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In this work we studied the Building information modelling software Tekla Struc-
tures. Our goal was to improve the performance of a specific functionality in
the case study software: the filtering of model objects. Filters are a set of rules
customizable by the user. By applying filters user is able to filter model objects
by their properties, for example by name, length or construction date. Filters
are used in many key processes in Tekla Structures such as drawing creation,
selection and how objects are visualized.

We started by investigating the current implementation of filtering and where
the performance could be improved. In our methods we are partly restricted by
the large size of the software product, which makes high level changes difficult
to implement. After investigation we were able to find more efficient algorithms
and data structures to significantly improve the equation processing related to
filtering. We found significant differences in the calculation times of properties,
which lead us to investigate ways to optimize the evaluation order of the rules in
the filter. Finding the optimal evaluation plan is in its general form a NP-hard
combinatorial optimization problem.

We then reimplemented the equation processing related to filtering. This included
implementation of several algorithms to optimize the evaluation order of rules in
the filter. These algorithms included a full exhaustive search of all evaluation
plans and computationally less expensive methods such as an algorithm based on
boolean differential algebra. The performance improvement was then calculated
with user created structural models and in more controlled simulations. The
reimplementation of the equation processing alone improved the performance of
the filtering by more than 50% in our tests without the optimization of the evalu-
ation order. The evaluation order optimization also gave significant improvement
to the performance, which is more apparent in filters with a large number of
rules. All the implemented algorithms were able to improve the performance and
the computationally less expensive methods were almost as effective as the full
exhaustive search of all evaluation plans.
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Tässä työssä tutkittiin rakennusten mallinnukseen käytettävää Tekla Structures
-ohjelmistoa. Tavoitteena oli parantaa mallikappaleiden suodatukseen liittyvää
toimintoa. Suodatin Tekla Structures -ohjelmistossa koostuu säännöistä, joiden
perusteella voi rajoittaa mallikappaleiden joukkoa. Rajoitus tapahtuu kappalei-
den ominaisuuksien kuten nimen, pituuden tai rakennuspäivämäärän perusteella.
Suodattimia käytetään useassa eri tärkeässä prosessissa, kuten esimerkiksi piirus-
tusten luonnissa ja kappaleiden visualisoinnissa kolmiulotteisissa malleissa.

Aluksi tutustuttiin suodattimen nykyiseen toteutukseen. Tehokkuusanalyysin pe-
rusteella löydettiin algoritmeja ja tietorakenteita, joiden perusteella tehokkuutta
voitiin parantaa. Ohjelmiston laajamittaisessa muokkaamisessa on haasteena sen
suuri koko, monia miljoonia koodirivejä.

Mallikappaleiden ominaisuuksien laskenta-ajoissa havaittiin isoa vaihtelua.
Tämän vuoksi tutkimme voisiko suodattimen sääntöjen laskujärjestystä optimoi-
malla vaikuttaa sen suoritusaikaan. Optimaalisen laskujärjestyksen löytäminen on
NP-täydellinen optimointiongelma. Tutkimme vastaaviin ongelmiin, kuten tieto-
kantojen taulujen yhdistämisjärjestykseen käytettyjä algoritmeja.

Tutkimusten perusteella päätimme toteuttaa suodattimeen liittyvän
yhtälönratkaisijan uudelleen. Toteutimme algoritmeja, joilla pystyimme vai-
kuttamaan sääntöjen suoritusjärjestykseen. Toteutettuja algoritmeja olivat
yksinkertainen säännön hintaan perustuva uudelleenjärjestys, boolean differenti-
aalialgebraan perustuva menetelmä sekä kaikki mahdolliset suoritusjärjestykset
läpikäyvä haku. Uuden yhtälönratkaisijan tehokkuutta mitattiin testeissä,
joita tehtiin aidoilla asiakasmalleilla sekä simuloidulla datalla. Toteutettujen
muutosten myötä suodattimen suoritusaika pieneni yli 50% testeissä jo il-
man suoritusjärjestyksen optimointia. Suoritusjärjestyksen optimointi paransi
suoritusaikaa merkittävästi kaikilla toteutetuilla algoritmeilla. Laskennalli-
sesti vähemmän vaativat algoritmit olivat lähes yhtä tehokkaita kuin kaikki
mahdolliset suoritusjärjestykset läpikäyvä haku.

Asiasanat: BIM, Suodatus, JOP, Suoritusanalyysi, Boolean difference

Kieli: Englanti
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Abbreviations and Acronyms

BB Branch and Bound
BD Boolean Difference
BDD Binary Decision Diagram
BIM Building Information Modelling
JOP Join Ordering Problem
TS Tekla Structures
UDA User defined attribute.

5



Contents

Abbreviations and Acronyms 5

1 Introduction 8
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 10
2.1 Company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Tekla Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 The Current Filter Implementation . . . . . . . . . . . 12
2.3.2 Property Management in Tekla Structures . . . . . . . 13
2.3.3 Performance of Fetching Properties . . . . . . . . . . . 14
2.3.4 How Filters Are Used by Customers . . . . . . . . . . . 15

3 Methods 18
3.1 Boolean expression representation . . . . . . . . . . . . . . . . 18
3.2 Join Ordering Problem . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Algorithms Used for the Join Ordering Problem . . . . 20
3.3 Boolean Difference Calculus . . . . . . . . . . . . . . . . . . . 21

3.3.1 The Algorithm Based On Boolean Difference Calculus . 23
3.4 Branch and Bound Algorithm . . . . . . . . . . . . . . . . . . 23

4 Implementation 25
4.1 Calculation of costs and statistics . . . . . . . . . . . . . . . . 27
4.2 Straightforward Evaluation . . . . . . . . . . . . . . . . . . . . 27
4.3 Simple Rearrangement Method . . . . . . . . . . . . . . . . . 29
4.4 Boolean Difference Method . . . . . . . . . . . . . . . . . . . . 29
4.5 Exact Brute Force Method . . . . . . . . . . . . . . . . . . . . 33

6



5 Results and Analysis 35
5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Generation of Rule Sets . . . . . . . . . . . . . . . . . 36
5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.3 Filter Creation Performance . . . . . . . . . . . . . . . 41

5.2 Tests With a Real Customer Model . . . . . . . . . . . . . . . 42
5.2.1 Randomized Generation of Rule Sets . . . . . . . . . . 42
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.3 Comparing Results to Original Implentation . . . . . . 48

6 Conclusions 50
6.1 Comparison of the Implemented Algoritms . . . . . . . . . . . 51
6.2 Probability analysis . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Optimization of the Property Management . . . . . . . . . . . 52

A Results of the Simulations 56

B Tests With a Customer Model 59

7



Chapter 1

Introduction

Advances in information technology has transformed the tools of structural
design from pen and paper to advanced Building Information Modelling(BIM)
software of today. Users can create detailed 3D models that can be used
throughout the whole building life cycle from design and detailing to main-
tenance. Tekla Structures, the case study software in this thesis, is a BIM
software that has a wide international user base. The users are able to build
models with high level of detail from the largest beams and columns down
to individual bolts and welds. [1]

The goal of this work is to improve the performance of a specific function-
ality in Tekla Structures: the filtering of model objects. Filters consists of
set of conditions fully customizable by the end user. Objects can be filtered
by their properties such as material, length or construction date. Filters are
frequently created and applied to model objects in many separate processes
in Tekla Structures. This includes how objects in the 3D modelling view are
visualized, creation of a 2D drawing and what objects the user is able select
from model. Significant improvement in filtering speed will thus improve the
software performance in many key areas. Current implementation of filtering
slows down the software performance in large models where the filters can
be in some cases applied to millions of objects at once. Ways to improve the
performance should be investigated, as the size and level of detail of customer
models is ever increasing.

Problem statement

This work is a case study where we seek to significantly improve the per-
formance of one specific feature in Tekla Structures, the filtering of model
objects. We study the current implementation with an eye on what kind of
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CHAPTER 1. INTRODUCTION 9

algorithms and data structures would be needed to improve the performance.
In our work we are partly restricted by the large size of the software product.
Not everything will be possible to implement in the scope of this work if it
requires high level modifications to the software.

After examination it becomes clear that the current implementation of
equation library in Tekla Structures is not optimal for solving the boolean
expression in the filtering process. We will rewrite the equation processing
using efficient data structures. Optimizing the evaluation order of the rules
in the filter expression is important to study, as we found significant differ-
ences in the calculation times of different properties in our analysis. This
problem is related to the join ordering problem that is encountered in the
database query optimization. In its general form, the join ordering prob-
lem is a generalization of the classical travelling salesman problem and thus
NP-complete. We will review different optimization algorithms commonly
used for the problem and pick methods to be implemented to our software
product. The implemented methods will need to be thoroughly tested and
analysed before they can be added as a part of the international software
product.

Structure of the Thesis

The thesis begins with an introduction to the case study software. The
emphasis is on filtering and finding the key areas where its performance de-
pends on. In chapter 3 where we review methods that could be useful for
the performance optimization based on our findings. In particular we review
methods commonly used for optimizing boolean expression and the join or-
dering problem. In chapter 4 we describe the implementation of our chosen
methods to Tekla Structures in detail. In chapter 5 we describe the testing
of our implementation and analyse the results. Finally in the discussion and
conclusions we summarize the results, how we met our objectives and discuss
possible ways to go forward.



Chapter 2

Background

Company

Trimble is a company based in the United States that works in a number
of different industries including geospatial solutions, agriculture and con-
struction. What is now the Trimble Solutions Finland was formerly known
as the Tekla corporation, a Finnish software company established in 1966
and acquired by Trimble in 2012. The products developed in the Trimble
Solutions Finland include software solutions for energy distribution, infras-
tructure management and construction. Most of the development is centred
in the Espoo headquarters where about 400 employees are working. The
most important product is the Tekla Structrues, which we will introduce in
the next section. [1, 2]

Tekla Structures

Tekla structures(TS) is a large software product designed for Building In-
formation Modelling(BIM). Customers can use the product throughout the
building process for conceptual design, detailing, fabrication and construc-
tion management. Software is used for creating 3D structural models as well
2D drawings. A picture of the 3D Modelling view can be seen in figure 2.1
[1]

The models created with Tekla Structures can be constructed with a
high level of detail. The models can consist of a large selection of building
elements such as beams, columns, plates and reinforcing bars. The parts can
be connected in many ways, for example welded or bolted together. The
part geometry can be modified by for example cutting or chamfering a part.
All types of materials can be used, the most common materials being steel
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CHAPTER 2. BACKGROUND 11

and concrete. There exists also tools for construction management, such as
monitoring the construction dates for individual objects and assemblies. The
size of the model extend to the size of stadiums and skyscrapers consisting
of millions of objects.

Figure 2.1: A 3D modelling view in the Tekla Structures software. [1]

The development of the software has been ongoing for more than 25 years.
Currently the source code consists of more than 6 million lines of code written
in the C, C++ and C# programming languages. A hundred developers are
working on the software to create new features, fix defects and improve the
software architecture and performance.

Filtering

Filters consists of set of conditions fully customizable by the end user. Picture
2.2 shows how a selection filter can be constructed in Tekla Structures. For
each filter row, customer first selects a category, which can be for example
Part, Assembly, Reinforcement Bar or many others. This will determine
the type of model objects that the filter row can be applied to. Also for some
categories such as Task or Assembly, the filtering will be applied to related
objects, such as all the tasks that are linked to the object. For each category
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there exists a set of properties user can choose from. For certain categories
such as Part this list can be more than a hundred items long and include user
defined properties. User can then select from a list of conditions including
equals, greater than, begins with and many others depending on the type of
the property which can be string, integer, floating point number or a date.
Finally user can set the expected value. This is the value to which the value
of the property in a model object is compared.

The return value of the whole filter for one model object is always either
true or false. Filter rows can be joined together by and or or conditions,
where and has precedence to or in the evaluation order. Also user can freely
add parenthesis to the equation. In a typical filter, only few rows are required,
but sometimes there might be up to ten and in rare cases even more rows.

Figure 2.2: The user interface, through which selection filters can be created.

The Current Filter Implementation

Major operations related to filters are the creation of the filter in the user
interface, initialization and applying the filter to a single model object. After
user defines a filter in the UI, the input is saved in the disk and it can be
used to the end of the project.

Initialization is done every time a process is executed that requires the
filter. In the initialization, the user input is processed by the filter class.
In the current implementation, this includes creation of equation strings as
required by the external equation library tool. For each row in the filter, an
equation string is created and the whole filter is described as an equation
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string containing series of if-then-else commands, which the equation library
is able to parse.

Once a filter is initialized it can be applied from one to millions of model
objects depending depending on the process. This is typically the most
performance critical part. For each object that needs filtered, the function
IsObjectFiltered is called. The function gets the object id as a parameter
and returns true if the model object passes the filter. For example when
user selects a set objects in the model, a selection filter is initialized. System
fetches the ids of all the selected model objects. For each selected object id
the function IsObjectFiltered is called and only the objects that pass the
filter criteria are set as selected.

IsObjectFiltered function fetches the related object ids for each filter
row if this is required by the category, for example all the tasks related
to the object. The equation library receives the equation strings and the
ids and starts the evaluation of the filter. The filter rows are executed in
straightforward order from top to bottom. All of the filter rows are not
executed if the return value is already determined by the preceding rows.
The equation library is able to access the Tekla Structures property interface
to receive the value of the property for given model object id.

Property Management in Tekla Structures

Modelling the structure of buildings and work flow of a construction project
require a rich and customizable attribute system. Model objects in Tekla
structures can have hundreds of different properties. The performance of the
property interface has a key role in the filter performance.

The core of the Tekla Structures property management system is the
DbVirtual virtual database management system, which has been used since
the beginning of development and is built in house. The data is stored in
memory buffers, which increases the performance significantly when com-
pared to more traditional database systems.

In the source code of TS, model objects including for example parts, as-
semblies and bolts belong to a hierarchy of objects derived from the base class
CommonObject. When an object is created and selected from the database
many operations are performed, most noticeably data is selected from mul-
tiple database tables.

Properties of objects are typically fetched via the property interface in the
TS model module. For this to happen, a CommonObject has to be created
and selected from the database. Interface class then starts the process to
fetch the property. Sometimes fetching a property might require property
specific operations which could take more time than the object creation.
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Each model object can also have their own user defined attributes(UDA),
which are stored in separate database tables depending on the type, which
can be a string, an integer or a floating point value.

In cases such as filtering where specific data is needed from a potentially
huge number of objects, the current property interface is not optimal. A more
optimal solution would be to use the design pattern called lazy loading, so
that only the data required by the operation is fetched, and parts of the
object would remain in uninitialized state. This would, however, require a
significant amount of time consuming refactoring work. However, for some
frequently used properties such as name, type and material direct database
access has been allowed for the filtering system. These properties can be
calculated a lot faster than with the properties interface as the CommonObject
creation can be bypassed.

Performance of Fetching Properties

To better understand the performance issues related to filters we need to
study the time it takes to fetch properties for the filtering system. We are
expecting to see major variance in the speed depending on the property. A
large model representing a bridge was studied as an example. The model
contained more 21646 objects classified as parts.

In the test program, the part ids were fetched from the database. All the
properties for the filter categories part, object and assembly were chosen
for the analysis, more than 300 properties in total. All of the properties
were then fetched for all the parts in the model. Timers were placed in
the tester code to measure the performance of each property. The results
sorted by execution time where then plotted in figure 2.3. In the figure, one
dot represents a single property in the system, and the y-axis represents the
average time it takes to calculate the property for a model part.

As you can see in the plot, there is a handful of properties that are very
fast and a few that are significantly slower than others. A large majority of
properties are in the middle and take about the same time 15µs to calcu-
late. This is due to the overhead created by the property interface and the
CommonObject creation. Many of these properties are user defined attributes.

The fast properties are dominated in number by the slower ones, but
most of fast ones are used very frequently in filters. For example the prop-
erty name takes only 0.5µs to fetch directly from the database and it is the
most common property used in filters. On the slow side there is also some
commonly used properties such as profile, which takes about 40µs to cal-
culate in this model. For some assembly and task related properties also the
related objects are fetched and checked by the filtering system, which is not
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Figure 2.3: The distribution of the property calculation costs for an example
model. One dot represents a single property in the system, and the y-axis
represents the average time it takes to calculate the property for a single
model part

shown in this analysis.
Based on this analysis there is at least two orders of magnitude difference

between the slowest and fastest properties frequently used in filters. This
leads us to believe that optimizing the evaluation order of filtering might
be very beneficial for the filtering performance. If a filter contains both
properties name and profile, the name should obviously be calculated first.

How Filters Are Used by Customers

Farmi is an in house built automatic testing system for Tekla Structures.
Large number of test cases using different structural models are automatically
run to ensure high quality of the product. Much of the testing is done using
real customer models and some models are generated by testers for testing
specific key operations in the TS.

Searching through the Farmi model database we can find 2135 filters,
which can give us a good indication of how the filters are used. These filters
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have 6851 rows in total, which gives an average of 3.2 rows for each filter.
in table 2.1 we can the row count distribution of filters. Most of the filters,
61%, are either one or two rows long. Approximately 96% are under ten
rows, but a few longer ones exist. The largest filter found contained 26 rows.
The Longest filters typically have some degree of repetition, so that the same
properties are used in many different rows.

Table 2.1: The rule count distribution of the filters in Tekla Structures. Most
of the filters have few rules, but even filters larger than 15 exist. Largest filter
found in this analysis had rule count 26.
Number of rows Number of filters Ratio of all filters Cumulative ratio

1 832 0.3897 0.3897
2 465 0.2178 0.6075
3 259 0.1213 0.7288
4 100 0.0468 0.7756
5 75 0.0351 0.8108
6 71 0.0333 0.8440
7 79 0.0370 0.8810
8 137 0.0642 0.9452
9 26 0.0122 0.9574
10 21 0.0098 0.9672
11 9 0.0042 0.9714
12 17 0.0080 0.9794
13 10 0.0047 0.9841
14 7 0.0028 0.9869
15 8 0.0037 0.9906

The Use of properties in filters was studied as well. In table 2.2 we can
see the most commonly used properties in filters and the time it takes to
calculate these properties. We can roughly categorize the properties in three
groups

• 53% Fast database properties 0.2µs− 3µs

• 5% Slow properties > 40µs

• 42% Middle properties, that all take about the same time 14.6µs.
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Table 2.2: The most commonly used properties in filters and the time it takes
to calculate them. There is large variation in the calculation times.

Property name Ratio Calculation time(µs)
User defined attributes(many) 0.35 14.6

Name 0.23 0.51
Object Type 0.13 0.18

Class 0.088 3.14
Material 0.040 2.40

Serie 0.034 13.0
Phase 0.031 2.82
Profile 0.026 40.2

Id 0.013 0.18
Numbering Serie 0.011 13.5

Start number 0.0096 12.9
GUID 0.0077 14.0

Numbering Position 0.0063 41
Assembly type 0.0048 23.4

Approximately 93% of operators used in the filters are either equals or
does not equal. and is the most common logical conjunction at 85% leaving
15% for or.



Chapter 3

Methods

Boolean expression representation

As we studied the current filtering implementation we found that the perfor-
mance of the equation processing could be significantly improved. We will
consider an efficient data structure to represent the boolean expression in
the filter. There exists many different ways to represent a boolean equa-
tion which are suited for different purposes. These include for example the
propositional directed acyclic graph and the negative normal form. The Bi-
nary decision diagram(BDD) is a clear compressed data structure that is
a strong candidate because it is easy to store and traverse in a computer
program. [3, 4]

A figure representing a BDD of a boolean expression x1∨x2x3 can be seen
in figure 3.1. In BDD the boolean equation is visualized as a rooted directed
acyclic graph where terminal nodes are either 0-terminal or 1-terminal nodes.
Other nodes are decision nodes, which are labelled by a boolean variable
xi. Nodes will have two children, a high child and a low child. Low child
corresponds to the case where boolean variable evaluates to true and high
child where it is false. The return value of the function with the current value
assignment can be calculated by traversing the tree from root to a terminal
node.

BDD is considered to be ordered, if the variables appear in the same
order. If all the isomorphic subgraphs have been removed and all the nodes
whose two children are isomorphic are eliminated, the BDD is called reduced.

18



CHAPTER 3. METHODS 19

Figure 3.1: A visualization of a binary decision diagram of boolean expression
f(x) = x1 ∨ x2x3. Each boolean variable is represented by a decision node
with two children for the cases where the variable evaluates to true or false.
The terminal nodes determine the end result of the function.

Join Ordering Problem

A problem similar to the optimal evaluation of the boolean expression in
the TS filtering is often encountered in database systems. When user fetches
data from a database this is done by writing a query in a query language such
as sql. In a database query the user can determine a boolean expression as
a where clause which restricts the desired result from all the records in the
database. The data can be collected from various sources and accessed in
different ways. Query optimizer turns the query to a cost effective evaluation
plan. Processing times of the query may vary by many orders of magnitude
depending on the evaluation plan. [5, 6]

The join ordering problem(JOP) is a difficult combinatorial optimization
problem where many different algorithms have been used. The search space
or solution space in the JOP is considered to be the set of evaluation plans
that correspond to the same query. A solution can be described by a pro-
cessing tree that evaluates the join expression. Sometimes restrictions can



CHAPTER 3. METHODS 20

be applied to the tree structure, for example considering only left deep trees,
where n! different solutions exist, where n is the number of joins. There
exists a cost function, that maps a solution to a cost. The goal is to find the
solution with the minimum possible cost. In its general form, the join order-
ing problem is a generalization of the classical travelling salesman problem
and thus NP-complete.

The database systems typically use information of the database struc-
ture and statistics of the data stored in database to determine the cost of
a solution. Information such as the size of the table accessed can be used.
Cardinality describes the uniqueness of values in a database column, for
example the column describing the sex of a customer would have lower car-
dinality than the name column. A histogram of values in a column can also
be used in the optimization. This requires a process where statistics are re-
calculated in a regular manner either from the all the records of the table or
a smaller sample. We are not considering cost functions in database systems
in more detail as they are quite technical and not especially related to our
case study.[8, 9]

Algorithms Used for the Join Ordering Problem

In general, all algorithms applicable to the NP-hard optimization problems
will also be applicable for JOP. We will review some of the common algo-
rithms used for the join ordering problem. [5, 6]

For smaller queries with ten or less joins, it typically still possible to do
a complete traversal of the search space to find the global optimum. This is
typically enough for most traditional database systems, but it is not feasible
for some contemporary databases such as object oriented databases where
tens or even hundreds of joins can be used. The approaches to simplify the
problem can be classified to sacrificing generality and sacrificing exactness.
The former method will add restrictions to the solution space such as consider
only left deep trees and the latter method will occasionally accept suboptimal
solutions for the problem. The algorithms for JOP can be roughly classified
to four groups: deterministic, randomized, genetic and hybrid algorithms.

The deterministic algorithms perform a deterministic step by step search
of the solutions space. The dynamic programming methods that perform
a full traversal of the search space while possibly pruning unlikely solutions
belong to this category. This method is used in almost all relational database
systems where the number of join relations is usually quite small. One some-
what new deterministic method is based on relational difference calculus[8].
The goal of this method is to find the most significant relation based on the
boolean difference calculus. We will expand on this method in section 3.3.
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There is a large number of other deterministic algorithms, such as the A*
search algorithm, which is efficient at pruning infeasible solutions.

Randomized algorithms are typically used for larger queries in less tradi-
tional databases where the number of joins can be large. A set of moves is
defined, which constitute an edge between different solutions in the search
space. A good move when considering only left deep trees can be for example
swapping the join order of two relations. Method called 3Cycle performs a
cyclic rotation of three different relations.

Algorithms will then perform a random walk in the solution space starting
from a randomly selected point. In the hill climbing algorithm, the best of all
available moves is chosen. Iterative improvement algorithm selects a random
neighbour and performs the move, if it improves the cost. It is usually less
likely to get trapped in local minima and avoids the calculation of all possible
moves, which can be costly because the number of neighbours can be very
high. If no move that improves the cost is available, a local minimum is
reached and the execution stops. The process is then repeated until suitable
number of random starting points are considered or time limit is exceeded.
The lowest local minimum is then chosen.

Simulated annealing algorithm is an improvement on the iterative im-
provement method, that is inspired by the natural annealing process of crys-
tals. A concept of temperature is introduced, which describes the likelihood
that a move leading to worse cost is accepted while cost improving moves are
always accepted. The temperature is lowered as the minimization proceeds.
When correctly executed, this algorithm is less likely to get trapped in local
minima.

Hybrid algorithms try to combine the benefits of both randomized and de-
terministic methods. Fore example a method called toured simulated anneal-
ing performs the simulated annealing starting from deterministically chosen
start points.

Genetic algorithms are quite similar to the randomized algorithms. Their
unique characteristic is that they are inspired by the biological evolution. A
random starting population generates offspring through crossover and muta-
tion. The fittest solutions according to a cost function survive to the next
generation. The process is repeated until some number of iterations or until
the population gets homogeneous enough.

Boolean Difference Calculus

Boolean difference calculus[7, 8] can be used in a deterministic method to
optimize boolean expressions. The main idea of the method is to find the
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variable xi with a best achievement / cost ratio. This will then be the
first tested condition and after that other variables are considered. Boolean
difference is defined as

∆xi
f(x) = f(x0, x1, . . . , xi = 0, . . . , xn)⊕f(x0, x1, . . . , xi = 1, . . . , xn). (3.1)

The probability that the boolean difference p(∆xi
f) is true is a measure of

the impact of the variable xi on the outcome of the whole boolean expression.
If the variable xi is is irrelevant to value of expression f(x) then p(∆xi

f) is
zero and the value is one if the variable alone determines the result.

We will show how to calculate the boolean difference by considering a
simple example function

f(x) = x0 ∨ x1x2. (3.2)

To determine the boolean difference we have truth table of the function as
an input to our algorithm in table 3.1. In this simple example we can clearly
see from the function and the truth table, that the variable x0 has the largest
impact on the function result. The boolean difference of the variable x0 as a
function of x1 and x2 can be seen in table 3.2.

Table 3.1: The truth table corresponding to equation 3.2.
x0 x1 x2 f(x)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Table 3.2: The boolean difference of variable x0 for the truth table in 3.1
x1 x2 ∆x0f(x)
0 0 1
0 1 1
1 0 1
1 1 0
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If the probability of all variables is 0.5, then the probability of each row in
table 3.2 is thus 0.5 * 0.5 = 0.25. The probability of the boolean difference
p(∆x0f(x)) in this case is thus 0.25 + 0.25 + 0.25 = 0.75. Using the same
procedure, we can construct the boolean difference for variables x1 and x2,
p(∆x1f(x)) = p(∆x2f(x)) = 0.25.

The Algorithm Based On Boolean Difference Calculus

An optimization method for boolean expressions with expensive tests based
on the boolean difference calculus was proposed by Kemper[8] in 1992. The
optimization method goes as follows. We define a cost function c, which gives
the cost of testing each variable xi. We also define a factor

si =
p(∆xi

f)

c(xi)
. (3.3)

The larger the value of si, the better the achievement / cost ratio of testing
variable xi is. We can then create a decision tree describing the correct
evaluation plan with following algorithm

1. if variable count n = 0, there is nothing to evaluate. If n = 1, test x0.

2. For each xi, calculate the factor si as in equation 3.3.

3. Choose the variable xi with the highest factor si to be tested next.

4. Apply the algorithm recursively to the xi = 0 and xi = 1 branches with
n− 1 free variables.

This method is much less computationally complex than a full search of the
the solution space, where all variable candidates should be considered instead
of just the one with the best factor si. The complexity is in how to calculate
the factor si.

Branch and Bound Algorithm

Branch and Bound(BB) algorithm[10, 11] is one of the most commonly
used algorithms for NP hard combinatorial optimization problems. It has
also been applied to the optimization of boolean expressions with expensive
tests[8].

BB is a deterministic method that traverses through the search space in a
recursive manner. The method differs from the exhaustive brute force search
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by introducing a function for calculating the lower bound of any candidate
solution from a partial solution. At first a solution is found for the problem
by using any heuristic. This will then be saved as the current best solution
and the upper bound of all candidate solutions. A queue is initialized with
a partial solutions where none of the variables are assigned. A following
algorithm is then followed.

1. Pop a node from the queue

2. If the node represents a candidate solution and has lower cost than the
current best solution, then save it as the best solution.

3. Else branch on the node to produce more nodes by recursively splitting
the search space.

4. Calculate the lower bound for each node. If the node lower bound is
lower thant the current best solution, insert the node to the queue. Go
back to 1.

A difficult part is often to calculate a good estimation for the lower bound.



Chapter 4

Implementation

In this work we created a new filtering class for Tekla Structures to replace
the old implementation and the external equation library. As a new feature
we will implement different algorithms to optimize the evaluation order of
the filter rules. The flow of the algorithms is as in figure 4.1.

Figure 4.1: A Visualization of the evaluation order optimization algorithms.

The input for the algorithm is a table of rules that comes from the user
input. The fields of a rule can be seen in table 4.1. The order of rules in the
rule table defines the order in which the filter is evaluated in straightforward
evaluation. Our implementation will transform this input to a decision tree
that describes the evaluation order of the boolean expression. Algorithms can
use the estimated property calculation costs and rule pass ratios generate the
decision tree with the smallest average evaluation cost.

The output of the algorithm is a decision tree that consists of decision
nodes. The contents of a decision node can be seen in table 4.2. This tree
will then be traversed in the function IsObjectFiltered that gets the model

25
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Table 4.1: The contents of a rule structure in Tekla Structures.
Field Name Type

Category Name String
Property Name String

Operator String for example equals, contains, greater than
Expected value String

Parenthesis open Integer an integer representing the level of parenthesis
Parenthesis closed Integer

And / Or String

Table 4.2: The contents of a Decision node structure in Tekla Structures.
Field Name Type

Type enum DecisionNode, TrueNode or FalseNode
Rule Rule

Left child Decision node
Right child Decision node

object id as parameter. The program will traverse the decision tree starting
from the root.The evaluation goes as follows

1. Set the root of the decision tree as the current node.

2. If the node type is TrueNode return true. If it is FalseNode, return
false

3. If the type of the model object does not fit with the rule’s category, set
the left child as the current node and go to step 2

4. Fetch the property in the rule for the model object if it is not already
calculated previously.

5. Evaluate the expression by comparing the model object’s property
value to the expected value defined in the rule. If the expression re-
turns true set the right child as the current node. Else, set the left
child. Go to step 2.

The most complex part is the the initialization of the filter where the
decision tree creation happens. Four algoritms were implemented, which we
will go through in this chapter.
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Calculation of costs and statistics

The creation of the optimal decision tree requires accurate statistics of the
cost of the property calculation and probabilistic information of the pass
ratio of the rules in filters. In our tests the costs were estimated for each
property in the filter rule set before the filter creation process. This was
done by fetching all the part ids in the model and calculating the property
for all of them while calculating the passed time by timer in the code. A
smaller sample of the model objects would likely have been enough for this
analysis. An optimal sampling method might be one where the statistics
are gathered from the same set of objects that the filter is applied to. Cost
statistics should not be calculated on the fly every time a filter needs to be
created as this eliminates all the potential gain from the better evaluation
order. This however should be enough for our tests to see how much can
be gained from accurate statistics and a more sensible way to implement the
statistics calculations can be implemented later. A hard coded set of property
costs could also be used, as calculation time doesn’t seem to be dependent
on the model for many properties, but this needs more investigation.

The histogram method was chosen for the probability estimations. The
probability of the rule to be true was calculated from all parts of the model. In
theory, this could be done daily as a background operation for commonly used
filters either by calculating the properties for all objects or a smaller sample.
Having accurate probability information for the model is a lot more difficult
as they depend very strongly on the model and no hard coded values can be
used. There also exists correlation between different properties. Variables
can not thus be expected to be statistically independent

p(xi = 1, xj = 1)! = p(xi = 1) ∗ p(xj = 1). (4.1)

Calculation of correlations however would be quite a lot more time consuming
especially for larger filters, where they should be calculated for each pair of
variables. However, understanding the effect of probabilities have for the
evaluation cost is still very valuable for the analysis.

Straightforward Evaluation

As a first step we will consider the creation the decision tree using the
straightforward left-to-right evaluation. This is in principal how the cur-
rent equation library implementation works, but reimplementing this using
the decision tree model will likely give a performance improvement over the
old implementation.
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In Tekla structures filters the and operator has precedence over or opera-
tor and filters can contain many levels of paranhtesis. The basic formula for
creating the decision tree from a list of rules is visualized in figure 4.2 and
goes as follows.

1. Initialize a decision node for all the rules in the filter and the terminal
false and true nodes.

2. Start From the first rule and the corresponding decision node.

3. Hook the node’s true child to the next rule’s node if operator is and.
If there is no next node or the operator is or the node will be linked to
terminal true node.

4. Hook the node’s false child to next node following an or operator. If
there is no or operator in the following nodes, the node will be linked
to terminal false node.

5. Go to next Rule and go back to step 3. If there is no rules left, the
algorithm is finished.

Figure 4.2: Visualization of how a decision tree can be generated using the
straightforward evaluation order.

Parenthesis can be taken care of in a recursive manner by replacing them
with a virtual node in the upper function and calculating a decision tree in
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a similar fashion for the rule set inside parenthesis. The virtual node in the
upper function is then replaced by the subtree. Any connections going to
the virtual node will be hooked to the root of the subtree. Any connections
inside the subtree that are linked to the terminal true and false nodes are
then replaced by the virtual node’s right and left children.

Simple Rearrangement Method

This method doesn’t follow any general optimization algorithm for NP-hard
problems, but it is designed specifically for this case. Knowledge of the cost
or probabilistic information of rules can be used to reorder the rule list before
the straightforward decision tree is generated. The Rule list is divided into
sublists by the or operators. The rules inside the sublists, connected by the
and operators, are then sorted by cost / pass ratio.

The evaluation order of these sublists can then be sorted by their own
cost / pass ratio. The sorting factor for each sublist can be evaluated as in
algorithm 3.

Algorithm 1 Get the sort factor of a sublist.

1: function GetSublistSortfactor(Sublist)
2: Cost = 0
3: Probability = 1;
4: for Rule in Sublist do
5: Cost = Cost + Probability * Rule.cost
6: Probability = Probability * Rule.probability

return Cost / Probability

Once again, the parenthesis can be handled by recursive methods. The
cost of sorting arrays the size of even the largest rule tables is minimal. The
benefit of this model is its simplicity and very fast execution. It can at least
be used as comparison point for more advanced algorithms.

Boolean Difference Method

The Boolean Difference method was chosen as a candidate algorithm, because
it seemed to be efficient and perhaps more reliable compared to the random-
ized algorithms. It is also straightforward to implement. The pseudo code of
the implementation can be seen in algorithm 2. The decision tree creation
was implemented in a breadth-first-search like manner using a queue.
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The most significant rule will be chosen with algorithm 3. New node is
created for the most significant rule and two new queue entries will be created
for the true and false branches. Keeping track of already processed rules was
done by introducing two arrays LockedTrue and LockedFalse. These were
implemented as integers, where the bit corresponding to rule’s index was set
as 1, if the rule was processed. This means search and access operations
are very fast and are not dependent on the rule table size as they were
implemented using the bitwise and, or and negation operators. However, the
number of rules has to be smaller than the size of integer in bits, either 32
or 64 bits.

The complex part is the calculation of the boolean difference itself. At
first a truth table based method for calculating the boolean difference was
implemented as proposed by Kemper[8]. However, the number of rows in the
truth table is 2N where N is the number of variables in the boolean function.
Truth table based cost minimization methods are thus not efficient when the
number of variables is large. A truth table for 30 rules already takes one
gigabit of memory even if data is stored in the optimal way and traversing
through an array likes this takes considerable time with today’s computer
power. The performance started to be unbearably slow as the number of
rules in filter exceeded 15.

A following modification was made to improve the performance in boolean
difference calculation. A supporting binary decision tree is first created by
using the straightforward order. The value p(∆xi

f(x)) was then calculated
for each variable as the difference between the probability of the boolean
equation to be true in cases where xi is true and where xi is false. This was
calculated by using the pre calculated decision tree as in the algorithm 4.
This means that instead of generating and traversing the whole truth table
with 2N rows, we only need to traverse the decision tree generated from
the straightforward order two times, once by locking xi = 0 and once for
xi = 1. By definition this tree only contains N decision nodes and additional
terminal nodes. This optimization can be justified, because the filters don’t
contain exclusive or conditions, and thus if the result of boolean equation is
true when xi = 0, it is also always true when xi = 1, so the value for boolean
difference will be the identical when calculates with this method.
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Algorithm 2 Creates the decision tree using the boolean difference method.
Requires a decision tree created using the straightforward or other method
as input.

1: function CreateDecisionTreeBD(Rules, StraightforwardRoot)
2: Root = null
3: Q = new Queue
4: FirstItem = new QueueItem
5: FirstItem.ParentType = NoParent;
6: FirstItem.ParentNode = null;
7: FirstItem.LockedTrue = FirstItem.LockedFalse = ∅
8: Q.push(FirstItem)
9: while Q is not empty do

10: Current = Q.pop()
11: MaxRule = FindBest(Rules, StraightforwardRoot, Cur-

rent.LockedTrue, Current.LockedFalse)
12: if MaxRule == null then
13: Continue
14: NewNode = new Node(MaxRule);
15: NewNode.Left = TerminalFalseNode

16: NewNode.Right = TerminalTrueNode

// Connect the parent node to current node
17: if Current.ParentType == NoParent then
18: Root = NewNode;
19: else if Current.ParentType == TrueParent) then
20: Current.ParentNode.Right = NewNode
21: else if Current.ParentType == FalseParent then
22: Current.Parent.Left = NewNode
23: LeftChild = new QueueItem
24: LeftChild.ParentNode = NewNode
25: LeftChild.ParentType = FalseParent

26: LeftChild.LockedTrue = Current.LockedTrue
27: LeftChild.LockedFalse = Current.LockedFalse ∪ MaxRule
28: Q.push(LeftChild)
29: RightChild = new QueueItem
30: RightChild.ParentNode = NewNode
31: RightChild.ParentType = TrueParent

32: RightChild.LockedTrue = Current.LockedTrue ∪ MaxRule
33: RightChild.LockedFalse = Current.LockedFalse
34: Q.push(RightChild)

35: return Root
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Algorithm 3 Finds the rule with the most significance to cost ratio in the
boolean equation.

1: function FindBest(StraightforwardRoot, LockedTrue, LockedFalse)
2: MaxRule = null
3: MaxS = 0;
4: for Rule in Rules do
5: if Rule in LockedTrue or Rule in LockedFalse then
6: Continue
7: T = GetPassRatio(StraightforwardRoot, LockedTrue ∪ Rule,

LockedFalse);
8: F = GetPassRatio(StraightforwardRoot, LockedTrue, Locked-

False ∪ Rule);
9: S = |T - F| / Rule.Cost

10: if Rule == null or MaxS < S then
11: MaxS = S
12: MaxRule = Rule
13: return MaxRule

Algorithm 4 Returns the probability that the given decision tree returns
true node
1: function GetPassRatio(Node, LockedTrue, LockedFalse)
2: if Node.Type == TrueNode then
3: return 1.0
4: if Node.Type == FalseNode then
5: return 0.0
6: if Rule in LockedTrue then
7: return GetPassRatio(Node.Right, LockedTrue, LockedFalse)

8: if Rule in LockedFalse then
9: return GetPassRatio(Node.Left, LockedTrue, LockedFalse)

10: R = Node.Rule.Probability * GetPassRatio(Node.Right, LockedTrue
∪ Node.Rule, LockedFalse

11: L = (1-Node.Rule.Probability) * GetPassRatio(Node.Left,
LockedTrue, LockedFalse ∪ Node.Rule)

12: Return R + L



CHAPTER 4. IMPLEMENTATION 33

Exact Brute Force Method

We also implemented a brute force method that searches through the entire
solution space. This algorithm is expected to always give the global optimum
in the case where cost and probability distributions are known. It will have
a bad running time for filters with large amount of rules, but at least it will
serve as a good comparison point for the quality of the other methods. The
pseudo code of this implementation can be seen in algorithm 5.

The main difference to the boolean difference method is that instead of
choosing the most significant solution, all the possible branches are consid-
ered. All rules that are not already picked and that can impact the boolean
expression outcome are selected. The cost of selecting each of these possi-
bilities as the next rule to be evaluated are then calculated recursively. The
algorithm could be improved by pruning the search space and removing the
infeasible solution candidates. By using the branch and bound algorithm
we could derive the upper limit of the evaluation cost with faster methods
and estimate the lower bound of any candidate solution from a incomplete
solution through some method.
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Algorithm 5 Creates the decision tree using complete traversal of the solu-
tion space. Requires access to a decision tree created using the straightfor-
ward or other method and the table of rules.
1: function CreateDecisionTreeExact(LockedTrue, LockedFalse)
2: MinTree = new Tree;
3: MinTree.Root = null
4: MinTree.Cost = 0;
5: for Rule in Rules do
6: if Rule in LockedTrue or Rule in LockedFalse then
7: Continue
8: T = GetPassRatio(StraightForwardRoot, LockedTrue ∪ Rule,

LockedFalse);
9: F = GetPassRatio(StraightForwardRoot, LockedTrue, Locked-

False ∪ Rule);
10: if T == F then
11: Continue
12: TBranch = CreateDecisionTree(LockedTrue ∪ Rule, LockedFalse)
13: FBranch = CreateDecisionTree(LockedTrue, LockedFalse ∪ Rule)
14: TotalCost = Rule.Cost + Rule.probability * TBranch.Cost + (1

- Rule.Probability) * FBranch.Cost
15: if MinTree.Root == null or TotalCost < MinTree.Cost then
16: MinTree.Root = new Node(Rule)
17: if TBranch.root != null then
18: MinTree.Root.Right = TBranch.root
19: else
20: MinTree.Root.Right = TerminalTrueNode

21: if FBranch.root != null then
22: MinTree.Root.Left = FBranch.root
23: else
24: MinTree.Root.Left = TerminalFalseNode

25: MinTree.Cost = TotalCost
26: return MinTree
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Results and Analysis

Simulations

Methods based on straightforward evaluation, rule set rearrangement, boolean
difference calculus and the brute force method were all successfully imple-
mented into the Tekla Structures source code to replace the old filter imple-
mentation. It is important to first test our methods in controlled simulations
to see how they work in an environment similar to Tekla Structures models.
The preferred method should give a significant improvement to the average
running time. It should also not behave unexpectedly in special cases by
for example having bad running for specific types of filters. One important
aspect is to test how much the rule cost and the pass ratio statistics influence
the performance for different methods. If for example, the pass ratio infor-
mation doesn’t give much value to the algorithm, we can then only use the
cost information in the final implementation as the calculation of statistics
always comes at a cost.

The simulations are performed using the new filter implementation that
we will also use for testing with a real Tekla Structures model in the next
section. In the simulations the filter is initialized with a list of pseudo rules,
which follow a given probabilistic and cost distribution. The filter was then
initialized and the average evaluation time was then calculated recursively
from the decision tree according to algorithm 6.

35
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Algorithm 6 Get the average evaluation cost of a decision tree

1: function GetCost(Node)
2: if Node.type = TrueNode or Node.type = FalseNode then return

0.0
3: RightSide = Node.Rule.probability * GetCost(Node.RightChild)
4: LeftSide = (1 - Node.Rule.probability) * GetCost(Node.LeftChild)
5: return Node.cost + LeftSide + RightSide

Generation of Rule Sets

The cost distribution used in the simulations is inspired by the cost distri-
bution of TS properties that that we investigated in section 2.3.4 and it is as
follows:

• 50% of the rules will have cost 1

• 40% will have cost 10

• 10% will have cost 100.

The pass ratio for rules was chosen to be a random integer percentage value
between 1− 99%. The probabilities were statistically independent, which is
not what one might find in a real customer model.

The rule count in generated rule sets varied from 1 to 30. Each rule was
randomly assigned a cost and pass ratio picked from the above distributions.
For each rule count a total of 1000 randomly picked rule sets were created.
Each randomly picked rule set was then applied to filters of four different
filter types.

Implemented filters rely on both cost and pass ratio information for opti-
mal decision tree creation, with the exception of the straightforward method.
The effect of the statistics information was also studied. For each filter type
four separate filters were created. One filter used full knowledge of both cost
and probabilistic information, one used only cost information, one used just
the probability information and one used no statistics at all. If the filter has
no cost information, it treats each property as having the same cost. If there
is no probabilistic information, then the pass ratio of 0.5 is used for each
property instead of the accurate ratio picked from the histogram.

Results

In figure 5.1 we can see the average evaluation cost for different filter methods
as a function of the rule count. Both probabilistic and cost information was
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used in the initialization of filters for this graph. It’s clear that all the
methods for improving the evaluation order work almost equally well in this
case and they improve the performance significantly. This gives us a good
sign that our methods were all correctly implemented. Brute force method
is the best in all cases as it by definition should find the global optimum.
The differences between methods however are minimal. Another interesting
observation is that the average time it takes to evaluate an optimized filter
seems to decrease as the the rule count increases for filters larger than six
rules. This is due to the algorithm evaluating the least expensive and most
significant values first to find a fast way to solve the filter.

Figure 5.1: The average filter evaluation cost as a function of rule count.
Full cost and probabilistic information where used for all the methods. The
methods are so close that it is hard distinguish them in this plot.

To better compare the methods we can define a ratio of improvement
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compared to the straightforward implementation as follows

RatioMethod =
TStraightforward − TMethod

TStraightforward

. (5.1)

Using the average improvement ratio instead of the average time makes sure
that filters with more costly rules will not dominate in the results. We also
calculate the standard deviation of the improvement ratio as follows

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2, where µ =
1

N

N∑
i=1

xi. (5.2)

In figures 5.2 and 5.3 we can see the average improvement ratio of each
filter type using different statistics information in decision tree creation. It’s
difficult to see differences in these graphs between different filter implementa-
tions, as the values are so close. The improvement ratios and their standard
deviations can also can be seen in table form in appendix A where the small
differences are more clear.

We can see that the performance is noticeably increased in all cases. The
performance increases steadily as the number of rules increases, which is to be
expected as larger filters have more to gain from optimized evaluation order.
The brute force method works the best for all cases. The difference however
is on average not more than 5% in any scenario compared to rearrangement
and the boolean difference methods with the exception of the case where no
statistics are used. The rearrangement method doesn’t seem to work as well
in the case where no statistics are used or where only probability information
is used. The average improvement ratio is still only 5 − 15% less than with
the other methods.

One additional thing we can see is that in this case having the probability
information doesn’t seem to be as valuable as having the cost information.
Having both the cost and the probability information gives only a few percent
increase on top of the average total improvement ratio as compared to filter
initialized with only cost information. This might be partially due to the
chosen arbitrary probability distributions, which might not represent a real
customer model. However, the correlation effects in the real models will also
decrease the value of probabilistic information unless it is taken care of in the
decision tree creation. The knowledge of the cost information gives a greater
boost to the performance improvement ratio. It also works very well with all
the tried methods.
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(a) Full cost and pass ratio information

(b) No statistics infromation

Figure 5.2: Improvement of different methods compared to straightforward
evaluation of the filter as a function of rule count.
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(a) Full cost and no pass ratio information

(b) Full pass ratio and no cost information

Figure 5.3: Improvement of different methods compared to straightforward
evaluation of the filter as a function of rule count.



CHAPTER 5. RESULTS AND ANALYSIS 41

Filter Creation Performance

The time to create and initialize the filter itself is also a very important
metric in overall performance. Most of the time is spent in the creation of
the decision tree from the set of rules according to the chosen heuristics. If
the performance improvement given by optimized decision tree is only slight,
using excessive time to create the tree is not optimal, unless it can be done
in a background process or saved to disk for later use.

In table 5.1 we can see the average creation times of the filters. The values
in the table are calculated from 1000 randomized rule sets using different
methods and different amount of rules.

We can see that the straightforward and rearrangement methods are very
fast, which is not surprising. The times for all the rule counts is about as
fast as what the applying of the filter would be for one single model object.
Boolean differential method is almost equally fast for all the sensible values
of rule amount. It still uses only 1.7 ms for 30 rules, which is about the
size of the largest filters found in our testing system. This means it should
be a perfectly valid solution for filters of all sizes. Brute force method is
computationally feasible for up to about ten rules. For ten rules the time is
roughly two seconds, which is simply too much for typical scenarios. Filter
needs to be applied perhaps millions of times to gain this time back if the
the performance improvement is as small as we have measured compared to
other models. However seven rules can still be processed in about 6ms, which
is still respectable but about 20 times more than what it takes for the other
methods. This method thus would need a backup method for filters with 8
or more rules.

For comparison, the old filter implementation takes roughly 180µs for
one rule filter, and 1.4ms for 10 rules. This however includes some validity
checking that is not yet included in our model and the values are not directly
comparable.
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Table 5.1: The average creation time of the filter using different methods.
All times are in µs
Nrules Straightforward(µs) Rearrangement BD Brute force

1 3 3 3 3
2 4 5 6 6
3 5 6 8 13
4 6 8 11 43
5 14 14 21 182
6 14 17 25 1130
7 16 19 30 5710
8 16 19 38 37100
9 17 21 46 285000
10 19 23 56 1940000
15 43 42 167 -
20 53 53 411 -
25 63 66 886 -
30 100 123 1740 -

Tests With a Real Customer Model

The new filtering implementation was also tested with a real customer model
visualized in figure 5.4. The model represented a large bridge consisting of
more than two hundred thousand objects. 21646 objects were classified as
parts, which include beams, plates, columns and slabs and generally any
large single object in the model. The model also contains plenty of other
object types such as bolts, welds or reinforcement bars. The testing focused
on filtering by parts, as they are the most commonly used filter categories
by our customers. They are also quite simple, as they don’t require handling
of the related objects. For example for the category assembly, the parent
assemblies should also be fetched, which complicates the analysis.

Randomized Generation of Rule Sets

The generation of rule sets for testing with a real model is a somewhat difficult
task. The amount of user created filters for models in the Farmi database
is typically not large enough to gather meaningful statistics of performance
improvement. Typically there is not much more than a dozen filters with
more than one rule for each model and filters are typically not applicable
to other models, as they may have completely different kinds of objects and
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Figure 5.4: The model used in the tests was a real customer model repre-
senting a bridge. The model consisted of more than a hundred thousand
objects.

property distributions. Of these few filters, some might already be ordered
in a fast way, either by chance or by a very knowledgeable user, so that the
improvement from optimal evaluation order is only slight, or there might
even be no improvement at all.

A randomized way of creating filters was chosen as the most feasible for
testing. The testing was done as follows. A set of 9 properties was chosen,
which were evenly distributed to three groups: fast database properties(0.5−
2µs), middle properties(10−15µs) and slow properties(> 40µs). More prop-
erties should ideally be chosen for tests, but all the properties had to have
values for a large percentage of the parts, which limited the selection. A his-
togram of values for these properties was then printed and five most common
values were chosen for each property.

A Rule was chosen 50% time from fast properties, 10% of time from slow
and 40% from middle properties. This will lead to the same property possibly
appearing multiple times in the filter, but this is a characteristic of customer
generated large filters. An expected value was then chosen by random from
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the pre calculated set of five values. 80% of the time and conjunction was
chosen between neighbouring filter rows. Only filters for which at least one
model part passed the filter were approved for the test set. Number of rules
in the filter varied from 1 to 10. Three different levels of statistics information
were used. One used full cost and probability statistics, one used only cost
statistics and one used only probability statistics. For every test case 500
approved filters were randomly created.

Results

Each of the generated filters was applied to all the model objects with the
type part. The average time this took was calculated by a timer set in the
source code of the test program. In figure 5.5 we can see the average filter
evaluation time as a function of rule count for different methods. Both rule
pass ratio and cost statistics were used in the initialization of filters in this
graph.

We can see that the optimized evaluation order algorithms also improve
the performance in the tests with a real Tekla Structures model. The ex-
ecution time of the optimized filters remains roughly constant after three
rules whereas the average time for the straightforward implementation grows
steadily. It is once again difficult to distinguish the measure points in the
graph, as all the algorithms give roughly similar results.

We also calculated the improvement ratio as in the equation 5.1 like we
did for the earlier simulations. The results can be seen in table form in the
appendix B and in figures 5.5 and 5.6.

There is quite significant standard deviation in the improvement ratios
that doesn’t seem to depend on which algorithm is used. Using these re-
sults, it is not clear to distinguish that one method is clearly better than the
other. As the standard deviation is sometimes larger than the improvement
ratio this means that in some cases the effect of the optimization is actually
negative. There is a number of things that might cause this and probably
this is a combination of many things. One obvious point is the correlation
effects, as the probabilities that we calculated are not statistically indepen-
dent. The test environment may also not be very stable as the tests were
run in a normal windows desktop computer. The time it took to run these
tests was several hours and it is possible that some unrelated background
processes caused some deviation in the results.

The brute force and the BD methods seem to lose about 3-4 percentage
points compared to the rearrangement method already when the rule count is
one or two. This has to be some kind of a systemic error in these calculations,
as all the created decision trees should be practically equal when rule count
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is only two and the same rule set was used for calculating both values.
In some of the rule sets the same property appeared many times. This can

also cause some of the variance, as the number of properties that needed to
be calculated was lower for some sets. For the BD and the brute force method
an optimization method was implemented were the the cost of calculating
a property was set to a very small value when the property was already
calculated earlier in the evaluation for another rule. This might be the reason
why they work better for large rule sets.

In figure 5.7 we can see the difference statistics information makes for
the improvement ratio. The cost information seems to be once again more
valuable than the pass ratio information. Having both cost and the proba-
bility statistics information seems to add approximately 4 percentage points
difference to the improvement ratio compared to the case where only cost
information is used.
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(a) The average evaluation time

(b) The average improvement to straightforward evaluation

Figure 5.5: The average evaluation time of the filter as a function of rule count
and the average improvement compared to the straightforward evaluation in
the case where both cost and pass ratio statistics were used.
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(a) Full cost information

(b) Full pass ratio information

Figure 5.6: Improvement ratio of different methods compared to straightfor-
ward evaluation of the filter as a function of rule count.
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Figure 5.7: Comparison of how statistics information effects the improvement
ratio as a function of the rule count. The brute force method was used for
all filters.

Comparing Results to Original Implentation

The results were also calculated using the old filter implementation. The
improvement ratio was calculated as

Ratio =
TOriginal − TNew

TOriginal

, (5.3)

where TOriginal is the time it takes to run the original filter for all parts in the
model and TNew is the same for for the new implementation. The average
ratio was calculated from 500 randomly generated filters for each rule count
from one to ten.

In figure 5.8 we can see the average difference to the original implementa-
tion. Two methods are visualized: the simple straightforward order and the
brute force method. Even though the straightforward method works using
the same principal as the old implementation and gives the same result to
all the model objects the difference is still quite significant and the ratio of
improvement only increases as the number of rules in the filter grows. The
reason for this is the large overhead in the old equation library implementa-
tion. Let’s look as an example a one rule filter checking the equality of part
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name to certain expected value. It takes roughly 1.1µs for the new filter,
which is only slightly more than what it takes to fetch the part name(0.5µs)
and object type(0.2µs from the database. For the old implementation the
filter takes 6µs time, which which means there is a roughly 5µs overhead
caused by the equation handling alone, which is almost completely elimi-
nated with the new implementation. The performance improvement in this
case is 82%, which makes a huge difference, given that name is the most used
filter property. For the property profile the improvement is ’only’ 15% as it
takes 40µs to fetch from the property interface. Another big factor is storing
already calculated values, if the same property is required for multiple rules.
This was not done in the old implementation.

Figure 5.8: Performance improvement compared to the original implemen-
tation using. Both probabilistic and cost information are used for the brute
force method.
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Conclusions

In this work we studied the current filtering implementation of Tekla Struc-
tures. We were able to find areas where the current implementation could be
improved and studied new methods which could be used for this. This lead
to the reimplementation of the equation processing in Tekla Structures and
the optimization of the evaluation order of the filter rules was implemented
as a new feature.

The performance improvement achieved by our work was quite significant
and should be noticeable to our customers once it is merged to the customer
version. The largest difference was made by the optimization of the equation
processing by replacing the old equation library with a new implementa-
tion. This reduced the filtering cost by about 50% on average even when no
evaluation order optimization was done. The size of this improvement was
somewhat surprising, but serves as lesson that even relatively small changes
can make a big difference in the optimization of real world applications. With
the new equation processing implementation the performance of filtering is
almost completely determined by the property calculation and not equation
processing itself.

Most of the work focused on the improvement of the evaluation order of
filters. It was shown that a significant performance improvement could be
made if good statistics information is available. More work will be needed
to provide this information during the program execution in a sensible way.
The improvement is best for the large filters. It should also make the filtering
speed more consistent, as the difference in evaluation time can be more than
a order of magnitude in some cases if the filter is poorly constructed. In
contrast, for some filters the performance might not improve or even slightly
decrease if the available statistics are not sufficient or the user has been able
to guess the right order. The average improvement is significant enough, that
the evaluation order improvement should be implemented to the customer

50



CHAPTER 6. CONCLUSIONS 51

version.
There is still work to be done to finalize the work we started. Extensive

test cases need to be written for the new implementation. Additionally all the
object categories and operators in the filter need to be supported in the filter
evaluation. One special case that was not yet studied is the handling of the
related objects for some categories, such as filtering by the task category. In
this case all the related task objects assigned to a model object are compared.

Comparison of the Implemented Algoritms

All the algorithms for improving the evaluation order seemed to work very
well for our software. In our tests with simulations and real customer models
all algorithms were well within the standard deviation. The implemented
algorithms were also very fast in the creation of the decision tree. The brute
force method is the only one that requires a back up method for any feasible
filter sizes and even it is able to handle vast majority of the filters. This
leads us to believe that it is not worth it to implement new methods as the
performance improvement will not be worth the effort. Randomized and
genetic methods in particular generally require a number of iterations and
random restarts to work well, and thus our methods with the exception of
brute force search will likely outperform them in the filter initialization. A
good method to determine the allowed moves between different solutions
would be needed to provide improved results with randomized algorithms.

The best way to improve the performance of the algorithms could to be to
improve on the performance of the brute force method by pruning infeasible
solutions from the search space. This could be done by generating good lower
and upper bounds for candidate solutions and using the branch and bound
method instead of the full exhaustive search. The algorithm is already fast
enough to deal with most of the filters in reasonable time, so improvement
could bring it close to handling all but the few largest filters. One situation
where the performance could be significantly improved is the case where the
same property is used multiple times in different rules of the filter. As the
value of the property is cached when the first of these rules is processed,
the evaluation of the later rules becomes very fast. In our implementation
this case was handled by setting the propery’s cost to near zero for the later
rules. Forcing these rules to be evaluated in sequential order would be very
effective in pruning the search space for the exhaustive search.

The currently implemented algorithms are more than enough to provide
a significant improvement and it will not be a worthy business goal to study
more algorithms to improve the evaluation order. Another methods to opti-
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mize the filtering performance should be considered such as optimizing the
property interface.

Probability analysis

The overall impact of knowing the full distribution of probabilities of rules
seemed relatively low to the end result. This is further discouraged by the
fact that looping through the whole model to calculate accurate statistics is
obviously not something that can happen every time we use the filter as was
done for this test. The real life implementation would likely use a sampling
method where only a randomly selected test set is used for probability esti-
mations and this would be done perhaps daily or by user request. The filter
is however often not operated on the whole model, but for some specific sub
set of objects, so random sampling may not give good statistics information
for the actual use case. Ideally perhaps the filter should learn these statistics
on the fly from the model objects it is applied to by the user.

One area that could be the studied is the correlation effects between
different rules. The cost-to-achievement ratio of this will probably not be
enough though, as the correlations are expensive to estimate for filters with
large number of rules.

Cost analysis

Significant improvement in the performance was achieved by using the cost
statistics of properties. Implementing the cost based ordering seems to be
a sensible business goal, but we will have to decide a way to get accurate
statistics. The easiest way is to use hard coded values for property costs. The
calculation time of properties doesn’t seem to change much between different
models, but a thorough study of this should be done and the calculation times
should be examined. However, even just giving precedence to the few known
fast database operations will almost certainly give a significant performance
boost.

Optimization of the Property Management

In this work we studied the performance of property management, but our
improvements did not focus on it. Property management is used very fre-
quently throughout the source code and it is difficult to optimize in the scope
of a project like this. Major changes will require large refactoring efforts and
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extensive testing by a team of software engineers. However the property in-
terface and common object hierarchy is currently undergoing refactoring and
should be performing better in the future. This will also bring improvement
in the filtering performance.

A large improvement in the process could be gained by doing most of
the filtering in the database level and bypassing the property interface. In
particular the user defined attributes, which make up approximately a third
of the properties in filters are a great candidate for this. The database opera-
tion to fetch these properties takes only a fraction of microsecond, compared
to the about 15µs overhead the property interface creates. Fetching this
property from the database has the potential to improve the average filter
running time very significantly. The work to implement this performance im-
provement has already started. In some cases also more than one property
could be fetched from the database at once leading to more efficient database
queries. Additionally the filtering could be implemented as working for a set
of objects instead of processing objects just one by one. This would lead
to more efficient database queries where a property is fetched for multiple
objects at once.

As the number of cores in computer processors is ever increasing, parallel
execution should be used for performance heavy operations. The filtering
operation itself should be relatively easy to run in parallel. However the
property interface currently can’t be accessed in parallel execution and fixing
this will require a lot of code refactoring efforts.[12].
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Appendix A

Results of the Simulations

In this appendix we will show the results of the simulation runs.

Table A.1: The improvement ratio and their standard deviations of results
when both probabilistic and cost statistics were used.
Rule count Rearrangement σ BD σ Brute Force σ

2 0.16696 0.05876 0.16671 0.05887 0.17133 0.05659
3 0.25757 0.07782 0.25717 0.07808 0.26507 0.07525
4 0.34925 0.09272 0.35439 0.09184 0.36562 0.08641
5 0.39822 0.08564 0.40116 0.08493 0.41199 0.08028
6 0.45256 0.08960 0.45661 0.08704 0.46572 0.08404
7 0.48786 0.08177 0.49109 0.08113 0.50124 0.07710
8 0.53656 0.07609 0.54109 0.07356 0.55025 0.07043
9 0.56687 0.07442 0.56956 0.07383 0.58125 0.06689
10 0.56415 0.07589 0.56758 0.07426 0.57702 0.07033
15 0.70197 0.05265 0.70338 0.05192 - -
20 0.78288 0.03693 0.78362 0.03208 - -
25 0.83062 0.02535 0.82979 0.02541 - -
30 0.85574 0.02270 0.85514 0.02280 - -
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Table A.2: The improvement ratio and their standard deviations of results
when only cost statistics was used.
Rule count Rearrangement σ BD σ Brute Force σ

2 0.12673 0.03967 0.12673 0.03967 0.12673 0.03967
3 0.23708 0.06237 0.23606 0.06319 0.23881 0.06250
4 0.34142 0.07218 0.34130 0.07283 0.34663 0.07112
5 0.36181 0.06945 0.36023 0.07055 0.36744 0.06849
6 0.42182 0.06682 0.42122 0.06824 0.42893 0.06568
7 0.45683 0.06357 0.45788 0.06386 0.46501 0.06172
8 0.50619 0.05909 0.50673 0.05991 0.51489 0.05726
9 0.56986 0.05523 0.54017 0.05568 0.54803 0.05332
10 0.56415 0.05567 0.56852 0.05655 0.57750 0.05351
15 0.66937 0.04364 0.66830 0.04400 - -
20 0.74501 0.03273 0.74204 0.03399 - -
25 0.80067 0.02152 0.79839 0.02219 - -
30 0.83292 0.01681 0.83292 0.01739 - -

Table A.3: The improvement ratio and their standard deviations of results
when only pass ratio statistics was used.
Rule count Rearrangement σ BD σ Brute Force σ

2 0.08483 0.01294 0.08483 0.01294 0.08483 0.01294
3 0.14532 0.02441 0.14727 0.02457 0.14973 0.02381
4 0.20223 0.03081 0.20965 0.03043 0.21214 0.02962
5 0.22617 0.03249 0.23667 0.03083 0.24013 0.02999
6 0.25866 0.03260 0.27061 0.03180 0.27522 0.03074
7 0.29435 0.03632 0.30974 0.03418 0.31484 0.03290
8 0.31929 0.03847 0.33244 0.03898 0.33855 0.03689
9 0.34073 0.03963 0.35389 0.03712 0.35973 0.03530
10 0.37086 0.03829 0.38655 0.03785 0.39157 0.03634
15 0.45107 0.03718 0.46170 0.03596 - -
20 0.50388 0.03674 0.50619 0.03735 - -
25 0.54618 0.03567 0.54744 0.03600 - -
30 0.56930 0.03432 0.56687 0.03732 - -
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Table A.4: The improvement ratio and their standard deviations of results
when no statistics was used.
Rule count Rearrangement σ BD σ Brute Force σ

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.05411 0.00932 0.06077 0.01203 0.06077 0.01203
4 0.08481 0.01499 0.09784 0.01884 0.09784 0.01884
5 0.11644 0.01766 0.13385 0.02030 0.13385 0.02030
6 0.14303 0.01985 0.16692 0.02355 0.16692 0.02355
7 0.16448 0.02096 0.19173 0.02358 0.19173 0.02358
8 0.19154 0.02304 0.22097 0.02440 0.22097 0.02440
9 0.20963 0.02424 0.24136 0.02492 0.24136 0.02492
10 0.23162 0.02529 0.26151 0.02500 0.26151 0.02500
15 0.29562 0.02719 0.32489 0.02599 - -
20 0.32903 0.03012 0.34880 0.03053 - -
25 0.37236 0.02962 0.38763 0.03009 - -
30 0.38019 0.02999 0.39229 0.03059 - -



Appendix B

Tests With a Customer Model

Table B.1: The improvement ratio and their standard deviations of results
when both cost and pass ratio statistics were used.
Rule count Rearrangement σ BD σ Brute Force σ

1 0.0073 0.0795 -0.0387 0.0700 -0.0432 0.0305
2 0.1553 0.2902 0.1252 0.2984 0.1328 0.2776
3 0.2266 0.3157 0.2002 0.3206 0.2141 0.3113
4 0.2322 0.3173 0.2044 0.3516 0.2246 0.3070
5 0.3062 0.3420 0.2940 0.3452 0.2438 0.4809
6 0.3222 0.3254 0.3024 0.3441 0.3281 0.3189
7 0.3413 0.3263 0.3383 0.3278 0.3586 0.3121
8 0.3799 0.3390 0.3853 0.3316 0.4002 0.3187
9 0.3962 0.3339 0.3936 0.3457 0.4154 0.3244
10 0.4276 0.3345 0.4343 0.3292 0.4485 0.3205
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Table B.2: The improvement ratio and their standard deviations of results
only cost statistics was used.
Rule count Rearrangement σ BD σ Brute Force σ

1 0.0135 0.0293 -0.0370 0.1537 -0.0306 0.0273
2 0.1275 0.2968 0.0951 0.3081 0.0940 0.3076
3 0.1908 0.3289 0.1591 0.3416 0.1640 0.3398
4 0.1802 0.3550 0.1600 0.3540 0.1669 0.3521
5 0.2633 0.3614 0.2426 0.3766 0.2603 0.3599
6 0.2781 0.3559 0.2648 0.3647 0.2786 0.3585
7 0.3101 0.3495 0.3073 0.3481 0.3134 0.3513
8 0.3465 0.3666 0.3424 0.3589 0.3549 0.3490
9 0.3391 0.6829 0.3644 0.3639 0.3732 0.3526
10 0.3996 0.3624 0.4026 0.3575 0.4075 0.3532

Table B.3: The improvement ratio and their standard deviations of results
when only pass ratio statistics was used were used.
Rule count Rearrangement σ BD σ Brute Force σ

1 0.0133 0.0571 -0.0280 0.0256 -0.0295 0.0272
2 0.1096 0.4233 0.0795 0.4390 0.0746 0.4518
3 0.1570 0.4092 0.1391 0.4110 0.1374 0.4091
4 0.1559 0.4836 0.1439 0.4907 0.1606 0.3972
5 0.1710 0.5990 0.1861 0.5648 0.1955 0.5439
6 0.2034 0.5395 0.2191 0.4834 0.2372 0.4756
7 0.2314 0.5383 0.2615 0.5208 0.2731 0.4687
8 0.2338 0.6162 0.2635 0.5974 0.2920 0.5397
9 0.2773 0.4399 0.3298 0.3981 0.3516 0.3463
10 0.3170 0.4759 0.3588 0.4215 0.3668 0.4190
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