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Chapter 1

Introduction

This chapter is an introduction to the thesis. It starts with the reasoning

part (motivation), then provides some background information about the field

of research. After that the main research questions are asked and research

framework is introduced. At last, the structure of this thesis is presented.

1.1 Motivation

The Internet was originally developed for the military [1] and security has

been a concern since very first appearance. The first network, ARPANET [2]

was established in 1969 with the only two members, but it grew rapidly to 213

by 1981 [3, 4], mainly adding the main universities across the United States.

The rapid diffusion of the personal computer, together with the widespread

adoption of standards such as TCP/IP (Transmission Control Protocol/Inter-

net Protocol), HTTP (Hypertext Transfer Protocol) and HTML (Hypertext

Markup Language), lead to the creation of a worldwide, standardized network

commonly known as the WWW (World Wide Web).

During the last 20 years the Internet has grown exponentially reaching over

one-third of the world population [5, 6] and has become an essential part of

our daily life. The web has become the primary mean to access to information,

news, instant communication, shopping and entertainment. It has transformed

our everyday life activities so radically that it has been defined by some as

the “8th continent” [7, 8]. However, the more we rely on the web to store

our data and support our daily activities, the more we become vulnerable to

potential security attacks. For example, online shopping provide the amazing

1



CHAPTER 1. INTRODUCTION 2

opportunity to purchase anything from anywhere in the world, but banks and

online payment systems are constantly fighting a cyber war with hackers try-

ing to compromise their systems [9, 10]. These attacks are not limited to large

service providers, but they also affect ordinary users. Phishing is a big threat

for naive or inexperienced Internet. Although the attention and education on

cyber-security is rising, new challenges are on the horizon. An increasing num-

ber of physical devices, ranging from light bulbs, home appliances, heartbeat

monitors to more sensitive ones such as fire alarms, ventilation and heating

systems, locks [11, 12, 13] are getting connected to the Internet. In the past,

the worst consequence of a cyber-attack could be evaluated in term of mone-

tary losses; while the potential hack of some of these devices can translate into

real physical danger affecting human lives.

The Internet of things is quickly becoming reality, and security should be

the number one priority of any new connected product or installation. However

this is seldom the case. The fear of losing business opportunities creates great

pressure to bring the so-called Minimum Viable Product (MVP) as fast as pos-

sible to market. Obviously in these conditions, security is rarely paramount

and securing IoT devices can be quite complicated and expensive. It is reason-

able to think that ransomware (a type of malware that restricts access to the

infected system in some way, and demands that the user pay a ransom to the

malware operators to remove the restriction) will soon move from computers

to IoT devices.

1.2 Research Objective and Framework

The motivations described above highlight how IoT security is a very rele-

vant, very vast and complex topic. The complexity in part comes from the fact

that the IoT protocol landscape is still pretty fragmented. Partly reusing and

extending the OSI model (Open Systems Interconnection model), figure 1.1

tries to depict the current IoT standards and protocols landscape. It is quite
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Figure 1.1: IoT standards/protocols landscape. Adapted from [14]

evident how the current status is much more dynamic and messy compared to

the web (or “traditional Internet”).

Many protocols has been designed and used for specific use cases. This

allows having fast and successful one-shoot applications but in turns is un-

dermining the development of a true unified IoT technology stack. A clear

solution to the proliferation of vertical solutions and custom APIs is obviously

standardization. The vision for a seamless IoT requires protocols to be domain

independent yet capable to adapt to different standards and environment. An

attempt to solve this issues (at least at the application level) comes from the

recently published (under The Open Group) standards Open Messaging Inter-

face (O-MI) and Open Data Format (O-DF), whose potential impact for the

IoT is similar to the impact of HTTP and HTML for the World Wide Web

when they were published.

However, these standards do not define (on purpose) any specific security

model. They clearly state how suitable security mechanism can be applied “on-
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top” of these standards. This thesis focuses on the development of a security

model for these promising IoT standards, and tries to give an answer to the

following research questions:

• How a common messaging standard can help to solve the problem of the

communication between the different devices in the Internet of Things?

• What are O-MI and O-DF standards and how well they satisfy the re-

quirements of the Internet of Things? How they are different in compar-

ison with already existing standards and solutions?

• How can these standards be implemented and integrated into arbitrary

application together with the access control and security mechanisms?

The questions above rose because of the need to have a generalized standard

that could satisfy the requirements of the Internet of Things. Furthermore, the

reference implementation of the O-MI and O-DF standards has to be presented

and analyzed. Thus, there are several main guidelines that lead this work:

• Background topic discussion. Mainly based on the review of vari-

ous literature in Internet of Things topic. The review was performed to

provide a brief introduction to the industry, its main needs and possible

problems. This study goes along with the description of the messaging

protocols for the Internet of Things and the process of understanding the

requirements for the implementation.

• Reference implementation overview. The reference implementation

of the O-MI and O-DF standards is studied together with the examples of

the possible use cases. That part includes also a discussion about existing

security mechanisms and the need of implementing the access control and

authentication system for the reference implementation.
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• Security module design and implementation. The main part of

the thesis that describes the whole process from the formulation of the

security requirements to the design and implementation of the security

module.

1.3 Structure of the Thesis

This thesis consists of six chapters: The chapter following this introduction

provides a literature review of the IoT domain, discussing needs and issues of

the current state of art. It later dives deeper into existing network protocols

that are suitable IoT messaging protocols. In Chapter 3 the description of the

core concepts and design principles of O-MI and O-DF standards are provided,

justifying its selection as primary application level messaging protocols for the

IoT. Chapter 4 describes the current O-MI and O-DF reference implementation

and demonstrates how these standards can be used in a particular application.

Chapter 5 provides the requirements for the security and access control modules

that has been developed during this thesis, followed by the core implementation

decisions. Finally, chapter 6 provides summary, conclusions and future research

directions of the work performed.



Chapter 2

Internet of Things

2.1 Introduction

Connecting physical devices to Internet allows retrieving data and remote

interaction with physical spaces. Combining these types of information, with

existing one, such as weather forecast provided by external web services or

OpenData dataset, open up new opportunities to create new type of products

and services that are far beyond the capability of any given “isolated” system

[15].

IoT is an emerging trend that is expanding very rapidly, and it has the

potential of impacting our life as much as the Internet itself. In comparison

with fixed Internet wave in 1990s that has connected about 1 billion users and

mobile Internet wave in 2000s that has connected 2 billion users, the IoT has

a potential to connect 28 billion “things” to the Internet by 2020 [16]. Com-

munication not only between human beings, but human-to-machine and even

machine-no-machine is possible, which lead to the next generation of intelli-

gent and highly distributed systems. These systems could help us to increase

our living standards significantly [17]. Humanity is going to connect almost

everything together. Smart watches and glasses, action cameras, cars, even

people’s homes (lights, relays, temperature and humidity sensors etc.). Smart

cities with intelligent traffic lights, parking spaces interconnected into wireless

sensor networks will become the normality in the near future [16, 18]. Be-

sides that, IoT is planned to use in Industrial Internet to connect the machines

that perform manufacturing processes, get real-time analytics and perform op-

timizations [19].

6
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One of the main drivers of this rapid evolution is the significant decline

in cost of hardware (sensors and processing power) and network connectivity.

The cost of bandwidth has been declining year by year and for the last 10 years

it has dropped dramatically by a factor of nearly 40x. The processing power

did the same but by a factor of 60x [16]. These processes have quite positive

consequences for the development of IoT.

Large enterprises, which have already impacted our daily life (e.g. Google,

Apple, Samsung etc.) play a major role in the development of the entire IoT

ecosystem. They have all the necessary resources (money, technologies and

professional staff) to influence current and future development. Moreover, they

could decide to introduce radically new products and technologies while pro-

viding integration and support in their existing ones (e.g. iOS or Android

ecosystem).

On the other hand, research institutes and SMEs working in specific nar-

row domains are often the ones that bring true innovations, leveraging on the

possibility of taking bigger risks, leaner management and bureaucracy. The

business model of some these companies often culminates in the acquisition

of their technologies by some of the major players mentioned above. Sadly

the evolution of those technologies often dies out due to the lack of vision on

how they can embed them into their current product portfolio. Every large

player is essentially trying to establish “a winning platform”, which in many

cases is supposed to be open but often contains some proprietary technologies

which give control power to the vendor. It is very true in the mobile market,

in which is possible to distinguish different devices with different approaches

and technologies used. These technologies are often closed to the public and

incompatible with each other [20], further hindering interoperability.

However it is possible to witness a very different situation if we consider the

World Wide Web, which is a brilliant example of what can be achieved with the

wide adoption of a set open standards and technologies [21]. It is imperative to

apply the same logic for the IoT, otherwise there is the concrete risk of creating
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industry verticals in which few vendors have the business interest in keeping

the ecosystem fragmented to defend their dominant position.

Figure 2.1: Illustration of vertical and horizontal interaction between systems

Fortunately, more than one standardization body is working to prevent this

danger. One of these organization is The Open Group, which has published

two standards (Open Messaging Interface and Open Data Format) to address

the challenges mentioned above. Chapter 3 will provide in depth explanation

of these standards and the current reference implementation that provides a

“sandbox” infrastructure to showcase and promote the standards.

Before introducing these standards details, this chapter will addressed some

of the existing protocols and messaging standards that are commonly used in

IoT and describe the set of requirement that a trigger the creation of O-MI and

O-DF.
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2.2 Issues and concerns

Giving the fact that the IoT will potentially connect billions of devices,

there is an understandable concern regarding network capacity and suitable

communication patterns and protocols: [22] describes how it would be possible

to give every device a unique address using IPv6 that is being integrated al-

ready, [23] highlights how the current state-of-the-art requires application-layer

gateways both in software and hardware that provide application-specific con-

nectivity to IoT devices. In much the same way that it would be difficult to

imagine requiring a new web browser for each website, it is hard to imagine our

current approach to IoT connectivity scaling to support the IoT vision. Similar

concern are expressed in [24], which states that “The future is not going to be

just people talking to people or people accessing information. It’s going to be

about using machines to talk to other machines on behalf of people with totally

new communication pattern arising between people to machines and machines

to machines.

The current situation is an everyday problem for IoT practitioners, deal-

ing with hundreds of different manufacturers with thousands types of different

sensors, software, protocols, message structures etc. Without a clear standard-

ization between different organizations and countries the expansion of truly

worldwide Internet of Things can become difficult to achieve. It is quite obvi-

ous that IoT community must follow the example of the World Wide Web, in

which TCP/IP, HTTP/HTML helped the Internet to spread across the world

[25]. Now the real question to answer is how it can be achieved. Finding con-

vergence at every level of protocols stack will still take few years and perhaps

(at least for some of the lower level) we accept the fact that different protocols

serving particular requirements will co-exist. What is already pretty clear is

that every level of stack must implements some sort of security mechanism that

would fit with the upper and lower levels. This thesis focuses on this aspect

and in particular with the application level security.
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2.2.1 Why IoT security is so important?

Security is often the hottest point of the discussion between IoT develop-

ers and practitioners; this is due to realization that the level of connectivity

and involvement of IoT in people’s everyday life is much deeper. The infor-

mation that people share with their devices and sensors is often sensitive and

is supposed to provide a background and context-awareness for the new types

of services. Therefore it should be guaranteed that this information would not

go anywhere else [26, 27]. If everything is connected to the one huge network

then every single client of the network could automatically become the starting

point of an attack to the whole network and that is the thing that will most

likely happen. Especially when talking about publicly available objects such

as bus stops and so on. Despite cyber security these objects can be hacked

physically and since they do not belong to any particular person it can be hard

to protect them. Moreover, there are already many different scenarios that

were demonstrated on public - getting the control of a car remotely or stopping

its engine when you are riding on a highway [28], hacking a babysitter radio

[29] and so on. People’s houses, smart watches with the information about the

health, traffic lights or public ventilation and life supporting systems can be

potentially hacked. These things may scare the society away from the using of

the IoT and stop the whole industry from the development. Thus, the security

aspects should be carefully designed and worked out. The privacy, authenti-

cation, access control mechanisms, the way the sensitive data is stored should

satisfy the security requirements and stand the possible attacks in the worst

cases.

To sum up, there are several challenges related with the Internet of Things.

Some of them are relatively easy to solve by applying existing technologies,

but the security problem requires thorough elaboration in a close collaboration

with the manufacturers, standardization groups, software developers and the

users.
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2.3 Messaging protocols

The number of internet-connected Humans and “Things” is on the rise and

new types of communication are arising: the usual human-to-device, but also

device-to-device, device-to-server, server-to-server communications are going to

become widely used [30]. The traditional request-reply communication is only

one of the many that are necessary to satisfy the needs of future users and

services. A wide range of messaging patterns are already implemented by a

number of messaging protocols, this section will describe the communication

protocols that have been typically used in IoT applications.

2.3.1 MQTT

MQTT stands for Message Queue Telemetry Transport. It was originally

designed by IBM and with the purpose of use in unreliable networks with high

latency and low bandwidth [31]. Its main purpose was to collect the data from

various devices in the network in one centralized place and make it available

for the IT infrastructure [30, 31, 32]. So in IoT terms it can be many devices

connected to the cloud server and providing the data (figure 2.2). That can be

useful for example to support the pipelines infrastructure and monitor it for

acts of leaks or vandalism using thousands of sensors. It runs on the top of

TCP providing the reliable stream to deliver the messages from the devices to

the data concentrators [30]. The devices can subscribe to certain data updates

as well as publish its own data on a real-time basis.

Although MQTT is a quite lightweight, it requires the TCP/IP support

that can cause unnecessary complexity and can be difficult to provide using

very small and computationally ineffective devices to build sensor networks

for example [33]. The publish-subscribe model requires an intermediate actor,

the message broker that processes and forwards all the messages. The message

broker can become a bottleneck and a single point of failure of the system. Also
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Figure 2.2: MQTT communication model. Source: ibm.com

in the IoT it’s not given for granted that the devices always have an Internet

or network connection. Thus the direct interaction from machine to machine

including publish-subscribe feature would be preferred. The broker can persist

the messages, but protocol does not support the persisted messages to backup

inside the server [34]. In security terms brokers can require credentials from

the clients as well as the connection can be secured with SSL/TLS [34, 35].
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2.3.2 CoAP

CoAP or Constrained Application Protocol was intended to use in small

electronic devices such as sensors, switches and so on. It was designed with the

purpose of easy integration with HTTP, has support for multicast packages,

low overhead and quite simple structure [36, 37]. Its main purpose was to pro-

vide efficient machine-to-machine communication in restricted environments

with a small amount of ROM and RAM memory available. It runs over UDP

with QoS support to enable decent level of reliability. The interaction model is

server/client where the client sends request and gets response from the server

[36]. The subscription feature is supported to some extent - client can observe

certain information by setting a special flag in GET request and it will start

receiving the notifications afterwards. The notifications are delivered at “best-

effort”. The protocol itself since it works over UDP is designed as eventually

consistent: If the device is not undergo to a new change in state, all subscribers

will eventually receive its final status at some time [38]. Even though the QoS

provides some sort of reliability for messages to be “confirmed” (by sending

an acknowledgment packet from the receiving party) and “non-confirmed”, it

could cause some traffic overflow in case of resending of the data and waiting

for an acknowledgment because UDP has no delivery control mechanism em-

bedded. CoAP supports service discovery using multicast packets (which can

be a problem for some networks though) and URI for objects and data [36].

Since it runs over UDP the TLS/SSL can’t be supported, but the protocol is

still secured by DTLS [38] (although DTLS does not work for group communi-

cation using multicast messages and can also add some complexity because of

additional control over UDP related to dealing with unreliable environments).

It worth mentioning that in an official specification of CoAP there is a chapter

about security consideration saying that due to the lack of handshake mecha-

nism in UDP the IP spoofing attacks are possible to a single endpoint, group

of endpoints or event the whole network for example by spoofing acknowledge,
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multicast or observe messages [36].

Figure 2.3: XMPP communication model. Source: electronicdesign.com

2.3.3 XMPP

XMPP stands for Extensible Messaging and Presence Protocol, was origi-

nally called “Jabber”. It was developed to connect people to other people via

instant messaging (figure 2.3). It runs on top of HTTP that is on top of TCP.

It’s not intended to be fast, most implementations even support the polling or

update on demand. Thus it provides a reliable, but slow service [39, 40]. Its

main strength is in addressing since it uses human-readable user@domain.com

names. On the other hand there are several extensions for the protocol that

make it fast and applicable for different areas such as VoIP and online gam-

ing. It uses XML as the data format, but it rather uses XML stream than

documents basis. It has a decentralized architecture where a client and server

interact using the request/response principle, transferring the state (it’s called
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stanzas) through XML. The server has an ability to manage long-lived TCP

connection to exchange XML states several times using the same connection.

The connection can be also secured using SSL/TLS mechanism [40]. The only

format supported is XML, which may introduce significant overhead that can

be crucial when using on small embedded devices.

2.3.4 AMQP

AMQP stands for Advanced Message Queuing Protocol. It provides services

for the middleware that is a message-oriented. It takes care of the queuing,

routing, orientation, reliability and security of the messages (figure 2.4). The

protocol supports publish-subscribe paradigm as well [41]. It was developed

mainly because of a need from a banking industry and similar ones where there

was a lack of reliable and secure protocols that can deliver thousands of highly

important transactions. The communication between the endpoints, publishers

and subscribers runs over TCP and provides a strictly reliable stream. The

QoS provides at-most-once, at-least-once and exactly-once delivery options [42].

Authentication is supported by SASL or TLS technologies under the hood [43].

The data format is defined by a self-describing encoding scheme that has an

exact description in a standard document.

The data can include also the application specific information that can be

encoded in any way and contain it’s own structure [44]. Despite all the ad-

vantages, the protocol is quite heavy and is mainly used for server-to-server

interaction to exchange the data for example for an analysis or the other pur-

pose even if the target servers are deployed with a completely different hardware

and software platforms. Thus its main advantage is interoperability, but the

heaviness of the protocol makes its usage on the end devices hard.

To sum up, there are several protocols that can potentially fit a niche in the

specific application of the IoT. But each of them has its disadvantages such as

a dead lock to the one specific data format, lack of the “back up” feature or
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Figure 2.4: AMQP communication model. Source: amqp.org

the mechanism to retrieve the data for a specific period of time. Some of the

protocols are suitable for server-to-server or machine-to-machine messaging but

then there is a need to invent some intermediate protocols to interact between

different levels and that can lead to undesirable increase in the complexity level

of the system. To better understand the differences between the protocols and

make conclusions they will be analyzed more thoroughly in the next section.

2.4 Suitable messaging protocol for the IoT

In this section the protocols that were described above will be analyzed

using comparison framework introduced in [45]. First the framework is briefly
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described and its main comparison points are outlined, then the comparison

between the protocols is performed and some conclusions presented.

2.4.1 Comparison framework

The comparison framework consists of several criteria that are semantically

divided into three categories. These categories among with the criteria are

introduced below.

Message delivery model. This category defines the criteria that are

related to the delivery of the message from the sender to the receiver. This

category is the biggest one and makes the basis of the framework. It consists

of the following criteria:

1. Messaging API : defines whether the messaging interface protocol is application-

specific or independent;

2. Initiation: defines the way how the transmission of the data is being

initiated. It can be either server-initiated (i.e. push mechanism) or client-

initiated (i.e. pull mechanism). In the first case the client always listens

for the notification and the data from the server. In the second case the

client requests new data when it needed (“pulls” it).

3. Intermediation: specifies whether the protocol relies on the intermediate

parties to complete the operations (or at least offers that possibility).

4. Persistence: specifies whether the protocol offers the data persistence

feature. That can be split into two modes - persistent and transient.

Persistent, means that the data is stored in the system and can be re-

trieved at any time. Transient - the data will be stored and valid as long

as the Time-To-Live (TTL) parameter specifies etc.

5. Subscription: specifies whether the protocol supports the subscription
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mechanism. In this case two kinds of subscriptions are defined - Interval-

based and event-based.

6. Self-contained: means whether the message contains all the necessary

information to be understandable for the receiver in the right context,

meaning if it contains for example a time-to-live parameter, an operation

to be performed and so on.

7. Protocol agnostic: specifies whether the protocol supports several under-

lying “low-level” transportation protocols that can be changed without

rewriting the core of the protocol itself. It means the possibility to use

the protocols such as HTTP, SOAP, SMTP and so on to transfer the

data, or even physical transfer using copy to USB sticks.

8. Synchronicity: simply defines the support of synchronous and asynchronous

operations in the protocol.

9. Delivery-guarantee: specifies whether the protocol provides a support

for guaranteed message delivery (by sending acknowledge responses for

example).

10. Piggy backing: specifies the policy to allow piggy backing a new request

with the response (i.e. without dissociation of the new request from the

response). That property can be very important in real-time applications

or applications that are located behind a firewall.

11. Multiple payloads: defines whether the protocol supports various formats

of the payload data.

Message processing model. This category describes the processing of

the received messages by the receiver, how the communication process is defined

for the processing the data and sending the response back to the requester.

There are two criteria for that:
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13. Processing result: defines a way, which the processed data is returned to

the requester. There are three different options. First single return value -

for every request the receiver generates only one single response. Another

option is single integrated return value, which means the response that

contains the requested value integrated with the data. The last option

is a set of individual return values - when response is sent at different

intervals.

14. Communication: specifies the way that two nodes use to communicate

with each other after the message was received from the requester. There

are two possible options: separate message or callback address. The first

one means sending the response as a separate message to the query, the

second one means sending the data as a separate request to the specified

callback address that listens for the data.

Message failure model. This is the last category; it defines the actions

or the rules that the protocol follows in case of delivery failures or other dis-

ruptions. There is only one criterion:

15. Failure notification: specifies a way that protocol uses to react to the

failures i.e. the way the protocol use to send the failure notifications.

There are three possible ways that are usually used and implemented:

Timeout of acknowledgement, Reply with error message or Exception.

2.4.2 Comparison between existing protocols

The four existing protocols that are introduced and briefly described are

compared with each other and with O-MI / O-DF standard using the compar-

ison framework from [45] that was introduced earlier. The results are in Table

2.1.

It’s highlighted that AMQP and O-MI / O-DF standards cover the most

of the properties and subproperties and often provide the possibility to choose
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Table 2.1: Messaging protocol comparison based on 14 criteria

Property Sub-property M
Q

T
T

C
oA

P

X
M

P
P

A
M

Q
P

O
-M

I

Messaging API Application-specific 3 3

Application-independent 3 3 3

Initiation Push 3 3 3 3 3

Pull 3 3 3 3

Intermediation 3 3 3 3 3

Persistence Transient 3 3 3 3

Persistent 3 3 3 3

Subscription Interval-based 3

Event-based 3 3 3 3 3

Self-contained 3 3

Protocol agnostic 3

Synchronicity Synchronous 3 3 3 3

Asynchronous 3 3 3 3 3

Delivery-guarantee 3 3 3 3

Piggy backing 3 3

Multiple payloads 3 3 3 3 3

Processing Result
Single return value 3 3 3 3 3

Single integrated return value 3 3

Set of individual return value 3 3 3 3

Communication Separate message 3 3 3 3 3

Callback address 3

Failure Notification
Timeout of Acknowledgment 3 3 3 3

Reply with error message 3 3 3 3 3

Exception 3

between several variants.

The O-MI and O-DF standards are the only ones who provide the possibility

to make interval-based subscriptions, which can be important in some real-time

applications. All the protocols support usage of intermediate parties and nodes

to complete the transactions, but only O-MI / O-DF offers it as an optional

(not-necessary) feature. Self-contained message types are important as well

because in different systems same field names can have dramatically different

actions or meanings and it’s crucial for every system to be able to understand

from the message what is the semantic of the information that is provided.

AMQP and O-MI / O-DF offer that by using special namespaces and links to
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the field descriptions that can be loaded by the processing software. O-MI is

the only standard that provides full protocol agnostic communication and thus

can be easily integrated to use different underlying transport protocols. CoAP

has somewhat similar in the meaning of easy integration with RESTful HTTP

services, but it still uses unreliable UDP as the transmission protocol.

Piggy backing property is also a very important one. In the modern condi-

tions it can be difficult for companies to provide every device with a fixed IP

address (e.g. for mobile dynamic environments). In addition to that, companies

are tend to secure their data and often establish their workflow using internal

local networks that are located behind firewalls. Together with other proactive

measures it is used to protect the security, confidentiality and integrity of the

data. It leads to challenging conflicts between availability or usability and data

security. Here the piggy backing technology plays a big role. It overcomes that

problem and still allows establishing bidirectional information exchange with

the devices without fixed IP address that are located behind the firewall. For

real-time systems related to control and maintenance activities that is a quite

important feature. The table above shows that this functionality is covered by

CoAP and O-MI / O-DF only.

Starting from different standards of different systems that need to interact

with each other it worth to mention the necessity to support different payload

formats. Together with the self-contained property of the messages it makes

possible for different systems to understand how to deal with the data that was

received in the payload. It becomes vital when the complexity of the systems

grows as well as the number of actors interacting with each other. In this

regard, all the protocols considered supporting this feature.

The callback feature can be useful when doing with the subscriptions and

allows specifying a particular URL where the data or the events will be sent.

Again when dealing with the actors located behind the firewalls it can help to

specify the main processing point that has a fixed IP address and processes the

data that is related to several different actors. O-MI / O-DF standards are the
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only ones who provides the feature.

It’s also worth to mention that CoAP and MQTT protocols were designed

mainly to work in local environments so they need to be modified to be able

to communicate on a global level (e.g. wrapped into a websocket).

To sum up, during the comparison process five different protocols were

compared using a special framework. As a result O-MI / O-DF standards

seemed to be the most suitable solution to provide a portable and interoperable

communication infrastructure for a huge number of actors from device to the

systems of devices. Using O-MI and O-DF they can interact easily and thus

the problem of using different standards can be solved. These standards are

described in a more detail in a section 3.



Chapter 3

O-MI and O-DF

3.1 Introduction

The Open Group is a global consortium that consists of more than 500

members and aims to develop new IT standards that can help individuals and

companies to achieve their business goals. The Open Group IoT work group

has a pretty clear and ambitious vision: Whereas the Web uses the HTTP

protocol for transmitting HTML-formatted information which are rendered in

the browser for human consumption, the IoT will use O-MI for transmitting

O-DF payloads which will be mainly consumed by information systems [46].

In other words, these standards will enable different manufacturers, individuals

and enterprises to connect different kinds of “things” to the Internet and inte-

grate them into their enterprise network and systems on the fly, as it would be

if they were developed by the only one vendor. Many manufactures are already

gathering information about their products throughout its lifecycle, usually to

improve some internal or service processes such as maintenance and get higher

level of safety or reliability at lower costs. It can be also used to track the

manufacturing process e.g. state and health of the machines, measure energy

consumption etc. The collected data can be used for analytics and help to

improve manufacturing process, optimize costs and increase product quality.

This chapter provides detailed description of both O-MI and O-DF standards,

together with real-world examples on how they been used.

23
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3.1.1 O-DF

The Open Data Format is defined as a standard for representing the pay-

load in IoT application. O-DF is specified as an extensible XML Schema. It

is structured as a hierarchy with an “Objects” element as its top element. The

“Objects” element can contain any number of “Object” sub-elements. It is

intentionally defined in a similar way as data structures in object-oriented pro-

gramming [47]. O-DF addresses the problem of publishing information from

various data sources. In IoT these data sources (such as devices, machines,

server-based systems etc.) must be able to publish their data, provide the ac-

cess to consumers, use secure mechanisms to ensure authenticity and integrity

of the data and also provide the possibility to filter the information according

to the consumer’s needs: requester’s identity, context, request parameters etc.

[47]. O-DF makes it easy for information providers to publish the data using

ordinary URL (Uniform Resource Locator) address. Moreover, O-DF provides

a way for various number of systems to create, manage and exchange the infor-

mation about “things” in a standardized, understandable and universal way.

Figure 3.1: O-DF element hierarchy

Possible structure of O-DF tree

is shown on the figure 3.1. The

tree always starts with “Objects” el-

ement as the root node. “Objects”

element contains arbitrary number of

“Object” sub-elements. Each “Ob-

ject” is supposed to have at least

one “id” sub-element as an identi-

fier and optional “description” sub-

element. Moreover, each “Object”

may have properties that are declared by “InfoItem” sub-element. “InfoItem”

element in its turn can have “MetaData” sub-objects and values that are the

values from the context of “InfoItem” (i.e. temperature sensor values). “Meta-
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Data” has the same structure as “InfoItem”, but its semantic is different - it

contains the description of “InfoItem” object. It can be useful in case the sys-

tem tries to retrieve unknown “InfoItem”. “Object” elements can also have

sub-objects of the same “Object” type as itself. So the result is usually a tree

that contains arbitrary number of levels with different objects from predefined

set of types [47]. The example of a particular XML structure is shown on the

figure 3.2.

Because O-DF format has a hierarchical nature by default, it’s possible to

query for particular elements using a technique called URL mapping. Using

this technique, the client requesting information using special URL, including

object’s id or property name. For example the XML structure that is shown

above can be accessed using "wget <URL>/REST/Objects" query. If the

client wants to access only SmartHouse data or just get (or set) current humid-

ity level in the kitchen it can be done using following commands:

wget <URL>/REST/Objects/SmartHouse

wget <URL>/REST/Objects/SmartHouse/Kitchen/Humidity

To sum up, O-DF was developed to provide a way to represent information

entities about various objects - humans, services, devices etc. in a general way,

independently from application or context. The transportation mechanism is

not a part of O-DF standard. O-DF encoded information can be transmitted

through the network by various low-level protocols or even copied to and from

USB storage drive manually. However, the main purpose of O-DF was to use it

with messaging interfaces like O-MI as a query and response format [47]. The

description of O-MI is provided below.

3.1.2 O-MI

The Open Messaging Interface was created with the same purpose that

HTTP was for the Internet. Using O-MI different devices and sensors can in-
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<omi:omiEnvelope ttl="1.0" version ="1.0"
xmlns="odf.xsd"
xmlns:omi ="omi.xsd"
xmlns:xs ="http: // www.w3.org /2001/ XMLSchema "
xmlns:xsi ="http: // www.w3.org /2001/ XMLSchema - instance ">
<omi:response >

<omi:result msgformat ="odf">
<omi:return returnCode ="200"></ omi:return >

<omi:msg >
<Objects >

<Object >
<id>SmartHouse </id>
<Object >

<id>Kitchen </id>
<InfoItem name=" Humidity ">

<value unixTime =" 1459348542 "
dateTime ="2016 -03 -30 T17:35:42 .413+03 :00"
type=" xs:double ">
0.5663739287794303
</value >

</ InfoItem >
</ Object >
<Object >

<id>WorkHouse </id>
<InfoItem name=" FrontDoor ">

<value unixTime =" 1460970721 "
dateTime ="2016 -04 -18 T12:12:01 .063+03 :00"
type=" xs:double ">
30.967197215931222
</value >

</ InfoItem >
</ Object >

</ Object >
</ Objects >

</ omi:msg >
</ omi:result >

</ omi:response >
</ omi:omiEnvelope >

Figure 3.2: Infoitem with multiple values

teract with each other. Since in IoT the “thing” can be almost anything O-MI

was designed to be as general as possible. For product lifecycle applications

O-MI is supposed to provide a way for communication between products and

distributed information systems that consume and publish information on a

real-time basis. Despite the context or specific use case, it should be possible

to apply O-MI to the “lifecycles of anything” i.e. humans, services, projects,
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etc. [48]. O-MI can be used as a transportation mechanism for any payload, ex-

changing information between different O-MI Nodes across the network. The

information can be encoded using most of the widely used formats such as

XML, JSON and CSV. Since O-MI Nodes do not have predefined roles, the

interaction is performed on “peer-to-peer” basis where every node can act both

as a “server” and as a “client” with the other O-MI nodes or with other sys-

tems [48]. The key functional requirements reported below are based on the

needs of real-life closed-loop lifecycle [49, 50, 51] management applications. As

no existing standards could be identified that would fulfill those requirements

without extensive modification or extensions, they original designer decided to

standardize them to provide a more general solution for large-scale scalable IoT

systems.

O-MI key functional requirements

1. “Low-level” transportation ability. O-MI must be able to utilize the

usage of “low-level” protocols to transmit its messages. Protocols don’t

mean only network access protocols. Besides HTTP, SOAP, SMTP it

must be possible to transmit messages by just copying them to and from

USB stick or other storage media or just texting them using a mobile

phone.

2. Three main operations - read, write and cancel. Read operation

is used for immediate or deferred retrieval (also known as subscription).

Write operation writes the data from “Things” into the system. Cancel

operation is used to cancel subscriptions.

Immediate Read: O-MI Nodes can ask about particular values of par-

ticular moment in time or just inquire for the latest ones and they have

to get this information immediately.

Deferred Read (Subscription): Is a type of read request with speci-

fied interval rate and (optional) callback URL. After subscription request
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is made, the requester will start receiving data according to the specified

intervals. The data is sent to the callback URL. If no callback URL spec-

ified, the data can be “polled” by read request by specifying subscription

ID (given in the response of the subscription request). Polling can be

useful when using firewalls or NATs that do not allow response to reach

the callback URL.

3. Write operation availability: O-MI Nodes might need to send any

kind of information that became available to the other nodes and they

have to be able to do it at anytime.

4. Different payload formats: Even though O-DF (XML) is the preferred

payload, it must be allowed to use any text-based encoding format that

can be embedded into XML message as a payload.

5. Request and responses have to have TTL. Time-to-Live parameter

specifies the time for which the request is being valid to transmit, forward

or reply. If it expires, the request has to be removed and error message

returned.

6. Synchronous communication between nodes. In response it must

be possible to specify the request without sending additional query. There

must be also a possibility for clients to initiate the connection/communi-

cation to the nodes that are behind the firewall/NAT.

7. Data sources, services and metadata discovery and publication.

Data providers must be able to publish their data using write operation.

It must be also possible discover such data using simple HTTP queries

(URL mapping can be used) or even search engines.

8. List of target O-MI Nodes in request. It must be possible to specify

particular O-MI Nodes that have to receive, process and answer the re-

quest. Requesting nodes then are responsible for forwarding the request

to the target nodes and error handling.
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To sum up, O-MI is general mechanism of delivering messages between

nodes. It can be used for different kinds of information like physical products,

documents, repositories etc. The variety of operations is not limited to simple

read/write, but also allows subscription with data delivery on demand, on

change or on specified interval basis. The subscription concept is one of the

core concepts of O-MI.
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Reference Implementation

4.1 Introduction

In recent years, standard and technology adoption has often been motivated

by the available resources, both in terms of documentation and reference im-

plementation. It is imperative to associate standards with an implementation

and a “sandbox environment” in which developers can understand and learn

the standards specifications.

The reference implementation acts as some sort of executable documenta-

tion, with request and response examples covering essentially every aspect of

the standards. In this way developers can jump straight into action in under-

standing what the protocols supposed to do in reality and not only on paper.

The current reference implementation, developed at Aalto University – School

of Science – Department of Computer Science, consists of several modules:

O-MI Node Server. The server implements all O-MI basic operations.

It maintains a database where the information about O-DF data model, con-

sisting of Object(s) and InfoItem, is stored. Currently the only underlying

transport protocol supported is HTTP, but in the future there is a plan to sup-

port websockets as well. Therefore any O-MI operation is transported using

an HTTP POST. In many regards the reference implementation behave like

a normal REST endpoint, except for the subscription mechanism that allows

interval or event based responses to a list of subscribers. Moreover, subscribers

can specify a callback address (basically a URL different from one that has

sent the original request) that will receive the messages during an active sub-

30
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scription session. Without the callback URL the data can be polled using read

request with subscription ID. The current implementation also supports the

“cancel” to stop and delete active subscriptions.

Webclient. This module provides a graphical interface for users and devel-

opers. The main purpose is to demonstrate is automate the creation of correct

O-MI/O-DF messages, just by clicking instead of writing XML and HTTP

queries by hand.

Figure 4.1: Illustration of O-MI Node Webclient UI.

The User Interface depicted on Figure 4.1 (full resolution image can be

found in Appendix A) has been designed to guide the user like a numbered step-

by-step tutorial. The main interaction happens of left panel, with numbered

subsections. In the first one, by clicking on the ReadAll button, the webclient

forwards to the server a request to retrieve all objects. An example of an O-DF

tree is depicted on Figure 4.2.

The objects can have an arbitrary number of sub-objects or InfoItems (e.g.

BackDoor is an “InfoItem”, BedRoom is a sub-object). Users can choose the

item(s) they are interested in by just clicking on them.
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Figure 4.2: O-DF Structure.

When the user toggle a flag on a spe-

cific item, the webclient takes care

to translate it into the corresponding

XML request, including all the neces-

sary parameters according to the se-

lected type of the query. The type can

be chosen on the next panel called O-

MI Request (see Figure 4.1). When

the type is chosen the user can fill

the required and optional parameters

in the special fields. The number of

available inputs depends on the type

of the query was chosen earlier. The

fully expanded UI for parameters is shown on Figure 4.3. The TTL parameter

specified the time for which a request remains valid (time for processing and

reply). The Interval, requestID and callback URL parameters are used only for

subscription. It is also possible to specify the “n” newest or oldest values or

specify particular timeframe from which the values will be queried. All these

user selections are automatically translated by the webclient on the correspond-

ing XML, which is available for inspection of the right panel of the UI. The raw

XML is also user editable; in this way developers/advanced user can further

understand how the protocol behave and what a correct O-MI/O-DF request

looks like.

It is possible to submit the generated request to the server simply by clicking

on the Send button. The reply from the server is also available for inspection,

but of course in this case is not user editable.

Agents. The agent subsystem provides a mechanism to interact program-

matically with the core of an O-MI node. In general an agent is a sepa-

rate worker thread that fetches data from specific data sources using specific

protocols and transform them into objects that are understandable by the
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core. In general agents are used as an intermediary between the lower level

hardware (sensors/actuators/any IoT device) and the O-MI node. For exam-

ple, an agent can be a driver for a Z-wave or Plug-wise plug on/off switch.

Figure 4.3: Additional request parame-
ters.

The current implementation de-

fines two types of agents: internal and

external. Internal agents are imple-

mented as Scala Actors [52]. They

run on the same Java Virtual Ma-

chine as the O-MI Node Server and

they are dynamically loaded at run-

time. While external agents run as

independent processes from the O-MI

Node, and they can be located either

on the same machine or different ma-

chine. The interaction between exter-

nal agents and the O-MI node use a

plain TCP socket for the communica-

tion. One advantage of using exter-

nal agents is that they can be imple-

mented in any language that supports

a TCP/IP library. The security re-

quirements that the different type of

agents must implement are described in detail in chapter 5.
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4.2 Security model for the reference implemen-

tation

The current O-MI Reference Implementation does not include any security

mechanism. There used to be a very primitive IP whitelist from which it was

possible to perform the O-MI write operation while reading was allowed to

anyone. This can be hardly called a security and access control model, as it

is not possible to specify any roles and associated policies for the users and

groups. Configuring “.htaccess” file on a (Apache) web server running the

node, solve this issue only partially. One of the problems with this type of

authentication is that it is solely based on passwords that are stored on the

server (.htpasswd files in Apache) and essentially is useful to define directory

access policies. Mapping directory policies with O-DF objects (in our case –

Objects and InfoItems from O-DF Tree) is theoretically possible but is more like

a patch then a proper solution. Besides being web-server dependent, another

drawback of this solution is the fact that is impossible to distinguish between

different types of O-MI requests (read/write/delete).

Therefore it has been decided that a dedicated security module has to be

developed from scratch to enforce access management policies based on the

O-MI verbs and the O-DF data model. The next chapter will provide an in-

depth description of the requirements and the development process of the access

control and authentication modules developed during this thesis work.
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Security module

5.1 Introduction

For any real usage of the O-MI node reference implementation authenti-

cation and access control are fundamental. O-MI node administrators must

be able to specify the roles and the permissions for the every O-MI operation

and O-DF Object(s) and InfoItem(s). This chapter first introduces a discus-

sion regarding security requirements of different use cases in different network

configurations. After that it describes in detail the design and implementation

process of the authentication and access control module.

5.2 Different levels of security requirements for

O-MI Nodes

In IoT, confidentiality of the information and users’ privacy depend on a

variety of aspects, such as system configurations, usage scenarios, etc. As

suggested in [53], the following paragraphs will classify security requirements

according to two main perspectives: 1) network configuration perspective, 2)

use case examples.

5.2.1 Security requirements based on network configu-

ration

There are mainly four different scenarios that depend on network config-

uration or more precisely on the location (in term on belonging to the same

35



CHAPTER 5. SECURITY MODULE 36

or different network) of agents and clients communicating with a given O-MI

node.

• Local machine. The agent and/or the client are located on the same

machine with the server. In this case they can be considered trusted-

software, as an administrator allowed their installation on the server,

therefore and advanced security mechanisms such as query encryption or

server-client certificates can become an unnecessary processing burden.

In this scenario the security mainly concern the protection of the server

from the external treats.

• Same subnet, different machines. In this scenario agents and/or

clients are located in the same subnet as the O-MI node server, but

on the different machine. Because they are on the same subnet, the

server can interact with the other party directly using its internal IP

address without a need of going through gateways and other intermediate

nodes. In this case the network is like a closed community, with higher

level of trust compared to any other node on the Internet. However this

does not exclude potential attacks (e.g. a Node in the network has been

compromise and start to send confidential data to 3rd parties). Therefore,

in this scenario the main security threats will come from the external

attacks or if an attacker has physical access to a node in the network.

• Same network, different subnet. Typical example of such network

structure is a University, where different departments have different sub-

nets, but they are all still connected to one main University network, get-

ting access to shared resources by forwarding queries through gateways

and other internal proxy nodes. Again, if the network is isolated from the

Internet, then the security requirements from previous paragraph are ap-

plied. But in addition to that, the nodes of one subnet don’t know much

about the nodes from the other subnet, they usually interact through
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some gateway that might implement certain security restrictions. Poten-

tial attackers could override some of these policies, sniffing and spoofing

data transferred between nodes of different subnets. In this scenario the

authentication and encryption of traffic might be necessary if any of nodes

of the set of subnet cannot be fully trusted.

• Different network (Internet). In this scenario no node can be trusted

and the maximum level of security must be implemented. Anyone can be

seen as a potential attacker, therefore any agent/client must be authen-

ticated by the server and the communication must be encrypted.

5.2.2 Security requirements based on product use cases

Besides the network configuration the security requirements often depend on

the specific situation or use case. This perspective mostly involves user’s view

on the situation and consists of his/her personal requirements and concerns.

There are several levels of security, outlined here according to the [53]

• No security requirements. There are several scenarios where querying

and updating of the information does not require any security require-

ments. For example a smart fridge might provide information about the

expiration date of different foods it contains. At first sight, this might

seems as not-so-sensitive information, of course a user might be not want

that other people knows what he is eating but it does not have any se-

curity implication. However, being IoT bonded with real life objects, it

is possible to infer that maybe there are no item in fridge, because the

house is empty, which is clearly a sensitive information. In general lower

security measures increase the usability and potential of any IT system,

however in IoT understating if an information is truly sensitive or not

might be not so straightforward. Therefore in IoT no-security require-

ments is a scenario that can rarely applied.
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• Data encryption and integrity check is necessary. Encryption is

necessary, whenever an attacker can gain access to the data exchanged

over a given communication channel. Encryption includes integrity check

(but not vice versa), so the information cannot be read by a man-in-

the-middle and also cannot be tampered without notice. In the World

Wide Web, data encryption and integrity check are widely supported via

HTTPS. This protocol is recommended and supported by pretty much

all the major web-browsers or other user agents. Companies exposing

their services though a given server under a given domain simply need to

purchase a signed security certificate and maintain it up to date.

• Authentication of all interacting parties is necessary. If HTTPS

is used for encryption and integrity check and if the server has a valid

signed certificate, then client is aware of server’s true identity. In this

scenario only one of two parties is actually authenticated, however many

scenarios require that both parties are authenticated. In the Internet

this is usually accomplished using password that the client has to enter

to demonstrate its identity over an encrypted channel. Another option

is to use client side certificates as authentication mechanism: HTTPS

supports this feature out of the box and in general it is safer than easy-

to-guess password. However, one of the drawbacks of this solution is that

it increases the complexity of the security mechanism, requiring special

web-server configuration changes that for some enterprises might be com-

plicated to impose. In addition, even though it is much easier to guess a

password than a certificate, the distribution of such certificates and their

protection on the client is at risk. Last but not least is usability, most

users might not be familiar with client side certificates and when their

browser pops up the information box regarding accepting this kind of

authentication method they might simply decline or ignore it.

To sum up, this level of security is more demanding than the previous one
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encompassing the authentication of all participants in the communication

over an encrypted channel.

• User-based access control is necessary. After the user is authenti-

cated using one of the methods described above, it is often necessary to

assign them specific right over specific data objects. Similarly to what

happens in any modern operating system, where a user is allowed to per-

form only a given set of operations of given files or directories, the same

mechanism can be implemented for the resources of a network endpoint.

The last level of security described above is lacking in the current O-MI

reference implementation. Therefore, it has been decided that a flexible mod-

ule to manage users/groups and their access levels has to be designed and

implemented. The following section states the requirements for such module.

5.3 Modules requirements

One of the main requirements for the security module was to impact as little

as possible the current core implementation while providing the desired func-

tionalities. Therefore it has been decided to create a separate self-contained

module which can plugged into the existing implementation. Beside this archi-

tectural choice, there is a list of requirements to fulfill:

• Prevent unauthorized access to the resources. Only users who have

required access can perform given operation over certain data objects.

• Group based rules. All users must belong to a group. Access rules are

set for groups, never for single users. Every user can be a member of one

or many groups.

• Differentiate permissions according to the O-MI verbs. Essen-

tially this requirement can be translated into the well-known distinction

between simple read and read-write permissions.
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• Minimize server-side account maintenance. Users must be able

to register and login to the service minimizing the maintenance of such

account on the server. For this reason, OAuth2 (Facebook login in par-

ticular) authentication model was chosen.

• Recursive permissions mechanism. Permissions can be inherited

from parent object (same as in modern file systems) as well as overridden

for particular children.

• Customizable default permissions. There should be a way to set the

set of rules that apply for every user by default.

• Universal authentication mechanism. Target user is not necessarily

a human (e.g. Things/Machine). The authentication mechanism has to

be able to treat all users of the system in a universal way and should

work in the same way if the user is human being using web-browser or a

device.

• Rules management interface. The system administrator must be able

to control access policies through a centralized interface. The interface

must implement the following features:

– View the whole list of groups on the O-MI Node

– View the list of users for every group

– View the Access Control Tree for every group

– Modify the Access Control Tree for every group

– Modify group information such as name and list of members

– Add groups

– Delete groups

– Register new users
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It is quite clear how that requirements are pretty common in every security

mechanism. Therefore, it has been decided to mimic as much as possible well-

known security models such as the one implemented by the Unix File System.

Its simplicity and effectiveness remains to be matched.

5.4 General design decisions

Based on the above listed set of requirements, it has been possible to select

certain technologies, design an overall architecture and define the features that

needed to be implemented. The main design decisions are summarized in the

following list:

• Two main submodules. The security module consists of two main

parts: Registration/Authentication submodule and the Access Control

submodule. The first one is responsible for handling the registration of

new users and their information. It will also manage the authentication

process and session handling. The latter module consists of two essential

parts: administrator console and access control middleware. The first one

is a tool for system administrators to manage user groups and policies.

The second one processes and authorizes requests made by users.

• Separate Database. To satisfy the requirement of changing as little as

possible the existing core implementation, it has been decided to manage

users/groups and the related policies in a separate database. Obviously

this choice has negative effect in terms of memory and overall perfor-

mance, but it ensures code modularity and drastically simplifies code

management.

• Servlet based. The module has been written using Java using Servlet

technology, this choice is mostly due to the existing knowledge and fa-

miliarly with this particular framework.
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• Facebook as OAuth2 service provider. The feature for registra-

tion/authentication module that will support the login to the service

using Facebook credentials.

• Certificates Extension. Since the "Things” does not have dedicated

Facebook profile, these devices use client side certificates containing the

necessary credentials verifiable by the server.

Database Schema At the core of the security module there is database,

which is used to store and manage users, groups and the associated access

policies. The Entity-Relationship diagram depicting the schema of the security

module database is illustrated in figure 5.1. (Full resolution can be found in

Appendix B).

Figure 5.1: Entity-Relationship diagram of the security module database
schema.

The database contains 3 main tables: user, group and rule. When regis-

tering new users, the module obtains username and email only. Users belong

to a "default group” after their registration. The default behavior and access

policy for the "default group” can be customized by the O-MI node adminis-

trator. The group table contains the list of groups. Users and groups have
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many-to-many relationship that is implemented using a helper table named

USER_GROUP_RELATION. Access rules are stored in the rule table, is ar-

guably the most interesting for the implementation of the security module, as

it maintains the association between a group, a data object (hid), and which

kind of operation is allowed to perform (Read/ReadWrite). The meaning of the

hid in the rule table, might be not self-evident to the casual reader, therefore

it deserves an explanation.

The hierarchy_id is a specific path in the O-DF XML. Figure 5.2 provides

an example of it: InfoItem with name equals to "Temperature”, has hierarchy_-

id equals to "Objects/Kitchen/Temperature”. Basically it’s a path from the

Root element (Objects) to the current element including all intermediate parent

nodes.

<Objects >
<Object >

<id>Kitchen </id>
<InfoItem name=" Temperature ">

<value >5</value >
</ InfoItem >

</ Object >
</ Objects >

Figure 5.2: XML example for hierarchy ID

The Group id column of the rule table is related to the id property in

GROUP table. The Write_Permissions column is a Boolean flag (0=R (read)

or 1=RW (read+write)). Finally the Object_Rule column indicates if the rule

is applied to an Object or an InfoItem. The InfoItem is a type of node that

contains data (e.g. Temperature Sensor Reading), while an Object (e.g. Tem-

perature Sensor), from a security perspective is similar to a folder in file system,

it might contains other objects and/or InfoItems. The rules for a given Object

must also apply recursively to the Objects and InfoItems it contains. Like in a

normal file system, an Administrator can also break rule inheritance and man-

ually override the rules for a particular node. Finally the Administrator table

is a helper table that maintains a list of user with admin rights and it is filled
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manually by the server administrators.

5.5 Interaction principles

Given the decision of developing the security module as a separate plug-

in for the O-MI reference implementation, the interaction between these two

software has to be planned: Two main interaction types were identified 1) user

registration 2) authentication and access control granting.

5.5.1 User registration or authentication scenario

When a user lands for the first time in an O-MI webclient window (or in

case his/her session has expired), the system redirects the user to perform an

authentication process. Because OAuth2 has been used for reasons explained

above, the credentials are obtained from a 3rd party website without the need

for the user to type them manually. The interaction scheme is shown in the

Figure 5.3.

Figure 5.3: User registration/authentication interaction map.
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In this scenario the user interacts with the access control (AC) module

through the web-browser. On the login webpage the user selects the registration

using an OAuth provider (e.g. Facebook). AC Module redirects the user to the

service provider’s webpage where he/she is asked for a permission of using his

personal data. After the user agrees, the service provider redirects him/her back

together with the access token, which is forwarded to the AC Module. After

that the module is able to get user’s personal data by making HTTP queries to

the service provider calling vendor-specific APIs (in this case Facebook). After

getting the data, the AC Module checks if the user is already registered; if

not, user’s info are stored in the database presented in the previous paragraph.

Then if no errors occur the module sets the session cookies in the user’s browser.

Finally the user is authenticated and is able to perform queries to the O-MI

Node Server and using the webclient.

5.5.2 Access control

Once a user is registered to the system, it is possible to associate this account

to particular groups restricting/granting the access to particular data objects.

For this purpose a dedicated user interface, called the access management tool,

has been developed (see Figure 5.4, additional images of UI can be found in

Appendix C). This user interface interacts with the access control module in

the backend, which essentially manages and stores access rules on the database

described above.

Access management tool: The user interface of this tool partially re-

sembles the O-MI Node, extending its functionality. This tool is supposed to

be used by the administrative staff in charge of the O-MI node. In the user

interface, administrators can manage groups and users and set special rules for

them. They can create, modify or delete groups and add or remove particular

users to given group(s). Mimicking the same user interface used in the reference

implementation webclient, it is possible to retrieve all the objects available in
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Figure 5.4: Access control module User Interface.

the O-MI Node (ReadAll operation) and set access policies for every node of

the O-DF tree. The policies are simple [no-access/read/read-write] flag, which

are associated with every node in O-DF tree. These rules are forwarded (by

pressing the "Save” button) to AC module on the backend which is in charge

of storing them in the database. When a certain group is selected from the

dropdown list (see Figure 5.4), the system automatically loads the rules for

that group from the database and shows them in the tree.

Backend: The access control backend, besides storing the configuration

set in access management tool in the database, has the fundamental function

of interacting with the O-MI node core. The interaction is extremely simple:

essentially the O-MI node asks: "Is the access to the resource X for the user

Y and request type Z allowed?”, and the module replies "Yes or No” based

on rules that have been set by the administrators. The module’s interaction

scheme is shown on the Figure 5.5.

This scenario usually starts after the authentication process is completed

and the user has a valid session cookie. After being authenticated, the user can

start to interact with the O-MI Node Server via the webclient.

When the user sends a request (e.g. read request for a particular object or

set of objects) to the O-MI a session cookie is also forwarded. The O-MI Node
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Figure 5.5: Access control interaction map.

receives and parses the request, it then invokes one of the AuthAPI methods,

(which is part of the O-MI core implementation), passing as parameters the list

of objects, described in term of hierarchy id, that user is trying to access and

the user session. The invoked method forwards the request to the AC Module,

by performing an HTTP POST to the service running in localhost. The AC

Module service selects the appropriate rules from its database, matching them

with the request permissions. If the user has appropriate access right on every

item of the hierarchy_id list, the service replies True back to Auth API. In

case 1 or more item violate access rules stored in the database, the service

replies False scrapping the entire request. Once the Auth API has received the

True/False answer from the AC service, the O-MI Node finally replies to the

user with either the requested data or an access denied error.
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5.6 Implementation

In the previous paragraph the overall design of the module has been pre-

sented, while this paragraph focuses on the technologies and implementation

details of the developed module. Despite the fact that the O-MI Node Server

is written in Scala it was decided to implement security module in Java. This

decision is mostly due to the familiarly with the language and the available

server-side framework. In addition it is worth to notice that it is possible to

execute Java code from Scala applications as they are both compiled as byte-

code for the same Java Virtual Machine. Therefore there was no real concern

if a tighter integration between the modules is required.

Figure 5.6: Module class diagram.

Since the module has been designed to be standalone, an embedded Jetty

Servlet container was used to implement the communication (http) with the

O-MI Node.

Figure 5.6 depicts the overall code organization. The blue ovals represent
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the servlets: the AuthServlet is an authentication servlet that handles user

authentication and sets up a session. The PermissionService is the core servlet

of the module. It is responsible for the majority of functions implemented by

the AC module; such as: the backend service for access management UI tool

and enforcing access control on behalf of the O-MI Node.

Additional classes include: DBHelper which is a wrapper class for managing

table structure and entities in for the SQLite database. The ConfigHelper class

contains basic configuration parameters, such as the database name and server

URL. The AuthService is an intermediary class responsible for writing object

permissions from the O-DF tree structure (using the access management UI

tool) into the database. Finally, the last component interacting with the AC

module is the AuthAPI. Essentially it is an external class, which is now included

in the O-MI Node implementation, providing an abstracted and uniform way to

perform authentication and authorization, hiding the implementation details

regarding how this functions are performed. This allows future updates to the

AC module which will be completely transparent to the O-MI Node.

5.7 SSL certificates extension

OAuth is the ideal choice when the entity interacting with the system is

a human being utilizing a web-browser. If the "user-agent" is something else

than a web-browser, such as an IoT device running its own firmware, the OAuth

sessions mechanism is not a suitable method.

One of the real-world uses in which the O-MI Node and AC Module has

been applied for testing was a smart home installation. Essentially it consists

of a number of different sensors connected together to central gateway. The

gateway connects the house with the internet and the ISP (Internet Service

Provider) assigns a dynamic IP which might change over time. The usage of

dynamic IPs is very common and that was one of the reason why the previous

authorization method based on IP whitelist was abandoned. However, in this
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scenario also OAuth won’t work because the user agent is not a browser and it

does not make sense to authorize a physical device (the home gateway) using a

Facebook account. To address this issue, it has been decided to use client SSL

certificates.

Figure 5.7: Certificates exchange diagram.

Normally, when using HTTPS protocol, the server buys a certificate from

an authorized Certificate Authority. When the client connects to the server

through HTTPS it receives the server certificate and checks within the CA

if the certificate is valid [54]. For the O-MI Node, mutual authentication is

needed, meaning the gateway need to sure that it talks to the correct server,
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and the O-MI server needs to be sure that it is talking to the right client (See

figure 5.7). In practice the O-MI Node creates a certificate and signs it (with

the server private key). Network distribution of such certificate is also possible,

if a trusted software is already running on the target machine, otherwise the

certificate has to be physically installed in the device. At this point when the

home gateway establishes a normal HTTPS connection with the O-MI Node, it

sends its certificate to the O-MI Node. The O-MI node is able to verify (using

its public key) that the received certificate has been signed by the server itself,

and it can finally authenticate the device.

Obviously, the identity of the device and its access rights must be also con-

figured beforehand using the AC management UI tool. In this case an invented

e-mail address has been used as "user-id", which is stored upon registration in

AC module database. This e-mail address is one metadata of the client cer-

tificate, which is extracted by the O-MI Node and forwarded as "user-id" to

the AC module that can finally check if the requests the device is performing

comply with policies stored in the AC database. It is worth to notice that a

real manufacturer could use the product serial number, instead of an email,

as "device/user-id", or even better a globally unique identifier, such as the

ID@URI concept proposed by [55]. Ideally, the URI is the internet domain of

the manufacturer (e.g. samsung.com) whose uniqueness is guaranteed by the

DNS [Oat Systems & MIT Auto-ID Center, 2002], while the ID part can be

only locally (inside the address space of the URI) unique identifier such as a

product serial number or it a Global Trade Identification Number (GTIN).

As final note, it is worth to notice that the same authentication mechanism

could be used also for human being; however even if the major web-browsers

currently support client side certificate, the casual user is usually not aware of

this authentication scheme and (at least for the moment) might confuse him/her

which ultimately lead to leaving the website. Considering the fact that the main

purpose of the O-MI reference implementation is to promote and divulgate

the standards; it is paramount to attract as many users as possible, that’s
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supporting well know authentication method like OAuth is still necessary.



Chapter 6

Conclusion

6.1 Summary of findings

The main focus of this research was to develop a suitable security model for

the Open Messaging Interface (O-MI) and Open Data Format (O-DF) stan-

dards. In the first part of the thesis a general introduction to IoT was provided,

highlighting its disruptive potential and the importance of overcoming current

vertical information silos to realize a truly unified IoT. A set of requirements for

achieving this IoT grand vision was discussed. Subsequently, several existing

messaging standards were presented and compared with O-MI and O-DF. This

comparative analysis highlighted how current standards address only partially

the requirements necessary for achieving a unified IoT and identify O-MI and

O-DF as one potential enabler for this goal.

The second part of the thesis describes in detail the core concepts behind

O-MI and O-DF, together with their application in real-world usage scenar-

ios. The set of characteristics that sets O-MI apart from existing standards

(transport protocol independency, subscription, support of different payload

formats) were also highlighted. After that, the description of the current O-MI

reference implementation, and how it can be integrated into any arbitrary data

provider/consumer application scenario, has been presented. Its main compo-

nents, such as the O-MI Node Server, the webclient and agents system were

also described and usage examples were provided. Next, the support for ac-

cess control and authentication for the reference implementation was discussed.

Since the existing mechanisms were limited to IP-whitelisting for given O-MI

operation, it was decided to develop an external security plug-in module that

53
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could provide authentication and access control to the existing O-MI reference

implementation.

The third and final part of the thesis describes the design and implemen-

tation choices of the module that was developed. First, the requirements and

possible scenarios were presented. Three main functionalities needed to be ad-

dressed: authentication, access control and administration management. Based

on the stated requirements, core design decisions were discussed, such as a plat-

form/language selection, code architecture etc. Finally, the integration with

the existing O-MI reference implementation was presented using a smart-home

scenario as testbed.

6.2 Implications of the research

The thesis had two main objectives. The first one was to present O-MI and

O-DF standards and show that they can help to enable seamless communication

between heterogeneous devices in IoT, acting as aggregator nodes and ensuring

interoperability at a system-to-system level. The second one was to develop an

access control mechanism that could be plugged-in into the existing reference

implementation. It was demonstrated how it is possible to set the rules for

different data elements and semantic entities and apply the rules to the real

IoT system in a general manner. Legal and privacy issues, related with the IoT

data exchange, were not covered by this thesis.

6.3 Reliability and validity of the research

The security module developed can be only partially reused as such for

the integration with others systems than the O-MI reference implementation.

However, the requirements, the core design decisions and the code structure

has been conceived to be generally applicable to other systems, providing a

solid foundation for a further abstraction and generality of the used approach.
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6.4 Future work

This research leads to the conclusion that the O-MI and O-DF standards

represent a step towards a unified vision for the IoT, providing better integra-

tion capability compared to existing protocols, systems or standards.

However, there are still some areas that need to be addressed. In the in-

troduction it was argued how security is already one of major IoT concerns,

for users, developers and other stakeholders. The O-MI and O-DF standards

deliberately do not include any particular security model. However, it would be

extremely useful to advice third parties, who might want to develop their own

implementation of the standards, the recommended authentication and autho-

rization model. The authentication model presented in this thesis is based on

client side SSL certificates and it is truly applicable to pretty much any sce-

nario. Certificates are a far superior authentication method than traditional

device ID and password, however their safe distribution over the internet might

pose additional challenges. However, it is worth noticing that if this authen-

tication method will become the dominant one, a device manufacturer could

embed the certificate directly into their product even before the device is sold

to the public. Hardware manufacturers could also develop methods for making

it impossible to alter or steal these certificates, even with physical access to the

device. On the downside one common problem with certificates is that they

have an expiration date, updating certificates manually on potentially millions

of device is definitely not an option. Of course an alternative is to make the

client register itself by generating a private and public key pair. The public key

is sent to the server as a part of certificate request. This request also contains

additional information about the target user such as email, organization name

and so on. The server then builds the certificate, signs it with the client’s pub-

lic key and sends back to the client that decrypts it. The connection between

the server and the client is secure and using encryption mechanism (such as

HTTPS). Clearly this would work if and only if the server can be sure that it
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is talking with the right client.

Currently there are plenty of options on how IoT authentication and au-

thorization can be implemented. A single master thesis can barely scratch the

surface of this vast topic, however this research has highlighted the importance

of the convergence to one unified IoT technology stack. In conclusion this thesis

reject the argument that security must be use case dependent, and advocates

for a set of well-known shared technologies that every IoT installation should

comply to.



Appendix A

O-MI Webclient

This shows the user interface that was developed for O-MI Reference Im-

plementation and already existed by the time when this thesis started. Main

windows and parameters and the overall interface composition are presented.
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Figure A.1: O-MI Webclient User Interface
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Figure A.2: O-MI Webclient User Interface



Appendix B

Security module database

This shows the scheme of database that was designed for the security module

in Chapter 5.
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Figure B.1: Illustration of access control and authentication modules db



Appendix C

Security module admin panel

This appendix shows the interface for Administrators of the security module

that was developed in this thesis. Main windows and parameters and the overall

interface composition are presented.
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Figure C.1: Security module admin panel User Interface
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Figure C.2: Create new user window

Figure C.3: Set permissions window
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