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Abstract 
  
  
  
Infrastructure-as-a-Service (IaaS) cloud data centers offer computing resources in the form 
of virtual machine (VM) instances as a service over the Internet. This allows cloud users to 
lease and manage computing resources based on the pay-as-you-go model. In such a scenario, 
the cloud users run their applications on the most appropriate VM instances and pay for the 
actual resources that are used. To support the growing service demands of end users, cloud 
providers are now building an increasing number of large-scale IaaS cloud data centers, con-
sisting of many thousands of heterogeneous servers. The ever increasing heterogeneity of both 
servers and VMs requires efficient management to balance the load in the data centers and, 
more importantly, to reduce the energy consumption due to underutilized physical servers. To 
achieve these goals, the key aspect is to eliminate inefficiencies while using computing resour-
ces. This dissertation investigates the VM management problem for efficient IaaS cloud data 
centers. In particular, it considers VM placement and VM consolidation to achieve effective 
load balancing and energy efficiency in cloud infrastructures. VM placement allows cloud 
providers to allocate a set of requested or migrating VMs onto physical servers with the goal to 
balance the load or minimize the number of active servers. While addressing the VM placement 
problem is important, VM consolidation is even more important to enable continuous reorga-
nization of already-placed VMs on the least number of servers. It helps create idle servers 
during periods of low resource utilization by taking advantage of live VM migration provided 
by virtualization technologies. Energy consumption is then reduced by dynamically switching 
idle servers into a power saving state. As VM migrations and server switches consume addi-
tional energy, the frequency of VM migrations and server switches needs to be limited as well. 
This dissertation concludes with a sample application of distributed computing to big data 
analytics. 
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1. Introduction and Motivation

Infrastructure–as–a–Service (IaaS) cloud data centers — including Ama-

zon EC2 [3], IBM Cloud [61], Google Compute Engine [47], and Rackspace

[116] — offer several types of virtual machines (VMs) that differ in their

amount of resources based on the pay–as–you–go model [21, 138]. This

allows cloud users to run their applications on the most appropriate VM

instances and pay for the actual resources that are used [2]. To support

the growing service demands of their users, cloud providers have recently

begun to deploy an increasing number of large–scale IaaS cloud data cen-

ters, thus resulting in a huge energy consumption [91]. As reported in

Analytics Press, energy consumption by data centers worldwide increased

by about 56% from 2005 to 2010, and in 2010 likely accounted for between

1.1% and 1.5% of the total electricity use [70]. Additionally, the energy–

related costs accounted for roughly 42% of the total costs of a data cen-

ter [54].

IaaS cloud data centers currently consist of many thousands or even

millions of heterogeneous servers and each server may host a set of het-

erogeneous VMs. Accordingly, Rackspace’s IaaS has increased the total

server count in the third quarter of 2014 to 110,453, up from 107,657

servers at the end of the previous quarter, and the number of servers

continuously grows [69, 115]. Amazon EC2 had approximately 40,000

servers and launched 80,000 VMs daily in 2011 [33] and it has been esti-

mated that one and half million servers were running millions of VMs in

2014 [136]. Google was estimated to have around 1.8 million servers as

of January 2012 and 2.3 million servers by early 2013 [63, 123]. Further-

more, the number of VM requests deployed in a cloud data center each

day can be very large; it has been estimated that approximately 360,000

VM requests were deployed within 24 hours in a single data center in

2013 [9]. These numbers may be even larger today as cloud computing
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Introduction and Motivation

is much more popular than two years ago. Therefore, the ever increas-

ing heterogeneity for both the physical servers and the VMs needs to be

managed efficiently in order to achieve the following key goals: maximize

resource utilization and reduce the energy costs [24, 58, 134, 150].

To address the problem of high energy use in IaaS cloud data centers,

it is necessary to eliminate inefficiencies while using computing resources.

This may be achieved by improving resource allocation and management [5,

74, 94, 103, 114]. However, such resources may also vary over time due to

dynamic workloads that require resizing, creating, and (or) terminating

VMs. Furthermore, computing resources consist of multiple types (or di-

mensions) — including CPU, memory, disk, and network bandwidth —

and all need to be considered while designing energy–efficient mecha-

nisms for resource management [149]. As a consequence, if the owners

of cloud data centers could not effectively schedule and reallocate het-

erogeneous VM instances and resource types, some hosts might become

overloaded while other hosts might be underutilized. Eventually, such an

unbalanced use of hosts could result in unnecessary activation of servers,

thus consuming huge amounts of electrical energy and resulting in high

operating costs [50, 87]. Moreover, by considering the actual VM re-

source utilization after VM placement, increasing the workload of some

already–placed VMs may cause the corresponding physical servers to be

overloaded, possibly affecting the quality of service (QoS) experienced by

the hosted applications. In fact, the QoS level offered to cloud users needs

to fulfill the service level agreement (SLA) of the cloud provider [11, 17].

On the other hand, physical servers may become underloaded due to a

decrease in the VM workloads, but would still contribute to significant

amounts of power consumption in data centers. In such a scenario, it is

beneficial to move all VMs to other servers and switch the underloaded

machine into a power–saving state (e.g., suspend) to save energy [16, 90].

One method to improve resource utilization and reduce the energy con-

sumption is VM placement [59, 78, 79, 83]. In most scenarios, when cloud

users submit their VM requests, some physical server(s) in the IaaS cloud

data center will be selected to deploy the required VMs [82, 102]. Partic-

ularly, VM placement allows cloud providers to allocate a set of VMs to

physical servers with the goal to minimize the number of active machines

to accommodate the VMs [52, 60, 80, 97]. To this regard, choosing the

most appropriate target machine in a large pool of physical servers to cre-

ate the requested VMs provides a strong motivation for cloud providers to
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maximize their operational efficiency [65].

While addressing the VM placement problem is important to minimize

the number of active servers starting from the VM submission, VM con-

solidation enabled by virtualization technologies [99, 122] is even more

important to support continuous consolidation of already–placed VMs on

the least number of physical servers [29, 35, 89, 110]. Virtualization al-

lows multiple VMs to be placed into the same physical server and each

VM may run multiple application tasks, thus ensuring that the server is

optimally utilized while reducing the energy consumption [76, 101, 126].

Multiple resource types — i.e., CPU, memory, storage, and network band-

width — may be dynamically provisioned for a VM according to the cur-

rent resource requirements [1, 102]. This enables the consolidation of

VMs in the minimum number of servers to switch off unused machines,

with the goal to reduce the total power consumption [12, 104, 145]. By

taking advantage of virtualization technologies, cloud providers are al-

lowed to increase the energy efficiency of the cloud data centers and scale

the costs of the offered virtualized resources.

Another capability provided by virtualization is live migration, which

is the ability to transfer a VM between physical servers with little or no

migration downtime during the process [27, 56, 142]. By using live migra-

tion, VMs may be dynamically consolidated into a few physical servers,

then unused machines (i.e., those that do not host any VMs) may be

switched off [12, 36, 80, 144, 145]. This approach helps improve the

resource utilization and allows energy savings in compliance with the

SLA [49]. VM consolidation with live migration is closely related to the

problem of: (1) determining when a server is overloaded (i.e., a hot spot),

then migrating the potential VMs from such a server to maintain a cer-

tain QoS; and (2) determining when a server is underloaded (i.e., a cold

spot), then migrating all VMs from such a server to minimize energy con-

sumption. Idle hosts are automatically switched to a low–power mode to

reduce the energy consumption. When required, the low–power hosts are

reactivated to accommodate newly–created VMs or VMs being migrated.

However, it is challenging to decide whether a host is overloaded or un-

derutilized due to the diverse set of user applications and the variability

of the VM workloads with time, especially in a cloud data center with

millions of machines. Purely based on the last observed utilization for de-

cision making, existing solutions may cause unnecessary migrations, thus

increasing the overhead: the energy for VM migration, the performance
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degradation of the hosted applications, and extra network communica-

tions [37, 88, 125, 147, 148]. For those reasons, even though live migra-

tion is a suitable solution for managing VM populations, it is important

to avoid unnecessary VM migrations. For instance, commercial IaaS plat-

forms such as Amazon EC2 and Microsoft Azure do not use VM migration

at all. In any case, hot and cold spots should be carefully determined,

in order to limit the frequency of VM migrations. During migration of

VMs, if there is no active physical server with sufficient resources avail-

able, an inactive server is automatically started and the selected VMs are

allocated to such a machine. In addition, when a host is underutilized,

all VMs from such a host are selected for migration if they can be con-

solidated into other hosts without causing overutilization. Idle servers

are then switched to a low–power state to save energy. However, switch-

ing the power state of a host from idle to a low–power state and vice versa

consumes additional energy [50, 51, 71, 85, 133]. Therefore, as VM migra-

tions and server switches are essential for power reduction, it is even more

important to avoid massive migrations and limit power state switches.

This doctoral dissertation is motivated by the limitations of the current

VM management algorithms implemented in the OpenStack, OpenNeb-

ula, and Eucalyptus cloud management middlewares [57, 107, 113]. Such

IaaS platforms use very simple VM management algorithms, i.e., round

robin, greedy First–Fit, load–aware, and do not enable energy–efficient

cloud infrastructures. Therefore, VM management solutions for large–

scale data centers must be designed to effectively take power consump-

tion into account while guaranteeing the application QoS level. Accord-

ingly, the scientific contribution of this dissertation is VM management

for energy–efficient IaaS cloud data centers. Particularly, to achieve en-

ergy efficiency in cloud infrastructures, two key VM management algo-

rithms — specifically, for VM placement and VM consolidation — are pro-

posed. They are capable of: (1) limiting the number of active physical

servers; (2) creating idle servers, then transitioning such idle servers in

a power–saving state and reactivating them once required; and (3) mini-

mizing the number of VM migrations and server switches along with the

number of activated servers. Besides, big data applications run on large

clusters within data centers, and the related energy costs make their pro-

cessing time an extremely critical component. MapReduce [30] and its

open–source implementation Hadoop [39] have emerged as the leading

computing platforms for big data analytics. Reducing the processing time
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of big data applications based on Hadoop MapReduce leads to a significant

decrease in the overall operating cost of a data center. This dissertation

further addresses data–intensive applications by designing a distributed

computing system for big data analytics, specifically, for semantic anal-

ysis. The proposed system helps reduce the execution time for running

data–intensive processes, thus improving the system performance and the

energy consumption as a side effect.

1.1 Research Problems and Questions

This dissertation tackles the above–mentioned research challenges by pro-

posing algorithms for managing VMs with the goal to optimize the perfor-

mance of an IaaS cloud data center in terms of balanced use of resources

and reduced energy consumption. In particular, the following research

problems are considered:

• Energy Efficiency. Energy efficiency is a major concern for IaaS cloud

data center providers. By taking advantage of virtualization technolo-

gies, cloud providers are allowed to increase the energy efficiency of

their infrastructures by minimizing the number of active servers along

with the number of VM migrations. Furthermore, energy saving may be

achieved by switching idle servers to a power–saving state while mini-

mizing the number of power state changes (i.e., between on and off). In

large–scale cloud data centers, improving the energy efficiency only by

a few percent may save millions of dollars in electricity costs [67].

• Scalability. IaaS cloud data centers to date consist of millions of het-

erogeneous physical servers and VMs. To improve the utilization of

physical resources, the management of IaaS clouds would ideally em-

ploy optimal VM placement and VM consolidation, which are known

to be NP hard problems [53, 129]. Thus, a practical management of

such large–scale data centers requires highly scalable VM management

algorithms. Consequently, VM placement and consolidation algorithms

dealing with an ever growing number of heterogeneous servers and VMs

are a challenge with a high level of complexity.

• Performance. In IaaS clouds, heterogeneous resources such as compu-

tation and storage are provisioned on–demand by cloud providers in the
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form of VMs. This allows cloud users to run their applications on the

most appropriate VMs and pay for the actual resources that are used.

Specifically, IaaS clouds are suitable for deploying high performance

computing [32, 100], scientific workflows [121], and social network appli-

cations [25]. Furthermore, VM management algorithms should guaran-

tee adequate performance by avoiding overloads of any resources under

VM placement and VM consolidation.

In more detail, the following research questions (RQs) related to the

previous research problems are investigated and answered in this disser-

tation:

• RQ1: How to consider multiple types of resources and balance

the load among them? VM management for energy–efficient IaaS

cloud data centers should take into account multiple resource types si-

multaneously, since CPU is not the only critical resource in cloud data

centers. In fact, also memory and network bandwidth may become a

bottleneck, possibly causing violations in the SLA. Furthermore, multi-

ple applications of various types may have different demands in terms

of resources. For instance, a request for computer–intensive applica-

tions (e.g., weather forecast and big data analytics) needs more CPU

or memory resources and a request for database and memory caching

applications (e.g., web hosting and online banking) needs more I/O re-

sources. Therefore, VM management algorithms should consider multi-

ple types of resources and spread the load among them to help resolve

one of the most compelling issues in cloud data centers: underutiliza-

tion of physical servers due to an unbalanced use of resources across

multiple dimensions.

• RQ2: When to migrate virtual machines? The VM consolidation

problem consists of two basic phases: (1) determining when a server

is overloaded, then migrating the potential VMs from such a server to

maintain a certain QoS; and (2) determining when a server is under-

loaded, then migrating all VMs from such a server to minimize energy

consumption. In a large IaaS cloud data center with millions of physi-

cal machines, the variability of already–placed VM workloads with time

makes challenging to decide whether a host is overloaded or underuti-

lized. Consequently, more efficient overload and underload management
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schemes are needed to correctly make decisions on VM migration. In

other words, hot and cold spots should be reliably determined across

multiple resources to limit the frequency of VM migrations.

• RQ3: Which and how many virtual machines should be selected

for migration? When a server is overloaded, it is challenging to de-

termine which and how many VMs should be selected for migration to

suitable hosts. As migration is expensive, VM selection plays an im-

portant part in limiting the number of VMs migrations. The problem

consists of selecting one or more potential VMs for migration to reduce

the resource load of the considered servers.

• RQ4: Where to place a virtual machine just created or under

migration? The target physical server should be correctly selected in

large cloud data centers to allocate newly–created VMs or those under

migration. As the result of VM allocation requests or migrations, the

target servers may become overloaded during periods of high resource

utilization. Consequently, an overloaded host management scheme is

required to detect overload situations. Such a scheme also supports VM

placement algorithms in deciding which physical machines are the most

suitable to accommodate VMs being submitted or migrated. The prob-

lem here consists of selecting a target server not only based on the least

increased power consumption but also based on its utilization stability.

In other words, a selected server should not be overloaded in the future

period of time after placing VMs.

• RQ5: When and how many servers should be switched to a low–

power state and vice versa? Switching the power state of a host

from idle to off or from inactive to on consumes additional energy. In

a dynamic environment such as cloud data centers where the resource

needs of VMs vary over time, power state switches are essential for re-

ducing energy consumption. However, it is even more important to limit

the switching frequency.

• RQ6: How to design a distributed–based approach for big data

applications? To provide a scalable and efficient approach to process-

ing large amounts of data, it is necessary to study the performance and

the energy efficiency of cloud computing jobs in terms of computation
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time.

To answer the research questions mentioned above, this dissertation

develops a set of algorithms for VM placement (Publication I) and VM

consolidation (Publication II, Publication III, and Publication IV). In ad-

dition, this dissertation implements a scientific application to perform

computationally–heavy tasks (Publication V). The research questions are

answered in these publications as shown in Table 1.1.

Publications
I II III IV V

Energy Efficiency and Scalability Performance

RQ1: How to consider multiple types of resources √ √
–

√
–

and balance the load among them?

RQ2: When to migrate virtual machines? –
√ √ √

–

RQ3: Which and how many virtual machines
–

√ √ √
–

should be selected for migration?

RQ4: Where to place a virtual machine just created √ √ √ √
–

or under migration?

RQ5: When and how many servers should be
– –

√ √
–

switched to a low–power state and vice versa?

RQ6: How to design a distributed–based approach
– – – –

√
for big data applications?

Table 1.1. How the publications address the research questions.

1.2 Methodology

This doctoral dissertation tackles the previously–described research ques-

tions by employing the following methods and tools.

• Infrastructure–as–a–Service (IaaS) allows customers (e.g., cloud us-

ers) to lease and manage virtual resources (e.g., CPU, memory, stor-

age, and network bandwidth) over the Internet in the form of VM in-

stances [13, 151]. Some well–known public IaaS clouds include Ama-

zon EC2 [3], Google Compute Engine [47], and Rackspace [116]. More-

over, a number of open–source IaaS cloud management systems have

been developed including CloudStack [40], Eucalyptus [57, 105], Nim-

bus [106], OpenNebula [107], and OpenStack [113]. This doctoral dis-

sertation mainly focuses on the IaaS model.

• Virtualization is widely deployed in large–scale data centers and be-

comes the foundation of cloud computing due to its ability to isolate
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co–located application workloads and its efficiency for resource multi-

plexing [146]. This technology allows IaaS infrastructures to create

several VMs on a physical server; therefore, it reduces the amount of

hardware in use and improves the utilization of resources. The virtual-

ization layer for hypervisor–based virtualization is placed between the

hardware and the operating system (OS). It is implemented by a Vir-

tual Machine Monitor (VMM) [122], which controls resource multiplex-

ing and manages the allocation of physical resources (e.g., CPU, memory,

storage, and I/O devices) to the VMs. There are two major types of im-

plementation of hypervisor–based virtualization [140]: full virtualiza-

tion (e.g., VMware Workstation [141], VirtualBox [108], Kernel–based

Virtual Machine (KVM) [66], and Microsoft Hyper–V [93]) and paravir-

tualization (e.g., Xen Paravirtualization [6]). This doctoral dissertation

focuses on hypervisor–based virtualization; therefore, the term virtual-

ization throughout the dissertation refers to this category.

• Virtual machine placement is the process of selecting the appropri-

ate physical server in large cloud data centers to accommodate newly–

created or migrated VMs. The goal of VM placement is to assign the

VMs to servers in such a way that the number of used servers is mini-

mized.

• Virtual machine consolidation is enabled by virtualization technolo-

gies [55, 71]. This allows cloud providers to create multiple VM in-

stances on a single physical server, thus improving resource utiliza-

tion and creating idle servers. The reduction in energy consumption

is achieved by switching such idle hosts to low–power states (e.g., sus-

pend, sleep, hibernation, or shutdown) during periods of low utilization,

thus eliminating idle power consumption.

• Live virtual machine migration is a method to transfer VMs between

physical hosts over a local or wide area network without shutting these

VMs down [120, 31, 148]. VM migration may be performed automati-

cally by a cloud management system. For instance, multiple VMs can be

consolidated on a fewer number of servers for energy saving purposes.

However, this process may impact on the performance of applications

running on a VM, the source and destination hosts, other VMs, and the

network during a migration [130]. VM live migration can be categorized
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into three approaches: pre–copy, post–copy, and a combination of both.

This doctoral dissertation primarily focuses on the pre–copy approach

to live VM migration, which is the chosen method for performing live

migration in the Xen hypervisor [27].

• Multiple usage prediction utilizes machine learning techniques (e.g.,

neural networks and linear regression) to predict future resource uti-

lization in the cloud with respect to time [62]. However, training neural

network models takes significant time, which depends on the size of the

input as well as the frequency of predictions. Therefore, it is important

to determine effective learning algorithms for consolidating VMs in dy-

namic environments, such as cloud data centers with millions of hetero-

geneous machines and heterogeneous resource types. This dissertation

utilizes the Multiple Linear Regression technique [143] to forecast the

future resource utilization in terms of multiple resource types — i.e.,

CPU, memory, storage, and network bandwidth — based on historical

data.

• CloudSim is the simulation tool used to evaluate the effectiveness of

the proposed schemes in a practical cloud scenario [22]. This disserta-

tion extends CloudSim to handle both multi–resource types and energy–

awareness.

• Virtual machine utilization follows the workload traces from both

real–world public workloads as well as synthetic workloads with differ-

ent availability of resource types, including PlanetLab VMs (CPU and

memory) [111], Google Cluster Data (CPU and memory) [137], the Real

Parallel Workloads from Production Systems (CPU and memory) [119],

Amazon EC2 (CPU, memory, and storage), and the uniform and normal

distribution (CPU, memory, storage, and network bandwidth) [12, 82].

Specifically, the usage of each type of resources in the real–world public

dataset is collected every five minutes based on an empirical evaluation

of the considered workloads (additional considerations on this aspect

are provided in Chapter 5). According to the available resource types

of the considered workloads, this doctoral dissertation sets the resource

dimension to D = 2, D = 3, and D = 4, then adopts |D|–dimensional VM

placement and VM consolidation in the simulations.
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• Hadoop MapReduce is a software framework which allows cloud users

to solve computationally–intensive problems. In particular, MapReduce

is a simple programming model to run distributed computation on very

large data sets using large clusters of commodity machines [30]. Its

open–source implementation Hadoop [39] includes two main components:

the Hadoop Distributed File System (HDFS) and the MapReduce dis-

tributed computing paradigm.

1.3 Contributions

This dissertation summarizes five peer reviewed publications whose con-

tribution is briefly described below.

Publication I proposes a multi–resource VM placement algorithm for

maximizing the utilization and balancing the load across different types

of resources in cloud data centers. The research goal is to allocate a set

of VMs to physical machines such that the number of servers required to

accommodate the VMs is minimized. This is achieved by implementing

a multi–resource VM placement algorithm. However, most of the exist-

ing solutions only consider a limited number of resource types (in many

cases only the CPU), thus resulting in an unbalanced load or in the un-

necessary activation of physical servers. To solve this limitation, Publi-

cation I investigates the use of multiple resource–constraint metrics that

help find the most suitable server for deploying VMs in large cloud data

centers. Accordingly, a multi–resource VM placement algorithm called

Max–BRU is proposed for spreading the load across multiple dimensions.

Max–BRU is especially attractive for the VM placement problem due to

its polynomial time worst–case complexity on the number of the VM de-

ployment requests. The Max–BRU algorithm is evaluated through simu-

lation experiments and is compared with the eight other state of the art

approaches: Greedy First–Fit [57, 65, 68, 82, 84], Load–aware [28, 107],

VectorDot [125], Market Mechanism [147], the Min–Min and Max–Min

heuristics [43, 53, 127], the algorithm proposed in [26], and an extension

of the volume metric introduced in [144]. Simulation results demonstrate

that Max–BRU obtains a more balanced use of resources than the state

of the art. As a consequence, it makes a more efficient use of multiple

resources, thus reducing the number of required active physical servers

in cloud data centers.
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Publication II proposes a multi–resource selection (MRS) scheme for

consolidating VMs in cloud data centers. Additionally, an efficient VM

consolidation algorithm called BMRU is proposed for balancing the us-

age of resources across multiple dimensions. The VM consolidation algo-

rithm is important to enable continuous consolidation of already–placed

VMs on the least number of physical servers. Therefore, the proposed

BMRU algorithm integrates with MRS and uses the current utilization of

multiple types of resources to characterize and classify a physical server.

This is particularly important to avoid an unbalanced load over multi-

ple types of resources and further increase the resource utilization of a

data center. To save energy, the BMRU algorithm detects idle physi-

cal servers, transitions them into a power–saving state (e.g., suspend),

and reactivates them once required. Before this can be achieved, under-

loaded host detection and VM migration are performed along with VM

consolidation. Both mechanisms aim at placing VMs on the least num-

ber of servers and release lightly–utilized machines. To evaluate BMRU,

a custom simulator has been written in Java; a 4–dimensional VM con-

solidation scheme has then been evaluated under synthetic workloads

(considered CPU, memory, storage, and network bandwidth) and a 2–

dimensional VM consolidation scheme under the real–world Google Clus-

ter Data [137] and RIKEN Integrated Cluster of Clusters [119] workloads

(considering CPU and memory). The experimental results have proven

that the proposed approach obtains a more balanced use of multiple re-

sources, thus increasing the energy efficiency of a data center by minimiz-

ing the number of active physical servers.

Publication III proposes a VM consolidation with usage prediction (VM-

CUP) algorithm for a more efficient detection of overloaded and under-

loaded servers to avoid unnecessary VM migrations and server switches.

The key idea of the proposed approach is to predict the short–term us-

age of a single computing resource (i.e., the CPU utilization in a five–

minute horizon) and use the current and predicted usage metrics for a

reliable characterization of overloaded and underloaded servers. In addi-

tion, the proposed solution is aligned with green computing strategies,

in which physical machines may be powered off to save energy. The

proposed algorithm is evaluated in a practical cloud scenario by extend-

ing the CloudSim simulation toolkit [22]. VMCUP is compared to four

well–known overutilized host detection approaches in [12]: static thresh-

old (THR), the median absolute deviation (MAD), the interquartile range
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(IQR), and a dynamic threshold based on local regression (LR). Extensive

experiments performed on the Google Cluster Data [137] and the Planet-

Lab VMs [111] workload traces show that VM consolidation embedding

usage prediction reduces the energy consumption while limiting both the

number of migrations and the power state changes. As a consequence, it

improves the performance of a data center with a better compliance with

the service level agreement (SLA).

Publication IV extends the VMCUP approach presented in Publication

III to predict the long–term utilization over multiple types of resources

(i.e., CPU, memory, disk, and network bandwidth). This publication makes

the following contributions: (1) it adapts the previously proposed usage

prediction (UP) in Publication III to enable multiple usage prediction

(MUP), in terms of both resource types and the horizon employed to pre-

dict future utilization; (2) it introduces a VM selection policy — namely,

the minimum resource temperature (MRT) — that migrates a VM based

on the joint impact of multiple resources; (3) it embeds the MUP scheme

into the power–aware best fit decreasing (PABFD) solution through a new

VM placement algorithm called PABFD–MUP so as to select a target

physical server not only based on the least increased power consumption

but also on its utilization stability, predicted by using the MUP scheme;

and (4) it proposes an algorithm for VM consolidation with multiple us-

age prediction (VMCUP–M) for energy–efficient IaaS cloud data centers.

The key idea of the proposed algorithms to achieve both multiple–resource

and multiple–step prediction is to apply underloaded and overloaded host

management, VM selection, and VM placement under migration. Specifi-

cally, the joint use of current and predicted resource utilization over mul-

tiple dimensions allows for a reliable characterization of overloaded and

underloaded servers, thereby reducing both the load and the power con-

sumption after consolidation. In addition to that, MUP helps limit the

number of active servers, the number of VM migrations and power state

changes, thus achieving a better compliance with the SLA. VMCUP–M

has a polynomial time complexity on the number of the VMs to be al-

located in the data center. The CloudSim simulation toolkit [22] is ex-

tended to handle multiple types of resources and energy–aware simula-

tions. VMCUP–M is then implemented on top of such an extended ver-

sion of CloudSim and is evaluated with the following existing approaches

in [12]: (1) overutilized host detection: static and dynamic hot thresholds;

(2) VM selection: minimum migration time (MMT), maximum correlation

31



Introduction and Motivation

(MC), minimum utilization (MU), and random selection (RS); and (3) VM

placement: power–aware best fit decreasing. Furthermore, VMCUP–M is

compared to the multiple–resource black–box and gray–box (BG) scheme

introduced in [144] through our own implementation based on extending

the volume metric across two resources, i.e., CPU and memory. Extensive

experiments performed on the 1,600 VMs from Google Cluster Data [137]

and the 1,473 VMs from PlanetLab [111] workload traces show that VM

consolidation embedding multiple usage prediction reduces the energy

consumption while limiting the number of active physical servers, the

number of migrations and power state changes, thus increasing the per-

formance of a cloud data center with a better compliance with the SLA.

Publication V proposes Distributed Semantic Analysis (DSA), a big data

system that integrates a distributed computing with semantic analysis,

thereby allowing cloud users to efficiently process large amounts of data

(e.g., huge amounts of Wikipedia articles). This publication is targeted

to application–aware approaches that consider high–level application re-

quirements in terms of QoS (e.g., response time) while performing com-

putationally–heavy tasks. In particular, Hadoop MapReduce is used to

build an environment that can easily be scaled through virtualization to

split the source data and process them in parallel [30, 39]. Extensive

experiments are done on a Hadoop MapReduce cluster to determine the

execution time for analyzing Wikipedia data and then to evaluate the per-

formance of the proposed DSA system. Accordingly, DSA can significantly

improve the energy efficiency of a real IaaS cloud by reducing the compu-

tation time to analyze big data.

1.4 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 discusses

efficient VM placement, while Chapter 3 focuses on VM consolidation for

saving energy in cloud data centers. Chapter 4 presents an application

of distributed computing to big data analytics. Chapter 5 concludes the

dissertation with a summary of the main contributions and a discussion

of future research directions. Finally, the original papers are provided at

the end of the dissertation.
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2. Efficient Virtual Machine Placement

This doctoral dissertation is about efficient Infrastructure–as–a–Service

(IaaS) cloud data centers, with focus on energy efficiency. To provide a

context for the reader concerning the motivations of the dissertation, this

chapter first outlines the key components for energy–efficient cloud data

centers. The state of the art on the algorithms for energy–efficient vir-

tual machine (VM) placement is then reviewed. Such a review shows that

existing VM placement algorithms mostly consider a limited number of

resource dimensions (e.g., a single CPU resource) and have several limi-

tations. They include neglecting multiple types of resources as well as the

heterogeneity of physical servers and VMs. To address these limitations,

the main contributions in this chapter are to implement and evaluate a

VM placement solution which: (1) considers multiple types of resources

such as CPU, memory, storage, and network bandwidth; and (2) balances

the load across different types of resources while placing VMs.

This chapter presents research done in Publication I. In particular, the

Max–BRU VM placement algorithm for maximized balanced resource uti-

lization over multiple dimensions is summarized. The Max–BRU algo-

rithm is evaluated through a custom simulator written in Java. Accord-

ing to the experimental results from both synthetic and real–world work-

loads, the proposed algorithm significantly reduces the number of active

servers, thus minimizing the power consumption of IaaS cloud data cen-

ters while, at the same time, balancing the usage of multiple types of

resources.

2.1 Case Study: Energy Efficiency of Data Centers

The largest energy consumption within a typical data center is repre-

sented by the servers, which account for about 60% of the data center’s
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Architecture Number of servers CPU Memory Server population (%)
1 6728 0.50 0.50 53.469
2 3864 0.50 0.25 30.708
3 1003 0.50 0.75 7.971
4 795 1.00 1.00 6.318
5 126 0.25 0.25 1.001

6 54 0.50 0.13 0.429

7 5 0.50 0.03 0.040

8 4 0.50 0.97 0.032

9 3 1.00 0.50 0.024

10 1 0.50 0.06 0.008

Table 2.1. Statistics of machines in the Google Cluster Data.

overall consumption [54]. This means that the energy efficiency of the

servers is the key component for an energy–efficient data center. Unfor-

tunately, such servers are heterogeneous and mostly act at low resource

utilization levels [7, 8, 44]. To show the heterogeneity of the servers, I

first analyze the CPU and memory capacities from the Google Cluster

Data dataset [137], consisting of 12,583 machines. The statistics of the

servers are shown in Table 2.1, which provides the exact resource capac-

ity of the machines across different types of resources, thereby giving an

indication of the heterogeneity of servers in a data center. The data show

that physical machines have diverse CPU and memory capacities, specif-

ically, 30.708% of the servers belong to architecture 2 and 7.971% of the

servers to architecture 3.

Garraghan et al. [44] presented the average CPU and memory utiliza-

tion for the top four architectures, highlighted in bold (98.466% of the

server population) in Table 2.1. The results confirm that the average CPU

and memory utilization over all the servers are below 48% and 50%, re-

spectively. A study by IBM researchers in 2012 [15] reported that the

utilization of CPU, memory, and disk were 18%, 78%, and 75% (respec-

tively) over several thousands of servers and a two–year period. Such

results confirm that, while the CPU is seemingly underutilized, memory

and disk may already operate at high resource utilization levels. In this

scenario, it is a challenging problem to improve the resource utilization of

only the CPU without considering other resource types.

Underutilization of the servers in IaaS cloud data centers is a primary

source of inefficiency. Accordingly, the authors in [8] showed that Google

servers operate most of the time at between 10% and 50% of their max-

imum utilization levels. Such server utilization consumes almost half of

the energy compared to full utilization. Furthermore, a server still con-
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Figure 2.1. Server power usage at varying utilization levels of server platforms

from SPEC [118], i.e., (a) from idle to peak performance and (b) ac-

tive power ratio at idle and at 30% utilization (relative to the 100%

utilization).

sumes up to 60% of its peak power when it is completely idle, [7, 34, 77].

Figure 2.1a illustrates this through the power consumption of four differ-

ent server platforms from the Standard Performance Evaluation Corpo-

ration (SPEC) [118] against their utilization levels (0% means the server

is completely idle while 100% means the server is fully utilized). The re-

sults indeed demonstrate that the considered servers consumed up to 60%

of peak power at 0% utilization. Figure 2.1b shows the relative efficiency

of the 18 servers (referred from A to R, Avg is average) in the SPEC power

benchmark (data from 2015) when running idle and at 30% utilization

compared to the values obtained at a 100% utilization level. The results

confirm that idle servers consume about 20% of their peak power on the

average and that the servers operating at a low utilization (i.e., 30%) con-

sume around 43% of the peak power on the average. Overall, the study

showed that the overall energy consumption of a data center is due to the

underutilization of servers. Precisely, the energy is wasted due to the low

average resource utilization, typically ranging at between 10% and 50%,

where servers have their worst energy efficiency.

The key aspect for energy–efficient IaaS cloud data centers is to improve

the efficiency of the servers. This is possible by balancing the usage of

resources across multiple dimensions, thus helping to increase server uti-

lization. Furthermore, reducing the number of active physical servers sig-

nificantly decreases the overall energy consumption. This is achieved by

optimizing the assignment of VMs to physical machines in IaaS cloud data

centers. Energy consumption is further reduced by dynamically switching

35



Efficient Virtual Machine Placement

servers to a low–power mode during idle times.

Accordingly, this dissertation specifically focuses on managing VMs for

energy–efficient IaaS cloud through two main methods: VM placement

and VM consolidation (the details of the latter can be found in Chap-

ter 3). VM placement aims at balancing the load across different types

of resources, thus limiting the number of active servers, while VM consol-

idation enables to create idle servers that can be switched into a power–

saving state. Both approaches try to improve the server utilization through

more energy–efficient operating modes within a cloud data center.

In the following, the first major contribution of the dissertation with

focus on VM placement for efficient cloud data centers (Publication I) is

discussed after reviewing the related work on VM placement.

2.2 Virtual Machine Placement

Virtual machine placement is the process of selecting the appropriate

physical servers in large cloud data centers to accommodate newly–created

or migrated VMs. The goal of VM placement is to assign the VMs to

physical servers in such a way to allow efficient usage of resources [14,

26, 60, 86, 125]. Finding the optimal allocation of physical servers has

long been known to be an NP hard problem [53, 129]. As a consequence,

many heuristic algorithms have been proposed to find a feasible solution

within a reasonable time [19]. A well–known mapping algorithm is greedy

First–Fit (FF), which is used in the Eucalyptus cloud management mid-

dleware [57, 68, 84]. The First–Fit algorithm allocates each VM request

to the first physical server which satisfies the demands of the VM for all

resources, starting from the first server sorted according to a predefined

metric (e.g., available resources or power efficiency). An improvement

version of the FF algorithm is called First–Fit–Decreasing (FFD), which

sorts the VMs in decreasing order according to their resource demands.

FFD uses no more than 11/9 · OPT + 1 bins, where OPT is the number

of bins provided by the optimal solution [96]. Other greedy algorithms

have also been devised to solve the problem of VM placement, including

Best–Fit (BF), Worst–Fit (WF), and Next–Fit (NF). Besides, OpenNeb-

ula [28, 107] uses a load–aware policy that selects first the physical server

with the least used CPU for allocating VM requests. Other heuristic–

based resource allocation algorithms are Min–Min and Max–Min, which

have been largely adopted in the literature [43, 53, 127] to assign compu-
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tation resources in such a way to guarantee a target processing time. As

a consequence, the available CPU capacity becomes the main allocation

criterion affecting the task completion time. The major limitation of these

algorithms is that they only focus on meeting one objective called utility of

resources (greedy and load–aware) and on managing a one–dimensional

resource (Min–Min and Max–Min).

In [80, 81], computing capacity was used as the main allocation crite-

rion for VM creation and load minimization. Different algorithms, i.e.,

Greedy Worst–Fit, Sequential, Knapsack, and Time–bound Knapsack,

were then presented. The experimental results using synthetic bench-

marks show that Time–bound Knapsack achieves a 72% average load bal-

ancing, whereas the three other algorithms all result in loads above 80%.

In [84], two algorithms called Dynamic Round Robin (DRR) and a com-

bined DRR with First–Fit (Hybrid) were proposed, then compared with

both the Round Robin and Power Save scheduling strategies in Eucalyp-

tus. Simulation results showed that DDR and Hybrid decrease the power

requirements by 56.5% and 55.9% compared with Round Robin, respec-

tively. DDR and Hybrid also result in 3% less power consumption on av-

erage, compared with Power Save. A major limitation of these approaches

is that, in practice, different VM requests may have different demands in

terms of resource types. For instance, a request for general–purpose appli-

cations includes a balanced amount of CPU, memory, storage and network

resources; a request for computer–intensive applications needs more CPU

resources; and a request for data base and memory caching applications

needs more memory resources. Therefore, solutions that consider only

one resource as the main allocation criterion may be efficient for some re-

source dimensions while underutilizing others, thus resulting in higher

actual costs.

Most of the existing work on VM placement in data centers fails to take

advantage of the Min, Max, and Share parameters [23]. Particularly,

the Min parameter ensures that VM receives the minimum amount of

resources when powered on while the Max parameter ensures the maxi-

mum amount of resources for a VM to run a low–priority application. On

the other hand, the Share parameter advises the Virtual Machine Monitor

(VMM) to distribute resources among contending VMs. These parameters

allow VMs to run heterogeneous applications, wherein the amount of re-

sources allocated to a VM may be adjusted based on available resources,

power costs, and application utilities. The same work [23] also introduced
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a suite of algorithmic techniques to address the Min–, Max–, and Share–

aware placement problem called GreedyMax, GreedyMinMax, and Ex-

pandMinMax (respectively). The authors then proposed a VM placement

algorithm called PowerExpandMinMax. Simulation results on a range of

large synthetic data center setups and a small real data center testbed

have shown that leveraging such parameters may improve the overall

utility of the considered data centers by 47% or more. The limitation of

this work is that it considered CPU utilization only and was limited to

homogeneous servers.

Some works in the literature actually considered multiple resources for

VM placement [26, 52, 75, 97, 125]. For instance, a vector–based scheme

was employed by the HARMONY system for load balancing [125]. In

such solutions, resources were normalized along dimensions as vectors,

e.g., the resource requirement vector of VMs (RRV), the total resource ca-

pacity vector of servers (TCV), and the utilized capacity vector of servers

(UCV). The VectorDot metric, for instance, was defined as the dot product

of RRV and UCV and was proposed as a basis for choosing the target phys-

ical server for placing VM. Accordingly, after accepting the VM depend-

ing on the RRV, the placement scheme selects the physical server whose

UCV gives the lowest value derived from the dot product. Evaluation re-

sults on simulated data center environments of various sizes and a real

data center testbed have shown that VectorDot in combination with Best–

Fit (BFVD), First–Fit (FFVD), Worst–Fit (WFVD), and RelaxedBestFit

(RBFVD) achieves a more balanced resource usage compared to tradi-

tional greedy algorithms. For instance, the average system load obtained

by using VectorDot is quite high (i.e., 70%). A different metric based on

the vector–based approach, i.e., the cosine of the angle between UCV and

TCV, was also introduced in [26] to rank physical servers. In detail, the

authors proposed a scheme for balancing the utilization of multiple types

of resources by minimizing the angle between UCV and TCV among all

physical servers. Simulation results using randomly–generated data have

shown that the cosine of the angle makes the VM deployments much more

balanced in multiple resource utilization among the servers compared to

the method used in Sandpiper [144] (see also the discussion below).

A market–based solution for multiple–resource load balancing was pre-

sented in [147] in the context of job scheduling. For such a scenario, a

Market Mechanism (MM) scheme was introduced to balance multiple re-

sources among servers with heterogeneous capacities. The authors pro-
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posed a selection policy built on top of a pricing model to calculate the

cost per resource of a job. The policy chooses the server whose utilization

across different types of resources gives the lowest cost value. Simulation

results using randomly–generated data with uniform distribution have

shown that MM performs better than Latest Arrival Job (LAJ), Back-

fill Lowest (BL), and Backfill Balance (BB) in terms of load balancing.

Furthermore, MM maintains a high server utilization (i.e., 80 – 85%).

The work in [147] targets both homogeneous and heterogeneous physical

servers and considers CPU, memory, and network bandwidth.

Sandpiper [144] combined three dimensions into a single volume metric

as the product of its CPU, memory, and network utilization. The higher

utilization of multiple resources, the higher value of the volume met-

ric. The same work [144] also introduced a black–box and gray–box (BG)

strategy that adopts the volume metric to select target physical servers.

In particular, servers are sorted by ascending volume then considered for

allocation of VMs under migration. The implementation of Sandpiper

based on Xen has demonstrated that it may respond to network, CPU, or

memory hotspots and may collocate VMs that stress different resources to

improve overall system utilization (i.e., the aggregate CPU and network

utilizations on both servers falls below 50%). Different VM placement al-

gorithms have then been implemented to improve the resource utilization

of each dimensions by taking the volume metric as the main optimization

objective [97, 128, 135]. However, simple extensions of well–known VM

placement solutions may cause low resource utilization and unbalance

the load, thus requiring more active servers than those really needed and

increasing operational costs.

2.3 System Model and Considered Metrics

The target system is an IaaS environment, i.e., a large–scale cloud data

center consisting of M heterogeneous physical servers, denoted as P =

〈p1, p2, . . . , pM 〉. Each server is characterized as p = 〈pi, vm, r̂d〉 with mul-

tiple types of resources, d ∈ {1, ..., D}, D ∈ N, where: pi is the unique

identifier of a server; vm is a set of VM instances that are allocated in

p; and r̂d = {r̂1, r̂2, ..., r̂D} describes the type and amount of the d–th re-

source consumed, where each dimension corresponds to a given type of

physical resource (i.e., CPU, memory, storage, and network bandwidth).

Multiple independent cloud users submit requests for provisioning of N
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heterogeneous VMs, denoted as V = 〈v1, v2, . . . , vN 〉, which can be repre-

sented similarly to the multi–resource dimensions of physical servers. In

detail, a VM is represented as v = 〈vi, rd〉.
Let Ud

t (p) be the utilization of resource d ∈ {1, ..., D} of a server p at

time t. Then, Ud
t (p) of type d is defined as the total resource usage of all

running VMs in p divided by the total resource capacity of the considered

server:

Ud
t (p) =

udt (p) + wd(p)

r̂d(p)
, (2.1)

where udt (p) is the total resource usage of the d–th dimension of an already–

placed set vm of VMs that are allocated to p at time t, udt (p) =
∑

v∈vm(p) r
d(v);

wd(p) is the initial load of the d–th resource of p.

Let ut(p) = 1
|D|

∑|D|
d=1 U

d
t (p), d ∈ {1, . . . , |D|} be the mean value of the

resource utilization across the |D| dimensions, i.e., the overall average re-

source utilization of p at time t. Additional metrics are defined as follows.

Hottest resource ratio The hottest resource ratio RHt(p) of a server p

is defined as the maximum value of the resource utilization

RHt(p) = max
d∈{1,...,|D|}

Ud
t (p). (2.2)

The value of the RHt(p) metric is lower than or equal to one; the case

RHt(p) = 1 implies full load on at least one of the resources types in server

p. In such a case, the most utilized resource is the critical resource that

becomes a bottleneck for the server. We also define the type (or dimension)

of the hottest resource d̂ ∈ {1, . . . , |D|) as:

d̂ = argmax
d∈{1,...,|D|}

Ud
t (p). (2.3)

Resource balance ratio The resource balance ratio Bt(p) of a server p is

defined as the overall resource utilization divided by the hottest resource

ratio

Bt(p) =
ut(p)

RHt(p)
. (2.4)

Resource temperature ratio The resource temperature ratio RTt(p) of

an overutilized server p is defined as the hottest resource ratio beyond the

hot threshold

RTt(p) = RHt(p)− hd̂. (2.5)

Resource correlation ratio The resource correlation ratio RCt(v, p) is

defined as the absolute value of the resource of type d̂ required by the
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selected VM v, corresponding to the amount of the same resource type

that needs to be allocated

RCt(v, p) = |RTt(p) · r̂d̂(p)− rd̂(v)|. (2.6)

2.4 Virtual Machine Placement for Balanced Resource Utilization

The VM placement problem arises at the time cloud users submit a set of

VMs to IaaS clouds. A related goal is to find the most suitable physical

servers in a large cloud data center to accommodate the required VMs so

as to minimize the number of used servers. In most scenarios, when cloud

users send their VM requests, some physical server(s) in the cloud data

center will be selected to deploy the required VMs. Most of the existing

solutions only consider a limited number of resource types (e.g., a CPU

resource only), thus resulting in unbalanced load of other resources. Such

unbalanced use of resources may result in the unnecessary activation of

physical servers. For instance, the Eucalyptus cloud management mid-

dleware [57, 68, 84] uses a simple greedy First–Fit algorithm for placing

VM requests; it assigns a VM request to the first scanned physical server

that satisfies the demands of all resources for that specific VM. Open-

Nebula [28, 107] uses a load–aware policy that selects the physical server

with the most unused CPU first for allocating VM requests. The Min–

Min [43, 53, 127] heuristic algorithm assigns the VM request with the

lowest CPU capacity first to the server with the highest available CPU

capacity. On the other hand, the Max–Min [43, 53, 127] heuristic algo-

rithm assigns the VM request with the highest CPU capacity first to the

server with the highest available CPU capacity.

Other approaches actually considered multiple resources by combining

the usage of CPU capacity, memory, storage, and network into a single

metric for VM placement. For instance, the VectorDot approach [125] as-

signs a VM request with the resource requirement vector (RRV) to the

physical machine whose utilized capacity vector of servers (UCV) gives

the lowest dot product value after accepting that VM. The Market Mecha-

nism (MM) approach [147] assigns a VM to the server whose resource uti-

lization gives the lowest cost for that specific VM. The algorithm proposed

in [26] (referred to as Max–Cos in the following) assigns a VM request to

the server with the lowest cosine value between the UCV and the total

resource capacity vector of servers (TCV) of the physical machines.
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In contrast, Publication I considers multiple types of resources as CPU

capacity, memory, storage, and network bandwidth. Accordingly, Publi-

cation I proposes the Max–BRU algorithm that not only optimizes the

resource utilization but also balances the usage of resources across mul-

tiple dimensions, so that the total number of active servers is minimized.

The main idea of Max–BRU is the joint use of the resource utilization

and the resource balance metrics across different types of computing re-

sources. Therefore, a target physical server may accommodate many dif-

ferent types of VMs, thus requiring less active servers than those that

would otherwise be needed. As discussed in Section 2.1, the low server

utilization and an unbalanced use of resources across multiple dimen-

sions may result in the unnecessary activation of physical servers, thus

increasing actual costs. To this regard, the number of running servers is

extremely important since it induces the majority of the operational costs.

Publication I assumes that physical servers are initially empty (i.e., phys-

ical servers do not host any VMs) and the multiple types of resources

are CPU capacity, memory, storage, and network bandwidth. The Max–

BRU algorithm considers the VM resource requirements and the physi-

cal server resource capacities while placing VMs. In the following, the

Max–BRU algorithm is introduced. Then, the key evaluation results are

summarized.

2.4.1 The MAX–BRU Algorithm

Our research objective is to maximize the server utilization and balance

the load across multiple types of resources. Consequently, both the Ud
t (p)

and Bt(p) metrics are employed as the main allocation criteria. The most

appropriate physical server for deploying VMs is determined based on

them. Max–BRU is illustrated by Algorithm 1. In detail, the VM place-

ment algorithm takes as input the submitted VMs in terms of their re-

source requirements and derives the number M of activated physical serv-

ers together with the average resource balance (B̂t) over all the powered–

on servers at time t. Particularly, the VM placement procedure to compute

VMs to physical servers allocation is as follows.

• The most appropriate server p ∈ P with the lowest value of RHt(p) com-

bined with the lowest Bt(p) is chosen at each step in the set M of the

currently activated servers (line 5).
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Algorithm 1: Max–BRU(V )
Output: M, B̂t

Set P ← ∅, M ← 0;1

while V �= ∅ do2

Set status ← false;3

if P �= ∅ then4

p ←

⎧⎪⎨
⎪⎩
minp∈P RHt(p);

minp∈P Bt(p);5

v ←

⎧⎪⎨
⎪⎩
maxv∈V rd(v);

rd(v) + udt (p) + wd(p) ≤ r̂d(p); d ∈ {1, . . . , |D|};6

if v �= ∅ then7

Place VM v on physical server p, update Ud
t (p) and Bt(p);8

V ← V \ {v}; Set status ← true;9

if status = false then10

Remove VM request v from V in FIFO order;11

Start–up an inactive physical server pinact;12

Place VM v on pinact, compute Ud
t (pinact) and Bt(pinact);13

P ← P ∪ {pinact};14

Increase M by 1;15

B̂t ← 1
M

∑
p∈P Bt(p);16

return M, B̂t17

• The considered VM request v is the one with the highest rd(v) resource

required, corresponding to the lowest d–dimensional resource utilization

of a given server p, i.e., maxv∈V rd(v), and satisfying the demands for all

resources, i.e., such that rd(v) + udt (p) + wd(p) ≤ r̂d(p); d ∈ {1, . . . , |D|}
(line 6).

• If V has a suitable VM request, that is then placed to the selected server

p (lines 7–8). Otherwise, an inactive server pinact is powered–on for allo-

cating the first VM request v from V in FIFO order, then pinact is added

to the set P (lines 10–14). Note that, when v is allocated to p, v is re-

moved from the set V and the server p is updated with new values for

Ud
t (p) and Bt(p).

This algorithm effectively reduces the number of activated servers by
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Figure 2.2. Number of active servers as a function of the number of VM requests

(Publication I) for the (a) Amazon EC2 and (b) normal datasets.

improving server utilization, while balancing the usage of multiple types

of resources. The Max–BRU algorithm is suited to VM placement due to

its polynomial worst–case time complexity on the number of the submit-

ted VMs (the details can be found in Publication I).

2.4.2 Summary of Results

The experimental results obtained by Max–BRU with respect to the ex-

isting solutions for VM placement are summarized next. They include a

comparison with the state of the art discussed in Section 2.4.1 (i.e., First–

Fit, CPULoad, VectorDot, MM, Min–Min, Max–Min, and Max–Cos) as

well as an extension of the volume metric introduced in [144], referred

to as Max–DVol in the following. Our evaluation focuses on the number

of active servers (the lower the better) and the average resource balance

ratio (the higher the better).

Number of Active Physical Servers

Figure 2.2 shows that existing solutions result in a higher number of run-

ning servers with respect to Max–BRU. Furthermore, the increase in the

number of the physical servers activated by Max–BRU is slow when the

VM requests increase. Specifically, in the case of resource requirements

extracted from Amazon EC2 (Figure 2.2a), the number of active servers

needed to allocate 1,000 VM requests is the smallest with Max–BRU, cor-

responding to 171.84 ± 5.11. In contrast, Min–Min, Max–Min, and CPU-

Load result in a higher number of servers used, because these algorithms

take only CPU capacity as the main allocation criterion. As a result, some

resources may be utilized more than others and a new server (i.e., an
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Figure 2.3. Resource balance ratio as a function of the number of VM requests

(Publication I) for the: (a) Amazon EC2 and (b) normal datasets.

inactive server) may have to be powered–on for placing a newly–created

VM, thus increasing costs. Max–BRU performs better than all other algo-

rithms also when the resource requirements follow a normal distribution

(i.e., Figure 2.2b), even though the gain is lower than in the EC2 dataset.

This is due to the variability of the resources in the VM requests; in fact,

the normal dataset demands the most active servers in general, followed

by the EC2 dataset. Overall, the obtained results show that the proposed

Max–BRU algorithm needs the smallest number of active servers in a

cloud data center, even when the number of VM requests is high. Conse-

quently, combining resource usage and load balancing across multiple re-

sources results in a reduction of operational costs and energy expenditure

(due to the smaller number of servers used); even a small improvement is

considerable in large cloud data centers.

Resource Balance Ratio

Figure 2.3 illustrates the average resource balance ratio obtained for the

different datasets. In this case, Max–BRU clearly obtains the best perfor-

mance for both the EC2 (Figure 2.3a) and the normal (Figure 2.3b) data-

sets. The results show that Max–BRU is more sensitive to VM requests

whose resource demands are highly varying. Nevertheless, Max–BRU

is capable to spread the resource utilization uniformly over the different

types of resources in all datasets. Similar to the previous results, Max–

Cos is the only algorithm with comparable performance as it considers

both UCV and TCV as metrics; Max–DVol also results in a lower resource

balance ratio than Max–BRU, because it aims at maximizing the resource

utilization rather than at balancing the load across multiple resources.
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3. Efficient Virtual Machine
Consolidation

In the previous chapter, I have presented a virtual machine (VM) place-

ment algorithm for energy–efficient Infrastructure–as–a–Service (IaaS)

cloud data centers. Experimental results have shown that Max–BRU lim-

its the number of active servers while spreading the usage of resources

across multiple dimensions. However, while providing a solution to the

VM placement problem is important starting from the VM submission

phase, VM consolidation algorithms are even more important to support

continuous consolidation of already–placed VMs on the least number of

physical servers. In such a scenario, VM consolidation executes periodi-

cally — for instance, every few minutes or hours, daily, weekly, or monthly

— to reallocate already–placed VMs into as few physical servers as pos-

sible. The main contributions in this chapter are the implementation

and evaluation of a VM consolidation solution that: (1) considers mul-

tiple types of resources, including CPU, memory, storage, and network

bandwidth; (2) spreads the load across different types of resources while

placing VMs; (3) supports an efficient method to estimate the future state

of physical servers; and (4) provides an energy–efficient VM consolidation

algorithm, which involves overloaded and underloaded host detection, live

VM migration, VM placement under migrations, and idle server manage-

ment.

This chapter presents the research done in Publication II, Publication

III, and Publication IV. First, an overview of overloaded and underloaded

host management as well as VM consolidation is presented. Second, a

multiple resource selection (MRS) scheme and its algorithm for VM con-

solidation are introduced (Publication II). Then, an embedded multiple

usage prediction (MUP) scheme for VM consolidation algorithm across

multiple resources and a tunable prediction horizon called VMCUP–M

are described (Publication III and Publication IV). The MUP scheme al-
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lows a VM consolidation algorithm to scale the cloud data center power

consumption according to the variability in the resource load (i.e., switch-

ing idle nodes to low–power states for energy saving purposes). Publica-

tion II and Publication IV target multi–resource types while Publication

III and Publication IV address heterogeneous physical servers, heteroge-

neous VMs (i.e., VM instances with different sizes and resources), future

state of servers, and idle server management. The MRS algorithm is eval-

uated through a custom simulator written in Java while the VMCUP–M

algorithm is evaluated by extending the CloudSim simulation toolkit [22].

According to the experimental results from both synthetic and real–world

workloads, the proposed algorithms significantly reduce the number of

active servers, the number of migrations, and the number of power state

changes, thus minimizing the power consumption of IaaS cloud data cen-

ters while complying with the service level agreement (SLA).

3.1 Overloaded and Underloaded Host Management

Determining whether a host is overloaded or underutilized then reallo-

cating VMs from those hosts possibly affects the quality of service (QoS)

experienced by hosted applications. In this context, several VM consoli-

dation schemes have simply taken the current utilization of a single re-

source (e.g., CPU) into account while deciding whether a physical server

is overloaded or underutilized [12, 80]. Other schemes consider the cur-

rent CPU, memory, storage, and (or) network usage, then transform them

into a single metric [125, 144, 145, 147]. In any case, as they are purely

based on the last observed utilization for decision making, existing so-

lutions may cause unnecessary migrations and eventually increase over-

heads: the energy for VM migration, the performance degradation of the

hosted applications, and the extra network communication [37, 50, 133].

Initial studies in this context used static hot and cold thresholds to de-

termine whether a host is overloaded or underutilized. As a consequence,

these approaches keep the current (CPU) utilization of a server between

the two thresholds. However, setting static thresholds and using the cur-

rent utilization of a single resource are not effective measures for envi-

ronments with dynamic workloads, in which the utilization of VMs run-

ning on a physical server continuously change over multiple resource di-

mensions. The authors in [12] proposed a set of metrics to rank physical

servers by considering an adaptive upper bound based on a statistical
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analysis of historical CPU data. Even though the used thresholds are not

static, these approaches only leverage the current CPU utilization as the

main criterion to decide on VM migrations. Thus, they do not allow for a

reliable characterization of overloaded and underloaded servers, eventu-

ally resulting in unnecessary migrations and energy wastage. The impact

of multiple types of resources on the detection of hot and cold servers was

not considered in [12] either.

Some works in the literature actually considered multiple resources for

overloaded and underloaded host management [12, 80, 125, 144, 145,

147]. In this context, several metrics have been proposed to rank physical

servers. Among them, a VM management system was introduced in Sand-

piper [144] to detect and resolve overload situations. In detail, Sandpiper

used a single volume metric as a criterion to detect overloaded servers; a

black–box and gray–box (BG) strategy considers the server with the high-

est volume.

In [45], the authors presented a resource pool management to detect and

react to underload and overload situations. Particularly, a physical server

is considered overloaded if the utilization of its CPU or memory are above

a predefined threshold. Once an overloaded server is found, a fuzzy con-

troller is used to select the VMs to be migrated as well as the candidate

destination physical server to accommodate the migrated VMs. In such

a case, the least loaded server that satisfies the demands for all the re-

sources of the selected VM is selected as the target server. If there is no

physical server with sufficient resources available, a new server is pow-

ered on and the VM is migrated to this newly–started server. On the other

hand, the underutilized situation is identified when the average resource

utilization of all active physical servers is below a given threshold. In such

a case, the fuzzy controller chooses the least loaded server and attempts

to move all its VMs to other suitable servers and switches the considered

server to a power–saving state (e.g., suspend). Simulation results show

that the best CPU and memory overload thresholds are 85% and 95%,

while the best underload thresholds are 50% and 80%, respectively. The

major limitation of the resource pool management is that it only considers

CPU and memory resources as well as homogeneous physical machines.
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3.2 Virtual Machine Consolidation

Virtual machine consolidation allows IaaS cloud data centers to reduce

resource fragmentation or create idle physical servers during periods of

high or low resource utilization, respectively. This may be achieved via

repacking already–placed VMs on the least number of physical machines.

This section overviews relevant approaches proposed in the literature for

VM consolidation in large cloud data centers.

pMapper [139] targets CPU utilization by a power and migration cost–

aware application placement framework for heterogeneous and virtual-

ized computing systems. Particularly, pMapper consists of three main

algorithms: min power parity (mPP), min power placement with history

(mPPH), and balance between power and migration cost (pMaP). mPP

is designed to minimize total power consumption only. It takes the VM

sizes, the current assignment of VMs to physical machines, and the power

model of all servers as input. mPP then sorts VMs and physical machines

in decreasing order of their utilization, then places the VMs onto physi-

cal servers by using the First–Fit–Decreasing heuristic. mPPH is an ex-

tended version of mPP that reduces the migration cost by migrating as

few VMs as possible. Finally, pMaP optimizes the power and migration

cost trade–off while placing VMs. The authors also propose a variant of

pMaP, namely pMaP+, which is particularly suitable for high loads. The

major limitations of pMapper are that it only considers CPU and does not

support intelligent overloaded and underloaded host management mech-

anisms.

Sercon [98] considers two dimensions (i.e., CPU and memory) for con-

solidating VMs. Particularly, Sercon modifies the First–Fit–Decreasing to

limit the number of active physical servers while minimizing the num-

ber of VM migrations. Sercon sorts the list of physical servers based on

their resource utilization, then considers the server with the least load

first. The VMs from the least loaded server are sorted in decreasing order

according to their resource utilization. This algorithm tries to migrate

all VMs from underutilized servers to other suitable servers. Simulation

results show that such an algorithm reduces the number of migrations

compared to FFD while requiring only up to 6% more active physical

servers. Sercon considers CPU and memory and was evaluated in a homo-

geneous environment. It does not support migrating underloaded servers

and switching idle hosts to low–power states to save energy.
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A black–box and gray–box (BG) strategy was introduced in Sandpiper,

based on the volume criterion, for VM consolidation in large data cen-

ters [144]. BG sorts the list of overloaded servers based on their volume

metric and the VMs in each server based on their volume–to–size ratio

(VSR). It then considers the server with the highest volume first; the VM

that needs to be migrated is then the one with the highest VSR. The BG

scheme also adopts the volume metric to select target physical servers,

i.e., they are sorted by ascending volume to allocate the VMs under mi-

gration. A prototype data center evaluation on a cluster of 16 servers that

runs a total of 35 VMs shows that Sandpiper reduces the number of in-

tervals spent in sustained overload by 61%. Furthermore, simulation per-

formed on 50 physical servers (each with 3 VMs) shows that Sandpiper

eliminates all hot spots about 73% of the time when there are 35 over-

loaded servers, while a suitable solution was found only 3% of the time

with 40 overloaded servers. Additional experiments also suggest a CPU

threshold of 75% to absorb the CPU overhead of migration while maximiz-

ing server utilization; a similar threshold is used for network utilization.

The major limitations of the Sandpiper system are that it considers ho-

mogeneous physical servers and does not support migrating underloaded

machines.

3.3 Virtual Machine Consolidation with Multiple Usage Prediction

In contrast to the VM placement problem discussed in Chapter 2, which

does not manage already–placed VMs, VM consolidation requires to mi-

grate existing VMs live. Particularly, VM consolidation with live migra-

tion is closely related to the problem of: (1) determining when a server is

overloaded (i.e., a hot spot), then migrating the potential VMs from such

a server to maintain a certain QoS; and (2) determining when a server

is underloaded (i.e., a cold spot), then migrating all VMs from such a

server and switching a considered server to a low–power state. Both sub–

problems above help remove resource fragmentation of servers and create

idle servers to minimize energy consumption. However, existing VM con-

solidation algorithms may result in a high number of VM migrations and

server switches, thus increasing the overheads: the energy for VM migra-

tion, the performance of applications hosted on the VMs, and the extra

network communications. Therefore, this dissertation adds two other ob-

jectives to the VM consolidation problem: minimizing the number of VM
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migrations and the number of server switches, along with the number of

active physical machines. To enable VM consolidation with live migration

and address the above–mentioned issues, Publication II, Publication III,

and Publication IV make the following three contributions.

• VM consolidation takes the Max–BRU VM placement algorithm in Chap-

ter 2 (Publication I) into account at the initial layout, thus helping to

minimize the number of active servers; this further limits the number

of VM migrations for reaching the consolidated stage.

• A multi–resource selection (MRS) scheme is proposed for consolidat-

ing VMs (Publication II). It characterizes multiple types of utilized re-

sources, then ranks physical servers through the combined resource us-

age and load balancing across multiple dimensions. This helps remove

resource fragmentation of servers and further increases the resource

utilization of a data center. With MRS, the current hottest resource is

used as the main criterion to determine when a server is considered

overloaded or underutilized.

• An efficient multiple usage prediction (MUP) approach is presented to

estimate the long–term utilization over a future time period of multi-

ple resources types based on the local history of the considered servers

(Publication IV). MUP is an extended version of a usage prediction (UP)

approach proposed in Publication III. Furthermore, Publication II is

limited to the current utilization of multiple types of resources while

Publication III and Publication IV use both the current and predicted

usage metrics to characterize and classify a physical server, thanks to

MUP. This allows for a reliable characterization of overloaded and un-

derloaded servers, thus limiting the number of unnecessary VM migra-

tions and server switches with the goal to reduce the energy consump-

tion of a cloud data center.

This section begins by discussing the multi–resource selection (MRS)

scheme for consolidating VMs in Publication II. Then, multiple usage

prediction (MUP) and the performance of MUP are presented (Publication

IV). After that, overloaded and underloaded host detection, VM selection

and placement, and the VMCUP–M algorithms are detailed (Publication

IV). Finally, the main evaluation results of the three publications are
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(a) (b)

Figure 3.1. Host management with MRS in Publication II: (a) overloaded server

and (b) underloaded server detection.

summarized. The full experimental results are detailed in the publica-

tions attached at the end of the dissertation.

3.3.1 Multiple Resource Selection

The working of the multiple resource selection (MRS) scheme is illus-

trated in Algorithm 2. The goal is to reallocate VMs from overloaded

and underloaded servers into as few physical machines as possible, thus

improving resource utilization and saving energy. To achieve this, MRS

considers the VM consolidation problem in a scenario where no histori-

cal resource utilization data is used. In particular, VMs are consolidated

according to the current hottest utilization of resources applying the hot

and cold spots detection and VM placement under migrations. In detail,

a server is considered as overloaded if its hottest resource is above a hot

threshold hd̂ for the resource type d̂ (Figure 3.1a). Similarly, a sever is

considered underloaded if its hottest resource is below a cold threshold

cd̂ (Figure 3.1b). In such scenarios, the static hot threshold was set to

hd̂ = 0.9 and the cold threshold to cd̂ = 0.25 for all d̂ ∈ {1, . . . , |D|} re-

spectively, according to [145]. In the following, the hot and cold migration

procedures are detailed.

• The hottest server h is handled first, then all VMs running on h are

sorted in ascending order of their RC (lines 7–8). The VM vi with the

lowest RC is selected for migration (line 9).

• The appropriate server for placing the migrating VM v is obtained by the

FINDPOTENTIALSERVER function (details can be found in Algorithm 2
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Algorithm 2: MRS(P )
Output: M, Ût

Set M ← P.size, H ← ∅, C ← ∅, W ← ∅;1

for ∀pi in P do2

if RHt(pi) > hd̂ then H ← H ∪ {pi};3

if RHt(pi) < cd̂ then C ← C ∪ {pi};4

Sort all servers h in H in descending RTt(h);5

while H �= ∅ do6

Remove h from H in RTt(h) order;7

Sort all VM v in h in ascending RCt(v, h);8

for ∀vi in h do9

p ← FINDPOTENTIALSERVER(P \ {H ∪ C}, vi);10

if p = ∅ then p ← FINDPOTENTIALSERVER(C, vi);11

if p �= ∅ then12

Place vi on p, update Ud
t (p) and Bt(p);13

if p ∈ C,RHt(p) ≥ cd̂ then14

C ← C \ {p};15

break;16

Sort all servers c in C in ascending the placed VM sizes;17

while C �= ∅ do18

Set status ← true;19

Remove c from C in placed VM sizes order;20

for ∀vi in c do21

p ← FINDPOTENTIALSERVER(P \ C, vi);22

if p = ∅ then p ← FINDPOTENTIALSERVER(C \ {c}, vi);23

if p �= ∅ then W ← W ∪ {p};24

else Set status ← false; break;25

if status = true then26

for ∀vi in c do27

Remove server p from W in FIFO order;28

Place vi on p, update Ud
t (p) and Bt(p);29

if p ∈ C,RHt(p) ≥ cd̂ then C ← C \ {p};30

Switch c to a low–power mode, decrease M by 1;31

Ût =
1
M

∑
p∈P RHt(p);32

return M, Ût33
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in Publication II). Specifically, such a function checks whether server p

with the lowest RHt(p) and Bt(p) among the M active servers is avail-

able to allocate v or not. If server p does not exist, another server is

selected from the set of cold servers C (line 11). If there is no server

with enough available resources, the next VM in h is considered.

• The cold server c with the lowest placed VM size is considered first

(line 20). All VMs placed in c need to be migrated before switching c

to a low–power mode. For each cold server c in C, if a set of potential

servers W is found, then all placed VMs in c are migrated in sequence

to a physical server p in W (lines 21–29). If at least one VM in c could

not find the new placement, the underloaded server migration does not

migrate the VMs and c is kept active.

3.3.2 Multiple Usage Prediction

The algorithm described in Section 3.3.1 has simply taken the current

hottest utilization of resources into account while deciding when a physi-

cal server is considered overloaded or underutilized. However, a solution

based on the last observed utilization for decision making may cause in-

accurate hot and cold server detection. This may happen because of a

temporary (or abnormal) increase or decrease in the VM workloads with

time. Consequently, it is essential to design an efficient scheme to cor-

rectly take decisions on hot and cold spots. In a scenario where historical

resource utilization data are available (i.e., the n = 12 most recent uti-

lization values for each resource type d), Publication III first proposes an

efficient usage prediction (UP) approach to estimate the short–term fu-

ture CPU utilization based on this historical resource usage data of the

considered servers (please refer to Publication III for the details about the

algorithm itself, a complexity analysis, and a performance evaluation).

Based on UP, the multiple usage prediction (MUP) scheme is introduced

to predict the long–term usage of multiple resource types d ∈ {1, ..., D} of

a server p over a time period K ∈ N
+. This requires predicting the us-

age of the resource type d at the k ∈ {1, . . . ,K} steps ahead in time, i.e.,

Ud
t+k(p), from a current resource utilization Ud

t (p). Specifically, multiple

usage refers to both the multiple–resource and multiple–step usage, i.e.,

Ud
t+1(p), Ud

t+2(p), ..., Ud
t+k(p). Therefore, MUP is achieved by iterating the

usage prediction (UP) scheme detailed in Algorithm 3, corresponding to
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Algorithm 3: UP(p, d,m)

Set X ← 0, y ← 0, β ← 0;1

// Training dataset: X (input) and y (output)2

for t = 0 to n−m do3

Xt,0 = 1;4

for i = 0 to m do5

Xt,i+1 = Ud
i (p);6

yt = Ud
t (p); //yt ∈ y7

// Estimate the regression coefficients β with OLS8

β ← (XTX)−1XTy;9

// Estimate the future resource usage10

Ud
t+1(p) = Ud(p) · β;11

return Ud
t+1(p).12

Prediction step Inputs of MUP Output Usage prediction

1 Ud
t (p) Ud

t+1(p) UP(p, d, 1)

2 Ud
t (p), U

d
t+1(p) Ud

t+2(p) UP(p, d, 2)

3 Ud
t (p), U

d
t+1(p), U

d
t+2(p) Ud

t+3(p) UP(p, d, 3)

Table 3.1. The multiple–resource and multiple–step usage prediction (m = 1,

d ∈ D and K = 3) in Publication IV.

the regressor size (m + k − 1). The details of MUP by iterating UP are

illustrated in Table 3.1.

To better focus on the performance of the proposed MUP approach used,

Figures 3.2 and 3.3 show the values predicted by MUP for CPU and mem-

ory compared to the real resource usage. The results show that the values

predicted by MUP are always close to the real ones even during peaks.

Specifically, the MUP prediction scheme obtains the best performance for

a one–step CPU and memory usage prediction (Figures 3.2a and 3.3a),

while it gets worse as the number of steps increases, i.e., when the num-

ber of steps is equal to six (Figures 3.2b and 3.3b). The underlying rea-

son for this behavior is the distribution of the actual resource utilization,

which is linear in time.

3.3.3 Overloaded and Underloaded Host Detection

Publication III and Publication IV improve Publication II by jointly using

the current and predicted utilization metrics over multiple types of re-

sources. This improvement allows for a reliable characterization of over-
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Figure 3.2. Prediction of CPU resource usage in Google Cluster Data (Publica-

tion IV): (a) one–step prediction and (b) six–step prediction.

0 2 4 6 8 10 12 14 16 18 20 22 24
Time of the day (hours)

2600

2800

3000

3200

3400

M
e
m

o
ry

 u
s
a
g
e

real

predicted

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24
Time of the day (hours)

2600

2800

3000

3200

3400

M
e
m

o
ry

 u
s
a
g
e

real

predicted

(b)

Figure 3.3. Prediction of memory resource usage in Google Cluster Data (Publi-

cation IV): (a) one–step prediction and (b) six–step prediction.

loaded or underloaded servers.

Each host periodically executes an overloaded host detection with mul-

tiple usage prediction (OHD–MUP) algorithm (Algorithm 4) to consoli-

date VMs when needed. The algorithm with MUP helps avoid the false

hot detection of servers due to a temporary or abnormal increase in VM

workloads with time compared to the scenario addressed in Publication II,

where the current hottest usage values are taken. Accordingly, a server is

considered overloaded (as shown in Figure 3.4a) if the following conditions

are satisfied:

• the server is overloaded in both the current and the future period of time

(top part of the Figure 3.4a), i.e., the current (the one marked with the

rectangle) and the multiple predicted values (the small circles) of any

resources are above a hot threshold;

57



Efficient Virtual Machine Consolidation

(a) (b)

Figure 3.4. Host management with MUP (Publication IV): (a) overloaded server

and (b) underloaded server detection.

Algorithm 4: OHD–MUP(p,D,m,K)

for ∀d in D do1

for ∀k in K do2

Ud
t+k(p) ← UP(p, d,m+ k − 1);3

if Ud
t+k(p) ≤ hd then return false;4

return true5

• the server is currently in a normal state but is overloaded in the future

period of time (bottom part of the Figure 3.4a), i.e., the current utiliza-

tion is below a hot threshold while the multiple predicted values are

above a hot threshold.

Both conditions above indicate that the server is a potential candidate for

migration because: (1) it is completely overloaded in both the current and

the future period of time; or (2) it becomes overloaded in the near future.

The hot thresholds used in Publication IV are static threshold (THR), i.e.,

the hot CPU and memory threshold is set to 80% of load, and a dynamic

threshold based on local regression (LR), i.e., the hot CPU and memory

threshold is estimated by using local regression of historical data.

To better understand how the joint use of current and future (i.e., pre-

dicted) resource usage metrics affect overloaded host detection, Figure 3.5

shows the CPU utilization measured every five minutes of a cloud server

in our university over a 24 hour period of time. The results show that ex-

isting algorithms (e.g., those considering only the CPU resource) and the

proposed algorithm in Publication II (i.e., based on the current hottest
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Figure 3.5. CPU resource usage measured every five minutes over 24 hours of a

cloud server in our university (Publication IV).

resource utilization) as the main criterion to detect an overloaded server

may cause an unreliable overloaded host detection. Specifically, the fol-

lowing criterion has been considered: a host is considered overloaded

when the current CPU usage exceeds the threshold h = 0.8 (i.e., 80%

of load). In Figure 3.5, the small circles on the top of the trace denote

the false hot detection points, because the load of the considered host will

rapidly decrease in the short–term future. In such a situation, the VMs

allocated in a server do not need to be migrated to reduce the resource

load. For the same trace, Publication III and Publication IV embedded the

MUP scheme into the overloaded host detection algorithm (OHD–MUP)

and reported only one point as a hot spot, the one marked with the rect-

angle in the period of time from 600 to 670 minutes. In this period, some

VMs need to be migrated to avoid SLA violations. The example shows how

MUP plays an important role in decision making for overload situations

and how OHD–MUP avoids unnecessary VM migrations due to varying

resource demands. In a cloud data center with millions of machines and

a high variability of the VM workloads with time, a threshold–based cur-

rent utilization may result in hundreds of hot spots or even worse. This

has motivated us to develop an efficient method for a reliable characteri-

zation of overloaded servers. In fact, the proposed OHD–MUP leverages

the current and multiple predicted utilization so as to limit the number of

hot spots to the few ones that are really necessary.

Publication II defines a sever as underloaded if its hottest resource is be-

low a static cold threshold cd̂ = 0.25. However, setting static cold threshold

and using the current hottest utilization are not effective means to detect
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Algorithm 5: UHD–MUP(p,D,m,K)

for ∀d in D do1

for ∀k in K do2

Ud
t+k(p) ← UP(p, d,m+ k − 1);3

if Ud
t+k(p) > Ud

t (p) then return false;4

return true5

underloaded servers. This is especially critical for IaaS cloud environ-

ments with dynamic workloads, in which the utilization of VMs running

on a physical server continuously changes over multiple resource dimen-

sions. This has motivated us to propose an efficient underloaded host de-

tection with multiple usage prediction algorithm namely UHD–MUP (Al-

gorithm 5) for a reliable characterization of cold spots. In detail, when no

host is overutilized, the host p with the lowest value of maximum resource

utilization is considered. A server is defined as underutilized if its mul-

tiple predicted resource is equal or below the current resource utilization

(Figure 3.4b). This indicates that the server is currently underutilized

and its load will decrease in the considered time period, thus the host is

a potential candidate to be switched to a low–power mode to save energy.

The joint use of both the current and multi–predicted utilization metrics

allows host management to correctly identify underutilized servers. If the

load of the considered server will increase above the current usage in any

time instant during the considered period, the algorithm takes no action.

Finally, after migrating all VMs on the underloaded server, the idle server

is switched to a low–power mode for energy efficiency reasons; otherwise,

the host is kept active.

3.3.4 VM Selection and Placement under Migration

Once an overloaded server p is considered, the next step is to select a po-

tential VM running on p for migration to reduce the resource load. For

such a case, the authors in [12] proposed a set of VM selection policies to

select the suitable VMs to be migrated. In detail, the minimum migra-

tion time (MMT) policy selects a VM with the shortest time to complete a

migration with respect to other VMs allocated to the host. The maximum

correlation (MC) policy selects a VM with the highest correlation of the

CPU utilization with the other VMs. The maximum utilization (MU) pol-

icy selects a VM with the highest CPU utilization. The random selection
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Algorithm 6: PABFD–MUP(P, v,D,m,K)

Set p ← ∅; min ← MAX;1

for ∀pi in P do2

if ∀d ∈ D; rd(v) + udt (pi) + wd(pi) ≤ r̂d(pi) then3

oldPower ← getPower(pi);4

Place v on pi, update Ud
t (pi);5

newPower ← getPower(pi);6

incPower ← newPower − oldPower;7

if incPower < min AND OHD–MUP(pi, D,m,K) = false then8

min ← incPower; p ← pi;9

else Release v from pi, update Ud
t (pi);10

return p11

(RS) policy randomly selects a VM according to a uniformly distributed.

Publication IV introduces a VM selection policy — namely, the mini-

mum resource temperature (MRT) — that migrates a VM v to reduce the

resource temperature of an overloaded server p the most. As migration

is expensive, our research goal is to select only the VMs that contribute

more to the host load. Let vm(p) be a set of VMs currently allocated to the

host p. The MRT policy finds a VM v ∈ vm(p) such that ∀a ∈ vm(p) the

following condition holds:

RT (p|vm(p) \ v)
RAMu(v)

≥ RT (p|vm(p) \ a)
RAMu(a)

. (3.1)

As the result of VM migrations, the target physical servers may become

overloaded during periods of high resource utilization. Consequently, over-

load management is required to detect overload situations and decide

which physical machines should be selected to accommodate the migrated

VMs. Publication IV extends the power–aware best fit decreasing (PABFD)

algorithm introduced in [12] for multiple–resource VM placement. In

particular, the MUP scheme is embedded into PABFD through a new

VM placement algorithm called PABFD–MUP (Algorithm 6). Accordingly,

PABFD–MUP selects a target physical server not only based on the least

increased power consumption but also based on its utilization stability,

which is predicted by using the MUP scheme. Importantly, PABFD–

MUP decreases the chance of the target host being overloaded in the fu-

ture period of time after placing the migrating VM.
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Algorithm 7: VMCUP–M(P,D,m,K)

//Overloaded server migration with MUP;1

for ∀pi in P do2

while OHD–MUP(pi, D,m,K) = true do3

v ← MRT(pi);4

p ← PABFD–MUP(P \ {pi}, v,D,m,K);5

if p �= ∅ then6

Place v on p, update Ud
t (p);7

else if ∃pinact then8

Switch pinact to an idle mode;9

Place v on pinact, update Ud
t (pinact);10

P ← P ∪ {pinact};11

else break;12

//Underloaded server migration with MUP;13

Set status ← true;14

while status = true do15

Set p ← p0;16

for ∀pi in P do17

if maxd∈D Ud
t (p) > maxd∈D Ud

t (pi) then18

p ← pi;19

if UHD–MUP(p,D,m,K) = true then20

Set W ← ∅;21

for ∀vi in p do22

s ← PABFD–MUP(P \ {p}, vi, D,m,K);23

if s = ∅ then24

status ← false;25

break;26

else W ← W ∪ {s};27

if status = true then28

for ∀vi in p do29

Remove server s from W in FIFO order;30

Place vi on s, update Ud
t (s);31

Switch p to a low–power mode;32

P ← P \ {p};33
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3.3.5 The VMCUP–M Algorithm

Publication IV also proposes a VM consolidation with multiple usage pre-

diction (VMCUP–M) algorithm (Algorithm 7). The key idea behind the

VMCUP–M algorithm is to leverage both multiple–resource and multiple–

step prediction for underloaded and overloaded host management, VM

selection, and VM placement under migration, with the ultimate goal

of reducing the energy consumption of a cloud data center. In particu-

lar, VMCUP–M executes periodically (i.e., every five minutes) to evaluate

the VM consolidation process based on the current and future prediction

about the resource usage of the considered servers. The detailed over-

loaded and underloaded server migration procedures are as follows:

• If a sever pi is overloaded (line 3), the VM v allocated in pi is selected

for migration by the MRT policy in Eq. (3.1). The appropriate server for

placing the migrating VM v is obtained by PABFD–MUP (Algorithm 6).

If such a server p does not exist, an inactive server pinact is switched to

idle state for allocating the selected VM (lines 8–11). The VM placement

should be rejected if a server p does not satisfy the demands of all the

resources in v or is overutilized after accepting v in the current and

future period of time.

• If a server p is underutilized, all VMs placed in p need to be migrated

before switching p to a low–power mode. For each VM vi in p, if a set

of potential servers W is found by the PABFD–MUP algorithm (Algo-

rithm 6), then all placed VMs in p are migrated in sequence to a physical

server s in W (lines 22–31). To this end, the cold server p is switched

to a low–power state. If at least one VM in a cold spot p could not find

a new placement, the underloaded server migration procedure does not

migrate the VMs and p is kept active. Note that the underloaded server

migration procedure continues until a server with the lowest utilization

has not been considered as cold spot.

This algorithm effectively reduces the energy consumption while lim-

iting the number of migrations and power state changes along with the

number of active physical servers. For the details about the time com-

plexity analysis of VMCUP–M and the experimental setup, please refer

to Publication IV.
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3.3.6 Summary of Results

The following discussion summarizes the results obtained by our proposed

schemes for VM consolidation. After studying the impact of multiple

usage prediction, the achieved performance is characterized in terms of

number of activated servers, resource utilization, energy consumption,

and SLA compliance (i.e., the average number of SLA violations). In de-

tail, SLA violations are considered due to both overutilization (i.e., the

percentage of time during which active servers have experienced the 100%

utilization of any resources) and migration (i.e., the overall performance

degradation while migrating VMs) as defined in [12].

Impact of Multiple Usage Prediction

The data center size is a parameter that allows to clearly see the impact

of MUP on the average number of hot and cold spots (Figure 3.6) as well

as on the average number of active machines per data center (Figure 3.7).

As for the hot and cold spots, overloaded and underloaded host detec-

tion with MUP significantly reduce the number of real hot and cold spots

in the system. Specifically, for the GCD workload trace (Figure 3.6a),

MUP obtains a 94% (THR) and 87% (LR) factor reduction of both hot and

cold spots compared to the algorithms without prediction for a cloud data

center with 1,400 of machines. Additionally, for the PlanetLab workload

trace (Figure 3.6b), MUP reduces the number of hot and cold spots of more

than 87% for the considered thresholds. As a consequence, the algorithms

correctly identify hot and cold servers in the system when using MUP.

As for the average number of active machines per data center, the ob-

tained results show that the overloaded and underloaded host detection

approaches with MUP need the smallest number of active servers, even

when the size of data center is high (Figure 3.7). In contrast, the THR

and LR algorithms without MUP result in the highest number of servers

used. In fact, these algorithms take only the current resource utilization

as the main detection criterion, thus, they fail to reliably detect hot and

cold spots due to the varying resource demands of VMs. As a result, they

incur in unnecessary migrations, eventually resulting in powering on ad-

ditional servers.

Number of Active Physical Servers

Figure 3.8 compares the performance of MRS with the BG–DVol, Vector-

Dot, and MM schemes for the different workloads. In this case, MRS
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Figure 3.6. Impact of MUP on the average number of hot and cold spots per data

center (Publication IV) for the: (a) GCD and (b) PlanetLab work-

loads.
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Figure 3.7. Impact of MUP on the average number of active machines per data

center (Publication IV) for the: (a) GCD and (b) PlanetLab work-

loads.

significantly reduces the number of active servers compared with BG–

DVol (Figure 3.8a). Furthermore, MRS also obtains the best performance

compared with two VM placement schemes, namely, VectorDot and MM,

to find the best target physical machine and accommodate the VMs be-

ing migrated (Figure 3.8b). Overall, the obtained results show that the

proposed MRS scheme needs the smallest number of active servers, even

when the number of VM requests is high.

Figure 3.9 compares the performance of MRT with the minimum mi-

gration time (MMT) introduced in [10], with two different strategies: one

with MUP and the other without MUP. In this case, MRT clearly obtains

the best performance for both the THR and LR overutilized host detec-

tion approaches. Without MUP, the algorithms simply use the current
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Figure 3.8. Number of active physical servers as a function of the number of VM

requests (Publication II) for the different workloads compared with:

(a) BG–DVol and (b) VectorDot and MM.
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Figure 3.9. Number of active servers for MRT and MMT as a function of time

(Publication IV) for the: (a) GCD and (b) PlanetLab workload traces.

resource load for making decisions. Therefore, they may incorrectly fore-

cast overloaded and underloaded servers, thus resulting in unnecessary

migrations and eventually increasing the number of active physical ma-

chines. When MUP is used, the VM consolidation procedure decreases the

number of active servers to a small number that is almost constant over

time. This is because VMCUP-M not only takes into account the current

state of resources but also future usage. As a consequence, MUP helps

avoid rapid changes in the number of active machines in a cloud data

center.

Figure 3.10 compares the performance of the VMCUP–M and BG sche-

mes (with and without MUP) in terms of the number of active hosts over

time under the random (Figure 3.10a) and the GCD (Figure 3.10b) work-

loads. As a result, VM consolidation with MUP plays an important role
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Figure 3.10. Number of active servers for VMCUP–M and BG as a function of

time (Publication IV) for the: (a) random and (b) GCD workload

traces.
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Figure 3.11. Resource utilization ratio as a function of the number of VM re-

quests (Publication II) for the different workloads compared with:

(a) BG–DVol and (b) VectorDot and MM.

in reducing the number of active servers in a data center. More impor-

tantly, VMCUP–M keeps the number of servers mostly constant during

the simulation time.

Resource Utilization Ratio

Figure 3.11 shows that the proposed MRS scheme achieves an improve-

ment in the average resource utilization of about 12% (EC2), 21% (nor-

mal), 23% (GCD) and 12% (RICC), respectively. The improvement over

BG–DVol, shown in Figure 3.11a, is more apparent for all considered

workloads. MRS performs better than VectorDot and MM schemes over

the real–world workloads from GCD and RICC (i.e., Figure 3.11b); the

second–best selection scheme is VectorDot while the MM scheme performs

much worse.
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Figure 3.12. Energy consumption of VMCUP–M for the GCD workload trace

(Publication IV) with the: (a) THR and (b) LR overloaded host de-

tection schemes.
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Figure 3.13. Energy consumption of VMCUP–M for the PlanetLab workload

trace (Publication IV) with the: (a) THR and (b) LR overloaded

host detection schemes.

Energy Consumption

The energy consumption of VMCUP–M under the different VM selection

policies for the GCD workload trace with THR and LR is reported in Fig-

ures 3.12a and 3.12b, respectively. In this case, VMCUP–M reduces the

power consumption of 5.6% or more (THR) and 4.6% or more (LR) with re-

spect to algorithms without MUP. This indicates that VMCUP–M is able

to correctly predict underutilized servers and to minimize the energy costs

by switching idle hosts to a low–power state. Moreover, MRT also achieves

the lowest energy consumption compared to all other VM selection poli-

cies even without prediction. Overall, the obtained results show that

VMCUP–M combined with MRT significantly reduces the energy con-

sumption by avoiding unnecessary migrations and server switches while

68



Efficient Virtual Machine Consolidation

THR LR
Hot threshold

0

100

200

300

400

500

600

700

800

E
n

e
rg

y
 (

K
W

h
)

BG

BG-MUP

VMCUP-M

(a)

THR LR
Hot threshold

0

100

200

300

400

500

E
n

e
rg

y
 (

K
W

h
)

BG BG-MUP VMCUP-M

(b)

Figure 3.14. Energy consumption of VMCUP–M and BG under the THR and LR

overutilized host detection approaches (Publication IV) with the:

(a) random and (b) GCD workload trace.

adapting to the varying resource needs of VMs.

For the PlanetLab workload trace, VMCUP–M proposed in Publication

IV significantly reduces the energy consumption while consolidating VMs

for most of the VM selection policies under the THR (Figure 3.13a) and

the LR (Figure 3.13b) hot thresholds. It incurs in an energy consumption

that is 4.4% lower than MMT and 9.07% lower than MU; however, it has

a slightly higher energy consumption than the MC and RS selection sche-

mes. Thus happens as the PlanetLab VMs traces are mainly CPU–bound.

Additionally, the memory utilization of VMs in PlanetLab is almost con-

stant over time.

Figure 3.14 compares the performance of VMCUP–M against the BG al-

gorithms in terms of energy consumption. VMCUP–M consumes less en-

ergy than both BG and BG–MUP over the THR and LR overutilized host

detection approaches for both the random (Figure 3.14a) and the GCD

(Figure 3.14b) workloads. These results are due to the fact that BG al-

locates the migrating VMs onto idle servers first because they have the

lowest volume metric.

Number of Migrations and Power State Changes

Figure 3.15 depicts the number of migrations per VM. The THR (top part

of the figures) and the LR (bottom part of the figures) hot threshold algo-

rithms are separated into sub–figures. As it can be observed, VMCUP–

M reduces the number of migrations by more than 65% (Figure 3.15a)

for GCD; and by more than 92% for PlanetLab (Figure 3.15b) for both

the THR and LR algorithms, respectively. The obtained results illustrate
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Figure 3.15. Number of migrations per VM under the THR and LR algorithms

with different VM selection policies (Publication IV) for the: (a)

GCD and (b) PlanetLab workload traces.
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Figure 3.16. Number of power state changes per data center under the THR and

LR algorithms with different VM selection policies (Publication IV)

for the: (a) GCD and (b) PlanetLab workload traces.

that the algorithm with prediction reduces unnecessary migrations due to

temporary resource load.

Figure 3.16 shows that the number of power state changes per data cen-

ter with MUP is much smaller for all considered VM selection policies.

The reduction in the server switches is more than 83% (THR) and 59%

(LR) for GCD (Figure 3.16a); and by more than 91% for PlanetLab (Fig-

ure 3.16b). This is because VMCUP–M correctly forecasts underutilized

servers, thus limiting the frequency of server switches from idle to a low–

power state and vice versa. It is important to remember that hosts cannot

perform any useful processing while changing their power states. These

results are due to the fact that VMCUP–M correctly predicts overutilized
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Figure 3.17. Number of migrations per VM of VMCUP–M and BG under the

THR and LR algorithms (Publication IV) for the: (a) random and

(b) GCD workload traces.
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Figure 3.18. Number of power state changes per data center of VMCUP–M and

BG under the THR and LR algorithms (Publication IV) for the: (a)

random and (b) GCD workload traces.

and underutilized servers based on current as well as future load. Fur-

thermore, VMCUP–M also effectively finds the suitable destination hosts

while evaluating VM migration, thus avoiding unnecessary migrations

from the selected target hosts in near future.

Figure 3.17 and Figure 3.18 compare the performance of VMCUP–M

against the BG algorithms for the random and GCD workload traces. In

particular, VMCUP–M significantly reduces both the number of migra-

tions and the number of power state changes per server. These results are

due to the fact that VMCUP–M only selects the VMs that contribute more

to the considered overloaded server according to its resource temperature.

This helps avoid unnecessary migrations and power state changes.
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Figure 3.19. SLA compliance under the THR and LR algorithms with differ-

ent VM selection policies (Publication IV) for the: (a) GCD and (b)

PlanetLab workload traces.
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Figure 3.20. SLA compliance of VMCUP–M and BG under the THR and LR

algorithms (Publication IV) for the: (a) random and (b) GCD work-

load traces.

SLA Compliance

The SLA compliance of VMCUP–M with the considered VM selection sche-

mes is illustrated in Figure 3.19. The results show that VMCUP–M signif-

icantly reduces the average SLA violation percentage, i.e., by more than

16% (with the GCD workload, shown in Figure 3.19a); and more than 22%

(with the PlanetLab workload, shown in Figure 3.19b) for both THR and

LR. This ensures that the destination servers do not become overutilized

while migrating VMs thanks to MUP. The reported results demonstrate

that VMCUP–M performs well while consolidating VMs.

Finally, VMCUP–M also reduces the average SLA violation percentage

(Figure 3.20), compared to BG algorithm by using MUP for the overloaded
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and underloaded hosts. The reason is that the destination servers do

not become overutilized in neither the current nor the future time period

while migrating VMs.
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4. An Application of Distributed
Computing to Big Data Analytics

Modern web and distributed applications are facing an ever–growing de-

mand for analyzing huge amounts of data. Wikipedia1 is a meaningful

example of a large Internet data source that is used for several appli-

cations, in particular, for those involving semantics. As of November

2015, the English version of Wikipedia included over 5 million articles

with more than 37.8 million pages, and the total size of English arti-

cles exceeded 49 GB. The size of Wikipedia is rapidly growing by daily

updates. As a consequence, it is time consuming to extract useful infor-

mation from large amounts of data on a single workstation. Such pro-

cessing requires novel approaches and technologies in order to cope with

the complexity of big data analytics. This chapter presents research done

in Publication V about a novel system for data–intensive applications,

called Distributed Semantic Analysis (DSA). Specifically, DSA integrates

a distributed–based approach with semantic analysis, thus enabling end

users to efficiently process large amounts of data in a short time. Ex-

perimental results show two major improvements over the state of the

art with particular reference to the Explicit Semantic Analysis (ESA)

method [41]. First, DSA significantly reduces the computation time to

process big data, thus enabling the use of larger inputs and minimizing

the costs for using computing resources. Second, DSA obtains a higher

correlation of semantic relatedness than existing solutions.

4.1 Distributed Semantic Analysis

The architecture of the DSA system for measuring semantic relatedness

is illustrated in Figure 4.1. In particular, DSA uses the Mahout machine

learning library [4] running on top of the Hadoop MapReduce distributed

1http://www.wikipedia.org
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Figure 4.1. The Distributed Semantic Analysis (DSA) system for measuring se-

mantic relatedness proposed in Publication V.

framework [39] to extract meaningful information from Wikipedia–based

concepts and build weighted vectors. Wikipedia includes a wide range of

articles about almost every subject by using human expertise in different

areas. This motivates us to use Wikipedia data as the source semantic

space in this dissertation. I would like to recall that the proposed DSA

system — built on top of Hadoop MapReduce — is general enough to sup-

ports big data analytics with other forms of semantic knowledge such as

WordNet, Flicker, and Twitter.

The following overviews the method used to build the weighted vectors

from a full dump of Wikipedia–based concepts by using DSA.

4.1.1 Pre–Processing of Wikipedia Data

The first step is to take a full dump of Wikipedia articles in English2 as

input. The article texts are used as they provide the largest amount of

knowledge. In the following, they will be just referred to as articles for

brevity. DSA uses the WIKIPEDIATOSEQUENCEFILE class of Mahout to

obtain the sequence file from the XML data format [109].

The strength of the association between a word and a concept can be ex-

pressed through the a single–term frequency inverse document frequency

(TF–IDF) weight [109], namely, the value of term frequency (TF) multi-

plied by the inverse document frequency (IDF). Mahout also provides a

class for creating TF–IDF term vectors from sequence files, along with

several options to remove high–frequency features such as stop words

(e.g., those with limited or ambiguous lexical meaning such as a, an, the,

2https://dumps.wikimedia.org/enwiki/latest/
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who, what, are, is, and so on) and very low–frequency features (i.e., rate

words).

After building the weighted vectors, all Wikipedia articles are repre-

sented as a set of associated Concept : {Term1 : (tf − idf)V ector1, T erm2 :

(tf − idf)V ector2, . . . , T ermn : (tf − idf)V ectorn}. For instance, the con-

cept vectors associated to an article entitled Computer in Wikipedia could

be:

computer: {

computer: 46.148487091,

mouse: 12.498124122,

keyboard: 11.278808593,

memory: 18.02132034,

...

}

DSA shows one example of distributed processing jointly involving dif-

ferent types of heterogeneous resources. First, DSA must allow storing a

large amount of input data. To support high throughput access to these

data, DSA employs the Hadoop Distributed File System (HDFS) for stor-

age purposes. Second, CPU and memory resources are used to build

the weighted vectors of Wikipedia–based concepts and perform statistical

analysis of large amounts of data in a short time. Indeed, improving the

processing time of big data applications such as DSA leads to a significant

cost reduction.

4.2 A Big Data Application

Semantic analysis is the process of of extracting high–level and language–

independent meaning from syntactic structures [46]. It is a building block

for several applications, especially those involving social network analyt-

ics. Semantic analysis is inherently data–intensive, thus, it may greatly

benefit from the distributed computing paradigm. However, solution pro-

posed in the literature have not fully exploited such an approach. For in-

stance, one of the most important methods for semantic analysis based on

Wikipedia is represented by ESA [41]. ESA uses text classification tech-

niques that allow to explicitly represent the meaning of any text in terms

of Wikipedia–based concepts. However, ESA employs machine learning
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techniques to build concept vectors on a standard workstation, and does

not scale to multiple hosts. As a consequence, the source Wikipedia data

(in form of an XML dump) requires a pre–processing step to remove non–

relevant information so as to obtain a smaller input (about 2.9 GB) that

can be then processed on a single machine.

Publication V presents a large–scale data processing for semantic anal-

ysis that leverages the proposed DSA system. In particular, a fully auto-

mated process is proposed to measure semantic relatedness between two

words. In such a scenario, the proposed method is based on concept vec-

tors extracted from full dump of Wikipedia articles as knowledge–based

information thanks to distributed computing. The following sections eval-

uate and summarize the performance study and comparison with the

state of the art conducted in Publication V.

4.2.1 Word Semantic Relatedness

The semantic relatedness between words is not measured directly, but it is

rather determined through a set of concepts highly related to them. DSA

calculates the semantic relatedness between words w1 and w2 through the

two steps below.

• Determining the concepts (or articles) of Wikipedia, which are related

to words w1 and w2. In detail, w1 is mapped to concept:(tf–idf)vector

L(w1) = {(C1
1 , V

1
1 ), (C

1
2 , V

1
2 ), (C

1
3 , V

1
3 ), ..., (C

1
M , V 1

M )} and w2 is mapped

to concept:(tf–idf)vector L(w2) = {(C2
1 , V

2
1 ), (C

2
2 , V

2
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2
3 , V

2
3 ), ..., (C

2
N ,

V 2
N )} (M < N ).

• Calculating the semantic relatedness between two words w1 and w2 by

using the Word Semantic Relatedness (namely, WSRel) metric

WSRel(w1, w2) = WSRel(L(w1), L(w2)) =

∑N
i=1 V

1
i · V 2

i√∑M
j=1

(
V 1
j

)2 ·
√∑N

l=1

(
V 2
l

)2 .

The WSRel(w1, w2) values range from 0 (i.e., no semantic relatedness) to

1 (i.e., perfect semantic relatedness).

4.2.2 Summary of Results

In this dissertation, DSA was realized on top of a Hadoop MapReduce

cluster of five physical machines. One of them was used as the master
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Method M&C R&G WS–353

WikiRelate! [131] (Wikipedia February 2006) 0.49 0.56
Full: 0.48

Test: 0.55

Wikipedia knowledge–based [112] (Wikipedia May 2007) 0.57 0.61
Full: 0.54

Test: 0.64

Wikipedia link–based [95] (Wikipedia November 2007) 0.70 0.6 0.69

Wikipedia snippet–based [132] 0.8 0.797 n/a

ESA [41, 42] (Wikipedia March 2006) 0.73 0.82 0.75

TSA [117] n/a n/a 0.8

LSAC [72] 0.764 0.715
Full: 0.612

Test: 0.759

Implementation of LSA in [38] n/a n/a 0.56

WikiRelate! [131] (WordNet 2.1) 0.82 0.86
Full: 0.36

Test: 0.39

DSA (Wikipedia February 2012) 0.810 0.806
Full: 0.835

Test: 0.849

Table 4.1. Pearson’s correlation coefficient of the different approaches for the

considered benchmark datasets in Publication V.

node while the other four served as slave nodes. Each machine had 2

cores (3.2 GHz per core), 8 GB memory and 1.2 TB storage capacity. The

used software was Ubuntu Linux 10.04, Hadoop (version 0.20.2) and the

Mahout machine learning library (version 0.6). The nodes of the cluster

were connected through a local area network.

I would like to emphasize that cloud data centers offer heterogeneous

computing resources in the variety of different types of virtual machine

(VM) instances, which allows end users to set up and maintain a large–

scale Hapdoop MapReduce cluster. To support data–intensive applica-

tions, several cloud providers have actually included the MapReduce frame-

work within VMs in their data centers, for instance, as Google MapReduce

and Amazon Elastic MapReduce. This allows end users to deploy a variety

of Hadoop clusters based on different VM instance types.

Due to the scalable approach proposed, the total time to build weighted

vectors from the XML dump of Wikipedia articles in English took about 43

minutes. As a reference, the weighted vectors with the same input were

also built on a single system, and the total processing time took about

5.5 hours, which is consistent with the results in [42]. Therefore, using

the DSA system is an efficient means to reduce the computation time and

improve the system performance.

Processing a large data set indeed enables a more accurate semantic

analysis. Table 4.1 shows the semantic relatedness, expressed through
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the Person’s correlation coefficient (the higher the better), under different

datasets for several methods available in the literature and DSA. In the

table, the methods are grouped according to their characteristics. The first

group is represented by the methods exploiting Wikipedia, namely: Wiki-

Relate! [131]; knowledge–based measure [112]; link–based measure [95];

snippet–based measure [132]; ESA [41, 42]; and its extension Temporal

Semantic Analysis (TSA) [117]. The second group is represented by meth-

ods relying on latent semantic analysis [73] (i.e., the experiments using

LSAC [72] and the LSA implementation in [38]) and/or exploiting Word-

Net as input (i.e., WikiRelate! [131]). Finally, DSA is shown as a separate

group in the table.

The results reported in Table 4.1 show that, over the M&C dataset, DSA

performs better than all other approaches, except for WikiRelate! when

using WordNet 2.1 as input. Specifically, DSA obtains a higher correla-

tion coefficient than the solutions using Wikipedia as input. For the R&G

dataset, DSA performs better than most of the other solutions. Specifi-

cally, the correlation coefficient of DSA is 0.806, that is only slightly lower

than that of ESA (i.e., 0.82) and not so distant from that of WikiRelate

(i.e., 0.86). As for the WS–353 dataset, DSA obtained the highest correla-

tion coefficient among all considered approaches, even when using the test

dataset. Furthermore, switching from the test to the full dataset yields

a non–marginal increase of the correlation efficient, that achieves the re-

markable value of 0.849. This value is very high especially if compared

to that of the solutions that performed better than DSA in the R&G ap-

proach, namely, ESA (i.e., 0.75) and WikiRelate! (i.e., 0.39). In detail, the

improvement of DSA over ESA is of 10.9% for the M&C dataset, and of

11.3% for the WS–353 dataset.

DSA with Wikipedia as semantic space achieved an improvement of

131.9% (full dataset) and 117.7% (test dataset) over WS–353 with respect

to WordNet as semantic–based measure. The correlation coefficient of the

WordNet–based measure is very low for WS–353 because in that dataset

there are some word pairs containing at least one word that is not present

in WordNet [112]. Another reason behind DSA performing better than

WordNet for the WS–353 dataset is because the proposed approach mod-

els semantic relatedness rather than semantic similarity, while WordNet

is designed to quantify the latter.
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5. Conclusion

This chapter presents the contributions of this dissertation and discusses

future research directions.

5.1 Contributions

IaaS clouds offer heterogeneous computing resources in the form of VM

instances, which allows end users to lease resources and only pay for

those that are actually used. To support the growing number of requested

VMs, cloud providers are now building an increasing number of large–

scale data centers. Managing such data centers and large amounts of

VMs is indeed a challenging task. In fact, it involves VM management

algorithms that are not only required to balance loads across multiple

resources but also to operate at lower energy consumption levels. Both

objectives are achieved by optimizing the assignment of VMs to physical

machines through efficient VM placement and consolidation algorithms,

which are capable of: (1) limiting number of active physical servers; (2)

creating idle servers, then transitioning such idle servers in power–saving

states and reactivating them once required; and (3) minimizing the num-

ber of migrations and server switches. Furthermore, the performance of

big data applications deployed in virtualized environments should be con-

sidered as the highest–layer of the software stack while managing VMs.

Accordingly, a system that leverages distributed computing is designed to

quickly extract meaningful information from large amounts of data and

support big data analytics. This dissertation investigated the challenge

of designing, implementing, and evaluating efficient VM management in

IaaS cloud data centers containing heterogeneous physical servers and

virtualized resources, with focus on energy efficiency. Specifically, the fol-

lowing are the three major contributions of this dissertation.
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Virtual Machine Placement for Load Balancing across Multiple

Resources in Cloud Data Centers (Publication I). VM placement

aims at optimizing the assignment of VMs to physical machines, starting

from the VM requests, with the goal of minimizing the number of active

servers. Existing VM placement algorithms are mostly constrained to a

limited number of resource types (e.g., CPU), thus resulting in unbalanced

load or in the unnecessary activation of physical servers. To solve these

limitations, a VM placement algorithm called Max–BRU was proposed to

improve the resource utilization and to spread the load across diverse re-

sources, including CPU, memory, storage, and network bandwidth. The

Max–BRU algorithm not only optimizes resource utilization but also bal-

ances the usage of resources across multiple dimensions, thus reducing

the number of active physical servers in a IaaS cloud data center. Sim-

ulation results showed two major improvements over the state of the art

for VM placement. First, Max–BRU increases the resource utilization by

minimizing the amount of physical servers used. Second, Max–BRU ef-

fectively balances the utilization of multiple types of resources.

Virtual Machine Consolidation for Energy–Efficient Cloud Data

Centers (Publication II, Publication III, and Publication IV). VM

consolidation aims at reducing the number of active servers in a data cen-

ter so as to reduce the total power consumption. In this context, most of

the existing solutions rely on aggressive VM migration, thus resulting in

unnecessary overhead and energy wastage. Moreover, VM consolidation

should take into account multiple resource types simultaneously, since

CPU is not the only critical resource in cloud data centers. In fact, also

memory and network bandwidth may become a bottleneck, possibly caus-

ing violations in the SLA. To tackle both these issues, this dissertation

has proposed two VM consolidation algorithms, called MRS (Publication

II) and VMCUP–M (Publication IV), for improving the energy efficiency

of cloud data centers. In this context, the proposed VM consolidation al-

gorithms: (1) remove resource fragmentation of servers after a number

of VMs have been added to (or removed from) the cloud data center as

well as when VM workloads increase or decrease over time; (2) create idle

servers and switch them into a low–power state to save energy; and (3)

minimize the number of VM migrations and server switches along with

the number of active servers. The goals above were achieved by integrat-

ing VM consolidation algorithms with an efficient overloaded and under-

loaded host management scheme. Such an integration allowed for a re-
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liable characterization of hot and cold servers, thus limiting the number

of unnecessary VM migrations and server switches along with the num-

ber of active machines. Simulation results on both synthetic and real–

world workloads showed that, in comparison with the state of the art,

consolidation with efficient hot and cold spot management enables reduc-

ing the number of migrations and power state changes while complying

with the SLA. Furthermore, thanks to the proposed multiple usage pre-

diction (MUP) scheme, our solution is able to cooperate with existing VM

selection policies to lower the energy consumption, limit the frequency of

VM migrations and server switches in a data center. MUP also inter–

operates with existing VM placement algorithm (i.e., power–aware best

fit decreasing) to correctly select the target host that does not become a

hot spot in the long–term future.

A Distributed Computing Solution for Big Data Analytics (Pub-

lication V). Processing huge amounts of data consumes significant en-

ergy because it is time–consuming to extract meaningful information from

them. This dissertation has also proposed an efficient approach, called

Distributed Semantic Analysis (DSA), that integrated distributed com-

puting with semantic analysis so as to process large amounts of data in

a scalable manner. In particular, DSA targeted application–specific re-

quirements (e.g., response time) while performing the heavy–duty tasks.

A testbed evaluation showed that DSA significantly reduces the compu-

tation time to analyze big data, thus also decreasing the associated en-

ergy consumption. In particular, DSA is able to process large amounts

of semantic data, for instance, a full dump of Wikipedia articles, without

resorting to preliminary filtering of the source data.

5.2 Future Research Directions

The work in this dissertation can be further developed along multiple di-

rections.

The first improvement targets VM consolidation. Publication II, Publi-

cation III, and Publication IV have extensively discussed VM consolida-

tion algorithms that execute periodically according to a predefined consol-

idation interval (i.e., every five minutes) to eliminate overload situations

or create idle physical servers. However, setting static consolidation inter-

vals is not an effective means for IaaS cloud environments with dynamic

workloads, in which the utilization of VMs running on a physical server
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continuously changes over multiple resource dimensions. This may yield a

significant performance degradation when VM consolidation is executed

during periods of high utilization of any resource dimension [124]. It is

therefore important to investigate approaches to accurately estimate the

consolidation times based on the history of VM workloads.

The second improvement concerns network–related aspects, especially,

the data center network and that of interacting VMs [92]. Publication

I and Publication II have taken into account network bandwidth as one

dimension in the proposed VM placement and consolidation algorithms.

However, they did not consider the network topologies of the data cen-

ter and of the deployed VMs. Therefore, VM management algorithms

could be extended to take the data center network topologies into account

while computing the assignment between the virtual and the physical ma-

chines [64]. This would allow to reduce the VM live migration time and

the energy consumption by selecting the network links with the best per-

formance and energy trade–offs. Furthermore, cloud users may request

several VMs with massive inter–VM communication (e.g., running web

servers and databases). Therefore, VM management algorithms could

further reduce the network communication costs by explicitly considering

the communication between VMs, i.e., by placing the set of communicat-

ing VMs on the same or on closely–located physical machines [18].

The third improvement targets VM management approaches over mul-

tiple IaaS clouds. Cloud providers recently started to deploy large–scale

data centers consisting of multiple server farms, possibly distributed in

geographically different locations [20, 48, 80]. Publication III and Publi-

cation IV have extended the CloudSim simulation toolkit to support mul-

tiple resource types and simulated a single cloud data center. However,

the VM management algorithms proposed in this dissertation should be

further extended for data centers spanning across multiple locations.

The fourth improvement involves evaluating the performance of the pro-

posed VM management algorithms in real cloud data centers and compar-

ing the related performance with existing solutions in open–source IaaS

cloud management systems (e.g., OpenStack). As the target system is an

IaaS, conducting large–scale experiments on a real infrastructure is ex-

tremely difficult [10]. However, the distributed computing system for big

data analytics presented in Publication V was deployed and evaluated in

a real testbed environment. A more extensive analysis could be conducted

on a large–scale scenario as a future work.

84



Bibliography

[1] Mansoor Alicherry and T.V. LakShman. Network aware resource alloca-
tion in distributed clouds. In Proceedings of the 31st Conference on Com-
puter Communications (INFOCOM ’12), pages 963–971, 2012.

[2] Jorn Altmann, Matthias Hovestadt, and Odej Kao. Business support ser-
vice platform for providers in open cloud computing markets. In Proceed-
ings of the 7th International Conference on Networked Computing (INC),
pages 149–154, 2011.

[3] Amazon. Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/
ec2/, 2015.

[4] Apache Software Foundation. Mahout Machine Learning Library. http:
//mahout.apache.org/, 2012.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, and Matei Zaharia. A view of cloud computing. Communica-
tions of the ACM, 53:50–58, 2009.

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proceedings of the 19th ACM symposium on Operating
systems principles (SOSP ’03), pages 164–177, 2003.

[7] Luiz André Barroso and Urs Hölzle. The case for energy–proportional com-
puting. Computer, 40:33–37, 2007.

[8] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse–Scale Machines, page 108 pages.
Morgan and Claypool Publishers, 2009.

[9] Sobir Bazarbayev, Matti Hiltunen, Kaustubh Joshi, William H. Sanders,
and Richard Schlichting. Content–based scheduling of virtual machines
in the cloud. In Proceedings of the 33rd IEEE International Conference on
Distributed Computing Systems (ICDCS), pages 93–101, 2013.

[10] Anton Beloglazov. Energy–Efficient Management of Virtual Machines in
Data Centers for Cloud Computing, page 239 pages. PhD Thesis. The Uni-
versity of Melbourne, 2013.

85



Bibliography

[11] Anton Beloglazov and Rajkumar Buyya. Managing overload hosts for dy-
namic consolidation of virtual machines in cloud data centers under qual-
ity of service constraints. IEEE Transactions of Parallel and Distributed
Systems, 24:1366–1379, 2012.

[12] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic al-
gorithms and adaptive heuristics for energy and performance efficient dy-
namic consolidation of virtual machines in cloud data centers. Concurrency
and Computation: Practice and Experience, 24:1397–1420, 2012.

[13] Shshil Bhardwaj, Leena Jain, and Sandeep Jain. Cloud computing: A
study of infrastructure as a service (iaas). International Journal of Engi-
neering and Information Technology, 2:60–63, 2010.

[14] Ricardo Bianchini and Ram Rajamony. Power and energy management for
server systems. IEEE Computer, 37:68–74, 2004.

[15] Robert Birke, Lydia Y. Chen, and Evgenia Smirni. Data centers in the
wild: A large performance study. Technical report, IBM Research, April
2012.

[16] Mark Blackburn. Five ways to reduce data center server power consump-
tion. Technical report, The Green Grid, 2008.

[17] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic placement of
virtual machines for managing sla violations. In Proceedings of the 10th

IFIP/IEEE International Symposium on Integrated Network Management
(IM ’07), pages 119–128, 2007.

[18] Sumit Kumar Bose, Scott Brock, Ronald Skeoch, and Shrisha Rao. Cloud-
spider: Combining replication with scheduling for optimizing live migra-
tion of virtual machines across wide area networks. In Proceedings of
the 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 13–22, 2011.

[19] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau L. Bölöni,
Muthucumaru Maheswaran, Albert I. Reuther, James P. Robertson,
Mitchell D. Theys, and Bin Yao. A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed com-
puting systems. Journal of Parallel and Distributed Computing, 6:810–
837, 2001.

[20] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. Intercloud:
Utility–oriented federation of cloud computing environments for scaling of
application services. In Proceedings of the 10th International Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP ’10), pages
13–31, 2010.

[21] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,
and Ivona Brandic. Cloud computing and emerging it platforms: Vision,
hype, and reality for delivering computing as the 5th utility. Journal of
Future Generation Computer Systems, 25:599–616, 2009.

[22] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, De Rose, César A.
F. De Rose, and Rajkumar Buyya. Cloudsim: A toolkit for modeling and
simulation of cloud computing environments and evaluation of resource

86



Bibliography

provisioning algorithms. Software Practice and Experiment, 41(1):23–50,
2011.

[23] Michael Cardosa, Madhukar R. Korupolu, and Aameek Singh. Shares and
utilities based power consolidation in virtualized server environments. In
Proceedings of the 11th IFIP/IEEE international conference on Symposium
on Integrated Network Management (IM ’09), pages 327–334, 2009.

[24] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. Optimization of re-
source provisioning cost in cloud computing. IEEE Transactions on Ser-
vices Computing, 5:164–177, 2012.

[25] Kyle Chard, Simon Caton, Omer Rana, and Kris Bubendorfer. Social cloud:
Cloud computing in social networks. In Proceedings of the 3rd IEEE Inter-
national Conference on Cloud Computing (CLOUD), pages 99–106, 2010.

[26] Wei Chen, Xiaoqiang Qiao, Jun Wei, and Tao Huang. A profit–aware
virtual machine deployment optimization framework for cloud platform
providers. In Proceedings of the 5th IEEE International Conference on
Cloud Computing (CLOUD), pages 17–24, 2012.

[27] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration
of virtual machines. In Proceedings of the 2nd conference on Symposium
on Networked Systems Design and Implementation (NSDI’05), pages 273–
286, 2005.

[28] Thiago Cordeiro, Douglas Damalio, Nadilma Pereira, Patricia Endo, André
Palhares, Glauco Gonçalves, Djamel Sadok, Judith Kelner, Bob Melander,
Victor Souza, and Jan-Erik Mangs. Open source cloud computing plat-
forms. In Proceedings of the 9th IEEE International Conference on Grid
and Cooperative Computing (GCC), pages 366–371, 2010.

[29] Antonio Corradi, Mario Fanelli, and Luca Foschini. Vm consolidation: A
real case based on openstack cloud. Future Generation Computer Systems,
32:118–127, 2014.

[30] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data process-
ing on large clusters. Journal of Communications of the ACM, 51:107–113,
2008.

[31] Umesh Deshpande, Xiaoshuang Wang, and Kartik Gopalan. Live gang
migration of virtual machines. In Proceedings of the 20th international
symposium on High performance distributed computing (HPDC ’11), pages
135–146, 2011.

[32] Jaliya Ekanayake and Geoffrey Fox. High performance parallel comput-
ing with clouds and cloud technologies. Cloud Computing. The series Lec-
ture Notes of the Institute for Computer Sciences, Social–Informatics and
Telecommunications Engineering, 34:20–38, 2010.

[33] David Erickson, Brandon Heller, Shuang Yang, Jonathan Chu, Jonathan
Ellithorpe, Scott Whyte, Stephen Stuart, Nick McKeown, Guru Parulkar,
and Mendel Rosenblum. Optimizing a virtualized data center. In Pro-
ceedings of the ACM SIGCOMM 2011 conference (SIGCOMM ’11), pages
478–479, 2011.

87



Bibliography

[34] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provi-
sioning for a warehouse–sized computer. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA ’07), pages 13–
23, 2007.

[35] Eugen Feller. Autonomic and Energy–Efficient Management of Large–
Scale Virtualized Data Centers, page 180 pages. Distributed, Parallel, and
Cluster Computing [cs.DC]. PhD Thesis. Université Rennes 1, 2012.

[36] Eugen Feller, Christine Morin, and Armel Esnault. A case for fully de-
centralized dynamic vm consolidation in clouds. In Proceedings of the 4th

IEEE International Conference on Cloud Computing Technology and Sci-
ence (CloudCom), pages 26–33, 2012.

[37] Tiago C. Ferreto, Marco A. S. Netto, Rodrigo N. Calheiros, and César A. F.
De Rose. Server consolidation with migration control for virtualized data
centers. Journal of Future Generation Computer System, 27:1027–1034,
2011.

[38] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin. Placing search in context: The
concept revisited. ACM Transactions on Information Systems, 20(1):116–
131, 2002.

[39] Apache Software Foundation. Apache Hadoop. http://hadoop.apache.
org/, 2015.

[40] The Apache Software Foundation. CloudStack: Open Source Cloud Com-
puting. http://cloudstack.apache.org/, 2015.

[41] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic related-
ness using Wikipedia–based explicit semantic analysis. In Proceedings of
the 21th National Conference on Artificial Intelligence, pages 1606–1611,
2007.

[42] Evgeniy Gabrilovich and Shaul Markovitch. Wikipedia–based semantic
interpretation for natural language processing. Journal of Artificial Intel-
ligence Research, 34:443–498, 2009.

[43] Saurabh Kumar Garg, Rajkumar Buyya, and Howard Jay Siegel. Time
and cost trade–off management for scheduling parallel applications on
utility grids. Journal of Future Generation Computer Systems, 91:151–
160, 2009.

[44] Peter Garraghan, Paul Townend, and Jie Xu. An analysis of the server
characteristics and resource utilization in google cloud. In Proceedings of
the IEEE International Conference on Cloud Engineering (IC2E ’13), pages
124–131, 2013.

[45] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. Re-
source pool management: Reactive versus proactive or let’s be friends. The
International Journal of Computer and Telecommunications Networking,
53:2905–2922, 2009.

[46] C. Goddard. Semantic analysis: A practical introduction. Oxford Univer-
sity Press, second edition, 2011.

88



Bibliography

[47] Google. Compute Engine: Run large–scale workloads on virtual machines
hosted on Google’s infrastructure. Choose a VM that fits your needs and
gain the performance of Google’s worldwide fiber network. https://cloud.
google.com/products/compute-engine, 2015.

[48] Hadi Goudarzi. SLA–based, Energy–Efficient Resource Management in
Cloud Computing Systems, page 173 pages. PhD Thesis. University of
Southern California, 2013.

[49] Hadi Goudarzi, Mohammad Ghasemazar, and Massoud Pedram. Sla–
based optimization of power and migration cost in cloud computing. In
Proceedings of the 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pages 172–179, 2012.

[50] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel.
The cost of a cloud: research problems in data center networks. ACM
SIGCOMM Computer Communication Review, 39:63–73, 2009.

[51] Brian Guenter, Navendu Jain, and Charles Williams. Managing cost, per-
formance, and reliability tradeoffs for energy–aware server provisioning.
In Proceedings of the 30st Conference on Computer Communications (IN-
FOCOM ’11), pages 1332–1340, 2011.

[52] Abhishek Gupta, Laxmikant V. Kalé, Dejan Milojicic, Paolo Faraboschi,
and Susanne M. Balle. Hpc–aware vm placement in infrastructure clouds.
In Proceedings of the IEEE International Conference on Cloud Engineering
(IC2E), pages 11–20, 2013.

[53] J. Octavio Gutierrez-Garcia and Kwang Mong Sim. A family of heuristics
for agent–based elastic cloud bag–of–tasks concurrent scheduling. Journal
of Future Generation Computer Systems, 29:1682–1699, 2012.

[54] James Hamilton. Cooperative expendable micro–slice servers (cems): Low
cost, low power servers for internet–scale services. In Proceedings of the 4th

Biennial Conference on Innovative Data Systems Research (CIDR), pages
1–8, 2009.

[55] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and
Julia Lawall. Entropy: a consolidation manager for clusters. In Proceed-
ings of the ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE ’09), pages 41–50, 2009.

[56] Michael R. Hines and Kartik Gopalan. Post–copy based live virtual ma-
chine migration using adaptive pre–paging and dynamic self–ballooning.
In Proceedings of the ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments (VEE ’09), pages 51–60, 2009.

[57] HP. HP Helion Eucalyptus: Open source hybrid cloud software for AWS
users. http://www8.hp.com/us/en/cloud/helion-eucalyptus-overview.
html, 2015.

[58] Jinhua Hu, Jianhua Gu, Guofei Sun, and Tianhai Zhao. A scheduling
strategy on load balancing of virtual machine resources in cloud comput-
ing environment. In Proceedings of the 3rd International Symposium on
Parallel Architectures, Algorithms and Programming, pages 89–96, 2010.

89



Bibliography

[59] Chris Hyser, Bret McKee, Rob Gardner, and Brian J. Watson. Autonomic
virtual machine placement in the data center. Technical report, Hewlett
Packard Laboratories, February 2008.

[60] Chris Hyser, Bret McKee, Rob Gardner, and Brian J. Watson. Autonomic
virtual machine placement in the data center. Technical report, Hewlett
Packard Laboratories, February 2008.

[61] IBM. IBM Cloud. http://www.ibm.com/us/en/, 2015.

[62] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical pre-
diction models for adaptive resource provisioning in the cloud. Journal of
Future Generation Computer Systems, 28:155–162, 2012.

[63] James Pearn. How many servers does Google have? https://plus.

google.com/+JamesPearn/posts, 2012.

[64] Joe Wenjie Jiang, Tian Lan, Sangtae Ha, Minghue Chen, and Mung Chi-
ang. Join vm placement and routing for data center traffic engineering.
In Proceedings of the 31st Annual IEEE International Conference on Com-
puter Communications: Mini–Conference, pages 2876–2880, 2012.

[65] Hao Jin, Deng Pan, Jing Xu, and Niki Pissinou. Efficient vm place-
ment with multiple deterninistic and stochastic resources in data centers.
In Proceedings of the IEEE Global Communications Conference (GLOBE-
COM), pages 2505–2510, 2012.

[66] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm:
the linux virtual machine monitor. In Ottawa Linux Symposium, pages
225–230, 2007.

[67] Thomas Knauth. Energy Efficient Cloud Computing: Techniques and
Tools, page 147 pages. PhD Thesis. Technische Universität Dresden, 2014.

[68] Thomas Knauth and Christof Fetzer. Energy–aware scheduling for in-
frastructure clouds. In Proceedings of the 4th International Conference on
Cloud Computing Technology and Science (CloudCom), pages 58–65, 2012.

[69] Jonathan G. Koomey. Estimating total power consumption by servers in
the u.s. and the world. Technical report, Lawrence Berkeley National Lab-
oratory, 2007.

[70] Jonathan G. Koomey. Growth in data center electricity use 2005 to 2010.
Technical report, Analytics Press, August 2011.

[71] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy,
and Guofei Jiang. Power and performance management of virtualized com-
puting environments via lookahead control. Cluster Computing, 12:1–15,
2009.

[72] Darrell Laham. Latent Semantic Analysis@CU Boulder. http://lsa.
colorado.edu/, visited January 30, 2012.

[73] T. K. Landauer, P. W. Foltz, and D. Laham. Introduction to latent semantic
analysis. Discourse Process, 25(2-3):259–284, 1998.

90



Bibliography

[74] Gunho Lee. Resource Allocation and Scheduling in Heterogeneous Cloud
Environments, page 113 pages. PhD Thesis. University of California,
Berkeley, 2012.

[75] Sangmin Lee, Rina Panigrahy, Vijayan Prabhakaran, Venugopalan Rama-
subramanian, Kunal Talwar, Lincoln Uyeda, and Udi Weider. Validating
heuristics for virtual machines consolidation. Technical Report MSR-TR-
2011-9, Microsoft Research, January 2011.

[76] Young Choon Lee and Albert Y. Zomaya. Energy efficient utilization of
resources in cloud computing systems. The Journal of Supercomputing,
60:268–280, 2012.

[77] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. Server–level power
control. In Proceedings of the 4th International Conference on Autonomic
Computing (ICAC ’07), page 4, 2007.

[78] Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and Liang Zhong.
Enacloud: An energy–saving application live placement approach for cloud
computing environments. In Proceedings of the IEEE International Con-
ference on Cloud Computing (CLOUD), pages 17–24, 2009.

[79] Wubin Li. Algorithms and Systems for Virtual Machine Scheduling in
Cloud Infrastructures, page 136 pages. PhD Thesis. Umeå University,
2014.

[80] Wubin Li, Johan Tordsson, and Erik Elmroth. Modeling for dynamic cloud
scheduling via migration of virtual machines. In Proceedings of the 3rd

IEEE International Conference on Cloud Computing Technology and Sci-
ence (CloudCom), pages 163–171, 2011.

[81] Wubin Li, Johan Tordsson, and Erik Elmroth. Virtual machine placement
for predictable and time–constrained peak loads. Economics of Grids,
Clouds, Systems, and Services, 7150 of the series Lecture Notes in Com-
puter Science:120–134, 2012.

[82] Xin Li, Zhuzhong Qian, Ruiqing Chi, Bolei Zhang, and Sanglu Lu. Balanc-
ing resource utilization for continuous virtual machine requests in clouds.
In Proceedings of the 6th International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS), pages 266–273,
2012.

[83] Xin Li, Zhuzhong Qian, Sanglu Lu, and Jie Wu. Energy efficient virtual
machine placement algorithm with balanced and improved resource uti-
lization in data center. Mathematical and Computer Modelling, 58:1222–
1235, 2013.

[84] Ching Chi Lin, Pangfeng Liu, and Jan Jan Wu. Energy–efficient virtual
machine provison algorithms for cloud systems. In Proceedings of the 4th

IEEE International Conference on Utility and Cloud Computing (UCC),
pages 81–88, 2011.

[85] Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska.
Dynamic right–sizing for power–proportional data centers. In Proceed-
ings of the 30st Conference on Computer Communications (INFOCOM ’11),
pages 1098–1106, 2011.

91



Bibliography

[86] Xuan Lin, Anwar Mamat, Ying Lu, Jitender Deogun, and Steve God-
dard. Real–time scheduling of divisible loads in cluster computing envi-
ronments. Journal of Parallel and Distributed Computing, 70:296–308,
2009.

[87] Liang Liu, Hao Wang, Xue Liu, Xing Jin, WenBo He, QingBo Wang, and
Ying Chen. Greencloud: a new architecture for green data center. In Pro-
ceedings of the 6th international conference industry session on Autonomic
computing and communications industry session (ICAC-INDST’09), pages
29–38, 2009.

[88] Ali José Mashtizadeh, Min Cai, Gabriel Tarasuk-Levin, Ricardo Koller, Tal
Garfinkel, and Sreekanth Setty. Xvmotion: Unified virtual machine migra-
tion over long distance. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC 14), pages 97–108, 2014.

[89] Carlo Mastroianni, Michela Meo, and Giuseppe Papuzzo. Probabilistic con-
solidation of virtual machines in self–organizing cloud data centers. IEEE
Transactions on Cloud Computing, 1:125–228, 2013.

[90] Vimal Mathew, Ramesh K. Sitaraman, and Prashant Shenoy. Energy–
aware load balancing in content delivery networks. In Proceedings of
the 31st Conference on Computer Communications (INFOCOM ’12), pages
954–962, 2012.

[91] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: elimi-
nating server idle power. In Proceedings of the 14th International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’09), pages 205–216, 2009.

[92] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the scalability
of data center networks with traffic–aware virtual machine placement. In
Proceedings of the 29th Conference on Computer Communications (INFO-
COM ’10), pages 1154–1162, 2010.

[93] Microsoft. Microsoft Hyper–V. https://technet.microsoft.com/en-us/
windowsserver/dd448604.aspx, 2015.

[94] K. Mills, J. Filliben, and C. Dabrowski. Comparing vm–placement algo-
rithms for on–demand clouds. In Proceedings of the 3rd IEEE Interna-
tional Conference on Cloud Computing Technology and Science (Cloud-
Com), pages 91–98, 2011.

[95] David Milne and Ian H. Witten. An effective, low–cost measure of semantic
relatedness obtained from Wikipedia links. In Proceedings of the AAAI
Workshop on Wikipedia and Artificial Intelligence (WIKIAI ’08), pages 25–
30, 2008.

[96] Yue Minyi. A simple proof of the inequality ffd (l) < 11/9 opt (l) + 1, for all
l for the ffd bin–packing algorithm. Acta Mathematicae Applicatae Sinica,
7:321–331, 1991.

[97] Mayank Mishra and Anirudha Sahoo. On theory of vm placement: Anoma-
lies in existing methodologies and their mitigation using a novel vector
based approach. In Proceedings of the 4th IEEE International Conference
on Cloud Computing (CLOUD, pages 275–282, 2011.

92



Bibliography

[98] Aziz Murtazaev and Sangyoon Oh. Sercon: Server consolidation algorithm
using live migration of virtual machines for green computing. IETE Tech-
nical Review, 28:212–231, 2011.

[99] Susanta Nanda and Tzi-cker Chiueh. A survey on virtualization technolo-
gies. Technical report, Experimental Computer Systems Lab, State Uni-
versity of New York, February 2005.

[100] Trung Hieu Nguyen, Mario Di Francesco, and Antti Ylä-Jääski. Extracting
knowledge from wikipedia articles through distributed semantic analysis.
In Proceedings of the 13th International Conference on Knowledge Manage-
ment and Knowledge Computing (i-KNOW ’13), pages 188–195, 2013.

[101] Trung Hieu Nguyen, Mario Di Francesco, and Antti Ylä-Jääski. A multi–
resource selection scheme for virtual machine consolidation in cloud data
centers. In Proceedings of the 6th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pages 234–239, 2014.

[102] Trung Hieu Nguyen, Mario Di Francesco, and Antti Ylä-Jääski. A virtual
machine placement algorithm for balanced resource utilization in cloud
data centers. In Proceedings of the 7th IEEE International Conference on
Cloud Computing (CLOUD), pages 474–481, 2014.

[103] Trung Hieu Nguyen, Mario Di Francesco, and Antti Ylä-Jääski. Virtual
machine consolidation with usage prediction for energy–efficient in cloud
data centers. In Proceedings of the 8th IEEE International Conference on
Cloud Computing (CLOUD), pages 750–757, 2015.

[104] Dusit Niyato, Sivadon Chaisiri, and Lee Bu Sung. Optimal power manage-
ment for server farm to support green computing. In Proceedings of the 9th

IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid ’09), pages 84–91, 2009.

[105] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graiano Obertelli, Sunil
Soman, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptus open–
source cloud computing system. In Proceedings of the IEEE International
Symposium on Cluster Computing and the Grid, pages 17–24, 2009.

[106] University of Chicago. Nimbus is cloud computing for science. http://
nimbusproject.org, 2015.

[107] OpenNebula. http://www.opennebula.org, 2015.

[108] Oracle. VirtualBox. https://www.virtualbox.org/, 2015.

[109] Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman. Mahout in
Action. Manning Publications, 2012.

[110] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, and Kang G.
Shin. Performance evaluation of virtualization technologies for server
consolidation. Technical report, HP Laboratories Technical Report, April
2007.

[111] KyoungSoo Park and Vivek S. Pai. Comon: A mostly–scalable monitoring
system for planetlab. SIGOPS Oper. Syst. Rev., 40(1):65–74, 2006.

93



Bibliography

[112] Simone Paolo Ponzetto and Michael Strube. Knowledge derived from Wiki-
pedia for computing semantic relatedness. Journal of Artificial Intelligence
Research, 30:181–212, 2007.

[113] The OpenStack Project. OpenStack: The Open Source Cloud Operating
System. http://www.openstack.org/software/, 2015.

[114] QinZheng and Bharadwaj Veeravalli. Utilization based pricing for power
management and profit optimization in data centers. Journal of Parallel
and Distributed Computing (JPDC), 72:27–34, 2012.

[115] Rackspace. Hosting Reports Third Quarter. http://ir.rackspace.com/
phoenix.zhtml?c=221673&p=irol-newsArticle&ID=1988010, 2014.

[116] Rackspace. http://www.rackspace.com/, 2015.

[117] Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul
Markovitch. A word at a time: Computing word relatedness using tempo-
ral semantic analysis. In Proceedings of the 20th International Conference
on Word Web Wide, pages 337–346, 2011.

[118] Dianne Rice, Jason Glick, Diana Cercy, Cathy Sandifer, and Bob Cram-
blitt. Standard Performance Evaluation Corporation (SPEC). https:

//www.spec.org/power_ssj2008/results/, 2015.

[119] RIKEN Integrated Cluster of Clusters (RICC). http://accc.riken.jp/
ricc_e/, 2015.

[120] Pierre Riteau, Christine Morin, and Thierry Priol. Shrinker. Improving
live migration of virtual clusters over wans with distributed data dedupli-
cation and content–based addressing. EuroPar 2011 Parallel Processing,
Lecture Notes in Computer Science, 6852:431–442, 2011.

[121] Maria Alejandra Rodriguez and Rajkumar Buyya. Deadline based re-
source provisioning and scheduling algorithm for scientific workflows on
clouds. IEEE Transaction on Cloud Computing, 2:222–235, 2010.

[122] Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current
technology and future trends. Computer, 38:39–47, 2005.

[123] Sebastian Anthony. Google Compute Engine: For $2 mil-
lion/day, your company can run the third fastest supercom-
puter in the world. http://www.extremetech.com/extreme/

131962-google-compute-engine-for-2-millionday-your-company-can-\

run-the-third-fastest-supercomputer-in-the-world, 2012.

[124] Thomas Setzer and Alexander Stage. Decision support for virtual machine
reassignments in enterprise data centers. In Proceedings of the IEEE/IFIP
Network Operations and Management Symposium Workshops (NOMS Wk-
sps), pages 88–94, 2010.

[125] Aameek Singh, Madhukar R. Korupolu, and Dushmanta Mohapatra.
Server–storage virtualization: Integration and load balancing in data cen-
ters. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–12, 2008.

94



Bibliography

[126] Jame E. Smith and Ravi Nair. The architecture of virtual machines. Com-
puter, 38:32–38, 2005.

[127] Biao Song, M.M. Hassan, and Eui nam Huh. A novel heuristic–based task
selection and allocation framework in dynamic collaborative cloud service
platform. In Proceedings of the 2nd International Conference on Cloud
Computing Technology and Science (CloudCom), pages 360–367, 2010.

[128] Weijia Song, Zhen Xiao, Qi Chen, and Haipeng Luo. Adaptive resource
provisioning for the cloud using online bin packing. IEEE Transactions on
Computers, 99:2647–2660, 2013.

[129] Benjamin Speitkamp and Martin Bichler. A mathematical programming
approach for server consolidation problems in virtualized data centers.
IEEE Transactions on Services Computing, 3:266–278, 2010.

[130] Alexander Stage and Thomas Setzer. Network–aware migration control
and scheduling of differentiated virtual machine workloads. In Proceed-
ings of the IEEE Workshop on Software Engineering Challenges of Cloud
Computing, pages 9–14, 2009.

[131] Michael Strube and Simone Paolo Ponzetto. Wikirelate! computing seman-
tic relatedness using Wikipedia. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI), pages 1419–1424, 2006.

[132] Sheetal A. Takale and Sushma S. Nandgaonkar. Measuring semantic sim-
ilarity between words using web documents. International Journal of Ad-
vanced Computer Science and Applications (IJACSA), 1(4):78–85, 2010.

[133] Ibrahim Takouna, Esra Alzaghoul, and Christoph Meinel. Robust vir-
tual machine consolidation for efficient energy and performance in virtu-
alized data centers. In Proceedings of the IEEE International Conference
on Green Computing and Communications (GreenCom), pages 470–477,
September 2014.

[134] Selome Kostentinos Tesfatsion, Eddie Wadbro, and Johan Tordsson.
A combined frequency scaling and application elasticity approach for
energy–efficient cloud computing. Sustainable Computing: Informatics
and Systems. Special Issue on Energy Aware Resource Management and
Scheduling, 4:205–214, 2014.

[135] Wenhong Tian, Yong Zhao, Yuanliang Zhong, Minxian Xu, and Chen Jing.
A dynamic and integrated loadbalancing scheduling algorithm for cloud
datacenters. In Proceedings of the IEEE International Conference on Cloud
Computing and Intelligence Systems (CCIS), pages 311–315, 2011.

[136] Timothy Prickett Morgan. A Rare Peek Into The Massive
Scale of AWS. http://www.enterprisetech.com/2014/11/14/

rare-peek-massive-scale-aws/, 2014.

[137] Traces of Google Workloads. http://code.google.com/p/

googleclusterdata/, 2015.

[138] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.
A break in the clouds: Towards a cloud definition. ACM SIGCOMM Com-
puter Communication Review, 39:50–55, 2008.

95



Bibliography

[139] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: power and
migration cost aware application placement in virtualized systems. In Pro-
ceedings of the 9th ACM/IFIP/USENIX International Conference on Mid-
dleware, pages 243–264, 2008.

[140] VMware. Understanding Full Virtualization, Paravirtualization,
and Hardware Assist. http://www.vmware.com/files/pdf/VMware_

paravirtualization.pdf, 2015.

[141] VMware. VMware Workstation. https://www.vmware.com/products/

workstation, 2015.

[142] Bing Wei, Chuang Lin, and Xiangzhen Kong. Energy optimized modeling
for live migration in virtual data center. In Proceedings of the International
Conference on Computer Science and Network Technology (ICCSNT), pages
2311–2315, 2011.

[143] Sanford Weisberg. Applied Linear Regression, 3rd edition. Wiley Series in
Probability and Statistics, 2005.

[144] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif.
Black–box and gray–box strategies for virtual machine migration. In Pro-
ceedings of the 4th USENIX conference on Networked systems design and
implementation, pages 229–242, 2007.

[145] Zhen Xiao, Weijia Song, and Qi Chen. Dynamic resource allocation using
virtual machines for cloud computing environment. IEEE Transactions of
Parallel and Distributed Systems, 24:1107–1116, 2013.

[146] Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li, and Baochun Li.
iaware: Marking live migration of virtual machines interference–aware
in the cloud. IEEE Transaction on Computers, 63:3012–3025, 2014.

[147] Chih Chiang Yang, Kun Ting Chen, Chien Chen, and Jing Ying
Chen. Market–based load balancing for distributed heterogeneous multi–
resource servers. In Proceedings of the 15th International Conference on
Parallel and Distributed Systems (ICPADS), pages 158–165, 2009.

[148] Kejiang Ye, Xiaohong Jiang, Dawei Huang, Jianhai Chen, and Bei Wang.
Live migration of multiple virtual machines with resource reservation in
cloud computing environments. In Proceedings of the IEEE 4th Interna-
tional Conference on Cloud Computing (CLOUD), pages 267–274, 2011.

[149] Lei Ye. Energy Management for Virtual Machines, page 102 pages. PhD
Thesis. The University of Arizona, 2013.

[150] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state–of–the–
art and research challenges. Journal of Internet Services and Applications,
1:7–18, 2010.

[151] Jinzy Zhu. Cloud Computing Technologies and Application, pages 21–45.
Hanbook of Cloud Computing, 2010.

96



 

A
alto-D

D
 14

0
/2

016 

9HSTFMG*agjbdf+ 

ISBN 978-952-60-6913-5 (printed) 
ISBN 978-952-60-6912-8 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Science 
Department of Computer Science 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

N
guyen Trung H

ieu 
V

irtual M
achine M

anagem
ent for E

fficient C
loud D

ata C
enters w

ith A
pplications to Big D

ata 
A

nalytics 
A

alto
 U

n
ive

rsity 

2016 

Department of Computer Science 

Virtual Machine 
Management for Efficient 
Cloud Data Centers with 
Applications to Big Data 
Analytics 

Nguyen Trung Hieu 

DOCTORAL 
DISSERTATIONS 


	Aalto_DD_2016_140_Nguyen_verkkoversio

