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Uncertainty Analysis of Intermodulation-Based
Antenna Measurements

Jari-Matti Hannula and Ville Viikari

Department of Radio Science and Engineering, Aalto University, Espoo, Finland
Email: jari-matti.hannula@aalto.fi, ville.viikari@aalto.fi

Abstract—Intermodulation measurement principle has been
proposed for characterizing transponder antennas. Although the
method seems to offer certain advantages compared to traditional
antenna characterization methods, the measurement uncertainty
has not yet been well characterized. We aim at identifying the
main sources of measurement uncertainty and estimating the
achievable accuracy in a certain case at 1 GHz.

Index Terms—antenna measurements, nonlinearity, transpon-
ders, uncertainty.

I. INTRODUCTION

Wireless identification, sensing, and tracking is an in-
creasingly important application of radio engineering. Used
technologies include RFID [1], harmonic transponders [2],
and various wireless sensors [3]. What these systems have
in common is that they all operate using a nonlinear load
connected to an electrically small antenna.

The effects of the measurement cable in measurements of
electrically small antennas are well-known. The measurement
cable easily becomes a part of the radiating structure, so
instead of only the antenna, both the antenna and the environ-
ment are measured [4]. Techniques for avoiding these effects
include the use of balun chokes to reduce the current induced
to the measurement cable [5], [6].

Measurement methods that avoid the use of the cable can
therefore be highly relevant. This is especially important
in transponder applications that do not use any connecting
cables during their normal operation. Instead, they are directly
matched to the transponder chip, the impedance of which
is often far away from the conventional 50-Ω level used by
common RF measurement equipment.

The intermodulation measurement technique was introduced
in [7] for RFID and was further developed in [8] to char-
acterize harmonic transponders. It uses a nonlinear load to
generate a response at the third-order intermodulation frequen-
cies. Because of the inherent nonlinearity in transponders,
the technique is well-suited for characterizing transponder
antennas.

However, there has been no detailed analysis on the un-
certainty of the measurement technique. In this paper we
take a further look at the results of [8], define the sources
of uncertainty and calculate the total uncertainty in the ob-
tained results. Uncertainty analysis is needed to estimate
the measurement accuracy which is important for comparing
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Fig. 1. The measurement principle analyzed in this paper. The AUT has
a nonlinear load connected to it. It is then illuminated with two closely
spaced frequencies, causing it to scatter back a response at intermodulation
frequencies. The intermodulation response generated by the AUT is recorded
and gain can be calculated by rotating the AUT.

the intermodulation measurement technique with traditional
antenna measurement techniques.

II. BACKGROUND

Fig. 1 illustrates the measurement setup used in the tech-
nique. The measurement is performed for the Antenna Under
Test (AUT) that has a nonlinear load connected to it. The AUT
is then illuminated with two closely located frequencies f1

and f2. Because of the nonlinearity, the transponder produces
intermodulation products at 2f2 − f1 and 2f1 − f2. Either
of these frequencies can be used. The selected frequency is
denoted as fIM.

The generated intermodulation response is then recorded
and used to characterize the antenna. The analytical response
has been derived in [8] and it is
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where Pr,IM is the received intermodulation response, Pt is the
transmitter input power, Gt is the transmitter gain (including
amplifier, cables, and transmitter antenna), Gr is the receiver
gain, rt and rr are the AUT distances from the transmitter
and the receiver, λ is the wavelength, Gtag is the transponder



antenna gain, |S11| is the magnitude of the reflection coef-
ficient between the transponder antenna and the transponder
load, and EIM describes the intermodulation generation of the
load Pout,IM = EIMP

3
in, where Pout,IM is the power generated

by the transponder at the intermodulation frequency and Pin

is the power accepted by the transponder at one fundamental
frequency. These parameters are also illustrated in Fig. 1 that
depicts the bistatic measurement setup. For more details on
how the theory was formulated, see [8].

A. Gain Measurement

To characterize the antenna, the antenna properties can be
solved from (1). We measure the realized gain, so the matching
efficiency is included in the measured value. We define the
realized gain in (1) as G4

tag(1 − |S11|2)4 = G(θ)3G(θ + ∆)
with the angles θ and ∆ as shown in Fig. 1
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Only the received response Pr,IM depends on the AUT rotation
angle. All the other parameters remain constant, and are from
now on denoted using a parameter A. Using this notation,
discretizing the measurement points, and converting the values
to decibel scale, the gain at one single measurement point is

3G3
i +Gi+∆ = A+ Pi. (3)

There are corresponding equations derived for different mea-
surement configurations in [8, eqs. (17), (20), (21)]. The
measurements were performed using the bistatic measurement
geometry, which is why we focus on that configuration in this
paper. In bistatic geometry the gain can be calculated from
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which can be obtained by combining (3) into a linear system
of equations for all i = 1 . . . n.

Bistatic measurement geometry results in improved dynamic
range compared to the monostatic measurement. However, the
use of said geometry also adds some challenges to calculating
the measured value. The gain cannot be calculated from only
one measurement point, but the gain depends on the received
response at several different angles. Each measurement point
This effect depends on the offset ∆ between the measurement
antennas. If the offset is 180◦, the gain at one point depends
on two different measurement points. With an offset of 120◦

it depends on three, e.g. gain at 0◦ depends on the response
measured at 0◦, 120◦, 240◦. The same principle applies when
the offset is made smaller.
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Fig. 2. An example of a measured radiation pattern of a harmonic transponder
obtained using this technique. Result from [8].

III. SOURCES OF UNCERTAINTY

In this section, we characterize the sources of uncertainty
in the measurement. The majority of the terms in the equation
remain constant over the measurement. We can therefore sep-
arate the analysis into two separate cases: constant uncertainty
that is present at all measured angles and the uncertainty that
changes at each measurement point. The uncertainty analysis
is performed for the gain pattern of a harmonic transponder
at 1 GHz. Fig. 2 illustrates this result obtained in [8].

A. Static Variables

This section considers the measurement parameters related
to the measurement setup itself, labeled “setup” in (1). It
includes the uncertainty of the transmitter power Pt, accuracy
of the measured response Pr, transmitter and receiver gains
Gt and Gr, and the measurement distances rt and rr.

Transmitter and receiver gain and loss are measured with
the spectrum analyzer. There is some standard error in the
value measured by the spectrum analyzer which is easily
found from the specifications of the device. Uncertainty before
the intermodulation conversion is more significant than after
because the terms at the fundamental frequencies in (1) have
a larger effect than at the intermodulation frequency.

If the transmit and receive antennas are identical, the uncer-
tainty of the measured gain is proportional to the uncertainty of
the measurement antennas. The properties of the measurement
antennas should therefore be well-known. In addition. the
distance to the AUT should be measured from the phase
center of the measurement antennas. The phase center varies
somewhat depending on the frequency and can be difficult to
pinpoint exactly. A larger source of uncertainty is the location
of the phase center of the measurement antennas, which is not
known exactly.

Another important factor related to the distance is the far-
field assumption. The distance to the AUT has to be small to
reduce the path loss but large enough that far-field conditions
are met. Any near-field effects result in errors in the model.
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Fig. 3. The measured response as a function of transmit power.

The model assumes far-field propagation, i.e.

Pr ∼
(

1

kr

)8

(5)

where k = 2π/λ. In the near field, however, the field depends
on various powers of the distance. In the worst case, there
are three terms that contribute to the response. Assuming the
worst case, the ratio between the power propagating in the
far-field and near-field is [9, p. 27]

Prel =

∣∣ 1
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∣∣8∣∣ 1
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k2r2 + 1
k3r3

∣∣8 (6)

We also assume single-path line-of-sight propagation. We
neglect multiple reflections in the present case because the
measurements were performed in an anechoic chamber and
attenuation due to distance is significant.

B. Power-dependent Variables

The measurement technique is nonlinear, which makes it
important to consider the effects due to varying input power.
A limitation in the bistatic setup is the variability of the
input power. The multistatic setup of [7] would avoid this
problem but we have used the bistatic setup due to the simpler
mechanical construction. This requires that the input power of
the system is adjusted iteratively based on the gain of the AUT.

The nonlinear load is modeled using the parameter EIM,
with the assumption that EIM is constant. This approximation
is accurate at low power levels. The small-signal model
assumes that the intermodulation response is proportional to
the third power of the input power. In reality, the relation is not
exactly logarithmic. Fig. 3 illustrates this concept. When the
transmitted power is smaller than −9 dBm, the error between
the model and the measurement is less than 1.4 dB.

Common harmonic transponder designs include an induc-
tance parallel to the diode [10], [11]. This provides a path for

the generated dc current, preventing the operating point of the
diode from changing. If there is no dc path in the nonlinear
load, then the response can have a larger effect.

C. Angle-dependent Variables

In the ideal case, the response at the receiver depends on
the direct propagation from the transmitter to the transponder,
and then back to the receiver. Additionally, there is interfer-
ence caused by noise and the distortion coupling from the
transmitter to the receiver. It is also the one that causes the
shape of the measured pattern to change because the error
caused by the noise and the distortion depends on the level
of the measured response. A significant problem is the low
Signal-to-Interference-Plus-Noise-Ratio (SINR) near the nulls
in the antenna pattern.

The total power of noise and interference picked up by the
receiver is

PI =
|S21|2P 3

t

LOIP2
3,t

+
(Pt|S21|2)3

L3OIP2
3,r

(7)

where PN is the noise power, L is attenuation before the
receiver, |S21| is the coupling between the transmitter and
receiver, and OIP3,t and OIP3,r are the third-order intercept
points of the transmitter and the receiver [8].

The response is proportional to the fourth power of the gain.
While this is a disadvantage in regards to the dynamic range of
the measurement, it is also beneficial. The effect of uncertainty
is smaller in gain measurements because the gain then depends
on the fourth root of the response.

Noise is constant, but its effect depends on the level of the
measured response, which is why we consider it in this section.
The total received intermodulation response consists of the
transponder response from (1), noise, and the inferference
from (7). When the SINR is low, the interference will degrade
the measurement result, as illustrated at specific angles in
Fig. 2. In the next section, we will estimate the magnitude
of this effect.

Noise is incoherent so the powers can be summed. Dis-
tortion is coherent so the voltages need to be summed. The
measured response Pr is

Pr =
(√

Pr,tag +
√
PI

)2

+ PN (8)

where Pr,tag is the actual response from the tag, PI is the
interference power and PN is the noise power. Here we assume
the worst-case scenario where all the sources of interference
contribute constructively.

IV. CALCULATED MEASUREMENT UNCERTAINTY

In this section, we will calculate the total uncertainty for
the measurement result shown in Fig. 2. The H-plane pattern
is omnidirectional so we only need to consider the static and
power-dependent variables. For the E-plane pattern, the angle-
dependent variables also need to be considered.

Because of the complicated nature of the gain calculation
formulating an analytic solution is difficult. Instead, we incor-
porate the uncertainties in the model used to calculate the gain
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Fig. 4. Comparison of the measured and simulated (noisy and ideal)
responses when Pt = −20 dBm (solid curves) and Pt = −5 dBm (dashed
curves).
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Fig. 5. Comparison of the measured and simulated (noisy and ideal)
responses. The result shown includes the iterative power compensation, which
removes the effect of the noise completely.

and calculate the two extreme values on the both sides of the
measured value.

Fig. 4 illustrates the measured response when the transmit
power is −20 dBm. It can be seen that at such power levels,
the noise floor of the measurement disturbs the measurement.
This can be modelled by summing a noise power of −120 dBm
to the simulated model using (8). At higher power levels, e.g.
−5 dBm, noise has no effect on the result. Instead, the small-
signal model becomes inaccurate and the measured response.
The model cannot account for these effects.

Fig. 5 shows the simulated and measured responses after
iterative input power compensation. In this technique we adjust
the input power at each measurement point based on the
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Fig. 6. The measured and simulated E-plane pattern of the harmonic
transponder. The measurement uncertainty is represented by the gray area
around the measured result.

previously calculated gain value. By including the gain com-
pensation, the effects of the interference and the nonlinearity
can be reduced significantly. The ideal and noise-including
models do not have any significant differences.

However, the difference between the measurement and the
simulation at 20◦ still remains. Based on the simulations
and the geometry of the antenna, we expected the result
to be the same at measurement points that are separated
by 180◦. Because the response at 20◦ and 200◦ differs by
over 7 dB, there must have been some kind of problem in
the measurement setup. The most likely culprit is a slightly
mismatched alignment of the antenna. The difference occurs
when the null of the AUT is pointed towards the receiver. The
gain of the AUT changes rapidly near the null, so a small
misalignment can cause the measured gain to change.

Based on this experimental information, we then calculate
the uncertainty for the performed measurement. We estimate
the uncertainty of all the parameters in (1) and then calculate
the gain for the two extreme values of A + Pr. The uncer-
tainty of possible misalignment is modelled by estimating the
derivative of the received response of Pr as a function of
rotation angle. Fig. 6 illustrates the result. We can see that
the simulated and measured result agree within the calculated
uncertainty value. The H-plane pattern is not shown due to it
being omnidirectional. The gain in the H-plane is measured
to be 1.45 dBi with an uncertainty of ±1.27 dB.

V. CONCLUSION

In this paper, we have analyzed the uncertainty of the
intermodulation measurement technique which has been used
to characterize the realized gain of a harmonic transponder.
We have taken a detailed look at the effect of various uncer-
tainties on the measurement to provide more insight on the



measurement accuracy of this technique. The measurement
results were found to be consistent with the simulated values.

The limited dynamic range remains a problem with the
measurement technique. This is further complicated by the
fact that the AUT should be placed in the far field of the
measurement antennas. Both the distance and the received
power should be maximized, but this is obviously impossible.
A good compromise should therefore be found.

A disadvantage of the bistatic measurement geometry is that
the measurement errors from the near the nulls of the antenna
pattern also affect the result near the maxima of the pattern.
Unlike originally assumed, the SINR is not the only factor
contributing to these errors. The measurement result appears
to be very sensitive to the alignment of the antenna, especially
when the gain changes rapidly.
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