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Tässä työssä esitetään menetelmä kuvalähteenä olevan kameran tun-
nistamiseksi tutkimalla kuvausprosessissa sinällään syntyvää kohinaa. Kohina
syntyy kuvauksessa käytettävästä laitteistosta, esim. kuva-anturista (CCD),
linssistä ja Bayer-suotimesta. Kohinaa muokkaavat kameran automaattisesti
kuvanparannukseen käyttämät algoritmit. Kuvanparannuksen jälkeen kohinan
voi eristää muodostamalla erotuksen kohinan sisältävän kuvan ja suodatetun
kuvan välillä.
Kameran sormenjäljen voi muodostaa laskemalla pikseleittäin keskiarvon ope-
tuskuvien kohinasta. Sormenjälkeä käytetään laskemaan korrelaatio testiku-
van ja sormenjäljen välillä. Kuvan ottaneeksi kameraksi tunnistetaan se, jonka
sormenjäljen ja testikuvan kohinan välillä on suurin korrelaatio. Tärkeimmät
tunnistuksen tarkkuuteen ja vakauteen vaikuttavat tekijät ovat kohinanpois-
toalgoritmi ja opetuskuvien määrä. Työssä osoitetaan, että parhaat tulokset
saadaan käyttämällä 60:tä opetuskuvaa ja aallokesuodatusta.
Tässä työssä arvioidaan tunnistusprosessia neljässä tapauksessa. Ensiksi eri
malleista valittujen yksittäisten kameroiden suhteen, toiseksi saman kamera-
mallin yksilöiden välillä, kolmanneksi kaikkien yksittäisten kameroiden välillä
jättäen huomiotta kameramallin, ja viimeiseksi pyritään yhtä kameraa käyt-
täen muodostamaan prototyyppisormenjälki, jolla tunnistaa muut saman-
malliset kamerat.
Työssä osoitettiin, että kahdessa ensinmainitussa tapauksessa tunnistus toimii
riittävän tarkasti ja vakaasti. Jälkimmäisessä kahdessa tapauksessa tunnistus
ei saavuttanut riittävää tarkkuutta.
Avainsanat:kamerantunnistus, lähteen tunnistus, anturintunnistus, ku-

vansuodatus, kuvien luokittelu, kohinakuviot, koneoppimi-
nen, anturien sormenjäljet, koejärjestelyt, menetelmällinen
todistaminen, luokitteluongelmat

Kieli: englanti



Contents

Mathematical notation x

1 Introduction 1

2 Digital imaging pipeline 4

3 Sensor pattern noise 10

4 Image filtering methods 13
4.1 Gaussian filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Wavelet filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Other possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 PNU based identification of camera sources 25
5.1 Generating PNU based reference patterns . . . . . . . . . . . . . . . 26
5.2 Correlation of an image and the reference pattern . . . . . . . . . . . 29
5.3 Example data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Data preprocessing - principal component analysis . . . . . . . . . . . 31

6 Image classification methods 34
6.1 Characterization of classification methods . . . . . . . . . . . . . . . 34
6.2 Naïve comparison of correlations . . . . . . . . . . . . . . . . . . . . 36
6.3 Bayesian classification . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5 Tuning the source camera identification algorithm . . . . . . . . . . . 43

7 Focusing topic 44
7.1 Topic and focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 Utilizing image source . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Source identification decisions . . . . . . . . . . . . . . . . . . . . . . 46
7.4 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Experimentation plan 48
8.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2 Analysis of classification . . . . . . . . . . . . . . . . . . . . . . . . . 50

9 Experimentation results 52
9.1 Inter-model classification . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2 Intra-model classification . . . . . . . . . . . . . . . . . . . . . . . . . 60



9.3 One-tiered approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.4 Existence of model specific fingerprints . . . . . . . . . . . . . . . . . 66

10 Conclusions and further work 70
10.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

References 75



List of Figures

2.1 Digital camera imaging pipeline (Ramanath et al., 2005) . . . . . . . . . 5
2.2 Structure of a color filter array (Ramanath et al., 2005) . . . . . . . . . 5
2.3 A simulated flare effect caused by sun (Hullin et al., 2011) . . . . . . . . 7

3.1 A classification for sensor pattern noise (Lukáš et al., 2006) . . . . . . . 10
3.2 Noise model for acquiring the image signal . . . . . . . . . . . . . . . . . 11

4.1 Slope of gaussian filter with respect to σ . . . . . . . . . . . . . . . . . . 14
4.2 The original banknote courtesy of (European Central Bank, 2013) . . . 15
4.3 Detail from the 5 euro banknote filtered with a gaussian filter . . . . . . 15
4.4 Wavelet filtering operates on many levels of detail (Thuillard, 2001) . . . 16
4.5 Wavelet bases: Daubechies 4 scaling φ and and mother wavelet ψ functions 17
4.6 Wavelet bases: Daubechies 4 analysis and synthesis filters . . . . . . . . 18
4.7 Wavelet denoising, big picture (Mitra, 2011, pp.846–848) . . . . . . . . . 18
4.8 Biorthogonal 2.4 decomposition scaling φd and mother wavelet functions

ψd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.9 Biorthogonal 2.4 analysis lowpass H0 and highpass H1 filters . . . . . . . 20
4.10 Schematic for discrete wavelet transform (DWT), using analysis lowpass

H0 (z) and highpass H1 (z) filters (Mitra, 2011, p.846) . . . . . . . . . . . 20
4.11 Soft (a) and hard (b) thresholding . . . . . . . . . . . . . . . . . . . . . . 21
4.12 Biorthogonal 2.4 reconstruction scaling φr and mother wavelet functions

ψr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.13 Biorthogonal 2.4 synthesis lowpass G0 and highpass G1 filters . . . . . . . 22
4.14 Schematic for inverse discrete wavelet transform (IDWT), using analysis

lowpass G0 (z) and highpass G1 (z) filters (Mitra, 2011, p.846) . . . . . . . 23

5.1 Computing the reference pattern . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Schematic diagram of the recognition system . . . . . . . . . . . . . . . . 28
5.3 Pseudocolor image of a part of a reference pattern . . . . . . . . . . . . . 29
5.4 Correlations with the training data set . . . . . . . . . . . . . . . . . . . 30
5.5 Correlations with the test set . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Example of principal component analysis . . . . . . . . . . . . . . . . . . 32
5.7 Variances of the first 100 components . . . . . . . . . . . . . . . . . . . . 32

6.1 Two class univariate classification problem . . . . . . . . . . . . . . . . . 37
6.2 Multivariate two class classification problem . . . . . . . . . . . . . . . . 38
6.3 Multiclass univariate classification problem . . . . . . . . . . . . . . . . . 39
6.4 Two-variate normal distribution for three classes, and contour lines . . . 39



7.1 Sample images from the Dresden forensic image database (Gloe and
Böhme, 2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.1 Inter-model classification: ratios of correctly classified images . . . . . . . 54
9.2 Inter-model classification: Frequencies of target and predicted classes . . 55
9.3 Inter-model classification: confusion matrix for gaussian filter, Nref = 50 56
9.4 Inter-model classification: confusion matrix for gaussian filter, Nref = 60 56
9.5 Inter-model classification: confusion matrix for wavelet filter, Nref = 50 . 57
9.6 Inter-model classification: confusion matrix for wavelet filter, Nref = 60 . 57
9.7 Inter-model classification: Target and predicted classes of misclassifications 58
9.8 Inter-model classification: structure of misclassifications . . . . . . . . . . 58
9.9 Inter-model classification: posterior probabilities for correct and wrong

predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.10 Intra-model classification: confusion matrix - Ricoh . . . . . . . . . . . . 61
9.11 Intra-model classification: confusion matrix - Samsung . . . . . . . . . . 62
9.12 Intra-model classification: confusion matrix - Sony . . . . . . . . . . . . 62
9.13 Inter-model classification: posterior probabilities for each model and

camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.14 One-tiered approach: confusion matrix for the clustered cameras . . . . . 64
9.15 One-tiered approach, target vs. predicted classes . . . . . . . . . . . . . 65
9.16 One-tiered approach: relative frequencies of posterior probabilities . . . . 66
9.17 Prototype cameras: confusion matrix . . . . . . . . . . . . . . . . . . . . 68
9.18 Prototype cameras: relative frequencies of posterior probabilities, N = 30 68
9.19 Prototype cameras: relative frequencies of posterior probabilities, N = 60 69



List of Tables

2.1 The phases of digital camera imaging . . . . . . . . . . . . . . . . . . . . 9

5.1 Example correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Univariate vs. multivariate, two class vs. multiclass . . . . . . . . . . . . 36
6.2 Mathematical models for linear regression . . . . . . . . . . . . . . . . . 42

7.1 Selected camera models . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.1 Correlations between image noise patterns and camera fingerprints . . . 49
8.2 Classes and posterior probabilities . . . . . . . . . . . . . . . . . . . . . . 49

9.1 Camera models for inter-model identification . . . . . . . . . . . . . . . . 53
9.2 Ratios of correctly classified images . . . . . . . . . . . . . . . . . . . . . 54
9.3 Number of cameras in intra-model recognition experimentation . . . . . . 60
9.4 Cameras in model specific fingerprint experimentation . . . . . . . . . . 67

10.1 Validity of hypotheses in the experimentations . . . . . . . . . . . . . . . 71



Acronyms

CCD charge coupled devices

CFA color filter array

CMYK cyan, magenta, yellow and black

DWT discrete wavelet transform

ELM Extreme Learning Machine

EXIF Exchangeable Image File Format

FFT Fast Fourier Transform

FPN fixed pattern noise

FT Fourier Transform

IDWT inverse discrete wavelet transform

IFFT Inverse Fast Fourier Transform

IFT Inverse Fourier Transform

JPEG Joint Photographic Experts Group

LFD low frequency defects

LTI linear time-invariant

PDE partial differential equation

PNU pixel non-uniformity noise

PRNU photo-response non-uniformity

RGB red, green and blue

TIFF Tagged Image FIle Format



Mathematical notation

F (Ik) kth image filtered with filter F
F{x(t)} Fourier transform of function x
F−1{X(iω t)} Inverse fourier transform of function X
Ik kth image
I unity matrix, not to be confused with Ik
` filter mask side length
µ statistical mean
Nref Number of reference images
Ntest Number of test images
ρC(Ik) correlation between the reference pattern of camera

C and image Ik
P (ωi|xi) posterior probability for xi ∈ ωi, i.e. probability of

class ωi given observation xi

P (ωi) a priori probability for class ωi

P (xi) probability of observation xi

φ orthogonal wavelet scaling function
ψ orthogonal wavelet mother wavelet function
φd biorthogonal wavelet decomposition scaling function
ψd biorthogonal wavelet decomposition mother wavelet

function
φr biorthogonal wavelet reconstruction scaling function
ψr biorthogonal wavelet reconstruction mother wavelet

function
σ statistical standard deviation
Wk difference of unfiltered and filtered kth image
W̄k the mean of Wk

WC
ref the reference pattern of camera C

W̄C
ref the mean of reference pattern W̄C

ref



Chapter 1

Introduction

Amount of information available has been rapidly growing for years, and more and
more of it is stored in form of videos, images and audio. Recognizing the contents
and subjects of the images is a wide and successful area of technology, beginning
from photo albums and databases, and now moving towards face recognizing security
systems and presenting augmenting information.

Another direction for utilizing the image information is to disregard the contents
and subjects altogether, and concentrate on the sensors and devices producing it.
In this direction an image is just a bunch of data that contains hidden information
on the sensor that produced it. The origin of image is an answer to question “which
sensor produced this image and how?”, as opposed to the first research direction’s
question “who took this image and who are in it?”. This is mostly uncharted territory,
and still a huge effort is needed to determine what can be said of the originating
sensor based on just an array of pixels and nothing more. It is possible to use images
to derive information that was not intentionally put there by the person who took
the image, and information that the person is not aware of being there.

Interesting in this second approach is that current research is mostly based on
exploiting the imperfections of the sensors. In the first approach, the imperfections
are unwanted and sometimes even have a deeply deteriorating effect on the results.
However, as the subject matter of this work is sensor recognition, the imperfections
are a necessity. No imaging device is perfect – the minor aberrations and flaws in
lenses, the unwanted currents traveling through the imaging sensor, the algorithms of
the manufacturers generating artifacts, are just a few examples of the imperfections.
These imperfections are partly unique for the individual imaging device, and partly
affect all the cameras from a manufacturer, or all the cameras of the same model. To
summarize, no imaging device is perfect, and no two imaging devices have exactly
the same imperfections. This thesis shows how one type of the imperfections, pattern
non-uniformity, can be exploited to identify the original imaging device.

Promising tools and methods are based largely on machine learning. Even some
of the simple methods, e.g., naïve Bayesian classification or linear regression, can
produce rather accurate results. More advanced methods, such as neural networks
are also viable, but with additional requirements for computing power. Choosing
the method is not straightforward, as can be expected. While the simpler methods
are faster, they require a larger amount of training images. Neural networks can do
with fewer training images, but is slower. This tradeoff has a considerable effect on

1



CHAPTER 1. INTRODUCTION 2

choosing the methods, since processing and filtering high resolution images is not a
trivial problem even nowadays - it requires time and patience.

The key for successful image classification, in addition to the classification method
itself, is the preprocessing of the images. Again, there is a tradeoff. While more
advanced filtering techniques provide better results in eliminating the image con-
tent from the noise patterns, they also require time. Vice versa, simpler filtering
methods provide poor quality noise patterns, but are faster to run. Perhaps the
most important factor for choosing the filtering technique is whether the filtering
has to be done while classification, e.g., in the case of having to constantly add new
images, or whether the images can be processed before classification. If the images
can be processed before classification, higher grade filtering is suitable. If not, some
kind of balance has to be found to provide sufficient quality of noise patterns while
keeping the required time for filtering small enough. Again, choosing the filtering is
not a trivial matter.

As can be seen, one of the hardest problems in choosing the filtering and classifi-
cation methods is finding a balance so that noise patterns have good enough quality,
and the classification method can achieve high enough accuracy with the patterns.
There are additional factors for choosing the methods, e.g., image compression, size,
quality, storage — network or hard disk, and properties of the source camera and
lenses. Understanding the camera imaging pipeline is the key to analyze these fac-
tors. Finally, the experimentations in this thesis can be used as a template in order
to find a viable combination of methods.

This work uses cameras as an example, but the principle can be applied to e.g.
scanners. In order to understand the sources of imperfections it is necessary to
familiarize oneself with the camera imaging pipeline. The imperfections produce
noise in the image data, and the specific patterns of noise form fingerprints that can
be used to track image origin. However, in order to start developing applications,
it is first necessary to carry out experimentations in order to validate the idea –
specifically, that cameras leave fingerprints to images, and the fingerprints can be
detected and exploited in recognizing the originating sensor.

Potential applications for the sensor source recognition are in the field of forensics
and digital rights management. However, the usage of a recognition system in these
fields have serious implications – unvalidated techniques and unreliable results can
lead to wrongful convictions and lawsuits. Since product development in these fields
require reliability, it is of utmost importance to properly validate the methods and
results. The consequences “proof of concept” and “seems to work” approaches can
lead to disaster.

This thesis does not consider application or product development based on the
experimentations. The idea is to give a template of experimentations required before
product development can be commenced. Thus, the results of this thesis validate
the give combinations of methods, but does not argue for or against using them
in a commercial product. In product development, also other factors than purely
methodological feasibility have to be considered, such as computing resources, re-
quired memory, image storage, utilization of network and so on. However, the ex-
perimentations presented in this thesis are used to validate that the crucial features,
the core of the classification process, is feasible.

First, chapter 2 presents the digital imaging pipeline. Chapter 3 presents the
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classification and structure of sensor pattern noise. Chapter 4 gives an introduction
to the image filtering methods used in this thesis.Chapter 5 presents how the noise
patterns are calculated in practice, and how the fingerprints are generated, how
the correlations between fingerprints and noise patterns are calculated, and how
they can be processed for classification. Chapter 6 introduces three solutions to the
classification, i.e., source recognition problem. Chapter 7 presents the focus and the
hypotheses of the experimentation. Chapter 8 shows how the data is collected for the
experimentations, and the semantics of the images and cameras in the classification
process - tiered, flat or pooled. The results of the experimentations are presented in
chapter 9. Finally, chapter 10 presents the conclusions and and further work.



Chapter 2

Digital imaging pipeline

The methods for source camera identification utilize the knowledge on how the
different phases of digital image acquisition pipeline are performed. Therefore, the
key to understanding them is comprehension of digital image acquisition pipeline.
Each phase of the pipeline generates artifacts that can be detected, measured and
exploited in order to recognize the source camera, or at least the camera model.

Figure 2.1 shows the phases of image acquisition pipeline. The phases are:

1. Sensor, aperture and lens : physical measurement of light and focusing the
image

2. Pre-processing : correcting the image by removing typical problems and making
the image visually pleasing

3. White balance: correcting the colors of the measured image signal

4. Demosaicking : consolidating the pixel colors and removing artifacts from color
filter array (CFA)

5. Color transformations : rendering the image to a color space that allow for
techniques used in postprocessing stage

6. Post-processing : further enhancements to the image, e.g. removing superfluous
pixel information and artifacts from previous phases

7. Compress and store: rendering the image to the desired color space, and com-
pressing and storing image in desired format in a permanent storage medium.

The imaging pipeline may seem rather complex due to the several phases in
which the image is processed and undesirable effects are removed. The main reason
for the complexity is that the corrections in previous phases cause undesirable arti-
facts themselves. Those artifacts, however, can be controlled and the image signal
containing them is easier to process than the original.

Sensor, aperture and lens

Since there are three different color bands that need to be measured, i.e., red, green
and blue, each pixel would need three different kinds of sensors for the respective

4



CHAPTER 2. DIGITAL IMAGING PIPELINE 5

Figure 2.1: Digital camera imaging pipeline (Ramanath et al., 2005)

wavelengths. Production of this kind of an imaging sensor array is not cost effective.
A solution is using a color filter array (CFA) to filter the wavelengths so that the
underlying pixel sensors need to measure just one wavelength. The most common
CFA pattern is the Bayer pattern that can be seen in Figure 2.2. In the figure, colors
are annotated as G=green, R=red and B=blue. As can be seen in the figure, half
of the CFA is covered with green filters, and the rest of the array is equally divided
to the red and blue filters. As a consequence, the green layer of the produced image
contains half of the information carried by the signal, and the rest is carried by the
red and blue layers. The downside of using CFAs is obviously that the pixels contain
information just from one wavelength, and advanced signal processing methods are
needed to compensate the aliasing caused by the sampling method. (Ramanath et al.,
2005)

Figure 2.2: Structure of a color filter array (Ramanath et al., 2005)
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Pre-processing

The raw data from the sensor needs to be further processed in order to produce
an accurate or a pleasing representation of the scene. The steps needed in the
preprocessing phase are usually (Ramanath et al., 2005):

• Defective pixel correction: The sensor manufacturing process can produce de-
fective pixels in the sensors, which will cause visible errors in the final stored
image. The defective pixels can be corrected using interpolation techniques
applied on the neighbors of the defective pixels.

• Linearization: step is needed if the sensor output is logarithmic instead of
linear, since the latter stages in the pipeline rely on linear signal. Usually the
most common type of sensors, i.e., charge coupled devices (CCD), produce a
linear signal and this step is not necessary.

• Dark current compensation: The dark currents are caused by thermally gen-
erated electrons in the camera sensor. These currents are visible even with the
lens cap on. The techniques for compensation of the dark current are based on
either measuring the intensities caused by dark currents by placing an opaque
mask around the sensor and measuring the intensities under it, or capturing
a dark image, i.e. shutter on, before capturing the scene, and subtracting the
dark image signal from the captured scene.

• Flare compensation: If there is a bright light source in the field of view, it
causes the light entering the optics of the camera to scatter and reflect, pro-
ducing shifts in the measured signal energy. An example of lens flare can be
seen in figure 2.3. The flare compensation algorithms are mostly proprietary,
but simple techniques exists, e.g. subtracting a fixed percentage of the mean
of a signal neighborhood from the values of the neighborhood.

White balance

Due to a phenomenon of color consistency, human visual system has an ability to
map white, or whitish, colors to white even when an object has different radiance
when illuminated by different light sources. For example, the human visual system
sees a white sheet of paper as white both the light source is an incandescent bulb
and when the source is fluorescent lighting. White balance adjustment is needed in
order to allow digital cameras to correctly identify white color and tune the image
color balance, There are some techniques, e.g. assuming that the color channels of an
image should average to grey, i.e., grey world assumption, or assuming that the white
color is found at the point where all the color channels reach their maximum. Also,
high-end professional equipment usually allows for manually setting the lighting
conditions in order to allow some kind of advanced heuristic to compute the white
balance. (Ramanath et al., 2005)
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Figure 2.3: A simulated flare effect caused by sun (Hullin et al., 2011)

Demosaicking

As mentioned before, the color filter array allows only certain wavelengths to pass
through the filter array. Therefore a pixel of the unprocessed image contains only
information from those specific wavelengths. Demosaicking techniques are applied
in order to estimate the values of the colors that were not measured. (Ramanath
et al., 2005)

Feasible demosaicking approaches include heuristics that are based on assump-
tions on the color images, reconstruction methods that exploit the inter-channel
correlations to formulate and solve a mathematical optimization problem, and tech-
niques that utilize the knowledge on the image formation process and try to in-
terpolate the missing pixels as an inversion problem. The demosaicking methods
are patented and proprietary, and the exact methods used in real cameras are not
known. (Gunturk et al., 2005)

Color transformations

The image needs to be in different formats for the calculations and for output
medium. First the raw data is transformed to an unrendered color space, calcu-
lations are performed, and then the image is transformed into a rendered color space
for the output medium. The computations include obtaining colorimetric accuracy
for the image before transforming the image data to be used for output. (Ramanath
et al., 2005)
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Post-processing

The aforementioned phases of the imaging pipeline introduce artifacts into the digital
image signal. The artifacts have to be removed in the post-processing phase before
the image is compressed and stored to maintain the high quality. Some of the
common post processing phases are color artifact removal, edge enhancement and
coring (Ramanath et al., 2005):

• Color artifact removal : the demosaicking phase introduces color artifacts, e.g.,
zipper and confetti, that have to be removed while maintaining the sharpness
of the image.

• Edge enhancement : in order to produce visually pleasing image, edges in the
image have to be enhanced, since human eye prefers clear edges instead of
blurred ones. Also, the human eye is less sensitive to the diagonal edges
than to vertical and horizontal ones, and even less sensitive to edges in other
directions. Edges can be enhanced e.g. by reducing the low frequency content
in the image

• Coring : images contain data that has no significant contribution to the image
detail and behaves like noise. In addition to littering the image, the noise like
data increases the size needed to store an image. Coring methods are used to
remove such data, e.g. by using transformations on various levels of detail, and
then using thresholding techniques on to the transformation coefficients. For
example, wavelet transform can be used in this process to analyze the image
in desired level of detail.

Compress and store

In compress and store phase the image is first transformed into the appropriate
color space; the original sensed signal is in additive red, green and blue (RGB) color
space which does not necessarily match the intended use of the image. Different
mediums require different color spaces: cyan, magenta, yellow and black (CMYK)
for reproduction on subtractive color system, e.g. printer, and 8 bit RGB for e.g.,
display. The image storage and compression scheme has to be selected, for example
the Tagged Image FIle Format (TIFF) that can store also the raw data and image
parameters, or Joint Photographic Experts Group (JPEG) format which offers ef-
fective image compression. Cameras can also store image metadata such as location,
camera model and dimensions in Exchangeable Image File Format (EXIF). Finally,
the image data is written in a permanent storage such as a flash memory.

The functionality of each phase is summarized in table 2.1.
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Table 2.1: The phases of digital camera imaging

Phase Function

Sensor, aperture and lens Measuring the color bands, RGB or CMYK
Preprocessing Linearization, dark current compensation,

flare compensation
White balance White color detection and color space

adjustment
Demosaicking Estimating the undetected pixels using

neighborhood information
Color transformations Obtaining colorimetric accuracy
Post-processing Removal of artifacts created by the

previous phases
Compress and store Compress image data and store the image

in permanent memory



Chapter 3

Sensor pattern noise

As stated in chapter 2, the imaging sensor is a source of noise. Even when pictures
are taken in exactly similar conditions in an evenly lit scene, there are small differ-
ences in the images produced by two different cameras. Furthermore, the noise is
not static, i.e., two consecutive pictures from same camera have slight differences
caused by the sensor noise. There are more than one type of sensor pattern noise.
As can be seen in figure 3.1, there are two main types: fixed pattern noise (FPN)
and photo-response non-uniformity (PRNU). PRNU noise divided into two subcat-
egories, i.e., low-frequency defects and pixel non-uniformity noise (PNU), the latter
being the phenomenon of interest in this study. (Lukáš et al., 2006)

Figure 3.1: A classification for sensor pattern noise (Lukáš et al., 2006)

Fixed pattern noise refers to pixel-to-pixel noise caused by dark currents when
the sensor array is not exposed to light. Dark current refers to the rate of electrons
accumulating in each sensor pixel due to thermal action caused by the thermal
energy inherent to the structure of the sensor and is independent of light falling on
it. (Rocha et al., 2011) Fixed pattern noise is additive, and can be suppressed by
automatically subtracting a dark frame from every image they take. It also depends
on temperature and exposure. Fixed pattern noise can be relatively easily filtered,
and therefore is not of interest in this report.

Photo-response non-uniformity (PRNU) consists of two types of noise: low fre-
quency defects (LFD) and pixel non-uniformity noise (PNU). Light refraction of
dust particles and optical surfaces, and zoom settings are the common sources of

10
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low-frequency defects. Low-frequency defects are inherently not a characteristic of
the imaging sensor, and therefore are not useful for camera source identification -
after all, dust particles can be anywhere, independent of which camera is used.

Pixel non-uniformity noise is caused by the different sensitivity of color filter
array pixels to light. The source of the varying sensitivity is in the heterogeneity of
silicon wafers and imperfections during the manufacturing process. It is unlikely that
the sensors would exhibit same correlation of pixel non-uniformity noise patterns,
even if they came from the same wafer. Pixel non-uniformity noise is not affected
by ambient temperature or humidity. The main reason for concentrating on the
PNU noise is that as a pattern noise, it is a deterministic component and present
in every photo taken; “noise” in this case does not have the usual connotation of
non-determinism or randomness. (Lukáš et al., 2006)

Figure 3.2: Noise model for acquiring the image signal

Figure 3.2 shows the noise model for acquiring the image signal for the image
processing pipeline shown in figure 2.1. These types of noise are caused by the imag-
ing process, as explained above. Additive random noise is caused by e.g. reading
image from the sensor; shot noise refers to the random effects of photons on the
imaging sensor on the moment the shot is taken. A mathematical model explaining
how noise affects the image signal can be formulated as: (Lukáš et al., 2006)

yij = fij (xij + ηij) + cij + εij

Here yij is the image signal pixel value, (i, j) is the pixel location, ηij is the shot
noise, cij is the noise caused by dark currents, i.e., fixed pattern noise, and εij is the
additive noise from various sources. The point of interest are the factors fij typically
very close to 1, as they capture the PRNU noise, which in turn is multiplicative by
definition.

Mathematical model for the final pixel value in the photo can be presented as
follows:

pij = P (yij, N(yij), i, j)
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Here pij is the final pixel value, P is a nonlinear function of yijrepresenting the
effect of the image processing pipeline, N(i, j) represents the pixel neighbourhood
and (i, j) the pixel location.

It can be seen that the problem of extracting pattern noise from the image signal
is not a straightforward one, due to the non-linearities and different types of noise.
The main point of interest are of course the factors fij, but they cannot be calculated
directly.



Chapter 4

Image filtering methods

This chapter introduces filters that can be utilized in extraction of the fingerprints
from images. First, the two filters used in this thesis are presented: gaussian (chapter
4.1 and wavelet (chapter 4.2) filters. Then, other possibilities are briefly explored
in chapter 4.3. Mathematical derivations or proofs are not given here, since the
thesis is concentrated on practical application of filters, not on theory behind signal
processing.

An important question with filtering is how to handle the image boundaries.
Since in this thesis only the 1024x1024 area from the center of the green layer is
used, the filtered images are created using 1040x1040 area from the center, and
then the filtered image is cropped to the desired size. Also, it is required that the
images are all of the same size to avoid the artifacts and noise data loss caused
by resizing the images. Studying different size of images and spatial transforms,
e.g., rotation and warps, is not, due to its overwhelming complexity, a topic for this
thesis. However, it can be expected that use of neural networks in combination with
wavelets would give outstanding results at some point.

4.1 Gaussian filtering
Gaussian filter belongs to a class of convolution filters. Gaussian filter can effectively
remove additive noise from the image, e.g. impulse noise and gaussian noise. (Frery
and Perciano, 2013, p. 64)

Convolution of two matrices g = f ∗m is defined as

g(i, j) =
∑

− `−1
2
≤ı′,′≤− `−1

2

f(i− ı′, j − ′)m(ı′, ′)

In effect, this means that the mask is slid over the image, i.e., applied pixelwise
to each pixel of the image. The filter considers a ` x` neighborhood of each pixel
in order to calculate the final value of the pixel in the filtered image. The mask
remains constant, i.e., it does not change during the filtering process.

The gaussian filter mask is computed as follows (Frery and Perciano, 2013, p.
64):

m′(i, j) = e−
1

2σ2
(i2+j2)

13
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Two parameters are needed:

• The standard deviation σ

• The length of the side of the kernel `

Kernel side length ` has strong effect on the efficiency of the filter. The larger
the side length is, the stronger is the noise removal. Unfortunately, with a gaussian
filter, larger kernel side lengths cause also severe amount of blurring. In this thesis,
side length of 3 pixels is used, since the image does not need restoration as such,
but only invisible noise removal.

Standard deviation parameter σ controls how rapidly the mask weights decrease;
the larger σ is, the slower is the decrease. It should also be noted that the mask
weights decrease exponentially. When σ → 0, the gaussian filter mask converges
to identity mask I. Also, when σ → ∞, the mask converges to the mean of all
elements over the mask. The standard deviation used in this thesis is σ = 0.5, the
default for MATLAB fspecial function.

Figure 4.1: Slope of gaussian filter with respect to σ

Figure 4.1 shows the slope of gaussian filter mask for some typical values of σ.
As can be seen in the figure, a small value σ = 1 causes a pronounced spike and
steep slope in the mask, while a large value σ = 10 means gradual slope and no
spikes.

As an example, gaussian filters with different parameters are applied on an image
of 5 euro bank note in figure 4.2. Figure 4.3 shows a detail of the bank note filtered
with gaussian filters. Rows correspond to kernel length ` ∈ {3, 5, 7}, and columns
to σ ∈ {0.5, 20, 40}. As can be seen, the blurriness increases when ` grows, and also
when σ grows – blurriness increases from left to right and top to bottom.

On the one hand, gaussian filtering is not very accurate and can cause blurriness,
but on the other hand it is convolution filters utilizing filtering masks are computa-
tionally very fast and easy to implement. Therefore gaussian filtering was chosen as
one of the two methods in this thesis, since the idea is to keep the system as simple
as possible while maintaining reasonable accuracy.
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Figure 4.2: The original banknote courtesy of (European Central Bank, 2013)

Figure 4.3: Detail from the 5 euro banknote filtered with a gaussian filter
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4.2 Wavelet filtering
As was stated in the previous chapter, gaussian filtering has its shortcomings with
respect to accurateness of results, namely the blurring it causes. Therefore, a more
effective filtering method is needed. The major shortcoming of Fourier analysis is the
lack of time-frequency resolution. To amend this lack of more accurate mathematica
tools, wavelet analysis was created. The idea of wavelets originated in 1980’s, when
geologists and physicists needed to analyze complex seismological signals. In 1990’s,
multi resolution analysis grew into an active field with copious amounts of research
on applications, methods and implementation. (Thuillard, 2001)

Wavelets are efficient, even though a bit complex method for signal denoising,
compression and zooming. The mathematical derivation is based on Fourier analysis,
but wavelets allow for multi resolution analysis of signals, i.e., the signal can be
examined in various levels of detail, by scaling and dilating wavelet bases until they
fit and cover the signal, and represent it on various levels of detail. Figure 4.4 shows
conceptually how wavelet filtering operates on many levels of detail of the signal.

Figure 4.4: Wavelet filtering operates on many levels of detail (Thuillard, 2001)

In order to be a wavelet, function f(x) must fulfill three conditions (Mallat and
Mallat, 1999) (Thuillard, 2001):

1. A wavelet function f(x) must average to zero, i.e.,∫ ∞
−∞

f(x)dx = 0

2. A wavelet function f(x) localized, i.e., f(x) is nonzero only in localized area,
and zero otherwise, or more formally, there exist a and b such as{

f(x) = 0 x < a ∨ x > a

f(x) 6= 0 for most a ≤ x ≤ b
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3. A wavelet function f(x) is oscillating

As can be seen, condition 3 follows from condition 1, since without oscillations
condition 1 would never be true, and condition 2 prevents the f(x) from being
all-zero. Since wavelet functions are dilated and scaled, non-local wavelets are not
useful either.

A wavelet base at minimum comprises two functions: a mother wavelet func-
tion ψ, and a scaling function φ. The signal is transformed to wavelet domain by
using discrete wavelet transform (DWT). DWT is performed by using the wavelet
base functions to create discrete convolution linear time-invariant (LTI) highpass
and lowpass analysis and synthesis filters. The analysis filters are then applied on
the discrete signal to get wavelet coefficients, the coefficients are operated on, and
then the signal is reconstructed with inverse discrete wavelet transform (IDWT) by
using highpass and lowpass analysis and synthesis filters. When used in practice,
wavelets can be divided into two groups according to how the filters are formed, i.e.,
orthogonal and biorthogonal:

1. Orthogonal wavelet bases utilize only the φ and ψ functions to form both the
analysis and synthesis filters.

2. Biorthogonal wavelet bases utilize two functions: decomposition scaling φd and
mother wavelet ψd functions for analysis filters, and reconstruction scaling φr

and mother wavelet ψr functions for synthesis filters. (Tang, 2009)

Figure 4.5: Wavelet bases: Daubechies 4 scaling φ and and mother wavelet ψ func-
tions

Wavelet bases are usually a family of wavelets defined by some parameters. For
example, the figures 4.5 and 4.6 show the graphs for Daubechies family wavelet base
with parameter 4. Note that both the synthesis and analysis filters are derived from
the same functions, since Daubechies bases are orthogonal.

A mathematical introduction to wavelets and wavelet families can be found e.g.
in (Mallat and Mallat, 1999) (Thuillard, 2001) (Tang, 2009) (Mojsilović et al., 2000)
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Figure 4.6: Wavelet bases: Daubechies 4 analysis and synthesis filters

The filtering process

Wavelet filtering process has four steps, that are examined below:

1. Wavelet base selection

2. Signal analysis, discrete wavelet transform (DWT), and downsampling

3. Coefficient thresholding

4. Signal synthesis, inverse discrete wavelet transform (IDWT), and upsampling

Figure 4.7: Wavelet denoising, big picture (Mitra, 2011, pp.846–848)

Figure 4.7 shows the denoising process. The left part of picture shows the analysis
phase with filtering and downsampling. The center part shows wavelet thresholding,
in this case the icon shows soft thresholding. Finally, the right part shows synthesis
filtering and upsampling.

Wavelet base selection

There are no general instructions for selecting wavelets. Instead, the criteria de-
pend on the application area, e.g. electrocardiogram (ECG) denoising (Tan et al.,
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2007), satellite image compression (Memane and Ruikar, 2014), texture characteri-
zation (Mojsilović et al., 2000) and medical image enhancement (Tsai et al., 2002).

Finding the correct wavelet to be used is not a straightforward task. In this thesis,
wavelet base 2.4 from biorthogonal spline family was chosen, since an educated guess
is that the image filtering for camera identification could be close to texture pattern
recognition where the wavelet base performed well enough. (Mojsilović et al., 2000,
p.2049)

Signal analysis

Signal analysis phase applies lowpass H0 (z) and highpass H1 (z) analysis filters
recursively to transform the signal x[n] to wavelet domain coefficients uk[n], where
k is the level of detail. Due to the discrete nature of images, the whole analysis
process is designated as discrete wavelet transform (DWT).

Figure 4.8: Biorthogonal 2.4 decomposition scaling φd and mother wavelet functions
ψd

Since biorthogonal 2.4 wavelet base was chosen, the φd and ψd functions in figure
4.8 are needed in the analysis phase. The first task in the analysis phase is to form the
H0 (z) and H1 (z) filters from the wavelet. The filters are formed from discretization
of the continuous wavelet base, but the exact mathematical proof is not a topic for
this thesis. As stated before, these filters are discrete linear time-invariant (LTI),
and can be seen in figure 4.9.

The filter bank for the analysis phase can be seen in figure 4.10. Analysis phase
assumes that most of the information is found in the low frequencies. Therefore,
at each level, the output of the highpass filter H1 (z) is downsampled by factor
2, and output as wavelet coefficients uk−1[n]. The output of lowpass filter H0 (z)
is downsampled by factor 2, and output to next level. Downsampling allows for
splitting the low frequency of the signal so that the filters can access the respective
frequency zones. Finally, on the last level, the output from the lowpass filter is
output as coefficients ukf [n], where kf is the number of the last level.
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Figure 4.9: Biorthogonal 2.4 analysis lowpass H0 and highpass H1 filters

Figure 4.10: Schematic for discrete wavelet transform (DWT), using analysis lowpass
H0 (z) and highpass H1 (z) filters (Mitra, 2011, p.846)

Wavelet coefficient thresholding

The idea of coefficient thresholding is setting the smallest, i.e., closest to zero, coef-
ficients to zero, to eliminate variations caused by noise. This implies that the signal
is approximated by only the larger coefficients. The problem is to set the correct
threshold to avoid losing information or reconstruction of noise. The thresholding
process can be seen in the middle part of on figure 4.7. Thresholding takes the co-
efficients uk[x] from the analysis phase, and produces thresholded coefficients ûk[x]
to be input to synthesis phase.

There are two methods for coefficient thresholding: soft thresholding zeroes out
coefficients that are near to zero, and transposes the rest coefficients so that the
curve is continuous. Hard thresholding does not transpose the non-zero coefficients,
and thus there are two discontinuities just before and just after the zeroed part, i.e.,
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curve is only piecewise continuous.
Mathematically adding term ±T takes care of the transposing coefficient values,

i.e., smoothing the curve, in soft thresholding equation (Mallat and Mallat, 1999)

ûk[n] =


uk[n] + T if uk[n] < −T
0 if |uk[n]| ≤ T

uk[n]− T if uk[n] > T

There is no similar term ±T in the hard thresholding equation, and therefore
the coefficients are not transposed (Mallat and Mallat, 1999):

ûk[n] =

{
uk[n] if |uk[n]| ≤ T

0 otherwise

Figure 4.11: Soft (a) and hard (b) thresholding

Figure 4.11 shows a visualization of the soft (a) and hard (b) thresholding curves.
It can be seen how coefficients are zeroed and the curve smoothed by transposing
larger coefficients, when soft thresholding is applied. As can be seen, the hard
thresholding curve zeroes the smaller coefficients, but the larger coefficients are not
transposed, and therefore there is a discontinuity, or a jump, before and after the
thresholding value.

Choosing between hard and soft thresholding is not straightforward either. A
certain type of thresholding can be best of for some application, and almost useless
for another. Comparing the results is not straightforward either, and in case of
e.g. photos, the “best” result is a topic of subjective perception. For choosing
the exact value of the threshold, there are some algorithms, see e.g. (Donoho,
1995) (Thuillard, 2001).

Signal synthesis

Signal synthesis, a.k.a. reconstruction, is operation that applies inverse discrete
wavelet transform (IDWT) on the thresholded wavelet coefficients in order to recover
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the denoised signal. To be exact, IDWT is performed by convoluting synthesis
lowpass and highpass filters G0 and G1, respetively, over the thresholded wavelet
coefficients ûk[n].

Figure 4.12: Biorthogonal 2.4 reconstruction scaling φr and mother wavelet functions
ψr

Figure 4.13: Biorthogonal 2.4 synthesis lowpass G0 and highpass G1 filters

Figure 4.12 shows the wavelet reconstruction scaling φr and mother wavelet
function ψr for biorthogonal 2.4 wavelets. As stated before, orthogonal wavelet
bases do not need separate decomposition and reconstruction functions, since the
synthesis filters can be derived from the same base as the analysis filters. Figure
4.13 shows the synthesis filters derived from the reconstruction functions.

In the case of this thesis, the lowpass and highpass synthesis filters G0 and G1
respectively, are derived from the biorthogonal 2.4 wavelet reconstruction functions.
As stated before, the filters are applied on, i.e., convoluted over, the thresholded
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Figure 4.14: Schematic for inverse discrete wavelet transform (IDWT), using analysis
lowpass G0 (z) and highpass G1 (z) filters (Mitra, 2011, p.846)

wavelet coefficients. The filters are applied recursively, analogously with the signal
analysis phase.

Figure 4.14 shows the filter bank that is used in the signal synthesis. The fil-
ters are applied in the reverse order of the levels of detail, i.e., the most detailed
coefficients first. The first synthesis is performed by first upsampling two coefficient
vectors by factor two, and then applying lowpass synthesis filter on the coefficients
ûkf [n], where kf is the most detailed level (in the figure 4), and highpass filter on
coefficients ûkf−1[n]. The signals are summed, and forwarded as an input to the level
kf − 1. The result signal is then upsampled again, filtered with the lowpass filter
and combined with the next upsampled and highpass filtered coefficients. This is
continued until the coefficients û0[n] have been processed. When the synthesis pro-
cess is completed, the reconstructed signal y[n] is a denoised version of the original
signal x[n].

As can be seen, the idea behind wavelet filtering might be complex. However,
with suitable mathematics software, e.g., MATLAB® or Octave, the implementation
is very simple and there are ready-made utility functions.

4.3 Other possibilities
There are numerous other possibilities for choosing the filtering method to acquire
scene content and remove noise from images.

Fourier Transform (FT) and Inverse Fourier Transform (IFT) have long been used
to denoise signals, especially when there is a need to eliminate specific frequencies,
e.g., the 50 Hz hum caused by power lines. As stated before, Fourier Transform
(FT) based methods lack the time-frequence resolution, and therefore wavelet based
methods perform much better. However, Fourier Transform based methods are very
quick to implement due to the existence of Fast Fourier Transform (FFT) and Inverse
Fast Fourier Transform (IFFT) to speed up computation significantly, and therefore
Fourier Transform based filtering methods could be studied as an alternative, when
a huge number of images have to be analyzed.

Evolving non-linear partial differential equation (PDE) based can be used for
filtering an image. Non-linear PDEs have numerous possibilities in addition to de-
noising, e.g., deblurring and edge enhancement. The filtering methods have different
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requirements and kernel PDEs, and require considerable expertise to be used. (Liu
et al., 2011) (Komprobst et al., 1997) These methods can be rather slow if imple-
mented as such, but they can be speeded up with utilization of neural networks
to control the parameter evolution, for example Extreme Learning Machine (ELM)
to overcome the slowness of gradient descent learning. (Wang et al., 2011) (Huang
et al., 2006) However, due to the complexity of the PDE methods and parameter
evolution, these approaches will not considered in this thesis.



Chapter 5

PNU based identification of camera
sources

Now that digital camera imaging pipeline and sensor noise patterns and image fil-
tering methods have been introduced, it is time to show how a camera fingerprint
is created, and how it is utilized for sensor recognition. In this work the focus is
on fingerprints generated from pixel non-uniformity noise (PNU), which is currently
considered one of the most viable approaches for sensor recognition. (Chen et al.,
2008)

When noise patterns are extracted from images, forensic investigators can use
these patterns to compare to others and get information about the relation between
those images. Noise pattern analysis can be used to (Baar et al., 2012):

1. Determine if an image is made using the suspect camera

2. Determine if a group of pictures is made using the same camera

3. Determine groups of images created using the same camera, from a database
of images

This thesis is concentrated on alternatives 1 and 2. Alternative 3 requires clus-
tering methods, since it implies blind source images, i.e., the camera is not known.
Alternative 3 cannot be studied until the alternatives 1 and 2 have been thoroughly
analyzed.

In these applications, it is necessary to link an image or a video-clip to a spe-
cific piece of hardware. Sensor photo-response non-uniformity (PRNU) has been
previously proposed (Lukáš et al., 2006) as an equivalent of “biometrics for sensors”,
especially pixel non-uniformity noise (PNU), which is used in this thesis. There are
several important advantages of using this fingerprint for forensic purposes: (Goljan
and Fridrich, 2008)

1. Stability. The fingerprint is stable in time and under a wide range of physical
conditions.

2. Generality. The fingerprint is present in every picture (with the exception of
completely dark images) independently of the camera optics, settings, or the
scene content.

25
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3. Universality. Virtually all sensors exhibit PRNU (both CCD and CMOS sen-
sors).

4. Dimensionality. The fingerprint has large information content because it is
a signal that contains a stochastic component due to material properties of
silicone and the manufacturing process itself. Thus, it is unlikely that two
sensors will possess similar fingerprints.

5. Robustness. The fingerprint survives a wide range of common image processing
operations, including lossy compression, filtering, and gamma adjustment.

Using photo-response non-uniformity (PRNU) requires synchronization: if the
image has been cropped or scaled, PRNU detection will not succeed. (Goljan and
Fridrich, 2008)

In order to generate fingerprints from individual images, the first task is to remove
the image content from each of the images so that only the noise pattern remains.
This is achieved by using efficient filtering techniques such as wavelet filtering, that
is also applied in this work. The actual fingerprint is generated by calculating the
mean of the noise patterns. Testing whether an image is from a specific camera is
done by calculating the correlation between the noise residual from that image, and
the camera fingerprint.

The structure of this chapter is as follows:

• First, the method for generating the pixel non-uniformity noise (PNU) based
fingerprint is introduced in a more detailed level.

• Second, calculation of the correlations between the fingerprints and the noise
residuals is formulated.

• Third, some example data is presented.

• Fourth, principal component analysis is described as a method to reduce di-
mensionality of the correlation data.

This chapter gives only a rough context for the classification methods, which will
be presented in chapter 6. This chapter and the method presented here is based on
the approach presented by Lukas et al. (Lukáš et al., 2006).

5.1 Generating PNU based reference patterns
As stated in chapter 3, the source of noise and its effect on the image signal is a
complex issue. One way to circumvent the problem of directly estimating the pixel
non-uniformity noise pattern is to use camera reference patterns. The idea behind
generation of a PNU reference pattern for a camera is simple: a certain amount,
usually N ≥ 50, training images from the camera are processed one by one and
then their mean is calculated to form a reference pattern as shown in figure 5.1.

The process can be described as follows:

1. A wavelet denoising filter, or any low frequency cancelling filter, is applied on
an image.
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2. The denoised image is subtracted from the original to create a noise residual
matrix containing only the high frequency noise.

3. The mean of the high frequency noise matrices is calculated to form the refer-
ence pattern.

Figure 5.1: Computing the reference pattern

Mathematically the idea is straightforward: the reference pattern WC
ref for cam-

era C is acquired by averaging noise residuals of the images from that camera. Noise
residuals are used to prevent the image content from affecting the reference pattern.
The image content is removed by computing the difference Wk by subtracting the
image filtered by filter F from the original image.

Wk = Ik − F (Ik)

The reference patterns are then formed by averaging the N training images from
the camera. The rest of the images can be used for validation and testing phases of
the PNU source camera identification. It was shown in the experiments that N=60
is sufficient for reliable camera identification.

WC
ref =

1

N

m∑
i=1

WC
i ; k ≤ N

It can be seen from the equations that creation of reference patterns contains
highly independent processes, and therefore can be easily modified for parallel com-
puting schemes.

Figure 5.2 shows the schematic diagram of creating referencce patterns. As stated
before, the images are first filtered, and then the noise patterns are calculated

Figure 5.3 shows an example of a camera reference pattern. As can be seen,
it is not immediately clear that there are specific shapes, but for a computer al-
gorithm, the minor variances between pixels give sufficient information for image
classification.
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Figure 5.2: Schematic diagram of the recognition system
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Figure 5.3: Pseudocolor image of a part of a reference pattern

5.2 Correlation of an image and the reference
pattern

The correlation ρC between the reference pattern WC
ref of camera C and the kth

image Ik is defined as

ρC (Ik) =

(
Wk − W̄k

)
�
(
WC

ref − W̄C
ref

)
‖Wk − W̄k‖‖WC

ref − W̄C
ref‖

where W̄k is the mean value of Wk , W̄C
ref is the mean value of WC

ref , α� β is
the dot product of the matrices α and β, and ‖ · ‖ is the matrix norm. (Lukáš et al.,
2006)

The main problem with this method comes from the spatial nature: the images
should be all taken with the same resolution, or be resized to the same resolu-
tion. However, the algorithm is quite robust and simple linear pixel interpolation
is enough when resizing. Another important problem are the effects of geometric
transformations on the reference pattern matching. It is possible to search for the
geometric transformations and invert the transform, or transform the signal itself
for example with Fourier-Mellin transform. (Goljan and Fridrich, 2008)

It is possible that PNU patterns are not sensitive enough to make the distinc-
tion between different cameras of the same model. Recognizing the camera model
is reliable, though. Methods for comparing the relative differences between the
correlations of the different cameras of the same model are needed.
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5.3 Example data
After the correlations ρi, i = 1 . . . M have been calculated for all the M test images,
the images need to be assigned to the cameras. Here, the correlations with training
and test data sets are demonstrated with example data from our initial experimen-
tations made in this research. Table 5.1 shows a snippet of the produced data. The
images are on the rows 1 . . . N and the cameras are on the columns 1 . . . M . The
highest correlations are marked with bold text.

Table 5.1: Example correlations

Image Camera 1 Camera 2 Camera 3 . . . Camera M

1 0.1232 0.0232 0.0012 . . . 0.00012
2 0.0001 0.0033 0.1002 . . . 0.012
3 0.0502 0.0422 0.1740 . . . 0.0020
. . . . . . . . . . . . . . . . . .
N 0.0099 0.029 0.0017 . . . 0.1750

Figure 5.4: Correlations with the training data set

Figure 5.4 shows an example of correlations with the training data. There are
seven different cameras marked with different colors. As can be seen in the figure,
the difference between matching and non-matching images is quite clear.

Figure 5.5 shows the correlations with the test data. As can be seen, the corre-
lations with the training data are overly optimistic with respect to correlations with
the test data. As mentioned in section 6, the difference between log10 correlations
of matching and non-matching images should be over 1 in order to maintain high
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Figure 5.5: Correlations with the test set

accuracy. As can be seen in the figure, the lowest correlations of matching images
are quite near to the correlations between the camera and non-matching images.

5.4 Data preprocessing - principal component
analysis

The complexity of most of the machine learning algorithms directly depends on the
dimensionality of the data. Therefore, it is useful to reduce the dimensionality of
the data without losing important information. Principal component analysis does
exactly this – the features are projected on a new feature space with a smaller
number of components than in the original, while preserving as much variance as
possible. Principal component analysis is connected to factor analysis – while princi-
pal component analysis aims to preserve the variance of existing components, factor
analysis assumes that there are latent variables that can characterize the depen-
dency between the original features with lower dimensionality. (Alpaydin, 2010,
pp. 113–125)

Figure 5.6 shows an example of components created by principal component
analysis from a data set with 450 variables . There are many ways to select how
many components are included in the data with reduced dimensionality. One way
is to select a cutoff point with enough variance explained. For example, the cutoff
point can be set so that 90% or 95% variance is explained. In figure 5.6, the cutoff
point is fixed to 90%, which means that 80 first components are selected for further
processing. There is a data point that shows the number of components and the
explained variance, i.e., N = 80 and cumulative variance is ≈ 90%.
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Figure 5.6: Example of principal component analysis

Figure 5.7: Variances of the first 100 components
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Figure 5.7 shows the absolute variance of first 100 components. As can be seen
in the figure, the variance decreases rapidly with respect to the the index of the
component. The components are always presented in decreasing order according
to the variance. The data point marked in the figure shows the variance of 80th

component, which is very low. It is much easier to find the cutoff point from figure
5.6 showing the cumulative variance, than from absolute variances of figure 5.7.



Chapter 6

Image classification methods

Creating PNU fingerprints and calculating the correlations between image noise
residuals and the fingerprints were presented in the previous chapter. It is time now
to show how the images can be assigned to camera sources based on the correlations.

In order to choose the classification method it is necessary to first characterize
the problem a bit: whether the classification is based on the correlations between one
fingerprint and the images, or with more than one fingerprint. Also, it is necessary
to decide whether the target is to decide between two questions: “Does the image
belong to camera X?” or “To which camera does the image belong?”. Even though
the latter alternative sounds tempting since it may appear to solve all the problem
at once, it is also more error prone. In this chapter the connotations of those
alternatives are discussed in depth.

There are three classification methods presented in this chapter:

1. The correlations are compared naïvely, and the image is assigned to the camera
with highest correlation

2. Bayesian classifier can take into account the relationships between the corre-
lations

3. Linear regression that can easily manage varying number of correlation vari-
ables, and can easily handle very large sets of correlations

Finally, in this chapter there are some considerations for tuning the algorithm to
achieve better performance with respect to memory and processor time consumption.

6.1 Characterization of classification methods
The most important parameter for choosing the classification method is whether
there are images from unknown cameras. If it is known that the test images are only
from the cameras with known reference pattern, the classification is fairly straight-
forward with even the most naïve methods, e.g. choosing the class with highest
correlation between the reference pattern and the image.

If there are images from unknown cameras, the problem gets a bit harder: there
has to be a way to discriminate between the correlations high enough for assigning
the image to a camera, and low enough to reject the image. Usually the easiest

34
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classification methods do not have a straightforward solution for assigning an im-
age to a “none” or “unknown” class. The problem gets especially hard when the
difference between “high enough” and “too low” correlation is small ≤ 10−1. This
usually happens when the amount of noise data is sacrificed for high performance
(see chapter 6.5), or when less effective, e.g. gaussian blur, filters are used for low
frequency noise filtering.

Since the images forming a reference pattern are from a known camera source,
supervised learning methods can be applied. As stated before, there are at least
three feasible candidates for the classification of the images:

1. Naïve comparison of correlations (with or without a threshold)

2. Bayesian classification

3. Linear regression

The first method is fairly straightforward and usually fairly reliable. The two
latter methods require more rigorous tuning of the algorithms, and can be com-
bined with principal component analysis to reduce the dimensionality of the data,
especially when there are a fairly large number of different cameras.

There are two valid approaches when using the classification methods: either the
problem is approached as a multi-class classification problem, i.e., the images are
directly classified as belonging to one of the cameras, or the problem is reduced to
a two class problem. The latter approach requires testing which images belong to
the first camera and which do not, then again which of the remaining images belong
to the second camera and which do not, and so on. In case of Bayes and linear
regression classification, it has to be decided whether an univariate or a multivariate
approach is selected, i.e., is the output dependent on all the correlations with refer-
ence patterns, or dependent only one of the reference patterns. These considerations
are summarized in table 6.1. As can be guessed, using multiclass univariate option
does not probably work, since it implies that the correlations between the images
and one reference pattern contain enough information to cover all the classes - which
is not the case.

One more thing to consider is whether to use principal component analysis (PCA)
to reduce the dimensionality of data, when a multivariate method is chosen. If
there is a large number of reference pattern, it might be a good idea to use PCA.
Sometimes PCA reduces a multivariate problem to an univariate one. This is just a
special case of multivariate multi-class problem, as the remaining component carries
enough information from the correlations to allow multi-class classification.

There is still one question remaining: how to divide the data into training,
validation and test sets. Selection of the training set for reference pattern formation
is simple: choose N ≥ 50 images randomly from the data set, and form a reference
pattern. However, there is a catch: when bayesian classification or linear regression
are used, there are actually two training phases. The first is the same for all the
methods, i.e., creating the reference pattern and then training the classifier. The
second phase is either

1. using the same set of images for both creating the reference pattern and train-
ing the classifier
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Table 6.1: Univariate vs. multivariate, two class vs. multiclass

Univariate Multivariate

Twoclass Decide whether an image is from a
certain camera based on the
correlation between image and
reference pattern of a camera

Decide whether an image is from a
certain camera based on the
relationships between the correlations
of the image with all the reference
patterns

Multi-
class

Assign an image to one of the
cameras based on the correlations
between the image and only one
camera

Assign an image to one of the cameras
based on the relationships between
the correlations of the image with all
the reference patterns

2. using of different sets for creating the reference pattern and for training the
classifier

Using two different sets of data is tempting, since the first alternative can easily
overestimate the correlation levels between the image and the matching reference
pattern. However, using two different sets can easily use up all the images from
a camera, and there is no data left for validation and testing. There is no simple
answer for this problem, and eventually the choice will be based on the source image
database. There is not a large amount of images to choose from, and therefore, in
the case of two separate sets there will not be enough data for learning the classes
for linear regression and Bayes classifier, and absolutely no data for testing.

A minor detail is that correlations can be both positive and negative. In this
report the correlations are compared directly, instead of using absolute values, as
the sign is considered being of importance.

6.2 Naïve comparison of correlations
Naïve correlation classifier is essentially a multivariate method with function f pro-
ducing the class with highest correlation :

f(i) = k, when ρCki = max{ρC1
i . . . ρCMi }

In other words, the the image is assigned to the first camera that has the highest
correlation with the image. When there are more than one cameras with the same
correlation, the first is selected. This situation is highly improbable, though, since
it essentially requires that two cameras have exactly same reference patterns.

A significant problem with the naïve classification is its total inability to handle
images that are from none of the cameras. Naïve comparison will blindly assign the
image to one of the known cameras, even though the correlations are significantly
smaller than with those images from known cameras.

It is possible to use Neyman-Pearson approach to first determine the distribution
of ρC (q) for other images taken with camera C, i.e., those that were not used to
create the reference pattern. Then the distribution of ρC (q̄) is determined, where q̄
are the images not taken with camera C. The Neyman-Pearson method allows for
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minimizing FRR, and imposing bound on the FAR, since in forensic applications
FAR should be kept low, for the obvious reason of not making hasty conclusions.
(Lukáš et al., 2006)

6.3 Bayesian classification
The simplest classification problem for a Bayesian classifier is one with only one
independent variable, or to be exact, a case with only one feature and two classes,
namely “image is from camera k” and “image is not from camera k”. The problem can
be simplified even more by assuming that the correlations follow some known distri-
bution, which implies that the probability density and cumulative density functions
are known. In this work the correlations are assumed to be normally distributed
due to the nature of many factors affecting the correlations, which in turn implies
that the central limit theorem can be more or less safely applied. In addition to the
assumption on normality, the variables are assumed to be independent and iden-
tically distributed (iid.). The central limit theorem means that the sum of many
random variables with unknown distributions asymptotically converges to normal
distribution.

In order to classify the samples, the parameters of the distributions have to be
estimated. Simplest way is to take test images for a camera, correlate them to the
fingerprint of the class, and calculate the mean µ and variance σ2 for correlations
belonging to the class. The mean and variance can be used as parameters for the
iid. gaussian distributions of each class.

Figure 6.1: Two class univariate classification problem

Figure 6.1 shows an example classification problem with only one feature and two
classes. The two peaks, blue and green, represent classes 1 and 2, and correlations
are on x axis. As can be seen, the classes partially overlap, i.e., there is a zone of
ambiguity in the middle of the figure.
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The a posteriori probability for class ωi for observation xj can be written (Al-
paydin, 2010, p.22) as

P (ωi|xj) =
P (xj|ωi)P (ωi)

P (xj)

It is fairly easy to derive the decision rule for the classification. The principle is
simple: choose the class with the highest probability for the observation.

P (ω1|xj)P (ω1)

P (xj)
≷
P (ω2|x2)P (ω2)

P (xj)

⇔ P (ω1|xj)P (ω1) ≷ P (ω2|x2)P (ω2)

The rest of the cases are explained here conceptually, as the mathematics gets
fairly complex, even though the principle remains the same.

The case with multiple variables and two classes is shown in figure 6.2. The distri-
bution is again assumed to be iid. normal. In the figure, the left side shows the multi-
normal distribution for the two classes (the peaks), and the right side shows contour
plot of the two peaks. The simplest rule for choosing one of the classes is again
maximizing the posterior probability, i.e., choosing k by rule arg max

k
{P (ωk |x)}.

Figure 6.2: Multivariate two class classification problem

Univariate case with multiple classes can be seen in figure 6.3. There are three
peaks matching three classes, and again the class with highest posterior probability is
chosen. However, one correlation value does not carry enough information to be able
to distinguish between three or more classes, so this case is not feasible. Also, there
can be significant overlapping in the conditional probability distributions, which can
render this method too unreliable for practical use.

Figure 6.4 shows a classification problem for two variables and three classes. The
left side of the figure shows the multinormal distribution values for each class, and
the right side shows the contours for each class. The peaks appear to be separate,
but as can be seen in the contour plot, two of the classes are close enough to each
other to cause some ambiguity. The simplest rule for choosing the class is the same



CHAPTER 6. IMAGE CLASSIFICATION METHODS 39

Figure 6.3: Multiclass univariate classification problem

as in the bivariate case, i.e., arg max
k

{P (ωk |x)}. The cases with more than two

variables cannot be visualized, but the principle stays the same: calculate posterior
probabilities for the each sample vector xi and then assign each to the class with
highest probability.

Figure 6.4: Two-variate normal distribution for three classes, and contour lines

Bayesian classification is an effective method for recognizing image sources, unless
the distribution parameters for the classes are too close, i.e., if assigning a sample
vector to a class is hard, since the posterior probabilities are too close.

6.4 Linear regression
The idea of linear regression in machine learning is to estimate coefficients from the
training data. These coefficients can be used to compute scores of the dependent
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variable or variables, i.e., scalar y or vector y = [y1, y2, . . . , yk]T . In both cases there
is a constant β0 included in the equations, which is trained as well as the proper
coefficients. Univariate model aims to either classify the images based on whether
the image is from selected camera or not by calculating regression scores from the
correlation between the chosen camera and the noise residuals, i.e., decide to which
of the two classes the image belongs to. The problem can also be formulated as
as multiclass one, i.e., from which camera the images are, but the correlations with
just one camera makes this formulation unfeasible, since there is not enough data
to make the decision. Therefore, only the first formulation is discussed here.

Univariate regression model is generated from correlation coefficients between
the reference pattern of a specific camera Ck and the noise residuals of the training
set images. The images are divided into two sets - training set A of images from
camera Ck, and training set B of images from other cameras. The correlations are
then computed between the camera reference pattern and the noise residuals from
both sets to form matrix X, augmented with ones on the left side to account for the
constant β0. Horizontal line separates sets A and B.

X =



1 ρCkA1

1 ρCkA2...
...

1 ρCk|A|
1 ρCkB1

1 ρCkB2...
...

1 ρ|B|


Matrix Y contains the correct classes, i.e., ones for images from set A, and zeroes

for image from set B.

Y =

[
1 1 . . . 1︸ ︷︷ ︸
Selected camera

0 0 . . . 0︸ ︷︷ ︸
Other cameras

]T
Since estimating linear regression coefficients, and naturally the constant β0, is

a least square error problem, the coefficients can be calculated as (Alpaydin, 2010)

β̂ =
(
XTX

)−1
XTY

The univariate regression model is then applied to a test image by first calculating
the correlation coefficient between the filtered image and the reference pattern of
camera Ck, and then calculating the weighted sum. Score rj of image Ij is then
(Alpaydin, 2010)

rj = β0 + β1ρ
Ck
j

Naturally, there is one more step in order to interpret score r, namely estimating
the minimum regression score for assigning the image I to one of the classes. The
easiest way to do this is to naïvely classify the training images with the regression
model, and then find the minimum score for the images from the specific camera
Ck, or the maximum score for images that are not from camera Ck. However, in
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case the classes overlap, this approach produces a lot of ambiguities for classifi-
cation. It is also possible to use e.g. bayesian classification and assume that the
scores are normally distributed. This approach, however, is beyond the scope of this
assignment.

The problem can be formulated as multivariate linear regression, either with two
classes, or multiple ones. The idea is to estimate the coefficients β0, β1, . . . , βN , where
N is the number of cameras, and then calculate the score ri = β0 +

∑N
j=1 βjρ

Cj
i , i.e.,

calculate the weighted sum of correlations of noise residuals of image i with each of
the cameras. If the problem is formulated as a one with two classes, the vector Y of
the correct classes contains again ones for images from the specific camera Ck, and
zeroes for the images not from that camera.

It is also possible to formulate the problem as multiclass classification problem.
Then the vector Y contains the number of the correct class for the cameras, i.e., one
for camera C1, two for camera C2 etc. The problem with multiclass formulation is
that it quite probably contains overlapping classes, and needs a large training data
set accounting for all the classes. Same goes for multivariate formulation, as it needs
to provide sufficient amount of images to provide enough correlations for each of the
variables.

Estimation of the coefficients is similar to the case of univariate classification.
First a matrix X of correlation coefficients is formed and augmented with a vector
of ones to the left side to account for the constant term β0. The number Ni is the
number of the images in all the training sets.

X =


1 ρC1

1 ρC2
1 . . . ρCN3

1 ρC1
1 ρC2

1 . . . ρCN3
...

...
... . . . ...

1 ρC1
Ni

ρC2
Ni

. . . ρCNNi


Generation of the correct class vector Y is the key to selecting either the twoclass

or multiclass model. If Y is formulated as ones for selected camera Ck, and zeroes for
other cameras, the model will be similar to the univariate twoclass problem except
for the number of coefficients β.

Y =

[
1 1 . . . 1︸ ︷︷ ︸
Selected camera

0 0 . . . 0︸ ︷︷ ︸
Other cameras

]T
Instead, if Y contains the number of the ith camera specifying from which camera

the training image came from, the problem is a multiclass one. Y is then

Y =

[
1 1 . . . 1︸ ︷︷ ︸

Camera 1

2 2 . . . 2︸ ︷︷ ︸
Camera 2

. . . N N . . . N︸ ︷︷ ︸
Camera N

]T
As with the univariate problem, estimating the coefficients is a least square error

problem, for which the solution is (Alpaydin, 2010)

β̂ =
(
XTX

)−1
XTY

Computing the linear regression scores is analogous to the univariate case, except
that there are more coefficients. Score rj of image Ij is calculated as a weighted sum
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Table 6.2: Mathematical models for linear regression

Univariate Multivariate
Correlation of noise residuals
with one camera

Correlation of noise residuals
with all cameras

Two classes rj = β0 + β1ρ
Ck
j rj = β0 +

∑N
k=1 ρ

Ck
j

Y = [1 1 . . . 1 0 0 . . . 0]T Y = [1 1 . . . 1 0 0 . . . 0]T

Multiple classes rj = β0 + β1ρ
Ck
j rj = β0 +

∑N
k=1 ρ

Ck
j

Y =
[1 . . . 1 2 . . . 2 . . . N . . . N ]T

Y =
[1 . . . 1 2 . . . 2 . . . N . . . N ]T

of correlation coefficients between the image Ij and the camera Ci, and the constant
β0 is added.

rj = β0 +
N∑
i=1

βiρ
Ci
j

Estimation of the class boundaries is a huge problem with multiclass formula-
tions, since there is bound to be a great amount of ambiguities. There are quite a
few methods, e.g. stochastic properties of intra-class distributions. However, these
are beyond the scope of this work. Also, the need to use estimation techniques for
class boundaries requires, again, more data. As always, there is a tradeoff between
accuracy and amount of training data.

Table 6.2 presents the mathematical models for linear regression. In the univari-
ate both the univariate cases the model is created from the correlations between the
noise residuals and only one camera. In the multivariate case the models is formed
by taking into account the correlation of noise residuals with all the cameras. The
number of variables decides, of course, the formulation of regression score rj.

The number of classes, either two or more, determines how the result vector Y
is formulated. Two-class formulation is that there are only ones for images from
selected cameras, and zeroes for other images. If instead the vector contains the
index of the camera the image was taken with, the case is a multiclass one. However
it should be noted that the univariate multiclass case is not a feasible nor possible
approach to the classification problem, since the differences of correlations between
the images with the noise patterns from cameras it was not taken with are not large
enough to allow for discrimination.

The choice between univariate and multivariate regression is not a simple one,
the unfeasible univariate multiclass case notwithstanding. Multivariate regression
considers the relationships between the correlations with all the reference pattern,
whereas univariate regression focuses only on the correlation between the reference
pattern of the selected camera and the noise residual of the image. The simplest
possible formulation, i.e., univariate two-class regression, is useful and efficient when
the task is to find which images are from the chosen cameras. Unfortunately, if all
the images have to be classified, a lot of computing effort goes to waste: first, the
images from camera 1 are classified and removed, then the images from camera
2, and so on. The worst case is O(mn) comparisons, where m is the number of
images and n is the number of cameras. Since an image contains a huge amount
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of information, all the images cannot be stored in non-permanent memory, and
therefore one comparison is a computationally expensive operation.

Multivariate regression is more efficient method to classify a large amount of
images, since each image has to be loaded only once and a reasonable amount of
reference patterns can be kept in memory. However, training multivariate regression
requires more data. Using multivariate regression to recognize which images are from
selected camera is quite probably an overkill

It is possible to formulate the problem as non-linear and multinomial regres-
sion problem. Nonlinear univariate formulation can be reduced to linear regression.
Nonlinear multivariate regression is beyond the scope of this work, due to the added
complexity. The classification models should be kept as simple as possible, and
therefore it is feasible to use the simplest efficient methods possible.

6.5 Tuning the source camera identification
algorithm

The most serious bottleneck of using PNU patterns is the memory consumption.
The image size is usually about 4000x3000 and there are three color layers, which
gives the minimum boundary of 34 MB per image when the image is represented
with 8 bit unsigned integers. Furthermore, the image will be converted into 32
bit double precision numbers, which gives the final estimate of 137 MB per image.
Therefore it is crucial to find ways for reducing the memory consumption as much
as possible.

One of the methods is using a cropped image, for example taking only 1024x1024
area from the image center. This also allows for reducing the boundary effects caused
by filtering, as the image can be first cropped to size of about 1040x1040, filtering
performed and then the final 1024x1024 is taken.

The structure of the Bayer pattern of color filter array (CFA) was explained in
chapter 2. Image 2.2 showed how about half of the filters in the Bayer CFA were
for green light. Therefore, it is possible to process only the green layer of the image,
since it contains about half the information of the image signal.

When these methods are combined, the memory consumption per image is re-
duced to about 4 MB per image. Since in practice memory consumption correlates
with amount of virtual memory swapping, this is a significant improvement. How-
ever, the trade-off is the need to use more effective filtering methods (e.g. wavelets
or nth order differential filter) in order to compensate the diminished amount of
data.

One cause of problems for the classification is the existence of more than one
camera from the same camera model. Due to the similar manufacturing process,
these cameras are not as easy to identify as the cameras of different models. It could
be possible e.g. to first identify the camera models, and then use the identification
process to discriminate between the individual cameras inside the groups of the
camera models, i.e., a two-tiered identification process. This thesis contains an
experimentation for evaluating this hierarchical model.



Chapter 7

Focusing topic

Starting point was on the one hand turning the noise caused by cameras into advan-
tage and making it a fingerprint for forensics. On the other hand there was interest
to applying image classification methods to this type of practical learning recogni-
tion problem. Promise of matching these appeared to be in relying on what image
data already contains (not adding some tags) and that problem and method were
about rough recognition of possible target for further forensics (not exact identifi-
cation and proof). The aim was to discover whether a promising research direction
can be found for further research.

This chapter describes how the topic is focused. First, the specifics of the source
data and the tasks area give in 7.1. The utilization of the image source database
is discussed in chapter 7.2. Chapter 7.3 enumerates the decisions that have been
made in order to carry out the experimentations. Finally, chapter 7.4 introduces
the hypotheses to be validated or refuted by exploiting the experimentation results.

7.1 Topic and focusing
The task is to find out whether images can be attributed to the camera they were
taken with, and how well it can be done. There is a known set of cameras and for
every image it is known with which camera the image was taken with.

An existing image base, i.e., Dresden forensic image database (Gloe and Böhme,
2010) will be used in the experimentations. The database will be discussed more
later in chapter 7.2.

It was decided that a set of 24 cameras will used in the thesis. The manufactur-
ers, models and number of cameras per each model are shown in table 7.1. All the
cameras are not used in all the experimentations, but a subset is selected according
to the needs of the experimentation. The number of cameras, 24, is large enough
to show reliably whether the method works, but small enough to keep the experi-
mentations manageable. Choosing cameras so that there are more than one camera
from most models gives a possibility to examine both inter-model and intra-model
differences of cameras.

44



CHAPTER 7. FOCUSING TOPIC 45

Manufacturer Model #
Canon Powershot A 640 1
Olympus mju-1050sw 5
Panasonic DMC-FZ50 3
Pentax Optio W60 1
Ricoh GX100 5
Samsung NV15 3

Sony DSC-T77 4
DSC-W170 2

Total 24

Table 7.1: Selected camera models

7.2 Utilizing image source
Dresden forensic image database (Gloe and Böhme, 2010) is used as the source of
images. The database was created in order to have a standardized benchmarking
image sets for developing algorithms to be used in digital forensics. The image
acquisition and storage procedures have been carefully designed to minimize the
effect of post processing and lossy compression. The resolution of the images is
high, over 2800 pixel wide and over 2100 pixels high. Figure 7.1 shows some sample
images from the Dresden image database.

Figure 7.1: Sample images from the Dresden forensic image database (Gloe and
Böhme, 2010)
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To gain enough data, 9014 images from 74 different cameras were selected. Of
these, there were 27 different camera models from 12 different manufacturers. How-
ever, only some subsets of the source database will be used in the experimentations
due to performance considerations. The subsets are selected so that the resolution
of cameras in the subset are the same, in order to minimize the effect of image resiz-
ing algorithms to preserve the PNU fingerprints, and also to fulfill the condition of
synchronization. Another reason besides the effect of resizing algorithms was that
resizing is a computationally complex procedure with large images, and without a
sufficient parallel computing facilities it would take the largest part of the processing
time.

All the images of the selected 24 cameras were filtered before the experimenta-
tions with gaussian and wavelet filter and cropped to 1024x1024 region from the
middle of the green layer, in order to avoid recomputing everything in every exper-
imentation. Furthermore, the pixel non-uniformity noise (PNU) fingerprints were
computed in the beginning.

A further advantage of choosing these camera models is that all the models have
identical image sizes. This fulfills the condition of synchronization given in chapter
5, i.e., the images do not need scaling, cropping or rotation. This way, the differences
between camera models and individual cameras are not overlapped by the differences
in the spatial representation of the images. Possibilities to ignore the differences in
the spatial representation are not a topic of thesis, but certainly one for the further
research.

7.3 Source identification decisions
Twenty four cameras will be chosen for the experimentation, some of which are of
the same model. The most important factor affecting this choice are the identical
image sizes, which allows for speeding up the training and recognition process by
eliminating the need for resizing the images. The image resizing is a time consum-
ing process due to the extremely high quality and large size of the images in the
database, and is not an interesting factor in this experimentation. Even though in
this experimentation only 1024x1024 region from the green channel is to be used,
the images would have to be resized before cropping process. As the algorithm is
spatial in nature, without image resizing the patterns would be of different sizes,
which would in turn have a serious effect on the recognition accuracy. Furthermore,
smaller size allows for faster noise pattern filtering - some of the filtering methods,
e.g. wavelet and nth order differential, are time consuming as such. It is possi-
ble to create noise residuals beforehand, but that does not speed up the process
significantly, since loading and saving takes a lot of time, too.

Naïve bayesian classifier will be used in this experimentation, namely multivari-
ate, multiclass one. The input data will be a vector of correlations between the
noise pattern and the trained fingerprints, and the output the class for the noise
pattern, and the probabilities for matching the noise pattern with the fingerprints.
In this experimentation the images will all be from known cameras, i.e., there are
no noise residuals that do not match any fingerprint. This allows for using sim-
pler recognition algorithms, since it is not necessary to determine lower bounds for
correlations, and it is not necessary to alternate the bayesian recognition algorithm
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to handle cases for which the a posteriori probabilities are very low and therefore
almost equal.

Principal component analysis will not be used for preprocessing the correlations
in this experimentation. Aim of the experimentation is to validate the idea of using
bayesian classifier in conjunction with noise patterns and fingerprints, and therefore
as pure data as possible is needed. Using principal component analysis and other
classifiers is out of the scope of this experimentation.

The noise residuals in the inter-model classification experiment will be calculated
using both gaussian and wavelet filtering, and 50 and 60 training images. In the sub-
sequent experimentations only the filtering method with best performance is used.
Same images will be used for creating the fingerprints and matching the noise resid-
uals, which allows for intermediate storage of the noise residuals to avoid repeated
cropping and filtering. Even though using the same noise residuals for creating the
fingerprints and matching produces overly optimistic results, it is important to vali-
date the underlying principle before carrying experimentations in more complicated
situations.

7.4 Hypotheses
Defining the focus of the experimentations, choosing the source data and specifying
the methods lead to two hypotheses:

1. Using multivariate multiclass bayesian classifier on the correlation vectors be-
tween image noise residual and image fingerprint provides reasonably accurate
image source identification method.

2. The posterior probabilities for correct and incorrect classifications are from
different kinds of distributions.

Hypothesis 1 is directly related to the usefulness and feasibility of the source
identification method. If sufficient accuracy cannot be reached, testing further hy-
potheses is meaningful only for analysing the problems in the method. Reasonably
accurate means here > 95% correct recognitions, as the method does not give indis-
putable proof, but to allow for choosing interesting images for further investigation.

Hypothesis 2 is related to the stability of the identification system. Posterior
probability defines certainty of a decision, i.e., certain decisions have a high poste-
rior probability and uncertain decisions a low posterior probability. If the correct
decisions are certain and incorrect decisions uncertain, the decisions are less likely
to be ambiguous or random.

Hypothesis 2 can be validated by examining the histograms of posterior proba-
bilities in the case of correct and incorrect decisions. The criterion for the difference
of distributions is that histograms are clearly different. Also, the posterior probabil-
ities of correct classifications are significantly more certain, i.e., nearer to 1.0, than
the posterior probabilities of incorrect classifications.

In the context of evaluating correctness of the classifications, the posterior proba-
bility is called “certainty”. For example, it could be said that“the system has classified
the sample i correctly with certainty P ”, compared with regular posterior probability
stating that “the probability of sample i of being class ωk is P”.



Chapter 8

Experimentation plan

The first experimentation introduces the basic case of image fingerprinting, i.e., rec-
ognizing different cameras. Eight camera models and one camera from each model
were chosen for this experimentation. Since there are two parameters with two
possible values, i.e., filtering method and number of the reference images, the ex-
perimentation is repeated four times. The results of this experimentation determine
which parameters will be used in the rest of the experimentations. The number
of images in total in this experimentation is 840. Since this is quite a large num-
ber and the overhead caused by loading and filtering of high resolution images is
considerable, the images are prefiltered.

The second step will use the best parameters from the first experimentation.
The aim is to recognize different cameras belonging to the same model; in total, 3
camera models will be used, containing 12 cameras in total.

The third experiment will determine whether it is possible to recognize different
cameras with no information on the camera model. Again, the best parameters from
the first experimentation are utilized. Twenty for cameras from eight different mod-
els are used, but all the cameras are put in the same pool. No a priori information
on the camera models is used to support the classification. In total 1111 images will
be used in this experimentation.

The fourth experimentation will determine whether it is possible to generate
model-specific fingerprints, i.e. recognize all the cameras from the same model by
using reference patterns from only one camera from the model. Five camera models
will be used, resulting in total 20 cameras and 2179 images. Again, the parameters
from the first experimentation will be used.

In total, the size of the image pool is considerable, over 2000 images, and therefore
only appropriate but subsets of the images will be used. The subsets have been
chosen so that they can be expected to represent the data set well enough.

8.1 Data collection
Three different types of data will be collected during the experimentation:

• Correlations between each noise pattern and each camera fingerprint

• Classification results, i.e., class and a posteriori probabilities for each class
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• Performance metrics

Correlations are used as the input to the classification system. Classification
results can be then used to evaluate the classification method. Finally, the per-
formance metrics will be used to fine tune the method as well as to analyze the
feasibility.

Correlations

Two-dimensional Pearson correlation coefficient will be calculated between each im-
age and each camera. Table 8.1 shows an example of the resulting correlation matrix.
Each row of the table refers to the image correlated with the cameras. Each column
refers to the camera fingerprints, except the first column which contains the image
number.

Table 8.1: Correlations between image noise patterns and camera fingerprints

Image Camera 1 Camera 2 Camera 3 . . . Camera M

1 0.1232 0.0232 0.0012 . . . 0.00012
2 0.0001 0.0033 0.1002 . . . 0.012
3 0.1502 0.0933 0.1740 . . . 0.0020
. . . . . . . . . . . . . . . . . .
N 0.0099 0.029 0.0017 . . . 0.1750

Since a multivariate naïve Bayesian classifier is used, it is not possible to derive
conclusions from just one correlation. The final classification depends on the rela-
tionships of the correlations between the noise pattern and its correlation with all
the camera fingerprints. For example, row 3 in table 8.1 shows a situation where the
correlations with camera 1 and camera 3 are nearly identical. However, the class
is decided based on the other correlations – the correlations do not automatically
imply ambiguity or that the class would be camera 3.

Classification results and probabilities

In order to derive conclusions on the classes, it is necessary to collect the classification
results and the posterior probabilities for each camera. Table 8.2 shows collected
data with the image number in the 1st column, class in the second column, and the
posterior probabilities in the rest of the columns.

Image Class P (C1|xj) P (C2|xj) P (C3|xj) . . . P (CM |xj)
1 3 0.12 0.02 0.82 . . . 0.18
2 1 0.74 0.13 0.102 . . . 0.05
3 M 0.14 0.093 0.52 . . . 0.59
...

...
...

...
...

...
...

N 2 0.05 0.77 0.002 . . . 0.1750

Table 8.2: Classes and posterior probabilities
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Usually the differences in the posterior probabilities are large enough to be un-
ambiguous. However, row 3 shows a situation where the posterior probabilities of
camera 3 and camera M are near to each other. Unfortunately this kind of ambigu-
ity is not easy to handle - a bayesian classifier would still classify the image to class
M, even though the decision is quite uncertain.

Performance metrics

In addition to the data pertaining to the image source recognition, also perfor-
mance metrics are collected. These include the preprocessing time for each image,
time needed for classification, and processor time, memory and virtual memory con-
sumption. These metrics can be used to fine tune the algorithm, and to compare
different filtering and cropping techniques. Also the accuracy of classification, and
false acceptance and false rejection rates are recorded in order to validate the ac-
curacy and reliability of the image source recognition algorithms. The data will
be examined using visualizations, but no further hypotheses or conclusions will be
drawn.

8.2 Analysis of classification
There are two important aspects in analyzing the performance of the classifier:

1. Inter-model classification, i.e., how accurately the classifier can make decision
between camera models

2. Intra-model classification, i.e., how accurately the classifier can distinguish the
different individuals from the same camera model

As stated before, it should be relatively easy to recognize the camera models due
to the different manufacturing processes, even if the camera models are from the
same manufacturer. However, since the individual cameras of the same model are
created by the same process, it is plausible that their fingerprints are closely related.
As for now, there is not sufficient metrics for actually defining what “closely related”
means exactly. The only way is to examine the classification results and to decide
whether they are “similar enough” - a subjective and error prone approach.

There are two alternatives for analyzing the recognition results:

1. using two-tier process, i.e., first recognizing the camera model by combining
the images from individual cameras of the same model, and using them as
a wholeness. After the camera model has been recognized, the recognition
process is done again, but this time only the individual cameras from the
camera model in question are used as the input for the recognition process

2. not making distinction between individual cameras and camera models, and
hoping that the individuals are dissimilar enough to be accurately recognized,
i.e., one-tiered process
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Both of these approaches have their merits. If the purpose is to only sift through
the images to find the potentially interesting cameras, the first option is quicker.
However, if some kind of proof of image source is needed, then the second alternative
is better. Both the alternatives are examined in this thesis, as they will give insight
in the identification system whether or not the hypotheses are fulfilled.

In addition to these two alternatives, the existence of model specific fingerprints
will be examined. These fingerprints would give a possibility to recognize a blind
source camera, provided that there are some cameras of the same model among the
known cameras. This kind of process would expand the usefulness of the identifica-
tion process significantly.



Chapter 9

Experimentation results

There are four experimentations:

1. Inter-model: identification of individual cameras, one from each model, i.e.,
whether it is possible to discern between individual cameras when each is of
different model.

2. Intra-model: identification of individual cameras when only one camera model
is considered

3. Identification of individual cameras using naïve approach: all the cameras are
recognized individually even when there are more than one camera from each
model

4. Model specific fingerprints: an individual camera is used for testing and the
rest cameras from the same model for creating a model specific fingerprint

Experimentations 1 and 2 are the two sides of proving whether it is even possible
to use this method to classify cameras. Experimentation 1 shows that the variations
in imperfections are large enough to allow for discerning between camera models.
Experimentation 2 examines the variation inside one camera model to show that
the variation is large enough to allow for classifying individual cameras. If the
work would be carried out without this split, it is probable that the inter-model
variations would hide the much smaller intra-model variations, and the problems
would be hard to find. Experimentation 3 gives a glimpse to what happens if the
distinction between inter-model and intra-model recognition is not done, i.e., the
cameras are recognized individually even if there are more than one camera from
each model. Experimentation 4 explores briefly the possibility of generating model
specific fingerprints, i.e., identification of the model of an unknown camera based
on the cameras from the training set.

All the cameras are assumed to have the same image size (3648x2736). This will
prevent the image resizing algorithms from affecting the results or the repeatability
of the experimentation. Also, experimenting with both filters (gaussian and wavelet)
and sample sizes (50 or 60) were done in the first part, since that demonstrated the
effectiveness of using wavelet filter with sample size 60.
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9.1 Inter-model classification
In the inter-model classification experimentation there were eight different camera
models, summarized in table 9.1. Only two of the models were from the same man-
ufacturer, i.e., Sony. The other cameras are from different manufacturers. This
experimentation considers whether there are large enough differences in PRNU fin-
gerprints to allow for inter-model identification.

Class Manufacturer Model Images
1 Canon PowerShot A640 85
2 Olympus mju-1050SW 109
3 Panasonic DMC-FZ50 143
4 Pentax Optio W60 91
5 Ricoh GX100 93
6 Samsung NV15 130
7 Sony DSC-T77 90
8 Sony DSC-W170 99

Total 840

Table 9.1: Camera models for inter-model identification

The data set is further divided into reference images and test images. For each
camera, Nref ∈ {50, 60}, and therefore Ntest = N − Nref . For example, the first
camera, Canon PowerShot A640, has 85 images in total, and therefore Ntest = 35,
if Nref=50, and Ntest=25, if Nref = 60.

Lukas et al. suggest (Lukáš et al., 2006) that number of reference images
Nref > 50. Thus, to establish the baseline for identification, reference image sample
sizes 50 and 60 were used to construct the camera fingerprints. Flat fielding was not
an option, since it was not possible to gain access to the original cameras.

There were two methods to filter the images for PRNU fingerprinting, namely
gaussian and wavelet filtering. Therefore, in total four different passes were needed
for the experimentation: gaussian filtering with 50 and 60 reference images, and
wavelet filtering with 50 and 60 reference images.

Correct classifications

Figure 9.1 shows the ratios of correctly classified images for every combination of
filter and number of reference images. The blue bar and cyan bars are for gaussian
filtering with 50 and 60 reference images, respectively. The yellow and red bars for
wavelet filtering with 50 and 60 reference images, respectively. The percentages are
collected to table 9.2.

As can be seen in both figure 9.1 and table 9.2, decent results can be achieved
with all filtering techniques, except with camera 6. Gaussian filtering classifies
correctly 86.1% of the images, with lowest ratio 57.1% for camera 6. However, the
configuration with wavelet filter and Nref = 60 is clearly the best: all ratios are
≥ 90.0%. Camera 7 exhibits an anomaly, since the recognition results are somewhat
lower for gaussian Nref = 60 than for gaussian Nref = 50. The reason is not clear,
but since the difference is not a large one, the reason might be the random division
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Figure 9.1: Inter-model classification: ratios of correctly classified images

of images to reference and test set, i.e., the difference is due to variation in data,
not due to the method.

Gaussian Wavelet
Camera 50 60 50 60

1 100% 100% 100% 100%
2 88.1% 91.8% 86.4% 93.9%
3 89.2% 91.6% 92.5% 96.4%
4 100% 100% 100% 100%
5 86.0% 90.9% 97.7% 97.0%
6 57.5% 57.1% 82.5% 90.0%
7 97.5% 90.0% 100% 100%
8 93.9% 92.3% 100% 100%

Total 86.1% 86.1% 93.2% 96.1%

Table 9.2: Ratios of correctly classified images

Relationship of target and predicted classes

Figure 9.2 shows the number of target and predicted classes for each camera, filter
and Nref combination. Blue bars represent the target frequencies, i.e., how many
images there really are for each camera. Yellow bars represent the predicted fre-
quencies, i.e., how many images are attributed to the camera.

In the figure 9.2, the most notable phenomenon is that the number of predicted
images for each camera is higher than the real value, except for cameras 3 and 6.
For the latter, some of their images are attributed to other cameras. The differences
between the frequencies of target and predicted classes naturally decrease when the
accuracy of the method increases. However, for cameras 3 and 6, even using the
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Figure 9.2: Inter-model classification: Frequencies of target and predicted classes

best method does not completely remove this problem: still some of the images from
cameras 3 and 6 will be attributed to other classes.

Confusion matrices

The confusion matrices for the inter-model classification experimentation are in
figures 9.3 - 9.6. The columns represent the target classes, and rows the output,
or predicted, classes. For example, in figure 9.3 the cell in row 5 column 6, later
referred as cell (5,6) shows that 8 images from camera 6, i.e. Samsung NV15 in table
9.1 are classified as coming from camera 5, i.e., Ricoh GX100. Vice versa, cell (5,6)
shows also, that 8 images that were classified to coming from class 5, i.e., Ricoh
GX100, actually came from camera 6, i.e., Samsung NV15. As can be seen, Ricoh
GX100 was the hardest camera to identify, and most often mistaken for camera 2,
i.e., Olympus mju–1050SW. Cameras 1, 4, 7 and 8 were almost always identified
correctly.

Most wrong attributions were made with camera 2 and 5, when gaussian filtering
was used. Moreover, using 60 reference images with gaussian filtering actually caused
more wrong attributions to camera 5 than using 50 reference images. The cause of
this phenomenon is unknown. With wavelet filtering the attributions to camera 5
were most often wrong, the accuracy improving as it was expected to, with using 60
reference images instead of 50.

Anatomy of misclassifications

In order to understand how the system could be enhanced, it is important to examine
the misclassifications to understand their structure and reasons behind them. It is
not a straightforward process, but can give insight into the sources of errors.
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Figure 9.3: Inter-model classification: confusion matrix for gaussian filter, Nref = 50

Figure 9.4: Inter-model classification: confusion matrix for gaussian filter, Nref = 60



CHAPTER 9. EXPERIMENTATION RESULTS 57

Figure 9.5: Inter-model classification: confusion matrix for wavelet filter, Nref = 50

Figure 9.6: Inter-model classification: confusion matrix for wavelet filter, Nref = 60
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Figure 9.7: Inter-model classification: Target and predicted classes of misclassifica-
tions

Figure 9.7 shows the behavior of wrong predictions. Yellow bars represent the
predicted classes and blue bars the target classes. In effect, this means that yellow
bars show that images from other cameras have been attributed to that camera.
Blue bars show that images from the camera in question have not been attributed
to that camera. For example, all images from camera 1 are classified correctly (no
blue bar), but in addition some images from other cameras have been assigned to
camera 1 (yellow bar). As can be seen, there is a high spike on camera 6: many
images from that camera have been assigned to other cameras. This can be seen as
high yellow bars on other cameras, especially camera 2; extra images attributed to
other cameras have to come from somewhere, in this case from camera 6.

Figure 9.8: Inter-model classification: structure of misclassifications

Figure 9.8 shows the structure of misclassifications. The images from cameras 1
and 4 are always classified correctly. Camera 6 has the most misclassifications: the
images from camera 6 are most often attributed to camera 2, with camera 5 being
the second alternative. It should be noted that the y axis scales vary. Attribution
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of an image to camera 5 happens also for camera 2. And attribution to camera 2 for
images from camera 5 exist, even though they are rare. This data implies strongly
that for some reason, the fingerprints from camera 2 and 5 are easily confused with
each other. The reason is left for further study.

It can be seen that figure 9.7 and figure 9.8 point to same direction: when the
structure of misclassifications for camera 6 was examined, it explained the high
yellow bar spikes on camera 2 in figure 9.8, i.e., the extra images attributed to
camera 2 come from camera 6, and there are many images from camera 6 that are
attributed to camera 2, and in some cases, camera 5.

One more thing to note in figure 9.8: the classification errors are not uniformly
distributed or random. Misclassifications for each camera tend to fall into only some
classes, not all, especially when the accuracy of the method increases. In practice
this means that the classification errors for e.g. camera 2 tend to be attributions
to camera 5, and not to others, and therefore there could be a method to further
remove errors from the process

Certainty of classifications

Final thing to examine is the certainty of classifications, both for correct and wrong
ones. The certainty can be examined as shown as a histogram in figure 9.9: x axis
corresponds to posterior probability categories, and y axis shows the ratio of the
posterior probabilities falling into that category.

Figure 9.9: Inter-model classification: posterior probabilities for correct and wrong
predictions

As can be seen in figure 9.9, the posterior probability, or certainty, is always very
high for the correct classifications. This is a good sign: when the system makes a
positive and correct identification, it is always “certain” of its correctness.

However, examining the histogram of wrong predictions shows that the classi-
fications are fairly uncertain. This can give a rise for futher development of the
system: it is possible to examine the posterior probabilities and accept the decision
if the system is certain of it, and submit it to further examination if the decision is
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uncertain. Uncertainty means that the system has only bad choices and it has to
choose one based on very slight differences.

Evaluation of hypotheses

Hypothesis 1 is used to estimate the feasibility of the method. As can be seen in fig-
ures 9.3 - 9.6, only the wavelet filtering with 60 reference images fulfills the criterion
of accuracy being 96.1% ≥ 95%, in hypothesis 1. However, the wavelet filtering with
50 reference images comes close with accuracy 93.2%. Therefore wavelet filtering
with 60 reference images is selected for later experimentations. The accuracies can
be seen in the bottom right cell of the confusion matrices.

Figure 9.9 shows the histograms of relative frequencies of posterior probabilities,
blue color marking the correct predictions, and orange color the incorrect predic-
tions. As can be seen, the certainty of correct predictions is almost always very near
to 1, i.e., very near to full certainty, with µ = 0.9698 and σ = 0.0944. Certainty of
incorrect predictions is more scattered and lower on average, with µ = 0.5631 and
σ = 0.1596. Therefore it is reasonable to conclude that correct classifications are
significantly more certain than incorrect ones, i.e., hypothesis 2 is true.

9.2 Intra-model classification
The aim of intra-model recognition is to classify individual cameras inside a camera
model. Since the classifying method depends on the sensor imperfections, this ex-
perimentation will tell whether the manufacturing processes cause distinguishable
variations also in each individual camera.

Three camera models were chosen for the experimentation: Ricoh GX100 (5
cameras), Sony DSC-T77 (5 cameras) and Samsung NV15 (3 cameras). Intra-model
classification was tested only with wavelet filtering Nref = 60 method, since it
yielded best results in the previous experimentation. Table 9.3 shows the number
off individual cameras for each model and number of images for each camera.

Manufacturer Model Individuals Camera Images

Ricoh GX100 5

1 93
2 81
3 87
4 86
5 76

Samsung NV15 3
1 130
2 127
3 123

Sony DSC-T77 4

1 90
2 84
3 89
4 88

Total 12 1154

Table 9.3: Number of cameras in intra-model recognition experimentation
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The results for intra-model identification are collected in three confusion matri-
ces:

• Figure 9.10 shows the results for the Ricoh GX100 cameras

• Figure 9.11 shows the results for the Samsung NV15 cameras

• Figure 9.12 shows the results for the Sony DSC-T77 cameras

Figure 9.10: Intra-model classification: confusion matrix - Ricoh

The recognition results for Ricoh cameras are fairly good: 95.9%, as shown in
figure 9.10. The misclassifications are so rare, that it is impossible to draw further
conclusions whether there are camera pairs that are mutually confused with each
other. All the cameras have one or two misclassifications, and only camera 5 is
always recognized correctly. However, the percentages of correct recognitions are
fairly high, and it is plausible that they are due to the randomized split between
reference and training images, and have no statistical significance.

Identification performance for Samsung NV15 cameras is a little bit worse than
for Ricoh GX100 cameras, i.e., 92.5%, as can be seen in figure 9.11. The worst
performance is with camera 1, only 90.0%, but again, it is not likely that this result
has any statistical significance either, since the misclassifications are quite evenly
spread throughout the confusion matrix.

The identification of Sony DSC-T77 cameras yields a perfect result, i.e., all
individual cameras are recognized, as shown figure 9.12.
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Figure 9.11: Intra-model classification: confusion matrix - Samsung

Figure 9.12: Intra-model classification: confusion matrix - Sony
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These results show that it is quite possible to discern between individual cameras,
provided that they are from the same manufacturer and of the same model. How-
ever, that must be a priori knowledge, since it is not easy to create model-specific
prototype fingerprints, as can be seen in one-tiered approach and model specific
fingerprint experimentations in the next two chapters. As a summary, hypothesis 1
is true, i.e., the method gives ≥ 90% accuracy for the classification.

Figure 9.13: Inter-model classification: posterior probabilities for each model and
camera

Figure 9.13 shows the relative frequencies of the posterior probabilities for cor-
rect and incorrect classifications. As can be seen, correct classifications are usually
certain, i.e., the posterior probability is close to 1.0, and the incorrect classifications
have lower posterior probabilities. In the case of Sony DSC-T77 camera, there were
no incorrect classifications, as can be seen in the confusion matrix in figure 9.12.
As can be seen, the distributions of posterior probabilities of correct and incorrect
classifications are clearly different, which means that hypothesis 2 is also true in the
case of intra-model classification.

9.3 One-tiered approach
This experimentation shows what happens when the distinction between inter-model
and intra-model identification is not made. The problem is more complex than the
ones in the previous experimentations, as the identification system has to be able
to utilize both inter- and intra-model specific features.

Overall, the identification accuracy is 921 images out of 1111, i.e., 82.9%. How-
ever, as can be seen in figure 9.15, some of the identification results for clusters
around the model, for example for Panasonic DMC-FZ50. The clusters indicate
that the inter-model identification works, i.e., the camera model is recognized cor-
rectly, but the inter-model variations are too small to make a distinction between
individual cameras.

Figure 9.14 shows the results for model recognition in the one-tiered scheme.
The results are calculated by combining the results for the individual cameras to
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Figure 9.14: One-tiered approach: confusion matrix for the clustered cameras



Figure 9.15: One-tiered approach, target vs. predicted classes
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one model cluster. The accuracy is 91.6%, which is almost the same as for the
inter-model identification experimentation, i.e., 93.2%.

As can be seen, the criterion for hypothesis 1 is not fulfilled neither in the case
of simple one-tiered identification scheme, nor in the case of combining individual
cameras of the same model into clusters. Since the naïve approach gives lower
identification results than the clustered one, the results imply that the inter-model
variations override the intra-model ones, and therefore the one-tiered approach is
not feasible.

Figure 9.16: One-tiered approach: relative frequencies of posterior probabilities

Figure 9.16 shows the relative frequencies of posterior probabilities in case of
both correct and incorrect classifications. As can be seen, the distributions are
clearly different, i.e., all the decisions that lead to correct classifications are very
certain with µ = 0.9533 and σ = 0.1344, while the incorrect classifications are
fairly uncertain with µ = 0.6470 and σ = 0.2838. It is to be noted, however, that
posterior probabilities of correct classifications have much larger standard deviation
than in the case of pure inter-model classification experimentation, the latter being
σ = 0.0944. Therefore hypothesis 2 is true, i.e., the distributions are significantly
dissimilar.

9.4 Existence of model specific fingerprints
An interesting question is whether there are camera model specific fingerprints, i.e.,
whether it is possible to use data from known cameras to create a fingerprint that
allows for recognizing the model of

The hypothesis is that when images from several cameras of same model are
combined, the individual differences between cameras are small enough to allow for
model specific information emerge in the reference patterns. The process that is
used to generate the reference patterns is similar to the recognition of individual
cameras, except that there is a fixed amount of images from each of the training
cameras:

1. Select all but one cameras from a model
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2. Randomly select Nref training images from each camera

3. Generate reference patterns by combining the training images of each model

4. Calculate correlations for training images

5. Train bayesian classifier with correlations

6. Calculate correlations with fingerprints for the images from the remaining
camera

7. Use trained classifier to classify the images from the remaining camera

Table 9.4 shows the cameras used in this experimentation. The green colored
cells mark the camera that is used for testing the system. The column “Cameras”
refers to the number of cameras for each model, of which one is used for testing and
the rest for training. The column “Training” refers to the size of training pool of
which Nref images are chosen for each camera, i.e., all the training images are not
used. The column “Testing” refers to the amount of testing images, which will all
be used of course in the testing phase.

Camera Model Cameras Training Testing
1 Olympus mju-1050 SW 5 454 104
2 Panasonic DMC-FZ50 3 338 129
3 Ricoh GX 100 5 347 76
4 Samsung NV15 3 257 123
5 Sony DSC-T77 4 263 88

Total 20 1659 520

Table 9.4: Cameras in model specific fingerprint experimentation

As can be seen in figure 9.17, the results are only mediocre at best. The overall
accuracies 47.1% and 49.0% for N = 30 and N = 60 training images, respectively.
As can be seen, the system can identify only the model 1, i.e., Olympus mju–1050
SW, with a decent accuracy of 80.8%. The performance for camera 4, Samsung
NV15, is the worst, with recognition accuracy of only 8.9%. Of the predictions, the
images are most often correctly attributed to class 2 and 4, with accuracy of 72.4%
and 78.6%. Of predictions, the worst accuracy is with camera 3 - the accuracy of
the predictions is only 29.5%.

It is not known at this stage what the cause of the problem is. Inter- and intra-
model recognition perform well for both the cameras 1 and 4, and does not give
any indication that the accuracy in the case of model specific fingerprints should
be this low. Moreover, as can be seen in previous chapters, wavelet filtering with
Nref = 60 gives excellent recognition accuracy with all the cameras. It is possible
to still increase the number of reference images per camera, but as can be seen, the
increase from 30 to 60 images does not improve the results sufficiently. Thus, as can
be seen, the criteria of hypothesis 1 are not fulfilled, and thus hypothesis 1 is not
valid in the case of model specific fingerprints.

Figures 9.18 and 9.19 show the relative frequencies of the posterior probabilities.
As can be seen, the correct predictions are very certain only 21.6% and 31.4% of time



CHAPTER 9. EXPERIMENTATION RESULTS 68

Figure 9.17: Prototype cameras: confusion matrix

Figure 9.18: Prototype cameras: relative frequencies of posterior probabilities, N =
30

for N = 30 and N = 60. Wrong predictions are not very certain. However, there is
a high spread in the certainty of correct predictions when compared with previous
experimentations, with µ = 0.7312 and σ = 0.2141 in the case of 60 training images
from each camera. When compared with µ = 0.9698 and σ = 0.0944 from inter-
model classification experiment, the difference is extremely high, which means that
the predictions in the case of this experimentation are much more uncertain. Even
though one-tiered approach experimentation gave high percentage on model hits, the
discrepancy can be explained easily: in the one-tiered approach experimentation all
the cameras were used for training, unlike in this experimentation, where one camera
from each model was a blind source.

There is a strong similarity between the the distributions of the posterior prob-
abilities of correct and incorrect classifications, If the tail of the relative frequencies
of correct classifications is disregarded, the distributions overlap. In the inter-model
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Figure 9.19: Prototype cameras: relative frequencies of posterior probabilities, N =
60

experimentation, the correct predictions were very certain and incorrect predictions
were uncertain. In this case the distinction cannot be made. Therefore hypothesis
2 is invalid.

Further analysis of the existence of model specific fingerprints is not in the scope
of this thesis. However, it certainly is an interesting topic for further work.



Chapter 10

Conclusions and further work

Two hypotheses were to be validated or rejected in this work:

1. Using multivariate multiclass bayesian classifier on the correlation vectors be-
tween image noise residual and image fingerprint provides reasonably accurate
image source identification method.

2. The posterior probabilities for correct and incorrect classifications are from
different kinds of distributions.

In the experimentation plan, there are four experimentations, namely inter-model
classification (chapter 9.1), intra-model classification (chapter 9.2, one-tiered ap-
proach (chapter 9.3) and model specific fingerprints (chapter 9.4). The validity of
hypotheses on these experimentations are summarized in table 10.1. As a recapitu-
lation, inter-model classification refers to a method that divides images of a camera
from each model to training and test set, to learn and exploit the differences between
camera models. Intra-model classification refers to discerning between cameras of
same model. One-tiered approach refers to first dividing the images of all the cam-
eras into training and test set, and then inserting all the test images into the same
pool. Model-specific fingerprints utilizes one camera from each model to generate a
fingerprint that is used to recognize the images from the other cameras of the same
model.

As can be seen, hypothesis 1 was valid for the inter-model and intra-model
recognition experimentations, even though the recognition accuracy was a bit below
the set threshold (95%) on one camera model. Hypothesis 1 was rejected in the latter
two experimentations: one-tiered approach gave classification accuracy of 91.6%,
and model specific fingerprint experimentation gave the accuracy of ca. 49%. It
seems reasonable that the results of the first experimentation could be improved
sufficiently, but the model specific fingerprint experimentation is probably a hopeless
case with the methods used in this thesis.

Hypothesis 2, which measured the stability of the recognition process, was valid
for all but the last experimentation. As can be seen in the table, the mean and
standard deviation of the distributions of posterior probabilities are clearly differ-
ent. Also, the posterior probabilities of the correct classifications are high > 0.95 for
almost all samples, and thus the classifications are certain, i.e., the process is stable.
The posterior probabilities for incorrect classifications are fairly low, and resemble
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Experimentation Hypothesis 1 Hypothesis 2
Inter-model Valid Accuracy with

wavelet filtering
and 60 images
96.1% >95%

Valid The shape, mean and
variance of the poste-
rior probability distri-
butions differ signifi-
cantly

Intra-model Valid Recognition ac-
curacy between
92.5% and 100%

Valid The shape, mean and
variance of the poste-
rior probability distri-
butions differ signifi-
cantly

One-tiered Rejected Recognition ac-
curacy 91.5%

Plausible The shape, mean and
variance of the pos-
terior probability dis-
tributions differ, but
some wrong decisions
have high posterior
probability

Model spe-
cific finger-
prints

Rejected Accuracy only
ca. 49%

Rejected The distributions have
similar characteristics
of gaussianity, and
statistically similar
parameters

Table 10.1: Validity of hypotheses in the experimentations

more a gaussian distribution, compared to the probabilities of correct classifications,
which appear as a spike near 1.0. The standard deviations of the posterior probabili-
ties in correct classification are fairly low, i.e., the posterior probabilities have almost
no outliers. As expected, the classification process for model specific fingerprints is
not stable - the results are almost random, which causes rejection of hypothesis 2 in
that case.

Viability of the methods can be assessed with table 10.1. As can be seen, inter-
model classification has the best performance, with 96.1% accuracy using 60 training
images, and the posterior probability distribution, i.e., the certainty of classifications
is discernibly different between correct and wrong classifications. Almost all certain-
ties are over P (ωcorr|χ) > 0.95, i.e., if image is classified correctly, the certainty of
the decision very high. Instead, if the image is classified incorrectly, the decision is
not a certain one - the certainty of P (ωwrong|χ) is centered around 0.5 and has a
gaussian form with no outliers near 1. Thus, the inter-model classification satisfies
both hypothesis 1 and hypothesis 2.

Also intra-model classification performs quite well. There were three camera
models, i.e., Ricoh GX 100, Samsung NV15 and Sony DSC-T77. The accuracy
varies between 92.5% (Samsung NV15) and 100% (Sony DSC-T77). Despite this
variation the intra-model classification is deemed to have sufficient accuracy, and
therefore satisfies the hypothesis 1. The certainties are bit more complex; the cam-
era manufactured by Ricoh presented some certainties above 95% also for wrong
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predictions, even though most certainties in the case of wrong predictions fell on
gaussian curve with mean around 0.5. However, since the number of misclassified
images was rather low, it is not possible to analyze the situation further. The cer-
tainties for correctly classified images from the Ricoh camera were over 0.95. The
certainties of misclassifications for the Samsung camera fell on the gaussian curve
with mean of 0.5, and correct classifications on a strong spike with P > 0.95. There
were no misclassifications for the Sony camera, and large majority of the classifica-
tions had P > 0.95. Therefore, hypothesis 2 in the case of intra-model classification
is considered to be satisfied.

The one-tiered experimentation aspired to combine the two preceding approaches.
As can be seen in table 10.1, hypothesis 1 had to be rejected outright, since the ac-
curacy was only 91.5%, which is unacceptable for a system intended to be used
in forensics. Strictly speaking, also the hypothesis 2 should be rejected, since the
distributions of posterior probabilities partly overlap, i.e., also the wrong decisions
have high certainties.

Model-specific fingerprints experimentation had the worst performance and sta-
bility. As an approach it could be called a catastrophe, since the accuracy was only
49%, i.e., hypothesis 1 was rejected, and the distributions of certainty overlapped
strongly, i.e., hypothesis 2 was rejected. However, as usually happens in science, a lot
can be learned from the experimentation. First and foremost, one-tiered and model
specific fingerprint experimentations imply strongly that choosing only one camera
of a particular model in the inter-model experimentations was a right choice. As
can be seen, one camera cannot represent the whole model, i.e., act as a prototype,
and putting all the images in the same pool is not a good choice - the noise resolu-
tion is not sufficient. This experimentation did not invalidate the idea of prototype
cameras; instead, it set some boundary conditions for the further methodological
development.

Therefore, as a main conclusion of this work, these experimentations have shown
that using two-tiered inter- and intra-model classification system with wavelet fil-
tering and ca. 60 training images can be used in image source recognition even in
forensics. The hypotheses were rather ambitious, requiring high accuracy and sta-
bility, and were fulfilled in the crucial experimentations. It can be easily said that
the methods used in the first and second experimentations exceeded expectations.

These experimentations have also shown that it is possible to perform source
camera identification with mathematically and computationally simple methods.
Wavelet filtering notwithstanding, the mathematical methods are based on simple
matrix algebra, which can be easily optimized with well known numerical algorithms.
From an engineering point of view, the methods are very feasible – images have to
be filtered only once and can be saved after, thus eliminating one time consuming
step from subsequent runs. Also, distributed computer architecture can be exploited
in order to further speed up the process.

As a final note, it must be remembered that these methods can be used only
if there is a priori knowledge on the cameras. These methods do not allow for
blind source camera recognition; however, with the help of existing forensic im-
age databases, it is possible to extends the feasibility of this work considerably by
acquiring the necessary a priori knowledge by other forensic means.
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10.1 Further work
One-tiered approach and model specific fingerprint experimentations set a clear path
for further methodological development. The experimentations failed to satisfy the
hypotheses, but as always, post mortem examination produces interesting results.

The impact of the amount of training images was clearly visible, but not as
important as could be thought. For example, in the inter-model experimentation
it was shown that the difference between training image set sizes Ntrain = 50 and
Ntrain = 60 with wavelet filtering was only 2.9 percentage points. The experimen-
tation allowed to select the filtering method and training image set sizes for further
experimentations. However, the impact of changing the training image set sizes is
not known, but taken from literature (Lukáš et al., 2006). Changing the set size is
not as straightforward as it sounds, since as always with pattern recognition, there
is a risk of under- or overlearning the patterns. The impact of the set size should
be examined further.

Using other filtering methods to elicit noise patterns has to be examined, since
the failure of the one-tiered and model-specific fingerprint approaches to satisfy the
hypotheses can be related to an unsuitable filtering method. Using a wavelet filter
is not a wrong choice as such, but other filtering methods or cascades of filters could
perform better. Of the other filtering methods, e.g. partial differential equations
show some promise (You and Kaveh, 2000) (Liu et al., 2011).

When the impact of training image set sizes and filter construction are known,
the possibility to create model-specific fingerprints should be examined. These fin-
gerprints would allow to detect the camera model and manufacturer even when the
source camera is not available. Instead of finding the exact camera, this would allow
for quicker sifting through suspect cameras.

One-tiered approach is important to allow for speeding up the recognition pro-
cess, and to do minor enhancements on the accuracy and stability of inter- and
intra-model approaches.

Other classification methods besides the Bayesian should be further experi-
mented with, e.g., naïve comparison of correlations, neural networks and regression
analysis. Some of these were presented in this thesis, but they are not sufficiently
studied. It should be also studied how to diminish the probability of false positives,
since those can have dire consequences for the camera owner.

In this work, it was assumed that all the images come directly from the camera
unedited, and only models with the same image sizes were considered. This presents
three interesting questions:

• Is there a image size scaling algorithm that can preserve enough information
of the noise pattern so that also cameras with different image sizes?

• Is there a suitable method to find the correct position for a cropped image in
the noise pattern of a camera?

• Is there a way to restore the original image sufficiently if image enhancement
algorithms have been used?

Answering these questions would clearly advance the possibilities of the source
camera identification system presented in this thesis. Image restoration and en-
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hancement algorithm detection are largely on-going work, which of course implies
carrying out comprehensive literature studies.

Image compression sets quite a few challenges for source identification. Since
lossy image compression specifically reduces small variations, e.g. noise. The higher
the compression ratio is, the less image noise is preserved. Also, low resolution is a
challenge to be addressed. (Alles et al., 2009)

There are of course two parts when information, especially noise patterns, is
considered. First is self-evidently storing, and the second is finding it, i.e., indexing.
Since the noise patterns have the exact size and color depth of the original images,
finding a sufficient storage is not a problem nowadays. However, indexing is. Some
approaches for indexing images based on features have been presented, and the first
such to continue the work in this thesis would be using pyramid matching kernels, as
shown in (Grauman) (Grauman and Darrell, 2007) (Grauman and Darrell, 2005).
Of course, indexing presents another interesting option – could two noise patterns be
compared with their indexes instead of direct methods. Image indexing is a heavily
researched area nowadays, and is likely to contribute to source camera identification.

This thesis is an example of applying supervised learning, i.e., the source of
images, and thus the origin of the noise pattern, is known in the learning phase.
Unsupervised learning, e.g. clustering methods, are a topic of interest, since they
allow for grouping data with no a prior knowledge of the source.
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Glossary

Bayesian classification calculates the posterior probability for a sample belonging
to class k, i.e., P (ωk|χ), where χ is the sample, using Bayes’s rule:

P (ωk|χ) =
P (χ|ωk)P (ωk)

P (χ)

The sample is then assigned to class k with highest posterior probability
P (ωk|χ). See linear regression

biorthogonal wavelet base for practical purposes, biorthogonal wavelet base has
separate scaling and mother wavelet functions for decomposition and recon-
struction, designated as φd and ψd (decomposition), and φr and ψr (recon-
struction), see orthogonal wavelet base

blind source may refer to

1. an unknown signal source, e.g., a camera that the forensic scientist has
no access to, and has no knownledge of the properties of the device, or
even how many devices there are

2. situation in which there are a large set of images, but it is not known how
many cameras have been used and which images are from which cameras

convolution discrete time convolution refers to sliding one sequence h[n] over an-
other sequence x[n] to produce result vector y[n]. It is defined as sum

y[n] =
∞∑

k=−∞

x[k]h[n− k]

dark current refers to the rate of electrons accumulating in each sensor pixel due
to thermal action caused by the thermal energy inherent to the structure of
the sensor and is independent of light falling on it

discrete wavelet transform applying discrete lowpass and highpass analysis fil-
ters, defined by wavelet base function, to represent a discrete signal as wavelet
coefficients on various levels of detail

downsampling downsampling by factor M means that only every Mth sample of
the signal is kept, i.e., M − 1 samples are dropped between each kept sample;
the resultant sampling frequency is 1

M
of the original signal
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Extreme Learning Machine a variation of neural network algorithm that has
very fast learning capabilities and is immune to local minima and discontinu-
ities

fast Fourier transform a fast algorithm for estimating the coefficients of Fourier
transform for discrete data, e.g., audio or image samples

filter an implementation of a mathematical method that removes noise or other
unwanted phenomena from a signal, e.g. an image or a voice recording, most
often based on convolution or signal transforms

filter bank is utilized by a wavelet filter to separate different signal frequencies
to allow for multi-resolution inspection and filtering of complex data such as
images

flat fielding An image taken with a uniformly illuminated imaging sensor, e.g.
solid colored and uniformly illuminated surface. All information in the image
is a result of PRNU or stochastic noise.

Fourier transform A mathematical transformation technique for mapping a sig-
nal in time-amplitude to frequency-power scale to allow for special filtering
techniques, see inverse Fourier transform

gaussian filtering a fast spatial filter based on computing gaussian coefficient
weighted sum of pixel neighbourhood; efficient and efficient for some types
of noise, but causes blurring and other artefacts, see wavelet filter

inverse discrete wavelet transform applying discrete lowpass and highpass syn-
thesis filters, defined by the wavelet base, on wavelet coefficients to recover the
denoised signal

inverse Fourier transform A mathematical transformation technique for map-
ping a signal represented in frequency-power scale to time-amplitude scale,
usually to reverse Fourier Transform, see Fourier transform

lens flare scattering and reflections of light from a strong light source in the view,
when the light passes the camera optics

linear regression correlations between images and reference patterns are linearly
mapped on a line that can be divided into regions denoting the best match-
ing pattern. Linear regression can be either univariate or multivariate. See
Bayesian classification

linear time-invariant the response of a system does not change with time shifts
or signal amplitude change, i.e., a system H is linear and time-invariant if two
conditions hold:

1. H(αu[n] + β v[n]) = αH(u[n]) + βHv[n]) (linearity)

2. ∀ r : y[n] = H(x[n])⇒ y[n− r] = H(x[n− r]) (time-invariance)



GLOSSARY 80

multivariate refers to methods that use an input vector to produce the output
value; in the case of camera identification, the output classification is deter-
mined by considering the correlations between an image and all of the reference
patterns, see univariate

neural network machine learning algorithms that can learn complex structures in
data, the idea originating from simulating brain neuron cells

orthogonal wavelet base for practical purposes, orthogonal wavelet base uses the
same scaling φ and mother wavelet ψ functions for both decomposition and
reconstruction, see biorthogonal wavelet base

reference image an image used for forming the camera fingerprint in the training
phase of the source identification system, see test image

synchronization fingerprints and the test image have to share same properties
with respect to transformations, e.g. rotation, scaling and cropping

test image an image used for testing the source identification system, see reference
image

univariate refers to methods that use only one input value to produce the output
value; in the case of camera identification, the output classification is deter-
mined by the correlation of an image with one pattern, see multivariate

upsampling upsampling by factor L means that a sequence of zeroes with length
L − 1 is inserted between each consecutive samples of sequence x[n] so that
the sample rate of the new sequnce is L times the sampling frequency of the
original signal. The upsampled sequence xu[n] is

xu[n] =

{
x[n

L
] n = ±L,± 2L± 3L, ...

0 otherwise

wavelet filter a very effective image filter based on discrete wavelet transform
(DWT) and filter banks, that can remove noise on various detail levels, see
gaussian filtering
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confusion matrices, 55
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results, 53
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