
Dharma Teja Srungavruksham

Development of Teleoperation Software for
Wheeled Mobile Robot

School of Electrical Engineering

Department of Electrical Engineering and Automation

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Technology

Espoo, May 23, 2016

Instructor: Professor Riku Jäntti

Aalto University
School of Electrical Engineering

Supervisors: Professor Ville Kyrki Ms. Anita Enmark

Aalto University Luleå University of Technology
School of Electrical Engineering

Acknowledgement

I thank Prof. Riku Jäntti for providing me with the working opportunity to

study and implement teleoperation software as part of their efforts to realise

better living through the use of cellular based network technologies like Machine-

to-Machine and Internet of Things. I highly appreciate his patience throughout

my thesis work, his assistance and access to department’s resources helped me

to work in the premises and conduct experiments. I would also like to extend

my thanks to the research team, Shariatmadari Hamidreza for his help with

demo testing and advice, Ali Yusein for his assistance in using communication

nodes and Iraji Sassan. I am grateful for all the help extended by resource

manager Viktor Nässi, without whom it would have been difficult to manage

experiment logistics.

I thank my supervisor Prof. Ville Kyrki for letting me pursue thesis work

with another department and his understanding of the work. I appreciate the

assistance of Tomi Ylikorpi and Salama Annika throughout my spacemaster

studies at Aalto Univeristy.

Finally, I thank Ms. Anita Enmark for being my supervisor and Victoria

Barabash from Lule̊a University of Technology and Erasmus mundus programme

for their support to spacemaster which gave me an international exposure and

great friends for life. I thank my family and friends who were always there for

me and understood my purpose to pursue this degree.

Espoo, May, 2016

Dharma Teja Srungavruksham

ii

Aalto University
School of Electrical Engineering Abstract for Master’s Thesis

Author: Dharma Teja Srungavruksham

Title of the thesis:
Development of Teleoperation Software for Wheeled Mobile
Robot

Date: May 23, 2016 Number of pages: 10+78

Department: Department of Electrical Engineering and Automation

Programme: Master’s Degree Programme in Space Science and Technology

Professorship: Automation Technology (AS-84)

Supervisors: Professor Ville Kyrki (Aalto)

Ms. Anita Enmark (LTU)

Instructor: Professor Riku Jäntti

Wireless technology in our daily lives is giving a way to more and more inter connected
devices. More increasingly innovative applications are being developed for daily usage
ranging from simple sensing devices to autonomous robots. With all these extra addi-
tions, the burden on wireless technologies such as WLAN and 3G/4G/LTE is leading to
the development of new network architectures and protocols. Teleoperation of remote
devices are finding their way into common places using those technologies. In this thesis
work a teleoperation software was developed to use wireless serial devices to control a
remote robot over the network and perform autonomous tasks under the supervision of
an operator. The robot is an indoor wheeled mobile robot and operator’s device is a
computer, both running on Windows OS. This system is similar to a Wireless Sensor
Networks with actuators and sensors being on the robot device while the control brain
is on a remote computer. The full system has several components like graphics for
robot parameters, settings for communications, modes of operations for operator and
robot’s own localization and safety tasks. Field tests validated the full functionality
of the system but in four out of nine trials failure of wireless devices caused complete
system paralysis. An autonomous trajectory following operation was implemented to
study the effects of packet loss in communication, it was found that control was reli-
able even with 26% drop. With a linear driving test it was also observed that robot’s
free moving wheel was causing an orientation error adding an extra 0.06 ° when moving
backwards. A continuous transmission of data packets in the network ensures reliability
in the system, this is very important from operator’s perspective.

Keywords: teleoperation, telerobotics, mobile robots, Pioneer 3-Dx, wireless net-
works

iii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 2

1.3 System overview . 3

1.4 Thesis overview . 5

2 Related Work 6

2.1 Control architecture . 7

2.1.1 Direct control . 9

2.1.2 Telecommanding . 10

2.1.3 Behaviour based model 10

2.1.4 Hierarchy level based model 11

2.2 Communications . 12

2.2.1 TCP/UDP . 14

2.2.2 IEEE 802 family . 15

2.3 Control interface . 15

2.3.1 GUI and input device . 16

2.3.2 Camera views . 16

2.3.3 Time followers vision . 17

2.3.4 Operator command strategy 19

2.4 Summary . 20

3 Trajectory Tracking 21

3.1 Nonlinear State Tracking Controller 22

4 Tools and Framework 27

4.1 Wheeled Mobile Robot (WMR): Pioneer 3-DX 28

iv

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

4.1.1 Robot Hardware . 28

4.1.2 Robot Software . 30

4.2 User Interface framework . 33

4.3 Wireless Communication . 36

5 Implementation 39

5.1 Communication data packet . 39

5.1.1 Payload Data . 40

5.2 Robot application development 43

5.2.1 ArRobot . 44

5.2.2 Transmission . 47

5.2.3 Reception . 48

5.3 Desktop application development 49

5.3.1 GUI . 49

5.3.2 Transmission . 54

5.3.3 Reception . 54

6 Experiment setup 57

6.1 Setup . 57

6.2 Test description . 61

7 Results and discussion 62

7.1 Functionality . 62

7.1.1 Navigation . 62

7.1.2 Linear drive operation 64

7.1.3 Trajectory following operation 64

7.1.4 Anti collision safety . 66

7.2 Performance . 68

8 Conclusions 72

8.1 Conclusive remarks . 72

8.2 Future Work . 73

References 74

v

List of Tables

4.1 Useful Server Information Packets (SIP) contents 31

5.1 Header and Trailer elements description 41

5.2 Control velocity command data payload from Controller . . . 41

5.3 Transmission interval command payload from Controller . . . 42

5.4 Velocity command data payload from Controller 42

5.5 Set transmission command payload from Controller 42

5.6 Position data payload from Robot 42

7.1 Packet drops in testing . 71

7.2 Elliptic path completion time and packet drop 71

vi

List of Figures

1.1 Block diagram of complete systems operation 4

2.1 Components of a teleoperation system [1] 7

2.2 Basic control paradigms [2] . 8

2.3 Direct control model [3] . 9

2.4 Quadrifolium drawing with direct control [3] 9

2.5 Telecommanding model [4] . 10

2.6 Behaviour based model [5] . 11

2.7 Level architecture with advanced speed and gesture input [6] . . 12

2.8 Standard OSI model . 13

2.9 Standard protocols distributed on OSI model 1 13

2.10 Comparing local control loop with remote control loop [3] 14

2.11 Cockpit interface [7] . 16

2.12 Different camera view for robot environment [8] 17

2.13 Three camera view points for rescue mission [9] 18

2.14 Operator performance with three different views [9] 18

2.15 Operator interface with a robot model [10] 19

2.16 Block diagram of the system [10] 19

2.17 (a) Navigation time and (b) position error for command strategies
[11] . 20

3.1 Trajectory tracking control diagram 21

3.2 Robot motion in global reference frame 23

3.3 Trajectory tracking of robot state 24

4.1 Teleoperation setup . 27

4.2 Pioneer 3-DX robot . 28

4.3 Advanced Robot Control and Operations Software (ARCOS) server-
client control architecture [12] 30

vii

4.4 ArRobot task cycle . 33

4.5 Signal and slot mechanism . 34

4.6 Communication node . 36

4.7 Hardware stack . 37

5.1 Structure of a standard packet with its size 40

5.2 Robot application flow . 43

5.3 Zone check task in ArRobot’s flow 44

5.4 Safety zones and maximum velocities 45

5.5 Robot packet transmission (Tx) 47

5.6 Robot packet reception (Rx) . 48

5.7 Ui application flow . 50

5.8 User interface application . 51

5.9 Interactive graphics scene zooming 51

5.10 Ui packet transmission (Tx) . 55

5.11 Ui packet reception (Rx) . 56

6.1 Experiment area images . 58

6.2 Packet transmission settings . 58

6.3 Experimental area map . 59

6.4 Operator interface in action . 60

7.1 Robot path using dead reckoning 63

7.2 Robot path with laser localization 63

7.3 Actual robot position (far end of the image) vs calculated position
(graphics scene of UI) . 64

7.4 Linear robot motion between two point 65

7.5 Velocities for linear controlled drive 65

7.6 Trajectory following map . 66

7.7 Trajectory tracking errors . 66

7.8 Safety activated on the map . 67

7.9 Velocity alteration for safety . 67

7.10 Free wheel effect on orientation 68

7.11 Free wheel effect on orientation 69

7.12 Robot control with packet loss 70

viii

List of Algorithms

5.1 Velocities update for zone check 46
5.2 Reference target generator . 52
5.3 Motion control . 53
5.4 Linear control . 54

ix

Symbols and Abbreviations

ARCOS Advanced Robot Control and Operations Software

ARIA Advanced Robotics Interface for Applications

ARNL Advanced Robotics Navigation and Localization

AROS ActivMedia Robotics Operating System

SIP Server Information Packets

SONARNL Sonar based Advanced Robotics Navigation and Localization

WMR Wheeled Mobile Robot

x

Chapter 1

Introduction

“Everything should be made as simple as possible, but not simpler.”

- Albert Einstein

Since its inception wireless communication has penetrated into every field of
work and everybody’s life, demand for connectivity and information sharing
is increasing exponentially. In mobile phone usage alone there are over 6.8 bil-
lion devices [13] and predictions promise for very steep growth. Remote systems
could be anything from simple sensor relaying raw data to an autonomous robot
operating in other planets. In the area of field and service robotics mobile robots
are quite commonly used to solve a remote task while a human controller might
directly operate the robot or set an action for remote execution. Robots can
also be programmed to have a level of intelligence that does not require human
interventions which make it easy to execute repetitive tasks on its own. We
see many such mobile robot applications in space and military usage. In space
application the robot might have to survive the harsh climates of Mars or Moon
by reacting to changing environment conditions by using sophisticated sensors
yet, conduct the basic research tasks it was meant to do with the guidance
of commands sent from thousands of miles away [14]. In military applications
reliable communications are essential to operating very expensive and sophis-
ticated robotic equipment and save lives, most importantly the ones used for
drones, bomb disposal robot and land mine detection [2, 15]. Other types of
mobile robots in extensive use are in warehouse management where they have
to navigate through a complex maze of shelves and conduct storage/retrieval
activities. New concepts like auto driving road vehicles, mail delivery drones
and many more are emerging. Another application where teleoperation is taken
with utmost care is in safety, security and rescue operations [16, 17]. In all
the before mentioned scenarios the complex interaction between machine and
human can be divided as machine-to-machine, human-to-machine, human-to-
machine-to-human etc. operations. Such connectivity requires a reliable, safe,
efficient and modular teleoperation architecture.

1.1 Motivation 2

1.1 Motivation

This project work is a part of Machine-to-Machine Redefining Information
Sharing and Enablers (M2MRISE) [18] initiative, partnering universities and
multinational companies. A test bed for different configurations of machine-to-
machine communications is being carried out in Communications and networks
department of Aalto university. As the commercial use of communications get-
ting more personal and number of devices connected to it are increasing in use
the need to test smart solutions configuring the existing networks will help in
achieving more reliable and dependable network solutions.

In order to study those different communication setups and their properties a
test bed was needed so, teleoperation type setup with an indoor wheeled mobile
robot was chosen. The goal was to develop software with a user interface that
can be used by a human operator to command and control a robot remotely. It
should have the capability to monitor and modify packet data communication
rates, provide visuals of robot’s sensor information and enable by default to
accommodate any type of communication node that can receive a serial data
via USB. The software on the robot side should have basic safety build into
it and ability to localize. In order to operate a robot with different speed
and take into consideration the communication related effects like data packet
loss and radio interference an appropriate strategy had to be created. With
basic operational software the communication nodes can be tested in different
scenarios and study its properties.

With an indoor environment for robot operations an experimental area with
some narrow and wide areas was chosen. It is possible to drive the robot to dif-
ferent corners of the room and make studies. Some useful teleoperation mode
behaviours were selected to simulate varying speeds of robot and communication
node distances. The ability to alter the transmission rates on the fly provides
a real life operational scenario for testing. All data packets from operator/con-
troller side and robot side are time stamped and stored in local files for later
retrieval and to conduct further analysis.

1.2 Objectives

The primary goal of this research work is to develop software that would enable
teleoperation of a Wheeled mobile robot called Pioneer 3-Dx using Communica-
tions and networking department’s lab-made wireless nodes. A simulator had to
be used for most of the development part finding errors in code and debugging.
The robot API library was supposed to be integrated into robot application. It
was important to ensure all sharing of memory objects among parallel processes
is done properly. To achieve these goals the whole problem is decomposed into
several sub-parts as listed below:

https://wireless.kth.se/m2m/projects/m2mrise/
https://wireless.kth.se/m2m/projects/m2mrise/

1.3 System overview 3

1. Research the previous work done in implementations of teleoperation soft-
ware development, its components like a control interface and feedback,
communication, safety and autonomous behaviours.

2. To form a 2D digital “map” of experimental lab area which is to be used
for robot’s localization.

3. Data packet definitions to accommodate several command packet types
and robots sensory information.

4. Develop software for robot’s on-board computer to use the library called
ARIA (Advance Robot Interface for Applications) provided by Adept Mo-
bileRobots and have the following features:

(a) Interpret a command packet received via wireless node.

(b) Globally localize the robot in a map using laser and sonar sensors us-
ing the proprietary library called ARNL from Adapt MobileRobots.

(c) Implement a smart collision avoidance with on-board sensors.

(d) Transmit the robot state, current velocities and sensor information.

5. Develop software for a remote desktop computer to have the following
features:

(a) User Interface that allows operator to send commands to the robot,
view robot’s location on the map, visualize sensor information, mon-
itor packet data rates and change setting.

(b) Implement three modes of operation first: to control the robot with
the keyboard, second: rapid linear testing where the robot moves be-
tween two points in a straight line and third: an automatic trajectory
tracking controller.

6. Conduct experiments and test for functionality of the system with different
operation modes. Analyse results to understand the performance issues
and system limitations.

1.3 System overview

A complete system architecture is shown as a block diagram in Figure 1.1. This
embodies thesis objectives mentioned earlier. The main parts of this teleopera-
tion software are operator and a mobile robot. The communication link between
them is a wireless node using IEEE 802.15.4 protocol.

The operator has control over operational modes of robot and the transmission
(Tx) settings of the robot and operator. A control interface shows robotâĂŹs

1.3 System overview 4

Robot Location

Robot velocities

Pointer location

Sensor info

visualization on

virtual robot

Virtual robot

location

Area map

Linear motion

control

Direct control

Trajectory

tracking control

Tx interval setting for

robot and controller

Mode selection

Tx start/stop for

robot and controller

Data packet

assembly

Data packet

disassembly

Command

interpreter

Robot

location

Sensory

information

Safety

algorithm

Start/stop Tx

Robot velocity

Tx interval

Data packet

assembly
Data packet

disassembly

IEEE 802.15.4 IEEE 802.15.4

Mobile Robot

Operator

Figure 1.1: Block diagram of complete systems operation

location with a graphically drawn accurate robot, the map of the experimental
area, sensor information projected on the robot and current velocities.

On the Mobile robot side there is a command interpreter to parse relevant com-
mands for starting/stopping of Tx, setting transational and rotational velocities
and changing Tx interval. A safety algorithm is always running in parallel that
can directly alter robot’s velocities. The robot’s location is determined either by
odometry information or laser localization, which together with other sensory
readings is assembled into a data packet.

There is a data packet assembler and a disassembler on both sides that are

1.4 Thesis overview 5

transferring packets to the wireless node via USB link.

1.4 Thesis overview

This thesis discusses the development and testing of various software compo-
nents in teleoperation system they include a graphical user interface, data pack-
ets, a safety algorithm, trajectory tracking control algorithm and a transmis-
sion/reception module.

Thesis briefing is as follow :

1. Current chapter discusses why a teleoperation study is important, moti-
vation behind building one. The objectives of the thesis work.

2. Chapter 2 is all about state-of-the-art work done in this field showing
clearly the architecture of use, control interfaces, sensor use and wireless
communication.

3. Trajectory tracking algorithm related theory is discussed in chapter 3. It
shows how the algorithm was derived from the basic kinematic model of
the robot and how it fits into the whole trajectory tracking and control
loop.

4. Chapter 4 discusses the tools and frameworks used in the project work.
The robot that was used, communication nodes, software libraries, API’s
and frameworks.

5. Chapter 5 discusses the implementation part of the project, here the de-
signs of several software components are detailed with flowcharts and al-
gorithms behind them.

6. To conduct experiments, it is better to know the system before. In chapter
6 a description of using the system, setting it up and testing objectives
are discussed.

7. Chapter 7 discusses the results obtained from testing to validate function-
ality and analyse system performance. The observations are mentioned
with supporting graphs and tables.

8. Conclusions are made in chapter 8, discussing what was achieved in this
thesis work and what limitations were observed. It also proposes some
promising future expansion based on current work.

Chapter 2

Related Work

This chapter discusses on the literature behind teleoperation of mobile robots.
There are several components of a teleoperation that are discussed with ref-
erence to previous work, each with their own benefits but it has to be noted
that different applications must require certain configurations of teleoperation
components.

Definitions

Teleoperation “to operate a vehicle or system over a distance” [2].

Teleoperator Any machine that is enabling human to sense its environment

and access to control its actuators [19].

Telerobot “is a subclass of teleoperator in which the machine acts as a

robot for short periods, but is monitored by a human super-

visor and reprogrammed from time to time” [19].

Operator “A human operator is the person who monitors the operated

machine and takes the control actions needed” [2].

In telerobotics the two main applications are in mobile robots and mobile ma-
nipulators of which mobile robots fit into this thesis context. Teleoperation
of a mobile robot is fundamentally a control problem with wider loops involv-
ing one or more wireless radio communication nodes. One of the earliest work
defines teleoperation to have three basic components namely sensors, controls
and man-machine interface [20]. Controls and sensory information is transmit-
ted by the operator and robot respectively via some communication medium
i.e. wired, radio, WLAN, etc., in order for the operator to have an optimal
perspective of the robot environment an appropriate interface should be pro-
vided. The arrangement of these components, complexity of shared information

2.1 Control architecture 7

among them and involvement of human control over the robot can be done in
several different ways, design of such a ‘Control architecture’ requires under-
standing of application goals. Figure 2.1 show a basic control architecture in a
teleoperation.

Figure 2.1: Components of a teleoperation system [1]

Re-arranging the original idea of important teleoperation components to a more
modern sophisticated systems [2], the system can be grouped into three parts:

� Control architecture - Higher level overall design

� Communications - Involving one or more protocol

� Control interface - Sensory information presentation and obtaining user
commands

2.1 Control architecture

The designing of higher control loops and connecting them in different ways
with lower or basic control loops to form a teleoperation system can be thought
of as an architectural task. When an operator sends a direct signal that alters
robot state and in turn receives the feedback of the changed state then such a
paradigm is a simple master-slave arrangement [21] (direct control). This basic
architecture is the root for many teleoperation systems, at some point in any
architecture this sort of direct control must be used. Going a step further there
might be certain tasks that robot has to execute on it is own with a little control
loop and the task selection is done by an operator, such an arrangement is called
task-based control [2, 22] (or supervisory control).

As shown in Figure 2.2a operator commands are direct values to robot actuators,
in Figure 2.2b the local control loop drives actuator to a desired set point
coming from the operator and in Figure 2.2c operator has ability to choose

2.1 Control architecture 8

from different operational tasks from his interface thus giving him supervisor
ability to have multiple types of control over robot actions. From this basic
design, more operator-robot interactions can be added like behavior control,
supervised autonomy, shared control, coordinated control, collaborative control
etc. All such paradigms demand an integration of an operator throughout a
teleoperation process.

(a) No local control loop

(Direct control)

(b) Local control loop

(Direct control)

(c) Supervisory control

with local control loops

Figure 2.2: Basic control paradigms [2]

The main functions of a supervisor according to [19] are:

1. Planning - this involves reading of the robot environment and forming
a strategy while also taking into account the physical limitations of the
system.

2. Teaching - sending commands relevant to the situation and deciding on a
way to deliver that command.

3. Monitoring - it involves reading the robot state and digesting the priority
information from the robot, this in order to detect anomaly and take
actions.

4. Intervening - in case of totally unpredicted behaviour taking emergency
initiative or taking direct control of the robot or making minute adjust-
ments in the middle of a task execution.

Communications can prove difficult when large amount of data is being ex-
changed between an operator and the robot due to reasons like limited band-

2.1 Control architecture 9

width, external interference, time-delays, off-order packet delivery and informa-
tion loss, every developing teleoperation solution must face such a situation at
some point. To solve such issues, solutions as network models, predictive inter-
faces and others have been used [23]. They are not discussed in this thesis as
it is one of those problems in a teleoperation system that has its own research
challenges. Following subsections discusses on some of the architectures that
have been used in literature.

2.1.1 Direct control

To understand a basic direct control design with an example [3], a remote 2DOF
robot arm with a pen was operated using a visual feedback from a robot camera.
Operator command was basically end-effector’s coordinate position which the
robot had to reach with an encoder based feedback control loop. For commu-
nications, they used UDP(User Datagram Protocol) with packet delay time of
over a minute. Though for some critical teleoperation scenarios where network
delay can cause major chaos this may not be practical. Figure 2.3 shows the
block diagram of that model. The experiment was done with open loop and
closed loop arm control to draw a quadrifolium, the difference in performance
is shown in Figure 2.4b and 2.4c. This teleoperation system with its basic
components can prove to be efficient.

Figure 2.3: Direct control model [3]

(a) Original (b) No visual feedback (c) Visual feedback

Figure 2.4: Quadrifolium drawing with direct control [3]

2.1 Control architecture 10

2.1.2 Telecommanding

Telecommanding is basically sending commands to a remote robot over a net-
work. To deepen the human-machine interaction [4] proposes a telecommanding
paradigm with a basic joystick command and advanced ‘linguistic’ commands.
This implementation had wireless LAN and a radio transceiver for commanding
and media purposes respectively. This type of model is termed ‘interactive tele-
operation’, whose block diagram is shown in Figure 2.5. Just like in a natural
scenario where people give verbal directions to a certain location, this advanced
telecommanding is designed to take similar linguistic commands and parse them
at the robot to execute it with sensor information forming a local control loop.
These linguistic commands are typed on operator’s GUI. Whenever the oper-
ator chooses to use basic telecommanding (i.e. joystick) the command parser
overrides any previous values from control loops with new values.

Figure 2.5: Telecommanding model [4]

Such a model enables for continuous operator command following by the robot.
All the components are tightly integrated making it function like a single unit.
This is a measure of an increase in human-machine interaction and giving pri-
ority to operators command even in the middle of a task.

2.1.3 Behaviour based model

In this model, behaviours are programmed to perform some actions, they are
activated on the robot either on command by the operator or based on sen-
sory input. In the example below [5] defines three behaviours ‘user following’,
‘obstacle avoidance’ and ‘goal reaching’. ‘Supervisory layer’ monitors the sonar
information and network status like delay in the packet arrival, loss of packet
and jumbled packet order, to select an appropriate behaviour.

They have used a joystick for operator’s direction input over ADSL internet
and on the robot side a 3G wireless node for communication. User following
behaviour uses fuzzy logic to determine operator’s forward, backward, left and
right commands which are then translated to left and right wheel velocity. Ob-
stacle avoidance uses a similar logic but the data comes from sensors which
activate left, forward and right direction based on fuzzy rules. In goal reaching

2.1 Control architecture 11

Figure 2.6: Behaviour based model [5]

behaviour the operator gives new position to which robot needs to steer and
the corresponding velocities are generated by robot kinematic laws. Behaviour
based control is also very much advantageous in a multi-robot teleoperation
system where robots need to coordinate among themselves to solve a task [24].
Only limitations mentioned in [5] are due to unknown network behaviour and
speed of teleoperation i.e. time delay between the operator and the robot. Un-
der time-delay conditions some tasks can be left to robots discretion given the
robot has enough sensory knowledge of its environment.

2.1.4 Hierarchy level based model

When the robot environment is unknown and there are too many variables on
the ground, a simple collection of robot behaviours is not enough there needs to
be an architecture as in [25, 6] that has reasonable intelligence to integrate an
operator and robot as tightly as possible and maybe also involve other teams,
practically deciding upon what level of operations should be allowed with a
situation in hand.

[6] implemented such an intelligent architecture giving the operator a view of
the environment with the help of name tags for different visible objects [6,
Figure 11] and ability to command the robot with natural verbal sentences and
gestures. It has three levels of operations combined called ‘world model’, they
are mission level, interaction level and attention level. Here operator and robot
are termed as team mates, similar to a real world scenario where team of people
try to accomplish a mission. At all these levels, the generated sensor data is

2.2 Communications 12

Figure 2.7: Level architecture with advanced speed and gesture input [6]

stored to be computed for environment mapping on operator’s interface. Direct
attention of the operator is required mainly in interaction level, the doctrines
of goals are preset by the operator for mission level operations. With predictive
algorithms running on the system to parse operator’s voice or gesture input it
decides on which level should the robot run and what tasks to execute from the
database of doctrines.

This level of intelligence in teleoperation is more practical to implement with
increasing advances in networks and sensors, as it can be said that an evolving
teleoperation system would end up with some sort of hierarchy architecture.

2.2 Communications

Wireless networks are the most commonly used communication channels in mo-
bile robotics, they fall into ‘wireless robotics’ category [26]. A communication
channel can be made up of radio waves, bluetooth, RFID, Infrared or some other
wavelength of electro-magentic spectrum [27]. It is the standard protocols that
gives value to the popular use of wireless technologies. The standard OSI model
is shown in Figure 2.8 its abstraction can be found in every type of communica-
tion functions. Standard protocols which are used commonly like IPV4/6, IEEE
802.XX, HTTP, DNS, SSH, 2G/3G/LTE and others are projected on an OSI

2.2 Communications 13

model in Figure 2.9. This brings clarity in the wide range of choices available
for usage in networking devices.

In one of the earliest World Wide Web network teleoperation, [28] used HTTP
protocol to operate an industrial robot arm with the help of a CCD camera.
Coming to the present day the networks have grown complex and protocols
have diversified, coming up with higher order standards for wireless robotics
have become a necessity [26], there are several applications where teleoper-
ation is being actively used [2, 19, 15]. From the usage popularity in wireless
robotics, the discussions are drawn into two groups, TCP/UDP based and IEEE
802 family based communications. One more area worth mentioning is cloud
robotics which mainly uses 2G/3G/LTE cellular networks and M2M (Machine-
to-Machine) communication systems [29], this is gaining popularity because of
the availability of huge mobile phone infrastructure.

Figure 2.8: Standard OSI model

Figure 2.9: Standard protocols distributed on OSI model 1

1The Internet of Every Thing - steps toward sustainability Keynote, China Computer Federation Technical

Committee on Sensor Network (CWSN 2011), Sept. 26, 2011 http://www.cs.berkeley.edu/ culler/talks.html

http://www.cs.berkeley.edu/~culler/talks.html

2.2 Communications 14

2.2.1 TCP/UDP

This is the most commonly used protocol for daily information digest every-
where, this is the reason why its the first preference in many teleoperation
systems [30, 4, 31, 3, 32, 11]. As seen in the OSI stack diagram of Figure 2.9, to
form a TCP/UDP data packet it needs to include headers from several layers
and such a design makes this protocol reliable throughout the OSI layers. Any
teleoperation system using this would benefit immensely from the huge internet
infrastructure that we already have.

From studies done in [31] on a path following control loop, a wireless device was
used inside that loop between the operator and robot, the performance of the
system was observed with a 5% and 50% packet drop. This was studied against
the same control loop running locally on the robot. They used UDP protocol
and in their implementation every loss of packet occurred on operator and robot
side was replaced by previous instance. The green mark is local controller and
red is the remote controller, Figure 2.10a shows paths to be almost close but
Figure 2.10b with 50% packet drop shows the robot to be off course.

(a) Path following with 5% drop (b) Path following with 50% drop

Figure 2.10: Comparing local control loop with remote control loop [3]

In [3] a remote manipulator was used to draw with the UDP protocol. It is
a system with image feedback so they had to take care of compression of the
image to fit in a single data packet. The operator was acting as a server while
the client was the manipulator. The network performance of teleoperation show
that the total time it took to completely draw a quadrifolium was 4′10′′ without
visual feedback and 7′49′′ with visual feedback. The increase in time was mainly
due to image processing.

TCP and UDP are not the perfect solution for usage in teleoperation. TCP
with its current protocol design is meant for full duplex transmissions, auto
error handling, packet re-ordering and delivery guaranteeing. This is not ideal
for a real-time scenario like teleoperation mainly because of the unpredictable
time of a TCP packet arrival. UDP on the other hand cannot guarantee a

2.3 Control interface 15

proper packet delivery though the overall network time delay might be low.
Some work is being done in network related predictive/compensative methods
based on network models to increase the real-time usability of these protocols
[33]. Other efforts are underway to make IP based protocols for applications
that require real-time solutions like IOT(Internet Of Things) and WSN(Wireless
Sensor Networks) [32].

2.2.2 IEEE 802 family

The protocols like IEEE 802.11 family, IEEE 802.15.4 etc. are designed to work
with physical and MAC layer of OSI model. They are meant for low-power
and low-range devices which is ideal for real-time short range communications
between two nodes. Its use in teleoperation is as popular as TCP/UDP because
of low power consumption, low cost of nodes and ease of use. The usages are
found in the works of [9, 34, 27, 1].

The abilities of these devices can be increased many folds by having a net-
work of such nodes. They are used for robot-robot, robot-base station, robot
component-robot component communications in networks like WSN [35, 36]
and Network Control Systems(NCS) [37]. This type of architecture closely re-
sembles that of teleoperation if sensor, robot and operator are considered to
be a node then communication between them would result in NCS. This area
is being heavily researched to create better protocols and models for reliable,
efficient and fault tolerant networks [38].

2.3 Control interface

The operator’s perspective of the robot environment is the key characteristic of
a good teleoperation system. The way robot’s sensor information is presented,
the ease of sending commands, information update delays, robot’s orientation
and communication status [39] are all the measures that amount to success-
ful operator-robot integration. Number of sensors and their types are critical
to presenting robot’s environment as accurately as possible. A poor interface
design is described in [7] as ”resulting in spatial disorientation, attentional bot-
tlenecks, lack of situational awareness, confusion and frustration”. In designing
any interface, the key elements are GUI, sensors and ease of commanding, a
good interface would integrate these three components very tightly. From op-
erator’s point of view GUI provides visual information of robot’s environment
which is generated by sensors on-board robot and in order for the operator to
steer the robot he needs to be equipped with a good commanding device.

2.3 Control interface 16

2.3.1 GUI and input device

In [40] a 6 DOF robot arm was teleoperated using a ball-shaped external device,
the purpose was to input commands to some of the robot’s autonomous tasks.
The parameters of joints were being shown in a simple GUI. In [28] a camera
was attached as end-effector of a robot arm and operator was clicking at a point
on the image to move the camera to the new coordinate. These two ways are
the basis for other interfaces, GUI can be seen as a command input element and
information display element or just as input element and external devices such
as keyboard, joystick, master manipulator etc. to input commands. A hand
held joystick is commonly used to send direct motion commands to the robot
[4, 1, 27, 9].

Figure 2.11: Cockpit interface [7]

In the study conducted by [7] among three different types of graphical user
interfaces, operators find the cockpit style interface to be more intriguing and
simple. As shown in Figure 2.11 the UI occupies full screen to make maximum
use of screen real estate. Its well designed with all the critical information
like robot’s position, 2D map with marked objects in different colors, graphical
representation of sensory information and lot of optional buttons and text editor
for input. This interface was preferred by 100% of the experiment participants
as their first choice.

2.3.2 Camera views

Example 1 In the experiment conducted in [8] placement of different types of
cameras on the robot were studied from the operator’s usability point of view.
Five different views were presented to an operator’s monitor as shown in Figure

2.3 Control interface 17

2.12; an ordinary camera with robot’s front view, an omni-directional camera
with 360 ° surround view, a 1m long pole mounted camera with circular fisheye
lens with wide field of view, a panoramic view from the omni-directional cam-
era and a camera mounted outside overlooking the testing area (direct view).
The test subjects rated the views in the following order: fish-eye view, omni
view, direct view, panoramid view and ordinary camera view. Clearly the more
information an operator has of the robot’s environment the better is the com-
manding.

(a) Ordinary view (b) Omni view (c) Fish-eye view (d) Direct view

(e) Panoramic view from omni-directional camera

Figure 2.12: Different camera view for robot environment [8]

Example 2 Operator performance assessment was conducted in [9] on a simu-
lated rescue mission scenario. Three camera view points were presented to each
operator and was asked to navigate through a random maze to rescue survivors.
A camera view in front of the robot, a view from the camera suspended on a
pole and an autonomous quadcopter programmed to follow the robot (Figure
2.13). As shown in Figure 2.14 the pole mounted camera leads to all perfor-
mance criteria. On further analysis of quadcopter guided navigation time it can
been seen how an operator senses the environment, clearly the pole mounted
camera is in more sync with operator actions than an external camera.

2.3.3 Time followers vision

One of the innovative interface solution is presented in work done by [10], a
simple camera and 3D sensor were used to store all the data with timestamps
and robot’s positions in a database when the operator was driving around. Their
system calculates the robot’s current position and evaluates data from previous
instances to project the relevant images and 3D data on the operators interface.
Considering the current location of the robot, camera orientation and field of

2.3 Control interface 18

Figure 2.13: Three camera view points for rescue mission [9]

Figure 2.14: Operator performance with three different views [9]

view, a full 3D model of the robot is put in the view thus, giving a perspective
that robot is being driven with the aid of external sensor. Figure 2.15 shows
how the interface looks like from operator’s perspective. The full block diagram
of the system is shown in Figure 2.16.

The operator can comfortably be immersed in the environment with this method
but the field of view could be one of the limitations. Thought this innovative
solution makes use of as much sensory information as possible from the database,
the dynamic environment with movable objects might be very challenging for
the system to make calculations on previous sensor data relative to current
sensor data.

2.3 Control interface 19

Figure 2.15: Operator interface with a robot model [10]

Figure 2.16: Block diagram of the system [10]

2.3.4 Operator command strategy

In the study done by [11] the end result of operators performance was the bal-
ance between productivity and performance of teleoperation system. It was the
combination of sensor feedback and command strategy. The operator was using
a master device (mechanical arm) with change in position of the device either
robot speed values are generated or robot’s position values are generated, they
call it ‘position-speed’ command and ‘position-position’ command. Position-
speed can drive the robot large distances but not very accurate reaching a
target position while position-position can generate small robot movements for
precision driving. They have visual feedback of robot parameters and camera
views and force feedback on the master device that is directly proportional to
robot-obstacle distance. The conclusion was that speed command demonstrated
the highest productivity while combined command strategy had more accuracy
as shown in Figure 2.17. When force feedback was used the operator was much
more sure of driving the robot with high speed since he can feel the approaching
obstacle and switch the command strategy.

2.4 Summary 20

Figure 2.17: (a) Navigation time and (b) position error for command strategies

[11]

2.4 Summary

In summary, sufficient models and types were discussion in each topic to pro-
vide a clear comparison among them. The control architecture choice is purely
application dependent but for scalability and maintenance best methods must
be observed. Having a level based architectural design in mind throughout the
lifetime of teleoperation system is recommended.

Several interface related implementations are discussed from the operator point
of view, they have been statistically ranked. The basic idea of having enough
sensory information in a very simple and understandable graphics is valid in all
the teleoperation systems. The choice of an input device for operator commands
can be of operator’s choice.

Communications are a very important part of teleoperation and choice of which
is not a simple decision. In a simple operator-robot scenario depending on the
distance between them, a Wireless serial node or WLAN can be chosen. The
challenge for this thesis work is to choose appropriate components design and
implement a full teleoperation system that is reliable and scalable.

Chapter 3

Trajectory Tracking

An algorithm was designed to automate the robot’s motion on a given path
hence a trajectory controller was implemented, this chapter describes the the-
ory behind it. In order to implement a closed loop controller for a system its
kinematic and/or dynamic model has to be established and some level of feed-
back gains have to be calculated, a control diagram depicted in Figure 3.1 has
been implemented in the following chapter 5.

Trajectory
generator

State tracking
controler

Controller
gain

Mobile Robot
ref.

position

(xr, yr & θr)

− e required

velocities
(υ & ω)

k1, k2 & k3

ref.

velocities
(υr & ωr)

current

position

(x, y & θ)

+

Figure 3.1: Trajectory tracking control diagram

The controller used here is called Nonlinear State Tracking Controller from
[41] which is based on a kinematic model of differential wheel drive system.
The robot system used in this project is explained in Section 4.1 and it falls
in the category of non-holonomic drive systems where controllable degrees of
freedom (υ linear and ω angular velocities) is less than system’s total degrees of
freedom (x, y position and θ orientation). A comparison of this controller with
other commonly used controllers is discussed in [42], where a better performing

3.1 Nonlinear State Tracking Controller 22

Lyapunov-based Guidance Control theory in terms of taking less time to track
a path is proposed. In the current work, the objectives do not include fast
tracking hence Nonlinear State Tracking Controller is chosen as its linear and
angular velocity tracking errors minimise better in comparison to others, it is
also relatively less complex implementing with C++ language. Other benefit is
that the proportional gains are calculated from reference velocities set by the
trajectory generator thus, giving a dynamic behaviour.

[42] also discusses some other controller implementations based on fuzzy logics
and adaptive methods. Some have also used dynamic models based on La-
grange formulation [43], these type of systems would use parameters such as
robot’s mass, mass of the wheels, electric motor parameters, moment of in-
ertia of the wheel, chassis and wheel axis. In one of the earliest versions of
dynamic controllers [44] shows how a kinematic model can be combined with
a torque controller. In [45] dynamic and kinematic models are included in the
path planning model. In [46] an adaptive controller was designed where the
control architecture includes kinematic and dynamic based controllers here, a
parameter updation law is formulated where reference velocities generated by a
kinematic controller and robot’s current velocities are used to better estimate
the orientation for the dynamic controller. [47] proposed a fuzzy logic based
adaptive dynamic controller where the position measurement is the only state
of the robot that is needed by the controller as input since, linear and angular
velocity components are integrated into the dynamic model.

3.1 Nonlinear State Tracking Controller

This is designed to carry out robot motions in an obstacle-free environment,
two types of motions can be described for any scenario: Point-to-point and
trajectory tracking. Current project work addresses trajectory tracking though
point-to-point can also be achieved but again the trajectory to be followed from
one point to another sums up to be a pure trajectory tracking. Stabilizing the
robot’s position about a point is one challenge that is not addressed here as
it falls beyond the thesis objectives. Now, assuming wheels roll without any
slippage the basic type of non-holonomic system applicable here is of a unicycle
type, where the two wheels attached by an axil are motorised thus forming a
differential drive mechanism while a third one is a freely moving caster wheel
which acts as support, as shown in Figure 3.2 in a top view. υ is transational
velocity, ω is rotational velocity, x, y and θ are robot’s configuration and P is
geometric center axis about which it can turn in its own radius. This shape of
the robot is exactly scaled version of the actual robot Pioneer 3-Dx.

3.1 Nonlinear State Tracking Controller 23

Y

O X

υ
ω

y

x

θ

P

Figure 3.2: Robot motion in global reference frame

WMR model

The robot configuration in a 2D space of Cartesian coordinate system (X −
O − Y) can be written as q =(x, y, θ)T , q ∈ R2 and θ being positive in the
counter-clockwise direction. The robot’s motion makes its configuration a
time varying quantity thus its linear velocity υ expresses two components ẋ and
ẏ, while angular velocity ω = θ̇, their relation is a first order kinematic model
of the robot.

q̇ =

⎡⎢⎣ẋẏ
θ̇

⎤⎥⎦ =

⎡⎢⎣cos θ 0

sin θ 0

0 1

⎤⎥⎦ .

[
υ

ω

]
(3.1)

υ and ω are taken as control inputs, this driftless nonlinear system applies to
most of the WMR’s. This type of non-holonomic system has a constraint to
move the robot in lateral direction which is expressed as

ẋ sin θ − ẏ cos θ = 0

In feedback based trajectory tracking it is necessary to zero-in on required
robot’s configuration, let us say the error variables approaching zero is given
by qe = (xe, ye, θe)

T . Suppose the current and reference robot configuration is
represented by q and qr respectively as shown in Figure 3.3 then line of sight
errors xe and ye and θe are related as in (3.2) where error is between the two
transformation matrices.

qe =

⎡⎢⎣xe

ye

θe

⎤⎥⎦ =

⎡⎢⎣ cos θ sin θ 0

− sin θ cos θ 0

0 0 0

⎤⎥⎦ .

⎡⎢⎣x− xr

y − yr

θ − θr

⎤⎥⎦ (3.2)

3.1 Nonlinear State Tracking Controller 24

Trajectory

If (xr(t), yr(t)) is the reference trajectory for t ∈ [0, T], to drive the robot in a
desired trajectory path transational, rotational velocities and orientation have
to be calculated from the this reference path. They are related as follow.

Trasational velocity, + or − denotes robot direction forward or reverse respec-
tively.

υr(t) = ±
√

ẋ2
r(t) + ẏ2r(t) (3.3)

Angle at each (xr, yr) is, k being 0 or 1 for forward or reverse direction respec-
tively

θr(t) = arctan 2(ẏr(t), ẋr(t)) + kπ (3.4)

As per θ̇ of (3.1) time derivative of (3.4) gives rotational velocity as

ωr(t) =
ẋr(t)ÿr(t) − ẏr(t)ẍr(t)

ẋ2
r(t) + ẏ2r(t)

(3.5)

Y

O X

υ
ω

y

x

θ

P

υr
ωr

yr

xr

θr
Pr

xe

ye

Figure 3.3: Trajectory tracking of robot state

Controller

A moving robot trying to follow a path has to always zero in on position error as
expressed in (3.2) hence a controller would make sure that this zero check is valid

3.1 Nonlinear State Tracking Controller 25

∀ t ∈ [0, T] forcing the robot to stay on track. To calculate the controller model
a derivative of (3.2) is made considering equation (3.1) as ẋr sin θr = ẏr cos θr
the result is eq. (3.6), a non-linear dynamic model.⎡⎢⎣ẋe

ẏe

θ̇e

⎤⎥⎦ =

⎡⎢⎣cos θe 0

sin θe 0

0 1

⎤⎥⎦ .

[
υr

ωr

]
+

⎡⎢⎣−1 ye

0 −xe

0 −1

⎤⎥⎦ .

[
υr cos θe − υ

ωr − ω

]
(3.6)

Lets define a matrix

[
uυ

uω

]
=

[
υr cos θe − υ

ωr − ω

]
, rewriting the eq. (3.6) in terms

of closed-loop inputs qe, υr, uυ and uω⎡⎢⎣ẋe

ẏe

θ̇e

⎤⎥⎦ =

⎡⎢⎣ 0 ω 0

−ω 0 0

0 0 0

⎤⎥⎦ .

⎡⎢⎣xe

ye

θe

⎤⎥⎦+

⎡⎢⎣ 0

sin θe

0

⎤⎥⎦ .υr +

⎡⎢⎣1 0

0 0

0 1

⎤⎥⎦ .

[
uυ

uω

]
(3.7)

Linearizing about equilibrium point i.e. xe = ye = θe = 0 and uυ = uω = 0 we
obtain.

△q̇e =

⎡⎢⎣ 0 ωr 0

−ωr 0 υr

0 0 0

⎤⎥⎦ .△qe +

⎡⎢⎣1 0

0 0

0 1

⎤⎥⎦ .△v (3.8)

For a valid controllability υr ̸= 0 and ωr ̸= 0, the above equation is of the form
△q̇ = A.△q + B.△u with full rank rank(B,AB,A2B) = 3. Defining the full
state space controller with three states and two inputs as

v = K.qe (3.9)

From 3.3 a controller structure can be established, it can be visualized that
transational velocity of the robot influences error in xe to compensate error in
ye and θe its simply possible to control rotational velocity, from this discussion
a controller would be [

uυ

uω

]
=

[
K11 K12 K13

K21 K22 K23

]
.

⎡⎢⎣xe

ye

θe

⎤⎥⎦ (3.10)

uυ = −K11xe

uω = −K22sign(υr)−K23θe
(3.11)

Renaming controller gains from K11, K22 and K23 to k1, k2 and k3 respectively.
Comparing the real and desired polynomials of above equations would yield
controller gains. It takes the form of

(s+ 2ξωn)(s
2 + 2ξωns+ ω2

n) (3.12)

3.1 Nonlinear State Tracking Controller 26

For this second order equation ξ ∈ (0, 1) and ωn > 0, now writing the polynomial
form of (3.11)

s3 + (k1 + k3)s
2 + (k1k3 + k2υr + ω2)s+ k1k2qυ + k3ω

2 (3.13)

Comparing equations (3.13) with (3.12) we get,

k1 + k3 = 4ξωn

k1k3 + k2υr + ω2 = 4ξ2ω2
n + ω2

n

k1k2qυ + k3ω
2 = 4ξω3

n

(3.14)

Solution in the suggested form of (uυ, uω)
T yields

k1 = k3 = 2ξωn

k2 =
ω2
n − ω2

r

|υr|
(3.15)

From [48] when υr goes to 0 k2 gain becomes∞ which is not of any practical use
in case of zero velocities hence that is modified as k2 = b.|υr| Now the system
characteristic frequency is

ωn =
√

ω2
r + b.υ2

r (3.16)

Parameter g > 0 addition makes the gain approach zero when robot is no longer
in motion controllability is lost. Finally from [41] the nonlinear tracking con-
troller based on Lyapunov function also can be referred to as Samson’s controller
is given by

[
υ

ω

]
=

⎡⎣ υr cos θe + k1xe

ωr + k2υr
sin(θe)

θe
ye + k3θe

⎤⎦ (3.17)

where k1, k2 and k3 from (3.15) and (3.16) are

k1 = 2ξ
√
ω2
r + b.υ2

r

k2 = b.|υr|
k3 = 2ξ

√
ω2
r + b.υ2

r

(3.18)

Chapter 4

Tools and Framework

In this chapter, a description of the required software framework and API’s and
hardware devices are described in detail. The Figure 4.1 shows the setup of
the whole system. The wheeled mobile robot has an on-board computer which
has a dedicated serial communication link with the on-board microcontroller
unit, the communication node is connected via USB to the computer. On the
remote controller side similar computer connection to network node is made.
The interface used by the wireless communication node device is IEEE 802.15.4
digital radio with integrated MAC hardware.

Communication node

Communication node

USB link

USB link

On-board Computer

On-board

Microcontroller unit

Serial COM link

Figure 4.1: Teleoperation setup

4.1 WMR: Pioneer 3-DX 28

4.1 WMR: Pioneer 3-DX

A mobile robot is a machine which has the ability to perform independent tasks
with its own intelligence or can be monitored and controlled from a remote
location, this capability to operate remotely is possible with wireless communi-
cations technologies. A WMR with two differential wheels and a free rotating
balancing wheel is called Differential wheeled robot with a tricycle configura-
tion, its designed in such a way that it can swing about a vertical axis which
includes all the robot’s physical body inside that imaginary circle. This robot
comes with a free C++ Software Development Kit (SDK) and some proprietary
packages for localization. Figure 4.2 shows the robot’s front and back view with
all its visible sensors.

LMS 500

Laser

sensor

Front view Back view

Sonar

Range

sensor

Bumper

sensor

Figure 4.2: Pioneer 3-DX robot

4.1.1 Robot Hardware

The robot platform consists of two wheel differential drive system, motor control
and drive electronics, reversible DC motors, motion encoders and a battery
unit, all these are managed by an on-board 32-bit Renesas SH2-7144 RISC
microprocessor including the P3-SH microcontroller with ActivMedia Robotics
Operating System (AROS) software. The features of the microprocessor and
microcontrollers are mentioned in [12, Page 4]. This onboard microcontroller
unit handles all the low level tasks of the robot like maintaining motor drive
speeds and heading, collecting data from sonar sensors and bumpers. For the
higher intelligent task an onboard Windows 7 based computer is used which is
serially (RS232) connected to the microcontroller unit thus, forming a client-
server communication link. It is possible to tweak the sensors’ precision and

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

4.1 WMR: Pioneer 3-DX 29

encoders’ precision, this hardware is also flexible enough to supply electrical
power to external devices like camera, manipulator or other sensors. A Sick LMS
500-2100 laser range finder is used for high precision and long range localization
of the robot in a given 2D space, this laser sensor’s interface is Ethernet based
and directly connected to the on-board computer for acquiring readings.

The specifications are as follow [12]:

1. Robot dead weight is around 9 Kg with one lead acid battery and it can
accommodate a maximum of three batteries, the robot chassis is built of
aluminium.

2. Physical characteristics:

� Payload capacity is 23 Kg

� height : 23.7 cm + 18.5 cm laser range sensor

� width : 39.3 cm

� length : 44.5 cm

3. Several parts form the robot assembly includes deck, motor stop button,
user control panel, body-nose-and-accessory panel, sonar arrays, motors-
wheels-and-encoders and batteries-and-power

4. DC power

� 3 Warker WKA12-9F2 lead acid batteries with 12V and 9Ah each

� Battery runtime with PC 3-4 hours

� Charging time is 6 hours per battery

5. Mobility

� Two foam filled wheels with diameter of 19.53 cm and width of 4.74
cm

� Differential steering with swing radius of 26.7 cm

� Maximum rated translational speed is 1.4 m/s and rotational speed
is 300 deg/sec

6. Sensors

� Sonar : 8 in front and 8 in the back

� Laser : scanning 181 degrees with 1 degree resolution, data trans-
mission rate of 100Mbps and scanning frequency of 75 Hz

� Bumpers : 5 in front and 5 in the back

� Encoders : 33,500 counts per rotation

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

4.1 WMR: Pioneer 3-DX 30

4.1.2 Robot Software

ARCOS

Microcontroller level ARCOS firmware acts as a server accepting command
packets from client and sending SIP over the HOST connection or external SERIAL
port on the user control panel, in this thesis work HOST connection is used and is
directly connected to the on-board computer where Advanced Robotics Interface
for Applications (ARIA) library acts as a client. Figure 4.3 shows a clear control
architecture for ARCOS. There are some firmware configuration parameters like
robot’s motion related parameters, physical dimensions and sensor parameters
that are stored in its memory. While executing client commands it uses these
parameters as references, MobileRobots Inc. provided software to make changes
to these configurations if necessary.

ARCOS

server

Communication

packets

Sensor and I/O

scheduling

Velocity and

angle

control

Position

integration

Interface

Client (for example ARIA)

PRI

control

Encoder

counting

Sonar

Ranging

I/O

Control

Robot specific functions

Server

Information

Packets

Command

Packets

Figure 4.3: ARCOS server-client control architecture [12]

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

4.1 WMR: Pioneer 3-DX 31

Arcos server-client connection steps

There are a few basic steps for establishing and maintaining server-client con-
nection with ARCOS as give in [12]:

1. Sending a series of 2 synchronisation commands to which ARCOS replies
by echoing those packets back to the client, after sending 3rd synchroniza-
tion command server replies with robot identification information contain-
ing the name of the robot, its type and sub-type.

2. After establishing the link with the server, client sends OPEN command to
start motor and sensor servers and ARCOS begins transmitting SIP’s at
regular intervals.

3. In order for ARCOS to know that a client is still connected and receiving
SIP’s, it is the responsibility of the client to keep sending a PULSE com-
mand at an interval less than or equal to watchDog seconds, this is an
ARCOSs watchdog which anticipates at least one client command packet
in that time interval.

4. To close the connection CLOSE command is used.

Some useful contents of an SIP packet are:

Label Description

Robot state

XPOS Wheel encoder integrated coordinates in

mmYPOS

THPOS Orientation in degrees

Robot velocities
L VEL Wheel velocities in mm/s L-Left and

R-Right wheelR VEL

SONAR COUNT Number of new sonar reading included in

SIP

NUMBER Sonar disc number (Only for Sonar count

> 0)

RANGE Corresponding sonar range value in mm

..... rest of the sonar disc numbers and

readings.....

BATTERY Battery charge in tenths of volts

Table 4.1: Useful SIP contents

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

4.1 WMR: Pioneer 3-DX 32

ARIA

In order to develop an application that would use ARCOS, MobileRobots has
provided with Software Development Kit called ARIA which is an object ori-
ented C++ library API (Application Programming Interface) used for running
programs on the robot’s on-board computer. This API comes with all the
necessary classes like server-client communication with ARCOS, sensor device
interface classes, motion command classes, callback classes, utility classes and
range of other useful classes. There is also Advanced Robotics Navigation and
Localization (ARNL) and Sonar based Advanced Robotics Navigation and Lo-
calization (SONARNL) proprietor library in C++ that comes with purchase of
the sick laser, in this project they are used for localization of the robot in a given
2D space, these libraries are built to work seamlessly with the ARIA library.
There is a parameter file which includes motion control, robot dimensions and
sensor related parameters which are used as references, ArRobot has functions
which can be used to change those parameters during run time.

Useful C++ classes from API:

ArRobotConnector: This class is the one that executes the ARCOSes server-
client connection procedure as mentioned in paragraph 4.1.2

ArRobot: There is the main class of ARIA called ArRobot which runs in a
cycle of 100ms (can be changed with ArRobot::setCycleTime) time period, as
shown in Figure 4.4 the ArRobot task cycle handles all the necessary run to read
the packet from ARCOS and send packet from cached direct motion commands.
A useful feature of this class is that you can write a user task in a function of
your class and add it as a functor (function pointer) to the ’call back’ list this
way it runs in the same cycle as ArRobot’s task cycle where all the latest sensor
data is available for usage downside is that the motion commands if any are
sent to ARCOS only in the next cycle. ARIA also has something called action
classes with ArAction as base class, this solves the same purpose as user task
classes but the robot’s motion commands are sent to ARCOS in the same cycle.
An issue with the library files of ARIA was causing a compiler error when sub
classing ArAction class hence user tasks were implemented as necessary.

ArLaserConnector: This class connects to the SICK laser via Ethernet interface
and adds it to the sensor range devices list of ArRobot, during the main task
cycle the sensor readings are interpreted automatically.

ArLocalizationTask: It uses laser data and odometry data from the robot to
determine robot’s position and orientation in a given 2D map (preloaded ArMap

class). This task is run asynchronously and the robot position is updated every
≈30ms. This is implemented with Monte Carlo Localization Algorithm, the
related settings are loaded from the library files of the API. The default Number
of samples and the grid resolution are 2000 and 100mm respectively.

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
http://robots.mobilerobots.com/wiki/ARIA
http://robots.mobilerobots.com/wiki/ARNL,_SONARNL_and_MOGS
http://robots.mobilerobots.com/wiki/ARNL,_SONARNL_and_MOGS
http://robots.mobilerobots.com/wiki/ARNL,_SONARNL_and_MOGS

4.2 User Interface framework 33

Packet Handler

Lock Robot Mutex (lock())

Sensor Interpretation Tasks

Action Tasks Action Resolver

User Tasks

Unlock Robot Mutex (unlock())

(Your sensor interpretation task

callbacks, added with

addSensorInterpTask()...)

Your actions

added with

addAction()...

Final action desired

(determined by resolver)

(Your user task callbacks,

added with addUserTask()...)

ArRobot Task Cycle

Initiated by run() (synchronous) or

runAsync(asynchronous thread)

State Reflection Task

Cached
direct motion

commands

Commands
set by Action

Resolver

Or

Robot

Connection

Commands

sent to robot

Figure 4.4: ArRobot task cycle

4.2 User Interface framework

Qt5 is a cross-platform C++ application development framework with modular
class libraries, in this project GUI (Graphical User Interface) libraries were
extensively used for accepting user inputs through widgets and visually showing
a graphical representation of robot and its track, some other useful information
like robot speed and communication packet rates is also displayed. Since the
libraries are meant to be compiled on different computer platforms using them
would not change the feel of application if compiled for other OS/architecture
this positive aspect gives a big advantage using this particular framework. The
important Qt classes are discussed in this section.

http://qt-project.org/qt5

4.2 User Interface framework 34

objectA

signalFunction_1

signalFunction_2

slotFunction_1

slotFunction_2

objectB

signalFunction_1

signalFunction_2

slotFunction_1

slotFunction_2

connect(objectA,SIGNAL(signalFunction_1()),objectA,SLOT(slotFunction_2()));

connect(objectA,SIGNAL(signalFunction_2()),objectB,SLOT(slotFunction_1()));

connect(objectA,SIGNAL(signalFunction_2()),objectB,SLOT(slotFunction_2()));

connect(objectB,SIGNAL(signalFunction_1()),objectA,SLOT(slotFunction_1()));

class objectA : public QObject {

Q_OBJECT

signals:

void signalFunction_1();

void signalFunction_2();

slots:

void slotFunction_1();

void slotFunction_2();

};

class objectB : public QObject {

Q_OBJECT

signals:

void signalFunction_1();

void signalFunction_2();

slots:

void slotFunction_1();

void slotFunction_2();

};

After meta-object compiler a newly generated

C++ source files contains

Figure 4.5: Signal and slot mechanism

Signals and slots

The most important things to understand when using Qt is its signal and slot
mechanism, this is Qt’s own innovation and it is an ideal feature to imple-
ment communication between Qt objects (QObject is the base class). During
the code compilation, a meta-object compiler which comes with Qt installation
goes through the source code and where ever there is a macro called Q_OB-

JECT in the class it automatically generates C++ source code with meta-object

4.2 User Interface framework 35

information which is then later integrated into the final executable file. This
meta-object information source files define links between signal and slot func-
tions. A function QObject::connect(const QObject* sender, const char*

signal, const QObject* receiver, const char* method) is used to make
this connection. Using emit function() which emits the signal for this ob-
ject’s function(). This emitter and sender objects do not have the knowledge
of each other, it is just that they should be type compatible and the receiver
should accept equal or less number of function parameters the sender is passing.
It is also possible to make connections between objects from different threads.
Figure 4.5 illustrates the code and diagram view of the mechanism.

QObject This is the base class for all Qt objects, this class holds all the basic
features Qt provides. Some important ones are:

� Handling events, creating the object tree automatically with children and
parent object information and integrates with signals and slots mechanism

� They by default live in a single thread in which its created but it is possible
to change the thread affinity just by calling QObject::moveToThread(QTh
read *)

� Auto connection of default signals and slots of its subclasses and their
children are performed during runtime

QApplication It performs a lot of initialization before any widgets are shown
on screen for GUI based Qt application, hence an instance of this has to be
created before any other widgets are initialized. In order to keep the application
running and enter the main event loop QApplication::exec is used, it only
exits when the main widget generates a QApplication::lastWindowClosed

signal. The features of this class are to:

� Initialize the application with user’s desktop setting

� Perform event handling from the computer system to relevant widgets

� Set the applications native look style, cursor settings, information on all
the widgets used and handles text and color space

4.3 Wireless Communication 36

4.3 Wireless Communication

The main block in teleoperation is a radio communication module, in this
project custom made wireless nodes are used for operator-robot communica-
tion. This node is called UWASA node and it is developed at University of
Vaasa by Yusein Ali who is currently a researcher at Department of Communi-
cations and Networking of Aalto University. The node’s design objective is to
fulfil the needs of a reliable wireless sensor networking application hence, this
node is made to be modular and stackable with slave boards as per the appli-
cation needs. The radio module of the node uses IEEE 802.15.4 protocol and is
linked with Omni-directional antenna. Some of its features are:

Interface USB 2.0
Max baud rate 921600

Range 100 - 300m
LED indicators packet transmitting, packet receiving, power on, battery

power
Power supply Li-ion battery or USB power

Size 4.5 cm(L) 5 cm(B) 2 cm(H)

Figure 4.6: Communication node

http://wsn.aalto.fi/en/people/

4.3 Wireless Communication 37

For a user, it provides [49] :

1. Stackable process power and memory option.

2. Low power consumption with addable external power supply.

3. Use of the microcontoller unit with a power management circuit and a
wireless communication circuits.

4. The option to stack more slave boards to meet the application needs.

5. Overall small size (45.6mm X 45.6mm).

Hardware

The basic stack was used for this project which consists of the Main module
and the Power module as in Figure 4.7. The data transfer to/from the device
is made through USB connector.

Figure 4.7: Hardware stack

Main module

This is the master module and its different sub-modules present inside are:

� Wireless Transceiver/ RF controller

� Main controller to manage in-node data processing, performing data pro-
cessing and decision making and

� Hardware stack controller

4.3 Wireless Communication 38

Power module

Major purpose of this module is to fulfil the power requirements of other mod-
ules, its different sub-modules are:

� Power source and regulation, it can use power from USB or can be boosted
with external Li-ion battery

� Dynamic power path management

� Battery fuel gauge

� Battery charger to charge an external Li-ion battery if connected.

� Hardware stack controller

Software

To make use of full hardware features a custom middleware abstraction API’s
(Application Programming Interface) were developed on top of FreeRTOS (Real
Time Operating System). These API’s give an application on the module to
easily run parallel processes for different purposes like for e.g. Power man-
agement and Time synchronization. On the external computer device driver
libraries are installed, these are a set of C libraries with function for buffer
storage, writing/reading stacks of buffer to/from the communication module.

The functions used from this library are:

� Initialize the serial port with baud rate and port number and initialize
the stack of buffers to store packets.

� Use the previously initialised buffer to read and write data packets.

� Use the previously initialised ’serial port’ handler to send and receive the
buffer.

Chapter 5

Implementation

The details of implementation of software and its components are discussed in
this chapter. As per discussion in the Chapter 2 a behaviour based architecture
model is chosen, the interface is designed in such a way that all the sensory
information is available to the operator in a graphical way and settings are
grouped for easy access.

Designing a communication data packet is one of the important tasks as it needs
to fully make use of wireless device capability and deliver maximum packet size.
Packets from the robot and controller side are transmitted in regular interval,
this design is to give teleoperation maximum reliability in usage. Communica-
tion nodes are programmed to be half-duplex.

File storage functions have been implemented to store all the experimental data
for further analysis. All data packets transmitted and received are stored with
time stamps, this way its easy to simulate data. Two time stamps are stored
for each entry into the file, one came from the data packet (trasnmission time)
and the other is local time on packet reception.

5.1 Communication data packet

Communication nodes are used as a serial device with a baud rate of 921600.
To have a proper exchange of data, a standard model of packet protocol has to
be used which contains a header, payload data and a trailer. Header and trailer
are common for all of the packets while Payload data varies based on the type
of packet being assembled. A packet size varies between 11 bytes and 106 bytes,
its structure is shown in table 5.1.

5.1 Communication data packet 40

The CRC(Cyclic Redundancy Check) is a polynomial based error-checking code
very useful for validation of the data packet on the receiving node. Here an
implementation of 16bit CRC is used1. Two functions were coded, one to verify
CRC and another to append CRC into the trailer. Any data packet that isn’t
correct is usually discarded from further parsing.

The header, trailer and payload are made up of a single data structure (struct
in C language) to get easy access to each element. Each table of data structures
is shown in 5.1, 5.2, 5.6, 5.5, 5.3 and 5.4 with their actual element names on
the left side. There are also packet creation functions for each type of packet
and on the receiving side a parser uses the ‘sub type’ element from header to
decide what data to parse.

Header Payload Trailer

Standard packet protocol

Header

length

sync1

sync2

type

sub type

8bits

8bits

8bits

8bits

8bits

32 bits

Trailer

time

checksum

32bits

16bits
48 bits

Payload

data varies from 8 bits to 768 bits

Figure 5.1: Structure of a standard packet with its size

The Table 5.1 shows the size of each of the elements present in Header and
Trailer part of a standard packet.

5.1.1 Payload Data

The payload data consists of one type of Position information (table 5.6) from
packets send by Robot application and four types (table 5.1, 5.2, 5.5, 5.3 and
5.4) of command information from packets send by Controller application.

1CRC-CCITT http://srecord.sourceforge.net/crc16-ccitt.html

http://srecord.sourceforge.net/crc16-ccitt.html

5.1 Communication data packet 41

Header

length: The total length of the packet in bytes

sync1: First signature byte used to verify packet authenticity (0xFF)

sync2: Second signature byte used to verify packet authenticity

(0xFA)

type:

Type of packet

- position type (0xA1), used for packets sent from Robot

to Controller

- command type (0xA2), used for packets sent from Con-

troller to Robot

sub type:

Used for command type packets. They are:

- none (0)

- set Tx (1), to set the start of transmission on Robot

- set Tx spacing (2), to set the transmission interval on

Robot

- set velocity (3), to set left and right wheel velocities of

Robot in mm/s

- set control velocity (4), to set the transational and

rotational velocities of Robot in mm/s and degrees/s respec-

tively

Trailer

time: tick count from the start of a computer in ms

checksum:
a CRC-16 based checksum to verify if the received packet is

complete and original

Table 5.1: Header and Trailer elements description

Payload: Control velocity command data (32 bits)

trans vel: set transational velocity of the Robot(mm s−1) <16 bits>

rotation vel: set rotational velocity of the Robot(° s−1) <16 bits>

Table 5.2: Control velocity command data payload from Controller

5.1 Communication data packet 42

Payload: Tx interval command data (16 bits)

tx spacing: set packet transmission interval on the Robot (ms) <16 bits>

Table 5.3: Transmission interval command payload from Controller

Payload: Velocity command data (32 bits)

left vel: set left wheel velocity of the Robot(mm s−1) <16 bits>

right vel: set right wheel velocity of the Robot(mm s−1) <16 bits>

Table 5.4: Velocity command data payload from Controller

Payload: Set Tx command data (8 bits)

set tx:
set/unset packet transmission on the Robot, values are 0 for

unset and 1 for set <8 bits>

Table 5.5: Set transmission command payload from Controller

Payload: Position data (768 bits)

pos x:
robot position in the 2D world coordinate system in X direc-

tion (mm) <16 bits>

pos y:
robot position in the 2D world coordinate system in Y direc-

tion (mm) <16 bits>

pos heading:
robot heading in the 2D world coordinate system; 0 to +180

for counter-clockwise and 0 to -180 for clockwise (°) <16

bits>

trans vel: transational velocity of the Robot (mm s−1) <16 bits>

rotation vel: rotational velocity of the Robot(° s−1) <16 bits>

laser[35]:
array of uniformly divided 35 laser range readings out of 191

readings (mm) <560 bits>

sonar[8]:
array of eight sonar readings from the back side of the robot

(mm) <128 bits>

Table 5.6: Position data payload from Robot

5.2 Robot application development 43

5.2 Robot application development

Software application on the robot side is divided into several elements:

1. Robot main - robot cycle thread, which handles laser localization, position
update, robot safety and velocity setting.

2. Transmission - this thread handles packet forming, CRC append and
packet transmission.

3. Reception - this thread handles packet reading from the buffer, CRC val-
idation, packet parsing and operator command setting.

As explained in sub section 4.1.2 the main Robot task cycle (ArRobot) runs
asynchronously with the localization task (ArLocalizationTask) in a separate
thread. The program has to be started from a command window passing two
argument values called -m2mmap and -m2mcommport. Figure 5.2 shows different
tasks started when the program executes.

-m2mmap It is the location of a 2D map the program has to use
-m2mcommport The port to which the radio communication node is connected

E.g. robot.exe -m2mcommport COM5 -m2mmap C:/User/Document/office.map

Start

ArRobot

Robot
cycle loop

ArLocalization

Laser
Localization

Tx

Packet
transmission

Rx

Packet
reception

Terminate?Stop

No

Yes

Asynchronous
Tasks

Figure 5.2: Robot application flow

5.2 Robot application development 44

5.2.1 ArRobot

As discussed in Figure 4.4 of the Section 4.1 a user task is added to the
ArRobot’s cycle where a method is called at the end of the cycle. Figure 5.3
shows the function call to doZoneCheck() inside which a safety algorithm is
applied at every cycle.

ArRobot Cycle

Sensor interpretation

Set Robot Commands

::doZoneCheck()

::doZoneCheck()

The required velocity value
is set in k + 1 cycle

where, k is the current cycle

Figure 5.3: Zone check task in ArRobot’s flow

Zonal safety

This task implements the algorithm to limit the robot’s speed based on its
distance from obstacles. A graphical illustration of predefined boundaries and
their capped maximum transational and rotational velocities are shown in Fig-
ure 5.4. Since robot is covered with sensors on all sides a function called
ArRobot::checkRangeDevicesCumulativePolar from ARIA library 4.1.2 is
used to get the obstacle range in all direction i.e. 360°. That is how a boundary
based approach gives the operator a complete confidence in driving the robot
with high speeds.

Calculations for velocities based on their boundary are done by taking a ratio
of current velocities to their maximum velocity of an applicable boundary. The
equations 5.2a & 5.2b shows how new velocities values are decided, correspond-
ing ratio’s are as per equations 5.1a & 5.1b. Where υ and ω are transational
and rotational velocities respectively, υmax and ωmax are maximum transational
and rotational velocities respectively.

5.2 Robot application development 45

Minimum
(600mm)

Boundary B1
(900mm)

Boundary B2
(1200mm)

Maximum
transational
velocity
(mm s−1)

Maximum
rotational
velocity
(° s−1)

25 2

70 6

180 20

Minimum

B1

B2

Figure 5.4: Safety zones and maximum velocities

υratio =
υ

υmax

(5.1a)

ωratio =
ω

ωmax

(5.1b)

υ =

⎧⎪⎪⎨⎪⎪⎩
υmax

{
if υ > υmax & ω = 0

if υratio > ωratio

υ
ωratio

if ωratio > υratio

(5.2a)

ω =

⎧⎪⎪⎨⎪⎪⎩
ωmax

{
if ω > ωmax & υ = 0

if ωratio > υratio

ω
υratio

if υratio > ωratio

(5.2b)

The equation 5.1 explains the execution of the safety task clearly where υ and
ω are variables updated every ArRobot’s cycle while R, Min, B1 and B2 are
global constants.

υ Current transational velocity commanded
ω Current rotational velocity commanded
R 267⇒ Robot swing radius in mm

Min 600⇒ Minimum boundary in mm
B 900⇒ B1 boundary in mm
B 1200⇒ B2 boundary in mm

5.2 Robot application development 46

get the commanded υ and ω values

if packet reception rate < 1 packet/s then

set υ = 0, ω = 0 to the robot

end if

if zonal distance < (B−R) then

if υ > υB2max or ω > ωB2max then

set υ and ω with appropriate ratios to max. values of B2

Equations 5.1 & 5.2

else

set υ and ω to the robot

end if

return

end if

if zonal distance < (B−R) then

if υ > υB1max or ω > ωB1max then

set υ and ω with appropriate ratios to max. values of B1

Equations 5.1 & 5.2

else

set υ and ω to the robot

end if

return

end if

if zonal distance < (Min−R) then

if υ > υMinmax or ω > ωMinmax then

set υ and ω with appropriate ratios to max. values of Min

Equations 5.1 & 5.2

else

set υ and ω to the robot

end if

return

end if

set υ and ω to the robot

return

Algorithm 5.1: Velocities update for zone check

5.2 Robot application development 47

5.2.2 Transmission

The packet transmission flow chart is shown in Figure 5.5 it consists of a timer
to send packets in a fixed interval, the Tx program which is running in parallel
to ArRobot gathers the necessary data from ArRobot and packages it before
sending via serial link. As shown in Figure the ‘transmission enable’ flag is
always checked, its setting causes an immediate end to transmission. The packet
transmitted here is only position data from table 5.6. To properly terminate
this thread an ‘end’ flag is used which is set just before closing of the program.

Packet transmission (Tx)

End? Stop

Transmission
enabled?

Time to send?

Get pose, laser
and sensor data

from robot
ArRobot

Form packet
buffer

Send packet

No

Yes

Yes

No

Yes

No

Figure 5.5: Robot packet transmission (Tx)

5.2 Robot application development 48

5.2.3 Reception

The reception packet flowchart is shown in Figure 5.6. This program parses the
received packets from controller UI and verifies authenticity of each packet in
the following steps:

Packet reception (Rx)

End? Stop

Read buffer

Buffer
empty?

CRC check
true?

Packet type
== command?

Synch bytes
match?

Extract command
and set to
ArRobot

ArRobot

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Figure 5.6: Robot packet reception (Rx)

5.3 Desktop application development 49

CRC checking

Type of the packet

Sync bytes matching

After a proper packet is verified the commands are extracted and set to parallely
running ArRobot program. The buffer is only read if its full and its cleared after
the packet has been extracted. The thread is terminated properly on program
shutdown using ’end’ flag.

5.3 Desktop application development

The components on the controller side are divided into:

1. GUI - User interface thread to handle operator inputs and display sensor
graphics and robot parameters.

2. Transmission - this thread handles packet forming, CRC append and write
to the transmission buffer.

3. Reception - this thread handles packet reading from buffer, CRC valida-
tion, packet parsing and applying them to graphics and send data from
the transmission buffer.

The program overview is shown in Figure 5.7 where UI runs as a parallel task
with transmission and reception tasks. The program can be stopped by simply
closing UI. It has to be started from a command window by passing the argu-
ment for the communication node’s port number. E.g. robotUserInterface.exe 3

5.3.1 GUI

The cockpit style approach as in Figure 2.11 was taken in designing the User
interface. It is built with the help of Qt framework described in Section 4.2, the
whole dialog consists of:

� ‘Interactive graphics scene’ to display robot orientation and position inside
a given map, and takes in keyboard input while driving the robot in
manual mode

� ‘Rx and Tx graphs’ for real time data reception and transmission visual-
ization

5.3 Desktop application development 50

Start

Tx

Packet
transmission

UI

User
Interface

Rx

Packet
reception

Terminate?Stop

No

Yes

Asynchronous
Tasks

Figure 5.7: Ui application flow

� ‘Robot control’ to drive WMR in different modes (Motion controlled, lin-
ear controlled and manual)

� ‘Packet rate control options’ to enable transmissions and change trans-
mission interval for the robot and operator

� ‘Current velocity and position’ indicator

As shown in Figure 5.8, a zoomed closeup of the ‘graphics scene’ showing laser
and sonar sensor readings are also plotted as in Figure 5.9.

Using signal and slot mechanism as described in section 4.2 widget update
functions are called whenever a new data is available to be displayed, that is
how Rx and Tx graphs, Interactive graphics scene and velocity and position
indication widgets are rendered in real time giving a continuous visual display
of parameters.

Modes of robot operation

There are three modes to drive the robot using controller, the latest command
packets are formatted and sent to Tx task through the use of a single function
thus ensuring minimum inter-thread functional calls. At any moment only one
mode can be used as each of them produce unique inputs.

5.3 Desktop application development 51

Figure 5.8: User interface application

Figure 5.9: Interactive graphics scene zooming

Manual control Under this mode the ‘nteractive graphics scene’ accepts key-
board input. The arrow keys (↑ , ↓ , ← , →) and space bar (

) events are processed to generate velocity values as follow:

↑ υ = +20 mms−1

↓ υ = −20 mms−1

← ω = +2 ° s−1

→ ω = −2 ° s−1

υ = 0 and ω = 0

5.3 Desktop application development 52

These velocities values are directly set to Tx task. The velocity values incre-
mented here are the lowest according to the robot’s operation manual [12].

Motion control The algorithm implemented here for motion control of the
robot come from Chapter 3 which is a non-linear state tracking controller (eq.
3.17). A trajectory or reference target generator is started that monitors the
current robot state, whenever a current state q is reached it generates a new
state q+1 for the motion controller to calculate correction in velocity which is
then sent to the robot via Tx task.

Require: allTargets

while allTargets! = 0 do

while qcurrent! = qreference do

wait

end while

Generate next target references from x and y of allTargets

Equations 3.3 and 3.5

qreference = (xreference, yreference, θreference)

Set to motion control algorithm 5.3

end while

Algorithm 5.2: Reference target generator

υratio =
υ

υmin

(5.3a)

ωratio =
ω

ωmin

(5.3b)

υ =

⎧⎪⎪⎨⎪⎪⎩
υmin

{
if υ < υmin & ω = 0

if υratio < ωratio

υ
ωratio

if ωratio < υratio

(5.4a)

ω =

⎧⎪⎪⎨⎪⎪⎩
ωmin

{
if ω < ωmin & υ = 0

if ωratio < υratio

ω
υratio

if υratio < ωratio

(5.4b)

Equations 5.3 receives reference targets from algorithm 5.2 whenever a current
target state is reached. The motion controller then calculates new trajectory
values and modifies velocities if their values exceed max and min boundary

5.3 Desktop application development 53

limits. In case of readjusting values for min condition sometimes calculated
ratios might produce a value which exceeds max allowed velocity, which is then
re-adjusted as per equations 5.3 and 5.4. These limits in robot velocities are
preset and compiled into programs on both robot side and controller side.

Require: current and reference robot configuration and velocities limits

while task running do

Calculate gains k1, k2 and k3 for Eq. 3.18

Calculate velocities ω and υ from Eq. 3.17

if υ > υmax or ω > ωmax then

set υ and ω with appropriate ratios to max. values

Equations 5.1 & 5.2

else

keep υ and ω

end if

if υ < υmin or ω < ωmin then

set υ and ω with appropriate ratios to min. values

Equations 5.3 & 5.4

if υ > υmax then

υ = υmax

end if

if ω > ωmax then

ω = ωmax

end if

else

keep υ and ω

end if

send the ω and υ to Tx task

end while

set υ = 0 and ω = 0

Algorithm 5.3: Motion control

Linear control This is a simple test case where a robot is driven along x-axis
and the speeds are set to keep the robot moving between two states along x-axis
which is governed by equation 5.5. A fairly simple algorithm in 5.4 is run in

5.3 Desktop application development 54

this mode.

υ =
√
|xreference − xcurrent| ∗ 50 (5.5)

Require: direction, current, start and stop configurations

while task running do

if xcurrent <= xreferencestart then

direction = forward

end if

if xcurrent >= xreferencestop then

direction = reverse

end if

calculate υ from eq. 5.5

if direction = forward then

set υ and ω = 0 to Tx task

else

set −υ and ω = 0 to Tx task

end if

end while

Algorithm 5.4: Linear control

5.3.2 Transmission

The radio device being used is configured for half-duplex operations hence to
keep the data packet collision to minimum Tx program is designed differently
from robot application’s Tx counterpart. A global buffer parameter is used here
to write the transmittable command packets at a specific transmission interval.
This global buffer is then read by Reception program and transmitted with
minimalistic additional delay. The figurative illustration is drawn in flowchart
5.10.

5.3.3 Reception

The Rx program is similar in operation to robot application’s Rx with the ad-
dition of a transmission function. In the ever running program loop the global
buffer is checked for its content if its full the data packet is transmitted and the

5.3 Desktop application development 55

Packet transmission (Tx)

End? Stop

Transmission
enabled?

Time to send?

Form command
packet UI

Write to Rx task global buffer

No

Yes

Yes

No

Yes

No

Figure 5.10: Ui packet transmission (Tx)

buffer is cleared. This way only one program has access to the radio device at
a time to read or to write data. The time it takes to fully read the reception
data might add additional delay to the packet transmission but at these high
speed data transfer rates the robot control is always maintained given the radio
signal strength is at full and wireless devices are communicating. The flowchart
in Figure 5.11 illustrated the program operation.

5.3 Desktop application development 56

Packet reception (Rx)

End? Stop

Read bufferIs buffer?

Send packet

global buffer

Buffer
empty?

CRC check
true?

Packet type
== command?

Synch bytes
match?

Extract data:

Position(x and y)
Orientation(θ)
Laser data
Sonar data

UI

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Figure 5.11: Ui packet reception (Rx)

Chapter 6

Experiment setup

This chapter discusses the experiments related setup and usage of UI. Testing of
the system was done for functional verification and performance analysis. The
functional testing is selected to show a working of the full system features i.e.,
mode of operations and zonal safety behaviour. Performance analysis is done
on the data collected from several field trails.

6.1 Setup

2D map First thing needed to be done before using laser localization with
ARIA library 4.1.2 was to acquire a 2D map information of the field, MobileR-
obots provided an application called Mapper31for that purpose. During testing,
this map is loaded into operator’s graphics scene where robot movements and
sensor readings are overlayed. Indoor field testing was conducted as the robot
was meant for indoor use, the real picture of the area is shown in Figure 6.1,
2D map of the field is shown in Figure 6.3.

System start The operator’s computer was a laptop and robot has an on-
board computer with serial and Ethernet interfaces. The IP addresses for Eth-
ernet were fixed for both so that the robot program could be run via remote
desktop client of windows OS. The program robot.exe was run everytime a
new experimental trail was undertaken. Packet transmission from the robot
can only be activated on demand by the operator so, ones the Ethernet cable is
removed operator moves to his designated position in the field and the program

1Mapper application to convert laser data (.2d) to 2D map (.map)

http://robots.mobilerobots.com/wiki/Mapper3

http://www.mobilerobots.com/Mobile_Robots.aspx
http://www.mobilerobots.com/Mobile_Robots.aspx
http://robots.mobilerobots.com/wiki/Mapper3

6.1 Setup 58

(a) Green cross tape is origin (b) View from robot behind

Figure 6.1: Experiment area images

robotUserInterface.exe is run on the operator side. By clicking on GUI op-
tions (Figure 6.2) for transmission setting he can start communicating with the
robot.

On the robot side there is a main task cycle which has a regular 100ms timing
(Figure 4.4). Since the transmission interval from the operator is 47ms i.e. two
packets per task cycle, the commands are cached and set at one go. This has
no impact on robots overall performance but it is a measure of communication
nodes speed and program capability.

Figure 6.2: Packet transmission settings

6.1 Setup 59

Figure 6.3: Experimental area map

Constants

Some parameters that are kept as constants throughout testing are:

1. The controller node position (−5.736m,−0.16m) (red circle in Figure 6.1)
is in direct line of sight with the robot node in most of the field.

2. Robot origin position (0m, 0m) (’x’ mark in Figure 6.1). This start con-
figuration is (x, y, θ)T = (0, 0, 0)T and is set as a default initial position
by hard coding the values at the start of the localization algorithm.

3. Packet transmission rates are chosen in such a way that packet loss and
collisions are to the minimum, this was done by keeping the nodes at
constant distance and varying the values using GUI.

� The robot trasnmission rate is 31ms.

� The controller (or UI) transmission rate is 47ms.

In practise the communication rates and packet loss can be effected due to
other external factors like distance between the nodes, radio interference,
battery power and reflective surfaces.

6.1 Setup 60

4. The elliptic path for trajectory tracking was generated for 101 points each
as a reference vector values (xr, yr, θr, υr, ωr)

T where

xr = 1.8cos(t π
50
) yr = sin(t π

50
) θr = atan2(ẏr(t)

ẋr(t)
)

υr =
√
ẋ2
r(t) + ẏ2r(t) ωr =

ẋr(t)ÿr(t) − ẏr(t)ẍr(t)
ẋ2
r(t) + ẏ2r(t)

(6.1)

5. Maximum operational velocities are:

Motion control 500mms−1 and 50 ° s−1

Linear control 400mms−1

Direct control 500mms−1 and 50 ° s−1

6. Trajectory controller gain values for equations in 3.18 are b = 40 & ξ = 0.8.

7. Axes length for elliptical reference path are 2m and 3.6m for minor and
major axis respectively.

Operator interface Operator’s interface is shown in Figure 6.4, it is a typical
operations view. To control the robot operator simply needs to select the mode
of operation from the right side panel, he can use start/stop buttons for linear
and motion controlled drive. Whenever user wants to take hold of the robot in
the middle of an operation its possible by just using arrow keys on the graphics
scene panel the commands are automatically forwarded. On the bottom left
corner there are velocity value indicators that the operator currently wants, he
can also hover over graphics scene to view the physical location of that point in
the map. Scene zooming is possible for better information viewing.

Figure 6.4: Operator interface in action

6.2 Test description 61

6.2 Test description

The interface is operator centric and all the operations are supervised hence
from that point of view the testing purposes are to check navigation with dif-
ferent sensors, use operation modes and verify functioning of the zonal safety
algorithm. Analyse data from these results for understanding overall system
performance.

Navigation The 2D laser data available for the operator can aid in more
reliable and accurate commanding in the field, this is compared with sonar and
dead reckoning based navigation. In this experiment, two manual drive tests
were conducted one with laser switched off and other with laser on.

Linear drive This was implemented to check initial remote controllability of
the robot. To test this the robot was run with laser localization and between
two points which are 3m apart along x axis.

Motion control drive A trajectory control algorithm was used to automat-
ically follow an elliptic path, here the effectiveness of laser localization and
remote control ability of the system is tested.

Performance Not everything works as planned hence its necessary to find out
the reasons behind errors and unpredicted behaviour. All the test trails were
considered in order to study a problem among them and find out candidate
values effecting the systems overall usability. The main reasons were linked to
laser, free moving wheel of robot and communication loss.

Chapter 7

Results and discussion

This chapter discusses results from the experiments conducted for the three
modes of operation 5.3.1 and the zonal safety 5.2.1. Testing objectives are to
validate functionality of the system and bring out some key performance related
issues.

7.1 Functionality

Functionality related results are to check operator navigation, operation modes
and working of safety.

7.1.1 Navigation

Laser localization was found to be precise in giving out accurate information for
the operator, user navigation in wander mode for dead-reckoning and laser lo-
calisation is shown in Figures 7.2 and 7.1 respectively. In case of dead-reckoning
the main cause for such a huge error for such a short run was due to the free
moving third wheel of the robot. When the robot is driven backwards the free
wheel flips its direction and adds that extra motion to slide the robot a bit
and change its orientation. Figure 7.3 shows the actual physical location of
the robot. Each time robot moves minute error accumulates overtime due to
wheel slippage, change in wheel size because of wearing and encoder calibration
change, this is the major drawback to dead-reckoning based navigation.

7.1 Functionality 63

Figure 7.1: Robot path using dead reckoning

Figure 7.2: Robot path with laser localization

7.1 Functionality 64

Figure 7.3: Actual robot position (far end of the image) vs calculated position

(graphics scene of UI)

7.1.2 Linear drive operation

In this mode, the robot is driven along x-axis between points at 3m distance.
Figure 7.4 shows an example of drive on the map. The purpose of this mode
is for rapid testing of teleoperation in automatic mode. In performance section
effects of the free moving wheel is studied on the robot’s orientation with this
mode. Figure 7.5 shows distance based velocity generation algorithm in use,
the actual velocity set on the robot is slightly different from calculated velocity.
This is because of the velocity control algorithm on the robot’s middleware, in
the forward direction the velocity is gradually increased and on the backward
direction it can flip instantly.

7.1.3 Trajectory following operation

The robot is made to follow an elliptic path, the gains of controller and capping
speeds are set as per 6.1. In this trial, the total time robot took from the static
position to completing the oval path was 52.6 s. Figure 7.6 shows its path on

7.1 Functionality 65

Figure 7.4: Linear robot motion between two point

Figure 7.5: Velocities for linear controlled drive

the map, the two big gaps from the actual track are due to the angle shift from
360 ° to 0 °. This is a programming issue that can be fixed but time constraints
prevented from redoing tests with new changes.

Figure 7.7 shows the graphs of ideal (red) and actual (blue) path in x, y coordi-
nate and θ orientation with error differences (yellow). The reliable tracking was
achieved with this algorithm, in all other test cases robot successfully completed
the path.

7.1 Functionality 66

Figure 7.6: Trajectory following map

Figure 7.7: Trajectory tracking errors

7.1.4 Anti collision safety

During all the testing trials it was observed that safety algorithm always man-
aged to handle robot speeds, even under situations where communication was
lost completely it didn’t collide with any obstacle. The algorithm is show in 5.1
the only values needed to be assigned are the velocity maximums as mentioned
in 6.1. The effectiveness of this can be particularly seen in an experiment where
the robot was driven through a narrow part of the area. Below, Figures 7.8 and
7.9 show the points at which a particular zone was activated.

Shades of gray color associated with zones are:

7.1 Functionality 67

’Min’ zone’B1’ zone’B2’ zone

Figure 7.8: Safety activated on the map

Figure 7.9: Velocity alteration for safety

7.2 Performance 68

7.2 Performance

Test trials were the combination of different operational modes the discussion
here is on the study done on the results obtained from those tests. There were
a total of 9 test trials.

Some key observations made from all the tests can be summarised here:

1. Robot collision with an obstacle never occurred.

2. The free moving wheel of the robot had an uncontrollable orientation
error.

3. Overall system reliability didn’t depend on data packet loss.

4. Communication devices sometime stopped working due to packet collision
because of its half-duplex nature.

5. Sometimes laser localization was not effective in updating robot state.

Free wheel effect The linear drive was tested between two points along the
x axis, it was found that the free moving third wheel had an effect on the
simple straight driving of the robot. In ideal conditions, orientation should be
the same as when the ‘linear mode’ operation was started. The median values
of orientations from a test in forward-reverse-forward operation was found to
be −1.1720°, −1.2350° and −1.1840° respectively. Orientation of robot would
gradually shift from its initial value at 0.06° adding a diversion error in each
turn.

Figure 7.10: Free wheel effect on orientation

Laser update delay During the trails it was found that laser localization
library from ARIA was taking time to update the robot state, its effect though

7.2 Performance 69

negligible most of the time. In this one case where the robot was operating in
‘trajectory following’ mode there was a 22.17 s delay in completing the elliptic
path due to this error. The trajectory tracking controller was correcting the
path during this time. Figure 7.11 shows in red dots the data points robot
path would generate ideally, they should be spread in close formation evenly
but there is a gap showing the skip in the robot’s state.

Figure 7.11: Free wheel effect on orientation

It took 4 s to update the state during which the trajectory controller was receiv-
ing current state information as x =−1760mm, y =−149.3mm and θ =256°,
hence it was generating control velocities υ =201mms−1 and ω =24 ° s−1. When
the position was updated as shown in figure above it appears as if the robot
has teleported. On subtracting the time taken for path correction from total
completion time we obtained result of 42.3 s which is more close to the ideal
time of elliptic path operation.

Typical time for elliptic path 40 s
Time took for elliptic path 64.47 s
Delay caused by laser update 22.17 s

Communications packet drop Packet drops in all of the trials are calcu-
lated in percentage of the total transmitted packets to the number of unreceived
packets. It is observed that packet drop sometimes causes the total lapse of the
system because of failure in communication devices. Reason behind this is the
half-duplex nature of devices and its prone to cause packet collision in the mid-
dleware, the whole system had to be restarted because of this. In all other cases
packet drop showed almost no effect. Figure 7.12 shows one such trial where
operator commands and robot information were exchanged effectively despite
23.9618% and 28.4325% of packet drops at robot and operator side respec-
tively. Here in the table 7.1 below all the trials and their total packet drop
percentages are shown, there is also a column showing the situations where the
wireless devices totally failed to operate, it is a randomly occurring event.

7.2 Performance 70

(a) Robot state transmission

(b) Velocity command transmission

Figure 7.12: Robot control with packet loss

The effect of the packet drop when studied from trajectory following operations,
in three such trials it was found that the packet drop did not contribute to the
total time of completion, the reasons for not achieving typical timing of ≈40 s
is trajectory error and laser state updation delay. Table 7.2 shows the packet
drops occurred in all those trials.

Modifying the trajectory control algorithm to support 360° to 0° switch could
save around 2 s in elliptic path time completion. Operations are highly depen-

7.2 Performance 71

Ui→ Robot

Packet drop

(%)

Robot→ Ui

Packet drop

(%)

Node fail Operation

time s

Trail 1 1.08 36.65 yes 228.8

Trail 2 24.8 45.8 yes 189.14

Trail 3 9.293 14.69 no 324.9

Trail 4 4.17 18.9 no 432.55

Trail 5 9.45 23.74 no 250.7

Trail 6 8.49 53.4 yes 140

Trail 7 26.4 18.75 yes 208.43

Trail 8 24 28.4 no 319.4

Trail 9 0.3 2.5 no 351.9

Table 7.1: Packet drops in testing

Total

time

(s)

Ui → Robot

Packet drop

Robot → Ui

Packet drop

Why not ≈40 s

Trial 9 45 0.1771% 0.295% Trajectory control

error

Trial 7 64.47 6.2831% 4.978% Trajectory control

error & Laser

state update delay

Trial 4 42.7 4.5317% 2.2063% Trajectory control

error

Table 7.2: Elliptic path completion time and packet drop

dent on laser localization finding a fix for the update problem can make it more
reliable.

Chapter 8

Conclusions

This final chapter concludes with the overall project observations made through-
out the development and testing phase. Mentioned here, are also some limita-
tions and possible future extension of thesis work.

8.1 Conclusive remarks

Teleoperation software was successfully tested and the minimum features nec-
essary for a complete teleoperation was fulfilled. Three modes of operations
developed can be used in complement to each other. Most important being
trajectory tracking which was demonstrated successfully through experiments.
Manual drive gives the operator a complete control of the robot simply by relying
on the sensor information represented graphically on the UI screen. Monitoring
of data packet rates is a clear indicator of communication status and a sign of
visual assurance whenever transmission rates are changed. The Experimental
area of ≈243m2 was a big testing bed with differently spread wall borders to
give variety of testing scenarios.

A continuous packet transmission was the key for a very successfull teleoperation
in all modes of operation as it ensured proper control even in worst packet
drop scenarios, minimum transmission rates achieved were around 16ms in one
direction. Optimal transmission rates chosen were 31ms and 47ms in both
direction.

In trajectory tracking, minute path adjustments were not possible physically
even though the algorithm could generate such values as the minimum allowed
rotational speed and translational speed were 0.2m s−1 and 2 ° s−1 respectively,
a maximum error of +/- 30mm is inevitable.

8.2 Future Work 73

The robot was successfully driven through the narrow path of the testing area
to demonstrate the safety algorithm ability to react to approaching obstacle
and alter the velocities. The three concentric virtual zones defined around the
robot fit snugly with robots differential wheel drive ability and spread of sensors
around robot covering almost 360 °.

Through performance analysis it was concluded that there were cases when
laser localization update of robot status effected its operation, in trajectory
following it is critical that robot state is updated regularly or it appears as
robot teleportation to the operator. It was found that packet loss had no real
effect on the overall operation of the system other than the full collapse of
the device which paralysed it from communicating. The robot’s non-holonomic
design with a free moving wheel is shown to have effect on robot’s orientation
when it is moved in the backward direction, this might be really the critical
problem for very narrow driving but if laser localization is reliable then it can
be managed to a certain extent.

8.2 Future Work

Throughout the development of the project, our idea was to use different com-
munication modules for testing. The most forward looking development would
be to increase the range of the teleoperation capability of the whole system.
Bringing it more towards real world operational scenario. Increasing range has
its own challenges one most significant being communication delays, several
methods have been proposed in literature to solving this. There can be imple-
mentations of safety based on communications.

More can be done in trajectory generation in avoiding moving/stationary obsta-
cles since, the current trajectory following algorithm is well established. Present
localization algorithms can be modified to include mapping that way new obsta-
cles can be remembered in the area which can be used for trajectory generation.

Implementations related to auto communications recovery can be adapted both
on the controller and robot side. This could be a significant asset to the relia-
bility of teleoperation system.

References

[1] L. Zhang, Z. Chen, J. Wang, and S. Yan,“A networked teleoperation system
for mobile robot with wireless serial communication,” in Proceedings of the
International Conference on Robotics and Biomimetics. IEEE, 2009, pp.
2227–2231.

[2] S. Lichiardopol, “A survey on teleoperation,” Dept. Mech. Eng., Dynam-
ics Control Group, Technische Universiteit Eindhoven, Eindhoven, The
Netherlands, Tech. Rep. DCT2007, vol. 155, 2007.

[3] S. Cong and J. Wang, “Internet-based and visual feedback networked robot
arm teleoperation system,” in International Conference on Networking,
Sensing and Control (ICNSC). IEEE, 2010, pp. 452–457.

[4] M. Wang and J. N. Liu, “Interactive control for internet-based mobile robot
teleoperation,”Robotics and Autonomous Systems, vol. 52, no. 2, pp. 160–
179, 2005.

[5] M. D. Phung, T. T. Van Nguyen, and Q. V. Tran, “Navigation of networked
mobile robot using behavior-based model,” in International Conference on
Control, Automation and Information Sciences (ICCAIS). IEEE, 2013,
pp. 12–17.

[6] J. Oh, A. Suppé, F. Duvallet, A. Boularias, L. E. Navarro-Serment,
M. Hebert, A. Stentz, J. Vinokurov, O. J. Romero, C. Lebiere, and R. Dean,
“Toward mobile robots reasoning like humans.” in The Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI-15). AAAI, 2015, pp. 1371–
1379.

[7] R. Olivares, C. Zhou, B. Bodenheimer, and J. A. Adams, “Interface eval-
uation for mobile robot teleoperation,” in Proceedings of the 51st ACM
Southeast Conference (ACMSE03), vol. 112, Savannah, GA., March 2003,
p. 118.

[8] N. Shiroma, N. Sato, Y.-h. Chiu, and F. Matsuno, “Study on effective
camera images for mobile robot teleoperation,” in 13th IEEE Interna-
tional Workshop on Robot and Human Interactive Communication. IEEE,
September 2004, pp. 107–112.

REFERENCES 75

[9] D. Saakes, V. Choudhary, D. Sakamoto, M. Inami, and T. Lgarashi, “A
teleoperating interface for ground vehicles using autonomous flying cam-
eras,” in 23rd International Conference on Artificial Reality and Telexis-
tence (ICAT). IEEE, 2013, pp. 13–19.

[10] M. Sugimoto, G. Kagotani, H. Nii, N. Shiroma, F. Matsuno, and M. In-
ami, “Time follower’s vision: a teleoperation interface with past images,”
Computer Graphics and Applications, vol. 25, no. 1, pp. 54–63, 2005.

[11] I. Farkhatdinov, J.-H. Ryu, and J. Poduraev, “A user study of command
strategies for mobile robot teleoperation,” Intelligent Service Robotics,
vol. 2, no. 2, pp. 95–104, March 2009.

[12] A. M. Inc, Pioneer 3 Operations Manual, version 3 ed., January 2006.

[13] Wikipedia, “list of countries by number of mobile phones in use,” August
2015. [Online]. Available: https://en.wikipedia.org/wiki/List of countries
by number of mobile phones in use

[14] T. Fong, J. R. Zumbado, N. Currie, A. Mishkin, and D. L. Akin, “Space
telerobotics unique challenges to human–robot collaboration in space,”Re-
views of Human Factors and Ergonomics, vol. 9, no. 1, pp. 6–56, 2013.

[15] T. Theodoridis and H. Hu, “Toward intelligent security robots: A survey,”
Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE, vol. 42, no. 6, pp. 1219–1230, 2012.

[16] R. R. Murphy, J. Kravitz, S. L. Stover, and R. Shoureshi, “Mobile robots
in mine rescue and recovery,” Robotics and Automation Magazine, IEEE,
vol. 16, no. 2, pp. 91–103, 2009.

[17] R. R. Murphy, “A decade of rescue robots,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2012, pp.
5448–5449.

[18] Wireless@kth, “Machine-to-machine redefining information sharing and
enablers (m2mrise),” August 2015. [Online]. Available: https://wireless.
kth.se/m2m/projects/m2mrise/

[19] T. B. Sheridan, “Teleoperation, telerobotics and telepresence: A progress
report,”Control Engineering Practice, vol. 3, no. 2, pp. 205–214, February
1995.

[20] A. K. Bejczy, “Sensors, controls, and man-machine interface for advanced
teleoperation,” Science, vol. 208, no. 4450, pp. 1327–1335, 1980.

[21] G. Niemeyer, C. Preusche, and G. Hirzinger, “Telerobotics,” in Springer
handbook of robotics. Springer, 2008, pp. 741–757.

[22] W. R. Ferrell and T. B. Sheridan, “Supervisory control of remote manipu-
lation,” IEEE Spectrum, vol. 4, no. 10, pp. 81–88, October 1967.

https://en.wikipedia.org/wiki/List_of_countries_by_number_of_mobile_phones_in_use
https://en.wikipedia.org/wiki/List_of_countries_by_number_of_mobile_phones_in_use
https://wireless.kth.se/m2m/projects/m2mrise/
https://wireless.kth.se/m2m/projects/m2mrise/

REFERENCES 76

[23] P. F. Hokayem and M. W. Spong, “Bilateral teleoperation: An historical
survey,”Automatica, vol. 42, no. 12, pp. 2035–2057, September 2006.

[24] W. Zheng, Y. Wang, and N. Xi, “Behavior coordination in the internet-
based multi-robot teleoperation system,” in IEEE International Conference
on Robotics and Biomimetics. ROBIO’06. IEEE, 2006, pp. 988–993.

[25] A. Birk, S. Schwertfege, and K. Pathak, “A networking framework for tele-
operation in safety, security, and rescue robotics,” IEEE Wireless Commu-
nications, vol. 16, no. 1, pp. 6–13, 2009.

[26] A. Knoll and R. Prasad, “Wireless robotics: A highly promising case for
standardization,” Wireless Personal Communications, vol. 64, no. 3, pp.
611–617, April 2012.

[27] R. BOBOC, H. MOGA, and D. TALABĂ,“A review of current applications
in teleoperation of mobile robots,” Bulletin of the Transilvania University
of Brasov, Series I: Engineering Sciences, vol. 5, no. 2, 2012.

[28] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, and
J. Wiegley, “Desktop teleoperation via the world wide web,” in Interna-
tional Conference on Robotics and Automation, Proceedings, vol. 1. IEEE,
1995, pp. 654–659.

[29] G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture, challenges
and applications,”Network, IEEE, vol. 26, no. 3, pp. 21–28, 2012.

[30] A. F. Winfield and O. Holland, “The application of wireless local area
network technology to the control of mobile robots,”Microprocessors and
Microsystems, vol. 23, no. 10, pp. 597–607, 2000.

[31] F. Espinosa, D. Pizarro, F. Valdes, and M. Salazar, Remote and Teler-
obotics. InTech Open Access Publisher, March 2010, ch. Electronics Pro-
posal for Telerobotics Operation of P3-DX Units, pp. 1–17.

[32] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung,“A survey
on the ietf protocol suite for the internet of things: Standards, challenges,
and opportunities,” Wireless Communications, IEEE, vol. 20, no. 6, pp.
91–98, 2013.

[33] Y. Bo, L. Suju, and L. Dongjie, “Time delay study on internet based tele-
operation system,” in Proceedings of the 27th Chinese Control Conference.
Kunming, Yunnan, China: IEEE, July 2008, pp. 379–383.

[34] J. Han and R.-l. Chang, “Research and developing on intelligent mo-
bile robot remote monitoring and control system,” Procedia Engineering,
vol. 16, pp. 840–845, 2011.

[35] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu,
“Wireless sensor networks: A survey on the state of the art and the 802.15.
4 and zigbee standards,” Computer communications, vol. 30, no. 7, pp.
1655–1695, 2007.

REFERENCES 77

[36] K. S. Low, W. N. N. Win, and M. J. Er,“Wireless sensor networks for indus-
trial environments,” in Computational Intelligence for Modelling, Control
and Automation, 2005 and International Conference on Intelligent Agents,
Web Technologies and Internet Commerce, International Conference on,
vol. 2. IEEE, 2005, pp. 271–276.

[37] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1, p.
138, January 2007.

[38] L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints in net-
worked control systemsâĂŤa survey,” Industrial Informatics, IEEE Trans-
actions on, vol. 9, no. 1, pp. 403–416, 2013.

[39] J. Y. Chen, E. C. Haas, and M. J. Barnes, “Human performance issues
and user interface design for teleoperated robots,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 37,
no. 6, pp. 1231–1245, 2007.

[40] T.-J. Tara, A. K. Bejczy, C. Guo, and N. Xi, “Intelligent planning and
control for telerobotic operations,” in Intelligent Robots and Systems ’94.
’Advanced Robotic Systems and the Real World’, IROS ’94. Proceedings of
the IEEE/RSJ/GI International Conference on, vol. 1. IEEE, 1994, pp.
389–396.

[41] G. Oriolo, A. De Luca, and M. Vendittelli, “Wmr control via dynamic
feedback linearization: design, implementation, and experimental valida-
tion,” IEEE Transactions on Control Systems Technology, vol. 10, no. 6,
pp. 835–852, November 2002.

[42] M. Amoozgar and Y. Zhang,“Trajectory tracking of wheeled mobile robots:
A kinematical approach,” in IEEE/ASME International Conference on
Mechatronics and Embedded Systems and Applications (MESA). IEEE,
2012, pp. 275–280.

[43] A. De Luca and G. Oriolo, Kinematics and Dynamics of Multi-Body Sys-
tems. Springer Vienna, 1995, ch. Modelling and Control of Nonholonomic
Mechanical Systems, pp. 277–342.

[44] T. Fukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of a
nonholonomic mobile robot,” IEEE Transactions on Robotics and Automa-
tion, vol. 16, no. 5, pp. 609–615, 2000.

[45] S. L. Francis, S. G. Anavatti, and M. A. Garratt, “Dynamic model of auton-
omous ground vehicle for the path planning module.” in Proceedings of the
5th International Conference on Automation, Robotics and Applications.
Wellington, New Zealand: IEEE, December 2011, pp. 73–77.

[46] F. N. Martins, W. C. Celeste, R. Carelli, M. Sarcinelli-Filho, and T. F.
Bastos-Filho, “An adaptive dynamic controller for autonomous mobile

REFERENCES 78

robot trajectory tracking,” Control Engineering Practice, vol. 16, no. 11,
pp. 1354–1363, 2008.

[47] T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy
logic-based controller for wheeled mobile robots,” Control Systems Tech-
nology, IEEE Transactions on, vol. 14, no. 3, pp. 501–510, 2006.

[48] G. Klančar, D. Matko, and S. Blažič, “Mobile robot control on a reference
path,” in Intelligent Control, 2005. Proceedings of the 2005 IEEE Interna-
tional Symposium on, Mediterrean Conference on Control and Automation.
IEEE, 2005, pp. 1343–1348.

[49] R. A. Yusein, The UWASA Node Reference Manual, University
of Vaasa, Department of Computer Science and Aalto University
Department of Communications and Networking. [Online]. Available:
http://wsn.aalto.fi/en/tools/uwasa node/

http://wsn.aalto.fi/en/tools/uwasa_node/

	Introduction
	Motivation
	Objectives
	System overview
	Thesis overview

	Related Work
	Control architecture
	Direct control
	Telecommanding
	Behaviour based model
	Hierarchy level based model

	Communications
	TCP/UDP
	IEEE 802 family

	Control interface
	GUI and input device
	Camera views
	Time followers vision
	Operator command strategy

	Summary

	Trajectory Tracking
	Nonlinear State Tracking Controller

	Tools and Framework
	WMR: Pioneer 3-DX
	Robot Hardware
	Robot Software

	User Interface framework
	Wireless Communication

	Implementation
	Communication data packet
	Payload Data

	Robot application development
	ArRobot
	Transmission
	Reception

	Desktop application development
	GUI
	Transmission
	Reception

	Experiment setup
	Setup
	Test description

	Results and discussion
	Functionality
	Navigation
	Linear drive operation
	Trajectory following operation
	Anti collision safety

	Performance

	Conclusions
	Conclusive remarks
	Future Work

	References

