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In metabolic pathway analysis the focus is on identifying the complete range of
paths within a biochemical network. However, most current methods character-
izing all potential paths between the selected substrates and product are based
either on the enumeration of all elementary flux modes or all extreme pathways.
This becomes computationally unfeasible for large reaction matrices. In this work,
we propose an alternative approach that identifies a set of potential paths while
avoiding an exhaustive enumeration. More specifically, we identify a set of (min-
imal) flux vectors that produce the desired product and do not accumulate any
intermediates while consuming at least one of the specified substrates. Our k-best
approach uses linear programming to identify the first k solutions, according to
a pre-defined objective function. Furthermore, in order to determine biologically
more meaningful flux vectors we define an augmented solution space, where in
addition to the flux distribution we incorporate the net consumption/production
of external metabolites and the contribution of the null space basis vectors to the
given flux distribution.
One of the main aims of this research was to computationally determine the best
substrate-path-product combination for industrial scale production. In fact, we
were interested in identifying the best carbon source (or the best combination of
different carbon sources) that will lead to the highest productivity for a specific
product, as well as the best metabolic pathway from the identified sources to the
product. A special focus within this work was the identification of an objective
function for the enumerated paths, which would return a good set of candidate
paths.
The results demonstrate that our k-best method is able to identify a set of candi-
date pathways for genome-scale metabolic models, where elementary modes and
extreme pathway analysis fail to provide a resulting set of pathways. Among the
pathways proposed by our enumeration approach there are novel ones with the
potential to improve the production processes of the specific product in terms of
energetic efficiency.

Keywords: metabolic pathway analysis, flux vectors, right null space,
constrained-based stoichiometric modelling, industrial prod-
ucts

Language: English

2



Acknowledgements

I would like to thank my advisors, Elena Czeizler and Peter Blomberg, for
their continuous support and guidance throughout this work. I also want to
thank my supervisor Juho Rousu for his support and patience.

Thank you to my friends and family for the friendship and support, and
for always being there for me.

Espoo, May 9, 2016

Maja Ilievska

3



Contents

1 Introduction 6

2 Background 10
2.1 Mathematical representation of metabolic networks . . . . . . 10

2.1.1 Basic properties of stoichiometric matrix . . . . . . . . 11
2.1.2 Right null space . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 The total stoichiometric matrix . . . . . . . . . . . . . 12

2.2 Stoichiometric modelling . . . . . . . . . . . . . . . . . . . . . 13
2.3 Path identification . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Flux balance analysis (FBA) . . . . . . . . . . . . . . . 17
2.3.2 Network-based pathway analysis/ metabolic pathway

analysis (MPA) . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Linear programming (LP) . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Linear programming optimization tools . . . . . . . . . 24
2.5 Computing the k-shortest elementary modes . . . . . . . . . . 25
2.6 Alpha-spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Methods and Data 28
3.1 Input data and preprocessing . . . . . . . . . . . . . . . . . . 28
3.2 FBA with varying sets of objectives . . . . . . . . . . . . . . . 31
3.3 Enumeration of the k-best pathways . . . . . . . . . . . . . . . 35
3.4 Combined objective in augmented space . . . . . . . . . . . . 36
3.5 Elementary flux modes and extreme pathways . . . . . . . . . 37

4 Results and Discussion 39
4.1 Comparison of methods with respect to pathway properties . . 39
4.2 Analysis of pathways identified in combined space . . . . . . . 42
4.3 Performance comparison . . . . . . . . . . . . . . . . . . . . . 45

5 Conclusion 49

4



A Appendix: Matlab code 55

5



Chapter 1

Introduction

The technological advancements of the 20th century that led to improvements
in transport, energy and food production are less and less able to meet the
needs of the increasing population of the 21st century. With environmental
issues on the rise and the scarcity of petroleum resources, there is an ob-
vious need for new technologies and resources to replace the existing ones,
in a manner that will be sustainable on the long run [11]. From petroleum
based industry the focus has recently moved to industrial microbiology, where
micro-organisms are utilized as biocatalysts relying on renewable resources
as substrates [38]. In order to be viable for large scale production and com-
pete with the established industrial processes, these cell factories have to
overcome the challenges of selecting a renewable carbon source, establishing
the production process and the purification of the product. If these are to be
implemented on large scale, they will result in lowering the carbon emissions
and will set the basis of bioeconomy. Bioeconomy refers to economy resulting
from scientific research in the field of biotechnology, where the focus is on
understanding the processes on genetic and molecular level and utilizing it
for directed improvement of industrial processes [2].
Closely related to the development of the microbial cell factories, the field of
metabolic engineering has emerged [3], which refers to cyclic process of anal-
ysis and engineering of the desired (microbial) strain. Since the emergence
of the first rudimental microbial cell factory - the yeast ethanol fermenta-
tion for beer production in the 19th century - developments like recombinant
DNA technologies, genomics and high-throughput sequencing technologies
have led to major improvements in metabolic engineering. Herein, the initial
step is the identification of the desired product. Next, potential substrates
are analysed and suitable host strain is selected based on the capabilities
to perform the desired metabolic conversions, and the affinity to interact
with both substrate and product [44]. From here, genetic data can be used
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CHAPTER 1. INTRODUCTION 7

for generation of genome-scale metabolic models where we account for the
metabolic reactions (fluxes) taking place and their participating metabolites.
Finally, high-throughput omics technologies alongside computational mod-
elling and simulation can be used to identify possible engineering targets,
such as gene insertions or deletions, over-expression of genes and even in-
troduction of heterologous pathways [24]. Furthermore it is very important
to consider the physiological and genetic background of the host organism
which are essential for understanding the conditions for cell survival, gen-
eration of appropriate intracellular environment and gene regulation [33].
As a result, complex systems level analysis is necessary in order to yield
a successful metabolic engineering process. In this work we are interested
in developing and applying a computational approach for substrate-path-
product combination for industrial scale production. More specifically, we
are interested in identifying the best carbon source (or the best combination
of different carbon sources) that will lead to the highest yield for a specific
product, as well as the best metabolic pathway from the identified sources to
the product. Given that we want to expand the set of feasible substrates and
products of a certain organism (i.e. S. Cerevisae), we need to extend the na-
tive metabolic network of that organism by adding new reactions connecting
existent metabolites to certain metabolites of interest. However, since the
search space of new reactions that could be added to the network is huge,
we need computational methods to predict the best set of novel reactions
that will give the highest product yield when added to the initial metabolic
network.
Once a metabolic model has been generated based on the genetic and metabolic
information, several methods can be employed for identification of desirable
production pathways. Usually they incorporate a cellular objective func-
tion (e.g. biomass maximization) that generates the path with the most
extreme value for the objective. However, in general the cells are subject
to a complex combination of physicochemical, topobiological, environmental
and regulatory factors that govern the cell behaviour and they have to be
taken into account when generating the mathematical model. These limiting
factors or constraints are represented in mathematical form in terms of bal-
ances and bounds. Balanced are constraints related to conserved quantities
such as energy and mass, and bounds are the constraints that limit the nu-
merical range of variables such as flux rates. Once the assumption of pseudo
steady state for internal metabolites is adopted, where no accumulation of
metabolites occurs, a general so called constraint-based stoichiometric model
can be constructed incorporating the bounds and balances [35]. We say that
the internal metabolites are in pseudo steady state because their dynamics
are very fast and we can assume that they reach the steady state or equilib-
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rium instantaneously, which is not the case for external metabolites outside
of the cell [25]. Computational analysis of the stoichiometric models iden-
tifies feasible steady states represented through flux distributions. The set
of constraints used in the stoichiometric model are not sufficient to generate
a unique flux distribution for the given metabolic network. Instead there
exists a set of flux distributions that define the so called solution space. This
solutions space is to be further examined and potential ”good” solutions are
drawn from the pool of solutions [26].
When we use the flux balance approach based on an objective function, we
might not always identify the solutions of interest and there might be other
solutions relevant for the problem of interest [37]. As a result methods such
as elementary flux modes (EFMs) [40, 41] and extreme pathways [32] have
been developed that can enumerate all potential paths and then rank them by
using certain evaluation criteria Nevertheless, most current methods charac-
terizing all potential paths between the selected substrates and product rely
on exhaustive enumerations that can generate up to several millions paths
for a genome scale models which can become computationally unfeasible at
times. Herein we propose an alternative approach that identifies a set of
potential paths while avoiding an exhaustive enumeration. More specifically,
we identify a set of (minimal) flux vectors that produce the desired product
and do not accumulate any intermediates while consuming at least one of the
specified substrates. Our k-best approach uses linear programming to iden-
tify the first k solutions. The method is based on exclusion constraints that
have been implemented for enumeration of shortest elementary flux modes
[10]. We have adopted the approach and combined it with our constraint
based stoichiometric model. As a result we generate a set of suitable path-
ways, that connect source metabolites to a target metabolite. As baseline
methods we have used elementary flux modes and extreme pathways. We
have compared the performance of out method against these established enu-
meration techniques as well as the number of paths retrieved by each of these
approaches.

From industrial perspective we are interested in identifying the minimal
number of modification to the original metabolic network for a given organ-
ism, including additions of new reactions. Initially, a biological expert has
identified the set of reactions to be potentially included to the network and
the possible sets of objectives that could be used to evaluate the results in a
biologically relevant way. A special focus within this work is the identifica-
tion of an objective function for the enumerated paths, which would return
a good set of candidate paths. An iterative approach has been implemented
where we first enumerate potential paths according the preselected objectives
and then we analyse the feasibility of the proposed paths. Biochemical anal-
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ysis terms the following factors as important for the path ranking: smallest
number of new enzymes (reactions) and the total overall number of enzymes,
cofactor balancing, maximal carbon yield etc. Furthermore, the analysis is
extended to overall net reaction and thermodynamic feasibility. The analysis
proposed different outcomes depending on the criteria used. Good potential
paths were identified with different sets of objectives. Thus it was evident
that a further computational analysis and deeper enumeration of pathways is
required in order to single out the computational approach that would result
in better selection of relevant paths. Some of the existing enumeration meth-
ods are based on the right null space analysis where the only input is the
stoichiometric matrix and from there the basis vectors are identified that can
generate all steady state distributions. It is important to realize which of the
basis vectors are biologically most relevant in terms of their contribution to
the primary metabolism [6]. We wanted to account for the importance of the
basis vectors when identifying flux distributions and therefore we described
an augmented solution space. In this augmented solution space, along the
flux distribution we optimize the net consumption/production of the exter-
nal metabolites and the contribution of the null space basis to the given flux
distribution.
The work in the thesis is initiated by the need of providing a computational
framework that can complement the work of biochemical experts in identify-
ing ways for economically feasible and sustainable, large scale production of
industrial products utilizing microbes as the production hosts. The project
is undertaken as part of large initiative at VTT Technical Research Centre
of Finland, project named Living Factories 1. The project aims at uncover-
ing the full potential of Synthetic Biology in Finland given that it has the
potential to become a major player in shaping our future economies.
This report is structures as follows. Chapter 2 gives the background in
metabolic pathway analysis and the standard computational tools for per-
forming the analysis. It also provides the required background and concepts
upon which we base our work. In chapter 3 we introduce the data and the
detailed analysis we have performed. In here, we formulate our k-best enu-
meration method and we define the combined solution space. Chapter 4
contains the results obtained by our methods in comparison to the estab-
lished computational tools. Finally, chapter 6 concludes our work.

1http://www.vtt.fi/sites/livingfactories/en

http://www.vtt.fi/sites/livingfactories/en


Chapter 2

Background

2.1 Mathematical representation of metabolic

networks

The recent advancements in high-throughput technologies have given rise to
disciplines such as genomics, transcriptomics, metabolomics and fluxomics,
that generate wide range of ”omics” data. All these data types can be used for
reconstruction of cellular biochemical reaction networks [13]. In the case of
metabolic networks, the process of reconstruction identifies all the reactions
that belong to the network and their participating metabolites, the result of
which provides basis for understanding the underlying cellular mechanisms
by observing the reaction interactions.
Chemical reactions that belong to a given metabolic network can be rep-
resented by means of chemical equations that capture the stoichiometry of
the reactions. The stoichiometry of a reaction provides information on the
amount of substance that is produced or consumed by the reaction. To al-
low for computational analysis of metabolic networks, the complete set of
equations can be represented in a matrix form, by the so-called stoichio-
metric matrix, denoted by S. This in turn, enables for translation of the
high-throughput data into mathematical form and thus creates analogy be-
tween the mathematical and biochemical properties of the network [6]. In
this section we outline the basic properties of metabolic networks in a math-
ematical framework and we provide insight into their interpretation. More
specifically, we describe the basic properties of the stoichiometric matrix upon
which many computational methods are based. Subsections 2.1.1, 2.1.2 and
2.1.3 are heavily based on [6]. Next, we give an outline to the major rep-
resentative methods based on stoichiometric modelling and we discuss their
strengths and weaknesses.

10



CHAPTER 2. BACKGROUND 11

2.1.1 Basic properties of stoichiometric matrix

The stoichiometric (S) matrix, is structured in a way that each column cor-
responds to a single reaction in the network, and each row corresponds to
a compound. The elements of the matrix are the stoichiometric coefficients
of the reactions, and they represent the number of molecules of each of the
compounds (chemical species) that are transformed in a given reaction. If
we observe one column in the matrix, we get an overview of the compounds
participating in the reaction, and herein if a compound is consumed the coef-
ficient has a negative sign, whereas if it is produced the coefficient is positive.
The compounds for which the coefficients are zero, do not participate in the
reaction. All the reactions are constraint by the chemical law of elemental
balance, implying that the number of chemical elements (carbon, oxygen,
etc.) has to be equal between the two sides of the equation. By observing
the rows of the matrix, we get an insight into how the reactions are intercon-
nected, as for each metabolite we see the reactions in which it contributes.
From mathematical point of view, the S matrix transforms the flux vector
into a vector that represents the time derivatives of the concentrations of
compounds. The flux vector contains the rates for each of the reactions, and
the formulation of this transformation is given according to [6].
Given the vector v with n reaction rates

v = (v1, v2, v3, ...vn) (2.1)

and x, which represents the concentration of metabolites, and has dimension
of m

x = (x1, x2, .., xm) (2.2)

we can write

Sv =
dx

dt
(2.3)

where the dimension of S is mxn.
The equation 2.3, represents the system of mass balance equations, which at
steady state becomes

Sv = 0. (2.4)

The concentration of metabolites inside the cell fluctuate over time, but
their dynamics are so fast that we can assume that they reach the steady
state instantaneously [14]. During steady state no accumulation or depletion
of metabolites can take place, consequently the rates of production and con-
sumption of each metabolite have to be equal. In a biological network when
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the entire system of equations is in equilibrium it is said that the concentra-
tions of the metabolites are at steady state.
The biochemical interpretation of the stoichiometric matrix indicates linear
transformation of the space of reaction activities into the time derivatives of
concentration space, and any biochemical transformation can be depicted by
the mass balance equation. The stoichiometric matrix has four fundamental
subspaces that provide complete interpretation of biochemical networks in
terms of the networks dynamics, steady states and time-invariant character-
istics. These four spaces are essential for analysis of biochemical networks
and they are the row and column space, and right and left null spaces. Here
we will give more detailed formulation on the right null space as this is rele-
vant for providing the background for our computational method.

2.1.2 Right null space

Right null space consists of all vectors that satisfy the equation 2.4. We can
construct a matrix R that spans the null space and contains the basis vectors
as columns.

SR = 0 (2.5)

If we denote by r the rank of S, the dimension of the right null space is n-r.
The importance of the right null space is in that it spans the entire set of
steady state flux distributions. From a biological perspective, each of these
flux distributions corresponds to a possible functional or phenotypic state of
the network.
In linear algebra, a set of vectors is called a basis of vector space if all the
vectors in the set are linearly independent and any other vector that belongs
to the vector space can be represented as a linear combination of the basis
vectors, whose coefficients are denoted as components or coordinates.

2.1.3 The total stoichiometric matrix

When constructing a biochemical network, we have to identify its bound-
aries and the interaction with the metabolites that exceed those boundaries.
Based on whether the reactions involve metabolites within or outside the sys-
tem boundaries they are divided into internal and exchange reactions. Con-
sequently the fluxes are named internal fluxes, denoted by vi, and exchange
fluxes bi. Finally, the concentration vector is broken into two components, the
internal concentrations xi and external concentrations ci. The metabolites
that belong to the internal network are those that have to be balanced and
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therefore are subjected to the mass balance constraint, whereas the metabo-
lites that belong to the external network represent the products, substrates
and cofactors which concentration fluctuates. After assembling the internal
metabolic network, the exchange reactions that connect substrates and prod-
ucts to the internal metabolites have to be added. Furthermore, transport
reactions and reactions accounting for cofactor balancing are further added.
We restructure the stoichiometric matrix in order to account for the changes
imposed by the system boundaries. We call this restructured matrix the total
matrix, and it is depcited as follows

vi bi


|

xi |
Stot: |

−− −− −− | −
ci |

0 |

where the dashed lines represent the separation areas.
In our work we use the total matrix including the internal and exchange
concentrations as well as internal and exchange fluxes. However, given that
the general notation of flux vector is v, we will further on refer to the entire
set of fluxes, both external and internal as to v.

2.2 Stoichiometric modelling

By definition metabolism is the complex set of chemical and physical pro-
cesses, dedicated to maintenance of life. It can be fully described and anal-
ysed based on the biochemical reactions that constitute the metabolic net-
work. Through systemic approach, i.e. studying metabolic pathways as
functional units of metabolic systems, we can learn about cellular behaviour
and capabilities of metabolic networks [39]. Stoichiometric modelling is a
term used for number of methods directed towards quantitative analysis of
metabolic pathways. As the name implies, all these methods are based on
the stoichiometric matrix and they all share the assumption of pseudo steady
state. The pseudo steady state imposes the constraint of mass-balance (2.4)
on the internal metabolites [25]. By assuming the steady state, stoichio-
metric models neglect the dynamic intracellular behaviour, which accounts
for the reaction kinetics. However, research results have shown that in the
case of lack of intracellular experimental measurements it can be beneficial
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to simplify the models by omitting the kinetics, and from there explore the
structural properties of the network such as existence of simplest pathways
as done in S modelling [4]. Each feasible steady state is represented by a
flux vector v. Considering the reaction reversibility along the mass-balance
constraint, the space of feasible steady state flux distributions can be math-
ematically formulated as in the following equation. It is referred to as the
flux solution space.

P = {v ∈ Rn : Sv = 0, Dv ≥ 0} (2.6)

where D represents a diagonal matrix with elements Dii equal to one is the
flux if irreversible, and zero otherwise.

Figure 2.1: Overview of the stoichiometric modelling framework. The ini-
tial point is the metabolic network, from which the relevant information on
metabolites and reactions is translated into mathematical terms, through the
S matrix. Mass balance equation can then be written for each metabolite,
which at steady-state equivalents the system of homogeneous linear equa-
tions, Sv = 0. Further constraints are imposed by the reaction irreversibil-
ity, and given the constraint-based model meaningful functional states in the
network can be depicted. Figure taken from [25]

Provided the fact that cells are subject to biological constraints that drive
their behaviour, the concept of flux space is used as basis for resembling that
behaviour in constraint-based modelling approaches. However, noteworthy
is the fact that biochemical networks are very complex in nature, consist-
ing of hundreds of connections and governed by interconnected regulatory
and control mechanisms, thus all mathematical models to date are based
on many simplifications and the true underlying complexity of the cellular
processes has not been successfully captured. The constraints can be in
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general divided in two groups: non adjustable such as those arising from
thermodynamic principles like irreversibility of fluxes or enzyme capacities
like maximum flux values; and adjustable such as those resembling experi-
mental measurements [25]. Under the given constraints, and the fact that
for a typical biochemical network the number of reactions is greater than the
number of compounds, we can expect numerous feasible flux distributions
to be potentially good solutions. A schematic representation of S modelling
is given in Figure 2.1. Depending on the objective of the performed analy-
sis, stoichiometric modelling can be approached from different perspectives.
The two major categories are analysis of pathway structure by exploring the
whole range of solutions, and analysis of particular solutions under further
constraints [14], as illustrated in Figure 2.2. On one hand, we can perform
pathway structure analysis based on linear algebra, where we analyse the null
space of the S matrix that contains all possible steady state distributions.
From here it is possible to focus on the basis vectors, that represent biologi-
cally meaningful states and will provide insight into the structural properties
of the network at hand. Also, when interested in structural analysis we
can perform convex analysis to identify the so called elementary flux modes
(EFMs). On the other hand, there are pathway analysis aiming to single out
smaller subset of the solution space, based on either experimental measure-
ments of given fluxes or pre-defined objective function. Herein, focusing on
the possibilities to explore subset of solutions, flux balance analysis (FBA) is
a commonly used framework providing an insight into flux distribution that
represent extreme values of the flux space. FBA assumes that cell behaviour
is optimal with respect to a given objective, and then the optimal flux distri-
bution is calculated using an optimization procedure [30]. FBA uses linear
programming to identify optimal flux distributions through the network by
optimizing the objective function. In the following section we will describe in
more details the different methods for metabolic path identification and look
into their specific characteristics as well as their strengths and weaknesses.
Next, we will focus on FBA analysis and identification of objective functions.
Furthermore, we will provide the basis of EFMs as a tool for complete enu-
meration of the flux space, and extreme pathways as subset of EFMs and
their properties.

2.3 Path identification

In flux analysis there are two approaches to analyse metabolic networks based
on the availability of background information, namely, data driven and hy-
pothesis driven approach. In a hypothesis driven approach, the objective of
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Figure 2.2: Methodologies of stoichiometric modelling. Based on the study
objective, different manipulations of the S matrix are possible: (a), (b) and
(c) focus on identifying particular solution by imposing further constraints
on the system; (d) and (e) are utilized for structural analysis of the pathway.
For our specific problem we are interested in (c), (d) and (e). Figure modified
from [14]
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the study at hand is always known and usually the knowledge on how to
achieve the objective is available. Herein it is possible to directly undertake
the desired engineering steps and apply FBA with the aim to estimate the
flux distribution under the particular hypothesis. On the other hand, when
the objective of the study is loosely defined and the exact engineering strate-
gies are not known in advance, we need a way to identify possible engineering
targets. If there is enough data for the given problem, a data driven analysis
could suggest the strategy to achieve the desired objective. In fact, it can also
suggest possible objectives given the input data. Sufficient amount of data
in stoichiometric modelling usually requires complete genome-scale metabolic
networks of the host species, and optionally additional database of reactions
resembling enzymes that could be incorporated into the host species. There
are computational methods developed to answer specific questions such as
identification of set of deletions that lead to increased production of the de-
sired compound [8], suggesting possible gene insertions and deletions that
would allow for production of a non-native compound [34], etc. However,
these methods are beyond the analysis performed in this work and they only
investigate the optimal production routes in the network in a similar manner
as FBA.
When provided a genome-scale metabolic model, one can also further ex-
plore the solution space by completely enumerating the set of feasible flux
distributions or according to some selection criteria. The existing methods
such as EFMs and extreme pathways are utilized in this direction, yet the
enumeration performed by these methods is computationally expensive and
results in millions of pathways for genome-scale models, an amount rather
infeasible for further interpretation. Our approach provides an alternative
to these exhaustive enumeration, when one is interested in short-listing sub-
set of (minimal) flux distributions satisfying a set of criteria. The resulting
pathways can then be subjected to biochemical evaluation in terms of their
suitability and feasibility for industrial implementation.

2.3.1 Flux balance analysis (FBA)

Mathematical models of a metabolic network can be generated based on the
S matrix. However, the metabolic system is completely described only after
the constraints on the flux values are included in the model. Metabolic fluxes
can be assigned lower and upper bounds, limiting the range of values that a
single flux can take. These constraints bound the null space of S and shrink
the solution space [30].
Set of constraints lie in the cornerstone of FBA, and they can be represented



CHAPTER 2. BACKGROUND 18

either as balance constraints in a form of equalities, or bounds in the form
of inequalities. The invariant components of FBA are the imposed steady
state constraint on internal metabolites (as equality) and the flux bounds (as
inequalities). Additional constraints can be optionally included. Since the
system is represented in terms of set of linear equations, linear optimization
can be applied to solve the given system of equalities and inequalities depicted
as follows

Sv = 0 where 0 ≤ vi ≤ vi,max (2.7)

The following step is identifying an objective that will quantify the bio-
logical phenotype of interest. A linear objective function is described as

Z = wTv =
∑
i

wivi (2.8)

where w is the vector of weights associated with each of the reaction fluxes.
Z represents the objective and it can be maximized or minimized. A detailed
illustration of the steps of FBA is presented in 2.3 The most common ob-
jective in FBA is optimizing the biomass production. represents the rate at
which metabolic compounds are transformed into biomass components such
as nucleic acids, proteins and lipids. Another example of FBA objectives are
minimization of ATP production when aiming to depict the state of optimal
metabolic energy efficiency or maximization of metabolite production when
interested in identifying optimal production rates. Due to the optimization,
FBA results in a single solution which might not be unique and there might be
other optimal or suboptimal solutions with different flux distributions. Flux
variability analysis (FVA) is a convenient tool for investigating the range of
values that fluxes can take within a specific optimal cell behaviour [15]. How-
ever the procedure requires two optimizations per flux, namely minimization
and maximization to yield the minimal and maximal value of the flux within
the optimal behaviour.

FBA performance, usage and limitations

Unlike the dynamic modelling approach where varying kinetic parameters
have to be estimated, FBA relies solely on reaction stoichiometries which
are fixed and known in advance. This makes FBA well suited for different
analysis of various metabolic networks, including genome scale models. The
simplicity of the approach allows for applying FBA in studies interested in
metabolic perturbations such as utilizing a combination of substrates or in-
troduction of synthetic reactions. Applications of FBA include exploration
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Figure 2.3: Methodology for flux balance analysis. Figure from [30]

of network capabilities and limitations [21], robustness analysis of metabolic
networks [12], etc. When it comes to perturbation analysis, FBA can either
predict the outcome of performed perturbation or identify potential pertur-
bation targets when there is an objective but no hypothesis on how to achieve
it.
The fact that FBA does not use kinetic parameters, brings certain drawbacks
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to the approach, such as the inability to estimate metabolic concentrations
[30]. FBA is limited to analysis at steady state, making it non feasible for
analysis of dynamic changes. Furthermore, it only analyses very limited
portion of the solution space based on the pre-defined objective function,
therefore it is unable to explore the solution space beyond the objective.

2.3.2 Network-based pathway analysis/ metabolic path-
way analysis (MPA)

Major representative methods in quantitative analysis of metabolic networks,
developed during the last decade, are elementary flux modes and extreme
pathways. The umbrella term of metabolic pathway analysis encompasses
these methods with the aim to enumerate the polyhedral cone representing
the entire flux space [15].

Elementary flux modes (EFMs) analysis

After representing a metabolic network in terms of its flux space, several
methods can be applied to identify relevant pathways in the network. There
are 3 properties based on which we can evaluate the ability of a set of path-
ways to explain the entire solution set: They are (P1) they can generate
the flux space according the equation 2.6, (P2) they are the minimal set of
vectors that fulfil p1 and (P3) they resemble all non-decomposable pathways
in the network [26].
The term of elementary flux mode refers to a minimal set of reactions that
can operate at steady state, with directions according to the thermodynamic
feasibility [41]. The minimality herein is explained when we have a set of
reactions that represent an elementary mode, and there is no subset of that
EFM that represents an EFM itself [26]. The thermodynamic feasibility
constraint coincides with the flux bounds, and it states that if a reaction i is
irreversible, the flux through it vi must be positive. One way to model this
is by splitting the reversible reactions into forward and backward with each
proceeding only in positive direction. The flux bound constraints on internal
fluxes then become vi ≥ 0.
The definition of EFMs satisfies (P1)-that is, each steady state flux distribu-
tion can ge generated as non-negative combination of the elementary modes.
The minimality of EFMs implies that they also satisfy the third property (P3)
as they represent the set of all nondecomposable steady state distributions.
However, the EFMs do not fulfil the second property (P2) of network-based
pathways.
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The major strenght of EFMs analysis is in that it enumerates the entire
solution space in unbiased manner, but it has the drawback that the num-
ber of EFMs grows exponentially with the size of the network due to which
many metabolic networks have been intractable for EFMs analysis [43]. As
an example, the network of central metabolism in Escherichia coli, consiting
of 110 reactions resulted in over 2 million EFMs. Nonetheless, [19, 42] have
shown that the full set of elementary modes can be enumerated by using
linear programming. The question posed here is how to identify subset of
the most relevant pathways in the set of millions. The application of suitable
weighting factors to the EFMs that would yield a meaningful physiological
state depicting the outcome of perturbation is a challenging task [15]. An-
other implication resulting from the steady-state condition in EFMs analysis
and the effort to downsize the network complexities, is that exchange fluxes
and external metabolites are excluded from the analysis. Hence, the assump-
tions are that exchange fluxes represent either consumption or production of
species by reactions omitted by the model, and the external metabolites are
buffered by reactions of the complete system. As a result, all the informa-
tion on the interactions between consumption and productions of substrates
and products are lost. One of the pitfalls of these simplifications is that it
can result in EFMs that fulfil the steady-state condition within the anal-
ysed sub-network, but does not constitute a part of any steady state path
throughout the complete network [19]. In order to circumvent the problem
of explosion in number of EFMs, other efforts have been reported working
with reduced size of the networks. However, the results have shown that
the interpretations might be misleading [19]. Some methods have tackled
the problem of computational explosion in EFMs by decomposition of the
network in modules [16, 42]. In [16], it is proven that division of biochemical
networks into sub-networks enables the complete enumeration of EFMs in
genome-scale models. Nonetheless this still does not decrease the number of
identified EFMs, thus the challenge in further exploration remains.

Extreme pathways

Enzymes are the basic functional unit in metabolism, and when interested
in understanding the driving mechanisms that allow for their activation and
in turn navigate the metabolites through the complex net of metabolic re-
actions, one is seeking to analyse the metabolic pathways [36]. Extreme
pathways analysis is convex analysis for computation of set of independent
pathways in any metabolic network and they can be used for understanding
metabolic functioning and control. In metabolic network analysis the main
focus is on understanding the structural properties of the networks. Among
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the structural properties, which are the invariant characteristics of the net-
works, the stoichiometry is the most relevant one. It provides information on
the network topology and the rates of metabolite conversion in a chemical
reaction, which are constant over time and non-dependant on any external
factors. A mass balance can be constructed around each metabolite in the
network, and under the steady-state constraint the system of metabolic reac-
tions and metabolites can be depicted with the equation 2.4. As mentioned
earlier, the null space analysis of the S matrix determines a set of basis vec-
tors at steady-state and they describe the entire solution space. However, the
information on thermodynamic reversibility is omitted in the classical null
space analysis and therefore, to completely describe the system we need to
account for them. After including the inequalities for reaction reversibility,
the system expands beyond the limits of linear algebra and that calls for
convex analysis. Solution of a set of linear inequalities is a convex set that in
the case of metabolic networks represents the edges of the so called flux cone
or steady-state cone, and referred to as the extreme pathways. Furthermore,
every point within the cone, or every pathway can be written as non-negative
linear combination of the extreme pathways. The set of extreme pathways
are subset of the EFMs that is systemically independent, which means that
no extreme pathway can be represented as a non negative linear combination
of any other extreme pathways [32]. Since the extreme pathways are identi-
fied in an augmented space, that does not resemble the original space after
the reversible reactions are split into forward and reverse ones, some of the
properties of the augmented space are not shared with the original space.
Regarding the properties P1-P3 of metabolic pathways in determining their
ability to generate the entire solution space, enumerated in the beginning of
section 2.3.2, the extreme pathways satisfy P1, but not P2 and P3 in the
original vector space [26].
Some of the differences in extreme pathways and EFMs are due to the differ-
ent representation of reversible fluxes. Herein, extreme pathways decouple
the reversible fluxes, whereas the EFMs incorporate the information on re-
versibility with the use of additional rules. Next, systemic independence
established in extreme pathways is the reason behind smaller number of ex-
treme pathways compared to EFMs [32]. The conclusion from comparative
analysis on extreme pathways and elementary modes, suggest that the set
of extreme pathways might be insufficient for complete analysis of metabolic
networks as they are only a subset of EFMs and among the remaining EFMs
there might be some of high biological importance. However, they can be
derived as a non-negative linear combination of the set of extreme pathways
[18].
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2.4 Linear programming (LP)

Constrained based metabolic network analysis use linear programming to
identify feasible flux distributions. In this section we describe linear pro-
gramming, representation of a linear program, algorithms and tools that are
used for solving linear programs.
Linear program in its basic form is defined as a set of constraints and ob-
jective function, through equations that are linear in terms of the unknown
variables. Linear programming is an optimization method, one of the most
widely used for formulation of wide range of real world optimization prob-
lems, such as maximizing the business profit based on the company model.
Essential to linear programming, are the background knowledge and capabil-
ity to formulate the problem in a way that captures the fundamental relations
of the interacting variables, as well as the skills to interpret the outcome of
the optimization in a meaningful way. The popularity of the method initially
arises from the fact that numerous allocation problems and economic phe-
nomena can be represented in terms of linear objectives and constraints [27].
Moreover, given the simplicity of linear functions, originally more complex
non-linear problems are sometimes represented in simplified linear form. The
standard representation of a linear program is given according to [7] as follows

minimize cTx
subject to Ax ≤ b
and x ≥ 0

(2.9)

where x is an n-dimensional column vector with elements corresponding to
the variables to be determined, cT is an n-dimensional row vector, b is an
m-dimensional column vector, and finally A represents an mxn matrix with
constant elements. In here, m is the number of inequalities and n is the num-
ber of unknown variables. The elements of both vectors c and b are fixed real
constants. The inequality Ax ≥ b depicts the constraints which restrict the
solution space, and it represents a convex polyhedron over which the objec-
tive is to be optimized. When all of the variables xi, i = 1, 2, 3..n are bounded
and none can reach infinity, the polyhedra becomes a convex polytope. The
optimal solution of a linear program is a convex set, and therefore every
point inside the polytope can be represented as a convex combination of the
solution set [22]. In constraint-based metabolic network analysis, where cells
are governed by their topobiological, genetic, regulatory and environmen-
tal constraints and where we usually are interested in capturing the fluxes
throughout the network under optimal conditions, it makes perfect sense to
rely on linear programming. All the constraints imposed are linear in their
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nature or can be represented in linear form. Once the objective function
has been defined, the canonical form of a constrained-based metabolic flux
analysis, or more specifically of flux balance analysis becomes

minimize cTv
subject to Sv = 0
and vl ≥ v ≥ vu

(2.10)

where v denotes the vector of fluxes to be determined, c is a known vector
representing the contribution of each reaction to the objective function and S
is the stoichiometric matrix. The equaltiy Sv = 0 depicts the mass-balance
at steady state. The lower and upper bounds for each of the reactions are
given by the column vectors vl and vu respectively.
If a linear program is formulated such that along the canonical form given in
equation 2.9, there exists the following constraint xi integer for i = 1, 2, ..n,
then we are reffering to an integer linear program (IP). When only some of
the variables are restricted to integer values, but not all of them, the prob-
lem is called mixed integer linear problem and consequently the method to
solve it is called mixed integer linear programming (MILP). In metabolic
flux analysis, as we are studying structural properties of the networks it is
rather convenient to use integer fluxes. From application of Petri net theory
in systems biology [23], we learn that given that the nodes have integer val-
ues, the edges can also take integer values. The analogy here is that since
the coefficients of the S matrix are integer, we can use integer variables for
the fluxes as well. Apart from this, another argument for applying IP over
MILP for metabolic flux analysis is that experimental results show that it is
computationally costlier to apply MILP for some particular MFA problems
[10].

2.4.1 Linear programming optimization tools

When a linear program has been mathematically formulated, multiple soft-
ware tools can be utilized to solve it. The range of available optimization
tools includes both open-source and commercial ones, and we will give a brief
overview of the most representative examples.

Different LP solvers have implemented functions that convert between
lp and mps file formats. There are many solvers for linear programming,
some of which are free of charge and open-source and other are commercial.
Most widely used is however CPLEX, part of IBM Optimization Studio
- an analytical decision support package for development and evaluation of
optimization models based on constraint programming [17]. Lpsolve is a free
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linear programming software that relies on the simplex method and branch-
and-bound for integer problems [29]. Lpsolve does not have a limitation on
the model size, however when presented with a larger problem it can very
often take long time for solving it or completely fail to solve. Another open-
source framework for solving constraint integer programs is SCIP [1].

2.5 Computing the k-shortest elementary modes

In this section, we give an overview of the method for computing the k-
shortest elementary modes as developed by Figueiredo et al. [10], and we
present the mathematical model of the method. The strength of this method
can be seen in its capability to identify special subsets of EFMs by including
additional constraints, avoiding complete enumeration of EFMs at the first
place. In doing so, the computational complexity is significantly reduced
when compared to methods for complete enumeration of EFMs [39, 40]. In
addition, it is possible to impose further constraints based on the optimiza-
tion problem at hand, such as the requirements for producing specific prod-
ucts.
The first stage of the method identifies the shortest elementary mode after
solving the optimization problem:

minimize
n∑
i=1

zi, (2.11)

where zi is a binary variable corresponding to each reaction in the S matrix,
such that zi = 1 if the flux through the i-th, vi, is > 0, and 0 otherwise.
The objective function coincides to the definition of EFMs which states that
no subset of reactions of an EFM can perform at steady state, and thus it
minimizes the total number of active fluxes. Furthermore, the relation be-
tween the binary variable zi and the flux variable is captured by the following
constraints {

vi ≤Mzi, i = 1, 2, 3..n

zi ≤ vi, i = 1, 2...n
(2.12)

The above set of equations guarantee that if zi is equal to zero, consequently
vi must be zero and vice versa, if zi is 1 then vi has to be greater than 1,
but smaller or equal to arbitrary large constant M. In addition, the reversible
fluxes are decomposed into 2 irreversible fluxes and this is depicted as follows

zα + zβ ≤ 1 ∀(α, β) ∈ B (2.13)
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where the set B is defined as {(α, β)}, where α and β are the forward and
reverse of the same reaction, and α < β . This ensures that a reaction can
only appear in one direction. Finally, the mass-balance constraint applies
to all the internal metabolites as one of the cornerstones of elementary flux
modes analysis, and this is included in the optimization problem. The given
optimization is solved as ain integer linear program.
Once the shortest elementary mode has been detected, a sequential optimiza-
tion is applied to identify the subsequent shortest modes. In each following
iteration of the procedure,a constraint has to be added that prevents the new
solutions from containing already identified flux modes. This is achieved by
requiring that the already identified EFMs are not completely included in
the solutions generated at the next steps. If we denote the binary form of
the shortest EFM by z̃i; i ∈ {1, 2, ..n}, the formulation of the constraints is
as given below

n∑
i=1

(z̃izi) ≤
n∑
i=1

(z̃i)− 1 (2.14)

where zi represents the binaries of the current EM.
To summarize the procedure, Algorithm 1 presents the pseudo-code for the
sequence of optimizations. We start with a an empty list of EMs that we
want to populate until the desired number of EMs, defined as MaxNumEM
in the code, have been calculated. In each of the iterations, we first solve the
linear program as defined by the constraints in equations 2.12 and 2.13 and
the objective given in 2.11, and this is equivalent to the identification shortest
EFm at the given step. Next we add the EM to the pool of solutions and we
impose the exclusion constraint, as formulated in 2.14 to avoid completely
overlapping EFMs.

Algorithm 1 k-shortest EMs (Figueiredo et al.)

EMS = {};
k = 0;
while k < maxNumEM do

k + +;
newEM=solveMILP();

EMS=EMS {newem};
add exclusion constr(newEM);
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2.6 Alpha-spectrum

All allowable steady state flux distributions can be represented as a non-
negative linear combination of the extreme pathways. The extreme pathways
represent vectors that correspond to the edges of the flux cone. The so called
flux cone is the convex polyhedron representing the solution space as defined
by the system of linear equalities and inequalities that govern the metabolic
system behaviour. Every point inside the solution space can be represented as
a linear combination of the extreme pathways. For a given flux distribution,
it is possible to reveal the set of extreme pathways that contribute to it
and consequently the extent of the contribution. The method that describes
this decomposition is called Alpha-Cone Method, developed by Palsson et
al. [31]. Herein, a steady state flux distribution is decomposed into extreme
pathways and the range of weighting for these extreme pathways is identified.
The weightings are termed α and the range of possible values that they can
take for a specific flux distribution is termed the α-spectrum. It is described
by the equation

Pα = v, (2.15)

where P represents the matrix of extreme pathway vectors, α is the vector
of weightings on the pathways and v is the steady state flux distribution.
The range of the weightings αi for each extreme pathway Pi are determined
by both minimizing and maximizing their values using LP, while leaving all
other extreme pathway weightings free [46]. The contribution of the extreme
pathways to a flux distribution is significant for the understanding of the
biological importance of the flux distribution, and for the regulation mecha-
nisms of the network that can be tracked through consecutive changes of flux
distributions and their corresponding extreme pathways. Extreme pathways
can also provide insight into phenotypic capabilities of a metabolic network
by distinguishing flux distributions arising from extreme pathways of func-
tional interest. This is possible due to the classification of extreme pathways
into three categories, out of which one type only is of functional interest.
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Methods and Data

3.1 Input data and preprocessing

The metabolic models we have analysed in this work were provided by VTT
Technical Research Centre of Finland. The reaction networks have been cre-
ated based on biochemical expert’s knowledge for the purpose of investigating
production routes to a specific product of interest. The models are of dif-
ferent sizes and we have divided them in three categories, namely, there are
small networks consisting of less than 100 metabolites and reactions, medium
sized networks with number of reactions and metabolites ranging between
100-500, and finally large networks incorporating genome-scale information,
with up to 4000 reactions and metabolites. There are 12 potential substrates
that the networks are allowed to utilize and there is always one product per
network. Along the S matrix, meta-data are included in the input. The meta-
data provides information on lower and upper bounds for the fluxes, KEGG
[20] reaction identifiers and classification of metabolites into 4 categories -
substrates, products, cofactors and intermediates. Intermediates here refer
to the internal metabolites upon which steady state constraint is imposed.
Substrates and products represent the external metabolites and the exchange
reactions that connect them to the internal metabolites are included. Co-
factors, or carriers, in biochemistry are considered ”helper molecules” that
facilitate biochemical transformation.
The preprocessing of the data includes conversion of the S matrix into a
format required by the optimization software packages that we use in later
stage.The most common way of presenting a linear or mixed integer pro-
gramming problems is the LP format. It is native format for reading and
writing linear programming problems for some of the software packages like
lpsolve [29]. The file starts with the problem statement that defines whether

28
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we want to maximize on minimize the objective function. Next we define the
objective function, and then we provide the set of constraints each starting in
a new line. Finally, there is a list of inequalities representing the bounds for
each of the variables. This is the general structure of LP file, but differences
in syntax arise with different tools. On the other hand, MPS files are pre-
sented in a slightly different format, yet still frequently used in optimization
tasks. MPS format is a column oriented format, where fields start at a spe-
cific column in a text file. Next, the file is divided into sections, each starting
with a special header. The sections that can appear are ROWS, COLUMNS,
RHS, RANGES and BOUNDS. The ROWS section contains the name of the
constraints, and a description of whether the constraint is an equality (E),
less-than (L), greater-then (G) or whether it is the cost function for the ob-
jective (N). Another section - COLUMNS, contains the actual entries of the
A matrix from the canonical form given in Chapter 2. For each variable, the
column assigns all the non zero constraint coefficients related to the variable.
The RHS section specifies the name of the right-hand side vectors and val-
ues for each of the constraints. RANGES accounts for constraints restricted
between a range of values and BOUNDS specify the limit values for each
variable.

For the purpose of data conversion into MPS format, we have used the
MPS format exporting tool from Bruno Luong available at MathWorks 1, im-
plemented in MATLAB. The function converts a standard linear program-
ming problem into an MPS format. The input for the function, requires
separate matrices for the equalities and inequalities representing the con-
straints of the linear programming problem, vectors representing right-hand
side values for the equalities and inequalities, cost function vector represent-
ing the weighting for the objective function, lower and upper bounds for the
variables and there are additional optional parameters. The output is an
MPS text file, and a sample file generated based on our input data is given
in Figure 3.1.

For comparison, an lp representation of the same problem is given in
Figure 3.2 This file is generated from the MPS file, with the use of Lpsolve
conversion function.

From here, the generated MPS and LP files are used by the optimization
tools for identification of flux distributions. The entire work is implemented
in MATLAB, and the optimization tools that we have used have callable

1http://www.mathworks.com/matlabcentral/fileexchange/
19618-mps-format-exporting-tool/content/BuildMPS/BuildMPS.m

http://www.mathworks.com/matlabcentral/fileexchange/19618-mps-format-exporting-tool/content/BuildMPS/BuildMPS.m
http://www.mathworks.com/matlabcentral/fileexchange/19618-mps-format-exporting-tool/content/BuildMPS/BuildMPS.m
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Figure 3.1: MPS file generated by MPS format exporting tool, based on our
S matrix as input. The sections in the file are presented in the following
order: NAME, ROWS, COLUMNS, RHS and BOUNDS. In section ROWS
the second column gives the (metabolite) name of the row in S. In COLUMNS
section the first row belongs to the variable name or reaction name, followed
by the metabolites to which it belongs and the S matrix coefficients. RHS
second column gives the metabolite names again an their right-hand side
constraint. BOUNDS as can be assumed gives the lower and upper bound
for each of the reactions.

MATLAB libraries. The CPLEX MATLAB library is included in the orig-
inal CPLEX Optimization studio distribution, and in order to be employed
it required that the CPLEX connector for MATLAB installation folder is
added to the MATLAB path. Lpsolve is callable from MATLAB through an
external interface or MEX-function and it requires that a driver program is
installed 2. SCIP Optimization suite also has a build-in MATLAB interface.

2http://web.mit.edu/lpsolve/doc/MATLAB.htm

http://web.mit.edu/lpsolve/doc/MATLAB.htm
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Figure 3.2: LP representation generated from the MPS file in Figure 3.1.
Sections included are Objective function, Constraints and Variable bounds.

For the optimization tasks related to the small sized metabolic networks we
have used the three different platforms, and the results were easily obtained
with similar running times. However, for the medium sized and large net-
works, when the number of variables exceeds 100 we have heavily relied on
CPLEX as the other tools have in many instances failed to provide results
and the running times were significantly larger. The non-commercial optimiz-
ers such as Lpsolve and SCIP Studio do not guarantee that the convergence
to an optimal solution for large problems will occur. Detailed comparison
of commercial and open-source solvers for linear optimization problems is
provided in [28].

3.2 FBA with varying sets of objectives

The main goal of our work is to identify pathways producing a desired in-
dustrially relevant product given the potential substrates, product and bag
of possible reactions to be included in the selected pathways. Moreover, we
want to determine which novel reactions are economically most feasible to
introduce, and thus we have the objective of minimizing the fluxes through
the reactions. Consequently we seek to identify alternative pathways to the
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optimal one as identified by the linear programming optimization. The alter-
native pathways might have either the optimal or suboptimal objective value.
Once these pathways are obtained, we want to rank them according to pre-
defined criteria such as number of new enzymes introduced to the pathway
as well as the overall number of enzymes (reactions); objective value; ATP
to product ratio; carbon yield; thermodynamic efficiency; etc. Additionally
we want to perform pathway analysis based on relative stoichiometry of co-
factors and net thermodynamic feasibility. As there are number of relevant
properties that we are interested in, it is very challenging to identify the best
combination of objectives or ranking criteria before applying optimization
techniques and performing further analysis. Hence, we are interested in ap-
plying different secondary targets for the objective, along the minimization
of the sum of absolute fluxes. These secondary objectives can be applied
separately or in combination based on prior biological knowledge and exper-
imental results. When we use a multi-objective optimization sometimes the
combined objectives are conflicting, i.e. the improvement of one only comes
at the cost of the others. For this reason, there has to be a trade-off between
the features that we want to optimize and we need to identify the most sat-
isfactory distributions after analysing the proposed pathways.
In addition to the lower and upper bounds for the fluxes and steady state con-
dition on the internal metabolites, we impose also the following constraints:
1) Substrates need to be consumed, meaning that overall net change depicted
by the mass-balance equation should be negative. In the case of multiple sub-
strates, the requirement is that at least one of them should be consumed by
the internal metabolites.
2) Metabolite acting as product have to be produced, that is, the mass bal-
ance for the product has a positive value.
Furthermore, cofactors are free of constraints, but in some of our analysis
we are still interested in optimizing some of their net stoichiometry as will
be seen in continuation. The net stoichiometry represents the net consump-
tion/production of a given metabolite. From here, we investigate the effect
of different sets of additional constraints on the flux distributions across the
networks. By far, the most important objective that we are interested in is
minimizing the absolute sum of fluxes. In doing so we seek to obtain reason-
able set of changes to the native network (for ex. introducing new enzymes,
changing cofactors, etc.)
In our initial approach we are interested in applying FBA with a range of
objective functions and rank them according to predefined criteria. In addi-
tion to identifying the optimal objective value, we also explore suboptimal
solution that provide us bigger set of pathways for further analysis. Next,
we give an overview of the objective functions that we used to generate lists
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of candidate pathways.
The formulation of the integer linear program with single objective of mini-
mizing the sum of absolute fluxes is given in Equation (3.1).

minimize
n∑
i=1

|vi|

subject to
∑

Sjv ≤ −1 for each row j corresponding to substrates

Sjv ≤ 0 , if row j corresponds to substrate

Sjv > 0 , if row j corresponds to product

Sjv ≥ −20 , if row j corresponds to cofactor

Sjv = 0 , default

vi integer, i = 1, 2, ..., n
(3.1)

Here we require that at least one substrate is consumed and given a substrate
- it can only be consumed, as formulated by the first two constraints. Next
we require that the product is produced and we select an arbitrary lower
bound of -20 for the cofactors since some of the optimizing tools require a
right hand side value for each of the constraints. However, in practice we do
not have constraints on the cofactors. Later on, we are going to refer to this
integer linear program (ILP) as to solveOptimalILP().
Our next objective is to maximize the carbon yield of the product, provided
single substrate as input. The carbon yield is calculated as

k1
k2

Sjv

Slv
. (3.2)

It is calculated per carbon atom, and k1 and k2 are the coefficients cor-
responding to the number of carbon atoms in the product and substrate
respectively. Sj vector is the row in the S matrix that belongs to the product
and Sl is the row that belongs to the substrate. Carbon yield optimization
initially represents a linear-fractional programming problem [9]. There is a
relationship between linear-fractional programming and linear programming,
thus the problem can be transformed into a linear form. The transformation
is performed according to [9], and it requires the introduction of the variables
y and t 

y =
v

Slv

t =
1

Slv

(3.3)
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Finally, the formulation of the ILP is the following

maximize k1
k2
Sjy

subject to Sjy > 0, if row j belongs to the product
Sjy ≤ −t, if row j belongs to specific substr.
Sjy = 0, if row j belongs to any other substrate
Sjy ≥ −20t, if row j belongs to cofactors
Sjy = 0, default
Sly = 1
t ≥ 0,

(3.4)

where the last 2 constraints are introduced due to the transformation. The
other constraints coincide with the constraints in equation (3.1).
Other objective that we have tested are maximization of ATP usage, mini-
mization of ATP production, minimize the net stoichiometry for some of the
reducing equivalents, etc. In biochemistry, reducing equivalents are chemical
species that transfer the equivalent of one electron in redox reactions, which
are opposite of oxidation reactions.
For solving (mixed)integer programs CPLEX uses the function cplexmilp()
3, that relies on the branch and cut optimization method, however the imple-
mentation of the function is proprietary to the Optimization Studio. For the
purpose of exploring the space of optimal and suboptimal solutions, we have
used CPLEX built-in function populate() 4. The function generates multiple
solutions to a (mixed) integer program. It first finds the optimal solution to
the program and simultaneously sets up a branch and cut tree for the next
stage. Based on this information, it then generates multiple solutions. The
function takes on input, arguments that can control the number of generated
solutions. We have required 20 solutions per objective function, however in
some cases there are only few optimal solutions that the method suggest.
Nevertheless, there is no way to avoid enumeration of solutions involving
the same sets of variables, representing scalar multiples of each other; and
these are not of interest to our work as we want to identify distinctive flux
distributions in terms of the reactions (fluxes) they use.

3http://www.ibm.com/support/knowledgecenter/SSSA5P_12.2.0/ilog.
odms.cplex.help/Content/Optimization/Documentation/CPLEX/_pubskel/
CPLEX1194.html

4http://www.ibm.com/support/knowledgecenter/SSSA5P_12.4.0/ilog.
odms.cplex.help/refdotnetcplex/html/M_ILOG_CPLEX_Cplex_Populate.htm

http://www.ibm.com/support/knowledgecenter/SSSA5P_12.2.0/ilog.odms.cplex.help/ Content/Optimization/Documentation/CPLEX/_pubskel/CPLEX1194.html
http://www.ibm.com/support/knowledgecenter/SSSA5P_12.2.0/ilog.odms.cplex.help/ Content/Optimization/Documentation/CPLEX/_pubskel/CPLEX1194.html
http://www.ibm.com/support/knowledgecenter/SSSA5P_12.2.0/ilog.odms.cplex.help/ Content/Optimization/Documentation/CPLEX/_pubskel/CPLEX1194.html
http://www.ibm.com/support/knowledgecenter/SSSA5P_12.4.0/ilog.odms.cplex.help/ refdotnetcplex/html/M_ILOG_CPLEX_Cplex_Populate.htm
http://www.ibm.com/support/knowledgecenter/SSSA5P_12.4.0/ilog.odms.cplex.help/ refdotnetcplex/html/M_ILOG_CPLEX_Cplex_Populate.htm
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3.3 Enumeration of the k-best pathways

Here we present our approach for enumeration of the k-best pathways. It is
based on the work of Figueiredo et al. [10] as presented in the background
chapter, where they derive a procedure for enumeration of the k-shortest
EFMs. The formulation of our k-best method is an extension of the previously
defined solveOptimalILP() statement in Equation (3.1), and it enumerates
the k-best pathways. In contrast to executing a linear program that results
in a single optima, here we enumerate pathways that satisfy the optimality
criteria and thus represent (sub)optimal flux distributions. We believe this
enumeration will result in better candidate set of pathways for industrial
implementation, compared to the pathways obtained by the CPLEX ”pop-
ulate” enumeration procedure. This reasoning is motivated by the fact that
the CPLEX enumeration resulted in large number of minor variants of only
one path instead of multiple paths, as well as multiplies of previous solutions.
Thus we aim to identify more biologically relevant pathways by including the
exclusion constraint.
The procedure is presented in Algorithm 2. It starts with identification of
the first best pathway as defined by the formulation in Equation (3.1), with
highest objective value according the given constraints. Next, we incorpo-
rate an exclusion constraint to the original optimization problem and we
iteratively identify k best solutions. The exclusion constraint that we use,
prevents subsequent solution from being supersets of previous solutions and
from having exactly the same pattern of active fluxes. In each iteration step,
one constraint is added that eliminates the current solution from the set of
next solutions, and consequently in the k-th step there are k-1 exclusion con-
straints. In our method, the value for the parameter k is dependent on the
S matrix and it corresponds to its nullity, which is the dimension of the null
space. Finally, the structure of our k-best method is as follows

Algorithm 2 k-best flux distributions (FD)

FD = {};
k = 0;
while k < nullity(S) do

k + +;
newFD=solveOptimalILP();

FD=FD {newFD};
add exclusion constr(newFD);

We are aware that we can not directly compare the solutions attained with
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this enumeration method to the basis vectors of the null space, as in the first
place we do not impose the requirement for linear independence among the
obtained solutions. The exclusion constraint that we use only guarantees
that, there is pairwise independence between each newly obtained solution
and all of the previous solutions. In our analysis, we also experimented by
iterating over the procedure until we obtain a solution matrix for which the
rank coincides with the rank of the null space, i.e. until we identify linearly
independent vectors of the same size as the nullity of S.

3.4 Combined objective in augmented space

Looking at the results from the k-best enumeration, we still produce minor
variations of single biological pathway for some of the networks. The variabil-
ity for the flux distributions exits but the varying reactions are only different
to each other in a single cofactor which does not bring biological variabil-
ity. To tackle this issue and increase he biological variability of the proposed
pathways, we shift the objective function to the space of external metabolites.
We could also examine and optimize the way the null space basis are used for
the generation of a single flux vector as done in the alpha-spectrum analysis
on extreme pathways [46]. Therefore, alternative approaches to the problem
would be to optimize the net stoichiometry for the exchange metabolites or
to optimize the way the basis vectors are combined in order to construct
a feasible pathway. Working separately with each of these approaches did
not yield improved results, and thus we have defined a combined augmented
solution space where we incorporate the flux distributions, null space basis
and net stoichiometry for exchange species into what would represent an
augmented stoichiometric matrix.
For convenience, let us introduce the following representation of the S matrix

S =

[
R
B

]
, where R contains the rows that belong to internal metabolites in

S, and B contains the rows that belong to external metabolites in S matrix.
Let us also define the net stoichiometry, NetSpec, of the exchange species
with the following equation

B × v = netSpec (3.5)

The null space basis vectors were calculated based on the internal stoichio-
metric matrix that only contains the intermediate metabolites, and for this
we used the null space MATLAB function. Having defined that, we can write
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the following set of equations
R× v = 0

B × v = netSpec

N× α = v

(3.6)

where N is the null space basis and α represents the weighting factors of
the basis vectors towards a specific flux distribution. We can rewrite the
equation as follows

R× v = 0

B × v −I × netSpec = 0

N× α −I × v = 0

(3.7)

where each of the columns corresponds to the alpha vector, flux vector v and
the net stoichiometry netSpec respectively. They are all unknown variables
and if combined together they can be written as a single vector named y, and
their coefficients can be represented in a matrix named M in the following
manner

M =

 0 R 0
0 B −I
N −I 0

 ; y =

 α
v

nSpec


(3.8)

Finally, we have our formulation of the integer linear program in the com-
bined space

minimize:
∑ny

i=1 |yi|
subject to My = 0

(3.9)

3.5 Elementary flux modes and extreme path-

ways

We have computed elementary flux modes and extreme pathways for the net-
works for which they were calculable. Our aim in doing so, was to compare
the number of EFMs and extreme pathways to the number of pathways gen-
erated with our approach, in addition to comparing the running times.
Elementary modes were calculated using the METATOOL platform for com-
puting elementary modes and other structural properties of biochemical re-
action networks [45]. At the time of its implementation, the program was
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the the fastest one for calculating elementary modes. As input the program
either takes a standard METATOOL format file as described on the META-
TOOL web pages 5, or S matrix and a vector specifying the positions of the
irreversible reactions.
ExPA, extreme pathway analysis program developed by Palsson et al., [5]
was employed for the computation of the extreme pathways. The program
is open-source and uses a command line interface. The input is again either
the S matrix and information on the number of exchange fluxes or a specific
reaction file with one reaction per line of the file. Detailed explanation of the
reaction file is given on the website of the method 6.

5http://pinguin.biologie.uni-jena.de/bioinformatik/networks/
metatool/metatool5.1/metatool5.1.html

6http://systemsbiology.ucsd.edu/Downloads/ExtremePathwayAnalysis

http://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/metatool5.1/metatool5.1.html
http://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/metatool5.1/metatool5.1.html
http://systemsbiology.ucsd.edu/Downloads/ExtremePathwayAnalysis


Chapter 4

Results and Discussion

In this thesis, our goal was to develop a computational approach for the iden-
tification of metabolic pathways connecting substrates to a product. Our
methods, k-best pathways and combined space, short-list pathways while
avoiding exhaustive enumeration. Furthermore, our approach includes anal-
ysis of the identified pathways based on net stoichiometry, cofactor balancing
and thermodynamic feasibility. For the sake of comparison, we perform ele-
mentary flux modes and extreme pathways analysis.

4.1 Comparison of methods with respect to

pathway properties

As indicated before, one of our secondary objectives is to optimize carbon
yield (CY) as it has a determining effect on the viability of the proposed
pathways for industrial production. In Figure 4.1, a scatter plot is given
reflecting the carbon yield of the generated pathways in relation to three
other parameters: ATP illustrated in Figure 4.1a, reaction count illustrated
in Figure 4.1b and sum of absolute fluxes ilustrated in Figure 4.1c.

The results presented give a comparison between the methods in terms
of the carbon efficiency of the pathways. The carbon yield is calculated as
the number of carbon atoms in the product per single carbon atom in the
substrate. The results in Figure 4.1 are based on the small network and the
methods that we compare are as indicated in the legend: ’yspace’ - enumer-
ation in combined space, ’k-best - k-best enumeration’, ’EFMs’ - elementary
flux modes, ’FBA’ - combined results from FBA with different objectives as
presented in chapter 3. and ’ExPa’ - extreme pathways analysis. Pathways
generated with EMFs were filtered so that only the pathways consuming a
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substrate and producing a product are taken into account. However, all of
the ExPa pathways are included and therefore some of them do not satisfy
the requirement for substrate consumption or production of product, or nei-
ther of them.

We have also discussed earlier the importance of ATP, and we want to
maximize the use or minimize the production of ATP so that the overall
net stoichiometry for ATP is as close to zero as possible. ATP production
or usage is calculated as ATP net stoichiometry per single unit of product.
In Figure 4.1a we have termed the results that have carbon yield close to
one (or at least higher than 0.6) and ATP close to zero as successful. We
can therefore observe that the best pathways were identified by k-best, FBA
and EFMs analysis. Next, in Figure 4.1b we are interested in solutions that
minimize the number of reactions and maximize carbon yield (CY), thus the
best solution has CY of one and 10 reactions, and it is identified by FBA, k-
best and yspace. The second best solution is obtained by the same methods
and EFMs in addition.
The objective of minimizing the sum of fluxes versus CY in 4.1c reveals that
the best solutions are again pinpointed by our methods k-best and yspace
as well as by FBA. In here, we are looking for points located close to the
right bottom corner of the graph and we have lower sum of fluxes compared
to the reaction count due to the fact that some reactions carry fluxes higher
than one. Minimal sum of fluxes is 10, with CY of one. The ExPA point
with CY of two and sum of fluxes lower than 10 is an outlier, as it refers to
a non-product related pathway.

Figure 4.2 illustrates the ATP versus reaction count and sum of fluxes.
On the y-axis, positive values represent ATP production and negative points
stand for ATP consumption. In both figures we note that the best solutions
are converging towards zero ATP and minimal sum of fluxes and number of
reactions. In Figure 4.2a a good candidate solutions are the one with zero
ATP and reaction count of 18, obtained by our methods. If we are willing
to compromise towards ATP consumption of one we get three solutions with
reaction count between 10 and 15. At the end it comes down to the biological
experts to decide upon the matter. The results are similar in 4.2b.

Figure 4.3 presents the scatter plot of reaction count versus absolute sum
of fluxes. The best results in terms of minimal sum of fluxes and reaction
count are proposed by our methods as well as ExPa. ExPa solutions with
lower sum of fluxes or reaction count than our solutions exemplify pathways
with no connection from a substrate to product. If we would like to take
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Figure 4.1: Small network, scatter plot representing carbon yield versus (a)
ATP (consumption/production), (b) Reaction count and (c) Sum of fluxes.

advantage of these results considering that they offer solutions with minimal
reaction count, we could explore ways to connect the pathways to substrate
and product. Anyhow, it will probably lead to higher than the optimal
reaction count, depending on the number of connections to be introduced to
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Figure 4.2: Small network, scatter plots of ATP versus (a) reaction count
and (b) sum of fluxes.

the pathway.
Lastly, Figure 4.4 illustrates the sum of fluxes versus the reaction count
for the medium 4.4a and for the large matrix 4.4b. We only illustrate the
performance of our methods here as the ExPa program did not provide the
extreme pathways in neither case, probably due to the size of the network,
and for the EFMs we did not present the proposed pathways for the medium
sized network. We can conclude from Figure 4.4b that for the large network
there is a high correlation between the reaction count and sum of fluxes.

4.2 Analysis of pathways identified in com-

bined space

Summary of pathway properties based on net reaction stoichiometry is given
in Table 4.1. The analysis was performed with respect to the k-best path-
ways obtained in combined space with incorporated exclusion constraint. The
properties listed have been predefined as relevant pointers for the phenotypic
capabilities of the resulting paths. All the values contained in the table are
scaled to account for one unit of product. The ’number of active enzymes’
column shows the total number of reactions activated at least once in the set
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Figure 4.3: Small network, sum of fluxes versus reaction count.
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Figure 4.4: Medium (a) and Large (b) networks, scatter plots of reaction
count versus sum of fluxes.

of pathways for the given network. As can be seen in the table, for the small
network all of the reactions have been utilized by the pathways, and as the
number of reactions increases the percentage of active reactions drastically
decreases. For the large network there are only 161 active reactions, and
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further analysis could provide insight into functional characteristics of the
relevant reactions. Next, the total number of reversible versus irreversible
reactions for the networks is given. ’Sum of absolute fluxes’ represents the
range of the sum of fluxes among the pathways, i.e. the minimal and maxi-
mal sum of fluxes; it is evident that again the sum of fluxes is significantly
lower for the medium and large networks. However, more detailed explo-
ration of the active enzymes in the large networks would probably yield the
conclusion that additional cofactor balancing is required before the pathways
are complete. In our work, the pathways are not initially balanced in terms
of cofactors, and thus there is the necessity to account for the balancing in
the postprocessing phase. The following three properties give the average/-
median flux through an active reaction, the total number of reversible/irre-
versible enzymes active and the average flux through reversible/irreversible
reaction. The last three properties, are related to specific metabolites includ-
ing redox metabolites that have some relevant lower and upper limits that
have to be obeyed.
The variation in number of active reactions across the pathways is illustrated

Table 4.1: Analysis of k-best pathways generated in combined space. The
properties are list in the first column, and the consecutive columns hold their
values for the small, medium and large sizes network.

properties 48x36 201x333 1971x3371

total number of active enzymes(reactions) 36 116 161

number of revers./irrevers. enzymes 22/14 137/183 1220/2151

sum of absolute fluxes 10,36 5,17 3,17

avg./median flux through active reaction 1.3/1 1/1 1.01/1.01

total number of revers./irrevers. enzymes active 23/13 80/36 116/45

avg. flux through revers./irrevers. reaction 1/1 1/1 1/1.03

sum of abs. fluxes for redox metabolites 0,4 0,7 2,12

sum of abs. fluxes where water is a reactant 5,16 0,9 2,12

net sum of fluxes for redox metabolites 0,4 -2,3 -3,4

in Figure 4.5. The figure compares the number of reversible and irreversible
reactions activated in the generated pathways. The number of reversible
and irreversible reactions is given in Table 4.1. We can observe from the
figure that the variation is lowest for the small matrix for both, reversible
and irreversible active reactions. Moreover, the values approach the total
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number of reversible/irreversible reactions which in turn suggests that the
same set of reactions are consistently picked by the majority of pathways for
this networks, especially for the reversible reactions.

The outliers far below, for the reversible reactions, belong to the two best
pathways in terms of the objective. For the remaining two networks, there is
greater diversity in number of selected reactions, but also the number of total
reactions is much bigger compared to the small network. Surprisingly, the
median number of reversible active reactions is higher for the small network,
even though we would expect the opposite taken in consideration the size of
the networks.

The product carbon yield per given substrate is represented in Figure 4.6,
4.6a for the large and 4.6b for the medium network. The values correspond
to a range of 10 different pathways, and for their calculation we have specifi-
cally required 10 pathways per substrate. Regarding the substrates, we have
only required that a substrate must be consumed by the internal metabolites,
however we did not require that each of the substrates has to be consumed.
As a result, only a subset of the proposed substrates were taken as input.
For the medium network there were five substrates selected out of 12, and for
the small network there were two offered substrates and both were consumed
in the set of identified pathways. The percentage distribution of pathways
consuming a substrate is shown in Figure 4.7. For the large network, we
have only calculated 120 pathways, 10 per each substrate and therefore the
distribution in that case is uniform and omitted from representation on the
graph.

4.3 Performance comparison

We compared the performance of our methods to the performance of the
elementary modes and extreme pathways analysis and we show the results in
Table 4.2. The second column represents the nullity of the matrix, and this is
the value that we use for the parameter k in our k-best method. The EFMs
were calculated for the small and medium matrix, but the METATOOL
program did not yield results for the large networks. We can see that even
for the medium network the number of EFMs is very large. ExPa program
only delivered the results regarding the small matrix and the results for larger
matrices were not calculable.
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Table 4.2: Performance comparison between k-best in combined space, EFMs
and ExPa. Number of pathways and the running times for obtaining them.

48x36 172x320 1971x3371

null space size 8 210 1672

no. reversible react. 22 137 1220

no. potential substrates 2 12 12

no. EFMs 66 270803 not calculable

EFMs running time (s) 6.5 41722.2 (12h) /

no. k-best paths 8 210 1672

k-best running time 3 178.7 >24h

no. ExPa 89 / /

ExPa running time <1 / /
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Figure 4.5: Illustration of the distribution of the number of active reactions,
both reversible and irreversible, across the generated pathways for the large,
medium and small network.
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(a)

(b)

Figure 4.6: Carbon yield for a range of pathways and substrates, (a) large
network, (b) medium sized network. The values are scaled to one unit of
product. For each of the substrates there are 10 pathways represented with
their corresponding carbon yields.
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Chapter 5

Conclusion

The purpose of this work was to provide a computational framework for
enumeration of metabolic pathways that are able to convert a set of source
metabolites into a target metabolite, through intermediate metabolites. Cur-
rent enumeration techniques include computation of elementary flux modes
and extreme pathways which become computationally very expensive for
genome scale metabolic models. We apply an objective function that shrinks
the solution space, and we use an exclusion constraint for the enumeration of
pre-defined number of pathways, hence reducing the computational complex-
ity of the enumeration process. Moreover, we perform ranking and analysis
of the enumerated pathways based on met stoichiometry and thermodynamic
feasibility.
As shown in the Results section, when working with large metabolic net-
work consisting of 1971 metabolites and 3371 reactions, both elementary
flux modes and extreme pathways analysis failed to enumerate the path-
ways. Our method on the other hand was able to perform the enumeration
of 1672 pathways. In cases, where EFMs and extreme pathways are able to
enumerate large scale networks they result in large number of pathways in the
range of millions. Hence, our method provides a more efficient exploration
of the solution space without the need for complete enumeration of path-
ways. Moreover, based on the study at hand, different types of constraints
can be incorporated into the model. Further improvements of the method
could include implementation of exclusion constraint with the requirement of
systemic linear independence as the current implementation only guarantees
pairwise independence of the generated pathways.
Finally, the results suggest that some of the generated pathways between
substrates and product are novel and thus have not been utilized in produc-
tion processes before. These results have the potential to improve current
production processes in terms of energetic efficiency.
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Appendix A

Appendix: Matlab code

Matlab function for enumeration of k-best pathways in combined space.

function [Solutions,fluxVectors]=EnumerateCombined(path to product,product)
%function for obtaining first k solutions, k corresponds to the nullity
% of the S matrix

%Input:
% path to product − path to the structure file, 'netModifiedvL.mat'
% product − combined product name and size of net

tic;
load(strcat(path to product,'netModifiedvL.mat'));
react mat=product.R;
directions=sign(product.vL+product.vU);
%change to only forward and rev reactions
dirs=directions;
react mat(:,directions<0)=−1*react mat(:,directions<0);
directions(directions<0)=1;
%read in constraints
constr=product.CIDclassification;
constraints=cell((size(constr)));

for i=1:size(constr,1)
switch (constr(i))

case 1
constraints(i)=cellstr('substrate');

case 0
constraints(i)=cellstr('intermediate');

case 2
constraints(i)=cellstr('product');

case −2
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constraints(i)=cellstr('cofactor');
end

end

substrate size=size(strmatch('substrate',char(constraints)),1);
product size=size(strmatch('product',char(constraints)),1);
cofactor size=size(strmatch('cofactor',char(constraints)),1);
intermediate size=size(strmatch('intermediate',char(constraints)),1);

inter indices=strmatch('intermediate',char(constraints));
subs indices=strmatch('substrate',char(constraints));

% R is the matrix of ineternal metabolites, B is matrix of exchange met.
R=react mat(inter indices,:);
%null space size should be based on R matrix only
nullity=size(react mat,2)−rank(R);
B=react mat;
B(inter indices,:)=[];
nullSpace=null(R,'r');

% M combined matrix
M=[zeros(size(R,1),size(nullSpace,2)) R zeros(size(R,1),size(B,1)); ...

zeros(size(B,1),size(nullSpace,2)) B −1*eye(size(B,1)); ...
nullSpace −1*eye(size(nullSpace,1)) zeros(size(nullSpace,1),size(B,1))];

[rows,columns]=size(M);
%add vars for absolute values (we minimize the sum of abs values),
%indicator vars for the exclusion constraint
M=[M zeros(size(M)) zeros(size(M))];
ineq s=substrate size+product size;
%oneineq constraint for substrate
A=zeros(ineq s+1+2*columns+2*columns,size(M,2));
%A=zeros(ineq s+1,size(M,2));
Aeq=M;
k=1;
%keq=1;
b=zeros(1,size(A,1));
beq=zeros(1,size(Aeq,1));
sum s=zeros(1,size(A,2));
subs positions=zeros(1,substrate size);
s pos=1;

for i=1:size(react mat,1)
if(ismember(cellstr('substrate'),constraints(i)))

A(k,:)=[zeros(1,size(nullSpace,2)) react mat(i,:) zeros(1,size(B,1))...
zeros(1,2*columns)];
b(k)=0;
sum s=sum s+A(k,:);
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subs positions(s pos)=k;
s pos=s pos+1;
k=k+1;

end
if(ismember(cellstr('product'),constraints(i)))

A(k,:)=[zeros(1,size(nullSpace,2)) −1*react mat(i,:) ...
zeros(1,size(B,1)) zeros(1,2*columns)];
b(k)=−1;
k=k+1;

end
end

%sum of substrates
A(k,:)=sum s;
b(k)=−1;
Elenames(k)=cellstr('subCons');
k=k+1;
%abs inequalities
for j=1:columns

A(k,[j columns+j])=[−1 −1];
A(k+1,[j columns+j])=[1 −1];
b([k k+1])=[0 0];
Elenames([k k+1])=[cellstr(strcat('AVr',num2str(j),num2str(1))) ...
cellstr(strcat('AVr',num2str(j),num2str(2)))]';
k=k+2;

end
%indicator constraints
for j=1:columns

A(k,[columns+j 2*columns+j])=[1 −30];
A(k+1,[columns+j 2*columns+j])=[−1 1];
Elenames([k k+1])=[cellstr(strcat('IND',num2str(j),num2str(1))) ...
cellstr(strcat('IND',num2str(j),num2str(2)))];
k=k+2;

end
% cost function
L=repmat(−100,1,size(M,2))';
L(nullity+(find(directions>0)))=0;
U=repmat(100,1,size(M,2))';
U(nullity+find(directions<0))=0;
ints=linspace(1,size(M,2),size(M,2));
ints(2*columns+1:end)=[];
bins=linspace(2*columns+1,size(M,2),size(M,2)−2*columns);
cost=zeros(1,size(M,2));
cost(columns+1:2*columns)=ones(1,columns);

%input for cplex
f=cost';
Aineq=A;
bineq=b';
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beq=beq';
lb=L;
ub=U;
lb(size(ints,2)+1:end)=0;
ub(size(ints,2)+1:end)=1;
ctype=repmat('I',1,size(ints,2)+size(bins,2));
[x,˜,˜,˜]=cplexmilp(f,Aineq,bineq,Aeq,beq,[],[],[],lb,ub,ctype);

Solutions=zeros(nullity,columns);
Objectives=zeros(1,nullity);
Solutions(1,:)=x(1:columns);
Objectives(1)=sum(x(columns+1:2*columns));

for i=2:nullity

%exclusion constraint
A(k,:)=zeros(1,size(A,2));
A(k,(2*columns+1:end))=x(2*columns+1:end)';
b(k)=sum(x(2*columns+1:end))−1;

k=k+1;
Aineq=A;
bineq=b';

[x,˜,˜,˜]=cplexmilp(f,Aineq,bineq,Aeq,beq,[],[],[],lb,ub,ctype);

Solutions(i,:)=x(1:columns);
Objectives(i)=sum(x(columns+1:2*columns))

end

%extract the reaction fluxes columns only
fluxVectors=Solutions(:,nullity+1:nullity+size(react mat,2));

%change fluxes for directions
for i=1:size(directions,1)

if (dirs(i)==−1)
fluxVectors(:,i)=−1*fluxVectors(:,i);

end
end
time=toc;
save('Results.mat','time','fluxVectors','Solutions','Objectives');
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