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Miniature cameras are common in today’s smartphones and other mobile devices.
Achieving optimal image quality with such cameras requires elaborate character-
ization measurements done on the camera in laboratory conditions. The mobile
phone company Nokia—and later Microsoft—has built an automated character-
ization system to perform these measurements.

The quality of the characterization measurements done with this system depends
on accurate calibration of the system. Calibration of this system has been te-
dious manual work, and the process has not been thoroughly documented. The
goal of this research was to automate and improve the calibration process using
the company’s own software platform Mobile Imaging Playground (MIP). The
measurement devices were integrated into MIP and all the calibration procedures
were implemented as MIP plugins. A high quality spectroradiometer was used
as a reference for the calibration. Multiple metrics were explored to evaluate the
accuracy of the final system calibration and match to the reference. Uncertainties
of the different calibration phases were also analyzed.

For spectrally continuous and relatively smooth illuminants the calibration accu-
racy was high. Fluorescent spectra with narrow peaks were more problematic.
Part of the problem can be attributed to the sparse sampling of the reference
device, which causes the fluorescent peaks to be undersampled, so in reality the
calibration results are most likely better than this. Keeping this in mind, re-
production of the fluorescent spectra after calibration can be considered at least
colorimetrically accurate.

The study proposed some future possibilities to improve the calibration process,
for example by using a more suitable reference device and implementing some
kind of bandpass correction.
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Pienoiskamerat ovat yleisiä nykypäivän älypuhelimissa ja muissa mobiililaitteissa.
Parhaan mahdollisen kuvanlaadun saavuttaminen näillä kameroilla vaatii tarkko-
ja karakterisointimittauksia laboratorio-olosuhteissa. Matkapuhelimia valmistava
yritys Nokia — ja myöhemmin Microsoft — on rakentanut automatisoidun ka-
merakarakterisointijärjestelmän näiden mittausten suorittamiseen.

Karakterisointijärjestelmä tuottaa synteettisiä eri valonlähteiden spektrejä. Ka-
rakterisointimittausten laatu riippuu järjestelmän eri komponenttien kalibroinnin
tarkkuudesta eli tarkkuudesta, jolla järjestelmä kykenee toistamaan ja mittaa-
maan halutun spektrin. Tämän tutkimuksen lähtökohtana olevan järjestelmän ka-
librointi on ollut hidasta käsityötä, ja prosessia ei ole dokumentoitu kovin tarkasti.
Tutkimuksen tavoite oli automatisoida ja parantaa kalibrointiprosessia yrityksen
omaa ohjelmistoalustaa Mobile Imaging Playgroundia (MIP) käyttäen. Korkea-
laatuista spektroradiometriä käytettiin referenssilaitteena kalibrointityössä. Lo-
pullisen kalibrointilaadun arvioimiseksi käytettiin useita aiempien tutkimusten
perusteella määritettyjä mittoja. Kalibrointivaiheiden epävarmuustekijöiden vai-
kutuksia ja suuruutta tutkittiin myös.

Spektraalisesti jatkuvien ja verrattain tasaisten valonlähteiden kohdalla lopulli-
sen kalibroinnin tarkkuus osoittautui erittäin hyväksi. Loisteputkivalonlähteet,
joiden spektri on piikikäs, toistuivat kalibroinnin jälkeen huonommin kuin jat-
kuvaspektriset valonlähteet. Tämä johtui luultavasti referenssilaitteen harvasta
näytteistyksestä, joka aiheuttaa terävien spektripiikkien alinäytteistymistä. To-
dellisuudessa loisteputkivalonlähteiden kalibroinnin laatu on siis luultavasti pa-
rempi kuin tulokset antavat ymmärtää, ja kalibrointia voidaan pitää kolorimetri-
sesti tarkkana.

Työssä esitetään myös tulevaisuutta silmällä pitäen muutamia parannusehdotuk-
sia kalibrointiprosessiin, kuten paremman referenssilaitteen valinta ja jonkinlaisen
kaistanpäästökorjauksen toteutus.
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Chapter 1

Introduction

1.1 Background

In the past few years mobile devices, such as smart phones and tablets,
have become ubiquitous. Most of these devices sport some type of camera
functionality. Thus, digital cameras embedded in mobile devices have become
ubiquitous too, they are everywhere! The rise of photocentric social media
like Instagram and Flickr has also heightened the importance of cameras to
consumers tremendously.

Mobile device manufacturers are very rapidly developing new cameras and
introducing new camera modules into commercial products. Camera mod-
ules are self-contained modular components that usually include an optical
assembly, a digital image sensor and control electronics.

Just reading data off the digital image sensor is not enough to produce
a high-quality image. Several characteristics of the camera module need to
be determined to correctly process the image data into a final image that
corresponds more or less to how a human eye would have seen the scene the
camera captured. This process is called called characterization.

Each new camera module requires careful characterization before it can
be used in a consumer product. Camera module characterization involves
measuring several properties of the camera sensor and optics. To make this
process fast and reliable, it has to be ensured that the instruments used in
the measurements give correct results as accurately and precisely as possible.
This process is called instrument calibration.

Measurements involving light spectra—such as camera characterization—
are very sensitive to errors. Small systematic changes in the spectrum of light
presented to a camera accumulate over the whole wavelength range, and can
cause significant color errors. In addition, small changes in the raw data

1



CHAPTER 1. INTRODUCTION 2

extracted from the camera sensor can translate to big changes in the final
image due to the image processing algorithms applied by the camera image
processing pipeline. Considering these facts, accurate instrument calibration
becomes essential to characterize the camera modules properly.

The practical work behind this Master’s Thesis was conducted during the
years 2013-2015 at Nokia/Microsoft Camera Image Quality Laboratory in
Espoo, Finland. The Nokia mobile phone business along with the laboratory
was acquired by Microsoft in 2014. The laboratory had a unique combination
of measurement devices that enabled highly controllable spectral synthesis,
measurement automation and accuracy. The combination of these devices—
the camera characterization system—was used to characterize several camera
modules used in the Lumia smartphones.

However, calibrating the camera characterization system in question has
been tedious manual work, requiring a multitude of very careful measure-
ments under various lighting conditions. Analyzing the measurement results
has been done manually, and the process has not been very well documented.
Lack of documentation has occasionally delayed necessary calibration work,
when the only people knowledgeable of the calibration process have been
unavailable.

The calibration process has also been slow and prone to human errors.
Calibration from beginning to end has usually taken several days or even a
week. Because the calibration process has been so slow, it has often blocked
production use of the characterization system. Uncertainties in the calibra-
tion have not been determined during the manual calibration process, so the
reliability and accuracy of the calibration have been unknown.

1.2 Goals of this thesis

The goal of this thesis is to describe and implement a new, more flexible cal-
ibration process for the camera characterization system. The camera char-
acterization system consisted of multiple interlocking instruments and is in
production use a large part of the time, so the aim is to calibrate it in a way
that requires no disassembly of the system. Sending any part of the system
back to the manufacturer or a third party for calibration is costly and slow.
Temperature changes and moving the instruments in relation to each other
also easily invalidate the calibration. Because of these reasons, the calibra-
tion should be done on-site. The calibration process should also be relatively
easy and fast, so it would not severely interrupt the production use of the
system.

This thesis work had three primary goals, which are listed below:
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• Describe and document the camera characterization system compo-
nents used at the time, and the calibration of the system.

• Specify and implement a calibration system that would make the cali-
bration procedure automatic, and at the same time more reliable and
faster.

• Study the results and find metrics to evaluate the performance of the
new and improved calibration system and estimate the uncertainty of
the resulting data.

This thesis is divided into 9 chapters, starting with this introduction. Af-
ter chapter 1 the reader should have an understanding of what the target
of this thesis is and why was it conducted. Chapter 2 describes the basic
concepts of radio- and photometry, which are essential to understanding the
measurement instruments and methods used in this thesis. Chapter 3 goes
over the basic concepts of colorimetry, such as color-matching functions and
color spaces. Chapter 4 introduces the structure of camera devices and the
technology used in them to help the reader better understand what kind of
devices modern digital camera systems are. Details of the camera character-
ization process are discussed in chapter 5. The structure and components of
the camera characterization system are described and documented in chap-
ter 6. The calibration procedures of the characterization system are shown
in chapter 7. The calibration results and conclusions are documented in
chapters 8 and 9, respectively.



Chapter 2

Radio- and photometry

2.1 Light

The term “light” usually refers to electromagnetic radiation that is visible
to the human eye. Light consists of small quanta of energy called photons.
Each photon carries a certain amount of energy with it. Photons exhibit both
particle- and wave-like properties. Since photons can be modeled as waves,
each photon has a wavelength. The energy of the photon can be described
by the equation 2.1, where h is the Planck constant, c the speed of light in
vacuum and λ the wavelength of the photon. [1]

E =
hc

λ
(2.1)

As equation 2.1 shows, the energy of the photon depends only on the
wavelength λ of the photon. Eyes can detect electromagnetic radiation of
wavelengths between approximately 380 and 780 nanometers. This range is
called the visual spectrum of light. [1, 2]

2.2 Radiometry

Radiometry is a field of science that studies the whole spectrum of electro-
magnetic radiation, ranging from extremely short wavelengths (gamma and
X-rays) to very long wavelengths (radio waves). As opposed to photometry,
which will be dealt with in detail in section 2.3, radiometry deals with ab-
solute quantities of energy, while photometry takes into account the varying
response of the human visual system. [2, 3]

Radiant energy is measured in joules [J] which is a unit derived from the
SI base units. Radiant energy is often denoted with the symbol Q. Radiant

4



CHAPTER 2. RADIO- AND PHOTOMETRY 5

energy with respect to time is the radiant power or the radiant flux φ, which
is measured in watts [W]. The radiant intensity I is then the radiant flux per
unit solid angle [W sr−1], as described in equation 2.2.

I =
dφ

dΩ
(2.2)

Radiance L is a very fundamental unit in radiometry. Radiance is the
radiant power per solid angle per unit projected source area, described in the
equation 2.3, where φ is the total radiant power, A is the surface area, Ω is
the solid angle subtended by the observation and Θ is the angle between the
surface normal and the specified direction. Measuring radiance falling on a
patch of infinitesimal area dA from direction Ω is illustrated in figure 2.1.

L =
d2φ

dA cos Θ dΩ
(2.3)

n

θ

dA

Ω

ω

Figure 2.1: Illustration of measuring radiance.

Irradiance E (see equation 2.4) describes the radiant flux per unit area
incident on a surface, so the unit of irradiance is W m−2.
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E =
dφ

dA
(2.4)

Irradiance can be calculated by integrating radiance over the the hemi-
sphere visible to the observed point. Radiant exitance is a unit similar to
irradiance, but it describes the flux emitted from the surface.

Radiometric units can also be considered as functions of wavelength. For
example spectral radiance is simply defined as radiance per wavelength.

L =
d2φ

dA cos Θ dΩ dλ
(2.5)

As can be seen from equation 2.5, the unit of spectral radiance is W sr−1 m−3.
Spectral radiance can also be considered as a function of frequency [Hz] in-
stead of wavelength [m].

2.3 Photometry

Photometry is very similar to radiometry described in section 2.2, but pho-
tometry only examines the visible wavelenghts of electromagnetic radiation,
and takes into account the spectral response of the human visual system
by weighting spectra with the so called spectral luminous efficiency function
V (λ). [4]

The two main spectral luminous efficiency functions are the photopic and
scotopic luminosity function, which correspond to the sensitivity of the cone
and rod cells in the human eye respectively. The sensitivity of the human
eye in most normal lighting conditions is mediated by the cone cells, while
the rod cells remain saturated. In this kind of lighting the sensitivity of the
eye corresponds well to the photopic luminosity function, which peaks at the
wavelength of 555 nanometers. A graph of the photopic luminosity function
is shown in figure 2.2. [1]

In very low lighting conditions the rod cells start to respond and the peak
spectral sensitivity of the eye shifts approximately 50 nanometers towards
shorter wavelengths, corresponding to the scotopic function. In intermediate
lighting a third function is sometimes also used, called the mesopic luminosity
function. [1]

Radiometric quantities can be converted to the corresponding photomet-
ric quantities by using the spectral luminous efficiency function as a spectral
weighting function, as in equation 2.6, where φv and φ are the corresponding
photometric and radiometric quantities, λ is the wavelength of light and V
is the photopic luminosity function. The result of the integration can be
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Figure 2.2: Graph of the photopic luminosity function.

multiplied by the constant Km = 683 lm/W to obtain photometric units at
an absolute scale. [1, 2]

φv = Km

∫ 780

380

φ(λ)V (λ) dλ (2.6)

Calculating a photometric quantity for a single wavelength λ0 reduces
simply to equation 2.7.

φv(λ0) = Km φ(λ0)V (λ0) (2.7)

The very basic photometric quantity is the luminous flux φv, expressed
in lumens [lm], which is completely analogous to the radiometric unit of the
radiant flux φ. The radiant flux is just weighted with the spectral luminous
efficiency function to get the luminous flux.

Luminous intensity Iv is similarly analogous to the radiometric quantity
radiant intensity I. Luminous intensity is expressed in candelas [cd] which
equals lumens per unit solid angle [lm/sr]. The photometric equivalent of
radiance L is luminance Lv, and can be expressed as luminous intensity
per unit projected area [cd m−2]. Finally, illuminance Ev is similar to the
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radiometric quantity irradiance E, and is measured in luxes [lx] or lumens
per unit area [lm m−2]. Illuminances in common lighting conditions are listed
in table 2.1.

The corresponding radiometric and photometric quantities are summa-
rized in the table 2.2.

Table 2.1: Examples of illuminances in common lighting conditions.

Lighting conditions Illuminance
Sunny day 100 000 lx
Overcast day 1 000 lx
Office lighting 500 lx
Home lighting 100 lx
Full moon at night 0.1 lx

Table 2.2: Corresponding radiometric and photometric quantities.

Radiometry Photometry
Radiant energy [J] Luminous energy [lm s]
Radiant flux [W] Luminous flux [lm]
Irradiance [W m−2] Illuminance [lx]
Radiant intensity [W sr−1] Luminous intensity [cd]
Radiance [W sr−1 m−2] Luminance [cd m−2]



Chapter 3

Colorimetry

Colorimetry is the branch of science that studies and describes human color
perception. Even though camera characterization does not directly involve
human color perception, colorimetry introduces some useful concepts, such
as tristimulus values, metamerism and color spaces. Light as such has no
color, only some wavelength. A perception of color occurs when light hits
the human eye and causes a response in the visual system. [1]

The retina of a human eye has two kinds of photoreceptor cells: rods
and cones. Rods are only active in very low lighting conditions, while cones
are used in brighter lighting. Cone cells are divided into three subtypes,
whose spectral sensitivies peak at different wavelengths, thus enabling the
resolution of different wavelengths into different colors. Because of the three
types of cone cells, the human color vision is said to be trichromatic. Since
there are only one type of rod cells, color vision is not possible in extremely
low light. [1, 5]

The three cone cell types are classified as sensitive to long, medium and
short wavelengths of light, and are often abbreviated as L, M and S cones.
Figure 3.1 shows the normalized cone cell sensitivities. [1, 5]

The photopic and scotopic luminosity functions described in section 2.3
correspond to the total sensitivity of cone and rod cells, respectively. [1]

Describing colors in terms of the fundamental cone responses would be a
very straightforward approach, but the cone responses have been succesfully
determined only recently, so other means have been developed. So called
color-matching functions (CMF) have been empirically determined to map
light spectra into three-dimensional coordinates called tristimulus values. [1,
4]

9



CHAPTER 3. COLORIMETRY 10

Figure 3.1: Cone cell sensitivities, by Stockman and Sharpe [5].

3.1 Color-matching functions

In the 1920s and 1930s Wright [6] and Guild [7] were the first to determine the
correspondence between different monochromatic lights and three adjustable
light sources called primaries. In their experiments, test subjects tried to
match a color produced by a monochromatic light source by adjusting the
relative amounts of the primaries. Based on the data gathered on the relative
amounts of the primaries for each monochromatic light source Wright and
Guild were able to form color-matching functions for mapping spectra to
three tristimulus values.

Later The International Commission on Illumination (CIE) transformed
the data so that it corresponds to monochromatic primaries at 435.8 nm,
546.1 nm and 700.0 nm, and standardized the CMFs. By integrating the
observed light spectrum weighted by the color matching functions over the
visible wavelength range — as shown in equations 3.1—the tristimulus values
are obtained. R, G and B are the CIE RGB tristimulus values, φ is the
observed light spectrum and r̄, ḡ and b̄ are the CIE RGB color-matching
functions. [1, 4]
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R =

∫
λ

φ(λ) · r̄(λ)dλ (3.1a)

G =

∫
λ

φ(λ) · ḡ(λ)dλ (3.1b)

B =

∫
λ

φ(λ) · b̄(λ)dλ (3.1c)

The tristimulus values identify the color of the measured light. If the
tristimulus values of two different spectra match, they are perceived as the
same color. [1, 4]

CIE also devised an improved set of CMFs—x̄, ȳ and z̄—where the CMF
values are always positive, and ȳ corresponds to the standard photopic lumi-
nance response function CIE V (λ). This set of CMFs is known as the CIE
1931 standard observer. The tristimulus are calculated exactly as the CIE
RGB values in equation 3.1, except the CIE RGB color-matching functions
are replaced with x̄, ȳ and z̄. The CMFs are visualized in figure 3.2. [1, 4]

Figure 3.2: CIE 1931 standard observer color-matching functions.

Because of the trichromatic nature of human color vision, it is possible to
construct multiple significantly different spectral power distributions, that
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cause the same response in the visual system, i.e. are seen as the same
color. This also means that they have the same tristimulus values. This
phenomenon is called metamerism. [1, 4]

3.2 Color spaces

As shown earlier, the human visual system is trichromatic, so any perceived
color can be represented as a vector of three numbers, or tristimulus values.
Different CMFs and tristimulus values form color spaces. The tristimulus val-
ues derived from spectral power distributions by integrating with the CMFs
x̄, ȳ and z̄ form the standard CIE XYZ color space. [1]

CIE XYZ is able to represent all possible colors, but in practice the color
space might not be suitable for all purposes. It might be necessary to use
a color space that enables efficient encoding and transmission of data. An-
other common reason for using some other color space is that it provides
better perceptual uniformity. Simple Euclidean distance in CIE XYZ does
not correspond to perceptual difference in color. Color difference metrics are
described in more detail in section 3.3. [1]

The CMF primaries define the boundaries of each color space. The range
of colors the color space is able to represent is called the gamut. [1, 4]

CIE XYZ is often used as a device-independent method for representing
colors, but is usually transformed to some other color space for storage or
display. sRGB is one of the most common color spaces in use today. CIE
XYZ is also often used as an intermediate color space for transforming from
one color space to another, since most color spaces are defined relative to
CIE XYZ. [1]

3.3 Color difference metrics

Encoding colors as tristimulus values enable quantifying differences between
colors. Most color spaces are not perceptually uniform, so a simple Euclidean
distance measure in e.g. CIE XYZ does not give a meaningful metric for
comparing colors. CIELAB and CIELUV color spaces are color opponent
spaces standardized by CIE, and include a non-linear compression to achieve
better perceptual uniformity. CIELAB consists of the tristimulus values L∗,
a∗ and b∗. One commonly used color difference metric is CIELAB ∆E∗

ab,
which is the Euclidean distance in CIELAB space, shown in equation 3.2. [1]

∆E∗
ab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]1/2 (3.2)
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∆E∗
ab was designed to quantify small color differences in laboratory con-

ditions, and it does not extend well to large color differences. More accurate
color difference metrics are CMC, CIE 1994 and CIEDE2000. [1]



Chapter 4

Camera technology

4.1 Camera structure

The basic structure of camera devices has stayed the same nearly throughout
the whole history of photography. Camera devices consists of an optical
assembly or a pinhole and some sort of a medium to capture the image
projected by the optics.

For a very long time the dominant medium was photographic film. How-
ever, in the past few decades digital image sensors have taken over the field of
photography. Modern image sensors are described in section 4.2, and section
4.3 deals with the basics of optical systems. Issues specific to small sensors,
such as the camera sensors found in mobile devices, are described in section
4.4.

The characterization system described in chapter 6 deals with optical
spectrometers. Optical spectrometers are technologically very similar to dig-
ital cameras systems, so their relationship is probed more closely in section
4.5.

4.2 Image sensor technology

Modern digital image sensors designed for the visual wavelengths of light
are based on semiconductor technology. Digital image sensors consist of
photodetector arrays, which convert incident photons to electric charges.

The light sensitivity of semiconductor photodetectors is based on the
generation of electron-hole pairs in the semiconductor, when photons hit
the photodetector material [2]. The photodetector structure is designed to
prevent the electron-hole pairs from recombining, so the number of generated
charges can be measured.

14
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The two predominant types of digital image sensors are so called CCD
and CMOS sensors. The main difference between the two types is how the
electric signals are transferred off the sensor and amplified for subsequent
processing. The image sensor types are examined in more detail in section
4.2.3. [2, 8]

The most common photodetector types are MOS capacitors and photodi-
odes. According to many literary sources MOS capacitors are used in CCD
sensors and photodiodes in CMOS sensors, but in reality they are often used
somewhat interchangeably [2]. The photodetector types are examined in
more detail in sections 4.2.1 and 4.2.2.

4.2.1 MOS capacitors

MOS (metal oxide semiconductor) capacitors are one of the two predominant
photodetector types used in digital image sensors. Metal oxide semiconductor
refers to the structure of the capacitor, which consists of a metal contact
called the gate, a thin oxide layer and a P-type semiconductor (usually doped
silicon). The structure is illustrated in figure 4.1. [2]

Gate

Oxide

P-type Silicon

Ground

Figure 4.1: The structure of a MOS capacitor. Adapted from an illustration
by Cyril Buttay. [9]
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When incident photons hit the semiconductor, they generate electron-
hole pairs in the material. To prevent the pair from instantly recombining, a
constant positive bias voltage is applied to the gate, while the semiconductor
is grounded. This configuration causes the negatively charged electrons to
gather at the interface between the semiconductor and the oxide layer, while
holes move in the opposite direction. [2]

4.2.2 Photodiodes

All semiconductor components react to incident light by generating charge
carriers. Since this is usually an unwanted effect, the components are pack-
aged inside a light blocking casing. Photodiodes are fundamentally ordinary
semiconductor diodes which have not been packaged, thus permitting pho-
tons to penetrate the material. [2]

Diodes and photodiodes alike consist of a junction of a P-type and N-
type semiconductor, or a PN-junction. A depletion region is formed at the
interface of the two semicondutor types. When an incident photon hits the
depletion region, the different charge carriers migrate in opposite directions
without the need for a constant bias voltage. [2]

The sensitivity and the full well capacity of the photodiode can be in-
creased by adding a layer of intrisic semiconductor material in the middle of
the PN-junction, resulting in a so called PIN-junction. This kind of photodi-
odes are often called pinned photodiodes, and are very widely used in image
sensors. [2]

4.2.3 CCD and CMOS

One of the two most common image sensor types employ charge-coupling
for transferring the accumulated charges from the image sensor pixels to the
signal processing chain outside the sensor. This kind of image sensors are
commonly called CCD image sensors. [2, 8, 10]

Charge-coupling refers to a technique for storing and transferring charge
packets in a semiconductor device. Devices which utilize this technique
are called Charge-Coupled Devices (CCD). In image sensors charge-coupling
works by sequentially transferring the contents of each pixel towards one spec-
ified edge and reading out the contents of that edge column. The charges
can be transferred from one pixel to the next by applying a certain voltage
sequence to the pixel gate contacts. [10]

CCD image sensor are often described as passive pixel sensors, as the sig-
nal amplification and analog-to-digital conversion happens outside the pix-
els. Contrary to CCD, most CMOS image sensors place the amplifier and
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analog-to-digital converter (ADC) inside each single pixel. This kind of a
sensor architecture is called an active pixel sensor.

Complementary Metal Oxide Semiconductor (CMOS) refers to technol-
ogy used to fabricate integrated circuits, but in a camera device context
CMOS has become synonymous with active pixel sensors constructed with
CMOS technology. [2, 8].

4.2.4 Microlenses

The topmost layer of modern image sensors often consists of an array of very
small lenses called microlenses, illustrated in figure 4.2. The light sensitive
photodetector does not usually cover the entire pixel, so a part of the pixel is
not sensitive to light at all. To alleviate this problem, microlenses are used
to focus the incident light on to the light sensitive area of the pixel. In the
figure these light sensitive areas are shown in light gray, while other areas
are shown in dark gray. The color filters under the microlens array are part
of the color filter array, which is described in more detail in section 4.2.5.

Figure 4.2: Illustration of microlenses on image sensors. The light gray
rectangles represent the photosensitive areas of the pixel.

Microlenses are extremely important to the light sensitivity of modern
image sensors. Depending on the device, they can increase the effective pixel
fill factor by 30-70 % [2]. With the exception of telecentric lenses, the chief
ray angle (CRA) of the incident light varies with position on the sensor. If
the CRA becomes too large, the microlenses might accidentally focus light
on an adjacent pixel, causing optical crosstalk between the pixels. This issue
is discussed in more detail in section 4.4.2. To mitigate this kind of problems
the individual positions of the microlenses can be optimized for specific fields
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of view so the microlenses are offset from the pixel centers on the edges of
the sensor [2].

4.2.5 Color imaging

Digital image sensors are inherently monochromatic in the sense that they
cannot distinguish colors, but only intensities of light. The sensitivity of the
sensor varies according to the wavelength of light, but once a photon has been
converted to electric charges in the sensor, there is no way of reconstructing
the wavelength of the original photon.

Several methods for capturing color images are in use. The three most
common ways of recording color images with a digital image sensor are de-
scribed below.

A very simple solution is a device called a filter wheel or a filter slider. The
device contains a holder for several color filters, and mechanically rotates or
slides the holder to place different filters in front of the sensor, like in figure
4.3. Usually the device is placed between the image sensor and optics, or
in some rare cases in front of the optical assembly. Full color images can
be formed by combining several images captured with different color filters.
Because the images are not captured simultaneously, color images of moving
objects are difficult to achieve using filter wheels or sliders. Mechanical filter
changers are also very big and bulky, and they contain moving parts. This
makes them unfeasible for mobile applications. However, filter wheels and
sliders are widely used in scientific applications, especially in astronomy.

A more advanced method of acquiring color images is splitting the incom-
ing beams of light into components using a color separation prism, filtering
each component with a different color filter and directing them to separate
image sensors, as seen in figure 4.4. F1 and F2 represent different filter coat-
ings, which reflect blue light and red light respectively, and transmit other
wavelengths. This method has the advantage of being able to capture all the
needed images simultaneously, but requires the use of several image sensors
instead of one. Also, color separation prisms are quite large and thus are
difficult to use with mobile camera devices.

The only currently feasible solution for mobile color imaging is the usage
of a so called color filter array (CFA). The CFA is an array of color filters
placed directly on top of the image sensor, like in figure 4.5. Each pixel
receives only a portion of the visible spectrum, and the missing components
are reconstructed based on the surrounding pixels. This procedure is often
called demosaicking or debayering. Because of the filter array, all the color
channels are subsampled, which results in reduced optical resolution. [13]

Very often the CFA consists of repeating blocks of 4x4 pixels with red,
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Figure 4.3: A partially disassembled QSI 583 astronomical CCD camera with
an integrated filterwheel. Photograph by QSI Press Photos. [11]

F1

F2

A

B C

Figure 4.4: A trichroic prism splitting the light spectrum into three parts.
Illustration by Colin M. L. Burnett. [12]

green and blue primary color filters [8]. Currently the most common filter
pattern in consumer camera sensors is the so called Bayer matrix pattern [13],
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Figure 4.5: Color filter array on an image sensor. Illustration by Colin M.
L. Burnett. [14]

which contains twice as many green filters as blue or red filters. However,
some manufacturers, like Kodak [15] and Fujifilm [16], have experimented
with more exotic filter combinations and patterns. Foveon has developed
a filterless sensor, which separates colors based on how far into the sensor
silicon the photons penetrate, since the depth varies significantly with the
light wavelength [17].

4.3 Optics

To capture images, a digital camera needs some kind of a mechanism to form
an image of the outside world on to the image sensor. Perhaps the simplest
mechanism consists of a very small aperture, called a pinhole. The working
principle of a pinhole is illustrated in figure 4.6.

Since the pinhole aperture by definition is very small, the light gathering
power is weak. The small aperture also results in poor optical resolution
because of diffraction effects.

Most modern camera systems employ various optical lens assemblies to
form the image on the image sensor. This has the benefit of greatly increasing
the light gathering aperture and optical resolution.

Real life optical systems usually consist of multiple lenses, but the funda-
mentals of geometric optics can be illustrated with a single lens, with spheri-
cal optical surfaces. For simplicity’s sake the lens can initially be considered
a thin lens, meaning it has infinitely small thickness.

Figure 4.7 shows such thin lens focusing paraxial (parallel to the optical
axis L) light rays to a single point at a distance of f (the focal length) from
the lens. This point is called the focal point. The focal length of a thin lens
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Figure 4.6: The pinhole camera principle.

can be calculated using the equation 4.1 if the index of refraction n of the
lens and the radii of curvature R1 and R2 of the lens sides are known.

1

f
= (n− 1) · ( 1

R1

− 1

R2

) (4.1)

In real life lenses have a finite thickness. The same expression for a lens
with thickness d is shown in equation 4.2.

1

f
=
n− 1

R1

+
1− n
R2

+
d(n− 1)2

nR1R2

(4.2)

The light gathering power of a lens system can be described with the so
called F-number (F ), which is defined in equation 4.3 [8], where θ is half
of the opening angle of the focused light rays in figure 4.7. The bigger the
F-number is, the less light hits the image sensor per unit area.

F =
1

2 sin θ
(4.3)

As a result of the equation, the theoretical minimum for the F-number is
0.5. When θ is small, the distance from the focal point to the edge of the lens
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θ

f

D

L

Figure 4.7: Diagram of a single thin lens with the focal length f and the
aperture diameter D.

is nearly equal to the focal length, and equation 4.3 can be approximated
with equation 4.4.

F =
f

D
(4.4)

Optical elements absorb part of the incoming light, but the transmissivity
can be enhanced with the use of coatings [8]. The F-number does not take
into account the light absorption or other transmission losses.

Due to the wave-like nature of light, the image of a perfect point light
source formed by aberration-free optics is not a perfect point, but a small disk
surrounded by dim rings, as illustrated in figure 4.8. This pattern is called
the Airy disk. The angular size of this pattern depends on the aperture of
the optics and the light wavelength. The physical size r of the pattern on
the sensor can be approximated from the F-number of the optics by equation
4.5, where λ is the wavelength and F the F-number. [1, 8]

r = 1.22λF (4.5)

r in equation 4.5 is also called the Rayleigh limit, and it indicates the
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Figure 4.8: Plot of the Airy disk pattern.

minimum spacing between two infinitesimally small points that can just be
distinguished optically. Rayleigh chose the first dark ring of the Airy disk as
the criterion of resolving power for a two-point image. [1, 8]

4.4 Mobile camera module specific issues

Because the characterization system under consideration is aimed towards
mobile camera devices, some mobile camera module specific issues have to
be considered. The key difference between mobile and other camera devices
is the camera module size, which sets constraints on module design.

4.4.1 Physical pixel size

Mobile devices usually employ very small image sensors. Combined with the
need for high resolution images, the physical size of individual pixels becomes
very small.

Since the readout electronics on each pixel require some space, the pixel
fill factor decreases with pixel size. This can be alleviated to some extent
by placing microlenses on each sensor pixel. Also, the smaller physical size
directly means that less photons hit the pixel per unit time, resulting in
lower signal-to-noise ratio, so the sensitivity obviously decreases with pixel
size. [1, 8]
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The maximum amount of unit charges a pixel can store is mostly depen-
dent on the physical size of the pixel. The smaller pixels get, the less charges
they can store. This means that small pixels have less dynamic range than
big pixels. Dynamic range in this context refers to the range of scene bright-
ness levels that can be captured in the same image by the camera sensor.
[1]

4.4.2 Color shading

Small camera modules aimed towards mobile devices are prone to so called
color shading, which means that the color reproduction properties of the im-
age sensor vary spatially. Silicon-based image sensors are sensitive to infrared
radiation, which is usually blocked using an IR cutoff filter. [1]

The most common IR cutoff filters are based on thin-film interferential
filters, whose spectral transmissivity changes as a function of the angle of the
incident light. Because the mobile camera modules use wide-angle lenses and
the lens assembly is placed very close to the sensor, the incident light angle
at the edges of the sensor is very steep. This causes the sensor’s effective
spectral response to be different in the edges and the center of the sensor.
[18]

4.4.3 Green imbalance

Image sensors with physically very small pixels are prone to problems with
so called green imbalance.

As described in section 4.2.5, image sensors in mobile devices have a color
filter array laid on top of the image sensor. The most common color filter
array pattern contains twice as many green filters as there are red or blue
filters. Usually the filters repeat in groups of 4 pixels, where on one row there
is a red and a green filter, and on another row there is a green and a blue
filter. Often in small image sensors the effective spectral response of the two
green filters in each group are systematically different. This is called green
imbalance. [19]

The main reasons for this are both optical and electrical crosstalk between
adjacent pixels. Bigger pixels are more immune to crosstalk because of the
more complex structure and longer distance between individual pixels, and
smaller chief ray angles in most bigger cameras. [20–22]

As mentioned in section 4.2.4, optical crosstalk happens when microlenses
accidentally focus light into adjacent pixels. This usually happens with big
chief ray angles, or in other words near the edges of the sensor. Electri-
cal crosstalk is often attributed to minority carrier diffusion from pixels to
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adjacent pixels. [20]

4.5 Relationship to optical spectrometers

There are several sorts of spectrometer designs operating in the visible wave-
length range of light, but in this thesis we will focus on spatially dispersive
spectrometers, since all the spectrometer devices described in chapter 6 are
based on this technique. A spectrometer combines a light collection system,
a spectrograph and an optoelectronic detection and processing system to es-
timate the power spectral density of the incident light. A spectrograph is
defined as a device that physically isolates spectral channels using optical
elements. [23]

Spatially dispersive digital spectrometers are technologically very similar
to digital cameras. The simplified basic structure of a 4F spectrometer de-
scribed by James [23] is shown in figure 4.9, where F is the focal length of
the lenses.

Figure 4.9: Simplified structure of a 4F spectrometer.

The incoming light is guided through a narrow slit, and an image of
the slit is projected onto a grating or through a prism. The grating or
prism disperses the incoming light into a spectrum, and an image of the
spectrum is captured using a photodetector array, such as a CCD or CMOS
sensor described in section 4.2. The spectral resolution of the spectrometer
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is inversely proportional to the width of the entrance slit, but making the slit
narrower lets less light in. This way the slit width is always a compromise
between resolution and signal-to-noise ratio. [23, 24]



Chapter 5

Camera characterization

Digital cameras record irradiance values of the scene projected onto the im-
age sensor via an optical assembly. Different irradiance values at different
wavelengths of light produce different responses on the sensor, which the
camera encodes as digital values. Camera optics, all the filters between the
scene and the sensor, the sensor itself and the camera software all distort the
recorded signal in some way or another. Reinhard et al. [1] define camera
characterization as the process of recovering the relationship between these
scene irradiance values and the pixel encoding produced by the camera.

Reinhard et al. [1] also describe two general approaches for camera char-
acterization. The first approach is based on measuring the response of the
camera to different wavelengths of light. Calculating the mapping from scene
irradiances to camera responses becomes trivial once the spectral sensitivity
of the camera is known. This method requires specialized equipment, but the
measurement process is relatively fast and can be automated. The camera
spectral sensitivity is described in more detail in section 5.3.

The second approach relies on physical color calibration targets. Several
standard color samples are measured under constant illumination using a
spectrophotometer, and images of the color samples are captured using the
camera under characterization. A very common color calibration target Gre-
tagMacbeth ColorChecker is shown in figure 5.1. With enough color samples
and multiple illuminants, a thorough mapping from CIE XYZ values to cam-
era RGB values can be formulated. This method is relatively inexpensive,
but requires manual labor and the potential accuracy is not as good as with
the first approach. It is also worth noting that methods following this second
approach are not able to characterize any spatial variation in the spectral
sensitivity of the camera, unlike methods following the first approach. [1, 25]

The camera characterization system described in chapter 6 is capable
of measuring the spectral sensitivity of a camera directly, so only the first

27
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Figure 5.1: GretagMacbeth ColorChecker color calibration target. Photo-
graph by Richard F. Lyon. [26]

approach of the two is covered in this thesis.
The following sections describe the essential attributes of a camera that

have to be determined to succesfully characterize a camera. The central
attributes are as follows:

• Pedestal signal of the camera, i.e. the output signal level when there is
no input signal.

• Linearity/non-linearity of the output signal relative to the input signal.

• Spatial spectral sensitivity of the camera sensor.

The characterization system under calibration in this thesis can automat-
ically measure these attributes.

5.1 Pedestal

When no light hits the camera sensor, the sensor still produces some non-zero
output signal. Let us call this signal the pedestal signal in this thesis. This
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signal comprises of two main components: bias and dark current. [1, 10, 27]
Bias is a constant offset in the output signal, and it originates from the

detector and amplifier electronics of the sensor. The bias signal of a single
pixel does not variate per se, but the electronics add some random variation
to the output called readout noise. [10, 27]

The dark current is an integration time dependent and temperature de-
pendent signal produced by lattice defects in the silicon detector. In the
absence of incident photons, thermal agitation of the silicon sensor slowly
releases free electrons in the detector, which add to the output signal. Since
the release of each electron is a statistically independent event, the noise
inherent in the dark current signal obeys Poisson statistics. Thus a dark
current signal of x electrons will have a statistical uncertainty of

√
x elec-

trons. At any given temperature, the rate of dark current electrons freed is
constant, but the rate approximately doubles for each 6 degrees Celsius that
the temperature rises. [1, 27]

Figure 5.2 shows the pedestal level and the input photon signal as a
function of time. The output signal level at any time t is the sum of the
photon signal, dark current signal and bias level at that time t. Any changes
in temperature would affect the slope of the dark current signal in the graph.

Figure 5.2: Example pedestal and input signal levels as a function of time.

The pedestal signal, in general, is not uniform over the whole camera
sensor. Both bias and dark current can variate from pixel to pixel due to
manufacturing processes and defects. This spatial variation is called Fixed-
Pattern Noise or FPN, and is often divided into two components: Dark Signal
Non-Uniformity (DSNU) and Photo-Response Non-Uniformity (PRNU). Re-
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gardless of the name, DSNU is used to describe both dark signal and bias
signal non-uniformity. PRNU referes to pixel-to-pixel differences in photode-
tector sensitivity or amplifier gain. [1, 10, 27]

In the ideal case the pedestal signal for each pixel is considered and mod-
eled separately, but usually some compromises have to be made due to data
storage or processing power restrictions. Berry and Burnell [27] suggest mea-
suring the pedestal level by covering the camera to prevent light from hitting
the sensor and exposing images with multiple exposure times, temperatures
and gain levels. Refining the captured data to a spatial model of the camera
pedestal signal depends heavily on the use case, and is outside the scope of
this thesis. Once the pedestal signal is known, it can be subtracted from the
camera output signal to determine the real input signal (the photon signal).

5.2 Linearity

An ideal camera sensor would always exhibit an output signal that is linearly
proportional to the input. Simply put, when the intensity of light seen by
the camera changes by a factor of x, the pixel values of the raw image should
change by a factor of nx, where n is a positive constant. Most digital camera
sensors are fairly linear, but to achieve a high degree of accuracy in color
reproduction, the camera response has to be characterized, and any non-
linearities corrected. [28]

There are multiple ways of determining the linearity of a camera’s in-
tensity response. Vora et al. [29] propose a method where images are cap-
tured under multiple intensities of light, and the intensity is simultaneously
measured using a photometer. The same could be achieved without the pho-
tometer by varying exposure times instead of adjusting the light source, given
that the exposure time control is reliable and accurate, and the light source
stable. Bérube et al. [28] measured the linearity of a camera by capturing an
image with multiple reflectance calibration targets under even illumination.
Once the measurements are done, the camera response can be compared to
the known intensities, and corrected accordingly.

5.3 Spectral sensitivity

Light sensitivity of a camera sensor varies by wavelength. The natural sensi-
tivity of silicon is modified by any filters or coatings on the sensor and optics.
In the common case of an RGB color camera, the pixels are divided into three
groups: red, green and blue, as explained in section 4.2.5. When the spectral
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sensitivity of each pixel group is known, it is possible to calculate the cam-
era response of an arbitrary spectrum without the need of synthesizing the
spectrum in real life and capturing an image of it using the camera under
characterization.

Measuring the spectral sensitivity requires specialized equipment. Rein-
hard et al. [1] suggest using a radiance meter and a monochromator to mea-
sure the spectral sensitivity. A monochromator is a device that is capable
of emitting light at a single user-specified wavelength at a time. The pro-
grammable light source that is part of the system under calibration (see sec-
tion 6.1.1) in this thesis is capable of acting as a monochromator, in addition
to producing any other arbitrary spectrum.

Using these devices it is possible to step through the whole wavelength
range of visible light, showing the camera only one wavelength of light at a
time and simultaneously measuring the monochromator intensity with the
radiance meter. Using the data captured using both the camera and a radi-
ance meter, a very accurate model of the camera spectral sensitivity can be
produced. [1]

Since the camera characterization system under calibration in this thesis
is built to characterize very small camera modules for smartphones and other
mobile devices, special attention must be paid to mobile camera specific
problems described in section 4.4. All cameras and optical assemblies suffer
from vignetting (also called shading). With most cameras this only affects the
amount of light reaching the sensor, but not the spectral power distribution.
This is called luminance shading. For very small camera modules with steep
chief ray angles vignetting also changes the spectral sensitivity of the sensor.
An example of this spatial variation in spectral sensitivity is shown in figure
5.3. The phenomenon is called color shading. [18]

Traditionally luminance and color shading has been characterized by cap-
turing images of uniformly illuminated test charts or the inside of an inte-
grating sphere under various illuminants. These are called flat field images.
Figure 5.4 shows an example of a flat field image. The effects of color shading
are clearly visible as color non-uniformity over the image. Since the majority
of color shading is caused by bandpass shift of the infrared cutoff filter as a
function of incidence angle, color shading is very dependent on the spectrum
of the illuminant [18]. If an illuminant carries no power in the wavelengths
where the infrared cutoff filter bandpass variates, color shading will not be
visible under that particular illuminant. In practice, flat field images for all
common light sources have to be captured to correct color shading in all
normal circumstances.

This problem can be sidestepped by measuring the spectral sensitivity
of the camera spatially, i.e. as a function of location on the sensor. Im-
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Figure 5.3: Example of a typical mobile camera module spectral sensitivity.
Solid lines show the sensitivity measured at the center of the sensor, and
dashed lines show the sensitivity measured near one corner of the sensor.
The colors of the lines correspond to red, green and blue filters of the color
filter array on the sensor.

ages equivalent of flat field images under any spectrum can be synthesized
when the spectral sensitivity is known. Due to fabrication defects and sensor
microlens variation the spectral sensitivity can significantly vary even pixel-
to-pixel, and this can be diagnosed and corrected if the spectral sensitivity
is known spatially. [1]
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Figure 5.4: Example image of camera color shading. Photograph from I3A
CPIQ White Paper. [18]



Chapter 6

Characterization system

This chapter describes the camera characterization system under calibration
and documents the components used to build it. The structure of the char-
acterization system is fairly simple. The system consists of a programmable
light source connected to an integrating sphere, a spectrometer measuring
the light from the integrating sphere, and a camera platform. The devices
are controlled with an ordinary personal computer. The system is visualised
in figure 6.1.

Figure 6.1: Structure of the characterization system.

The light source controlled by the PC produces the synthetic light spec-

34
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trums needed for characterization work, and feeds them to the integrating
sphere. Both the camera platform and the spectrometer look inside the in-
tegrating sphere. By using a feedback loop with the spectrometer and the
light source it is possible to achieve the wanted spectrum very precisely.
This, however, requires careful calibration of the spectrometer used. Details
of the calibration work are shown in chapter 7. After the correct spectrum
has been achieved, the computer controlled camera platform captures the
necessary characterization images.

6.1 Available devices

This section describes all the different devices used to build the camera char-
acterization system.

6.1.1 Programmable light source

The Googh & Housego OL 490 Agile Light Source [30, 31] is a programmable
light source, powered by a xenon arc lamp and a Digital Micromirror Device
(DMD) used to synthesize any light spectrum within the bounds of the xenon
arc lamp spectrum [32]. The OL490 connected to a xenon lamp and a power
source is pictured in figure 6.2.

Figure 6.2: The Gooch & Housego OL490 Agile Light Source. Image by
Gooch & Housego. [30]

The DMD consists of an array of MEMS-controlled micromirrors [32].
The incoming light passes through a diffraction grating, which disperses the
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light into separate wavelengths. The dispersed spectrum lands on the mi-
cromirror array and can then be selectively dimmed by controlling the angle
of the micromirrors. [31]

6.1.2 Spectrometers

The characterization system itself contains only one spectrometer (Ocean Op-
tics USB2000+), but the reference spectrometer used for calibration (Photo
Research PR-650) is also documented here.

The Ocean Optics USB2000+ Miniature Fiber Optic Spectrometer is a
compact, general-purpose spectrometer. The device is shown in figure 6.3.
It is used to actively monitor the light source output in the characterization
system. The device includes built-in EEPROM memory bank for calibration
data. The calibration data includes stray light compensation, wavelength cal-
ibration and linearity calibration coefficients. See chapter 7 for more details
about device calibration. [33]

Figure 6.3: Ocean Optics USB2000+ miniature spectrometer. Image by
Ocean Optics Inc. [33]

The PR-650 SpectraScan Colorimeter in figure 6.4 is a portable spot
spectroradiometer by Photo Research Inc. The spectrometer sensor is a 128
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pixel linear CCD detector. The device output ranges from 380 nm to 780
nm at a 4 nm resolution. The measuring field of the device is 1◦. [34]

Figure 6.4: The Photo Research PR-650 SpectraScan Colorimeter. Image by
The Photo Research Inc. [34]

The PR-650 spectrometer was used as a calibration reference for the rest
of the devices. However, the calibration system software supports using an
arbitrary spectrometer as a reference device, as long as it can be controlled
using Mobile Imaging Playground software environment. The control soft-
ware and Mobile Imaging Playground are described in detail in sections 7.6
and 7.6.1 respectively.

6.1.3 Integrating sphere

An 8.2” Gigahertz-Optik UM integrating sphere [35] is connected to the
programmable light source to provide a very uniform light intensity for the
whole field of view of the camera module.

6.1.4 Camera control

The camera modules are controlled with a Scooby2 Platform [36] by ATRA
Vision Inc. Scooby2 is a modular platform designed for controlling MIPI and
SMIA compatible camera modules over an IEEE1394 FireWire connection.
Mobile Industry Processor Interface (MIPI) and Standard Mobile Imaging
Architecture (SMIA) are sets of standard specifications defining various as-
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pects of how to communicate with mobile camera modules [37, 38]. The
Scooby2 platform is pictured in figure 6.5.

Figure 6.5: The ATRA Vision Inc. Scooby2 Platform. Image by the ATRA
Vision Inc. [36]

6.1.5 Characterization software

The control software for the camera characterization system runs on an or-
dinary Windows PC. The software automatizes the image capturing part of
the characterization process described in chapter 5, and is also able to do a
few other proprietary measurements developed at Nokia/Microsoft. Further
details of the software are out of the scope of this thesis.



Chapter 7

System calibration

When the camera characterization system is under calibration, the camera
platform is replaced with a reference spectrometer. Otherwise the character-
ization system is kept intact. A diagram of the calibration setup is shown in
figure 7.1.

Figure 7.1: Structure of the calibration setup.

Since the programmable light source spectrum is iteratively corrected
based on the feedback received from the spectrometer, the accuracy of the
system is only dependent on the accuracy of the used spectrometer. Sensors

39
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on most modern spectrometers are based on the same CCD/CMOS tech-
nology as digital cameras, so calibrating a spectrometer is very similar to
characterizing a camera.

Zwinkels [39] suggests the following calibration steps for a spectoradiome-
ter:

• Pedestal calibration

• Wavelength calibration

• Spectral intensity calibration

Linearity of the device response must also be verified and possibly cor-
rected. All the other calibration phases assume linearity of the data. [39]

Before proceeding with the calibration, it must be ensured that the in-
strument to be calibrated is stable. Perhaps the most common reason for
instability is the changing temperature of the measurement device or the
reference target [39].

7.1 Traceability

The calibration of the characterization system components must be traceable
to well known calibration standards. This means that it should be possible
to relate the result of measurement to a (national or international) calibra-
tion standard through an unbroken chain of comparisons. An estimate of
calibration uncertainty should also be included in the trace.

In the case of this thesis, the reference device Photo Research PR-650 [34]
is used as a reference standard, and Photo Research guarantees that their
devices are traceable to calibration targets or devices used by the National
Institute of Science and Technology (NIST), called NIST calibration stan-
dards. Photo Research reports an estimated uncertainty of ±2% for spectral
measurements with their devices [40].

7.2 Pedestal calibration

Pedestal level (also called zero error by Zwinkels [39]) refers to the signal
produced by the measurement device when there is no input signal. This
case is identical to the pedestal level of a camera, as described in section 5.1.
In the case of a spectroradiometer the input signal is the amount of light
hitting the sensor. If the pedestal level is temporally stable, it can simply be
measured and subtracted from the actual measurement data. [39]
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The pedestal level of a spectroradiometer can be measured by preventing
any incident light from reaching the sensor, and by recording the output
signal of the device. The pedestal of a digital spectoradiometer consists of
the inherent bias level of the sensor and the dark current signal accumulated
over the integration time. Because of the dark current signal, the pedestal
level is dependent on the length of the integration time. [1, 10]

The pedestal level of the instrument under calibration—Ocean Optics
USB2000+—varies with temperature, but the instrument does not contain a
temperature regulation system, so creating a pedestal model as a function of
wavelength, integration time and temperature is difficult. For the character-
ization system, the problem has so far been solved by repeatedly measuring
the pedestal right before each actual measurement. The programmable light
source has a physical shutter which can be used to block any light from
entering the integrating sphere during the pedestal level measurement. An
average of these pedestal level measurements can then be subtracted from
the actual measurements to get rid of the cumulative error introduced by the
pedestal in the spectrum.

7.3 Linearity calibration

Accuracy of spectral measurements requires that the output signal of the
detector is linearly proportional to the input signal. Often this is not the
case in real life, so the nonlinearity has to be measured and compensated
by calibration if necessary. Linearity of the sensor can be determined by
measuring a stable light source with varying integration times. The sensor
response should be linearly proportional to the integration time.

The device under calibration—USB2000+—has built-in linearity correc-
tion, which is implemented as a 7th degree polynomial correction function.
The corrected output O is calculated by dividing the input signal I with the
correction function fc, as shown in equation 7.1. [41]

O =
I

fc(I)
(7.1)

The correction function can be thought of as the relative sensor response
as the function of the input signal level. In the ideal case the sensor response
to a certain light flux does not depend on the current input signal level, so
in that case the correction function fc = 1. In real life the sensor response
is usually lower near the extremes of the sensor dynamic range, i.e. when
the sensor element is nearly empty of charges or nearly full. Examples of a
perfect response and a normal response are shown in figure 7.2.
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The polynomial correction coefficients are stored in the device memory.
The built-in correction assumes that the linearity does not vary as a function
of wavelength, so the device provides the same linearity correction for all
wavelengths. [41]

(a) Perfectly linear sensor response. (b) Normal sensor response.

Figure 7.2: Example sensor responses and their corresponding non-linearity
correction (NLC) functions.

7.4 Wavelength calibration

Wavelength calibration is done to ensure that the spectrometer output wave-
lengths actually correspond to the actual wavelengths of the measured light.
The wavelength accuracy can be verified by taking spectral measurements of
light sources with very accurately known spectral peaks. The wavelengths of
the known peaks can then be compared with the spectrometer output, and
used to correct for any deficiencies.

Several commercial light sources for wavelength are available, such as the
Optronic Laboratories OL 700-24 Wavelength Calibration Source [42]. How-
ever, to keep the characterization system setup intact during the calibration
procedure, the programmable light source was used to synthesize a suitable
calibration spectrum. Since the wavelength range of the instrument is cal-
ibrated to match the reference device, the exact calibration spectrum does
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not matter. A very accurately known and stable calibration light source is
only needed when the calibration is done without any reference devices.

The calibration spectrum was synthesized so that it contained a narrow
peaks with 10 nanometer spacing. This resulted in 19 peaks in the range
visible to the PR-650 spectroradiometer. USB2000+ raw measurement data
of the wavelength calibration spectrum is shown in figure 7.3.

Figure 7.3: The wavelength calibration spectrum synthesized with the pro-
grammable light source and measured with USB2000+.

The USB2000+ spectoradiometer contains built-in wavelength calibration
system and memory for the calibration data. Each pixel in the linear CCD
sensor of the device corresponds to some specific wavelength. The device uses
a third-order polynomial to convert raw digital values to actual wavelengths.
The calibration polynomial is shown in equation 7.2, where the λp is the
calibrated wavelength for each pixel p on the spectroradiometer CCD sensor.
I is the intercept of the polynomial, which translates to the wavelength of
the first pixel, whose index p is 0. Cn are the calibration coefficients. [41]

λp = I + C1 p+ C2 p
2 + C3 p

3 (7.2)

Figure 7.4 shows the effects of the different calibration coefficients to the
resulting spectrum. If λp = p, the assigned wavelength for each pixel of the
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sensor would be the index of the pixel, meaning that the first pixel (p = 0)
would correspond to the wavelength of 0 nanometers, the second pixel to 1
nanometers and so forth. In the second plot the wavelengths are offset by I
and scaled by C1 to roughly match the wavelengths of the reference device
and the device under calibration. In the two subsequent plots the terms C2 p

2

and C3 p
3 are added to accurately map the pixel indices to real wavelengths.

Due to the fairly sparse 4 nm spectral resolution of PR-650 and the narrow
spectral peaks in the calibration spectrum, just choosing the local maxima
is not enough to determine the peak locations accurately. The peaks are
located by first finding the 19 brightest local maxima in the spectrum, and
then fitting second-degree polynomials to the neighbourhoods of the maxima.
The peaks of the polynomial curves provide fairly accurate estimates of the
spectral peak locations. To lessen the impact of noise on peak finding the
spectrum is smoothed with an average filter before peak finding.

Based on the measured peak locations for both the device under calibra-
tion and the reference device, the wavelength calibration polynomial can be
fit to the data using least squares regression.

7.5 Spectral intensity calibration

The purpose of spectral calibration is to establish a relative spectral response
of the instrument under calibration. The spectral response can be achieved
by measuring a known light source with the device and adjusting the device
output based on the known spectrum. [43]

Measuring a known calibration spectrum Scal(λ) using an uncalibrated
instrument with an unknown spectral response of R(λ) results in an uncal-
ibrated output of Ocal(λ), as seen in equation 7.3, where λ represents the
wavelength of light. It is assumed that the pedestal level of the device is sub-
tracted from the output of the device under calibration, and the wavelength
calibration is done.

Ocal(λ) = Scal(λ)×R(λ) (7.3)

The wavelength-dependent calibration coefficients C(λ) can be obtained
by dividing the known calibration spectrum Scal(λ) with the uncalibrated
output data Ocal(λ), as presented in equation 7.4. The calibration coefficients
are device-specific.

C(λ) =
Scal(λ)

Ocal(λ)
(7.4)
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Better
correction 
results

Maximum 
residual: 580 nm

Maximum 
residual: 50 nm

Maximum 
residual: 10 nm

Maximum 
residual: 0.18 nm

Figure 7.4: Visualization of the effects of the different wavelength calibration
coefficients to the end result.
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Once the calibration coefficients C(λ) have been derived from the spectral
response R(λ), the coefficients can be used to calibrate raw output data O(λ)
obtained in equation 7.5.

O(λ) = U(λ)×R(λ) (7.5)

The unknown spectrum U(λ) is extracted by multiplying the output data
with the calibration coefficients C(λ) as in equation 7.6.

U(λ) = O(λ)× C(λ) (7.6)

To achieve sufficient signal-to-noise ratio in the spectral measurements,
the integration time IO of the spectroradiometer is varied. To make the cal-
ibration coefficients independent of integration time the raw spectral output
of the device under calibration must be normalized by dividing the signal
with the exposure time.

When the integration time IO is taken into account, the equation 7.4 takes
the form of equation 7.7. The final calibrated spectrum U(λ) is calculated
then as shown in equation 7.8.

Cnorm(λ) =
Scal(λ)
Ocal(λ)
IO

=
IO Scal(λ)

Ocal(λ)
(7.7)

U(λ) =
O(λ)× Cnorm(λ)

IO
(7.8)

In reality the device output for each wavelength is affected by spectral
contents of the neighbouring wavelengths because of finite optical resolution.
Compensating for this is called bandpass correction. There are multiple
methods for bandpass correction [44–46], but they are computationally very
expensive and are prone to introducing false artefacts into the corrected
spectrum. They are also complex to implement. Because of these downsides,
they are not dealt with in this thesis. To simplify calculations, it is assumed
that the spectral intensity calibration coefficients for each wavelength are
independent of their neighbours.

7.6 Software

The calibration system control software was developed on top of Mobile Imag-
ing Playground (MIP), a testing and visualization platform for image and
video processing algorithms developed by Nokia. The Scooby2 Platform was
already supported by MIP, but the light source and spectrometer controls



CHAPTER 7. SYSTEM CALIBRATION 47

had to be implemented separately as MIP plugins. MIP is described in de-
tail in section 7.6.1. The software system built in this Master’s Thesis is
described in 7.6.2.

Many of the available devices had some sort of support for the Microsoft
.NET framework [47], which led to the use of the framework and the pro-
gramming language C# [48] developed by Microsoft specifically for the .NET
environment. MIP is also implemented with C# and .NET.

7.6.1 Mobile Imaging Playground

Mobile Imaging Playground (MIP) is a Nokia-based testing/development
platform for image and video processing algorithms, developed by Jeremias
Raime, Aleksi Knuutila and Bartek Pawlik. MIP is developed completely in
C# and the Microsoft .NET environment. Because MIP facilitates making
custom modules for the software, controlling any kind of devices via MIP is
very easy.

On a concept level, MIP is very similar to National Instruments LabVIEW
[49] and MathWorks Simulink [50], providing a graphical “playground” and
numerous intercompatible modules, which the user can drag and drop to
easily build a custom system to achieve a specific goal. These arrangements
of MIP modules and their connections can then be saved as playground files.
The graphical user interface of MIP is shown in figure 7.5.

Figure 7.5: The Mobile Imaging Playground graphical user interface.

Most of the user interface is occupied by the playground, where the user
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can drag and drop MIP modules and draw connections between module in-
puts and outputs. All available modules are categorized and listed on the
right edge of the user interface.

All MIP modules can have both inputs and outputs, which they use to
receive and send data from module to module. MIP modules are divided into
three groups based on the number of inputs and outputs. Source modules
have one or more output, but no inputs. Target modules only have inputs,
but no outputs. Filter modules have both inputs and outputs. The different
module types are listed in table 7.1.

Table 7.1: Summary of MIP module types.

MIP Module type Inputs Outputs
Source No Yes
Filter Yes Yes
Target Yes No

7.6.2 Calibration system software

The whole calibration system was implemented as collection of MIP plugin
modules. Each device is represented by a separate plugin, as are different
calibration calculations. The modularity of MIP makes extending the system
and reusing any components later very easy. Both spectrometers and light
sources implement shared interfaces, so individual devices can be changed
without affecting the rest of the system.

Different phases of the calibration process were implemented as individual
playgrounds in MIP.



Chapter 8

Verifying calibration results

This chapter presents the results of the automated calibration process with
estimated uncertainties. Section 8.1 introduces several metrics that can be
used to estimate differences between spectra, in this case the device under
calibration and the reference device. The actual calibration data is presented
in section 8.2. Finally in section 8.3 the accuracy of the calibration method
is evaluated using the metrics presented in section 8.1.

8.1 Spectral difference metrics

There are multiple metrics in use to evaluate differences or similarities be-
tween spectral measurements. In this section the following metrics are de-
scribed:

• Root mean square error (RMSE) and its variants [51, 52]

• Goodness-of-fit coefficient (GFC) [51, 53]

• Euclidean distance (ED) [54]

• Spectral Angle Mapper (SAM) [54]

All the described methods assume identical sampling for both spectra
being compared. For equations 8.1–8.6 S1 and S2 are the spectra under
comparison, and λ is the wavelength.

Root mean square error (RMSE) is a statistical metric used to evalu-
ate the difference of two discretely sampled signals. RMSE is very easy to
calculate and simple to understand, but there are no hard rules on what
constitutes an acceptable difference and what does not. Equation 8.1 shows

49
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how RMSE is calculated. RMSE is in same units as S1 and S2. The smaller
the RMSE values are, the better the match between the two spectra.

RMSE =

√∑
λ(S1(λ)− S2(λ))2

n
(8.1)

RMSE can be converted to relative units by normalization. The two most
common ways to do this are called Normalized Root Mean Square Error or
NRMSE, and Coefficient of Variation of the RMSE or CVRMSE. The defini-
tions of RMSE and CVRMSE are shown in equations 8.2 and 8.3, respectively.
S̄1 in equation 8.3 refers to the mean value of S1.

NMRSE =
RMSE

max(S1)−min(S1)
(8.2)

CVRMSE =
RMSE

S̄1

(8.3)

Goodness-of-fit coefficient (GFC) is a metric proposed by Romero et al.
[53]. GFC is described in equation 8.4. GFC values range from 0 to 1, where
1 indicates a perfect match. Romero et al. [53] found that GFC ≥ 0.995
means the spectral match is colorimetrically accurate and when GFC ≥ 0.999
the match can be considered very good. For GFC ≥ 0.9999 the match is
excellent.

GFC =
|
∑

λ S1(λ)S2(λ)|√
|
∑

λ S1(λ)2|
√
|
∑

λ S2(λ)2|
(8.4)

Euclidean distance (ED) is a simple straight-line distance between vectors
S1 and S2, which are formed from the spectral radiance samples of S1 and
S2. ED is described formally in equation 8.5. The smaller the Euclidean
Distance between the two vectors is, the better the match.

ED = ‖S1 − S2‖ =

√∑
λ

(S1(λ)− S2(λ))2 (8.5)

The usefulness of ED depends on the situation. If the shape of the spectral
power distribution of the spectra is identical, but the absolute radiance is
different, ED will have large values. ED can be used if the absolute value of
the spectra is important.

Spectral Angle Mapper (SAM) addresses some of ED’s shortcomings by
only comparing the angle between vectors S1 and S2, so scaling the absolute
radiance of the spectra does not affect SAM, if the spectral power distribution
shape stays the same. SAM is defined in equation 8.6. The smaller the angle



CHAPTER 8. VERIFYING CALIBRATION RESULTS 51

between the two spectrum vectors is, the better the shapes of the spectra
match.

SAM = arccos(
S1 · S2

‖S1‖‖S2‖
) (8.6)

If both S1 and S2 are unit vectors, it can be shown that ED = 2 sin(SAM
2

).
When SAM is small, 2 sin(SAM

2
) ≈ SAM . It is also worth noting that SAM =

arccos(GFC). [54]
Because of this simple relationship between SAM and GFC, we can use

the GFC limits found by Romero et al. [53] to formulate acceptable limits
for the SAM metric too. The corresponding limits for GFC and SAM are
shown in table 8.1.

Table 8.1: Corresponding GFC and SAM quality limits.

Limit GFC SAM
Accurate 0.995 0.100
Very good 0.999 0.0447
Excellent 0.9999 0.01414

8.2 Results

For each the calibration phase the measurements were repeated 10 times to
statistically analyze the uncertainty of the calibration, with the only excep-
tion being the pedestal level measurement. The pedestal level measurements
were repeated 20 times, due to the weak nature and low signal-to-noise ratio
of the pedestal signal.

All the uncertainties in this section are reported as the standard error
of mean (SEM) multiplied with the coverage factor k = 2 to make the un-
certainty correspond to a 95% confidence interval, as recommended by the
Joint Committee for Guides in Metrology (JCGM) [55]. SEM is estimated
from the standard deviation and number of the instrument measurements,
as shown in equation 8.7.

SEM =
σ√
N

(8.7)



CHAPTER 8. VERIFYING CALIBRATION RESULTS 52

Uncertainty is then propagated to the calibration data with the assump-
tion that the noise present in each instrumental measurement is not corre-
lated with the other instruments. [55]

8.2.1 Pedestal level

Pedestal signal of the USB2000+ instrument was measured by repeatedly
capturing data in total darkness. The shutter of the programmable light
source was closed to prevent any light from entering the integrating sphere.

The pedestal signal of the device under calibration is always a very weak
signal, and the signal-to-noise ratio is poor. To minimize uncertainty of the
pedestal level, the pedestal measurements are repeated several times. Figure
8.1 shows the decline of the pedestal uncertainty as a function of measurement
times.

Figure 8.1: USB2000+ pedestal level uncertainty as a function of the number
of measurements.

Uncertainty stops declining significantly after 40-50 measurements. For
this calibration study 20 repetitions were used as a compromise between
uncertainty and total measurement time. Even with 20 repetitions the un-
certainty is very small.

Figure 8.2 shows the average pedestal level of the USB2000+ instrument
with various integration times. Pedestal correction is done before any of the
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other calibration phases, so the pedestal is measured in device-dependent raw
counts coming from the spectrometer sensor. For short integration times the
pedestal level stays fairly constant over all wavelengths, and thus easy to
correct. A significant static pattern starts to arise when integration times
reach 1000 milliseconds or more.

USB2000+ features a built-in pedestal correction, which subtracts a con-
stant value from the output signal. The correction still leaves the static error
pattern at long integration times. The constant correction value is based on
pedestal level measurements a few shielded pixels on the edge of the sensor.
Some residual pedestal signal is still left after internal pedestal correction.
The error for a single wavelength is very small. However, many color-related
operations—such as calculating tristimulus values of the spectrum — involve
summing over all the measured spectrum samples, causing any small system-
atic errors to accumulate and become significant.

Figure 8.2: Ocean Optics USB2000+ pedestal level as a function of integra-
tion time and wavelength.

The device under calibration has no temperature regulation, so the pedestal
is very difficult to model accurately. To counter this during characterization,
the pedestal level is repeatedly measured right before each actual measure-
ment. This gives us a fairly accurate pedestal model to use.

Temporal stability of the pedestal level was examined by repeating 100
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millisecond measurements over a two-minute period right after switching on
the device. Repeated measurements heat up the sensor, and may cause
changes in the pedestal level. Any large and rapid changes in the pedestal
level can cause incorrect pedestal correction, when the pedestal level is mea-
sured right before any characterization measurements. Figure 8.3 shows the
average pedestal level of all the sensor pixels over time.

Figure 8.3: Average pedestal level as a function of time for the USB2000+.
Measurements were started right after the device was switched on.

As can be seen from the graph, the mean pedestal level varies only slightly,
and over long time periods. Since the pedestal level is always measured and
compensated for right before any actual measurements, slow changes in the
pedestal will not affect the end result.

8.2.2 Linearity calibration

As explained in section 7.3, the USB2000+ has a built-in non-linearity cor-
rection (NLC) mechanism, which is based on a 7th degree correction poly-
nomial. For linearity calibration the spectral power distribution of the light
source is not important, as long as at least some of the sensor pixels can get
saturated with reasonable integration times. The pure xenon spectrum from
the programmable light source was used for this study. The non-linearity is
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assumed to be identical for all pixels.
An integration time sweep from from 10 milliseconds to 150 milliseconds

was run with 10 millisecond increments. Only the sensor pixels that were
saturated during the sweep were examined. Dividing the digital values from
the sensor with the corresponding integration times gives us the relative
sensor response for each pixel and intensity level.

The absolute values of the sensor response divided by the integration time
depend on the intensity of the light source at each wavelength. To counter
this, a temporary polynomial is fitted to the response data for each pixel, and
the data is normalized so that the maximum value of the temporary polyno-
mial is always one. The maximum value of the polynomial is used instead
of the maximum value of the data itself to reduce the effect of noise. Figure
8.4 shows the response data for three individual pixels, and the temporary
polynomials used to normalize the data.

Figure 8.4: Illustration of how the response for each sensor pixel is normalized
before fitting the final NLC polynomial.

This operation is done for every pixel that reaches saturation during the
integration time sweep, which gives us a big set of data points to use for
fitting the final non-linearity correction polynomial, as shown in 8.5.
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Figure 8.5: Non-linearity correction polynomial fit to integration time sweep
data for the USB2000+.

8.2.3 Wavelength calibration

As described in section 7.4, the wavelength calibration of the USB2000+ was
determined by producing a comb-like spectrum with the programmable light
source, and measuring it with both the USB2000+ and the referenced device
PR-650. A 3rd degree polynomial was then formed to match the wavelength
samples of USB2000+ to the reference device, as shown in figure 8.6(a). The
resulting coefficients are shown in table 8.2.

Table 8.2: Wavelength calibration coefficients.

Coefficient Coefficient value
I 178.176530
C1 0.379501970
C2 -1.47216943e-05
C3 -2.09760404e-09

Wavelength differences between the calibrated peak locations and the
known peak locations are called wavelength calibration residuals, and are
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shown in figure 8.6(b). The maximum mean residual is 0.18 nanometers,
which is negligible for most purposes, assuming the wavelength calibration
of the reference device is correct.

(a) Output after wavelength calibration. (b) Wavelength calibration residuals.

Figure 8.6: Wavelength calibration results visualized.

8.2.4 Spectral intensity calibration

The spectral calibration procedure described in section 7.5 yields the cali-
bration coefficients shown in figure 8.7(a). The device under calibration and
the reference device were shown the full power ouput of the programmable
light source to maximize signal-to-noise ratio for the measurements.

Figure 8.7(b) shows the relative uncertainty of the spectral intensity cal-
ibration coefficients. The pedestal level of the device under calibration was
estimated by averaging 10 measurements right before the actual calibration,
and subtracted from the subsequent data. The spectrum was then captured
10 times with both the reference device and the device under calibration.
The separate measurements from the reference device were averaged to be
used as the reference spectrum for calibration.

Uncertainty of the intensity calibration is at its highest below 400 nanome-
ters and above 700 nanometers, but the uncertainty is still at negligible
levels—less than 0.4 percent at maximum. The higher uncertainty below 400
nanometers and above 700 nanometers is most likely due to very low signal
of the calibration light source in those wavelength areas.
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(a) Intensity calibration coefficients. (b) Intensity calibration uncertainty.

Figure 8.7: Visualization of the spectral intensity calibration data.

8.3 Accuracy in actual use cases

In normal usage the characterization system synthesizes common lighting
conditions and standard illuminants into the integrating sphere, and then an
image of the inside of the sphere is captured with the camera under char-
acterization. These images are used to provide information for the shading
correction and automatic white balance algorithms of the camera image pro-
cessor.

To evaluate the final performance of the characterization system calibra-
tion, multiple CIE standard illuminants [56, 57] were synthesized with the
programmable light source, and measured both with the newly calibrated
device and the reference device. Names, types and correlated color temper-
atures (CCT) of the verification illuminants are listed in table 8.3.

CCT is defined as the temperature of the black body radiator whose
perceived color most closely resembles that of a given stimulus at the same
brightness and under specified viewing conditions [58]. Illuminants with low
CCT are perceived as orange-reddish, while higher CCT illuminants are more
blue.

The same spectra are very commonly used in the camera characteriza-
tion and verification process. Illuminants A, F11 and F12 represent common
indoor lighting conditions, and D50 and D65 common outdoor lighting condi-
tions. Measurements of the verification illuminants with both the USB2000+
and PR-650 are shown in figure 8.8.

Differences between the reference spectra and the spectra acquired from
the device under calibration were calculated using the metrics introduced in
section 8.1. The results are shown in figure 8.9. The results are also available
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(a) Incandescent illuminant A (b) Daylight illuminant D50

(c) Daylight illuminant D65 (d) Fluorescent illuminant F11

(e) Fluorescent illuminant F12

Figure 8.8: Calibrated USB2000+ spectral radiance output compared to
the reference device PR-650 under various illuminants. Output units are in
spectral radiance (W m−2 sr−1 nm−1).
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Table 8.3: Illuminants used for calibration verification.

Name Type CCT
A Incandescent 2856 K

D50 Horizon light 5003 K
D65 Daylight 6504 K
F11 Fluorescent 4000 K
F12 Fluorescent 3000 K

in numerical form in appendix A. Smaller values indicate a better match for
all metrics except GFC. The closer the GFC values get to 1, the better.

To better evaluate the calibration quality for camera characterization,
we can ignore any spectral differences at wavelengths above 700 nanome-
ters, since the infrared cutoff filters on camera sensors block any light at
such wavelengths from reaching the sensor. For most mobile camera sensors
the cutoff point is in the region of 660–680 nanometers, so 700 nanometers
is a safe choice. The spectral match results with wavelengths of over 700
nanometers ignored are shown in figure 8.10.

As can be seen in figure 8.8, illuminants A and D50 show considerable
error at wavelengths above 700 nm. The error is much smaller for D65 and
non-existent for the fluorescent illuminants. Fluorescent illluminants have
very little signal over 700 nanometers, which might explain the absence of
error. One possible reason for the error could be stray light problems in
either the reference device or the device under calibration. Determining the
root cause for this requires further study. However, as mentioned above,
any error at wavelengths above 700 nm is inconsequential, since the cameras
characterized with the system are not sensitive to those wavelengths.

When limiting the examined wavelengths to 700 nanometers, GFC and
SAM results for illuminants A, D50 and D65 are very good, considering the
limits described in section 8.1. Average GFC of the illuminants A, D50 and
D65 is 0.9997.

Results for the fluorescent illuminants are worse, but are still very close
to being colorimetrically accurate, with an average GFC of 0.9901. As can be
seen in figure 8.8, most of the error comes from the sharp peaks in the spectra.
The device under calibration shows higher peaks than the reference device.
The reference spectra are sampled relatively sparsely—only at 4 nm intervals.
This sparse sampling means that the height of narrow spectral peaks might be
underestimated by the reference device, so in this case the spectral difference
metrics might overestimate the error with fluorescent illuminants.
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Figure 8.9: Match between the calibrated USB2000+ spectra and the ref-
erence spectra measured with the PR-650. Smaller values are better for all
metrics except GFC. GFC values close to 1 indicate a good match.
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Figure 8.10: Match between the calibrated USB2000+ spectra and the refer-
ence spectra measured with the PR-650, when spectral differences at wave-
lengths above 700 nanometers are ignored. Smaller values are better for all
metrics except GFC. GFC values close to 1 indicate a good match.
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RMSE-based metrics and ED mostly agree with GFC and SAM. As men-
tioned in section 8.1, plain RMSE and ED are sensitive to differences in
the absolute values of the spectra under comparison. This can be seen by
comparing the results for F11 and F12, and to some extent D50 and D65.
Maximum radiance values of the F12 spectra used for verification are larger
than the maximum values of F11, giving larger values for RMSE and ED. The
other metrics and visual comparison show roughly equal calibration quality
for both illuminants. Based on this, the normalized variants of RMSE—
CVRMSE and NRMSE—seem better suited for comparison of spectra than
plain RMSE.



Chapter 9

Conclusions and discussion

In this Master’s Thesis the camera characterization system used by Nokia
Corporation—and later on by Microsoft—was documented and calibrated,
and the calibration process was automated and improved. This was done in
such a way that it would interrupt the production use of the system as little
as possible.

The calibration calculations and the devices used for calibration were
integrated into the company’s Mobile Imaging Playground (MIP) software
platform, with each calibration phase as its own playground. The MIP com-
ponents created during the practical work behind this thesis are very modu-
lar, and can easily be reused to — for example—accommodate new devices
into the calibration system, or analyze existing measurement data instead of
data coming directly from the devices.

Multiple metrics were explored for the purpose of evaluating the match
between the newly calibrated USB2000+ and the reference device PR-650.
GFC and SAM proved to be the most useful metrics, since Romero et al. [53]
provided predetermined quality limits for the GFC metric. GFC and SAM
are closely related, so the same limits were easily derived for SAM also. ED
and the RMSE-based metrics agree with GFC and SAM results.

Uncertainties in the different phases of the calibration process were also
evaluated. Measurements were repeated multiple times, making the total
uncertainty of the final calibration negligible. The single biggest limiting
factor is the calibration uncertainty of the reference device.

For incandescent and daylight illuminants the GFC and SAM results are
very good, even bordering on excellent. Narrow peaks in the spectral power
distributions of the fluorescent illuminants F11 and F12 are not perfectly
reproduced. However, as concluded in section 8.3, the used metrics might
overestimate the error for fluorescent spectra, so even they can still be con-
sidered at least colorimetrically accurate.

64
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This thesis shows that running the calibration process without disassem-
bling the characterization system is feasible, and it is also feasible without
compromising calibration quality. It is now possible to run the calibration
process more often than before, and even analyze temporal changes in the cal-
ibration. With the new calibration system, it is no longer necessary to send
measurement instruments to the manufacturer or a third party for costly
calibration. The calibration results still require expert evaluation, but au-
tomation of the measurement process frees a lot of time for the system op-
erators to do more productive work, and they can be sure that the system is
generating correct results.

Based on the results and observations done during this thesis, some future
improvements for the calibration process are proposed below.

In addition to fluorescent light sources, many other modern light sources,
such as LEDs, have narrow peaks in their spectra. The current reference
spectrometer used in this thesis—PR-650—samples spectra sparsely, only
at 4 nanometer intervals. This leaves any narrow peaks in the spectrum
undersampled. In the future using a more densely sampling reference device
would be helpful in improving resolution of the spectral peaks and other high
frequency features.

The implementation and effects of bandpass correction for the spectrom-
eter [44–46] were not investigated in this thesis. Bandpass correction could
possibly be useful in handling narrow peaks in the spectra better, and is
worth looking into in the future.

Effects of stray light in either the reference device or the device under
calibration were not studied in this thesis. After calibration there was some
error with illuminants A and D50 at wavelengths above 700 nanometers, and
one possible cause for this is stray light in one of the devices.

Quality of the characterization system calibration could also be further
evaluated by studying the effects of different calibration errors on the final
image quality of a characterized camera module. Modern image processing
pipelines are very complex, so it might be difficult to interpret results, but
it could be an interesting exercise.

In summary, this study was very interesting, and improved understanding
of the instrument calibration process considerably in the Nokia/Microsoft
camera image quality organization. Goals of the research were met, and
reliability of future measurements was significantly improved by documenting
the calibration process and doing uncertainty analysis.
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Appendix A

Spectral match results

A.1 Wavelengths 380–780 nm

The metrics in this section are calculated based on the whole 380–780 nm
range of the reference device PR-650.

Table A.1: RMSE between the calibrated USB2000+ spectra and the refer-
ence spectra measured with the PR-650.

Illuminant RMSE Uncertainty (k = 2)
A 0.0003649995669906682 4.004507546430755e-07

D50 0.00026100119525957513 5.974443239630429e-07
D65 0.00015983781961025463 4.199425979341055e-07
F11 0.00017404158138439337 5.239526540546178e-07
F12 0.0002879261714602532 7.930894595131497e-07

Table A.2: NRMSE between the calibrated USB2000+ spectra and the ref-
erence spectra measured with the PR-650.

Illuminant NRMSE Uncertainty (k = 2)
A 0.06835275764052232 7.49916324689282e-05

D50 0.05295919746370124 0.00012122615720153653
D65 0.022637465949821155 5.94755126464627e-05
F11 0.042647159195482086 0.00012838938873469896
F12 0.04661499841385323 0.00012840049832827608
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Table A.3: CVRMSE between the calibrated USB2000+ spectra and the
reference spectra measured with the PR-650.

Illuminant CVRMSE Uncertainty (k = 2)
A 0.16831506607774366 0.00018466294572441346

D50 0.0672742290288261 0.00015399395486403287
D65 0.03149243264995155 8.274020513125753e-05
F11 0.3819655702960122 0.0011499083881113684
F12 0.393073661479569 0.0010827170595526102

Table A.4: Euclidean distance (ED) between the calibrated USB2000+ spec-
tra and the reference spectra measured with the PR-650.

Illuminant ED Uncertainty (k = 2)
A 0.012580577271222883 1.3802486681403354e-05

D50 0.008996026301939603 2.0592338080945616e-05
D65 0.005509190208222915 1.4474319370694401e-05
F11 0.005998756604191168 1.8059273070219747e-05
F12 0.009924059577187644 2.7335712506893717e-05

Table A.5: SAM between the calibrated USB2000+ spectra and the reference
spectra measured with the PR-650.

Illuminant SAM Uncertainty (k = 2)
A 0.10389518405053622 0.0002252426743494236

D50 0.06298463655782305 0.00015559868389130156
D65 0.0290812550478318 8.28821574834942e-05
F11 0.139809108343465 0.00036961352190916495
F12 0.14285501696403569 0.0003030430324632032
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Table A.6: GFC between the calibrated USB2000+ spectra and the reference
spectra measured with the PR-650.

Illuminant GFC Uncertainty (k = 2)
A 0.9946076853324352 2.3331757338531823e-05

D50 0.9980170932218065 9.794495002490645e-06
D65 0.9995771615201313 2.4168536088318714e-06
F11 0.9902424466863282 5.151945602214414e-05
F12 0.9898134494875167 4.315970926429243e-05
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A.2 Wavelengths 380–700 nm

The spectral match calculations in this section have been limited to the
wavelength range 300–700 nm to better reflect the calibration quality when
the system under calibration is used with cameras that are not sensitive to
light with wavelengths above 700 nm.

Table A.7: RMSE between the calibrated USB2000+ spectra and the refer-
ence spectra measured with the PR-650, when spectral differences at wave-
lengths above 700 nanometers are ignored.

Illuminant RMSE Uncertainty (k = 2)
A 8.893494879677183e-05 2.623537360476484e-07

D50 8.282762183307551e-05 6.395640166390536e-07
D65 0.00011887623639622034 7.374254647149581e-07
F11 0.00019455906089915764 6.538189922394726e-07
F12 0.00032295452283444156 5.030792904934182e-07

Table A.8: NRMSE between the calibrated USB2000+ spectra and the ref-
erence spectra measured with the PR-650, when spectral differences at wave-
lengths above 700 nanometers are ignored.

Illuminant NRMSE Uncertainty (k = 2)
A 0.020203372216487124 5.9598956917025126e-05

D50 0.019285677693754492 0.0001489168132133706
D65 0.016836170314536002 0.00010443988718515368
F11 0.047819957876351064 0.0001606997716948024
F12 0.05259401895173292 8.19278253365695e-05
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Table A.9: CVRMSE between the calibrated USB2000+ spectra and the
reference spectra measured with the PR-650, when spectral differences at
wavelengths above 700 nanometers are ignored.

Illuminant CVRMSE Uncertainty (k = 2)
A 0.05079563283265563 0.0001498446249629538

D50 0.021248062669792976 0.00016406961839708956
D65 0.021857012009892436 0.00013558569590774665
F11 0.34313090261670953 0.0011530971619530962
F12 0.3558397246905383 0.0005543058962467573

Table A.10: Euclidean distance (ED) between the calibrated USB2000+
spectra and the reference spectra measured with the PR-650, when spec-
tral differences at wavelengths above 700 nanometers are ignored.

Illuminant ED Uncertainty (k = 2)
A 0.002717977751882906 8.017901031576796e-06

D50 0.002531329206677877 1.9545980423310398e-05
D65 0.0036330258253235515 2.2536764611483177e-05
F11 0.005945999925850709 1.998163262820584e-05
F12 0.009869946739833666 1.537481426023817e-05

Table A.11: SAM between the calibrated USB2000+ spectra and the refer-
ence spectra measured with the PR-650, when spectral differences at wave-
lengths above 700 nanometers are ignored.

Illuminant SAM Uncertainty (k = 2)
A 0.029539575260656988 0.0002122835911947575

D50 0.019191931820471315 0.00015205755376587805
D65 0.0211696510738698 0.00013721149865503942
F11 0.13881000264935994 0.00037266081798047093
F12 0.14241934635186465 0.00024562859910659746
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Table A.12: GFC between the calibrated USB2000+ spectra and the refer-
ence spectra measured with the PR-650, when spectral differences at wave-
lengths above 700 nanometers are ignored.

Illuminant GFC Uncertainty (k = 2)
A 0.9995636821652066 6.259841671288693e-06

D50 0.9998158116326948 2.925508821424489e-06
D65 0.9997759077765315 2.9046397702031343e-06
F11 0.9903811790596538 5.142609518420193e-05
F12 0.9898754207817311 3.4905665896562004e-05
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