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satisfying results.
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Symbols and abbreviations

Symbols
X Or x; one sample in vector form
Y Or Y; one target value
d dimensionality of the samples
n amount of samples
sub a subset of the original variables
I} hidden layer weights
b bias
k the number of hidden neurons in ELM
0 parameters of a model

var or var; a variable of x

Ty a subset of sample with the (z;,y;) excluded
Oy the variance of the x
Operators

argmin  the arguments making the following expression minimized
Elx] the expectation of

cov(z,y) the covariance of x, y

O(x) the big O notation

Abbreviations

ELM  Extreme Learning Machine
NN Neural Network

MLP  Multilayer Perceptron

PCA  Principal Components Analysis
PCs Principal Components

LARS Least Angle Regression

LOO  Leave-One-Out



1 Introduction

1.1 Air condition prediction

It is a truth universally acknowledged, that a man in possession of a good fortune
must want healthy living environment. Air quality is one of the most important parts
defining the environment and has a close relationship with human health [54, 5, 43, 7].
In practice, many of the studies have been conducted to discover the relationship
between the pollutant variables and health problems, especially for people living in
the urban area [12, 44, 51]. Such variables include the nitrogen oxide (NO,), sulfur
dioxide (S0O3), ozone (O3) and small particulates (PM).

For instance, Burnett found that NOs is a major factor for hospital admissions in
terms of gaseous pollutants [5]. For these cardiovascular causes of death, a 10— ug/m’
elevation in the concentration of particulate matter (PM) was associated with 8%
to 18% increase in mortality risk [43]. A two-year study shows that short-term Os
exposure could bring about acute coronary events [45].

The solution for the improvement of air conditions involves great and long time
effort from the whole society, however, some immediate methods have been suggested
[56] to help the public to prevent themselves from getting harmed by the bad air
conditions during the certain periods of a day.

Such suggestions, however, introduced a new issue: to predict the air condition
so the public could arrange their outdoor activities accordingly, in respect of both
time and location. It has been referred as deterministic approaches [18], where the
trajectory of air mass or chemical materials would be calculated for the predictions.
Many of them are taking into consideration both the evolution of the air concentration
time series itself and more important the movement of the atmosphere. Just as
summarized by Zhang [64], one trend of the forecasting is to take advantage of
computational fluid dynamic models on a smaller scale (1 km or less) with the
help of powerful computers. Several models have been proposed for this air quality
forecasting purpose, such as the PREV’AIR [25] from France, BOLCHEM [41] for
Ozone concentration in Italy and EURAD-IM [17] for NO concentration in mid and
west Europe.

On the other hand, due to the complexity of air dynamic simulations, it might
take huge resources for the calculation, making the real-time forecasting difficult
and hard for the public to access. At the same time, instead of deterministic
methods, researchers also tried the neural networks for the prediction. In most

cases, meteorological data is considered as it could improve the accuracy for the



air quality forecasting [9]. Gardner [19] uses the multilayer perceptron network
(MLP) to model the NO, in London based on hourly meteorological data and
found that it could capture the complex patterns of source emissions without any
external guidance. Kolehmainen, based on experiment on hourly time series of
NO, in the city of Stockholm [37], states that using MLP directly on the original
NOjy records outperforms the models using periodic regression methods. Corani [§]
compared pruned neural networks (PNNs) and lazy learning (LL) on daily Ozone and
P M forecasting in Milan. He pointed out the PNN is better on prediction for the
exceedances of the air quality standards. Voukantsis [61] applied neural networks to
predict the particulate matter in both Helsinki and Thessaloniki, where the accuracy
of the model is identical regardless of the quite different weather conditions of the
two sites. He also got the models optimized by adding a variable selection process
coupled with principal component analysis (PCA), and found only using the top
principal components can explain the air condition records nicely. Zheng [65] uses the
neural network to extract spatial features and the linear chain conditional random
field (CRF) to model the temporal characteristic of air quality. The model shows
advantage to the decisions tree and CRF/ANN alone.

Despite the well-developed traditional MLP neural networks, there is another kind
of feedforward neural network showing its success in the past decade, the Extreme
Learning Machine (ELM) [30, 31]. It is a single hidden layer feedforward neural
network with the weights of the hidden layer being randomly generated. It could be
trained much faster than the neural network using traditional learning algorithms,
such as backpropagation (BP). Unlike the well-developed MLP neural networks, there
are very few papers mentioning the application of Extreme Learning machine (ELM)
in meteorology. Considering the similar time series prediction problems, van Heeswijk
[58] proposed the adaptive ensemble models of ELM, which outperforms the support
vector machine (SVM) model. Yan [63] used ELM ensemble to predict the short term
load of electricity in Australia, where the model beats the backpropagation neural
network and radial basis function the neural network in both prediction accuracy
and training efficiency. Deo [11] has applied this algorithm for the prediction of the
Effective Drought Index in Australia, using meteorological records as inputs, and
found ELM performs better than the backpropagation neural network. As one of
the very few applications of ELM on air quality prediction, Vong [60] carried out
an experiment on predicting the daily average level (3 classes) of PMjy in Macau,
where ELM is superior over SVM in this case.

In this project, a version of the Regularized Extreme Learning Machine [10] is



implemented to predict the hourly concentrations of various air pollutants, on the
basis of the time series of the hourly records of air pollutants and some basic type of
meteorological data, from multiple stations within a relatively small area. Compared
with the experiments mentioned above, the use of both spatial and temporal time
series records with such shorter interval (hourly) makes it unique among related

research.



1.2 Data set description
1.2.1 Air quality records

Thanks to the Finnish Meteorological Institute, there are data records about air
pollution components published on-line [13]. The data set used in this study contain
the hourly records of NO, O3, PMyg and PM,5, from 01.01.2013 to 30.12.2014.
There are altogether 25 stations available around the Helsinki Metropolitan Areal
recording the related data, however, there are very few stations with all the types of
pollutants recorded. After the data preprocessing step, which will be explained in
detail later, 14, 12, 8 and 7 stations have been finally taken into consideration for
pollutant types NO, PM,y, PM,5 and Os respectively.?

1.2.2 Meteorological records

In addition to the air component concentrations, certain types of meteorological
records are also involved in this project. The data set contains some basic weather
records, such as wind, visibility, temperature, pressure and relative humidity from the
monitor stations around Helsinki. They are hourly data downloaded from NOAA’s
National Centers for Environmental Information (NCEI) [42]. After removing some
stations with a huge proportion of missing values, the sample size introduced in this

project is listed in Figure 1.

LA region with urban kernel (including Vantaa, Espoo, Kauniainen) and commuter towns
(Hyvinkai, Kirkkonummi and ete. surrounding Helsinki)

2For sulfur dioxide and carbon monoxide CO concentrations only a few stations (less than 4)
have sufficient records. As one of the targets of the project is to reveal the potential spatial and
temporal patterns among a sufficient amount of stations, SO2 and CO are excluded from this study.
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2 Neural networks

History of neural networks

The study of the brain of human beings has never stopped. About one century ago,
William James published his “The Principles of Psychology” [33], meanwhile the
researchers worked hard to reveal the secret of the brain. Thanks to the concept of
the McCulloch-Pitts model, where the two authors state that the activity of neurons
could be represented by means of propositional logic, it provided the possibility of
creation of artificial neural networks with electronic machines [38]. A few years
later, Donala O. Hebb proposed the idea that the connections between neurons
could be reinforced, thus provide the neural network have the ability to learn from
stimulus under a given structure [23]. Frank Rosenblatt, brought about the concept of
“Perceptron” in 1958, where he proposed how the information is sensed, remembered
and retained in the brain. It greatly enlightened the forthcoming researchers. Two
years later in 1960, Bernard Widrow and Marcian Hoff proposed a training algorithm
taking advantage of minimizing the least mean square error, which is one of the
foundations of the current artificial neural network development [62].

Then the book “Perceptrons” was published, where Minsky and Papert pointed
out that a neural network without a hidden layer could only solve the linear problem
[40]. Such conclusion, along with the shifting of focus to the development of Von
Neumann structure computers, slowed down the research in the neural networks
field for many years. During that time, “Adaptive Resonance Theory” was proposed,
suggesting that if one neuron is activated, the nearby neurons would be suppressed
at the same time [6]. Then Teuvo Kohonen brought about a model for associative
memory and developed it into the self-organizing map, a type of unsupervised neural
network that capable of classification [36].

With the development of the Hopfield neural network, which illustrated the
convergence of the neural network under an energy function, the focus has been
directed to this field again [26]. The Boltzmann machine was proposed by Hinton and
Sejnowski to avoid stepping into a local minima of Hopfield network [1]. Then the
error backpropagation algorithm, which is able to adjust the weights of the neurons
from a network with multiple layers [46], provided the researchers with a powerful
tool for their studies. During and after this time, various related theories and new
types of neural networks have been proposed, such as the radial basis function neural

network, the support vector machine and ELM and so on.



In 2006, Hinton proposed a fast greedy algorithm to train the network with many
hidden layers, which contributed to a second Neural Network Renaissance [24, 48].
The applications of deep neural networks started to offer more promising results in
the areas such as computer vision, artistic image processing [20] , natural language

processing and artificial intelligence for challenging games [49].

2.1 Linear model

Before moving to discuss neural networks, the concept of the linear model is introduced
as it is used in the latter part of the project.

A linear model is described as:

y=pPr+b

where vy is the target value for the prediction, x as the input variables from one
sample, S as the weights for each variable in x and b the bias. In a time series
prediction problem, x could be a combination of records in the past at T'— k1, T — ko,
, T'— k; moment, represented by xr_x,, Tr—k,, ... , Tr—g,, The goal of the model is
to find a suitable set of parameters 5* and b* to make the predicted value at moment
T: gr = B*x + b* as close as possible to the real data yr. The error is defined as the

difference between the predicted value and real value:

@>

—y
= (Br+0b)—vy

There are many ways to evaluate the error, and one of the most common mea-

surement is the mean squared error (MSE), defined as



Thus, the solution of a linear model with can be defined as

arg min’> " ((Bz: + b) — 3,)’

Bb =1
In most cases, there are multiple samples available to derive the parameters.
Denote X = (21,29, ....,2,)7 and Y = (y1,¥2,...,yn)", where n is the number of
samples. For convenience, the 3 and b are rewritten as 3, where X is extended with
an additional column of ones. The above solution could be presented in matrix form

as

argmin|| X5 — Y|?
B'=[84]

There is a closed-form expression to solve the above problem, called least mean

square error approximation. It is defined as follows [3]:

X8 =Y
XTxp =Xy
(XTX)'XTX[ = (XTX)'XTYy
g =(XTxX)'xTy

The part (X7 X)™* X7 in the above equation is called Moore—Penrose pseudoin-
verse of X, represented by X . The expression X = (X7 X)) X7 holds if XX is
invertible, when the rank of X7 X equals its dimension, i.e. the number of sample n is
larger than the number of variables d. There is another form X+ = X7 (X XT)~! for
the case n < d. Since in this project n > d, only the former situation is considered.

The HAT matrix is introduced here, defined as HAT = XX = X(XTX)71XT.
The interpretation of the HAT matrix would be, it transforms the real value of Y

into its predicted version V:

V=X8=XX"X)'XTY = HAT - Y

In this project, the advantage of HAT matrix is taken to accelerate the training

process significantly in the later section.



2.2 Feedforward neural network

Let n be the total number of training samples (instances) where each sample is
represented by pair (z;,y;) where z; is the jth sample with dimensionality d and
y; the observed output. Assume the weights for the hidden neurons are in vector
form W = (wy, we, ..., wx) and bias as b = (by, by, ..., by). The network with &k hidden
neurons will have 8 = (54, fa, ..., Br) as weights for output layer and f(.) is the

activation function. The mathematical expression of SLEN can be written as follows:

k

i=1
In the case with only one hidden neuron (k = 1) and the activation function f(.)

is a linear function, for instance f(z) = z, the SLEN would be in a special form:

g =wz; +b+e jeln]

It is actually the linear regression between x and y, with € as the error. The
above equation could be solved with least mean square error approximation, where
the solution w = (X7 X)™1XTy. In the following discussion, this linear model would
be used as a baseline for performance comparison purpose.

When the activation function is non-linear, for instance to use a binary step
function or a sigmoid function instead, the SLFN with at most k& hidden neurons can
learn k distinct observations with zero error [30]. In such case, the both weights w
and [ need to be adjusted carefully with various methods to ensure its approximation
capability [32].

2.3 Extreme Learning Machine (ELM)

In general, ELM has been developed from single layer feedforward networks, where
the input weights of the hidden neurons are randomly generated. With the same
expression of SLEN, the ELM model to describe a certain set of observations (x,y)

could be presented as:

k

i=1
where §; is the predicted value of y, and w is generated randomly and remain
fixed all the time. Denote
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flwizy +by)  flwazy +b9) ... flwrxy + by)
H— flwrza +b1)  flwaxg +be) ... f(wrxs + by)

f(wlxn + bl) f(w2xn + bk) f(wkxn + bk)

nxk

and

A
B

B
Then the above ELM model which interpreting the observation would be repre-

kx1

sented by:

Y =HpB

The only unknown variable in the above equation is the output layer weights .
The above formula with SLEFN structure can be used to interpret the data set if
is properly calculated. Huang and etc. have proved the theorem on the universal
approximation capabilities using SLFNs with random nodes [31, 29, 27, 28]. It
indicates that if the number of hidden neurons is large enough, with £ being derived
from the ordinary least square algorithm to minimize ||H5 — Y|, the error of such
single layer neural network with random fixed weights converges to 0.

Thus, combined with the content related to the least square error in Section 2.1,
the algorithm for standard ELM is listed in Algorithm 1.

Algorithm 1 The basic ELM algorithm

1. Design an SLFN with a proper number of hidden neurons k£ and a suitable
activation function;

2. Initialize the SLFN with random weights w and bias b for hidden neurons;

3. Compute the weights for the output layer S with ordinary least square algorithm
with the given training samples.

Figure 2 shows the structure of a typical ELM.
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Input layer Hidden layer Output layer

Activation Function

/Q e

Figure 2: Structure of a typical ELM

2.4 Regularized ELM with linear components

Deriving the weights of the hidden layer involves the ordinary least square solution.
However, it brought about two issues: 1) the solutions (weights) are calculated based
on the training data only. It can get overfitted, where the model performs much
worse on the test data than in the training. 2) the weights might be too sparse,
with a relative large amount of neurons being assigned with small weights, making it
difficult for model interpretation [39].

One solution proposed by Deng [10] introduces a regularization parameter, -,

which applies directly to the weights for the output layer:

n k k
min > (Y Bif (wiz; + b;) — y;)® + > foh
=1 =1 i—1

The above method is also called Ly or Tikhonov regularization. v 3% | 32 acts as
a penalty for the complexity of the model. With a given v could be solved as well by
the ordinary least square solution, where 8 = (vI + HTH)"*H?Y. By adjusting the
value of 7, the regularized version of ELM can prevent itself from overfitting [39, 57].

Furthermore, adding a linear component in the ELM might be helpful in some



12

cases, making the model as:

n k d k d
min Z%[(Z; Bif (wirj + b;) + Z; Bisi) =y + 7(; 57+ Z; 57)

=1 = = = i—
where 3] represents the output layer weights for the linear component and Tj;
is the " variable in the j™ sample. It can help to overcome two issues: (1) the
nonlinear activation function in the hidden layer makes it difficult to approximate
the linear relationships in the data; (2) the performance of ELM influenced by the
randomized weights for the hidden neuron layer. By adding the linear component in
the model, it makes sure that the ELM always contains a linear approximation to
the problem regardless of the initialization of the network and the approximation by

the nonlinear part in ELM. Its structure is shown in Figure 3.

Input layer Hidden layer Output layer

Random Weights Nonlinear Activation Function

:
.
:

()

()

Figure 3: The structure of the ELM used in this project
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3 Model structure selection

As the ELM is decided as the model in this project, it comes to its specifics. For
instance, the suitable set of input variables (denoted by Sub, which is a subset of
the original variables of z) and parameters (denoted by 6) for a better prediction.
Let the true target value be y, the predicted value be § = f(z, 0, Sub) where f(.)
denotes the ELM model, the training criteria of the model can be presented as:

argmin  (f(z;, 0, Sub) — y;)*
0,Sub  ;—1

where n is the number of samples. It is the model parameter set 6 and variable

selection Sub that need to be derived in the training stage.

3.1 Cross-validation

As illustrated by the theorem in Section 2.3, once the model is complex enough, the
error € could be close to 0. However, another aspect to measure the performance
of a model is its ability for generalization, which is the performance of the model
on data different from the one used during the training stage. The idea is that, if
the model only relies on its performance on the training data set, it might become
over-fitted, where its lead to a good performance in the training data set but poor in
other data set. Thus, a separate data set is used for the measurement of performance
of a trained model, which is called the validation data set [3]. The mathematical

description is:

1
mine = — Y _(f(x}, 0%, Sub*) — yi)?, (z*,y") € validation data set
i=1

argmin y_(f(z;,0, Sub) — v;)?, (z,y) € training data set
0,Sub  ;—1

where 0* and Sub* is derived from argmin 37, (f(x;, 0, Sub) — y;)?. The goal of
6,Sub

the training process is to find the parameter 8* and variable subset Sub* that could

minimize the error € on the validation data set.
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3.1.1 K-fold cross-validation

In many cases, the size of the data set available for training and validation is small.
It is infeasible to split the data into entire independent training and validation sets.
As a result, the K-fold cross-validation is introduced (only in this subsection K
represents the number of parts in K-fold cross-validation), where the data set is
divided into K parts. Each time the model uses the K — 1 subsets for training while
the remaining subset is used for validation. It repeats K times until all the parts are
used as validation set once. The model takes the average error of the K repeats as
the criterion for determining the best 8* and Sub*.

«— The original data set divided into K parts ~—>

1St training -
Training data set
an training :-

37 training
Validation data set

Kth training -

Figure 4: Illustration of data sets in cross-validation

The advantage of this strategy is that the model will go through the whole data
set to assess its performance (each part of the data is evaluated separately once).
However, it makes the training K times longer than its original version. Combined
with the variable selection procedure mentioned in the later section, it will increase

the training time to an unacceptable level.

3.1.2 Leave-One-Out (LOO)

If K = n where n is the total amount of samples in the K-fold cross-validation, it
forms a special type of cross-validation called Leave-One-Out. Generally speaking,
using this technique, the model is trained n times. In each training only one sample
is excluded from the training data set and is used for calculating the validation error.

Denote (z_;, y—;) as the sample with only the (z;,y;) point excluded, (0,Sub) the
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selected input variables and parameter and f(.) the model, then the LOO can be

described as:

: 1 & £ Qo
min €Loo = n Z(f(%‘, 0%, Sub*) — yz‘)Q

=1

arg min zn:(f(m_l, 0, Sub) —y_;)?
O
where €00 is called leave-one-out error. Sharing the same advantage of K-fold
cross-validation, it could make the training too computationally intensive. However,
for linear models, there is an estimation method called the prediction sum of squares
(PRESS) statistics [4] , which could help to calculate the €ro0:

€00 = iZ(ei)Q
= IS - i)

n
1

_ 1 €i 2
B nz(l —HAT,-,-)

where 7 is weights parameter learned from using the data set (z_;, y_;). The
H ATj; is the i'" element in the diagonal of HAT = X (XTX)"1X7T. Recall that the
HAT matrix is already calculated when deriving the solution for ELM, thus, in the
calculation for LOO error €100, it could be used directly again , adding only very
little computational load. Comparing with K-fold cross-validation, it only needs the
ELM to be solved once for a given parameter and variable setting, which saves a
great deal of training time. Meanwhile, it could provide a more reliable validation
error than the traditional cross-validation.

As a result, the LOO error will be used in this project to determine the performance

of a model in the training stage.

3.2 Dimensionality reduction

In the previous Section 3.1, the structure of ELM is determined, i.e. ELM with
a regularization parameter and linear components. Then it comes to the question
about which or what kind of variables should be used as the inputs for the ELM

model, namely the features or predictors. In a time series related problem, one
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could either (1) use a subset of variables from the original inputs, or (2) use another
technique to construct a set of new variables as input. Both of them will have a
smaller amount of variables. The former is usually called variable selection or feature
selection, while the latter is feature extraction. In a time series related problem, the
number of potential inputs can be huge, ranging from 1 to the length of the temporal
sequence.

For instance, in this project the future values of air pollutant concentrations are
predicted according to their past records. However, should the record on hour 7" — 1
being considered as input? Or will the record on hour 7" — 24 be helpful to improve
the accuracy? What about using the 7' — (24 x 365) hour record or even multiple of
them?

The intuition of this issue is that not all the historical values are needed for
the prediction. Including too many of them could either significantly increase the
computational load for training the ELM, or it might also introduce larger errors
if the values are irrelevant. The latter means it actually adds some noise into the
model. According to the Huang’s theorem in the previous Section 2.3, ELM could
approximate any continuous function given sufficient number of neurons. On the
other hand, it indicates that with a fixed size of hidden layer, the more complex
the problem, the less reliable the approximation. Adding irrelevant variables is just
like adding irrelevant patterns to the model, which might decrease the accuracy.
Techniques such as feature extraction and variable selection could be used to alleviate

such problems.

3.3 Feature extraction

The goal of feature extraction is to replace the old features (or variables) with a set
of new features. The amount of new features is often smaller than the amount of
old ones, but without a significant loss of original information. The new features
are usually derived from the old ones using a certain algorithm or method, such as
principal components analysis (PCA), Fourier transform (FT) and Wavelet analysis
[22].
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Principal Components Analysis (PCA)

PCA is an eigenvalue decomposition process of the covariance matrix of the variables.
It aims to transform the original data set into one with lower dimension. Let
X = (varlT, varQT s een varg), where var; is a 1 x n vector, representing the series of a
variable in X. One measurement of the similarity between any two variables is the

covariance.

cov(var;,var;) = E[(var; — E[var;])(var; — Elvar;])]

It gives a numeric analysis of how much two variables change together. The

covariance matrix Y is generated when it is applied to all the variables of X

cov(vary,vary) cov(vary,varg) ... cov(vary,varg)

cov(vary,vary) cov(varg,vary) ... cov(vary, var
Z _ CO’U(X) _ ( 2, 1) ( 2, 2) ( 2 d)

cov(varg,vary) cov(varg,vary) ... cov(varg,vary)

where the element Y,; = cov(var;, var;) represents the covariance between the
i" and j variables. A matrix V = (vi,v9,...,04), formed by the eigenvectors v,

that diagonalizes the covariance matrix can be calculated

S =VAVT!

A is a diagonal matrix with the associated eigenvalues on its diagonal. The
eigenvalues indicate the amount of variance in the data set that can be explained by

the corresponding eigenvector. Then the original data set can be represented as

ty
ty
X = '[’Ul Vg ... Ud]

tn

where t; is a row vector called score, which is the representation of X in the
principal component space defined by V. In practice, the eigenvectors in the above
formula are rearranged in descending order according to their eigenvalues. So that
the first new variable in the scores reflects the largest "variance', while the second

new variable contains the second largest variance etc. Those new variables are called
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principal components (PCs).

The solution for T can be derived from eigenvalue decomposition of the covariance
matrix or singular value decomposition (SVD) of the data set [34]. In this thesis
project, the PCA function from MATLAB is used with its default SVD configuration.

The advantage of PCA is that, if a few top components derived by PCA from
a high dimensional data set could explain most of its variance, then only those
important components (determined by experiment) are needed for the future consid-
eration. Thus, it remarkably decreases the computational load caused by the high

dimensionality.

3.4 Feature (variable) selection

When the algorithm for feature extraction is difficult to design, selections made
directly to the raw available features (variables) could be considered. In this project,
the target of feature selection is to determine which past records (referred as delays)
should be included for the prediction of air quality in next hour. Theoretically, all the
records can be relevant, however, due to the limitations of computational resources
only historical data within a certain time range regarding to the current time will be
considered. These historical features for the selection are called candidate features.
In the scope of this thesis, the recent 2000 hours (125 days) of historical data is
considered due to the limitation of computational capability. The assumption is
the air pollutant concentration in next hour should be related to some of its past
records within 2000 hours. In the previous studies, only the latest several days are
included as variable and good predictions are generated [47, 55]. 2000 hours should

be sufficient as candidate features.

3.4.1 Feature selection path (FSP)

The feature selection path is a useful tool for visualizing how the features are selected
during the feature selection process [2]. It is a two-dimensional graph. The x-axis is
the current number of features being selected. The y-axis represents the candidate
features, which is nominal. If a feature 7 is selected at step j, meaning there are total
j features being selected in this step, the grid would be painted with yellow.

The above FSP shows that, when only 1 feature should be included, then feature

1 is used. If the model allows two features being used, feature 1 and 3 are considered
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Selected features

Amount of selected features

Figure 5: A typical feature selection path

and when 3 features could be used, they would be 1 3 4, etc. Obviously, it is much
clearer to understand the development of selected features via FSP than using a
vector form such as {1, 13,1 3 4}.

3.4.2 Filtering and wrapper methods

When feature selection is not embedded inside the training algorithm itself, the
selection could be classified as filtering and wrapper methods [21].

If the feature selection is carried out without the involvement of the model, which
in our case is ELM, but by some other algorithms, the selection is categorized as
filtering method. The algorithms mainly work directly to the features themselves,
independent of the models in use. Such methods include Least Angle Regression
(LARS), the Delta test and mutual information (MI) etc. LARS is discussed in
the 3.4.3 and is tested in this thesis project due to its simplicity. Meanwhile, two
other methods (the Delta test and mutual information) are introduced here for their
reliability, good performance and fast running time [14, 52, 15]. As a future plan, the
Delta test and MI could be implemented for detailed tests. Delta test as a variable
selection method is introduced by Eirola [16]. It selects the subset of variables based
on their performance Delta test, where the differences in the outputs associated
with neighboring input points are measured. Mutual information is a quantitative
assessment of dependence between the variables, measured according to the Shannon
entropy. A subset of features will be selected if it contains the maximum mutual

information [14].
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The wrapper method, in contrast to the filtering methods, uses the main model
itself (in our case it is ELM) as a tool for the variable selection. The criterion is
based on the performance of the subsets of variables. Thus, in some cases such
methods are quite time consuming. However, the main model used in this thesis
project, ELM, is relatively fast in training and testing. It gives the possibility to
evaluate the performance of feature selection using the performance of ELM as the
criteria. Frenay et al. proposed a similar idea and evaluated it on some classic data
sets [2].

In this thesis project, the performance of a filtering method using LARS, and
a wrapper method using ELM-based forward selection?, is studied. The results are

shown in Section 4.3.

3.4.3 Least Angle Regression (LARS)

One solution to feature selection is to use the input variable(s) having the largest
correlation with the target value. It is referred as Pearson correlation coefficient [22],
where the covariance between a certain variable z, and target value y is measured:

Cov(x,,
o) = (g y)

Oz, Oy

where Oz 0y is the variance of the z,,y series. However, such solution might
fail to handle the situation when there is nonlinearity inside the data set. Moreover,
the hidden information lying between the variables is not considered. An improved

version is called least absolute shrinkage and selection operator LASSO [53]:

argmin||y — Xw|| subjectto||w||; <t

The solution of LASSO would be the weight vector w, where most of its values
(weights) for less informative variables would be 0, given a properly set hyper
parameter t. As the method takes all the variables into evaluations at a time, it
overcomes the issue of the Pearson correlation coefficient where the interactions
between the variables are ignored. It could be regarded as a feature selection method,
where only the variables with larger weights would be used in the model [53].

LARS is an efficient implementation of LASSO, involving the philosophy of

forward selection. It is described in Algorithm 2.

3Forward selection will be discussed in detail in Section 3.4.4
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Algorithm 2 LARS

1.

2.

Start the LASSO with all the components in w as 0;

Select the most informative variable x;;

. Increase the weight w; for x;, until another predictor x s has as much correlation

with the current residual;

. Increase the weights w;, w. of x; and X (in addition to the previous w; in

J

step 3), until a third predictor x,;» appears and repeat step 4

. The procedure will be stopped once certain criteria are reached and the current

w would be the solution of LARS

In general, LARS calculates the weights of features using a forward selection

framework. Illustrated in Figure 6, for instance, x; and x, are used to predict y.
LARS first find the variable with the largest correlation with y, which is z; in this

case. It moves the current estimation along the direction of x;, where the residual

is represented by 7, until the angle between 7 and x1(a) and the angle between

7 and xo(a) is the same. Let the current direction 7 be v, then the estimation

starts to move in the direction of v and so on. This shows where the name least

angle regression is coming from.

X2 X2
b
/
/
/
/
/
/
/
, y
y .
/
/ . .
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// a 1 x;l

Figure 6: Demonstration of LARS

The linearity and use of forward selection making the process of LARS extremely

fast, compared with the other feature selection method such as mutual information
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[39] or Delta test [16]. However, the advantage of linearity makes it less reliable when
the data set includes non-linear patterns.
In this thesis project, an external tool box for the LARS variable selection written

by Timo Simila etc. is used [50].

3.4.4 ELM-based forward selection

In terms of wrapper methods, forward selection is a greedy algorithm. It would find
the most suitable variable (i.e. the variable provides the best performance), along
with the already selected variable(s), at a time. Then the variables are added into
the selected variable set and such process repeats until certain criteria are reached.

The steps of ELM-based forward selection is shown in Algorithm 3.

Algorithm 3 ELM-based forward selection

1. Initialize the candidate variable set with all the available variables and the
empty selected variable set.

2. Find a variable z; in the candidate variable set, combined with all variables in
the selected variable set, which leads the smallest LOO error with ELM;

3. Add the z;, into the selected variable set and remove it from the candidate
variable set;

4. Stop when the required number of features are included in the selected variable
set, otherwise go to step 2.

The main advantage of forward selection is fast with a time complexity of O(ngy-
d), where the ng,;, is the required number of features to be selected and d the total
number of candidate features. At the same time, it is easy to understand and
implement.

However, it does not guarantee the global optimal solution, as not all the feature
combinations in the search space are evaluated. The performance of forward selection
would also be influenced by the initialization of the selected variable set. In some
cases, certain features are included in the selected variable set at the very beginning,
thus they are always used in the model.

There are some other algorithms available in wrapper methods, such as backward
or bidirectional elimination [21]. They might be able to provide a better result

[35]. However, in this thesis project, the scope is limited to the comparison of a
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filtering method and a wrapper method. The LARS algorithm will be used as a
representative of the filtering method, while forward selection as the wrapper method

is implemented.
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4 Experiments

4.1 Data preprocessing

Recall that (Section 1.2) the training data includes the two-year hourly records of
air pollutant concentration from 25 stations and four types of meteorological records
from multiple stations with the same length. These data cannot be used directly
as the records are not well formatted. For instance, both air and meteorological
data sets contain some missing values. Samples between 1.1.2013 and 30.12.2014
are considered and stations with more than 40% of data points missing are ignored.
5% to 20% of total data points are still missing at the remaining stations. Figure 7

illustrates how those missing values are processed.

Data from stations with occasionally

Station 1 Station 2 Station3 Station4 Station5

T D10 D20 D30 D40 D50 .
- = == - = - = - = average of the closest 4 stations’

period missing will be filled with the

T1 D11 D21 D31 D41 X
There are cases where duringashort T2 D12 D22 D32 D42 D52 data:
period of time, all the stationsareout T3 D13 D23 D33
of service. Linear interpolation along  T-4 D_1.4 D_24 - ¥R D, — D15 + D35 + D45 + D55
the time is used to fill the gaps: T-5 D15 X D35 D45 X 25 4
T6 D_1.6 X D36 D46 D56
D, —D, T-7 D_1.7 X D37 D47 X
Dy, =Dy, + % x 1 T8 D138 X D38 D48 D58
.. —D; T9 D19 D29 D39 D49
Dy,g =Dy, +— 7 £ X2 140 D110 D210 D310 D410 D_510 . _ .
D, —D T11 D111 D211 D311 D411 X Data with regular interval within
D116 = D113 4 17 7 13 %3 T-12 D112 D212 D312 D412 D512 a station will be filled by linear
3 D113 D213 D_3.13 D_413 X interpolation along the time:
\Tzk‘ X X X X D_5_14
T15 X X X X X D5, +Ds,,
T16 X X X X D 5 16 Ds,, = — 5

T-17 D_1.17 D_2.17 D_3.17 D_4.17 X
T-18 D 118 D218 D_3.18 D 418 D_518

Figure 7: Treatments towards missing values in various conditions.

For a time series problem, one of the most important issues about the model
is the choice of input, i.e. which delay(s) should be used. In some cases, the most
recent variable, which is the sample value at the T'— 1 moment, is the best predictor;
in some other cases, a selection of samples from 7' — 24 to T'— 1 might be able to
provide information deeply embedded in the time series, which will then improve
the accuracy of the prediction. Such an issue is the core of the feature selection
procedure, even before the training of models for the prediction.

There are various methods which could be applied at the feature selection stage:
correlation analysis, subset selection and feature dimensionality reduction, etc. [21]

Here is an example illustrating how the sample(s) are constructed according to certain
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delays and at the same time being divided into target output value and corresponding
input values for training or validation purpose. Assume j is the potential max delay
length, m is the number of meteorological data monitoring stations and Sr_; means
the sample value of station S at T'— j moment. After the transform, an (n—j+1) x j
matrix represents all the candidate data and features is used as the model input.
The task of feature selection would be to find the most suitable column(s) in the

input matrix to predict the target Y value. (See Figure 8)

Original Output Input

Time Series training/validation training/validation, with j delay
St
S t1 y x_1 X3 x3 X_j
S t-2 S_t S t1 S_t-2 S_t-3 S_tj
S t-3 S Gl St2 St3 St4 S Gl
S_t- 4 ] . S t-2 S t-3 S t-4 S t-5 S_t-j-2
— Preprocessi s t3 St4  St5  S_t6 S t3
SRES ne S t4 St5 St6  S_t7 S tj-4
S_t-6 S_t-5 S_t-6 S t7 S t-8 S_t-j-5
S 7

S_t-n+j-1 S_t-n+j-2 S_t-n+j-3 S_t-n+j-4 S_tn

S_t-n

Figure 8: How the time series sequence is transformed into a matrix with the given
delay

For each dimension of the original data set, the values are normalized with zero

mean and unit variance.

Details about how PCA is involved in this project

There are two data sets used in this project: the air quality data set and meteorological
records from various stations. For instance, the records of computed relative humidity
are coming from 21 stations in each hour. After applying PCA on the 21 records
at every time stamp, the top five components could explain 93.9% of the variance
in the original data set. For some other meteorological type of data, even less
components are needed. Figure 9 illustrated the percentage of variance explained by
every component for each type of meteorological data.

For all of them, the 1st components represent their largest variance. It shows that
the records from different stations are highly correlated for all types of meteorological

data. In the later part where feature selection will be introduced, the time complexity
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Figure 9: The percentage of variance explained by each principal component

for the selection process is O(k?) where k is the number of potential features being
evaluated. If the top 5 principal components (PCs) instead of the 21 raw records are
used as candidate features, the training process would only take (5/21)? ~ 5% of the
original training time.

However, the limitation of PCA is obvious. Since it is only a linear transform
of the original data set, it could neither be able to extract the nonlinear features
of the variables nor interpret the information between the samples across the time.
For instance, some air pollutants could diffuse or move through an area with time
passing by, where the process is non-linear. When it comes to the PCA, the top
components would be most likely representing the average level of the pollutant,
instead of the evolution of the pollutant along the time and space.

In this thesis, the results from ELM-based on both the raw meteorological data
from stations and the ELM-based on the principal components of those data are

implemented and compared.

4.2 Optimization of hyper-parameters

The experiments on how the influence of hyper-parameters on the performance of
ELM are carried out. To simplify the experiment, the nitrogen oxide concentration
time series data set is used throughout this subsection, where the predictors are
concentration records from past T hours. A combination of records from all the

14 available stations is used to form a more comprehensive test data instead of
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Original Time Series Time Series of Principle Components (air quality series unchanged)
Time Air quality Station_1 Station_2 Station_m Time  Airquality PC_1 PC_2 PC_m

t At S 1t S.2t .. S_m_t t At PC_1_t PC_2.t .. PC_m_t

t1 Atl S 1tl S2¢t1 ..S_m_tl t1 A_t-1 PC_1.t1 PC2t1l .. PCm_t1

t-2 At2 S 1t2 S 2t2 .. S_m_t2 t-2 A_t-2 PC_1t2 PC2t2 .. PC_m_t2

t3 At3 S 1t3 S2t3 .. Sm.t3 t-3 A_t3 PC_1t3 PC2t3 .. PC_m_t3

t4 At4 S 1t4 S2t4 .S m_t4 t-4 A_t-4 PC_1t-4 PC_2_t4 .. PC_m_t4

t-n A_t-n S1tn S 2¢tn .. S m_tn t-n A_t-n PC_1 tn PC2_tn .. PC_m_tn

—‘ Pre-Processing \—

Output

training/validation Input training/validation

Air quality series 15t PC series for all meteo-station nt" PC series for all meteo-station
\ [ | , P — |
y x_1 X2 . X] PC_1_1 PC_1.2 .. PC_1_j PC_2_1 PC22 .. |PCm1 .. PCmj
At Atl At2 .. Atj|PC1t1 PC1t2 .. ~PC1tj |[PC2t1 PC2t2 .. |PCm_tl .. PC_m_tj
A t1 A_t-2 At3 .. Atlj|PC1t2 PC1t3 .. PC1_tlj PC_2_t2 PC_2_t3 ..|PC_m_t-2 .. PC_m_t-1
A_t-2 At3 At4 .. At2j|Pc_1t3 PC_1t4 .. PC1t2j [PC2t3 PC2t4 .. |PC_m_t-3 .. PC_m_t-2-
A_t-3 ':B:' At4 At5 .. At3j|PC1t4 PC1t5 .. PC1t3j |PC2t4 PC2t5 .. |PC_m_t4 .. PC_m_t3 n samples
A_t-4 At5 At6 .. Atdj|PC_1t5 PC1t6 .. PC1tdj |[PC2t5 PC2t6 .. |PC_m_t5 .. PC_m_t-4-j
A_t-n A_tn-1 A_tn-2 .. A_tn-j|PC_1_tn PC_1 tn-1 .. PC1tnj |[PC2 tn PC2_tn-j ..[PC_m_tn .. PC_m_t-n-j -
Y ‘ Y / R
With total delay: j With total delay: j With total delay: j

Figure 10: How the input matrices for training are generated from the original data.
Here the original meteorological records are replaced by its component

using data from any single station. Please refer to Figure 7 which shows how the
combination of records is constructed.

In the rest of the thesis, such data set will be referred as all-station data set,
while the term single-station data set indicates that the samples used to train a
certain ELM are coming from the same station. To produce comparable results,
an all-station data set is generated for experiments in this section, with candidate
predictors as xp—; i € [1,2,...,100] and z7 the target output. The total number of
training samples is 3475 and the size of testing samples is 876.

All the seeds for random generators also remain the same. It is because the
performance of ELM is affected by the initialization of hidden layer weights. The
results can fluctuate if the seed is not fixed. The results will also change along with
the alterations of hyper-parameters, such as the number of hidden neurons and the
number of input variables. It is these hyper-parameters that need to be optimized,
with certain optimization function according to the MSE on the test data set. Thus,

such fluctuation in results might affect the convergence of the optimization algorithm.
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4.2.1 Optimization for regularization parameter \

First, two kinds of ELMs are compared, with and without the regularization parameter
A. The purpose is to determine if adding a regularization parameter in ELM could
help to avoid overfitting on our data set. The number of input variables increases
from 1 to 100 in both cases, where xp_; is used as input variable, then {x7_1,
zp_o} and go on until {x7_1, x7_9, ..., Tr_100} become the input. The number of
hidden neurons is fixed at 200. The regularization parameter A is optimized via the
MATLAB function “fminsearch” for each input size. The results of mean squared

error (MSE) on a separate test data are presented in Figure 11.
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Figure 11: MSE on the test data set, with different number of input variables

The results indicate that when the regularization parameter \ is set properly, ELM
could achieve a remarkably lower error than its non-regularized version. Meanwhile,
with an increase in model complexity (with more input variables added), the optimized
value of X\ increases accordingly, keeping the mean squared test error a stable level.
Comparing to the slight increasing of MSE on the test data set in the non-regularized
ELM version, it is evident that A is preventing the model from overfitting during the

training.
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Since the optimal value of A highly depends on the number of input features, A\ is
optimized for each number of input features during the model selection or training
process. It will cost an additional 20 to 30 runs of ELM for a better A. In the forward
selection, once a A is optimized, it will remain unchanged with a fixed amount of
input features. To evaluate those features, there can be hundreds of times of running
the ELM. Thus, the optimization of A will be less than 10% of the running time and
it is acceptable.

4.2.2 Optimization for the number of hidden neurons

The number of hidden neurons, k, is the key parameter in ELM, as it determines
how accurate an approximation of ELM can achieve. On the other hand, the model
complexity along with the computational load increases significantly with a larger

hidden neuron number.

2 T T T T T T T

— 10 variables
—— 100 variables

200 variables
15L |7 300 variables
— 400 variables
500 variables

training time for ELM (s)

10 200 400 600 800 1000 1200 1400
# of hidden neurons

Figure 12: Training time with different hidden layer size and different number of
inputs

Trade-off between accuracy and computational time must be made. Thus, in-
vestigation on the relationship among the accuracy, the hidden neuron layer size k

and the regularization parameter A is carried out. In the experiment the value of %k
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changes from 50 to 1050, while the value of A changes from 1 to 150 (preliminary
estimation for range of A is provided by the results in Section 4.2.1) and the number
of variables is fixed at 50. The LOO error on the training data set and the MSE on

the testing data set are shown in the Figure 13.
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Figure 13: LOO error and MSE with different the numbers of hidden neurons and
different values of A

According to the results, the LOO error keeps decreasing with a larger hidden

neuron layer. However, the MSE on the test data converges after the number of
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neurons reaches a certain level. According to the results, the estimation of the level
is around 400. Thus the amount of hidden neurons of the more complex ELM used
for the prediction is set to be 400. Moreover, the difference of MSE between k& = 100
and k = 500 is relatively small (5%), which means using a smaller amount of hidden
neurons in the later feature selection stage should not affect the results too much. It

could, on the other hand, significantly reduce the time for the selection process.

4.2.3 Optimization for other hyper-parameters

The influence of various values for the scales of bias and weights is checked in the

same way. The results are shown in Figure 14 and 15.
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Figure 14: MSE with give the number of hidden neurons and scale of bias

As shown in the results, the optimal scales for bias and weight are independent
with the size of the hidden neuron layer. The difference on the MSE caused by the
changes of both bias and weight is relatively small (less than 10%). According to
the experiments, 1.5 and 1 are selected as the scales for bias and weight. They will

remain constant in the rest of the project.
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Figure 15: MSE with give the number of hidden neurons and scale of weights

4.3 Determining feature selection method

After the hyper-parameters of ELM are settled, the input features (variables) for
ELM are decided via feature selection. First the reliability of the two feature selection
methods is assessed. The one with better performance is used to execute the feature
selection. The performance of a filtering method (Least Angle Regression) and a
wrapper method (ELM-based forward selection) is compared.

When the selections are verified by the ELM, the same set of hyper-parameters
(scalepigs = 1.5, scaleyeignes = 1, the number of neurons k& = 50) is used and the
seed for the random generator remains the same. Meanwhile, an all-station data set
with 2000 candidate variables, i.e. xp_;,7 € [1,2,...,2000] is generated with the same
number of samples for this evaluation. The goal is to select the top 200 variables
from among the 2000 candidates, which should maximize the performance of ELM
in the prediction. For a better understanding about the performance, a linear model
based forward selection is implemented as a baseline for the analysis. The results

are shown in Figure 16.

| ELM-based FS | LARS |

minimum error achieved on test set 0.1082 0.112
Time used for the selection 126 min 5.088s

Table 1: Performance comparison between the two feature selection methods
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Figure 16: Performance comparison between the two feature selection methods and
the linear model

The results show that the filtering method LARS runs much faster than the
wrapper methods using ELM. However, the selection of variables provided by the
ELM-based forward selection outperforms the other two models in the prediction
stage, which is around 20% better than the linear model based forward selection and
5% better than using features selected by LARS.

At last, different hyper-parameters are tested for the ELM-based forward selection,
to check if the features selected by the methods stay constant. Figure 17 shows the
results for different sizes of hidden neuron layers. It indicates that the positions of
the majority of the top selected features in each ELM configuration remain stable
regardless of the hidden neuron amount. In the future, some other quantitative
methods might be used for further investigation on this consistency issue.

Taking into account of the performance, ELM-based forward selection is used as

the variable selection method in the following experiment.
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Figure 17: The feature selection paths from ELM-based forward selection with
increasing neuron numbers

4.4 ELM-based forward selection
4.4.1 Candidate variable sets

Feature selection needs to be done on both air concentration time series data
and meteorological records. The number of candidate variables (delays) for air
concentration time series is set as 2000, while the candidate delay for meteorological
records is set as 30 (hours) for each station per data type. Predictions for the air
concentration for next hour are based on the historical records of the concentration
and the recent records of all the meteorological types.

Such settings are coming from the situation that (21 relative humidity + 21 dew

point temperature + 15 pressure + 17 temperature)=74 meteorological records are
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available each hour. The small increase in the number of candidate delays would
produce a great number of total candidate features. Even only to consider the
meteorological records from recent 7 days will generate a quite large amount of
potential variables (74x24x7=12432) for the feature selection. Here 30 (hours) is
used as it should be sufficient to provide information covering the periodicity within
one whole day, while the computational time is still acceptable.

To decrease the time required by the feature selection process, a two-stage ELM-
based forward selection is implemented. At the first stage, the top 50 variables in
each type of data, represented by x,;,. for air concentration, x; for relative humidity,
xq¢ for dew point temperature, x, for pressure and x, for temperature, are selected
using a relatively simple ELM (hidden layer size is 50). Then at the second stage,
feature selection is done separately on candidates feature formed by [Xuir], [Xair,
Xn)s [Xairs Xat, [Xairs Xp)s [Xair, X¢|* using a more complex ELM (hidden layer size is
400). The ELM should be able to reveal if a certain type of meteorological data can
improve the air quality prediction.

The above selections are carried out separately on both all-station data set and the
single-station data sets. At the same time, two types of data preprocessing method
are implemented. In one case, the raw meteorological data is used (normalized
with zero mean and unit variance). In the other case the principal components of
meteorological data are used. The other settings such as hyper-parameters of the
ELM remain the same. Table 2 shows the combination of candidate feature space,

where the feature selections are carried out on each of them separately.

’ \ Data from all stations or a single station

|

Preprocessed all-station data + meteo raw | single-station data + meteo raw

with PCA or not | all-station data + meteo PCs | single-station data+ meteo PCs

Table 2: Four different data sets being evaluated in the experiment

4.4.2 Analysis of feature selection results

The results using the all-station data set are all shown here. Meanwhile, only some
of the results for single-station data sets are shown due to the length of the thesis.
Only one type of air pollutant concentration (NO) is predicted here for simplicity.

Figure 18 shows how the features are selected using ELM-based forward selection.

4[x,y] here means to form a new set of input that include x and y together.
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Figure 18: ELM-based feature selection

All-station data: meteo raw vs. meteo PCs

ELM for the prediction

Figure 19 shows the results base on the all-station data set, where one ELM model

is trained to predict the pollutant concentration of all the 14 stations. The errors

of predictions using both PCs and raw meteorological data are shown in the same

subplots for better comparison.
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Figure 19: Results comparison between all-station data + raw meteo and all-station

data 4+ meteo PCs
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The first row shows the MSE of the two predictions, with different feature combi-
nations. The first column shows the prediction based on air pollutant concentration
time series only. The latter four plots show the MSE based on features selected with
combination [y, Xnumidity), Rairs Xdewtomp)s Xairs Xpressure) a0 [Xgir, Xiemp). The
second row holds the same structure while the y-axis is the LOO error during the
training. The bar charts in the last two rows indicate which feature, whether an
air quality time series variable or a meteorological variable, is chosen. The dark bar
represents the selection of an air quality time series variable while the white bar is
referring to a meteo variable.

According to the performance on test data set, the feature combination of [X,,
Xhumidity] A0 [Xair, Xtemp| improved the prediction accuracy by around 5% compared
to the model with air quality time series data only. The dew point temperature and
pressure variables do not help much in this case.

Then it comes to the comparison between the models using principal components
and raw station-wise variables. For the two types meteorological data which reduce
the MSE, there is no significant difference in the performance between ELMs using
PCs and raw records. However, comparing the bar charts in the last two rows, less
meteorological type of variables are selected when PCs are used. It might suggest in
this one-model-for-all-station type of prediction, PCs can be used to decrease the
candidate variables in the feature selection stage. The features selected from the two

data sets are compared in Figure 20.

Relative humidity Dewpoint temperature Pressure Temperature
10
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Relative humidity Dewpoint temperature Pressure Temperature
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Times of each station or components is selected

Figure 20: The amount of times a feature (its delays) is selected, all station model

The x-axis of Figure 20 represents the index of a station (or the index of a principal
component). The y-axis (value) is the number of features related to the certain

station (component), i.e. the delays coming from to the same station (component).
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The results show that the selected features from the station-wise raw data set spread
evenly among all the stations. When the PCA processed data set is used as the
candidate, the top principal components are selected with the highest probability.
Since the errors with ELM using the two different data sets are almost the same, it
indicates that using the top principal components in the feature selection can reduce

the potential candidate features without influencing the model performance.

Single-station data: meteo raw vs. meteo PCs

The similar experiment is carried out, where the air pollutant concentration for a
single station is predicted with the station-specific ELM. The ELM uses the historical
concentration records only from that station and the same meteorological data in

the whole region. Figure 21 shows the results.

Air time series Air+Relative humidity Air+Dewpoint temp. Air+Pressure Air+Temperature
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Figure 21: Results comparison between single station data + raw meteo and single
station data + meteo PCs

Similar to the results from one-ELM-for-all-station experiment, using air quality



39

records plus the raw relative humidity records and temperature variables (both raw
data and PCs) improves the prediction accuracy. Less raw meteorological variables
are selected comparing to the amount in previous experiment. An important discovery
is that including the PCA processed features do not help with decreasing the error
in most cases. The interpretation could be the principal components only contain
the spatial information. Such information is independent in between the PCs along
the time. On the contrary, the spatial-temporal information is included in the raw
meteorological data set. For instance, if station A is upwind from station B and
start to record increasing level of a certain pollutant, then most likely in a few hours
or even minutes such rising will be detected by station B. When PCA is used on
such data, it is possible that such information is lost due to the little variance it can
reflect.

Figure 22 illustrates the times of related features (delays) from each station
(components) being selected. Top principal components are still favored by the
model. However, unlike in the previous experiment with all-station data set where
raw features are evenly selected, raw features form some certain stations are selected
more frequently. It indicates the strong connection between those stations and the

one station whose air quality is predicted.
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Figure 22: The amount of times a feature (its delays) is selected, single station
model

All in all, in most cases, adding relative humidity and temperature improves the
prediction accuracy. The pressure and dew point temperature have a little influence
on the results. The principal component analysis is an efficient way to reduce the
search space for feature selection by replacing the raw meteorological data with its

principal components. However, to achieve a lower error, using a station specific
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ELM model with raw meteorological data is suggested.

4.5 ELM with selected features and parameters

Using the features and hyper-parameters selected above, the performance of ELM
is evaluated against a linear model as a base line. Figure 23 shows 1-step-ahead

predictions provided by the two models compared to the real value.

120

T
— Real records
—— Predicted records by ELM
100 — —-—- Predicted records by linear model

80 — 1

Air quality records

200

T T
30+ — - — Error for linear model predictions
Error for ELM predictions

Error comparing to real records

1 20 40 60 80 100 120 140 160 180 200
Time

Figure 23: The 1-step-ahead predictions of the ELM model with linear model as a
baseline:
true values (above) and errors (bottom)

In this test, the mean squared error for the prediction of ELM is 41.91 while it is
43.68 for the linear model. As the majority of the time is spent on data preprocessing,
feature selection and hyper-parameter optimization, the running time of ELM used
for the prediction is quite short. From the second figure above, the error made by
linear model is visibly larger (red line) comparing with the error from the ELM model
(blue line).
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5 Summary

5.1 Conclusions

In this thesis project, a special type of neural network: Extreme Learning Machine
is implemented to predict the future air quality based on the air quality time series
itself and the external meteorological records. A properly preprocessed data set with
hourly records in the year 2013 to 2014 is used. A regularized version of ELM with
linear components added is chosen as the main model.

First, some experiments are carried out to determine the hyper-parameters: the
number of hidden neurons, the regularization parameter and the scales of weights
and bias. Results show that there are optimal solutions for both scales of bias
and weights, which are independent of other hyper-parameters. The regularization
parameter varies in accordance with the size of the hidden layer and the number of
input variables. Thus, it is optimized in the model along with the present amounts
of hidden neurons and inputs. ELM with a larger number of hidden neurons can
generate better predictions. However, the marginal benefits of adding new hidden
neurons decrease very quickly after certain numbers are reached. In this particular
project, the optimal scales of bias and weights are 1.5 and 1, while the number of
neurons is set as 400 based on a trade-off between the ELM performance and training
time.

Then the performance of two feature selection methods is compared. The results
show that the features selected by ELM-based forward selection method (with a much
smaller hidden neuron layer) can generate a lower error than the features selected by
Least Angle Regression, however, at a cost of significant longer processing time.

Furthermore, a feature extraction method, i.e. principal component analysis
(PCA), is used in the hope of reducing the candidate meteorological variables for
feature selection. The experiment shows that if only one ELM model is trained to
approximate future air quality for all stations, using the selected principal components
can achieve the same level of accuracy comparing to the same ELM using raw
meteorological records. In the experiment, the top principal components are selected
with the highest probability, which means the PCA can be an effective feature
extraction method reducing the number of candidate variables when one “global”
ELM is used. However, when the station-specific ELM is developed for the prediction,
using the raw meteorological variables leads to better accuracy. It could be that

the station-specific ELM is able to use the local information presented in the raw
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variables which is missing in the principal components.

Finally, the performances of ELMs using different types of meteorological data
are compared. It shows that by utilizing certain types of meteorological data, such
as the relative humidity and temperature, the model can generate better predictions
than the model using historical air concentration records alone.

All in all, with proper parameters and features, Extreme Learning Machine shows
its reliability for the prediction of air quality data. In this project the station-specific
ELM, with humidity, temperature and historical air quality features selected by the

ELM-based forward selection, provides the most accurate prediction.

5.2 Future works and discussion

Although ELM could provide predictions with acceptable accuracy, only one ELM
model is used during the prediction. In the future, ensembling multiple ELMs
might be able to improve the accuracy, especially for such non-stationary time series
prediction problem. Meanwhile, when a more complex model and more variables
are introduced, the time for the training process such as feature selection might
increase significantly. Thus the parallelization of those algorithms, such as the
ELM-based feature selection, might be a promising topic for future implementation
[59]. Multi-step head predictions could be studied in the future, which would be able
to provide timely forecasts for the public.

ELM is used as the base model in the forward selection at feature optimization
stage. Although the constancy of features selected by ELM with different hidden
neuron numbers is checked objectively, further study could be addressed to reveal
the theories behind it.

Last but not the least, only the air quality time series from the same station is
used as predictor in this project. The dispersion of the pollutant is a spatial-temporal
process, so the accuracy of prediction might be improved if records of multiple
stations are incorporated. This topic looks quite promising, however it also brings

challenges in computation and other aspects.
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