation needed and, moreover, re-
duces the average amount of multiplications performed during the exponen-
tiation.

An exponent e is represented and processed as a sequence of windows ei,
each of length L(ei) bits. Processing the exponent in windows reduces the
amount of multiplications at the cost of increased memory utilization since
a table of pre-computed values is used.

A window ei can be a zero window represented as a string of “0”s or
non-zero window represented as a string starting and ending with “1”s and
such window is of width w — determined in OpenSSL by the size in bits of
the exponent e. The length of non-zero windows satisfy 1 ≤ L(ei) ≤ w, thus
the value of any given non-zero window is an odd number between 1 and
2w − 1.

As mentioned before, the algorithm pre-computes values and stores them
in a table to be used later during multiplication operations. The multipliers
computed are bv mod m for each odd value of v where 1 ≤ v ≤ 2w − 1 and
these values are stored in table index g[i] where i = (v − 1)/2. For example,
with the standard 160-bit q size, OpenSSL uses a window width w = 4
and with the 256-bit key size OpenSSL uses a window width w = 5. The
algorithm pre-computes multipliers b1, b3, b5, ..., b15 mod m and stores them
in g[0], g[1], g[2], ..., g[7], respectively.

Using the sliding window representation of the exponent e, Algorithm 5
computes the corresponding exponentiation through a combination of squares
and multiplications in a left-to-right approach. The algorithm scans every
window ei from the most significant bit (MSB) to the least significant bit
(LSB).

For any window, a square operation is executed for each bit and addition-
ally for a non-zero window, the algorithm executes an extra multiplication
when it reaches the LSB of the window.

For novel reasons explained later in Section 5.1, the side-channel part of
this work focuses on this algorithm. Specifically, in getting the sequence of
squares and multiplies (SM) performed during its execution. Then partial
information extracted from the SM sequence is later used in the lattice attack.

CHAPTER 2. BACKGROUND 13

Algorithm 5: Sliding-window exponentiation.

Input: Window size w, base b, modulo m, N-bit exponent e
represented as n windows ei, each of length L(ei).

Output: be mod m.
1 // Pre-computation
2 g[0]← b mod m;
3 s← MULT(g[0], g[0]) mod m;
4 for j ← 1 to 2w−1 do
5 g[j]←MULT(g[j − 1], s) mod m;

6 // Exponentiation
7 r ← 1;
8 for i← n to 1 do
9 for j ← 1 to L(ei) do

10 r ←MULT(r, r) mod m;

11 if ei 6= 0 then r ←MULT(r, g[(ei − 1)/2]) mod m;

12 return r;

2.5 Protocols

The essence of Internet relies in the communication between two or sev-
eral remote entities. Some classic examples of the use of Internet include
remote system administration, file transfer, communication between clients
and servers, banking services, etc. Nevertheless, the Internet does not provide
any security guarantee or data protection for the information transmitted in
it, and since it is näıve to rely in the good faith of the entities involved in each
communication, security protocols were developed on top of the Internet to
provide information security.

Nowadays, communication protocols are assumed to be safe and secure
to use in the Internet but their security still depends on the security of their
individual components, which includes software libraries and cryptographic
libraries — e.g. OpenSSL, LibreSSL, BoringSSL.

Several communication protocols exist and are actively used on the Inter-
net and new protocols are developed every year but two of the most widely
used, widespread and relevant protocols for this work are TLS and SSH.

CHAPTER 2. BACKGROUND 14

2.5.1 SSH

The SSH protocol3 is a packet-based binary protocol working on top of the
transport layer (e.g. TCP/IP) that provides secure login connections and
secure file transfer over an untrusted network. SSH uses cryptographic al-
gorithms to implement four basic security features: authentication, key ex-
change, encryption and integrity.

In SSH, at the beginning of every key exchange a random cookie is sent
by both parties, additionally in every transmitted packet, random padding
and integrity protection data are added at the end.

During the initial phase of communication both parties negotiate: the ci-
pher algorithms used for data encryption, the Message Authentication Code
(MAC) algorithms used for data integrity, the key exchange (KEX) meth-
ods used for one-time session key derivation, the public key algorithms for
authentication and the compression algorithms for data compression.

In general, the SSH protocol performs the following phases to start a
session:

1. The client opens a connection with the server.

2. The client and server negotiate cryptographic algorithms and additional
parameters.

3. The server sends its public host key for authentication. The client
accepts or rejects the public host key according to its own criteria and
its own database of known host keys. Note that most of the time the
client accepts the public host key and it adds an entry in its database
of known host keys.

4. The client and the server derive the session keys.

5. The client is authenticated to the server, the supported methods in-
clude: password, public key, host-based and none.

6. The client requests features needed for its session – e.g. X11 forwarding,
TCP/IP forwarding.

7. The interactive session starts.

In the SSH protocol, at any point during session establishment, the server
can terminate the connection and notify the user if it detects an attempt of
data tampering or if it receives a malformed packet.

3http://www.ietf.org/rfc/rfc4253.txt

http://www.ietf.org/rfc/rfc4253.txt

CHAPTER 2. BACKGROUND 15

Steps 1, 2 and 3 are relevant for this work since they represent the target
of the attack described later on. The attack performed against OpenSSH is
explained in detail in Section 5.3.2.

2.5.2 TLS

The TLS protocol4 is a cryptographic protocol used to provide privacy and
data integrity between two communicating parties. The TLS protocol is
composed of two layers: the TLS Record Protocol and the TLS Handshake
protocol. Similar to SSH, TLS is built on top of a reliable transport protocol
— e.g. TCP/IP.

The TLS Record Protocol provides data encryption and message integrity.
The TLS Handshake Protocol allows the client and the server to authenticate
each other and negotiate the cryptographic algorithms to use before any
application data is transmitted. In short, three basic features are provided by
the TLS Handshake Protocol to the communicating parties: authentication,
secure key exchange and reliable negotiation.

The TLS Handshake Protocol involves the following steps:

1. Parties agree on algorithms by exchanging hello messages. Random
nonces and session resumption happens at this stage too.

2. Parties exchange cryptographic parameters to agree on a pre-master
secret.

3. Parties exchange certificates and cryptographic information to authen-
ticate themselves.

4. Parties compute a master secret using the pre-master information and
the random nonces.

5. Parties negotiate security parameters to the record layer.

6. Parties verify the handshake occurred without tampering and security
parameters calculated are correct.

The TLS protocol is a complex protocol and therefore this work only deals
with the TLS Handshake protocol, which is later exploited in Section 5.3.1.

4https://tools.ietf.org/html/rfc5246

https://tools.ietf.org/html/rfc5246

CHAPTER 2. BACKGROUND 16

2.6 Memory Hierarchy

Unfortunately, the amount of fast memory available in a system is relatively
small compared to the total amount of memory available, therefore a memory
hierarchy is needed to get the best trade-off between cost and performance.
The principle of locality [26] says that a typical program spends 90% of
its execution time in 10% of the code, therefore is possible to predict with
reasonable accuracy the instructions the program will execute in the near
future. Usually two different types of locality are observed in the memory
hierarchy:

• Temporal locality : recently accessed items in memory are very likely to
be accessed again in the near future.

• Spatial locality : contiguous memory addresses tend to be referenced
together in time.

The principle of locality and the technology available at hardware level
have led to complex memory hierarchies with different memory sizes and
speeds.

Since fast memory is expensive and its efficient use is highly desirable, a
memory hierarchy composed of several levels is used. Typically, each level is
smaller, faster and more expensive than the next lower level. These smaller
and faster memories are called caches.

Caches exploit the spatial and temporal locality, mentioned before, to
access data and code instructions as fast as possible, thus allowing the pro-
cessors to operate at extremely fast speeds, increasing the overall performance
of a system.

2.6.1 Cache architecture

In modern processors the memory hierarchy is structured as follows: higher-
level caches located closer to the processor core, are smaller and faster than
low-level caches, which are located closer to main memory. Intel’s architec-
ture [17] has three levels of cache: L1, L2 and Last-Level Cache (LLC).

As depicted in Section 2.1, each core has two L1 caches, a data cache
(dcache) and an instruction cache (icache), each small in size (32 KB) with
a short access time (4 cycles). The L2 caches are, typically, core-private and
they have an intermediate size (256 KB) with intermediate access times (11
cycles). The LLC is shared among all of the cores and it is a unified cache,
containing both data and instructions. Typical LLC sizes are in the order of

CHAPTER 2. BACKGROUND 17

megabytes and access time is quite slow compared to the rest of caches (40
cycles).

The unit of memory and allocation in a cache is called cache line. Cache
lines are of a fixed size B, typically, 64 bytes. The lg(B) low-order bits of a
memory address, called line offset, are used to locate the datum in the cache
line.

When a memory address is accessed, the processor checks the availability
of the address line in the top-level L1 caches. If the data is found there then
it is served to the processor, a situation referred to as a cache hit. In a cache
miss, when the data is not found in the L1 caches, the processor repeats the
search for the address line in the next cache level and continues through all
the caches. Once the address line is found, the processor stores a copy in the
cache for future use — temporal locality.

Most caches are set-associative and they are composed of S cache sets,
each containing a fixed number of cache lines. The number of cache lines
in a set is the cache associativity — i.e. a cache with W cache lines in each
cache set is a W -way set-associative cache.

Since the main memory is orders of magnitude larger than the cache,
more than W memory lines may map to the same cache set. If a cache miss
occurs and all the cache lines in the matching cache set are in use, one of
the cached lines is evicted, freeing a slot for a new line to be fetched from
a lower-level memory. Several cache replacement policies exist to determine
the cache line to evict when a cache miss occurs but the typical policy in use
is an approximation to the least-recently-used (LRU).

Modern Intel processors maintain a well-defined relationship between lev-
els of cache by using the inclusive property. This property ensures the Li+1

cache contains a superset of the contents of the Li cache, therefore, flushing
or evicting data from a lower-level cache also removes data from all other
cache levels of the processor. In other words, when data is evicted from the
LLC, it is also evicted from all of the other levels of cache in the processor.

The LLC of modern Intel processors, starting from the Sandy Bridge
microarchitecture, uses a more complicated architecture to improve the per-
formance. The LLC is shared among all the cores but it is divided into
per-core slices connected by a ring bus. The slices are separate caches but
the bus ensures that each core can access the full LLC.

To distribute the data uniformly in the LLC, Intel uses a hash function
which maps the memory address (excluding the line offset bits) into the sliced
id. In the LLC every cache set is uniquely identified by the slice id and the
set index.

Intel architecture implements several cache optimizations. The spatial
pre-fetcher pairs cache lines and attempts to fetch the pair of a missed

CHAPTER 2. BACKGROUND 18

Figure 2.1: Intel Sandy Bridge Cache Architecture.

line [17]. Consecutive accesses to memory addresses are detected and pre-
fetched when the processor anticipates they may be required [17]. Addition-
ally, when the processor is presented with a conditional branch, speculative
execution brings the data of both branches into the cache before the branch
condition is evaluated [47].

In 2002, Page [39] noted that tracing the sequence of cache hits and misses
of a software may leak information on the internal working of the software,
including information that may lead to recovering cryptographic keys.

2.6.2 Cache Replacement Policies

In the event of a cache miss, old data must be evicted to make room for the
new data. The logic algorithm that helps to determine which data to evict is
called the cache replacement policy. The most common and frequently used
cache replacement policy is an approximation to the Least Recently Used
(LRU) policy. As the name implies, the cache controller keeps age fields for
every cache line and when a cache line needs to be evicted, the cache line with
the oldest age value (or least recently used) is evicted. An approximation
to this LRU policy is used in common workstations and in the experiments
performed in this work.

Additional cache replacement policies exist and they are used under spe-
cific scenarios, just to name a few different policies. Most Recently Used
(MRU) evicts the cache line with the youngest age value. Least Frequently
Used (LFU) evicts the cache line that is used least often. And finally, Ran-
dom evicts a random cache line from the cache.

CHAPTER 2. BACKGROUND 19

2.6.3 Address Space Layout Randomization

Address Space Layout Randomization (ASLR) is a common technique used
to protect the memory address space against buffer overflow and arbitrary
code execution attacks [46]. ASLR aims to prevent an attacker from using
the attack code to exploit the same flaw in multiple systems, this is usually
done by adding a random offset to the base address.

Since the LLC is physically tagged, and it has no dependencies on the
virtual address space, the present work and the example explained in Chap-
ter 5 does not have to deal with virtual to physical address mapping, thus
the attack is oblivious to this technique [52].

2.7 Covert Channels

According to Latham [32] in The Orange Book, covert channels are commu-
nication channels that can be exploited to transfer information, violating the
system’s security. Covert channels transfer information in unconventional
ways, usually, exploiting system features that were not intended to be used
as a mechanism to transfer data.

Covert channels can be exploited by users, programs or processes and
most of the time covert channels are unintentional, a system user is unaware
of their existence and a malicious party monitors the channel to retrieve
information about the system user. On the other hand, covert channels can
be used intentionally to communicate unregulated information through a
system.

Covert channels are an old issue that became relevant due to the confine-
ment problem. The confinement problem presented by Lampson [31] states
that any program in confinement should be unable to leak any data except
to its owner. In the same work, Lampson mentions that reducing to zero the
information leaked requires “far-reaching” measures due to the impracticality
of confined programs.

Covert channels are generally divided into two groups, storage channels
and timing channels.

• Storage channels rely on system variables set by the party leaking the
information. Such variables can be ordering, threshold and interlocks.

• Timing channels rely on a clock as a reference to measure the time it
takes for an event to complete.

Timing channels are relevant for this work because they represent the
foundations of side-channel attacks, including cache-timing attacks.

CHAPTER 2. BACKGROUND 20

2.7.1 Memory Cache as a Covert Channel

Microprocessors using caches in the memory hierarchy introduce a covert tim-
ing channel. Since the caches are a resource shared among all the processes
running in a system, they are able to communicate unintended information
among each other.

A simple example is two processes, process A and process B, sharing a
memory hierarchy. Process A reads enough information from main memory
to fill up the cache. Then process B reads some “secret” information from
main memory, process B will evict some of the content from the cache to
include its information. Finally, process A re-reads its information, since
some of its data was evicted from the cache, it will take a noticeable longer
time to reload information from main memory than information from cache,
thus introducing a timing channel.

As can be seen, this covert channel is introduced by the memory hierarchy
at the hardware level and little can be done to prevent this covert channel
since the goal of caches is to provide faster information retrieval compared
to main memory.

2.8 Cryptographic Attacks

Typical methods of classical cryptanalysis are linear and differential crypt-
analysis [9] but more recently implementation attacks started to take an
important role in cryptanalysis as new attack vectors were discovered on the
actual implementations.

2.8.1 Implementation Attacks

In contrast to classic cryptanalytic techniques where the attackers search
for vulnerabilities in the mathematical properties and structure of the algo-
rithms, implementation attacks target a physical or concrete implementation
of a cryptographic primitive. Several implementation attacks are used de-
pending on the implementation and the environment where cryptography is
being used and according to Popp [42] the implementation attacks can be
generally classified in two ways.

1. Passive vs. Active
Passive attacks use information emitted by a cryptographic device un-
der normal environment and standard operational specifications. On
the other hand, in active attacks the environment is manipulated to

CHAPTER 2. BACKGROUND 21

cause abnormal behavior of the cryptographic device and exploit this
behavior.

2. Non-invasive vs. Invasive
In non-invasive attacks only the emitted data is exploited, such as run-
ning time or power consumption. An invasive attack manipulates and
accesses the components of the cryptographic device, for example, de-
packaging a chip, probing, rerouting wires, etc.

In most of the cases, passive and non-invasive attacks are easier and
cheaper to conduct as the cryptographic devices are not permanently altered
nor damaged during the attack.

2.8.2 Side-Channel Attacks

Side-channel attacks are passive, non-invasive, implementation attacks where
the side channels are exploited to recover the secret key of the cryptographic
algorithms. The most common and classic side channels exploited include
execution time, power consumption and electromagnetic (EM) radiation, but
are not limited to only those, sound and temperature are also considered.
Almost any type of output from the cryptographic devices can be considered
as a side channel even if such outputs are not hardware-based as mentioned
before.

The work presented here deals with cache-based side-channel attacks [22]
and in this type of attack the attacker passively monitors the CPU activity
of a system. The threat model can be summarized as a user A which is a
spy process running concurrently with user B, the victim process. Typically,
A and B run in user space, where they have separate virtual memory space
that cannot be accessed by other processes – this provides security by pre-
venting manipulation from malicious processes. Nevertheless, the operating
system shares resources such as libraries and cache memory between users
to operate efficiently, allowing to perform side-channel attacks. An exam-
ple scenario is the following, the spy process A monitors specific changes
in a shared resource between the processes A and B – e.g. shared library,
memory. While the victim B executes a cryptographic algorithm, the spy A
records the changes in the shared resource and later, an attacker using the
side-channel information collected by A correlates the recorded trace with
the cryptographic algorithm executed by victim B to obtain secret informa-
tion. This threat model assumes the attacker has access to the system where
the victim process B is running to execute the spy process A, otherwise the
attack is impossible to perform.

Chapter 3

Cache-Timing Attacks

Timing attacks are a specific type of side-channel attack where the main
goal is to recover the private key of a cryptosystem by measuring the ex-
ecution time, exploiting the implementations that do not run in constant
time, mainly due to conditional branches in the algorithm. Slight differences
in the input values make basic arithmetic operations and logic in crypto-
graphic algorithms to run in non-constant time, revealing information about
the algorithm and the state of the system.

Cache-timing attacks use the processor’s cache memory as a side-channel
to retrieve timing measurements of cryptographic algorithms which are key-
dependent. Kocher [30] performed the first side-channel timing attack in a
public key cryptosystem, his target was the right-to-left square-and-multiply
implementation of the exponentiation algorithm in the RSA cryptosystem.
For this example, the attacker’s task is to time and trace the execution of
the square operations and multiply operations that are key-dependent. Since
the execution time for every iteration of the algorithm is different when the
exponent bit is 1 (e.g. square-and-multiply) and when the exponent bit is 0
(e.g. square), the attacker is able to retrieve the exponent used in every step of
the algorithm — which is the secret key for many public-key cryptosystems.

Cache-timing attacks can be generally categorized as time-driven, trace-
driven and access-driven attacks. In time-driven attacks the attacker relies in
the total execution time of the cryptographic computation — e.g encryption
and signing. The timing information of the whole operation reveals the
number of cache hits and cache misses during the execution of the algorithm.
In trace-driven attacks, the attacker profiles the cache during a cryptographic
operation to determine cache hits and cache misses. And in access-driven
attacks, the attacker is able to determine which cache sets were accessed
during an operation, useful for cryptosystems where lookup tables are used.

The three categories of cache-timing attacks are similar but used for dif-

22

CHAPTER 3. CACHE-TIMING ATTACKS 23

ferent purposes, depending on the cryptographic primitive and the scenario
a different approach may be used. Nevertheless, the three categories exploit
the fact that accessing cached data is much faster compared to accessing data
in the main memory.

3.1 Cache-Timing Techniques

Attacking a particular cryptographic primitive requires knowledge of the
inner workings of the primitive and that knowledge leads to different ap-
proaches to achieve a successful cache-timing attack. The following sections
present some of the techniques used to perform time-driven, access-driven
and trace-driven attacks. The attack performed in this work and detailed
in Chapter 5 is a trace-driven attack, therefore the focus is on Section 3.1.3
where the Flush+Reload technique is explained in detail.

3.1.1 The Evict+Time Technique

The Evict+Time technique was first discussed by Osvik et al. [38] as a
cache-timing technique against AES. With the knowledge of the cache mem-
ory as a covert channel and the variations on the cache behavior, the authors
introduced this time-driven cache-timing attack.

The Evict+Time technique is a side-channel cache-timing technique
that requires the manipulation of the cache state before each encryption and
then observes the execution time of the subsequent encryption. Additionally,
this technique makes some reasonable assumptions, on one hand it assumes
the ability to distinguish the beginning and end of an encryption, as well as
the ability to trigger encryptions at will. On the other hand, since it is a
cache-based attack, it assumes knowledge of relevant memory addresses used
by the cryptographic primitive.

In a chosen-plaintext setting and using a plaintext p the Evict+Time
technique works as follows:

1. Trigger an encryption of p in the target process.

2. Evict memory by accessing appropriate memory lines in the attacker’s
process.

3. Trigger a second encryption of p and time it.

The rationale behind this technique, and applied against AES, is the
following: (1) in the first step all the AES lookup tables accessed by the target

CHAPTER 3. CACHE-TIMING ATTACKS 24

process during the encryption of p are cached, (2) then the attacker accesses
memory blocks in its own memory space, such memory blocks happen to
be mapped to the same cache sets as the target’s memory blocks, therefore,
completely replacing the prior content of the cache. (3) Finally, timing the
encryption of the plaintext reveals information about AES tables thanks to
the timing differences between cache hits and cache misses.

This attack can be extended to scenarios where the attacker triggers
known but not chosen plaintexts, allowing it to narrow down the possible
values of the key.

3.1.2 The Prime+Probe Technique

The Prime+Probe technique is an access-driven cache-timing technique
proposed by Osvik et al. [38]. This technique resembles the Evict+Time
technique and it is used in the same work by the authors to attack the same
AES implementation. Prime+Probe differs in the sense that the attacker
no longer uses the encryption time as a measurement score to determine the
key but instead the state of the cache after encryption is examined.

Following a chosen-plaintext setting and using a plaintext p, the Prime+
Probe technique works as follows:

1. Prime by filling up the cache.

2. Trigger an encryption of p.

3. Probe by reading memory addresses and measuring the reading time.

In step 1, the attacker fills the cache with its own data. The encryption in
step 2 causes partial eviction of some memory lines and in step 3 the attacker
probes each cache set to check if its own data is still present in the cache after
the encryption. The cache sets used during encryption cause cache misses
and the cache sets untouched during the encryption are cache hits, using this
timing difference the attacker can recover the key.

The benefit of Prime+Probe over Evict+Time is the measurement
resolution due to timing variance. In the Prime+Probe technique the
attacker times operations performed by itself — e.g. reading the cache. While
in the Evict+Time technique, the attacker relies on operations performed
by the target — e.g. encryption and signing, which include overheads and
might be noisy.

CHAPTER 3. CACHE-TIMING ATTACKS 25

3.1.3 The Flush+Reload Technique

Often the main target of side-channel attacks is the L1 cache due to the close
proximity to the cores. The initial techniques discussed previously (Evict+
Time and Prime+Probe) are effective and possible due to the small sizes
of L1 caches, but those techniques are limited. The possible attacks are
limited because in order to perform a successful attack, the spy and the
victim processes must run in the same execution core of the processor. To
overcome this limitation, Yarom and Falkner [52] developed the Flush+
Reload technique. This technique is a side-channel cache-based technique
that targets the LLC in the Intel x86 and x86-64 processors.

The cache-timing attack discussed in this work is based in the Flush+
Reload [24, 52] attack, which is a cache-based side-channel attack tech-
nique. Unlike the earlier Prime+Probe technique [38, 40] that detects
activity in cache sets, the Flush+Reload technique identifies access to
memory lines, giving it a high resolution, high accuracy and high signal-to-
noise ratio.

Like Prime+Probe, Flush+Reload relies on cache sharing between
processes. Additionally, it requires data sharing, which is typically achieved
through the use of shared libraries or using page de-duplication [4, 48].

Algorithm 6 shows a round of the attack. A round of the attack consists
of three phases:

Algorithm 6: Flush+Reload Technique

Input: Memory Address addr.
Result: True if the victim accessed the address.

1 begin
2 flush(addr)
3 Wait for the victim.
4 time ← current time()

5 tmp ← read(addr)
6 readTime ← current time() - time
7 return readTime < threshold

1. In the first phase, to identify victim access to a shared memory line,
the attacker evicts the monitored memory line from the cache.

2. In the second phase, the attacker waits a period of time so the victim
has time to access the memory line.

CHAPTER 3. CACHE-TIMING ATTACKS 26

3. In the third phase, the attacker reloads the memory line and measures
the time it takes to load.

If during the second phase the victim accesses the memory line, the line
will be available in the cache and the reload operation in the third step will
take a short time. If, on the other hand, the victim does not access the
memory line then the third step takes a longer time as the memory line is
loaded from main memory. Figure 3.1 (A) and (B) illustrate a round of the
attack with and without victim access.

Figure 3.1: Timing of Flush+Reload. (A) No Victim Access (B) With
Victim Access (C) With Victim Access Overlap (D) Partial Overlap.

The execution of the victim and the adversary processes are independent
from each other, thus synchronization of probing is important and several fac-
tors need to be considered when processing the side-channel data. Some of
those factors are the waiting period for the adversary between probes, mem-
ory lines to be probed, size of the side-channel trace and cache-hit threshold.
Selecting the appropriate parameters make it possible to detect when the
attacker and the victim partially overlap or completely overlap in a round of
attack as depicted in Figure 3.1 (C) and (D).

One important goal for this attack is to achieve the best resolution pos-
sible while keeping the error rate low and one of the ways to achieve this is
by targeting memory lines that occur frequently during execution, such as
loop bodies. Several processor optimizations are in place during a typical
process execution and an attacker must be aware of these optimizations to
filter them during the analysis of the attack results.

A typical implementation of the Flush+Reload attack makes use of the
clflush instruction of the x86 and x86-64 instruction sets. The clflush

instruction evicts a specific memory line from all the cache hierarchy and
since it is an unprivileged instruction, it can be used by any process.

CHAPTER 3. CACHE-TIMING ATTACKS 27

The Flush+Reload attack is possible thanks to the inclusion property
of the LLC. Whenever a memory line is evicted from the LLC, the processor
also evicts the line from L1 and L2 caches. Yarom and Falkner [52] report
that the Flush+Reload attack does not work on AMD processors due to
their use of non-inclusive LLCs.

3.1.4 The Spy Process

The code implemented for this work is in Figure 3.2. The code is really
simple, it only measures the time it takes to read data from a memory address
and then evicts the content of the memory line from the cache.

1 mfence

2 lfence

3 rdtsc

4 lfence

5 mov %rax, %r10

6 mov (\addr), %rax

7 lfence

8 rdtsc

9 sub %r10, %rax

10 movw %ax, \offset(%rdi, %r9, 2)

11 clflush (\addr)

Figure 3.2: Spy process.

The spy code starts with the mfence and lfence instructions, these in-
structions are used to serialize the instruction stream since usually the in-
structions are executed out of order or in parallel by the CPU. On one hand,
the lfence instruction partially serialize by ensuring all the instructions pre-
ceding it have been completed before it is executed and no other instruction
after it executes. On the other hand, mfence orders memory accesses, fence
instructions and the clflush instruction.

After the initial fence instructions, the processor’s time stamp counter is
called with the rdtsc instruction. The rdtsc instruction reads the 64-bit
counter, it returns the high 32-bits in the %rdx register and the low 32-bits
in %rax register. Since the recorded timings are really small, in Line 5 the
low 32-bits are copied to the %r10 register. Line 6 reads the memory address
\addr and then immediately in line 8 the counter is read again. Lines 9 and
10 compute the timing difference and store the result in the register %rdi.
Finally in line 11 the memory address \addr is flushed from the cache.

CHAPTER 3. CACHE-TIMING ATTACKS 28

Table 3.1 shows the cache parameters and access times for the Haswell
Microarchitecture [17] used in this work. An important aspect to note is the
access latency for the shared L3 cache, which is around 34 cycles.

Level Capacity
Associativity

(ways)
Line Size
(bytes)

Access
Latency
(cycles)

Access
Throughput

(cycles)

L1 Data 32 KB 8 64 3 1

L1 Instruction 32 KB 8 64 N/A N/A

L2 Unified 256 KB 8 64 11 2

Shared L3 6 MB 12 64 34 2

Table 3.1: Cache Parameters of the Haswell Microarchitecture [17].

Knowing the real time (in CPU cycles) of moving data from one specific
memory address to a register is extremely relevant to fine-tune the parameters
used in the Flush+Reload technique, for that reason, the timings using
real equipment are compared to the timings in Table 3.1. Later these timings
are used to measure the timing difference of cache hits against cache misses.

To measure cache hits and cache misses, in a similar way as it would be
during an actual attack, the spy process tracks a specific memory address
containing the data of interest. In a cache-timing attack setup, the memory
address belongs to a shared library which can be accessed by both the victim
and the spy process.

A cache hit is achieved by calling the shared library, loading the memory
address into the cache. Afterwards, the spy process measures the time re-
quired to reload the memory address available in cache without flushing the
memory address. 90% of the memory loads from the cache took 52 cycles and
the rest 10% was split between 42 and 43 cycles, as observed in Figure 3.1.4.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

P
er

ce
n
ta

g
e

Latency (cycles)

cache hits

Figure 3.3: Probing time (cycles) for 8K cache hits.

Similarly, a cache hit is achieved by following the same procedure as before
but this time after every measurement, the memory address is flushed from
the cache using the clflush command. This forces the system to load the

CHAPTER 3. CACHE-TIMING ATTACKS 29

information from main memory in every iteration. Practically, 100% of the
loads from main memory took at least 250 cycles, considerably more than 52
cycles.

Additionally, Intel [17] mentions that continuous cache eviction uses cache
bandwidth and bus bandwidth which causes an overall degradation in cache
response times, this last behavior is observed in Figure 3.1.4 where the timing
results for cache misses are spread over times larger than 250 cycles and not
as constant as in the case with cache hits.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 200 250 300 350 400

P
er

ce
n
ta

g
e

Latency (cycles)

cache hits

Figure 3.4: Probing time (cycles) for 8K cache misses.

Figure 3.1.4 shows the timing differences between cache hits and cache
misses.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

P
er

ce
n
ta

g
e

Load Time (cycles)

cache hits
cache miss

Figure 3.5: Probing time: cache hits vs. cache misses.

3.1.5 Performance Degradation Technique

To achieve maximum utilization on a single hardware platform multiple pro-
cesses share the resources available to them. As a consequence the processes
may interfere with each other, impacting the performance.

CHAPTER 3. CACHE-TIMING ATTACKS 30

A malicious user can misuse the shared resources and exploit the interfer-
ence to affect processes running on the same platform. These type of attacks
are well known attacks and they are called performance degradation attacks.

Performance degradation attacks are mainly used as denial of service
(DoS) attacks in which the attacker does not get any direct benefit, the only
benefit is to damage and limit a process or service.

Allan et al. [2] showed that attackers can benefit from performance degra-
dation attacks to amplify the side-channel attacks. By degrading the per-
formance of a running process, an attacker can receive more side-channel
information to improve the attack.

Following the idea of the Flush+Reload technique, the performance
degradation attack used in this work targets pieces of code that are shared
between the victim and the attacker. Frequently executed code is cached to
improve execution performance, therefore access to the code is fast.

An attacker can degrade the performance by repeatedly evicting memory
lines containing code that is executed frequently. By evicting such mem-
ory lines, the victim has to wait for the processor to load the code from
main memory which is orders of magnitude slower than loading from cache
memory.

A small number of memory lines are chosen as candidates. During execu-
tion, the chosen memory lines are repeatedly evicted from cache memory to
slow down the execution of a specific program. An efficient attack is achieved
by considering the amount of memory line candidates, the memory load time
and the lines evicted. Memory lines that contain function calls are accessed
twice during execution, one before the call and one on return.

Typically, performance degradation attacks target all of the processes
running in a microprocessor. The performance degradation attack used in
this work [2] only targets programs that use specific shared code segments,
in this case, the OpenSSL library.

Similar to the Flush+Reload technique, the requirements for the degra-
dation attack are a shared inclusive LLC and the ability to efficiently evict
memory lines from cache.

3.1.6 The Degrading Process

The degrading process implemented for this work is shown in Figure 3.6. The
degrading process is really simple and its main function is to evict memory
lines from the cache.

The same clflush instruction used in the Flush+Reload technique is
used for the performance degradation attack. The code iterates continuously

CHAPTER 3. CACHE-TIMING ATTACKS 31

1 1:

2 clflush (\addr1)

3 clflush (\addr2)

4 clflush (\addr3)

5 jmp 1b

Figure 3.6: Degrading process.

through the clflush calls, evicting the content in the memory addresses of
registers addr1, addr2 and addr3.

As explained in Section 3.1.5 the memory addresses to evict are chosen
according to the target process, for this work three addresses allow to degrade
the victim process to a threshold that produces good results.

The degrading process runs in parallel with the spy and the victim pro-
cesses, slowing down the performance of the victim process and allowing the
spy process to get a high quality profile from the cache.

3.2 Partial key disclosure

Recall from Section 2.3.5 that in DSA the nonce k and the secret key α satisfy
a linear congruence. The constants of the linear combination are specified by
s, h(m), and r, which, typically for a signed message, are all public. Hence,
knowing the nonce k reveals the secret key α.

α = r−1(sk −H(m)).

Typically, side-channel leakage from SWE only recovers partial informa-
tion about the nonce. The adversary, therefore, has to use that partial infor-
mation to recover the key. The usual technique [1, 2, 7, 13, 14, 27, 36, 37, 41]
for recovering the secret key from the partial information is to express the
problem as a hidden number problem (NHP) [11] which is solved using a
lattice technique.

3.2.1 The Hidden Number Problem

In the hidden number problem (HNP) the task is to find a hidden number
given some of the MSBs of several modular linear combinations of the hidden
number. More specifically, the problem is to find a secret number α given
a number of triples (ti, ui, `i) such that for vi = |α · ti − ui|q we have |vi| ≤
q/2`i+1, where | · |q is the reduction modulo q into the range (−q/2, . . . , q/2).

CHAPTER 3. CACHE-TIMING ATTACKS 32

Boneh and Venkatesan [11] initially investigate HNP with a constant `i =
`. They show that for ` < log1/2 q + log log q and random ti, the hidden
number α can be recovered given a number of triples linear in log q.

Howgrave et al. [27] extend the work of Boneh and Venkatesan [11] show-
ing how to construct an HNP instance from leaked LSBs and MSBs of DSA
nonces. Nguyen and Shparlinski [36] prove that for a good enough hash
function and for a linear number of randomly chosen nonces, knowing the `
LSBs of a certain number of nonces, the `+ 1 MSBs or 2 · ` consecutive bits
anywhere in the nonces is enough for recovering the long term key α. They
further demonstrate that a DSA-160 key can be broken if only the 3 LSBs of
a certain number of nonces are known. Nguyen and Shparlinski [37] extend
the results to ECDSA, and Liu and Nguyen [34] demonstrate that only 2
LSBs are required for breaking a DSA-160 key. Benger et al. [7] extend the
technique to use a different number of leaked LSBs for each signature.

3.2.2 Lattice attack

To find the hidden number from the triples we solve a lattice problem. The
construction of the lattice problem presented here is due to Benger et al. [7],
and is based on the constructions in earlier publications [11, 36].

Given d triples, a d+ 1-dimensional lattice is constructed using the rows
of the matrix

B =

2`1+1 · q

. . .

2`d+1 · q
2`1+1 · t1 . . . 2`d+1 · td 1

 .

By the definition of vi, there are integers λi such that vi = λi ·q+α ·ti−ui.
Consequently, for the vectors x = (λ1, . . . , λd, α), y = (2`1+1 · v1, . . . , 2`d+1 ·
vd, α) and u = (2`1+1 · u1, . . . , 2`d+1 · ud, 0) yield

x ·B − u = y.

The 2-norm of the vector y is about
√
d+ 1 · q whereas the determinant

of the lattice L(B) is 2d+
∑
li · qd. Hence y is a short vector in the lattice

and the vector u is close to the lattice vector x · B. Solving the Closest
Vector Problem (CVP) with inputs B and u finds x, revealing the value of
the hidden number α.

CHAPTER 3. CACHE-TIMING ATTACKS 33

3.3 Cache-Timing Data Processing

Processing cache-timing data is not a trivial task and performing this task
manually takes expertise, time and patience. Automating the analysis and
processing of cache-timing data is highly desirable, since the amount of data
can be huge depending on the target process. The following two techniques,
Vector Quantization (VQ) and Hidden Markov Models (HMM) have been in
use for several years to solve different data coding and modeling issues—e.g.
data compression, pattern recognition, clustering.

Chari et al. [15] used VQ to perform power analysis, Karlof and Wag-
ner [29] and Green et al. [23] analyzed side-channel information using HMMs.
Side-channel analysis resembles data correction, where the closest approxi-
mation of the algorithm state sequence recovered from the trace to the real
algorithm sequence is needed to successful recover information about the
cryptographic operation.

3.3.1 Vector Quantization

Vector Quantization is a signal processing technique used to map a set of
vectors from a big domain to a reduced set of vectors called the codebook.
The crux of this technique is matching vectors to the closest representative
in the codebook using the Euclidean distance as a metric.

Typically, VQ is used in side-channel processing due to the multidimen-
sionality of cache-timing data. Depending on the cache-timing technique
used and the target’s hardware platform specifications, cache-timing data
may have a big dimension—e.g. 32 or 64. As the dimension increases it is
more complex to analyze and map the side-channel data to the codebook.

The codebook is produced during the profiling stage by the attacker where
in a controlled setup, such as its own user space, the attacker spies the target
process with known secret inputs. Using this approach the attacker is able
to create a good codebook that yields a good guess at the target process.

VQ gives a good approximation to the sequence of states from a target,
nevertheless, due to the noise and the errors of the spy process itself it is
not sufficient to recover the original sequence of states which depends on the
algorithm running in the target process. Therefore, the HMM technique is
the next step to infer the algorithm state.

3.3.2 Hidden Markov Models

Hidden Markov Models (HMMs) are statistical models for modeling discrete-
time stochastic processes and they are useful to model systems that behave

CHAPTER 3. CACHE-TIMING ATTACKS 34

like a probabilistic finite-state machine. Probabilistic finite-state systems
have hidden states and only by observing the emissions of their states is
possible to infer the system.

The previous definition adjusts perfectly to the goal of side-channel anal-
ysis, a cryptographic process is executed and it is known that the process
has hidden states. By observing the timing emissions leaked through the
side-channel is possible to infer the process.

HMMs offer a signal processing technique that enhance the result of the
signal by eliminating noise in the signal and trying to guess the states of the
algorithm used by the process.

3.3.3 Cache-Timing Data Analysis for DSA

Since the attack performed in this work is based on the Flush+Reload
technique, the dimension of the cache-timing data is small enough to cluster
it using the VQ technique, therefore this work skips that step. Knowing the
sequence of algorithm states is crucial to perform a cache-timing attack and
recover the DSA’s secret key. Applying the HMM technique, the sequence
of states for the SWE algorithm is recovered with high accuracy, allowing
the extraction of partial information from every trace recorded by the spy
process.

Constructing an HMM where the hidden part models the operations of the
SWE algorithm – squares and multiplications, is an important step towards
secret key recovery. Figure 3.7 illustrates the HMM transition model of the
SWE algorithm exploited in this work.

Each label denotes the operation performed in each state and separate
states are used to denote the system state before and after the execution of
the algorithm. For the SWE algorithm implemented in OpenSSL’s DSA, it is
known that every window ei starts and ends with “1”s and for a 160/1024-bit
key pair, the window size L(ei) = 4, therefore it is possible (although very
unlikely) to have at most 4 sequences of square-multiply operations.

The most significant bit of the exponent is handled by the state s2 and
thanks to the performance degradation technique, no unknown states are
observed.

The set of emissions for this HMM is V = {Sqr,Mul, Empty} which is
obtained from the possible states observed in the cache. The state set is
defined by S = s1, ..., s7. States s1 and s7 are assumed to emit Empty, states
s2, s3, s5 and s6 emit Sqr and finally, state s4 only emits Mul.

Using rough estimates the initial model parameters are set and the model
is trained using observations from the cache-timing information recorded

CHAPTER 3. CACHE-TIMING ATTACKS 35

Figure 3.7: An HMM transition model for DSA’s SWE algorithm.

during the profile phase mentioned in Section 3.1.3 where the secret and
the algorithm operation is known.

The output sequence obtained in this step is then used in conjunction
with the lattice-based attack to mount the key recovery attack. As men-
tioned earlier, due to limitations on the spy process, is not possible to get
perfect traces and therefore is not possible to recover a perfect state sequence.
Additionally, for DSA, knowing the perfect state sequence does not reveal
the secret key directly although it would allow to use a considerable small
amount of signatures during the key recovery attack.

Chapter 4

Related Work

Over the past few years, research work has focused in cache-timing attacks,
and cryptographic algorithms are the standard choice to demonstrate the
success of this type of attacks, mainly due to the nature of their relevance.

Several authors describe attacks on cryptographic systems that exploit
partial nonce disclosure to recover long-term private keys.

Page [39] did the first formal studies of the security threats associated with
the cache behavior and the information leaked through the cache. The author
demonstrated the theoretical aspects of the attack and an implementation of
his attack on DES encryption algorithm.

Percival [40] expanded the idea of cache attacks and performed an at-
tack by observing the cache sets accessed during encryption of RSA’s sliding
window algorithm implemented in OpenSSL (0.9.7c). The access to cache
sets revealed enough bits of the exponent to compute the secret exponent in
polynomial time.

Brumley and Hakala [13] use an L1 data cache-timing attack to recover
the LSBs of ECDSA nonces from the dgst command line tool in OpenSSL
0.9.8k. Combining VQ and HMMs explained in Section 3.3, they collect 2,600
signatures (8K with noise) and use the Howgrave et al. [27] attack to recover
a 160-bit ECDSA private key. In a similar vein, Acıiçmez et al. [1] use an
L1 instruction cache-timing attack to recover the LSBs of DSA nonces from
the same tool in OpenSSL 0.9.8l, requiring 2,400 signatures (17K with noise)
to recover a 160-bit DSA private key. Both attacks require HyperThreading
architectures.

Gullasch et al. [24] expanded on the spy process by exploiting the Com-
pletely Fair Scheduler used in Linux systems and for the first time they
proposed the use of the clflush instruction for evicting caches. The au-
thors performed an asynchronous attack where they managed to profile the
cache with a high granularity compared to previous works. They evicted and

36

CHAPTER 4. RELATED WORK 37

probed to create a trace of the cache which was later used to recover the
cipher keys used on OpenSSL’s AES (0.9.8n).

Brumley and Tuveri [14] mount a remote timing attack on the implemen-
tation of ECDSA with binary curves in OpenSSL 0.9.8o. They show that
the timing leaks information on the MSBs of the nonce used and that after
collecting that information over 8,000 TLS handshakes the private key can
be recovered.

Benger et al. [7] recover the secret key of OpenSSL’s ECDSA implemen-
tation for the curve secp256k1 using less than 256 signatures. The authors
make use of the Flush+Reload technique to target the LLC, they extend
the lattice technique of Howgrave et al. [27] and after a considerable smaller
effort they achieve success. They improved over previous lattice-based tech-
niques by using all the leaked bits rather than limiting to a fixed number of
bits.

Following the steps of Benger et al. [7], van de Pol et al. [41] exploit the
structure of the modulus in some elliptic curves to use all of the information
leaked in consecutive sequences of bits anywhere in the top half of the nonces,
allowing them to recover the secret key after observing only a handful of
signatures. Their target is the secp256k1 curve of ECDSA on OpenSSL
(1.0.1f).

Allan et al. [2] improve on these results by using a performance-degradation
attack to amplify the side-channel. The amplification allows them to observe
the sign bit in the wNAF representation used in OpenSSL 1.0.2a and to
recover a 256-bit key after observing only 6 signatures.

Genkin et al. [20] perform electromagnetic and power analysis attacks on
mobile phones. They show how to construct HNP triples when the signature
uses the low s-value [50].

Finally, relevant to this work but in a different direction, Liu and Nguyen [34]
offer a novel approach to solve the Basic Bounded Decoding (BDD) lattice
problem used in cryptanalysis. The authors used BDD enumeration to per-
form a practical attack on DSA with partially known nonces.

Chapter 5

Implementation

5.1 A New Software Defect

Percival [40] demonstrated that the SWE implementation of modular expo-
nentiation in OpenSSL version 0.9.7g is vulnerable to cache-timing attacks,
applied to recover RSA private keys. Following the issue, the OpenSSL
team committed two code changes relevant to this work. The first1 adds a
“constant-time” implementation of modular exponentiation, with a fixed-
window implementation and using the scatter-gather method [12, 53] of
masking table access to the multipliers.

The new implementation is slower than the original SWE implementation.
To avoid using the slower new code when the exponent is not secret, OpenSSL
added a flag (BN FLG CONSTTIME) to its representation of big integers. When
the exponent should remain secret (e.g. in decryption and signing) the flag is
set (e.g. in the case of DSA nonces, Figure 5.1, Line 252) at runtime and the
exponentiation code takes the “constant-time” execution path (Figure 5.2,
Line 413). Otherwise, the original SWE implementation is used.

The execution time of the “constant-time” implementation still depends
on the bit length of the exponent, which in the case of DSA should be kept
secret [11, 14, 36]. The second commit2 aims to “make sure DSA signing
exponentiations really are constant-time” by ensuring that the bit length of
the exponent is fixed. This safe default behavior can be disabled by appli-
cations enabling the DSA FLAG NO EXP CONSTTIME flag at runtime within the
DSA structure, although we are not aware of any such cases.

1-https://github.com/openssl/openssl/commit/
46a643763de6d8e39ecf6f76fa79b4d04885aa59

2-https://github.com/openssl/openssl/commit/
0ebfcc8f92736c900bae4066040b67f6e5db8edb

38

https://github.com/openssl/ openssl/commit/46a643763de6d8e39ecf6f76fa79b4d04885aa59
https://github.com/openssl/ openssl/commit/46a643763de6d8e39ecf6f76fa79b4d04885aa59
https://github.com/openssl/ openssl/commit/0ebfcc8f92736c900bae4066040b67f6e5db8edb
https://github.com/openssl/ openssl/commit/0ebfcc8f92736c900bae4066040b67f6e5db8edb

CHAPTER 5. IMPLEMENTATION 39

To get a fixed bit length, the DSA implementation adds γq to the ran-
domly chosen nonce, where γ ∈ {1, 2}, such that the bit length of the sum
is one more than the bit length of q. More precisely, the implementation
creates a copy of the nonce k (Figure 5.1, Line 264), adds q to it (Line 274),
checks if the bit length of the sum is one more than that of q (Line 276),
otherwise it adds q again to the sum (Line 277). If q is n bits, then k + q is
either n or n + 1 bits. In the former case, indeed k + 2q is n + 1 bits. As
an aside, we note the code in question is not constant time and potentially
leaks the value of γ. Such a leak would create a bias that can be exploited
to mount the Bleichenbacher attack [3, 10, 18].

While the procedure in this commit ensures that the bit length of the
sum kq is fixed, unfortunately it introduces a software defect. The function
BN copy is not designed to propagate flags from the source to the desti-
nation. In fact, OpenSSL exposes a distinct API BN with flags for that
functionality—quoting the documentation:

BN with flags creates a temporary shallow copy of b in dest

. . . Any flags provided in flags will be set in dest in addition to
any flags already set in b. For example this might commonly
be used to create a temporary copy of a BIGNUM with the
BN FLG CONSTTIME flag set for constant time operations.

In contrast, with BN copy the BN FLG CONSTTIME flag does not propagate to
kq. Consequently, the sum is not treated as secret, reverting the change made
in the first commit— when the exponentiation wrapper subsequently gets
called (Figure 5.1, Line 285), it fails the security-critical branch. Following
a debug session in Figure 5.2, indeed the flag (explicit value 0x4) is not set,
and the execution skips the call to BN mod exp mont consttime and instead
continues with the insecure SWE code path for DSA exponentiation.

In addition to testing our attack against OpenSSL (1.0.2h), we reviewed
the code of two popular OpenSSL forks: LibreSSL3 [44] and BoringSSL4 [43].
Using builds with debugging symbols, we confirm both LibreSSL and Bor-
ingSSL share the same defect. It is worth noting that BoringSSL stripped
out TLS DSA cipher suites in late 20145.

3-https://github.com/libressl-portable/openbsd/blob/
873a225ece61e25b02dafea9676e0ba90519e764/src/lib/libssl/src/crypto/
dsa/dsa_ossl.c

4-https://boringssl.googlesource.com/boringssl/+/master/crypto/
dsa/dsa.c

5-https://boringssl.googlesource.com/boringssl/+/
ef2116d33c3c1b38005eb59caa2aaa6300a9b450

https://github.com/libressl-portable/openbsd/blob/ 873a225ece61e25b02dafea9676e0ba90519e764/src/lib/libssl/src/crypto/dsa/dsa_ossl.c
https://github.com/libressl-portable/openbsd/blob/ 873a225ece61e25b02dafea9676e0ba90519e764/src/lib/libssl/src/crypto/dsa/dsa_ossl.c
https://github.com/libressl-portable/openbsd/blob/ 873a225ece61e25b02dafea9676e0ba90519e764/src/lib/libssl/src/crypto/dsa/dsa_ossl.c
https://boringssl.googlesource.com/boringssl/+/master/crypto/dsa/dsa.c
https://boringssl.googlesource.com/boringssl/+/master/crypto/dsa/dsa.c
https://boringssl.googlesource.com/boringssl/+/ef2116d33c3c1b38005eb59caa2aaa6300a9b450
https://boringssl.googlesource.com/boringssl/+/ef2116d33c3c1b38005eb59caa2aaa6300a9b450

CHAPTER 5. IMPLEMENTATION 40

246 /* Get random k */

247 do

248 if (!BN_rand_range(&k, dsa->q))

249 goto err;

250 while (BN_is_zero(&k)) ;

251 if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {

252 BN_set_flags(&k, BN_FLG_CONSTTIME);

253 }

...

263 if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {

264 if (!BN_copy(&kq, &k))

265 goto err;

266

267 /*

268 * We do not want timing information to leak the length of k, so we

269 * compute g^k using an equivalent exponent of fixed length. (This

270 * is a kludge that we need because the BN_mod_exp_mont() does not

271 * let us specify the desired timing behaviour.)

272 */

273

274 if (!BN_add(&kq, &kq, dsa->q))

275 goto err;

276 if (BN_num_bits(&kq) <= BN_num_bits(dsa->q)) {

277 if (!BN_add(&kq, &kq, dsa->q))

278 goto err;

279 }

280

281 K = &kq;

282 } else {

283 K = &k;

284 }

285 DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, K, dsa->p, ctx,

286 dsa->method_mont_p);

Figure 5.1: Excerpt from OpenSSL’s dsa sign setup in
crypto/dsa/dsa ossl.c. Line 252 sets the BN FLG CONSTTIME flag, yet
BN copy on Line 264 does not propagate it. The subsequent Line 285
exponentiation call will have pointer K with the flag clear.

CHAPTER 5. IMPLEMENTATION 41

+--bn_exp.c--+

|402 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |

|403 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |

|404 { |

B+ |405 int i, j, bits, ret = 0, wstart, wend, window, wvalue; |

|406 int start = 1; |

|407 BIGNUM *d, *r; |

|408 const BIGNUM *aa; |

|409 /* Table of variables obtained from ’ctx’ */ |

|410 BIGNUM *val[TABLE_SIZE]; |

|411 BN_MONT_CTX *mont = NULL; |

|412 |

>|413 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { |

|414 return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); |

|415 } |

|416 |

|417 bn_check_top(a); |

+--+

|0x7ffff779db3e <BN_mod_exp_mont+92> mov 0x14(%rax),%eax |

|0x7ffff779db41 <BN_mod_exp_mont+95> and $0x4,%eax |

|0x7ffff779db44 <BN_mod_exp_mont+98> test %eax,%eax |

>|0x7ffff779db46 <BN_mod_exp_mont+100> je 0x7ffff779db85 <BN_mod_exp_mont+163> |

|0x7ffff779db48 <BN_mod_exp_mont+102> mov -0x1b0(%rbp),%r8 |

+--+

child process 29096 In: BN_mod_exp_mont Line: 413 PC: 0x7ffff779db46

(gdb) break BN_mod_exp_mont

Breakpoint 1 (BN_mod_exp_mont) pending.

(gdb) run dgst -dss1 -sign ~/dsa.pem -out ~/lsb-release.sig /etc/lsb-release

Starting program: /usr/local/ssl/bin/openssl \

dgst -dss1 -sign ~/dsa.pem -out ~/lsb-release.sig /etc/lsb-release

Breakpoint 1, BN_mod_exp_mont (...) at bn_exp.c:405

(gdb) backtrace

#0 BN_mod_exp_mont (...) at bn_exp.c:405

#1 0x00007ffff77eea62 in dsa_sign_setup (...) at dsa_ossl.c:285

#2 0x00007ffff77ee344 in DSA_sign_setup (...) at dsa_sign.c:87

#3 0x00007ffff77ee53d in dsa_do_sign (...) at dsa_ossl.c:159

#4 0x00007ffff77ee30c in DSA_do_sign (...) at dsa_sign.c:75

...

(gdb) stepi

(gdb) info register eax

eax 0x0 0

(gdb) print BN_get_flags(p, BN_FLG_CONSTTIME)

$1 = 0

(gdb) macro expand BN_get_flags(p, BN_FLG_CONSTTIME)

expands to: ((p)->flags&(0x04))

(gdb) print ((p)->flags&(0x04))

$2 = 0

(gdb)

Figure 5.2: Debugging OpenSSL DSA signing in crypto/bn/bn exp.c. The
Line 413 branch is not taken since BN FLG CONSTTIME is not set, as seen
from the print command outputs. Hence BN mod exp mont consttime is not
called— the control flow continues with classical SWE code.

CHAPTER 5. IMPLEMENTATION 42

5.2 Exploiting the Defect

In this section we describe how we use and combine the Flush+Reload
technique with a performance degradation technique [2] to attack the OpenSSL
implementation of DSA.

We tested our attack on an Intel Core i5-4570 Haswell Quad-Core 3.2GHz
(22nm) with 16GB of memory running 64-bit Ubuntu 14.04 LTS “Trusty”.
Each core has an 8-way 32KB L1 data cache, an 8-way 32KB L1 instruction
cache, an 8-way 256KB L2 unified cache, and all the cores share a 12-way
6MB unified LLC (all with 64B lines). It does not feature HyperThreading.

We used our own build of OpenSSL 1.0.2h which is the same default build
of OpenSSL but with debugging symbols on the executable. Debugging sym-
bols facilitate mapping source code to memory addresses but they are not
loaded during run time, thus the victim’s performance is not affected. De-
bugging symbols are, typically, not available to attackers but using reverse
engineering techniques [16] is possible to map source code to memory ad-
dresses.

It is well known [34, 36], but not trivial, that knowing a few bits of
sufficiently many signatures allows an attacker to recover the secret key. This
is the goal of our attack, we trace and recover side-channel information of
the SWE algorithm that reveals the sequence of squares and multiplications,
from that sequence we recover a few bits that we use for the lattice attack
described in Section 5.4.

As seen in Figure 5.2, every time OpenSSL performs a DSA signature,
the exponentiation method BN mod exp mont in crypto/bn/bn exp.c gets
called. There, the BN FLG CONSTTIME flag is checked but due to the software
defect discussed in Section 5.1 the condition fails and the routine continues
with the SWE pre-computation and then the actual exponentiation. For
the finite field operations, BN mod exp mont calls BN mod mul montgomery in
crypto/bn/bn mont.c and from there, the multiply wrapper bn mul mont is
called, where, by default for x64 targets, assembly code is executed to perform
low level operations using BIGNUMs for square and multiplication. OpenSSL
uses Montgomery representation for efficiency. Note that for other platforms
and/or non-default build configurations, the actual code executed ranges
from pure C implementation to entirely different assembly. The attacker
can easily adapt to these different execution paths, but the discussion that
follows is geared towards our target platform. It is worth mentioning, the
spy process does not know when a signature starts and ends but this can
be deduced by looking for a sequence of consecutive multiplications in each
trace, this indicates the SWE’s pre-computation phase.

CHAPTER 5. IMPLEMENTATION 43

The threshold set for the load time in the Flush+Reload technique
(cache hit vs. cache miss) is system and software dependent. From our mea-
surements we set this threshold accordingly since the load times from LLC
and from memory were clearly defined. Figure 5.4 shows that loads from
LLC take less that 100 cycles, while loads from main memory take more
than 200 cycles.

As mentioned before, to get better resolution and granularity during the
attack one effective strategy is to target body loops or routines that are
invoked several times. For that reason we probe, using the Flush+Re-
load technique, inner routines used for square and multiply. Since squares
can be computed more efficiently than multiplication, OpenSSL’s multiply
wrapper checks if the two pointer operands are the same and, if so, calls to
assembly squaring code (bn sqr8x mont)—otherwise, to assembly multiply
code (bn mul4x mont).

At the same time we run a performance degradation attack, flushing
actively used memory addresses during these routines (e.g. assembly labels
Lsqr4x inner and Linner4x, respectively). We slow down the execution
time to a safe, but not noticeable by the victim, threshold that ensures a
good trace by our spy program. In our experiments, we observe slow down
factors of roughly 16 and 26 for 1024-bit and 2048-bit DSA, respectively due
to the degrade technique.

Using this strategy, our spy program collects data from two channels: one
for square latencies and the other for multiply latencies. We then apply signal
processing techniques to this raw channel data. A moving average filter on
the data results in Figure 5.3 and Figure 5.4 for 1024-bit and 2048-bit DSA,
respectively. There is a significant amount of information to extract from
these signals on the SWE algorithm state transitions and hence exponent bit
values. Generally, extracted multiplications yield a single bit of information
and the squares yield the position for these bits. Some short examples follow.

Stepping through Figure 5.3, the initial low amplitude for the multi-
ply signal is the multiplication for converting the base operand to Mont-
gomery representation. The subsequent low amplitude for the square signal
is the temporary square value used to build the odd powers for the SWE
pre-computation table (i.e. s in Figure 5). The subsequent long period of
low multiply amplitude is the successive multiplications to build the pre-
computation table itself. Then begins the main loop of SWE. As an upward
sloping multiply amplitude intersects a downward sloping square amplitude,
this marks the transition from a multiplication operation to a square op-
eration (and vice versa). This naturally occurs several times as the main
exponentiation loop iterates. The end of this particular signal shows a final
transition from multiply to a single square, indicating that the exponent is

CHAPTER 5. IMPLEMENTATION 44

even and the two LSBs are 1 and 0.
Stepping through Figure 5.4 is similar, yet the end of this particular

signal shows a final transition from square to multiply—indicating that the
exponent is odd, i.e. the LSB is 1.

Even when employing the degrade technique, it is important to observe
the vast granularity difference between these two cryptographic settings. On
average, a 2048-bit signal is roughly ten times the length of a 1024-bit signal,
even when the exponent is only 60% longer (i.e. 256-bit vs. 160-bit). This
generally suggests we should be able to extract more accurate information
from 2048-bit signals than 1024-bit—i.e., the higher security cryptographic
parameters are more vulnerable to side-channel attack in this case. See
[49, 51, 52] for similar examples of this phenomenon.

Granularity is vital to determining the number of squares interleaved be-
tween multiplications. Since, in our environment, there appears to be no
reliable indicator in the signal for transitions from one square to the next, we
estimate the number of adjacent squares by the horizontal distance between
multiplications. Since the channel is latency data, we also have reference
clock cycle counter values so another estimate is based on the counter differ-
ences at these points. Our experiments showed no significant advantage of
one approach over the other.

Extracting the multiplications from the signal and interleaving them with
a number of consecutive squares proportional to the width of the correspond-
ing gap gives us the square and multiplication SM sequence, that the SWE
algorithm passed through. Figure 5.7 shows an example of an SM sequence
recorded by the spy program when OpenSSL signs using 2048-bit DSA.

Our spy program is able to capture most of the SM sequence accurately.
It can miss or duplicate a few squares due to drift but is able to capture
all of the multiplication operations. Closer to the LSBs, the information
extracted from the SM sequence is more reliable since the bit position is lost
if any square operation is missed during probing — on average three LSBs
are recovered per trace.

In summary, we performed our attack in a system under normal workload
but we focused only on the three processes of interest – i.e. victim, spy
and degradation processes. The three processes executed in three different
cores. The first core executed the victim process, in this case OpenSSL’s
DSA algorithm. The second core executed our spy process while the third
core executed the performance degradation process. The knowledge of the
message and the signature is assumed since this information is public and
can be obtained legitimately – see Section 5.3.

CHAPTER 5. IMPLEMENTATION 45

 100

 200

 300

 0 2000 4000 6000 8000 10000 12000

L
at

en
cy

Time

multiply probe
square probe

Figure 5.3: Complete filtered trace of a 1024-bit DSA sign operation during
an OpenSSH SSH-2 handshake.

 100

 200

 300

 0 20000 40000 60000 80000 100000 120000

L
at

en
cy

Time

multiply probe
square probe

Figure 5.4: Complete filtered trace of a 2048-bit DSA sign operation during
an stunnel TLS 1.2 handshake.

5.3 Victimizing Applications

The defect from the previous section is in a shared library. Potentially any
application that links against OpenSSL for DSA functionality can be affected
by this vulnerability. But to make our attack concrete, we focus on two
ubiquitous protocols and applications: TLS within stunnel and SSH within
OpenSSH.

As we discuss later in Section 5.4, the trace data alone is not enough
for private key recovery—we also need the digital signatures themselves and
(hashed) messages. To this end, the goal of this section is to describe the
practical tooling we developed to exploit the defect within these applications,
collecting both trace data and protocol messages.

5.3.1 Attacking TLS

To feature TLS support, one option for network applications that do not
natively support TLS communication is to use stunnel6, a popular portable
open source software package that forwards network connections from one
port to another and provides a TLS wrapper. A typical stunnel use case
is listening on a public port to expose a TLS-enabled network service, then

6https://www.stunnel.org

https://www.stunnel.org

CHAPTER 5. IMPLEMENTATION 46

Client Server

ClientHello

[random,

CipherSuite] ------->

ServerHello

[random,

cipher_suite]

Certificate

ServerKeyExchange

[params,

HashAlgorithm,

SignatureAlgorithm,

signed_params]

<------- ServerHelloDone

ClientKeyExchange

(ChangeCipherSpec)

Finished ------->

(ChangeCipherSpec)

<------- Finished

Application Data <------> Application Data

Figure 5.5: Our custom client carries out TLS handshakes, collecting cer-
tain fields from the ClientHello, ServerHello, and SeverKeyExchange

messages to construct the digest. It collects timing traces in parallel to
the server’s DSA sign operation, said digital signature being included in a
SeverKeyExchange field and collected by our client.

connecting to a localhost port where a non-TLS network service is listening—
stunnel provides a TLS layer between the two ports. It links against the
OpenSSL shared library to provide this functionality. For our experiments,
we used stunnel 5.32 compiled from stock source and linked against OpenSSL
1.0.2h. We generated a 2048-bit DSA certificate for the stunnel service and
chose the DHE-DSS-AES128-SHA256 TLS 1.2 cipher suite.

We wrote a custom TLS client that connects to this stunnel service. It
launches our spy to collect the timing signals, but its main purpose is to
carry out the TLS handshake and collect the digital signatures and protocol
messages. Figure 5.5 shows the TLS handshake. Relevant to this work, the
initial ClientHello message contains a 32-byte random field, and similarly
the server’s ServerHello message. In practice, these are usually a 4-byte
UNIX timestamp concatenated with a 28-byte nonce. The Certificate

CHAPTER 5. IMPLEMENTATION 47

message contains the DSA certificate we generated for the stunnel service.
The ServerKeyExchange message contains a number of critical fields for our
attack: Diffie-Hellman key exchange parameters, the signature algorithm
and hash function identifiers, and finally the digital signature itself in the
signed params field. Given our stunnel configuration and certificate, the
2048-bit DSA signature is over the concatenated string

ClientHello.random + ServerHello.random +

ServerKeyExchange.params

and the hash function is SHA-512, both dictated by the SignatureAndHashAlgorithm
field (explicit values 0x6, 0x2). Our client saves the hash of this string and
the DER-encoded digital signature sent from the server. All subsequent mes-
sages, including ServerHelloDone and any client responses, are not required
by our attack. Our client therefore drops the connection at this stage, and
repeats this process several hundred times to build up a set of distinct trace,
digital signature, and digest tuples. See Section 5.4 for our explicit attack
parameters. Figure 5.4 is a typical signal extracted by our spy program in
parallel to the handshake between our client and the victim stunnel service.

5.3.2 Attacking SSH

OpenSSH7 is a suite of tools whose main goal is to provide secure communi-
cations over an insecure channel using the SSH network protocol.

OpenSSH is linked to the OpenSSL shared library to perform several
cryptographic operations, including digital signatures. For our experiments
we used the stock OpenSSH 6.6.1p1 binary package from the Ubuntu reposi-
tory, and pointed the run-time shared library loader at OpenSSL 1.0.2h. The
DSA key pair used by the server and targeted by our attack is the default
1024-bit key pair generated during installation of OpenSSH.

Similar to Section 5.3.1, we wrote a custom SSH client that launches
our spy program, the spy program collects the timing signals during the
handshake. At the same time it performs an SSH handshake where the
protocol messages and the digital signature are collected for our attack.

Relevant to this work, the SSH protocol defines the Diffie-Hellman key
exchange parameters in the SSH MSG KEXINIT message, along with the sig-
nature algorithm and the hash function identifiers. Additionally a 16-byte
random nonce is sent for host authentication by the client and the server.

The SSH MSG KEXDH REPLY message contains the server’s public key (used
to create and verify the signature), server’s DH public key f (used to compute

7http://www.openssh.com

http://www.openssh.com

CHAPTER 5. IMPLEMENTATION 48

the shared secret K in combination with the client’s DH public key e) and
the signature itself. Figure 5.6 shows the SSH handshake with the critical
parameters sent in every message relevant for the attack. To be more precise,
the signature is over the SHA-1 hash of the concatenated string

ClientVersion + ServerVersion +

Client.SSH_MSG_KEXINIT + Server.SSH_MSG_KEXINIT +

Server.publicKey + minSize + prefSize + maxSize +

p + g + e + f + K

As the key exchange8 and public key parameters, our SSH client was
configured to use diffie-hellman-group-exchange-sha1 and ssh-dss re-
spectively. Note that two different hashing functions may be used, one hash
function for the Diffie-Hellman key exchange and another hash function for
the signing algorithm, which for DSA is the SHA-1 hash function.

Similarly to the TLS case, our client saves the hash of the concatenated
string and the digital signature raw bytes sent from the server. All subse-
quent messages, including SSH MSG NEWKEYS and any client responses, are
not required by our attack. Our client therefore drops the connection at this
stage, and repeats this process several hundred times to build up a set of
distinct trace, digital signature, and digest tuples. See Section 5.4 for our
explicit attack parameters. Figure 5.3 is a typical signal extracted by our
spy program in parallel to the handshake between our client and the victim
SSH server.

5.3.3 Observations

These two widely deployed protocols share many similarities in their hand-
shakes regarding e.g. signaling, content of messages, and security context of
messages. However, in the process of designing and implementing our at-
tacker clients we observe a subtle difference in the threat model between the
two. In TLS, all values that go into the hash function to compute the digital
signature are public and can be observed (unencrypted) in various handshake
messages. In SSH, most of the values are public—the exception is the last in-
put to the hash function: the shared DH key. The consequence is side-channel
attacks against TLS can be passive, listening to legitimate handshakes not
initiated by the attacker yet collecting side-channel data as this occurs. In
SSH, the attacker must be active and initiate its own handshakes—without
knowing the shared DH key, a passive attacker cannot compute the corre-
sponding digest needed later for the lattice stage of the attack. We find this

8https://tools.ietf.org/html/rfc4419

https://tools.ietf.org/html/rfc4419

CHAPTER 5. IMPLEMENTATION 49

Client Server

ClientVersion ----->

ServerVersion

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

<----- publicKey_alg]

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

publicKey_alg]

SSH_KEXDH_GEX_REQUEST

[minSize, prefSize,

maxSize] ----->

SSH_KEXDH_GEX_GROUP

<----- [p, g]

SSH_KEXDH_GEX_INIT

[e] ----->

SSH_KEXDH_GEX_REPLY

[publicKey, f,

<----- Signature]

SSH_MSG_NEWKEYS

----->

Application Data <----> Application Data

Figure 5.6: Our custom client carries out SSH handshakes, collecting param-
eters from all the messages to construct the digest. It collects timing traces
in parallel to the server’s DSA sign operation, said digital signature being
included in a SSH KEXDH GEX REPLY field and collected by our client.

CHAPTER 5. IMPLEMENTATION 50

innate protocol level side-channel property to be an intriguing feature, and
a factor that should be carefully considered during protocol design.

5.4 Recovering the private key

In previous sections we showed how our attack can recover the sequence of
square and multiply operations that the victim performs. We further showed
how to get the signature information matching each sequence for both SSH
and TLS. We now turn to recovering the private key from the information
we collect.

The scheme we use is similar to past works. We first use the side-channel
information we capture to collect information on the nonce used in each
signature. We use the information to construct HNP instances and use a
lattice technique to find the private key. Further details on each step are
provided below.

5.4.1 Extracting the least significant bits

In Section 5.2 we showed how we collect the SM sequences of each exponen-
tiation. From every SM sequence, we extract a few LSBs to be used later in
the lattice attack. LSBs are extracted by observing the SM trailing sequence
from each trace and then comparing it against known SM trailing sequences,
always looking for the best trade-off between bits recovered from each trace
and the number of signatures required for the lattice attack.

Table 5.1 contains our empirical accuracy statistics for various relevant
patterns trailing the SM sequences, these trailing SM sequences were chosen
according to multiplier usage patterns. Menezes et al. [35] mention that for
a window size of S, the expected distance between non-zero windows is S+1
— i.e. number of squares between multiply operations, thus we focused in
trailing patterns repeated with higher probability. Furthermore, not for the
SWE in isolation but rather in the context of OpenSSL DSA executing in real
world applications (TLS via stunnel, SSH via OpenSSH), as described above
in Section 5.3. All of these patterns correspond to recovering a = k̄ mod 2`

for an exponent k̄.
From these figures, we note two trends. (1) The accuracy decreases as `

increases due to deviation in the square operation width. Yet weighed with
the exponentially decreasing probability of the longer patterns, the practi-
cal impact diminishes. (2) As expected, we generally obtain more accurate
results with 2048-bit vs. 1024-bit due to granularity. These numbers show

CHAPTER 5. IMPLEMENTATION 51

` a Bit Pattern SM Pattern Accuracy (%) Accuracy (%)
1024-bit, SSH 2048-bit, TLS

1 1 1 SSM 99.9 99.9
2 2 10 SMS 99.9 99.7
2 3 11 SMSM 98.2 97.2
3 4 100 SSMSS 99.7 99.7
3 6 110 SMSMS 99.4 98.2
4 8 1000 SSMSSS 97.8 99.6
4 12 1100 SMSMSS 98.4 97.8
5 16 10000 SSMSSSS 96.7 99.1
5 24 11000 SMSMSSS 95.0 97.6
6 32 100000 SSMSSSSS 85.1 98.8
6 48 110000 SMSMSSSS 90.4 95.0
7 64 1000000 SSMSSSSSS 87.5 97.5
7 96 1100000 SMSMSSSSS 84.6 95.1
8 128 10000000 SSMSSSSSSS 67.7 98.7
8 192 11000000 SMSMSSSSSS 75.0 94.8

Table 5.1: Empirical results of recovering various LSBs from the spy program
traces and their corresponding SM sequences.

that, exploiting our new software defect and leveraging the techniques in
Section 5.2, we can recover a with extremely high probability.

5.4.2 Lattice attack implementation

Recall that to protect against timing attacks OpenSSL uses an exponent k̄
equivalent to the randomly selected nonce k. k̄ is calculated by adding the
modulus q once or twice to k to ensure that k̄ is of a fixed length. That is,
k̄ = k + γq such that 2n ≤ k̄ < 2n + q where n = dlg(q)e and γ ∈ {1, 2}.

SMMMMMMMMMMMMMMMMSSSMSSSSSSSMSSSSMSSSSSSSMSSSSSSM

SSSSSSMSSSSSSSSMSSSMSSSSSSSSSSMSSSSSSSSMSSSSSMSSS

SSMSSSSSSSSSMSSSSSMSSSSSSMSSSSSMSSSSSSSMSSSSMSSSS

SSSMSSSSSSMSSSSMSSSSSSSSMSSSSSSSSMSSSMSSSSSSSMSSS

SSMSSSSSMSSSSMSSSSSSMSSSMSSSSSSMSSSSSSMSSMSSSSSSS

SSMSSSSMSSSSSSSSMSSSSSSSSSMSMSSSSSMSSSSSSSSSMSSSS

SSSSSSMSSSSM

Figure 5.7: Example of an extracted SM sequence, where S and M are square
and multiply, respectively.

CHAPTER 5. IMPLEMENTATION 52

The side-channel leaks information on bits of the exponent k̄ rather than
directly on the nonce. To create HNP instances from the leak we need to
handle the unknown value of γ. In previous works, due to ECC parameters
the modulus is close to a power of two hence the value of γ is virtually
constant [7]. For DSA, the modulus is not close to a power of two and the
value of γ varies between signatures. The challenge is, therefore, to construct
an HNP instance without the knowledge of γ. We now show how to address
this challenge.

Recall that s = k−1(h(m) + αr) mod q. Equivalently, k = s−1(h(m) +
αr) mod q. The side-channel information recovers the ` LSBs of k̄. We,
therefore, have k̄ = b2` + a where a = k̄ mod 2` is known, and

2n−` ≤ b < 2n−` +
⌈
q/2`

⌉
. (5.1)

Following previous works we use b·cq to denote the reduction modulo
q to the range [0, q) and | · |q for the reduction modulo q to the range
(−q/2, q/2). Within these expressions division operations are carried over
the reals whereas all other operations are carried over GF (q).

We now look at
⌊
b− 2n−`

⌋
q
.⌊

b− 2n−`
⌋
q

=
⌊
(k̄ − a) · 2−` − 2n−`

⌋
q

=
⌊
k̄ · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
k · 2−` + γ · q · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
k · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
(s−1 · (h(m) + α · r) · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
α · s−1 · r · 2−` − (2n + a− s−1 · h(m)) · 2−`

⌋
q

Hence, we can set:

t =
⌊
s−1 · r · 2−`

⌋
q

u =
⌊
(2n + a− s−1 · h(m)) · 2−` +

⌈ q

2`+1

⌉⌋
q

v = |α · t− u|q

and by (5.1) we have |v| ≤
⌈
q/2`+1

⌉
.

Out of the HNP instances we generate, we select at random 49 for the
SSH attack, 130 for the TLS attack and construct a lattice as described in
Section 3.2.2. We solve the CVP problem with a Sage script, performing
lattice reduction using BKZ [45], and enumerate the lattice points using
Babai’s Nearest Plane (NP) algorithm [5]. We apply two different techniques

CHAPTER 5. IMPLEMENTATION 53

to extend NP to a larger search space. First, we take different rounding paths
to explore 210 different solutions in the tree paths [33, Sec. 4]. Second, we use
a randomization technique [34, Sec. 3.5] and shuffle the rows of B between
lattice reductions. We repeat with a different random selection of instances
until we find the private key.

Chapter 6

Results

We implemented the attack and evaluated it against the two protocols, SSH
with 1024/160-bit DSA and TLS with 2048/256-bit DSA. Table 6.1 contains
the results. For both protocols we only utilize traces with ` ≥ 3. With this
value we experimentally found that we require 49 such signatures for SSH
and 130 for TLS in order to achieve a reasonable probability of solving the
resulting CVP.

Because the nonces are chosen uniformly at random, only about one in ev-
ery four signatures has an ` that we can utilize. To gather enough signatures
and to compensate for possible trace errors, we collect 580 SM sequences
from TLS handshakes and 260 from SSH.

On average, these collected sequences yield 70.8 (SSH) and 158.1 (TLS)
traces with ` ≥ 3. Comparing the traces to the ground truth, we know that
on average less than 3 have trace errors. However, because an adversary
cannot check against the ground truth, we leave these erroneous traces in
the set and use them in the attack. We note that due to the smaller key size

Victim OpenSSH (SSH) stunnel (TLS)
Key size 1024/160-bit 2048/256-bit
Handshakes 260 580
Lattice size 50 131
Set size 70.8 158.1
Errors 2.1 1.7
Iterations 13 22
CPU minutes 5.9 38.8
Success rate (%) 100.0 100.0

Table 6.1: Empirical lattice attack results over a thousand trials. Set size
and errors are mean values. Iterations and CPU time are median values.

54

CHAPTER 6. RESULTS 55

in SSH, trace errors are much more prevalent there.
We construct a lattice from a random selection of the collected traces and

attempt to solve the resulting CVP. Due to the presence of the error traces
there is a non-negligible probability that our selected set contains an error.
Furthermore, even if all the chosen traces are correct, the algorithm may fail
to find the target solution due to the heuristic nature of lattice techniques.
In case of failure, we repeat the process with a new random selection from
the same set. We need to execute a median value of 13 iterations for SSH
and 22 for TLS until we find the target solution.

As seen from Table 6.1, repeating our experiment over a thousand trials
on a cluster with hundreds of nodes, mixed between Intel X5660 and AMD
Opteron 2435 cores, we find the private key in all cases requiring a median
5.9 CPU minutes for the SSH key and 38.8 CPU minutes for the TLS key.
Although we executed each trial on a single core, in reality the iterations are
independent of each other—the lattice attack is ridiculously parallel.

Chapter 7

Discussion

Finding and exploiting a cache-timing attack requires a lot of work but ad-
ditional work needs to be done a posteriori. Section 7.1 explains some of the
challenges abstracted from the experimentation that should be consider dur-
ing a real life attack under a more chaotic setting where a system is running
hundreds of processes at a given time. Section 7.2 explains some techniques
recommended to mitigate cache-timing techniques and cache-timing attacks
in general, hardware-based and software-based solutions are mentioned. And
finally, Section 7.3 discusses some observations made during the responsible
disclosure process.

7.1 Challenges

Performing a cache-timing attack is not a trivial task to do and it is a complex
engineering problem as it is a complicated mathematical and cryptographic
problem. Several challenges during the the experiments were faced and some
of those challenges were abstracted for demonstration purposes. Some of
those challenges are:

• Obtaining the memory addresses of the algorithm operations to be
probed by an attacker—e.g. square and multiply for DSA’s SWE algo-
rithm, requires reverse engineering skills. Reverse engineering allows to
extract the addresses from the shared library because, typically, debug-
ging symbols are not loaded during execution time. A way to simplify
this task for an attacker is to compute the offset for each memory ad-
dress from the base memory address of the shared library. Using this
approach has two purposes: (a) during the reverse engineering step,
an attacker only has to find the base memory address and (b) even if

56

CHAPTER 7. DISCUSSION 57

memory randomization techniques are used the offset is the same, thus,
an attacker only cares about the base memory address.

• Synchronization of the spy process and the victim process is easy during
experimentation but during an actual attack is not always possible to
synchronize both processes. Therefore, the spy process has to execute
on the background and is the attacker’s job to find the beginning and
the end of every recorded cryptographic operation in the side-channel
trace.

• Having access to the target machine is not a strong assumption, the
SSH attack in Section 5.3.2 demonstrated this. Nowadays having le-
gitimate access to target machines is easier thanks to cloud computing
and virtualization.

7.2 Mitigation

The techniques presented in this work are some of the techniques currently in
use for cache-timing attacks. The cache-timing attack described in Chapter 5
is a real threat against systems and users working with DSA as a digital
signature algorithm for authentication within the TLS and the SSH protocols.
Mitigating the attack in this work, cache-timing techniques and ultimately
cache-timing attacks is extremely relevant to the security of Internet.

Fixing DSA is desirable and the fix is trivial once the software defect
is detected, however, this does not address the general issue of preventing
cache-timing attacks, specially cache-timing attacks based on the Flush+
Reload technique. The Flush+Reload technique relies on four basic
factors to successfully implement a cache-timing attack and some of these
factors are shared with the performance degradation technique since it is
based on the Flush+Reload technique. The four basic factors are: (1)
sensitive data is recoverable from memory access patterns, (2) the spy process
and the victim process share the LLC memory, (3) a high-accuracy clock is
available to the spy process and (4) the lack of permission checks for using
the clflush instruction. Preventing some of the factors block the techniques
and therefore the cache-timing attacks depending on these techniques do not
work anymore.

As mentioned in Section 3.1.3, clflush is an instruction that does not
require elevated privileges to execute. A logical solution is to restrict the
access of the clflush instruction to certain memory pages. Additionally,
restrict the use of the clflush instruction to memory pages where the process
using it has write access — e.g. the spy process. Yarom and Falkner [52]

CHAPTER 7. DISCUSSION 58

mention that AMD is not vulnerable to the Flush+Reload technique due
to their non-inclusive caches. In AMD processors, evicting data from the
LLC does not, necessarily, evicts the data from the L1 or L2 caches. Also,
the ARM [8] architecture is not vulnerable to the Flush+Reload technique
thanks to the restricted use of the command to evict memory lines.

Eliminating the use of the rdtsc command from the microprocessors is
not possible but it is possible to introduce noise or reduce the accuracy of
the clock using fuzzy time techniques [28]. However this approach does not
completely solve the problem and it has an impact on benign applications
that require access to a high-resolution timer. An attacker can start its own
clock process in parallel or it can use the network as a clock.

Hardware based solutions require a considerable amount of money and
time. Developing and adoption could take a long time, furthermore, these
solutions do not protect existing hardware, thus, software-based solutions are
required to fix the problem and impact as many affected devices as possible.

The easiest and fastest software-based solution to mitigate the attack
proposed in this work is fixing OpenSSL’s DSA. Fixing the software de-
fect explained in Section 5.1 is an immediate countermeasure to this attack,
since this fix allows the code to execute a constant-time implementation of
the SWE algorithm. And as mentioned in Section 5.1, the constant-time
implementation of the SWE algorithm uses a fixed-window and masks table
access to the multipliers using the scatter-gather method [12, 53].

Intuitive software-based solutions include partially or fully disabling caching.
Disabling caching completely prevents cache-timing attacks, nevertheless this
approach was studied by Acıiçmez et al. [1] and proved to have an immense
performance impact on both, the cryptographic process and on the system. A
similar performance impact is observed if the cache is flushed periodically—
similar to what the performance degradation technique does.

7.3 Disclosure of the Attack

Following good practices and responsible disclosure, the vulnerability found
during this work was reported to the open source projects OpenSSL, Li-
breSSL and BoringSSL. OpenSSL is issuing a security advisory and they
have assigned the CVE-2016-2178, the rest of the parties involved were very
proactive to fix the vulnerability. Additionally, the vulnerability was reported
to OpenSSH because the main goal of the SSH protocol is to provide remote
legitimate access to a system and the attack presented in Section 5.3.2 repre-
sents a realistic scenario where an attacker does not require elevated privileges
to exploit it.

CHAPTER 7. DISCUSSION 59

At the same time that the security vulnerability was reported, two patches
were proposed to fix it. The two versions of the patch were submitted to
prevent future code changes that may re-introduce the possibility of a cache-
timing attack. At the end OpenSSL chose one of the patches. The patch was
applied on 6th of June 2016 by OpenSSL1 and LibreSSL2. DSA is deprecated
in OpenSSH but it is still widely used. OpenSSH admitted that it is only
possible for them to advise users not to use or re-enable deprecated features
but ultimately the decision is up to the users.

1-https://github.com/openssl/openssl/commit/
399944622df7bd81af62e67ea967c470534090e2

2-https://github.com/libressl-portable/openbsd/commit/
075f24fcf49c54c48e55cd724e413880ebaffba6

https://github.com/openssl/openssl/commit/ 399944622df7bd81af62e67ea967c470534090e2
https://github.com/openssl/openssl/commit/ 399944622df7bd81af62e67ea967c470534090e2
https://github.com/libressl-portable/openbsd/commit/ 075f24fcf49c54c48e55cd724e413880ebaffba6
https://github.com/libressl-portable/openbsd/commit/ 075f24fcf49c54c48e55cd724e413880ebaffba6

Chapter 8

Conclusions

A simple software defect introduced in the DSA implementation in OpenSSL
led to a critical security vulnerability exploited in this work. This vulner-
ability not only allowed to exploit OpenSSL but also to mount end-to-end
attacks against fundamental Internet protocols: SSH (via OpenSSH) and
TLS (via stunnel).

The contributions in this work are summarized as follows:

• Introduction to digital signatures, the DSA algorithm and the SWE
algorithm used.

• Explanation of common cache-timing techniques used to perform cache-
timing attacks and cache-timing data analysis against vulnerable algo-
rithms running in non-constant time.

• Identification of a security weakness in OpenSSL which fails to use a
side-channel safe implementation when performing DSA signatures.

• Description of how to use a combination of the Flush+Reload tech-
nique with a performance-degradation attack to leak information from
the unsafe SWE algorithm.

• Presentation of the first key-recovery cache-timing attack on the TLS
and SSH cryptographic protocols.

• Recovery of DSA’s secret key by constructing and solving a lattice
problem with the side-channel information, the digital signatures and
messages.

As can be seen, applied cryptography requires extreme attention to detail
and special care during design and implementation. Some technical advice
regarding this vulnerability to the users:

60

CHAPTER 8. CONCLUSIONS 61

• OpenSSH supports building without OpenSSL as a dependency. It is
recommend that OpenSSH package maintainers switch to this option.

• OpenSSH administrators and users are recommended to migrate to
ssh-ed25519 key types, the implementation of which has many de-
sirable side-channel resistance properties. Furthermore, ensure that
ssh-dss is absent from the HostKeyAlgorithms configuration field,
and any such HostKey entries removed.

• OpenSSH administrators and users are recommended to disable cipher
suites that have DSA functionality as a pre-requisite.

8.1 Future work

The cache-timing attack on OpenSSL’s DSA implementation and the results
obtained from the experiments were positive and successful. The analysis
presented here is far from being exhaustive. Although a fix was proposed
and applied by the open source community, code verification is still required.
DSA’s constant-time SWE algorithm was implemented back in 2005 but it
has not been tested against cache-timing attacks using current cache-timing
techniques because the software defect explained in this work prevented the
constant-time code from running. The constant-time implementation might
provide enough side-channel information to mount a new cache-timing attack,
recovering the secret key.

Furthermore, this work focused in one particular implementation of digi-
tal signatures — DSA, additional cryptographic primitives need to be verified
to be safe against the techniques discussed here.

Bibliography

[1] Acıiçmez, O., Brumley, B. B., and Grabher, P. New results on
instruction cache attacks. In CHES (Santa Barbara, CA, US, 2010).

[2] Allan, T., Brumley, B. B., Falkner, K., Van de Pol, J., and
Yarom, Y. Amplifying side channels through performance degradation.
IACR Cryptology ePrint Archive, Report 2015/1141, Nov 2015.

[3] Aranha, D. F., Fouque, P.-A., Gérard, B., Kammerer, J.-G.,
Tibouchi, M., and Zapalowicz, J.-C. GLV/GLS decomposition,
power analysis, and attacks on ECDSA signatures with single-bit nonce
bias. In ASIACRYPT (Kaohsiung, TW, Dec 2014), pp. 262–281.

[4] Arcangeli, A., Eidus, I., and Wright, C. Increasing memory
density by using KSM. In Linux symposium (2009), pp. 19–28.

[5] Babai, L. On Lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica 6, 1 (Mar. 1986), 1–13.

[6] Barker, E., and Roginsky, A. Transitions: Recommendation for
transitioning the use of cryptographic algorithms and key lengths. NIST
Special Publication 800-131A Revision 1, Nov 2015.

[7] Benger, N., Van de Pol, J., Smart, N. P., and Yarom, Y. “Ooh
aah. . . , just a little bit”: A small amount of side channel can go a long
way. In CHES (Busan, KR, Sep 2014), pp. 75–92.

[8] Bernstein, D. J. Cache-timing attacks on AES, 2005. Preprint avail-
able at http://cr.yp.to/papers.html#cachetiming.

[9] Biham, E., and Shamir, A. Differential cryptanalysis of des-like
cryptosystems. Journal of CRYPTOLOGY 4, 1 (1991), 3–72.

[10] Bleichenbacher, D. On the generation of one-time keys in DL sig-
nature schemes. Presentation at IEEE P1363 Working Group meeting,
Nov 2000.

62

http://cr.yp.to/papers.html#cachetiming

BIBLIOGRAPHY 63

[11] Boneh, D., and Venkatesan, R. Hardness of computing the most
significant bits of secret keys in Diffie-Hellman and related schemes. In
CRYPTO’96 (Santa Barbara, CA, US, Aug 1996), pp. 129–142.

[12] Brickell, E., Graunke, G., and Seifert, J.-P. Mitigating
cache/timing based side-channels in AES and RSA software implemen-
tations. RSA Conference 2006 session DEV-203, Feb 2006.

[13] Brumley, B. B., and Hakala, R. M. Cache-timing template at-
tacks. In 15th ASIACRYPT (Tokyo, JP, Dec 2009), pp. 667–684.

[14] Brumley, B. B., and Tuveri, N. Remote timing attacks are still
practical. In 16th ESORICS (Leuven, BE, 2011).

[15] Chari, S., Rao, J. R., and Rohatgi, P. Template attacks. In
Cryptographic Hardware and Embedded Systems-CHES 2002. Springer,
2002, pp. 13–28.

[16] Cipresso, T., and Stamp, M. Software reverse engineering. In Hand-
book of Information and Communication Security. 2010, pp. 659–696.

[17] Corporation, I. Intel 64 and ia-32 architectures optimization refer-
ence manual, Jan 2016.

[18] De Mulder, E., Hutter, M., Marson, M. E., and Pearson,
P. Using Bleichenbacher’s solution to the hidden number problem to
attack nonce leaks in 384-bit ECDSA. In CHES (Santa Barabara, CA,
US, Aug 2013), pp. 435–452.

[19] ElGamal, T. Advances in Cryptology: Proceedings of CRYPTO 84.
Springer Berlin Heidelberg, 1985, ch. A Public Key Cryptosystem and
a Signature Scheme Based on Discrete Logarithms.

[20] Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., and
Yarom, Y. ECDSA key extraction from mobile devices via nonintru-
sive physical side channels. IACR Cryptology ePrint Archive, Report
2016/230, Mar 2016.

[21] Goldwasser, S., Micali, S., and Rivest, R. L. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal
on Computing 17, 2 (1988), 281–308.

[22] Grabher, P., Großschädl, J., and Page, D. Cryptographic side-
channels from low-power cache memory. In Cryptography and Coding.
Springer, 2007, pp. 170–184.

BIBLIOGRAPHY 64

[23] Green, P., Noad, R., and Smart, N. P. Further hidden
markov model cryptanalysis. In Cryptographic Hardware and Embed-
ded Systems–CHES 2005. Springer, 2005, pp. 61–74.

[24] Gullasch, D., Bangerter, E., and Krenn, S. Cache games –
bringing access-based cache attacks on AES to practice. In S&P (May
2011), pp. 490–505.

[25] Hankerson, D., Menezes, A., and Vanstone, S. Guide to Elliptic
Curve Cryptography. Springer New York, 2006.

[26] Hennessy, J. L., and Patterson, D. A. Computer architecture: a
quantitative approach. Elsevier, 2011.

[27] Howgrave-Graham, N., and Smart, N. P. Lattice attacks on
digital signature schemes. DCC 23, 3 (Aug 2001), 283–290.

[28] Hu, W.-M. Reducing timing channels with fuzzy time. Journal of
computer security 1, 3-4 (1992), 233–254.

[29] Karlof, C., and Wagner, D. Hidden Markov model cryptanalysis.
Springer, 2003.

[30] Kocher, P. C. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In Advances in Cryptology–CRYPTO 96
(1996), Springer, pp. 104–113.

[31] Lampson, B. W. A note on the confinement problem. Communications
of the ACM 16, 10 (1973), 613–615.

[32] Latham, D. C. Department of defense trusted computer system eval-
uation criteria.

[33] Lindner, R., and Peikert, C. Better key sizes (and attacks) for
LWE-based encryption. In Topics in Cryptology - CT-RSA 2011 - The
Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA,
USA, February 14-18, 2011. Proceedings (2011), vol. 6558 of Lecture
Notes in Computer Science, pp. 319–339.

[34] Liu, M., and Nguyen, P. Q. Solving BDD by enumeration: An
update. In Topics in Cryptology–CT-RSA 2013. 2013, pp. 293–309.

[35] Menezes, A. J., Van Oorschot, P. C., and Vanstone, S. A.
Handbook of applied cryptography. CRC press, 1996.

BIBLIOGRAPHY 65

[36] Nguyen, P. Q., and Shparlinski, I. E. The insecurity of the digital
signature algorithm with partially known nonces. J. Cryptology 15, 2
(Jun 2002), 151–176.

[37] Nguyen, P. Q., and Shparlinski, I. E. The insecurity of the elliptic
curve digital signature algorithm with partially known nonces. DCC 30,
2 (Sep 2003), 201–217.

[38] Osvik, D. A., Shamir, A., and Tromer, E. Cache attacks and
countermeasures: The case of AES. In 2006 CT-RSA (2006).

[39] Page, D. Theoretical use of cache memory as a cryptanalytic side-
channel. IACR Cryptology ePrint Archive 2002 (2002), 169.

[40] Percival, C. Cache missing for fun and profit. In BSDCan 2005
(Ottawa, CA, 2005).

[41] Van de Pol, J., Smart, N. P., and Yarom, Y. Just a little bit
more. In 2015 CT-RSA (San Francisco, CA, USA, Apr 2015), pp. 3–21.

[42] Popp, T. An introduction to implementation attacks and countermea-
sures. In Proceedings of the 7th IEEE/ACM international conference on
Formal Methods and Models for Codesign (2009), pp. 108–115.

[43] Project, B. Boringssl.

[44] Project, L. Libressl.

[45] Schnorr, C. P., and Euchner, M. Lattic basis reduction: Improved
practical algorithms and solving subset sum problems. Math. Prog. 66,
1–3 (Aug 1994), 181–199.

[46] Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N.,
and Boneh, D. On the effectiveness of address-space randomization.
In Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security (2004), CCS ’04, pp. 298–307.

[47] Uht, A. K., Sindagi, V., and Hall, K. Disjoint eager execution:
An optimal form of speculative execution. MICRO 28, pp. 313–325.

[48] Waldspurger, C. A. Memory resource management in VMware ESX
server. SIGOPS Oper. Syst. Rev. (Dec 2002), 181–194.

[49] Walter, C. D. Longer keys may facilitate side channel attacks. In
SAC (Waterloo, ON, Canda, Aug 2004), pp. 42–57.

BIBLIOGRAPHY 66

[50] Wuille, P. Dealling with malleability. https://github.com/bitcoin/

bips/blob/master/bip-0062.mediawiki, Mar. 2014.

[51] Yarom, Y., and Benger, N. Recovering OpenSSL ECDSA nonces
using the Flush+Reload cache side-channel attack. IACR Cryptology
ePrint Archive, Report 2014/140, Feb 2014.

[52] Yarom, Y., and Falkner, K. Flush+Reload: a high resolution,
low noise, L3 cache side-channel attack. In 23rd USENIX Security (San
Diego, CA, US, 2014), pp. 719–732.

[53] Yarom, Y., Genkin, D., and Heninger, N. CacheBleed: A timing
attack on OpenSSL constant time RSA. In CHES (2016).

https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

Appendix A

First appendix

Figures A.1, A.2 and A.3 show the patches submitted to OpenSSL, LibreSSL
and BoringSSL respectively.

67

APPENDIX A. FIRST APPENDIX 68

From 690706448bfecb1c73e8ff320d6289bd55370c04 Mon Sep 17 00:00:00 2001

From: Cesar Pereida <cesar.pereida@aalto.fi>

Date: Mon, 23 May 2016 12:45:25 +0300

Subject: [PATCH] Fix DSA, preserve BN_FLG_CONSTTIME

crypto/dsa/dsa_ossl.c | 9 +++++----

1 file changed, 5 insertions(+), 4 deletions(-)

diff --git a/crypto/dsa/dsa_ossl.c b/crypto/dsa/dsa_ossl.c

index ce1da1c..beb62b2 100644

--- a/crypto/dsa/dsa_ossl.c

+++ b/crypto/dsa/dsa_ossl.c

@@ -204,10 +204,6 @@ static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in,

goto err;

} while (BN_is_zero(k));

- if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {

- BN_set_flags(k, BN_FLG_CONSTTIME);

- }

-

if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {

if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p,

dsa->lock, dsa->p, ctx))

@@ -238,6 +234,11 @@ static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in,

} else {

K = k;

}

+

+ if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {

+ BN_set_flags(K, BN_FLG_CONSTTIME);

+ }

+

DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, K, dsa->p, ctx,

dsa->method_mont_p);

if (!BN_mod(r, r, dsa->q, ctx))

--

1.7.9.5

Figure A.1: Patch submitted to OpenSSL fixing the software defect in
crypto/dsa/dsa ossl.c.

APPENDIX A. FIRST APPENDIX 69

From a0014f43a682c11e0002ed12ae361da61f2270e0 Mon Sep 17 00:00:00 2001

From: Cesar Pereida <cesar.pereida@aalto.fi>

Date: Fri, 27 May 2016 10:27:42 +0300

Subject: [PATCH] Fix for CVE-2016-2178

src/lib/libssl/src/crypto/dsa/dsa_ossl.c | 12 +++++++++---

1 file changed, 9 insertions(+), 3 deletions(-)

diff --git a/src/lib/libssl/src/crypto/dsa/dsa_ossl.c b/src/lib/libssl/src/crypto/dsa/dsa_ossl.c

index b3eefcc..cb6be55 100644

--- a/src/lib/libssl/src/crypto/dsa/dsa_ossl.c

+++ b/src/lib/libssl/src/crypto/dsa/dsa_ossl.c

@@ -247,9 +247,6 @@ dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp)

if (!BN_rand_range(&k, dsa->q))

goto err;

} while (BN_is_zero(&k));

-if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {

-BN_set_flags(&k, BN_FLG_CONSTTIME);

-}

if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {

if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p,

@@ -283,6 +280,15 @@ dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp)

} else {

K = &k;

}

+

+ /* Fix for CVE-2016-2178

+ * Setting the BN_FLG_CONSTTIME flag should occur immediately before

+ * the exponentiation code.

+ */

+ if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {

+ BN_set_flags(K, BN_FLG_CONSTTIME);

+ }

+

DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, K, dsa->p, ctx,

dsa->method_mont_p);

if (!BN_mod(r,r,dsa->q,ctx))

--

1.7.9.5

Figure A.2: Patch submitted to LibreSSL fixing the software defect in
crypto/dsa/dsa ossl.c.

APPENDIX A. FIRST APPENDIX 70

From 8593061ae8f4b6b2f4cd0fad03be3e5eabdda7e6 Mon Sep 17 00:00:00 2001

From: Cesar Pereida <cesar.pereida@aalto.fi>

Date: Fri, 27 May 2016 09:53:09 +0300

Subject: [PATCH] Fix for CVE-2016-2178

crypto/dsa/dsa.c | 8 ++++++--

1 file changed, 6 insertions(+), 2 deletions(-)

diff --git a/crypto/dsa/dsa.c b/crypto/dsa/dsa.c

index fe29aa0..6eca7c5 100644

--- a/crypto/dsa/dsa.c

+++ b/crypto/dsa/dsa.c

@@ -819,8 +819,6 @@ int DSA_sign_setup(const DSA *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv,

}

} while (BN_is_zero(&k));

- BN_set_flags(&k, BN_FLG_CONSTTIME);

-

if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,

(CRYPTO_MUTEX *)&dsa->method_mont_p_lock, dsa->p,

ctx)) {

@@ -847,6 +845,12 @@ int DSA_sign_setup(const DSA *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv,

K = &kq;

+ /* Fix for CVE-2016-2178

+ * Setting the BN_FLG_CONSTTIME flag should occur immediately before

+ * the exponentiation code.

+ */

+ BN_set_flags(K, BN_FLG_CONSTTIME);

+

if (!BN_mod_exp_mont(r, dsa->g, K, dsa->p, ctx, dsa->method_mont_p)) {

goto err;

}

--

1.7.9.5

Figure A.3: Patch submitted to BoringSSL fixing the software defect in
crypto/dsa/dsa.c.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Contributions
	1.4 Structure of the Thesis

	2 Background
	2.1 Digital Signature Schemes
	2.1.1 Domain Parameters

	2.2 Discrete Logarithm Problem and Related Problems
	2.2.1 Computational Diffie-Hellman Assumption
	2.2.2 Decisional Diffie-Hellman problem.

	2.3 The Digital Signature Algorithm (DSA)
	2.3.1 DSA Parameters
	2.3.2 DSA Private-Public Key Pairs
	2.3.3 Signing
	2.3.4 Verifying
	2.3.5 DSA in Practice

	2.4 DSA's Sliding Window Exponentiation
	2.5 Protocols
	2.5.1 SSH
	2.5.2 TLS

	2.6 Memory Hierarchy
	2.6.1 Cache architecture
	2.6.2 Cache Replacement Policies
	2.6.3 Address Space Layout Randomization

	2.7 Covert Channels
	2.7.1 Memory Cache as a Covert Channel

	2.8 Cryptographic Attacks
	2.8.1 Implementation Attacks
	2.8.2 Side-Channel Attacks

	3 Cache-Timing Attacks
	3.1 Cache-Timing Techniques
	3.1.1 The Evict+Time Technique
	3.1.2 The Prime+Probe Technique
	3.1.3 The Flush+Reload Technique
	3.1.4 The Spy Process
	3.1.5 Performance Degradation Technique
	3.1.6 The Degrading Process

	3.2 Partial key disclosure
	3.2.1 The Hidden Number Problem
	3.2.2 Lattice attack

	3.3 Cache-Timing Data Processing
	3.3.1 Vector Quantization
	3.3.2 Hidden Markov Models
	3.3.3 Cache-Timing Data Analysis for DSA

	4 Related Work
	5 Implementation
	5.1 A New Software Defect
	5.2 Exploiting the Defect
	5.3 Victimizing Applications
	5.3.1 Attacking TLS
	5.3.2 Attacking SSH
	5.3.3 Observations

	5.4 Recovering the private key
	5.4.1 Extracting the least significant bits
	5.4.2 Lattice attack implementation

	6 Results
	7 Discussion
	7.1 Challenges
	7.2 Mitigation
	7.3 Disclosure of the Attack

	8 Conclusions
	8.1 Future work

	A First appendix

