
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Yangjun Wang

Stream Processing Systems Benchmark:

StreamBench

Master’s Thesis
Espoo, May 26, 2016

Supervisors: Assoc. Prof. Aristides Gionis
Advisor: D.Sc. Gianmarco De Francisci Morales

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Yangjun Wang

Title:
Stream Processing Systems Benchmark: StreamBench

Date: May 26, 2016 Pages: 59

Major: Foundations of Advanced Computing Code: SCI3014

Supervisors: Assoc. Prof. Aristides Gionis

Advisor: D.Sc. Gianmarco De Francisci Morales

Batch processing technologies (Such as MapReduce, Hive, Pig) have matured
and been widely used in the industry. These systems solved the issue processing
big volumes of data successfully. However, first big amount of data need to be
collected and stored in a database or file system. That is very time-consuming.
Then it takes time to finish batch processing analysis jobs before get any results.
While there are many cases that need analysed results from unbounded sequence
of data in seconds or sub-seconds. To satisfy the increasing demand of processing
such streaming data, several streaming processing systems are implemented and
widely adopted, such as Apache Storm, Apache Spark, IBM InfoSphere Streams,
and Apache Flink. They all support online stream processing, high scalability,
and tasks monitoring. While how to evaluate stream processing systems before
choosing one in production development is an open question.

In this thesis, we introduce StreamBench, a benchmark framework to facilitate
performance comparisons of stream processing systems. A common API compo-
nent and a core set of workloads are defined. We implement the common API
and run benchmarks for three widely used open source stream processing systems:
Apache Storm, Flink, and Spark Streaming. A key feature of the StreamBench
framework is that it is extensible – it supports easy definition of new workloads,
in addition to making it easy to benchmark new stream processing systems.

Keywords: Big Data, Stream, Benchmark, Storm, Flink, Spark

Language: English

ii

Acknowledgements

I would like to express my gratitude to my supervisor Aristides Gionis for
providing me this opportunity and introducing me to the topic. Furthermore
I would like to thank my advisor Gianmarco De Francisci Morales for all his
guidances and supports. His guidance helped me in all the time of research
and writing of this thesis. I could not have imagined having a better advisor
for my master thesis.

Besides my advisors, I would like to thank all my friends in data mining
group of Aalto university. Thanks for your advises and helps during my
master study. It was a happy time to work with you and I have learnt a lot
from you.

Last but not least, I want thank my parents for trying to support me
with the best they can do all these years. A lot of thanks to all friends for
their support and patience too.

Espoo, May 26, 2016

Yangjun Wang

iii

Abbreviations and Acronyms

Abbreviations

DFS Distribute File System
CPU Central Processing Unit
HDFS Hadoop Distribute File System
GFS Google File System
LAN Local Area Networks
YCSB Yahoo Cloud Serving Benchmark
POSIX The Portable Operating System Interface
DBMS DataBase Management System
TPC Transaction Processing Performance Council
AWS Amazon Web Services
RDD Resilient Distributed Dataset
DAG Directed Acyclic Graph
YARN Yet Another Resource Negotiator
API Application Programming Interface
GB Gigabyte
RAM Random Access Memory
UUID Universally Unique Identifier

iv

Contents

Abbreviations and Acronyms iv

1 Introduction 1

2 Background 3
2.1 Cloud Computing . 3

2.1.1 Parallel Computing . 4
2.1.2 Computer Cluster . 5
2.1.3 Batch Processing and Stream Processing 5
2.1.4 MapReduce . 6
2.1.5 Hadoop Distribution File Systems 7
2.1.6 Kafka . 7

2.2 Benchmark . 9
2.2.1 Traditional Database Benchmarks 10
2.2.2 Cloud Service Benchmarks 10
2.2.3 Distributed Graph Benchmarks 11
2.2.4 Existing stream processing benchmarks 12
2.2.5 The Yahoo Streaming Benchmark 13

3 Stream Processing Platforms 16
3.1 Apache Storm . 17

3.1.1 Storm Architecture . 18
3.1.2 Computational Model 19

3.2 Apache Flink . 19
3.2.1 Flink Architecture . 20
3.2.2 Computational Model 20

3.3 Apache Spark . 21
3.3.1 Resilient Distributed Dataset(RDD) 22
3.3.2 Computational Model 23
3.3.3 Spark Streaming . 24

3.4 Other Stream Processing Systems 24

v

3.4.1 Apache Samza . 24
3.4.2 Apache S4 . 26

4 Benchmark Design 27
4.1 Architecture . 27
4.2 Experiment Environment Setup 29
4.3 Workloads . 29

4.3.1 Basic Operators . 30
4.3.2 Join Operator . 31
4.3.3 Iterate Operator . 34

4.4 Data Generators . 35
4.4.1 WordCount . 36
4.4.2 AdvClick . 36
4.4.3 KMeans . 37

4.5 Experiment Logging and Statistic 38
4.6 Extensibility . 39

5 Experiment 41
5.1 WordCount . 41

5.1.1 Offline WordCount . 42
5.1.2 Online WordCount . 43

5.2 AdvClick . 47
5.3 K-Means . 49
5.4 Summary . 52

6 Conclusion and Future Work 53
6.1 Conclusion . 53
6.2 Future Work . 54

vi

List of Figures

2.1 Kafka producer and consumer [17] 8
2.2 Kafka topic partitions . 9
2.3 Operations flow of YSB [44] 13

3.1 Stream processing model . 17
3.2 Storm cluster components . 18
3.3 Flink computing model . 21
3.4 Spark job stages[47] . 23
3.5 Spark Streaming Model . 24
3.6 Samza DataFlow Graph . 25
3.7 Samza and Hadoop architecture 25

4.1 StreamBench architecture . 28
4.2 Windowed WordCount . 31
4.3 Window join scenario . 32
4.4 Spark Stream join without repeated tuple 33
4.5 Spark Stream join with repeated tuples 34
4.6 Stream k-means scenario . 35
4.7 Latency . 39

5.1 Throughput of Offline WordCount (words/second) 42
5.2 Throughput Scale Comparison of Offline WordCount 43
5.3 Throughput of work nodes (words/s) 44
5.4 Latency of Online WordCount 45
5.5 AdvClick Performance . 47
5.6 KMeans Latency of Flink and Storm 49
5.7 Convergences . 50
5.8 Spark KMeans Latency . 51

vii

Chapter 1

Introduction

Along with the rapid development of information technology, the speed of
data generation increases dramatically. To process and analysis such large
amount of data, the so-called Big Data, cloud computing technologies get a
quick development, especially after these two papers related to MapReduce
and BigTable published by Google [7, 12].

In theory, Big Data doesn’t only mean “big” volume. Besides volume,
Big Data also has two other important properties: velocity and variety [14].
Velocity means the amount of data is growing at high speed. Variety refers
to the various data formats. They are called three V s of Big Data. When
dealing with Big Data, there are two types of processing models to handle
different kinds of data, batch processing and stream processing. Masses of
structured and semi-structured historical data (Volume + Variety) such as
the Internet Archive of Wikipedia that are usually stored in distribute file sys-
tems and processed with batch processing technologies. On the other hand,
stream processing is used for fast data requirements (Velocity + Variety)
[45]. Some fast data streams such as twitter stream, bank transactions and
web page clicks are generated continuously in daily life.

Batch processing is generally more concerned with throughput than la-
tency of individual components of the computation. In batch processing,
data is collected and stored in file system. When the size of data reaches a
threshold, batch jobs could be configured to run without manual interven-
tion, executing against entire dataset at scale in order to produce output in
the form of computational analyses and data files. Because of time consume
in data collection and processing stage, depending on the size of the data
being processed and the computational power of the system, output can be
delayed significantly.

Stream processing is required for many practical cases which demand
analysed results from streaming data in a very short latency. For example,

1

CHAPTER 1. INTRODUCTION 2

an online shopping website would want give a customer accurate recommen-
dations as soon as possible after the customer scans the website for a while.
By analysing online transaction data stream, it is possible to detect credit
card fraud. Other cases like stock exchanges, sensor networks, and user
behaviour online analysis also have this demand. Several stream processing
systems are implemented and widely adopted, such as Apache Storm, Apache
Spark, IBM InfoSphere Streams and Apache Flink. They all support high
scalable, real-time stream processing and fault detection.

Industry standard benchmark is a common and widely accepted way to
evaluate a set of similar systems. Benchmarks enable rapid advancements
in a field by having a standard reference for performance, and focus the at-
tention of the research community on a common important task [40]. For
example, TPC benchmarks such as TPC-C [10], TPC-H [11] have promoted
the development of database systems. TPC-C simulates a complete comput-
ing environment where a population of users executes transactions against a
database. TPC-H gives a standard evaluation of measuring the performance
of highly-complex decision support databases.

How to evaluate real time stream processing systems and select one for
a specific case wisely is an open question. Before these real time stream
processing systems are implemented, Stonebraker et al. demonstrated the 8
requirements[43] of real-time stream processing, which gives us a standard
to evaluate whether a real time stream processing system satisfies these re-
quirements. Although some previous works [9, 15, 28, 38, 46] are done to
evaluate a stream processing system or compare the performance of several
systems, they check performance through system specific applications. There
is no such a standard benchmark tool that evaluates stream processing sys-
tems with a common set of workloads. In this thesis, we introduce a bench-
mark framework called StreamBench to facilitate performance comparisons
of stream processing systems. The extensibility property of StreamBench
not only enables us to implement new workloads to evaluate more aspects
of stream processing systems, but also allows extending to benchmark new
stream processing systems.

The main topic of this thesis is stream processing systems benchmark.
First, cloud computing and benchmark technology background is introduced
in Chapter 2. Chapter 3 presents architecture and main features of three
widely used stream processing systems: Storm, Flink and Spark Streaming.
In Chapter 4, we demonstrate the design of our benchmark framework –
StreamBench, including the whole architecture, test data generator and ex-
tensibility of StreamBench. Chapter 5 presents and compares experiment
results of three selected stream processing systems. At last, conclusions are
given in Chapter 6.

Chapter 2

Background

The goal of this project is to build a benchmark framework for stream pro-
cessing systems, which aim to solve issues related to Velocity and Variety
of big data [45]. In order to process continuously incoming data in a low
latency, both the data and stream processing task have to be distributed.
Usually the data is stored in a distributed storage system which consists of
a set of data nodes. A distributed storage system could be a distributed file
system, for example HDFS demonstrated in § 2.1.5, or a distributed messag-
ing system such as Kafka discussed in § 2.1.6. The stream processing task
is divided into a set of sub-tasks which are distributed in a computer cluster
(see § 2.1.2). The nodes in a computer cluster read data from distributed
storage system and execute sub-tasks in parallel. Therefore, stream process-
ing achieves both data parallelism and task parallelism of parallel computing
which is discussed in § 2.1.1.

In § 2.2, we present several widely accepted benchmarks of DBMS, cloud
services, and graph processing systems. There are many good features in the
design and implementation of these benchmarks, and some of which could be
used in our benchmark as well. At the end, we discuss an existing benchmark
of stream processing systems – The Yahoo Streaming Benchmark.

2.1 Cloud Computing

Many stream processing frameworks are run on the cloud such as Google
Cloud Dataflow, Amazon Kinesis, and Microsoft Azure Stream Analytics.
Cloud computing, also known as “on-demand computing”, is a kind of Internet-
based computing, where shared resources, data and information are provided
to computers and other devices on-demand. It is a model for enabling ubiqui-
tous, on-demand access to a shared pool of configurable computing resource

3

CHAPTER 2. BACKGROUND 4

[32, 35]. Cloud computing and storage solutions provide users and enterprises
with various capabilities to store and process their data in third-party data
centers [25]. Users could use computing and storage resources as need elas-
tically and pay according to the amount of resources used. In another way,
we could say cloud computing technologies is a collection of technologies to
provide elastic “pay as you go” computing. That include computing ability,
scalable file system, data storage such as Amazon S3 and Dynamo, scal-
able processing such as MapReduce and Spark, visualization of computing
resources and distributed consensus.

2.1.1 Parallel Computing

Parallel computing is a computational way in which many calculations par-
ticipate and simultaneously solve a computational problem, operating on the
principle that large problems could be divided into smaller ones and smaller
problems could be solved at the same time. As mentioned in the beginning
of this chapter, both data parallelism and task parallelism are achieved in
stream processing. Besides, base on the level of parallelism there are two
other types of parallel computing: bit-level parallelism and instruction-level
parallelism. In the case of bit-level and instruction-level parallelism, paral-
lelism is transparent to the programmer. Compared to serial computation,
parallel computing has the following features: multiple CPUs, distributed
parts of the problem, and concurrent execution on each compute node. Be-
cause of these features, parallel computing could obtain better performance
than serial computing.

Parallel computers can be roughly classified according to the level at
which the hardware supports parallelism, with multi-core and multi-processor
computers having multiple processing elements within a single machine, while
clusters, MPPs, and grids use multiple computers to work on the same task.
Therefore, when the need for parallelism arises, there are two different ways to
do that. The first way is “Scaling Up”, in which a single powerful computer
is added with more CPU cores, more memory, and more hard disks. The
other way is dividing task between a large number of less powerful machines
with (relatively) slow CPUs, moderate memory amounts, moderate hard disk
counts, which is called “Scaling out”. Compare to “Scaling up”, “Scaling out”
is more economically viable. Scalable cloud computing is trying to exploiting
“Scaling Out” instead of “Scaling Up”.

CHAPTER 2. BACKGROUND 5

2.1.2 Computer Cluster

The “Scaling Out” strategy turns out computer cluster. A computer cluster
consists of a set of computers which are connected to each other and work
together so that, in many respects, they can be viewed as a single system.
The components of a cluster are usually connected to each other through
fast local area networks (“LAN”), with each node running its own instance
of an operating system. In most circumstances, all of the nodes use the
same hardware and operating system, and are set to perform the same task,
controlled and scheduled by software. The large number of less powerful
machines mentioned above is a computer cluster.

One common kind of clusters is master-slave cluster which has two dif-
ferent types of nodes, master nodes and slave nodes. Generally, users only
interact with the master node which is a specific computer managing slaves
and scheduling tasks. Slave nodes are not available to users that makes the
whole cluster as a single system.

As the features of computing cluster demonstrated above, it is usually
used to improve performance and availability over that of a single computer.
In most cases, the average computing ability of a node is less than a sin-
gle computer as scheduling and communication between nodes consume re-
sources.

2.1.3 Batch Processing and Stream Processing

According to the size of data processed per unit, processing model could be
classified to two categories: batch processing and stream processing. Batch
processing is very efficient in processing high Volume data. Where data is
collected as a dataset, entered to the system, processed as a unit. The output
is another data set that can be reused for computation. Depending on the
size of the data being processed and the computational power of the computer
cluster, the latency of a task could be measured in minutes or more. Since
the processing unit of batch processing is a dataset, any modification such
as incorporating new data of an existing dataset turns out a new dataset so
that the whole computation need start again. MapReduce and Spark are two
widely used batch processing models.

In contrast, stream processing emphasizes on the Velocity of big data.
It involves continual input and output of data. Each records in the data
stream is processed as a unit. Therefore, data could be processed within
small time period or near real time. Streaming processing gives decision
makers the ability to adjust to contingencies based on events and trends
developing in real-time. Beside low-latency, another key feature of stream

CHAPTER 2. BACKGROUND 6

processing is incremental computation, whenever a piece of new data arrives,
attempts to save time by only recomputing those outputs which “depend on”
the incorporating data without recomputing from scratch.

Except batch processing and stream processing, between them there is
another processing model called mini-batch processing. Instead of process-
ing the streaming data one record at a time, mini-batch processing model
discretizes the streaming data into tiny, sub-second mini-batches. Each mini-
batch is processed as a batch task. As each batch is very small, mini-batch
processing obtains much better latency performance than batch processing.

Batch Stream
Latency mins - hours milliseconds - seconds

Throughput Large Small(relatively)

Prior V Volume Velocity

Table 2.1: Comparison of batch processing and stream process

2.1.4 MapReduce

MapReduce is a parallel programming model and an associated implementa-
tion for processing and generating large data sets with a parallel, distributed
algorithm on a cluster of commodity hardware in a reliable, fault-tolerant
manner [12]. To achieve the goal, there are two primitive parallel meth-
ods, map and reduce, predefined in MapReduce programming model. A
MapReduce job usually executes map tasks first to split the input data-set
into independent chunks and perform map operations on each chuck in a
completely parallel manner. In this step, MapReduce can take advantage
of locality of data, processing it on or near the storage assets in order to
reduce the distance over which it must be transmitted. The final outputs of
map stage are shuffled as input of reduce tasks which performs a summary
operation.

Usually, the outputs of map stage are a set of key/value pairs. Then the
outputs are shuffled to reduce stage base on the key of each pair. The whole
process of MapReduce could be summarized as following 3 steps:

• Map: Each worker node reads data from cluster with lowest transmit
cost and applies the “map” function to the local data, and writes the
output to a temporary storage.

• Shuffle: Worker nodes redistribute data based on the output keys
(produced by the “map” function), such that all data belonging to one
key is located on the same worker node.

CHAPTER 2. BACKGROUND 7

• Reduce: Worker nodes now process each group of output data, per
key, in parallel.

One good and widely used MapReduce implementation is the Hadoop 1

MapReduce [18] which consists of a single master JobTracker and one slave
TaskTracker per cluster-node. The programming models of many stream
processing systems like Storm, Flink and Spark Streaming are all inspired
from MapReduce. Operators Map and Reduce are either built-in these sys-
tems or could be implemented with provided built-in APIs. For example,
Flink supports Map, Reduce and some other MapReduce-inspired operations
like FlatMap, Filter by default. In Storm, all these mentioned operators
could be implemented with APIs of Spout and Bolt.

2.1.5 Hadoop Distribution File Systems

Hadoop Distributed File System [16] is open source clone of Google File Sys-
tem (GFS) [20] that is deployed on computing cluster. In Hadoop MapRe-
duce framework, locality relies on Hadoop Distributed File System (HDFS)
that can fairly divide input file into several splits across each worker in bal-
ance. In another word, MapReduce is built on the distributed file system
and executes read/write operations through distributed file system. HDFS
is highly fault-tolerant and is designed to be deployed on low-cost hardware.
HDFS provides high throughput access to application data and is suitable for
applications that have large data sets. HDFS relaxes a few POSIX require-
ments to enable streaming access to file system data [16]. The assumptions
and goals of HDFS include: hardware failure, high throughput, large dataset,
streaming access, data load balance and simple coherency model, “Moving
Computation is Cheaper than Moving Data”, and portability across hetero-
geneous hardware and software platforms.

In general, HDFS and MapReduce usually work together. In a distribute
cluster, each data node in HDFS runs a TaskTracker as a slave node in
MapReduce. MapReduce retrieves data from HDFS and executes computa-
tion and finally writes results back to HDFS.

2.1.6 Kafka

Apache Kafka is a high-throughput distributed publish-subscrib messing sys-
tem which was originally developed by LinkedIn. Now it is one top level
project of the Apache Software Foundation. It aims at providing a unified,
high-throughput, low-latency platform for handling continuous data feeds.

1http://hadoop.apache.org/

http://hadoop.apache.org/

CHAPTER 2. BACKGROUND 8

Figure 2.1: Kafka producer and consumer [17]

A stream processing system subscribing to Kafka will get notified within a
very short time after a publisher published some data into a Kafka topic. In
StreamBench, we use Kafka to provide messaging service. Before we go into
architecture of Kafka, there are some basic messaging terminologies [17]:

• Topic: Kafka maintains feeds of messages in categories called topics.

• Producer: Processes that publish messages to a Kafka topic are called
producers.

• Consumer: Processes that subscribe to topics and process the feed of
published messages are consumers.

• Broker: Kafka is run as a cluster comprised of one or more servers
each of which is called a broker.

As Figure 2.1 shown, producers send messages over the network to the
Kafka cluster which holds on to these records and hands them out to con-
sumers. More specifically, producers publish their messages to a topic, and
consumers subscribe to one or more topics. Each topic could have multiple
partitions that are distributed over the servers in Kafka cluster, allowing a
topic to hold more data than storage capacity of any server. Each partition
is replicated across a configurable number of servers for fault tolerance. Each
partition is an ordered, immutable sequence of messages that is continually
appended to a log. The messages in the partitions are each assigned a sequen-
tial id number called the offset that uniquely identifies each message within
the partition. Figure 2.2 shows a producer process appending to the logs for
the two partitions, and a consumer reading from partitions sequentially.

CHAPTER 2. BACKGROUND 9

Figure 2.2: Kafka topic partitions

At a high-level Kafka gives the following guarantees [17]:

• Messages sent by a producer to a particular topic partition will be
appended in the order they are sent. That is, if a message M1 is sent
by the same producer as a message M2, and M1 is sent first, then M1
will have a lower offset than M2 and appear earlier in the log.

• A consumer instance sees messages in the order they are stored in the
log.

• For a topic with replication factor N, we will tolerate up to N-1 server
failures without losing any messages committed to the log.

Another very important feature of Kafka is messages with the same key
will be sent to the same partition. When a distributed application consumes
data from a kafka topic in parallel, data with the same key goes to the same
executor which could avoid data shuffle.

2.2 Benchmark

As systems become more and more complex and thus complicated, it becomes
more and more difficult to compare the performance of various systems sim-
ply by looking at their specifications. For one kind of systems, there are
always a sequence of performance metrics which indicate the performance
of a specific system, such as average response time of a query in DBMS. In
computing, a benchmark is the act of running a set of programs mimicking a
particular type of workload on a system, in order to assess the relative per-
formance metrics of a system. Many benchmarks are designed and widely
used in industry to compare systems.

CHAPTER 2. BACKGROUND 10

In this Section, we discuss benchmarks for different computer systems:
DBMS, Cloud Data Service and Graph Processing System. An existing
benchmark of Stream processing system developed by Yahoo is also present
in § 2.2.5.

2.2.1 Traditional Database Benchmarks

Traditional database management systems are evaluated with industry stan-
dard benchmarks like TPC-C [10], TPC-H [11]. These have focused on
simulating complete business computing environment where plenty of users
execute business oriented ad-hoc queries that involve transactions, big ta-
ble scan, join, and aggregation. The queries and the data populating the
database have been chosen to have broad industry-wide relevance. This
benchmark illustrates decision support systems that examine large volumes
of data, execute queries with a high degree of complexity, and give answers
to critical business questions [11]. The integrity of the data is verified during
the process of the execution of the benchmark to check whether the DBMS
corrupt the data. If the data is corrupted, the benchmark measurement is
rejected entirely [13]. Benchmark systems for DBMS mature, with data and
workloads simulating real common business use cases, they could evaluate
performance of DBMS very well. Some other works were done related to
specific business model.

Linkbench [5] benchmarks database systems which store “social network”
data specifically. The workloads of database operations are based on Face-
book’s production workload and the data is also generated in such a way
that key properties of the data match the production social graph data in
Facebook. LinkBench provides a realistic and challenging test for persistent
storage of social and web service data.

2.2.2 Cloud Service Benchmarks

As the data size keep increasing, traditional database management systems
could not handle some use cases with very big size data very well. To solve
this issue, there are plenty of NoSQL database systems developed for cloud
data serving. With the widespread use of such cloud services, several bench-
marks are introduced to evaluate these cloud systems.

One widely used and accepted extensible cloud serving benchmark named
Yahoo! Cloud Servicing Benchmark(YCSB) developed by Yahoo [8]. It pro-
poses two benchmark tiers for evaluating the performance and scalability of
cloud data serving systems such as Cassandra, HBase, and CouchDB. A core
set of workloads are developed to evaluate different tradeoffs of cloud serving

CHAPTER 2. BACKGROUND 11

systems. Such as write/read heavy workloads to determine whether system
is write optimised or read optimised. To evaluate transaction features in
later NoSQL database, YCSB+T [13] extends YCSB with a specific work-
load for transaction called Closed Economy Workload(CEW). A validation
phase is added to the workload executor to check consistency of these cloud
databases. YCSB++ [39] is another set of extensions of YCSB to bench-
mark other five advance features of cloud databases such as bulk insertions,
server-side filtering. YCSB++ could run multiple clients on different ma-
chines that coordinated with Apache ZooKeeper, which increases test ability
of benchmark framework. Pokluda and Sun [41] explore the design and im-
plementation of two representative systems and provide benchmark results
using YCSB. In addition to the performance aspect of NoSQL systems, they
also benchmark availability and provide an analysis of the failover character-
istics of each. Kuhlenkamp et al. made some contributions to benchmark-
ing scalability and elasticity of two popular cloud database systems HBase
and Cassandra [29]. The benchmark strategy is changing workloads and/or
system capacity between workload runs, load and/or system capacity are
changed.

These efforts are island solutions and not policed by any industry con-
sortia. BigBench aims to be implemented as an industry standard big data
benchmark [19]. It is an end to end benchmark identify business levers of
big data analytics. Inherit from TPC-DS benchmark, BigBench implements
the complete use-case of a realistic retail business. The data model of which
covers three Vs of big data system: volume, velocity and variety. The main
part of the workload is the set of queries to be executed against the data
model. These queries are designed along one business dimension and three
technical dimensions [19].

These benchmarks aim at evaluating performance of NoSQL systems.
Even though they couldn’t be applied to stream processing systems directly.
There are some good features of them inspiring us to implement Stream-
Bench. For example, configurability and extensibility of YCSB are also im-
plemented in StreamBench. The workloads in StreamBench is also business
relevant which is inspired by BigBench and TPC-H.

2.2.3 Distributed Graph Benchmarks

A specific type of big data which keeps increasing in day-to-day business is
graph data. The growing scale and importance of graph data has driven
the development of numerous specialized graph processing systems including
Google’s proprietary Pregel system [31], Apache Giraph [1], and PowerGraph
[21]. Compare to DBMSs, stream processing systems are more similar to

CHAPTER 2. BACKGROUND 12

graph processing ones which are very diverse with non-standard features. In
the paper, Guo et al. demonstrate the diversity of graph-processing platforms
and challenges to benchmark graph-processing platforms [24]. Among these
challenges, some are common for general benchmark systems, such as evalua-
tion process, dataset selection and result reporting. To address these issues of
evaluating graph-processing platforms, Guo et al. implemented a benchmark
suit using an empirical performance-evaluation method which includes four
stages: identifying the performance aspects and metrics of interest; defining
and selecting representative datasets and algorithms; implementing, config-
uring, and executing the tests; and analyizing the results [23]. In order to
create an industry-accepted benchmark, this method still raises some issues.
In latest released papers [6, 26], the team implemented a benchmark called
Graphalytics for graph-processing platforms.

2.2.4 Existing stream processing benchmarks

To help users have a better understanding of stream processing system and
choose one intelligently in practical work, there are already several tests or
benchmarks of stream processing systems published on the Internet. Early
work by Córdova [9] focuses on analysing latency of two notable real time
stream systems: Spark Streaming and Storm Trident. The processing model
of both Spark Streaming and Storm Trident is micro-batch processing. One
shortage of this work is the benchmark is not extensible. Moreover, the data
model and workloads are quite simple which could not reflect the real use
cases in business.

IBM compares the performance of IBM InfoSphere Streams against Apache
Storm with a real-world stream processing application which enables email
classification to detect online spam [34]. This application is a good reflec-
tion of stream processing systems used in practical projects. The processing
pipeline for the benchmark email classification system is divided into 7 stages
and implemented by InfoSphere Streams and Apache Storm separately. But
the workload includes too many steps(operations) that makes it hard to de-
tect the possible performance bottleneck. Another main drawback of this
approach is there is only one scenario.

LinkedIn benchmarked its own real-time streaming process system Samza
running four simple jobs and got excellent performance: 1.2 million messages
per second on a single node [15]. Process-envelopes metric is used to measure
message-processing rate that indicates how fast Samza processes the input
stream messages. A monitoring tool called inGraph is used to monitor these
performance metrics. When the job starts, these performance metrics are
emitted to Kafka and later consumed by inGraph. In StreamBench, we

CHAPTER 2. BACKGROUND 13

Figure 2.3: Operations flow of YSB [44]

use similar methods logging information related to performance metrics and
analysing by a package of python scripts. Since this benchmark is designed for
Samza specifically, it is not a standard benchmark for other stream processing
systems.

Xinh in her blog compared Storm and Spark Streaming side-by-side, in-
cluding processing model, latency, fault tolerance and data guarantees [46].
There are some other similar works [37, 38]. But there is no workload de-
signed and experiment result provided in these works. Recently, Yahoo Storm
Team demonstrated a stream processing benchmark. Design and more fea-
tures of The Yahoo Streaming Benchmark will be introduced in detail in the
next section, because it is the closest benchmark to our project.

2.2.5 The Yahoo Streaming Benchmark

The Yahoo Streaming Benchmark (YSB) is introduced to analysis what
Storm is good at and where it needs to be improved compared to other
stream processing systems by Yahoo storm team [44]. The benchmark is a
single advertisement application to identify relevant advertisement events.
There are a number of advertising campaigns, and a number of advertise-
ments for each campaign. The application need read various JSON events
from a Kafka topic, identify the relevant events, and store a windowed count
of relevant events per campaign into Redis. The flow of operations could be
shown as Figure 2.3.

CHAPTER 2. BACKGROUND 14

Each event (message) in Kafka topic contains a timestamp marking the
time producer created this event. Truncating this timestamp to a particular
digit gives the begin-time of the time window that the event belongs in.
When each window is updated in Redis, the last updated time is recored.

After each run, a utility reads windows from Redis and compares the
windows’ times to their last update times in Redis, yielding a latency data
point. Because the last event for a window cannot have been emitted after
the window closed but will be very shortly before, the difference between a
window’s time and its last update time minus its duration represents the time
it took for the final tuple in a window to go from Kafka to Redis through the
application.

finalEventLatency = (lastUpdatedT ime− createT ime)− duration

• finalEventLatency: latency of an event;

• lastUpdatedTime: the latest time that an event updated in Redis;

• createTime: the time when an event created;

• duration: duration of a window.

More details about how the benchmark setup and the configuration of
experiment environment could be found online 2. One shortcoming of this
benchmark is one single workload could not reflect features of stream pro-
cessing systems comprehensively, even the steps of benchmark flow attempt
to probe common operations performed on data streams. Moreover, Redis is
used to perform the join operator that could affect performance, therefore,
there would be inaccuracy between the benchmark results and real perfor-
mances of these stream processing systems. From experiments demonstrated
in this page, Storm 0.10.0 was not able to handle throughputs above 135,000
events per second. The largest rate at which Kafka emitted data events
into the Flink benchmark is varied 170,000 events/sec which doesn’t reach
throughput of Flink. The benchmark measures the latency of the frameworks
under relatively low throughput scenarios, and establishes that both Flink
and Storm can achieve sub-second latencies in these scenarios, while Spark
Streaming has much higher latency.

To benchmark the real throughput of Flink, Grier [22] reran YSB with
some modifications that used the features in Flink to compute the windowed
aggregates directly in Flink. In the last step of YSB, window updates to Redis

2http://yahooeng.tumblr.com/post/135321837876/benchmarking-
streaming-computation-engines-at

http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

CHAPTER 2. BACKGROUND 15

is implemented with custom code with a separate user thread to flush results
to Redis periodically on both Storm and Flink, which doesn’t take advantage
of Flink’s window API for computing windows. By re-implementing the
workload with Flink’s window API, it came up with much better throughput
numbers while still maintaining sub-second latencies. In StreamBench, we
design a set of common APIs which are implemented with the best solution
on different stream processing systems independently.

Chapter 3

Stream Processing Platforms

There are many stream processing systems that include Apache Apex, Au-
rora, S4, Storm, Samza, Flink, Spark Streaming, IBM InfoSphere Streams,
and Amazon Kinesis. More new stream processing systems are being devel-
oped. The design, computational model, and architecture of these systems
are different so that they own different features and have different perfor-
mance. Among these systems, some are not open sourced and it is impossible
to download and setup a stream processing cluster. For instance, Amazon
Kinesis is only available in AWS. Some ones are open source systems with
system design, source code public. That enables us to set up our own dis-
tributed cluster to run experiment benchmarks. In StreamBench, we choose
three popular and widely used open source stream processing systems which
have many similarities. These systems are Storm, Flink, and Spark Stream-
ing.

First, all these systems are MapReduce inspired, they consider the stream
as keyed tuples, support transformations similar to Map and aggregations
like Reduce. The computational models of these systems are also similar
which are graphs consisted of transformations and/or aggregations. Unlike
MapReduce, these systems deal with unbounded stream of tuples and sup-
port integration with Kafka, a distributed messaging system discussed in
§ 2.1.6, in which stream data is distributed in different partitions. Moreover,
these stream processing frameworks run tasks in parallel. Integrated with
distributed message system, these systems achieve both data parallelism and
task parallelism of parallel computing. The lower part of Figure 3.1 shows
that 3 compute nodes in a cluster consume messages from a Kafka topic
with 3 partitions and run operators mapToPair and reduce in parallel. Each
record in the stream is a tuple and there are different ways to forward tuples
from a operator to another one, such as key grouping, all grouping, and shuf-
fle grouping. The computational topology of these systems is a graph shown

16

CHAPTER 3. STREAM PROCESSING PLATFORMS 17

Figure 3.1: Stream processing model

as the upper part of Figure 3.1 in which nodes are stream sources and oper-
ators connected by stream grouping. Another similarity of these systems is
horizontal scalability. Work with these systems, we could add more machines
into a stream processing cluster to achieve better performance.

In this chapter, we introduce these three systems in detail from different
perspectives: system architecture, computational model, and key features.
Several other stream processing systems are also discussed.

3.1 Apache Storm

Apache Storm, one of the oldest distributed stream processing systems which
was open sourced by Twitter in 2011 and became Apache top-level project
in 2014. Storm is to realtime data processing as Apache Hadoop is to batch
data processing. A Hadoop job is finished after all data processing operations
are done. Unlike Hadoop, Storm is an always-active service that receives and
processes unbounded streams of data and delivers that data instantaneously,
in realtime. Storm solutions can also provide guaranteed processing of data,
with the ability to replay data that was not successfully processed the first

CHAPTER 3. STREAM PROCESSING PLATFORMS 18

Figure 3.2: Storm cluster components

time.With its simple programming interface, Storm allows application devel-
opers to write applications that analyze streams of tuples of data; a tuple
may can contain object of any type.

3.1.1 Storm Architecture

As a distributed stream processing system, a storm cluster consists of a set of
nodes. Figure 3.2 shows components of a storm cluster which contains four
different kinds of nodes, “Supervisor”, “Nimbus”, “Zookeeper” and “UI”.

Nimbus is a daemon running on the master node which is similar to
Hadoop’s “JobTracker”. Nimbus is responsible for distributing code around
the cluster, assigning tasks to machines, and monitoring for failures. Each
worker node runs a daemon called the “Supervisor”. It listens for work
assigned to its machine and starts and stops worker processes as dictated
by Nimbus. Each worker process executes a subset of a topology; a running
topology consists of many worker processes spread across many machines.

All coordination between Nimbus and the Supervisors is done through
a Zookeeper cluster. Additionally, the Nimbus daemon and Supervisor dae-
mons are fail-fast and stateless; all state is kept in Zookeeper or on local disk.
Hence, Storm clusters are stable and fault-tolerant

UI is a daemon which monitors summary of cluster and running topologies
on a web interface. Properties of a topology (such as id, name, status and
uptime) and emitted tuples of a spout or bolt also could be found in “UI”.
More detail about understanding the Storm UI could be found on the page 1.

1http://www.malinga.me/reading-and-understanding-the-storm-ui-

http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/

CHAPTER 3. STREAM PROCESSING PLATFORMS 19

3.1.2 Computational Model

The core of Storm data processing is a computational topology, which is a
graph of stream transformations similar to the one in Figure 3.1. In the com-
putational topology, stream source is consumed by a type of operator called
spout. The operator with processing logic is called bolt. Spouts read tuples
from external sources (e.g. Twitter API, Kafka) or from disk, and emit them
in the topology. Bolt receives input streams from spout or other bolt, process
them and produce output streams. They encapsulate the application logic
which dictates how tuples are processed, transformed,aggregated, stored, or
re-emitted to other nodes in the topology for further processing. When a
spout or bolt emits a tuple to a stream, it sends the tuple to every bolt that
subscribed to that stream.

A stream in topology is an unbounded sequence of tuples. Spouts read
tuples from external sources continuously. Once a topology is submitted,
it processes messages forever, or until it is killed. Storm will automatically
reassign any failed tasks. Each node in a Storm topology executes in parallel.
In your topology, you can specify how much parallelism you want for each
node, and then Storm will spawn that number of threads across the cluster
to do the execution.

Additionally, Storm guarantees that there will be no data loss, every tuple
will be fully processed at least once. This is achieved by following steps:

1. Each tuple emitted in a spout is specified with an unique message ID;

2. Each tuple emitted in a bolt, anchor it with corresponding input tuples;

3. When bolts are done processing the input tuple, ack or fail the input
tuple

This mode tracks whether each spout tuple is fully processed within a
configured timeout. Any input tuple not fully processed within the timeout
is re-emitted. This means the same tuple could be processed more than once
and messages can be processed out-of-order.

3.2 Apache Flink

Apache Flink used to be known as Stratosphere which was started off as
an academic open source project in Berlin’s Technical University in 2010.
Later, it became a part of the Apache Software Foundation incubator and

storm-ui-explained/

http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/

CHAPTER 3. STREAM PROCESSING PLATFORMS 20

was accepted as an Apache top-level project in December 2014. Apache Flink
aims to be a next generation system for big data system. It is a replacement
for Hadoop MapReduce that works in both batch and streaming models.
Its defining feature is its ability to process streaming data in real time. In
Flink, batch processing applications run efficiently as special cases of stream
processing applications.

3.2.1 Flink Architecture

The architecture of Flink is a typical master-slave architecture that is quite
similar with other scaleable distributed cloud systems. The system consists
of a JobManager and one or more TaskManagers. JobManager is the coordi-
nator of the Flink system, while TaskManagers are the workers that execute
parts of the parallel programs.

In Hadoop MapReduce, reduce operation wouldn’t start until map oper-
ation is finished. In Flink records are forwarded to receiving tasks as soon
as they are produced which is called pipelined data transfers. For efficiency,
these records are collected in a buffer which is sent over the network once it
is full or a certain time threshold is met. This threshold controls the latency
of records because it specifies the maximum amount of time that a record
will stay in a buffer without being sent to the next task.

Flink’s runtime natively supports both stream and batch processing due
to pipelined data transfers between parallel tasks which includes pipelined
shuffles. Batch jobs can be optionally executed using blocking data transfers.
They are special cases of stream processing applications.

3.2.2 Computational Model

The computational model of Flink could be described as a graph consists
of transformaitons and sources, which is similar to Storm. Edges in the
graph indicate state changes of DataStream. That is different with Storm,
in which input of of a bolt is always a stream of tuples without specific state.
These states includes DataStream, KeyedDataStream, WindowedDataStream,
and ConnectedDataStream [2]:

• A KeyedDataStream represents a data stream where elements are eval-
uated as “grouped” by a specified key.

• In a WindowedDataStream, records in the stream are organized into
groups by the key, and per group, they are windowed together by the
windowing. A WindowedDataStream is always created from a Keyed-
DataStream that assigns records to groups.

CHAPTER 3. STREAM PROCESSING PLATFORMS 21

Figure 3.3: Flink computing model

• The ConnectedDataStream is a way to share state between two tuple-
at-a-time operations. It can be through of as executing two map (or
flatMap) operations in the same object.

The transformations between different states of DataStream could be
shown as Figure 3.3.

Similar to Storm, Flink supports cycle in the graph model. Flink supports
the iterations in native platform by defining a step function and embedding
it into a special iteration operator. There are two variants of this operator:
Iterate and Delta Iterate. Both operators repeatedly invoke the step
function on the current iteration state until a certain termination condition
is reached.

3.3 Apache Spark

Apache Spark is currently the most active open source large-scale data pro-
cessing framework used in many enterprises across the world. It was originally
developed in 2009 in UC Berkeley’s AMPLab, and open sourced in 2010 as an
Apache project. Compared to other big data and MapReduce technologies
like Hadoop and Storm, Spark has several advantages.

Spark is very easy to use by providing APIs in Scala, Java, Python and R
languages. Moreover, there are more than 80 high-level built-in operators. In

CHAPTER 3. STREAM PROCESSING PLATFORMS 22

the case of implementing a simple WordCount application, all the execution
logic code could be written in one line with Spark’ Scala API.

Spark powers a stack of libraries including SQL and DataFrames, MLlib
for machine learning, GraphX, and Spark Streaming. You can combine these
libraries seamlessly in the same application. It can access diverse data sources
including HDFS, Cassandra, HBase, and S3.

Spark achieves much better performance than Hadoop MapReduce mainly
because Spark supports in-memory computing. By using RDDs which will be
discussed in § 3.3.1, intermediate results could be kept in memory and reused
for further performing functions thereafter, as opposed to being written to
hard disk.

3.3.1 Resilient Distributed Dataset(RDD)

Resilient Distributed Dataset(RDD) is a fault-tolerant abstraction of read-
only collection of elements partitioned across the distributed computer nodes
in memory which can be operated on in parallel. To achieve fault-tolerant
property, RDDs can only be created through deterministic operations on
either (1) data in stable storage, or (2) other RDDs [47]. An RDD could
keep all information about how it was derived from other datasets to com-
pute its partitions from data in table storage. Therefore, RDDs are fault
tolerance because they could be reconstructed from a failure with these kept
information.

RDD supports two different kinds of operations, transformation and ac-
tion. When a transformation operation is called on a RDD object, a new
RDD returned and the original RDD remains the same. For example, map
is a transformation that passes each element in RDD through a function and
returns a new RDD representing the results. Some of the transformation
operations are map, filter, flatMap, groupByKey, and reduceByKey.

An action returns a value to the driver program after running a compu-
tation on the RDD. One representative action is reduce that aggregates all
the elements of the RDD using some function and returns the final result to
the driver program. Other actions include collect, count, and save.

By default, each transformed RDD is recomputed each time you run an
action on it. However, by caching RDD in memory, allowing it to be reused
efficiently across parallel operations. The recomputation of cached RDD is
avoided and a significant amount of disk I/O could be reduced. Especially
in the case of looping jobs, the performance would be improved. In Spark,
users can manually specify if working sets are cached or not. The runtime
engine would manage low-level caching mechanism like how to distribute
cache blocks.

CHAPTER 3. STREAM PROCESSING PLATFORMS 23

Figure 3.4: Spark job stages[47]

3.3.2 Computational Model

The execution engine of Spark supports lazy evaluation. When transforma-
tions applied to an RDD, the execution engine doesn’t do any computation,
but remember the transformations. The transformations are only computed
when an action requires a result to be returned to the driver program. This
design enables Spark to run more efficiently. For example, when a reduce
operation is performed on a dataset created through transformation map,
only the result of the reduce is returned to the driver program, rather than
the larger mapped dataset.

Spark has an advanced directed acyclic graph (DAG) execution engine
that implements stage-oriented scheduling. The are two main differences
between the computational model of Spark Streaming and other two systems.
First, the computing unit in Spark Streaming is a dataset. While in Storm
and Flink, it is one single record tuple. The other difference is each node
in DAG is a stage which contains as many pipelined transformations with
narrow dependencies as possible. Whenever a user runs an action (e.g., count
or save) on an RDD, the scheduler examines that RDD’s lineage graph to
build a DAG of stages to execute, as illustrated in Figure 3.4. The boundaries
of the stages are the shuffle operations required for wide dependencies, or
any already computed partitions that can short-circuit the computation of
a parent RDD [47]. The execution engine executes each stage in computer
nodes that perform on distributed partitions of RDD in parallel. Different
with Flink’s pipeline execution model, Spark does not execute multi stages
simultaneously [42]. In the DAG, tasks of a stage wouldn’t start until all its
dependencies are done.

CHAPTER 3. STREAM PROCESSING PLATFORMS 24

Figure 3.5: Spark Streaming Model

3.3.3 Spark Streaming

Spark Streaming is an extension of the core Spark API that enables scal-
able, high-throughput, fault-tolerant stream processing of live data streams.
Spark Streaming receives live input data streams and divides the data into
micro batches, which are then processed by the Spark engine to generate the
final stream of results in batches. Each batch is processed in a Spark batch
processing job. The model of Spark Streaming is different from that of Storm
and Flink, which process stream records one by one. In Spark Streaming,
data streams are divided according to a configurable interval. Divided data
stream is abstracted as discretized stream or DStream, which represents a
continuous stream of data.

DStreams can be created either from input data streams from sources such
as Kafka, Flume, and Kinesis, or by applying high-level operations on other
DStreams. Internally, a DStream is represented as a sequence of micro RDDs.
After applied transformations or actions on a DStream, a new DStream or
result values would be get which can be pushed out to filesystems, databases,
and live dashboards.

3.4 Other Stream Processing Systems

3.4.1 Apache Samza

Apache Samza is a top-level project of Apache Software Foundation which
open sourced by LinkedIn to solve stream processing requirements. It’s been
in production at LinkedIn for several years and currently runs on hundreds
of machines.

A Samza application is constructed out of streams and jobs. A stream is
composed of immutable sequences of messages of a similar type or category.
A Samza job is code that performs a logical transformation on a set of input
streams to append output messages to set of output streams. In order to scale

CHAPTER 3. STREAM PROCESSING PLATFORMS 25

Figure 3.6: Samza DataFlow Graph

the throughput of the stream processor, streams are broken into partitions
and jobs are divided into smaller units of execution called tasks. Each task
consumes data from one or more partitions for each of the job’s input streams.
Multiple jobs could be composed together to create a dataflow graph, where
the nodes are streams containing data, and the edges are jobs performing
transformations.

Except streams and jobs, Samza uses YARN as execution layer. The
architecture of Samza follows a similar pattern to Hadoop which could be
shown as Figure 3.7.

Figure 3.7: Samza and Hadoop architecture

CHAPTER 3. STREAM PROCESSING PLATFORMS 26

3.4.2 Apache S4

S4 is another open source distributed, scalable, fault-tolerant, stream data
processing platform released by Yahoo.

In S4, a stream is defined as a sequence of events of the form (K,V) where
K is the key of record tuple, and V is the corresponding value. Processing
Element(PE) is the basis computational unit that consume streams and ap-
plies computational logic. After takes in an event, a PE either emits one or
more events which may be consumed by other PEs or publishes results[36].

S4 makes sure that two events with the same key end up being processed
on the same machine. Crucial to the scalability of S4 is the idea that every
instance of a processing element handles only one key. The size of an S4
cluster corresponds to the number of logical partitions.

Chapter 4

Benchmark Design

We developed a tool, called StreamBench, to execute benchmark workloads
on stream processing systems. A key feature of StreamBench is extensibil-
ity, so that it could be extended not only to run new workloads but also
to benchmark new stream processing systems. StreamBench is also avail-
able under an open source license, so that others may use and extend it,
and contribute new workloads and stream processing system interfaces. We
have used StreamBench to measure the performance of three selected stream
processing systems, and that is reported in the next chapter.

This chapter illustrates the architecture of StreamBench and introduce
more detail of main components of StreamBench.

4.1 Architecture

The main component of StreamBench is a Java program for consuming data
from partitioned kafka topic and executing workloads on stream processing
cluster. The architecture of StreamBench is shown in Figure 4.1. The core of
the architecture is StreamBench API which contains several states of stream
and a set of stream processing APIs that are very similar to Flink’s compu-
tational model. For example, API mapToPair maps a normal data stream
to a keyed data stream, and API filter is a method with a parameter of
boolean function and evaluates this boolean function for each element and
retains those for which the function returns true.

StreamBench API could be engined by different stream processing sys-
tems. Currently we support these APIs on three stream processing sys-
tems: Storm, Flink and Spark Streaming. It is very convenient to imple-
ment most interfaces of StreamBench API on Flink and Spark Streaming
which have similar high level APIs. But there are also some APIs that Flink

27

CHAPTER 4. BENCHMARK DESIGN 28

Figure 4.1: StreamBench architecture

and/or Spark Streaming doesn’t support well. For example, currently, Flink
join operator only supports two streams joining on the same size window
time. Therefore, we implemented another version join operator discussed
in § 4.3.2 with Flink’s low level API. Compare to Flink and Spark Stream-
ing, Storm is more flexible by providing two low level APIs: spout and bolt.
Bolts represent the processing logic unit in Storm. One can utilize bolts to
do any kind of processing such as filtering, aggregating, joining, interacting
with data stores, and talking to external systems.

With these common stream processing APIs, we implemented three work-
loads to benchmark performance of stream processing systems in different
aspects. WordCount discussed in § 4.3.1 aims to evaluate the performance of
stream processing systems performing basic operators. In § 4.3.2, we demon-
strated a workload named AdvClick to benchmark two keyed streams joining
operation. To check the performance of iterate operator, we designed a work-
load to calculate k-means of a point stream. More detail of this workload
could be found in § 4.3.3.

Besides the core Java program, the architecture also includes three more
components: Cluster Deploy, Data Generator and Statistic. Section 4.2 il-
lustrates how to use cluster deploy scripts to setup experiment environment.
Data generators generate test data for workloads and send it to kafka cluster
that is demonstrated detailedly in § 4.4. The Statistic component discussed
in § 4.5 includes experiment logging and performance statistic.

CHAPTER 4. BENCHMARK DESIGN 29

4.2 Experiment Environment Setup

The experiment environment is a cloud service called cPouta which is the
main production IaaS cloud at CSC – a non-profit, state-owned company
administered by the Ministry of Education and Culture. In cPouta, there
are several available virtual machine flavors. Each visual machine used in
our experiment has 4 CPU cores, 15GB RAM, 10GB root disk and 220GB
ephemeral disk. The experiment environment consists of two clusters: com-
pute cluster and Kafka cluster. Computer cluster consists of 8 work nodes
and one master nodes. Kafka cluster has 5 brokers with one zookeeper in-
stance running on the same machine with one Kafka broker. The cPouta
service is based on the hardware of the Taito cluster. Communication among
nodes and to the storage is done by Infiniband FDR fabric, which provides
low latency and high throughput connectivity. The detail information about
hardware and inter connection could be found online 1.

The operating system running on experiment nodes is Ubuntu 14.04 LTS.
Benchmarked stream processing systems are Spark-1.5.1, Storm-0.10.0 and
Flink-0.10.1. To enable checkpoint feature of Spark, Hadoop2.6(HDFS) is
installed in compute cluster. Kafka 0.8.2.1 is running as distribute message
system here.

To deploy these software in compute cluster and kafka cluster automati-
cally, we developed a set of python script. The prerequisites of using these
scripts include internet access, ssh passwordless login between nodes in clus-
ter and cluster configuration that describes which nodes are compute node
or kafka node and where is the master node. The basic logic of deploy scripts
is to download softwares online and install them, then replace configure files
which are contained in a Github repository. For detail information of how to
use cluster deploy scripts and configure of Storm, Flink, Spark and Kafka,
please check this Github repository 2.

4.3 Workloads

In StreamBench, a workload consists of a stream processing application and
one or more kafka topics. The application consumes messages from kafka
cluster and executes operations or transformations on the messages. We
have developed 3 workloads to evaluate different aspects of a stream process-
ing system. Each workload contains a representative operation or feature of

1https://research.csc.fi/taito-supercluster#1.1.2
2https://github.com/wangyangjun/StreamBench

https://research.csc.fi/taito-supercluster#1.1.2
https://github.com/wangyangjun/StreamBench

CHAPTER 4. BENCHMARK DESIGN 30

stream processing system that can be used to evaluate systems at one partic-
ular point in the performance space. We have not attempted to exhaustively
examine the entire performance space. As StreamBench is open sourced,
users could also defined their own workloads either by defining a new set of
workload parameters, or if necessary by implement a new workload which is
discussed detailedly in § 4.6.

4.3.1 Basic Operators

With the widespread use of computer technologies, there is an increasing
demand of processing unbounded, continuous input streams. In most cases,
only basic operations need to be performed on the data streams such as
map, and reduce. One good sample is stream WordCount. WordCount is
a very common sample application of Hadoop MapReduce that counts the
number of occurrences of each word in a given input set [18]. Similarly,
many stream processing systems also support it as an sample application to
count words in a given input stream. Stream WordCount is implemented
with basic operations which are supported by almost all stream processing
systems. It means either the system has such operations by default or the
operations could be implemented with provided built-in APIs. Other basic
operations include flatMap, mapToPair and filter which are similar to map

and could be implemented by specializing map if not supported by default.
The pseudocode of WordCount implemented with StreamBench APIs could
be abstracted as Algorithm 1.

Algorithm 1 WordCount

1: sentenceStream.flatMap(...)
2: .mapToPair(...)
3: .reduceByKey(...)
4: .updateStateByKey(...)

One special case of the basic APIs is updateStateByKey. Only in Spark
Streaming there is a corresponding built-in operation. As discussed in Sec-
tion 3.3, the computing model of Spark Streaming is micro-batch which is
different with that of other stream processing systems. The results of op-
eration reduceByKey of WordCount running in Spark Streaming is word
counts of one single micro batch data set. Operation updateStateByKey is
used to accumulate word counts in Spark Streaming. Because the model of
Flink and Storm is stream processing and accumulated word counts are re-
turned from reduceByKey directly. Therefore, when implementing the API
updateStateByKey with Flink and Storm engine, nothing need to do.

CHAPTER 4. BENCHMARK DESIGN 31

Figure 4.2: Windowed WordCount

When dealing with skewed data, the compute node which count the word
with largest frequency might be the bottleneck. Inspired from MapReduce
Combiner, we designed another version of WordCount with window operator
of stream processing. Windows are typically groups of events within a certain
time period. In the reduce step of Windowed WordCount, first words are
shuffle grouped and applied pre-aggregation. In a certain time period, local
pre-aggregation results are stored at local compute nodes. At the end of a
window time, the intermedia word counts are key grouped and reduced to
get the final results.

4.3.2 Join Operator

Besides the cases in which only basic operations are performed, another typ-
ical type of stream use case is processing joins over two input streams. For
example, in a surveillance application, we may want to correlate cell phone
traffic with email traffic. Theoretically unbounded memory is required to
processing join over unbounded input streams, since every record in one in-
finite stream must be compared with every record in the other. Obviously,
this is not practical[27]. Since the memory of a machine is limited, we need
restrict the number of records stored for each stream with a time window.

A window join takes two key-value pair streams, say stream S1 and stream
S2, along with windows with the same slide size for both S1 and S2 as input.
Each record in S1 is a tuple of pair (k, v1) with k as the primary key. The
key in Stream S2:(k, v2) is a foreign key referencing primary key in S1. The
output of join operator is a stream of tuple (k, v1, v2). This primary key
join operation could be described as a SQL query illustrated in Algorithm 2.
Assuming a sliding window join between stream S1 and stream S2, a new
tuple arrival from stream S2, then a summary of steps to preform join is the
following:

1. Scan window of stream S1 to find any tuple which has the same key

CHAPTER 4. BENCHMARK DESIGN 32

Algorithm 2 Join Query

1: SELECT S1.k, S1.v1, S2.v2
2: FROM S1
3: INNER JOIN S2
4: ON S1.k = S2.k

Figure 4.3: Window join scenario

with this new tuple and propagate the result;

2. (a) Invalidate target tuple in stream S1 ’s window if found ;

(b) If not, insert the new tuple into stream S2 ’s window

3. Invalidate all expired tuples in stream S2 ’s window.

Every time new tuple arrives stream S2, window of stream S1 need be
scanned. That reduces the performance of join operation, especially when
the window is big. With a data structure named cachedHashTable there
is another way to implement stream join. The tuples in the window of a
stream are stored in a cached hash table. Each tuple is cached for win-
dow time and expired tuples are invalidated automatically. One of such a
cachedHashTable could be found in Guava.3 Instead of scanning window of
stream S2, we could find tuple with the same key in S2 directly by calling
cachedHashTable.get(k). In theory, this implementation achieves better
performance.

Since Spark Streaming doesn’t process tuples in a stream one by one, the
join operator in Spark Streaming has different behaviours. In each batch
interval, the RDD generated by stream1 will be joined with the RDD gen-
erated by stream2. For windowed streams, as long as slide durations of two

3http://docs.guava-libraries.googlecode.com/git/javadoc/com/
google/common/cache/CacheBuilder.html

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/cache/CacheBuilder.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/cache/CacheBuilder.html

CHAPTER 4. BENCHMARK DESIGN 33

Figure 4.4: Spark Stream join without repeated tuple

windowed streams are the same, in each slide duration, the RDDs generated
by two windowed streams will be joined. Because of this, window join in
Spark Streaming could only make sure that a tuple in one stream will always
be joined with corresponding tuple in the other stream that arrived earlier
up to a configureable window time. Otherwise, repeat joined tuples would
exist in generated RDDs of joined stream. As Figure 4.4 shown, a tuple in
Stream2 could be always joined with a corresponding tuple in Stream1 that
arrived up to 2 seconds earlier. Since the slide duration of Stream2 is equal
to its window size, no repeat joined tuple exists. On the other hand, it is
possible that a tuple arrives earlier from Stream2 than the corresponding
tuple in Stream1 couldn’t be joined. Figure 4.5 exemplifies that there are
tuples joined repeatedly when slide duration of Stream2 is not equal to its
window size.

To evaluate performance of join operator in stream processing systems,
we designed a workload called AdvClick which joins two streams in a online
advertisement system. Every second there are a huge number of web pages
opened which contain advertisement slots. A corresponding stream of shown
advertisements is generated in the system. Each record in the stream could be
simply described as a tuple of (id, shown time). Some of advertisements
would be clicked by users and clicked advertisements is a stream which could
be abstracted as a unbounded tuples of (id, clicked time). Normally, if
an advertisement is attractive to a user, the user would click it in a short
time after it is shown. We call such a click of an attractive advertisement
valid click. To bill a customer, we need count all valid clicks regularly for

CHAPTER 4. BENCHMARK DESIGN 34

Figure 4.5: Spark Stream join with repeated tuples

advertisements of this customer. That could be counted after joining stream
advertisement clicks and stream shown advertisements.

4.3.3 Iterate Operator

Iterative algorithms occur in many domains of data analysis, such as ma-
chine learning or graph analysis. Many stream data processing tasks require
iterative sub-computations as well. These require a data processing sys-
tem having the capacity to perform iterative processing on a real-time data
stream. To achieve iterative sub-computations, low-latency interactive ac-
cess to results and consistent intermediate outputs, Murray et al. introduced
a computational model named timely dataflow that is based on a directed
graph in which stateful vertices send and receive logically timestamped mes-
sages along directed edges [33]. The dataflow graph may contain nested
cycles and the timestamps reflect this structure in order to distinguish data
that arise in different input epochs and loop iterations. With iterate opera-
tor, many stream processing systems already support such nested cycles in
processing data flow graph. We designed a workload named stream k-means
to evaluate iterate operator in stream processing systems.

K-means is a clustering algorithm which aims to partition n points into
k clusters in which each point belongs to the cluster with the nearest mean,
serving as a prototype of the cluster[3]. Given an initial set of k means, the
algorithm proceeds by alternating between two steps[30]:

Assignment step: assign each point to the cluster whose mean yields the

CHAPTER 4. BENCHMARK DESIGN 35

Figure 4.6: Stream k-means scenario

least within-cluster sum of squares.

Update step: Calculate the new means to be the centroids of the points
in the new clusters.

The algorithm has converged when the assignments no longer change. We
apply k-means algorithm on a stream of points with an iterate operator to
update centroids.

Compared to clustering for data set, the clustering problem for the data
stream domain is difficult because of two issues that are hard to address:
(1) The quality of the clusters is poor when the data evolves considerably
over time. (2) A data stream clustering algorithm requires much greater
functionality in discovering and exploring clusters over different portions of
the stream[4]. Considering the main purpose of this workload is to evaluate
iterative loop in stream data processing, we don’t try to solve these issues
here. Similarly, stream k-means also has two steps: assignment and update.
The difference is each point in the stream only passes the application once
and the application doesn’t try to buffer points. As shown in Figure 4.6, once
a new centroid calculated, it will be broadcasted to assignment executors.

Spark executes data analysis pipeline using directed acyclic graph sched-
uler. Nested cycle doesn’t exist in the data pipeline graph. Therefore, this
workload will not be used to benchmark Spark Streaming. Instead, a stan-
dalone version of k-means application is used to evaluate the performance of
Spark Streaming.

4.4 Data Generators

A data generator is a program that produces and sends unbounded records
continuously to kafka cluster which are consumed by corresponding workload.

CHAPTER 4. BENCHMARK DESIGN 36

For each workload, we designed one or several data generators with some
configureable parameters which define the skew in record popularity, the
size of records, and the distribution of data etc. These parameters could be
changed to evaluate the performance of a system executing one workload on
similar data streams with different properties. Users of StreamBench also
could implement their own data generators to produce benchmarking data.
Data generators are defined in a submodule of StreamBench project named
generator. The submodule could be compiled and packaged to get a jar file
that could run on any node of our kafka cluster.

4.4.1 WordCount

A data generator of workload WordCount produces unbounded lists of sen-
tences, each sentence consists of several words. In StreamBench, we have
implemented two versions of WordCount data generator. Each word in both
generators is a 5-digit zero-padded string of a binary integer, such as “00001”.
The number of words in each sentence satisfies normal distribution with mean
and sigma configured as (10, 1). The difference between these two genera-
tors is the corresponding integers satisfy two different distributions: uniform
distribution and zipfian distribution. Both uniform distribution and zipfian
distribution have the same size – 10000. Exponent of zipfian distribution is
configured as 1.

There are two different ways to run WordCount data generators to co-
operate experiments of WordCount discussed in § 5.1. For Online Word-
Count, we start data generation after benchmark program and pass a pa-
rameter when starting generator to control the generation speed. For Offline
model, we could either preload data to kafka cluster or make the generation
speed much faster than the throughput of stream processing system executing
WordCount workload.

4.4.2 AdvClick

As discussed in Section 4.3.2, workload AdvClick performs join operator on
two streams: shown advertisements and advertisement clicks. Each
record in shown advertisements is a tuple consist of a universally unique
identifier(UUID) and a timestamp. Each advertisement has a probability to
be clicked, which is set to 0.3 in our experiments. Then the data generator
could be a multi-threads application with main thread producing advertise-
ments and sub-threads generating clicks. The pseudocode of the main thread
is shown as Algorithm 3. After a sub-thread starts, it sleeps for delta time
and then sends click record to corresponding kafka topic. The probability of

CHAPTER 4. BENCHMARK DESIGN 37

advertisements click is a configureable parameter. In our experiments, mean
of click delay is set to 10 seconds.

Algorithm 3 AdvClick data generator

1: load clickProbability from configure file
2: cachedThreadPool← new CachedThreadPool
3: dataGenerator← new RandomDataGenerator
4: producer← new KafkaProducer
5: while not interrupted do
6: advId← new UUID
7: timestamp← current timestamp
8: producer.send(...)
9: if generator.nextUniform(0,1) < clickProbability then
10: deltaTime← generator.nextGaussian(...)
11: cachedPool.submit(new ClickThread(advId, daltaTime))

4.4.3 KMeans

Stream k-means is a one-pass clustering algorithm for stream data. In this
workload, it is used to cluster a unbounded stream of points. The data gen-
erator produces such a stream of points. In order to make experiment results
checking easy, we use pre-defined centroids. First, a set of centers are gen-
erated and written to a external file. There is a minimum distance between
every two centers so that no two clusters are overlapped together. Then the
generator produces points according these centers as Algorithm 4. The dis-
tance of each point to corresponding center satisfies normal distribution with
mean and variance as configurable parameters. In our experiments, we found
that random initial centroids would lead to results that two groups points
cluster to a centroid which is in the middle of two real centers. Which is not
desired output to measure the speed of convergence. Therefore, we generate
initial centroids for each cluster in the same way as points generation.

In our experiment environment, the compute cluster consists of 8 work
nodes, each work node has 4 cpu cores. The parallelism of the compute
cluster is 32. In order to have a better workload balance, we set the number
of centers as 96. The dimension of point is configurable that enables to
evaluate whether computation is a bottleneck of this workload.

CHAPTER 4. BENCHMARK DESIGN 38

Algorithm 4 KMeans data generator

1: load covariances from configure file
2: means← original point
3: load centroids from external file
4: producer← new KafkaProducer
5: normalDistributon ← new NormalDistribution(means, converiances)
6: while not interrupted do
7: centroid← pick a centroid from centroids randomly
8: point← centroid+normalDistributon.sample()
9: producer.send(point)

4.5 Experiment Logging and Statistic

For evaluating the performance, there are two performance measurement
terms used in StreamBench that are latency and throughput. Latency is the
required time from a record entering the system to some results produced
after some actions performed on the record. In StreamBench, messaging sys-
tem and stream processing system are combined together and treated as one
single system. The latency is computed start from when a record is gener-
ated. As discussed in Section 4.4, data is sent to kafka cluster immediately
after generation. Figure 4.7 shows how latency computed in StreamBench.
In our experiments, we noticed that in the beginning of processing data, the
performance of Storm cluster is bad. That leads to high latency of records
in the head of a stream. Therefore, we ignored latency logs of first 1 minute
in our statistic.

Throughput is the number of actions executed or results produced per
unit of time. In the WordCount workload, throughput is computed as the
number of words counted per seconds in the whole compute cluster. Joined
click events and the number of points processed per second are the through-
put of workloads AdvClick and Stream KMeans respectively.

There is an inherent tradeoff between latency and throughput: on a given
hardware setup, as the amount of load increases by increase the speed of data
generation, the latency of individual records increases as well since there is
more contention for disk, CPU, network, and so on. Computing latency start
from records generated makes it easy to measure the highest throughput,
since records couldn’t produced in time will stay in kafka topics that increase
latency dramatically. A stream processing system with better performance
will achieve low latency and high throughput with fewer servers.

CHAPTER 4. BENCHMARK DESIGN 39

Figure 4.7: Latency

4.6 Extensibility

One significant feature of StreamBench is extensibility. The component
”Workloads” in Figure 4.1 contains three predefined workloads discussed in
Section 4.3 that are implemented with common stream processing APIs.
First, with some configuration modification of a data generator, which al-
lows user to vary the skew in record popularity, and the size and number
of records. The performances of a workload processing data streams with
different properties could be different a lot. Moreover, it is easy for devel-
opers to design and implement a new workload to benchmark some specific
features of stream processing systems. This approach allows for introducing
more complex stream processing logic, and exploring tradeoffs of new stream
processing features; but involves greater effort compared to the former ap-
proach.

Besides implementing new workloads, StreamBench also could be ex-
tended to benchmark new stream processing systems by implement a set
of common stream processing APIs. A few samples of APIs could be shown
as following:

• map(MapFunction<T, R>fun, String componentId): map each record
in a stream from type T to type R

• mapToPair(MapPairFunction<T, K, V>fun, String componentId):
map a item stream<T> to a pair stream<K, V>

• reduceByKey(ReduceFunction<V>fun, String componentId): called
on a pair stream of (K, V) pairs, return a new pair stream of (K, V)
pairs where the values for each key are aggregated using the given re-
duce function

CHAPTER 4. BENCHMARK DESIGN 40

These methods are quite simple, representing common data transforma-
tions. There are some other APIs like filter(), flatMap() and join which
are also easily to implement and supported well by most stream processing
systems. Despite its simplicity, this API maps well to the native APIs of
many of the stream processing systems we examined.

Chapter 5

Experiment

After StreamBench architecture and design of workloads are demonstrated,
this chapter will draw our attention to experiments. Each experiment case
is executed several times to get a stable result. In this chapter, we present
experiment results of three selected stream processing systems running the
workloads that are discussed in § 4.3. As illustrated in § 4.5, two perfor-
mance metrics that we are concerned with latency and throughput. For each
workload, we compare the experiment results of different stream processing
systems with visualization of these two metrics.

5.1 WordCount

First, we examine workload WordCount which aims to evaluate performance
of stream processing systems performing basic operators. In order to check
different performance metrics of stream processing systems, we performed the
WordCount experiments in two different models: Offline model and Online
model. Offline WordCount focuses on throughput and aims to find maxi-
mum throughput of this workload performed on each system. Offline means
that the workload application consumes data that already exists in Kafka
cluster. On the contrary, experiments of consuming continuous coming data
is called Online model, which measures latency of stream processing with
different throughputs. Moreover, we also made some modification to the
original workload to evaluate pre-aggregation property of Storm. As men-
tioned in § 4.4.1, for this workload, we designed two data generators to
produce words that satisfy uniform and zipfian distributions. Comparison
between experiment results of processing these two different data streams is
also presented.

41

CHAPTER 5. EXPERIMENT 42

(a) Skewed WordCount (b) Uniform WordCount

Figure 5.1: Throughput of Offline WordCount (words/second)

5.1.1 Offline WordCount

Since the computing model of Spark Streaming is micro-batch processing,
existing data in Kafka cluster would be collected and processed as one single
batch. The performance of processing one large batch with Spark Streaming
is similar to a Spark batch job. There are already many works evaluating
performance of Spark batch processing. Therefore, we skip experiments of
Spark Streaming here. Figure 5.1 presents throughputs of Offline WordCount
processing both skewed and uniform data on Storm and Flink clusters. It
is obvious that the throughput of Flink is incomparably larger than Storm,
tens of times higher. The throughput of Flink cluster dealing with uniform
data stream is very high and reaches 2.83 million words per second, which is
more than two times as large as throughput of performing skewed data. The
corresponding ratio of Storm is around 1.25. The skewness of experiment
data has greater influence of performance on Flink than Storm.

The difference of performance between skewed data and uniform data
indicates that the bottleneck of a cluster processing skewed data would be
the node dealing with the data with highest frequency. To verify this as-
sumption, we reduce the number of computing nodes from 8 to 4, and run
these experiments. The experiment results are presented as Figure 5.2. The
throughput of 8-nodes cluster of both systems dealing with uniform data is
nearly two times as large as that of 4-nodes cluster. It means that the scal-
ability of both systems is good. While processing skewed data, increasing
the number of work nodes in a Flink cluster doesn’t bring significant per-
formance increase. Storm cluster gets about 58% throughput improvement

CHAPTER 5. EXPERIMENT 43

(a) Storm (ack enabled) (b) Flink

Figure 5.2: Throughput Scale Comparison of Offline WordCount

when increasing cluster from 4 nodes to 8 nodes. The result indicates that
the assumption is correct in Flink, and the bottleneck of a storm cluster
might be other factors.

The throughput of each work node in computing cluster is displayed
in Figure 5.3. Obviously, for both Storm and Flink, workloads processing
uniform data achieve better balance than corresponding workloads dealing
with skewed data. Either dealing with uniform data or skewed data, Storm
achieves better workload balance than Flink. The experiment results also
shows that Flink cluster with 4 compute nodes has better workload balance
than clusters with 8 nodes.

5.1.2 Online WordCount

Base on the experiment results of Offline WordCount, we perform experi-
ments of Online WordCount on Storm and Flink at around half of the max-
imum achieved throughput of Offline WordCount respectively. In Online
scenario, the stream processing application starts earlier than data genera-
tion. Which means data is processed as soon as possible after it is generated.
As mentioned in § 4.5, the latency is computed as spending time from a
record generated to corresponding result computed.

In Spark Streaming, depending on the nature of the streaming computa-
tion, the batch interval used may have significant impact on the data rates

CHAPTER 5. EXPERIMENT 44

Figure 5.3: Throughput of work nodes (words/s)

CHAPTER 5. EXPERIMENT 45

(a) Records latency (b) Micro-batches latency

Figure 5.4: Latency of Online WordCount

that can be sustained by the application on a fixed set of cluster resources1.
Here, we perform the experiments with one second micro-batch interval and
10 seconds checkpoint interval which are the default configurations. Check-
pointing is enabled because of a stateful transformation, updateStateByKey
is used here to accumulate word counts. Checkpointing is very time con-
suming due to writing information to a fault- tolerant storage system. Fig-
ure 5.4(b) shows that the latency of micro-batches increasing and decreasing
periodically because of checkpointing. A micro-batch is collected during one
micro-batch interval, early records are buffered before the last record in the
micro-batch arrives. In figure 5.4(b), buffer time of records in a micro-batch
is not took in consideration. Before the computation of a micro-batch is fin-
ished, computation job of following micro-batches will not start. Therefore,
the start time of computation job of a micro-batch would be delayed, this
is indicated by “Delay” in the figure. The throughput of experiment cor-
responding to Figure 5.4(b) is 1.4M/s (million words per second) of skewed
data. When the speed of data generation reaches 1.8M/s, the delay and
latency increase infinitely with periodic decreasing.

Figure 5.4(a) shows the latency of Online WordCount performing skewed
data. Storm with ack enabled achieves a median latency of 10 milliseconds,
and a 95-th percentile latency of 201 milliseconds, meaning that 95% of all
latencies were below 201 milliseconds. Flink has a higher median latency
(39 milliseconds), and a similar 95-th percentile latency of 217 milliseconds.
Since the records in a micro-batch are buffered up to batch interval time,
the buffer time are also counted into the latency according to our latency

1http://spark.apache.org/docs/1.5.1/streaming-programming-
guide.html#setting-the-right-batch-interval

http://spark.apache.org/docs/1.5.1/streaming-programming-guide.html#setting-the-right-batch-interval
http://spark.apache.org/docs/1.5.1/streaming-programming-guide.html#setting-the-right-batch-interval

CHAPTER 5. EXPERIMENT 46

computational method present in Figure 4.7. For example, median latency
of Spark Streaming is equal to the sum of median latency of micro-batches
and half of micro-batch interval. Obviously, the latency of Spark Streaming
is much higher than that of others.

As mentioned in § 4.3.1, we designed another version of WordCount
named Windowed Wordcount. Actually, Spark Streaming supports pre-
aggregation by default, therefore, above Spark Streaming WordCount ex-
periments already own this feature. Currently, Flink-0.10.1 doesn’t support
pre-aggregation, and parallel window can only be applied on keyed stream.
It is possible to implement Windowed WordCount with Flink’s low level API.
But it is too time consuming and we leave it to future works. Therefore, only
Storm is benchmarked with this workload.

To support Windowed WordCount, we implemented a window operator in
Storm2 with ack disabled. Our experiments show that the window time has
very limited effect on throughput. Here only experiment results of one second
window workload are presented. The throughput of Windowed WordCount
performing skewed data in Offline model could reach 60K/s (thousand words
per second) that is more than two times as large as experiments without
window. While dealing with uniform data, the throughput doesn’t have any
obvious improvement. Pre-aggregation on a window only helps in case of
skewed data because it compacts the data thus removing the skew. Online
model with a generation speed of 50K/s achieves a median latency of 1431
milliseconds, and a 99-th percentile latency of 3877 milliseconds.

Throughput of WordCount workload is summarized as Table 5.1. Obvi-
ously, Flink and Spark Streaming achieve incomparably higher throughput
than Storm. The skewness of data has a dramatic effect on WordCount
applications without pre-aggregation.

No Pre-aggregation Windowed Pre-aggregation
Uniform Zipfian Uniform Zipfian

Storm (ack
enabled)

26.6K/s 21.3K/s Ø Ø

Storm (ack
disabled)

36.4K/s 29.4K/s 50K/s 60K/s

Spark
Streaming

Ø Ø 1.3M/s 1.4M/s

Flink 2.8M/s 1.4M/s Ø Ø

Table 5.1: WordCount Throughput

2https://github.com/wangyangjun/Storm-window

https://github.com/wangyangjun/Storm-window

CHAPTER 5. EXPERIMENT 47

(a) Storm (b) Flink

Figure 5.5: AdvClick Performance

5.2 AdvClick

As described in § 4.4.2, click delays of clicked advertisements satisfy normal
distribution and the mean is set to 10 seconds. In our experiments, we
define that clicks within 20s after corresponding advertisement shown are
valid clicks. In theory, overwhelming majority records in the click stream
could be joined. Kafka only provides a total order over messages within
a partition, not between different partitions in a topic [17]. Therefore, it
is possible that click record arrives earlier than corresponding advertisement
shown record. We set a window time of 5 seconds for advertisement clicks

stream, as acking a tuple would require knowing whether it will be joined
with a corresponding one from the other stream in the future.

When benchmarking Storm and Flink, first we perform experiments with
low speed data generation, and then increase the speed until obvious joining
failures occur when throughput is much less than generation speed of stream
advertisement clicks. The experiment result shows that the maximum
throughput of Storm cluster is around 8.4K/s (joined events per second).
The corresponding generation speed of shown advertisements is 28K/s. As
we can see in Figure 5.5(a), cluster throughput of shown advertisements is
equal to the data generation speed when it is less than 28K/s. That means
there is no join failures. Figure 5.5(a) also shows that Storm cluster has a
very low median latency. But the 99-th percentile of latency is much higher
and increase dramatically with the data generation speed.

Compared to Storm, Flink achieves a much better throughput. In our
experiments, the throughput of Flink cluster is always equal to the generation

CHAPTER 5. EXPERIMENT 48

speed of stream shown advertisements. But when the generation speed of
stream shown advertisements is larger than 200K/s, the Flink AdvClick
processing job is usually failed because of a bug in flink-connector-kafka 3.
This issue is fixed in the latest versions of Flink and Kafka. But Storm
and Spark don’t support the latest version of Kafka yet. We will upgrade
all these systems in StreamBench in the next version of StreamBench. The
maximum throughput of Flink we achieved in experiments is 63K/s (joined
events per second), around 6 times larger than Storm. The latency of Flink
performing this workload is shown as Figure 5.5(b). Even though the median
latencies are a little higher than Storm, but 90-th and 99-th percentiles of
Flink latency are much lower.

As discussed in § 4.3.2, Spark Streaming join operator is applied with
sliding window. With the configuration of 20s/5s, the slide intervals of both
windows are 5 seconds. That means a micro-batch join job is submitted
to Spark Streaming cluster every 5 seconds. Because of different processing
model, there is no joining failure in Spark Streaming. But high data genera-
tion speed leads to increasing delay of micro-batch jobs, because micro-batch
jobs couldn’t be finished in interval time. With this configuration, Spark
Streaming has a very small throughput which is lower than 2K/s. Increas-
ing micro-batch jobs submitting interval might increase the throughput, but
leads to higher latency. For this workload, increasing the window lengths
also because of the presence of duplicate records, as the windows overlap.
Therefore, we did some experiments with larger windows. Increasing win-
dows length of these two streams to 60s/30s, the cluster could achieve a
throughput of 20K/s which is ten times larger.

Maximum Latency
Throughput Throughout Median 90%

Storm (ack disabled) 8.4K/s 4.2K/s 14ms 2116ms
Flink 63K/s 33K/s 230ms 637ms

Spark Streaming
(20s/5s)

< 2K/s Ø Ø Ø

Spark Streaming
(60s/30s)

20K/s 20K/s ∼20s ∼24s

Table 5.2: Advertisement Click Performance

Table 5.2 summarizes maximum throughputs and latencies at a specific
throughput of these systems. Flink achieves the largest throughput and

3https://issues.apache.org/jira/browse/KAFKA-725

https://issues.apache.org/jira/browse/KAFKA-725

CHAPTER 5. EXPERIMENT 49

Figure 5.6: KMeans Latency of Flink and Storm

lowest 90-th percentile latency. While the median latency of Storm is 14ms,
that is much lower than other systems. Latencies of Spark Streaming shown
in the table is the latencies of micro-batches that doesn’t include buffer time
of records in a window.

5.3 K-Means

Experiment results of stream k-means processing 2-dimensional points shows
that Storm cluster with at-least-once processing guarantee has a through-
put of 1.7K/s. Without this guarantee, the throughput is a litter higher,
around 2.7K/s. The maximum throughput of Flink cluster is much larger
and reaches 78K/s. Figure 5.6 shows the latencies of Flink cluster and Storm
Cluster without at-least-once guarantee. When the generation speed of point
stream is low, Storm achieves very low median latency. The 90-th percentile
of latency of Storm is also lower than Flink. The latency of Storm rises
sharply when the generation speed is around 2.7K/s to 3K/s. Compared
with Storm, latency percentiles of Flink is more compact. When the speed
of data generations is 30K/s, Flink achieves a median latency of 141 millisec-
onds, and a 90-th percentile latency of 195 milliseconds. From this figure,
it is easy to know that the throughput of Flink is significantly larger than
storm.

CHAPTER 5. EXPERIMENT 50

(a) Flink and Storm (b) Spark Streaming

Figure 5.7: Convergences

Since the throughput of Flink is tens of times higher than Storm, this
workload converges much quicker on Flink cluster. In order to compare
convergences of the algorithm running on Storm and Flink clusters, we cal-
culated average distance between centroids and corresponding nearest center
over the number of points processed on each compute node and visualized as
Figure 5.7(a). The results indicate that the k-means algorithm performing
on Storm cluster achieves a little better convergence.

Because of Spark’s DAG computational model, Spark Streaming doesn’t
support iterate operator. Instead of forwarding updated centroids in a nested
cycle, Spark Streaming implements stream k-means in a different way. It
maintains a clustering model and updates the model after each micro batch
processed. The update interval of clustering model is the same as micro
batch interval. More detail about Spark Streaming K-Means could be found
online4. With the default setting of one second micro-batch interval, to keep
the average latency of micro-batches is less than one second, the maximum
throughput of the cluster achieved is around 1M/s. The average latencies of
micro-batches processing data with different generation speed are shown as
Figure 5.8. The latency of a micro-batch is the time from when the batch
is ready to the time that the processing job is done. The latency of each
record also includes the time that the record buffered in a window. The
experiment results show that the convergence of Spark Streaming K-Means
is very fast. Usually, it is converged in a few micro-batches. Figure 5.7(b)

4https://databricks.com/blog/2015/01/28/introducing-streaming-k-
means-in-spark-1-2.html

https://databricks.com/blog/2015/01/28/introducing-streaming-k-means-in-spark-1-2.html
https://databricks.com/blog/2015/01/28/introducing-streaming-k-means-in-spark-1-2.html

CHAPTER 5. EXPERIMENT 51

Figure 5.8: Spark KMeans Latency

shows the convergence of Spark Streaming over the number of processed
events. It is obvious that stream with lower speed converges faster. But
stream with higher speed achieves lower average distance between centroids
and real centers after converged. In Figure 5.7, it is easy to notice that
the workload running in Flink and Storm is converged after 2000 points
processed, that is much lower than Spark Streaming. This is mainly because
of the difference between processing models of these systems. In Flink and
Storm, record in a stream is processed one by one. That means once a latest
centroid is calculated, it could be updated to the k-means clustering model.
While in Spark Steaming, the k-means cluster model is updated when a
micro-batch job is done. The update frequency is significantly lower than
Flink and Storm.

Maximum Latency
Throughput

(K/s)
Throughout

(K/s)
Median

(ms)
90%
(ms)

99%
(ms)

Storm (ack
enabled)

1.7 0.9 13 100 410

Storm (ack
disabled)

2.7 1.6 21 107 388

Flink 78 40 122 183 310
Spark

Streaming
1000 480 986 1271 1837

Table 5.3: KMeans Performance

CHAPTER 5. EXPERIMENT 52

The performance of this workload is summarized in Table 5.3. It is clear
that Spark Streaming achieves the best maximum throughput, and Storm
achieves the lowest median latency. The percentile latencies of Flink is more
compact than that of Storm. We also performed some experiments with high
dimension point stream. The experiment results show that increasing point
dimension has very limit effect on workload performance. The main result of
increasing point dimension is leading to more computation in point distance
calculation. Which indicates that computation is not a bottleneck of this
workload.

5.4 Summary

The experiment results of these workloads show that both Flink and Spark
Streaming achieve significantly higher throughput than Storm. But Storm
usually achieves a very low median latency. Median latencies of these work-
loads running in Flink is much higher than Storm. But Flink achieves a sim-
ilar 99-th percentile latency. In most case, the latencies of Storm and Flink
is less than one second. Compared with other two workloads, all these sys-
tems get a worse performance in workload AdvClick. Because of micro-batch
computational model, there is a tradeoff between throughput and latency of
Spark Streaming executing this workload. Normally, the latency of Spark
Streaming is much larger than Storm and Flink.

In practice, the selection of stream processing systems depends on the
situation. If an application requests very low latency, but the requirement
of throughput is not stringent, Storm would be the best choice. On the
contrary, if throughput is the key requirement, Spark Streaming is a very
good option. Flink achieves both low latency and high throughput. For
most stream processing cases, Flink would be a good choice.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have presented a benchmark framework named StreamBench, which aims
to provide tools for apples-to-apples comparison of different stream process-
ing systems. One contribution of the benchmark is the definition of three
core workloads and corresponding data generators, which begin to fill out
the space of evaluating performance of these systems performing different
operators. Another contribution of the benchmark is its extensibility prop-
erty. New workloads can be easily created, including generalized workloads
to examine system fundamentals, as well as more domain-specific workloads
to model particular applications. As an open-source project, developers also
could extend StreamBench to evaluate other stream processing systems. Cur-
rently, there is not a standard benchmark framework for stream processing
systems yet. The extensibility of StreamBench allows the stream processing
community extend and develop it to be a standard benchmark framework.

We have used this tool to benchmark the performance of three stream
processing systems, and observed that the throughput of Flink and Spark
Streaming is much better than Storm, but Storm achieves a much lower
median latency in most workloads. The AdvClick workloads also indicates
that Storm and Flink provide low level APIs, and it is flexible for users
to implement new operators with these APIs. These results highlight the
importance of a standard framework for examining system performance so
that developers can select the most appropriate system in practic.

53

CHAPTER 6. CONCLUSION AND FUTURE WORK 54

6.2 Future Work

In addition to performance comparisons, other aspects of stream processing
systems are also very important factors when selecting a system to deal with
stream data in practice, such as scalability, elastic speedup, and availabil-
ity. For example, a stream processing application is running in a cluster,
it is possible that the speed of input stream keeps increasing and becomes
larger than cluster’s maximum throughput. In this case, scalability is very
important which indicates how much the processing ability of a cluster could
increase by adding more compute nodes. In our future works, we will imple-
ment more workloads to examine these aspects of stream processing systems.

Beside design new workloads, we also could extend StreamBench to bench-
mark other stream processing systems. In the thesis, we only selected three
stream processing systems to run the benchmarks. There are many other
stream processing systems that are widely used, such as Amazon Kinesis
and Apache Samza. Extending StreamBench to evaluate these systems is
listed in our future work.

There are some issues in StreamBench that could be improved or fixed in
the future. First, the speed of data generation can’t be controlled precisely.
It fluctuates around some point. The throughputs mentioned in this thesis
are all approximate value. Another issue we noticed is the amount of data
in Kafka affects the performance of Offline WordCount, especially for Storm.
How the amount of data in Kafka and other features of Kafka cluster affect
the performance of stream processing is a very interesting research topic. It
might help us evaluate the integration between system processing systems
and distributed message systems. As mentioned in § 5.1.2, currently, Flink
doesn’t support pre-aggregation and parallel window could only be applied
on keyed stream. It is possible to implement Windowed WordCount with
Flink’s low level API. Last but not least, it is always good to upgrade stream
processing systems to the latest version in StreamBench.

Bibliography

[1] Giraph. URL http://giraph.apache.org/.

[2] Streams and operations on streams, Mar 2016. URL https:

//cwiki.apache.org/confluence/display/FLINK/Streams+and+

Operations+on+Streams.

[3] K-means clustering, Mar 2016. URL https://en.wikipedia.org/wiki/

K-means_clustering.

[4] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A
framework for clustering evolving data streams. In Proceedings of the
29th international conference on Very large data bases-Volume 29, pages
81–92. VLDB Endowment, 2003.

[5] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and
Mark Callaghan. Linkbench: A database benchmark based on the face-
book social graph. In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’13, pages 1185–
1196, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2037-5. doi:
10.1145/2463676.2465296. URL http://doi.acm.org/10.1145/2463676.

2465296.

[6] Mihai Capota, Tim Hegeman, Alexandru Iosup, Arnau Prat-Pérez, Orri
Erling, and Peter Boncz. Graphalytics: A big data benchmark for graph-
processing platforms. 2015.

[7] F Chang, J Dean, S Ghemawat, WC Hsieh, DA Wallach, M Burrows,
T Chandra, A Fikes, and R Gruber. Bigtable: A distributed structured
data storage system. In 7th OSDI, pages 305–314, 2006.

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,

55

http://giraph.apache.org/
https://cwiki.apache.org/confluence/display/FLINK/Streams+and+Operations+on+Streams
https://cwiki.apache.org/confluence/display/FLINK/Streams+and+Operations+on+Streams
https://cwiki.apache.org/confluence/display/FLINK/Streams+and+Operations+on+Streams
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
http://doi.acm.org/10.1145/2463676.2465296
http://doi.acm.org/10.1145/2463676.2465296

BIBLIOGRAPHY 56

pages 143–154, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0036-0. doi: 10.1145/1807128.1807152. URL http://doi.acm.org/10.

1145/1807128.1807152.

[9] Patricio Córdova. Analysis of real time stream processing systems con-
sidering latency.

[10] Transaction Processing Performance Council. Tpc-c benchmark specifi-
cation, . URL http://www.tpc.org/tpcc/.

[11] Transaction Processing Performance Council. Tpc-h benchmark speci-
fication, . URL http://www.tpc.org/tpch/.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
2008.

[13] Anamika Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rohm.
Ycsb+t: Benchmarking web-scale transactional databases. In Data En-
gineering Workshops (ICDEW), 2014 IEEE 30th International Confer-
ence on, pages 223–230. IEEE, 2014.

[14] L Doug. Data management: Controlling data volume, velocity, and
variety, 2001.

[15] Tao Feng. Benchmarking apache samza: 1.2 million messages per
second on a single node. URL https://engineering.linkedin.

com/performance/benchmarking-apache-samza-12-million-messages-

second-single-node.

[16] Apache Software Foundation. Hdfs, . URL https://hadoop.apache.

org/docs/r1.2.1/hdfs_design.html.

[17] Apache Software Foundation. Kafka, . URL http://kafka.apache.org/

documentation.html.

[18] Apache Software Foundation. Mapreduce, . URL https://hadoop.

apache.org/docs/r1.2.1/mapred_tutorial.html.

[19] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel
Poess, Alain Crolotte, and Hans-Arno Jacobsen. Bigbench: Towards
an industry standard benchmark for big data analytics. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’13, pages 1197–1208, New York, NY, USA, 2013.

http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152
http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://kafka.apache.org/documentation.html
http://kafka.apache.org/documentation.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

BIBLIOGRAPHY 57

ACM. ISBN 978-1-4503-2037-5. doi: 10.1145/2463676.2463712. URL
http://doi.acm.org/10.1145/2463676.2463712.

[20] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In ACM SIGOPS operating systems review, volume 37, pages
29–43. ACM, 2003.

[21] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car-
los Guestrin. Powergraph: Distributed graph-parallel computation on
natural graphs. In OSDI, volume 12, page 2, 2012.

[22] Jamie Grier. Extending the yahoo! streaming benchmark. URL http:

//data-artisans.com/extending-the-yahoo-streaming-benchmark/.

[23] Yong Guo, Marcin Biczak, Ana Lucia Varbanescu, Alexandru Iosup,
Claudio Martella, and Theodore L Willke. How well do graph-processing
platforms perform? an empirical performance evaluation and analysis.
pages 395–404, 2014.

[24] Yong Guo, Ana Lucia Varbanescu, Alexandru Iosup, Claudio Martella,
and Theodore L Willke. Benchmarking graph-processing platforms: a
vision. pages 289–292, 2014.

[25] Mohammad Haghighat, Saman Zonouz, and Mohamed Abdel-Mottaleb.
Cloudid: Trustworthy cloud-based and cross-enterprise biometric iden-
tification. Expert Systems with Applications, 42(21):7905–7916, 2015.

[26] Alexandru Iosup, AL Varbanescu, M Capota, T Hegeman, Y Guo,
WL Ngai, and Merijn Verstraaten. Towards benchmarking iaas and
paas clouds for graph analytics. 2014.

[27] Jaewoo Kang, Jeffery F Naughton, and Stratis D Viglas. Evaluating
window joins over unbounded streams. In Data Engineering, 2003. Pro-
ceedings. 19th International Conference on, pages 341–352. IEEE, 2003.

[28] Robert Metzger Kostas Tzoumas, Stephan Ewen. High-throughput,
low-latency, and exactly-once stream processing with apache flink.
URL http://data-artisans.com/high-throughput-low-latency-and-

exactly-once-stream-processing-with-apache-flink/.

[29] Jörn Kuhlenkamp, Markus Klems, and Oliver Röss. Benchmarking scal-
ability and elasticity of distributed database systems. Proc. VLDB En-
dow., 7(12):1219–1230, August 2014. ISSN 2150-8097. doi: 10.14778/
2732977.2732995. URL http://dx.doi.org/10.14778/2732977.2732995.

http://doi.acm.org/10.1145/2463676.2463712
http://data-artisans.com/extending-the-yahoo-streaming-benchmark/
http://data-artisans.com/extending-the-yahoo-streaming-benchmark/
http://data-artisans.com/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink/
http://data-artisans.com/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink/
http://dx.doi.org/10.14778/2732977.2732995

BIBLIOGRAPHY 58

[30] David JC MacKay. Information theory, inference and learning algo-
rithms, chapter 20. An Example Inference Task: Clustering, pages 284–
292. Cambridge university press, 2003.

[31] Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:
A system for large-scale graph processing - ”abstract”. pages 6–6,
2009. doi: 10.1145/1582716.1582723. URL http://doi.acm.org/10.

1145/1582716.1582723.

[32] Peter Mell and Tim Grance. The nist definition of cloud computing.
2011.

[33] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Mart́ın Abadi. Naiad: a timely dataflow system. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439–455. ACM, 2013.

[34] Zubair Nabi, Eric Bouillet, Andrew Bainbridge, and Chris Thomas. Of
streams and storms. IBM White Paper, 2014.

[35] Paulo Neto. Demystifying cloud computing. In Proceeding of Doctoral
Symposium on Informatics Engineering, 2011.

[36] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari.
S4: Distributed stream computing platform. In Data Mining Work-
shops (ICDMW), 2010 IEEE International Conference on, pages 170–
177. IEEE, 2010.

[37] Manoj P. Real time processing frameworks, . URL http:

//www.ericsson.com/research-blog/data-knowledge/real-time-

processing-frameworks/.

[38] Manoj P. Apache-storm-vs spark-streaming, . URL http:

//www.ericsson.com/research-blog/data-knowledge/apache-storm-

vs-spark-streaming/.

[39] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao,
Julio López, Garth Gibson, Adam Fuchs, and Billie Rinaldi. Ycsb++:
Benchmarking and performance debugging advanced features in scal-
able table stores. In Proceedings of the 2Nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 9:1–9:14, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0976-9. doi: 10.1145/2038916.2038925. URL
http://doi.acm.org/10.1145/2038916.2038925.

http://doi.acm.org/10.1145/1582716.1582723
http://doi.acm.org/10.1145/1582716.1582723
http://www.ericsson.com/research-blog/data-knowledge/real-time-processing-frameworks/
http://www.ericsson.com/research-blog/data-knowledge/real-time-processing-frameworks/
http://www.ericsson.com/research-blog/data-knowledge/real-time-processing-frameworks/
http://www.ericsson.com/research-blog/data-knowledge/apache-storm-vs-spark-streaming/
http://www.ericsson.com/research-blog/data-knowledge/apache-storm-vs-spark-streaming/
http://www.ericsson.com/research-blog/data-knowledge/apache-storm-vs-spark-streaming/
http://doi.acm.org/10.1145/2038916.2038925

BIBLIOGRAPHY 59

[40] David Patterson. For better or worse, benchmarks shape a field: tech-
nical perspective. Communications of the ACM, 55(7):104–104, 2012.

[41] Alexander Pokluda and Wei Sun. Benchmarking failover characteristics
of large-scale data storage applications: Cassandra and voldemort.

[42] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang,
Berthold Reinwald, and Fatma Özcan. Clash of the titans: Mapreduce
vs. spark for large scale data analytics. Proceedings of the VLDB En-
dowment, 8(13):2110–2121, 2015.

[43] Michael Stonebraker, U?ur Çetintemel, and Stan Zdonik. The 8 re-
quirements of real-time stream processing. ACM SIGMOD Record, 34
(4):42–47, 2005.

[44] Yahoo Storm Team. Yahoo streaming benchmark. URL
http://yahooeng.tumblr.com/post/135321837876/benchmarking-

streaming-computation-engines-at.

[45] Kai Wähner. Real-time stream processing as game changer in a big data
world with hadoop and data warehouse, 2014. URL http://www.infoq.

com/articles/stream-processing-hadoop.

[46] Xinh. Xinh’s tech blog. URL http://xinhstechblog.blogspot.fi/2014/

06/storm-vs-spark-streaming-side-by-side.html.

[47] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages 2–
2. USENIX Association, 2012.

http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://www.infoq.com/articles/stream-processing-hadoop
http://www.infoq.com/articles/stream-processing-hadoop
http://xinhstechblog.blogspot.fi/2014/06/storm-vs-spark-streaming-side-by-side.html
http://xinhstechblog.blogspot.fi/2014/06/storm-vs-spark-streaming-side-by-side.html

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Cloud Computing
	2.1.1 Parallel Computing
	2.1.2 Computer Cluster
	2.1.3 Batch Processing and Stream Processing
	2.1.4 MapReduce
	2.1.5 Hadoop Distribution File Systems
	2.1.6 Kafka

	2.2 Benchmark
	2.2.1 Traditional Database Benchmarks
	2.2.2 Cloud Service Benchmarks
	2.2.3 Distributed Graph Benchmarks
	2.2.4 Existing stream processing benchmarks
	2.2.5 The Yahoo Streaming Benchmark

	3 Stream Processing Platforms
	3.1 Apache Storm
	3.1.1 Storm Architecture
	3.1.2 Computational Model

	3.2 Apache Flink
	3.2.1 Flink Architecture
	3.2.2 Computational Model

	3.3 Apache Spark
	3.3.1 Resilient Distributed Dataset(RDD)
	3.3.2 Computational Model
	3.3.3 Spark Streaming

	3.4 Other Stream Processing Systems
	3.4.1 Apache Samza
	3.4.2 Apache S4

	4 Benchmark Design
	4.1 Architecture
	4.2 Experiment Environment Setup
	4.3 Workloads
	4.3.1 Basic Operators
	4.3.2 Join Operator
	4.3.3 Iterate Operator

	4.4 Data Generators
	4.4.1 WordCount
	4.4.2 AdvClick
	4.4.3 KMeans

	4.5 Experiment Logging and Statistic
	4.6 Extensibility

	5 Experiment
	5.1 WordCount
	5.1.1 Offline WordCount
	5.1.2 Online WordCount

	5.2 AdvClick
	5.3 K-Means
	5.4 Summary

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

