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Abstract 
Functional neuroimaging investigates the human brain through non-invasive recordings of 
brain signals or non-invasive stimulation. Traditionally, neuroimaging practitioners attempted 
to restrict the subject's behavior throughout the experiment to the point where it could be 
completely characterized by a few simple variables. Although this approach has its merits, it 
considerably limits the possibilities for investigating neural mechanisms underlying the 
organism's function under natural conditions. To overcome this limitation, researchers have 
increasingly focused on neuroimaging studies of subjects involved in complex ecologically-
valid behavioral tasks. The shift from simple to complex behavior in neuroimaging studies 
brings along the demand for: (1) new instrumentation for handling the behavioral aspect of the 
experiment, and (2) new experimental designs that exploit the complexity of the participant's 
behavior instead of trying to suppress it. 
  
The thesis comprises four publications that examine the capacity of video technology to 
provide new instrumentation and explore possibilities for new experimental designs utilizing 
rich behavioural information provided by video, in the context of magnetoencephalography 
(MEG) and transcranial magnetic stimulation (TMS) methods. Additionally, it introduces the 
Helsinki VideoMEG Project---an open-source collaborative effort aimed at providing MEG 
practitioners with video recording and analysis tools. 
  
The first part of the thesis (Publications I and II) examines the feasibility of augmenting TMS 
and MEG experiments with simultaneous synchronized video and audio recordings of the 
participant. The second part of the thesis (Publications III and IV) explores the possibility of 
using audio and video to link the participants in an MEG hyperscanning experiment---
simultaneous recording of MEG signals from two interacting subjects. 
  
The results presented in this thesis demonstrate the feasibility of augmenting TMS and MEG 
experiments with synchronized video and audio recordings. 
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Preface

A preface to a doctoral thesis invariably tells a fairy tale of a Ph.D. stu-

dent that is unlike any human that ever walked on Earth. This mythical

creature spends most of it’s time doing research that is both challenging

and rewarding. Under the encouraging and enlightening guidance of it’s

supervisors it works in the laboratory that offers excellent experimental

facilities, aided by resourceful lab engineers and friendly support person-

nel. In it’s quest for knowledge it receives immeasurable support from

highly skilled and devoted collaborators, whose friendship and advice it

values so dearly. Every now and then the creature shares it’s discoveries

with the rest of the world by publishing scientific papers—the process that

is greatly facilitated by constructive comments from infallibly insightful

reviewers. And, of course, the whole undertaking is made possible by gen-

erous financial help of numerous benevolent research funding agencies.

While I would love to entertain the reader with another masterpiece

of this genre, I am afraid that my fiction-writing skills are by no means

up to the task. Therefore I decided to depart from the time-honoured

tradition of the thesis preface writing by doing something I’ve never seen

done before—using the preface to reflect upon the author’s real experience

as a Ph.D. student. I apologize to the reader for such a grave violation of

his (or her) expectations.

Unlike my counterpart from the fairy-tale world of thesis prefaces, I

could only dedicate a small fraction of my working time to the actual re-

search. Most of my time was wasted doing things that were only tangen-

tially related to science, like preparing grant applications or deciphering

poorly-written articles, which, upon finally being deciphered, turned out
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to have little scientific merit.1 Nonetheless, the real research, however

little time I spent on it, was indeed challenging and rewarding.

Just like the fictional Ph.D. student, I was lucky to have excellent the-

sis advisers. I was equally lucky to have access to world-class research

facilities of the BioMag laboratory at the Helsinki University Hospital,

even though support provided by various hospital bodies was somewhat

less than universally excellent.2 And, naturally, Ph.D. studies offered me

numerous opportunities for collaboration with other scientists, some of

them quite outstanding (whether “outstanding” refers to “opportunities”

or “scientists” depends heavily on the scientist in question).

Finally, my experience with publishing scientific papers and securing

research funding also turned out to be notably different from that of my

imaginary counterpart. (Detailed treatment of the topic is beyond the

scope of this work; for a more comprehensive discussion I would like to re-

fer the reader to numerous ranting posts on disgruntled scientists’ blogs

and cynical cartoons decorating the kitchen walls of any research labora-

tory worth it’s salt.)

I would like to conclude by acknowledging the contributions of all those

who helped me in the enterprise of writing the thesis. I want to express

deep appreciation to my former and current supervisors, Academy Pro-

fessor Risto Ilmoniemi and Professor Lauri Parkkonen, for trusting my

ability to work independently and giving me complete freedom to plan

and conduct my research without imposing any restrictive targets, mile-

stones or deadlines. I am also greatly indebted to my thesis instructor

Docent Jyrki Mäkelä and a key collaborator Academician Riitta Hari for

not trusting my ability to work independently and providing me with a

rigid framework of targets, milestones and deadlines that, embarrassing

as it is, have proven crucial to the progress of my studies. I would like to

thank all of my co-authors and other scientists who collaborated with me

in my research. They all made my life easier; some from the very first day

1It should be noted that not all the scientific publications are worthless, only
the vast majority. A diligent reader of scientific literature every once in a while
happens to come across a paper from which he can actually learn something
new. I myself have enjoyed the pleasure of several such encounters, although I
am somewhat disturbed by the fact that too often the articles worth reading have
titles like “Why Most Published Research Findings Are False” or “Why Current
Publication Practices May Distort Science”.
2For an illustrative example of support offered by the hospital IT department,
the reader is advised to open the text of the novel “The Castle” by Franz Kafka
in his or her favorite text editing software and perform the following modifica-
tions: replace every occurrence of “Castle” with “Helsinki University Hospital”,
“K.” – with “the Ph.D. candidate”, “messenger Barnabas” – with “laboratory en-
gineer Juha Montonen”, and “chief executive Klamm” – with “telecommunication
specialist Kari Koivumäki”.
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of our collaboration, while others – from the moment the collaboration has

ended.

The complete list of people who deserve credit for helping me along the

road leading to this thesis—laboratory engineers, thesis pre-examiners,

administrative assistants and many, many others—is too long to be printed

here without turning the thesis into a phone directory with a small ap-

pendix on neuroimaging at the end. Nevertheless, I would like to express

my gratitude to them all. There are two persons on that list, however,

that I would like to single out; for in their efforts to help me they went far

beyond anything I have expected. They are my good friend and collabora-

tor Dr. Ritva Paetau and a former administrative assistant of the BioMag

laboratory Pirjo Kari. Thank you so much!

It is also worth noting that the research described in this thesis was

to a considerable degree facilitated by the fact that I was able from time

to time to buy myself some food and pay an apartment rent. The credit

for this accomplishment belongs, among others, to HUS Medical Imag-

ing (product development grant M9200TK502), SalWe Research Program

for Mind and Body (Tekes - the Finnish Funding Agency for Technology

and Innovation grant 1104/10), Aalto Brain Center and the European Re-

search Council (ERC Advanced Grant #232946 to Riitta Hari).

Helsinki, May 30, 2016,

Andrey Zhdanov
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1. Functional brain imaging

Functional brain imaging is a broad term. For the purpose of this thesis,

I define functional brain imaging as the study of human brain function

through either non-invasive recordings of brain activity or non-invasive

stimulation with the characteristic time scale ranging from milliseconds

to tens of minutes.

1.1 Brain activity recordings

Functional brain imaging can be performed by recording various signals

that reflect physiological processes in the brain. For example, electroen-

cephalography (EEG) records voltages on the scalp that result from the

electrical activity of neurons (for a review, see Nunez and Srinivasan,

2007). Functional magnetic resonance imaging (fMRI) monitors the dis-

tribution of the oxygenated blood inside the brain, reflecting neuronal

metabolic activity (reviewed by Ogawa and Sung, 2007). Positron emis-

sion tomography (PET) can measure the distribution of a number of dif-

ferent radioactive tracer molecules that reflect different aspects of brain’s

metabolic activity (reviewed by Ollinger and Fessler, 1997). Other com-

monly used functional brain modalities include near-infrared spectroscopy

(NIRS; reviewed by Boas and Franceschini, 2009) and magnetoencephalog-

raphy (MEG; reviewed by Hämäläinen et al., 1993; Cohen and Halgren,

2003).

1.2 Brain stimulation

As an alternative to recording brain activity, one can use non-invasive

stimulation for studying the brain. The most widely used non-invasive

stimulation technique is transcranial magnetic stimulation (TMS), which

13



Functional brain imaging

uses electromagnetic induction to create an electric current inside the

brain without opening the skull (for a review, see Barker and Freeston,

2007).

1.3 General remarks

When talking about functional brain imaging one should keep in mind

that the term “imaging” is somewhat misleading. In many disciplines

imaging means measuring some quantity in a number of spatially dif-

ferent locations, usually regularly spaced, with each measurement being

independent of others. This independence essentially means that imaging

makes no a priori assumptions about the spatial distribution of the mea-

sured quantity. However, not all methods that are commonly referred to

as “functional brain imaging”, comply with this definition. For example, in

EEG recordings, the signals originating from spatially distinct locations

are mixed in a complex way and, in general, are inseparable. Although

numerous methods exist for inferring the underlying spatial distribution

of brain electrical activity (for a review, see Grech et al., 2008), they all

rely heavily on a priori assumptions about the distribution they are try-

ing to estimate, and therefore their estimates of brain activity at different

locations are by no means independent.

Whereas functional brain imaging modalities differ in many respects,

they all focus on the brain properties that change on a time scale rang-

ing from milliseconds to tens of minutes. For comparison, longitudinal

anatomical studies are similar to functional imaging studies in many

respects—both study the brain by measuring certain brain parameters

that change over time. However, unlike functional imaging, the longitu-

dinal anatomical studies track the changes over the periods ranging from

days to years.

Functional neuroimaging is mostly used in basic brain research. Addi-

tionally, it is being increasingly adopted in clinical practice. Clinical ap-

plications of functional neuroimaging include localization of the sources

of epileptic activity in the brain with EEG and MEG, and functional brain

mapping for preoperative planning with MEG, TMS, and fMRI. Func-

tional brain mapping is a process of identifying brain areas that underlie

specific behavioral or cognitive functions, such as production and compre-

hension of speech or motor control of a particular limb.

14



2. Basic principles of MEG and TMS

This chapter introduces the basics of two particular functional neuroimag-

ing modalities—MEG and TMS—that were employed in the research de-

scribed in the thesis.

Human brain consists of large number (estimated 1012) of cells. About

2–10% of these are neurons—intricately interconnected cells that are gen-

erally agreed to be at the core of the information processing in the brain

(Kandel, 1991). The rest are glial cells that are thought to provide sup-

port for neurons and participate in the information processing indirectly.

The principal distinction between neurons and glial cells is the neurons’

ability to fire or generate action potentials—short bursts of electrical ac-

tivity that are believed to be at the core of the information processing in

the brain. As a rough approximation, one can think of each neuron as a

basic information processing unit that receives input represented by ac-

tion potentials of antecedent neurons and performs a simple non-linear

computation that results in the action potential either being produced or

not. The resulting action potential (or the lack of thereof) in turn serves

as the input to subsequent neurons. A neuron communicates the occur-

rence of the action potential to subsequent neurons through connections

called synapses. A single neuron may form synaptic connections with up

to 105 other neurons (Kandel, 1991).

The time that a single neuron needs to receive the inputs, perform the

computation and produce the output is measured in single milliseconds.

This defines the desirable temporal resolution of about 1 ms for functional

brain imaging.

The neurons in the brain are not randomly scattered, but rather orga-

nized into a number of quite elaborate anatomical structures. One such

structure—the cerebral cortex—is of particular interest to MEG and TMS.

The cortex constitutes a large thin sheet of neuronal tissue comprising
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neurons organized in regular patterns. In humans, the cortical sheet

spans a total area of about 2200 cm2 and has a thickness between 1 and

4.5 mm (Brodmann, 1909). The human cortex is folded, resulting in the

iconic pattern of sulci and gyri, and occupies the outermost part of the

space inside the skull. The proximity to sensors or stimulation coils that

can be non-invasively placed on the surface of the head and the relatively

simple regular cellular structure of the cortical tissue make cortex the

favourite target of many functional neuroimaging methods, such as EEG,

MEG, TMS, and NIRS.

2.1 Magnetoencephalography (MEG)

2.1.1 Sources of MEG signals

MEG measures, outside of the head, the magnetic signatures of electric

currents inside the brain (Hämäläinen et al., 1993; Cohen and Halgren,

2003). Although the relation between neuronal activity and the ensuing

magnetic fields is rather complex (Murakami and Okada, 2006; Buzsáki

et al., 2012), it is generally agreed that the magnetic fields observed by

MEG reflect synchronized activity of large populations of cortical neu-

rons. The fields arise from post-synaptic currents—electric currents pro-

duced inside a neuron when it receives a signal from an antecedent neu-

ron through a synapse. The cortex contains large populations of neurons

in which post-synaptic currents flow in the same direction; when a signifi-

cant proportion of neurons in such a population simultaneously receive

signals through their synapses, the magnetic fields of individual post-

synaptic currents add up to the values that can be detected outside of

the head. It has been estimated that simultaneous activation of as few as

10 000 neurons can produce a magnetic field that is strong enough to be

detected with MEG (Murakami and Okada, 2006).

The simplest way to model the sources of MEG signals is in terms of

current dipoles—infinitesimal units of electrical current characterized by

their strength (absolute value of the dipole moment), position and orien-

tation. When a compact population of cortical neurons activate in syn-

chrony, they produce a net magnetic field that can be quite accurately

modelled as a field of a current dipole with location and orientation cor-

responding to the location and orientation of the neurons. In the cortex,
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Figure 2.1. Dipole model for the MEG/EEG signal generation. Adapted from Cohen and
Halgren (2003).

the dipoles are typically oriented normally to the surface of the cortical

sheet. Because of the cortical folding, this does not mean that they are

necessarily oriented normally to the skull (see Fig. 2.1).

In addition to the current of the dipole itself, each dipole induces a dis-

tribution of passive ohmic currents in the brain that close the current loop

so that there is no build-up of charge anywhere in the brain. The spatial

distribution of these so-called volume or return currents is determined

by the dipole’s strength, location and orientation, and by the conductivity

distribution of the brain tissue. Assuming that the latter does not change

over time, the distribution of the volume currents and the total magnetic

field produced by the dipole and the return currents is uniquely deter-

mined by the dipole’s location, orientation, and strength. This gives a rise

to a somewhat confusing convention of omitting explicit mentions of re-

turn currents in the literature. Thus “magnetic field of dipole X” usually

means “the magnetic field of dipole X and that of the associated return

currents”. This convention is used for the rest of the thesis.

The strength of the magnetic field produced by a neuronal population

is proportional to the stength of the corresponding equivalent dipole and

depends on the dipole’s location and orientation (see Fig. 2.1). In the

idealised case of a dipole inside a spherically symmetric conductor, ra-

dial dipoles produce zero field outside of the sphere. This phenomenon is

caused by the return currents producing field that cancels out the field of

the dipole everywhere outside of the sphere. Although a sphere provides

only an approximate model of a human head, the conclusion about MEG’s

lesser sensitivity to radial dipoles holds to a large degree also in real MEG

recordings.

2.1.2 MEG instrumentation

Magnetic fields produced by neuronal currents are extremely weak—on

the order of 10-14 T. For comparison, the Earth’s magnetic field is of the

17
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order of 10-4 T. Thus, recording of neuromagnetic signals requires ex-

tremely sensitive sensors and heavy shielding against environmental in-

terference. Although first MEG experiments employed a room-temper-

ature coil as a sensor (Cohen, 1968), MEG only became practical with

the invention of a superconducting quantum interference device (SQUID)-

based magnetic sensors (Zimmerman and Frederick, 1971; Cohen, 1972).

Modern MEG devices comprise hundreds of SQUID-based sensors lo-

cated over a large part of the subject’s scalp (Hämäläinen et al., 1993;

Ahonen et al., 1993; Cohen and Halgren, 2003). To reduce the environ-

mental interference, MEG measurements are usually conducted inside a

magnetically-shielded room. MEG devices can sample the subject’s neuro-

magnetic fields at frequencies up to several kHz, thus attaining the tem-

poral resolution necessary to resolve the firing of a single neuron. Most

modern MEG devices allow simultaneous recording of EEG and MEG.

2.1.3 Relation between MEG and EEG

Magnetoencephalography is closely related to the much older practice of

electroencephalography, or recording electric voltages from the partici-

pant’s scalp. It is widely agreed that MEG and EEG signals are produced

by the same mechanism—postsynaptic currents of cortical neurons. How-

ever, since the two modalities observe different aspects of the neuronal

current’s signatures, the information they provide is complementary. In

particular, the modalities have different profiles of sensitivity to dipole

orientation. For example, EEG is more sensitive to radial dipolar sources

than MEG, whereas the latter is more selective to the tangential dipoles

(for an example, see Fig. 2.1). It has been demonstrated that each of the

modalities provide information not available from the other and combined

EEG-MEG recordings outperform each of the constituent modalities alone

(Iwasaki et al., 2005; Sharon et al., 2007; Heers et al., 2010).

2.1.4 Applications

MEG is an established neuroimaging modality with commercial MEG

scanners readily available and routinely used in both basic research and

clinical practice. Clinical applications of MEG are dominated by preoper-

ative localization of sources of epileptiform activity in epilepsy patients,

where MEG was demonstrated to provide information that is unavailable
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Figure 2.2. Physics of TMS. A current pulse in the stimulation coil outside of the head
(dark gray) induces changing magnetic field (dashed lines), which, in turn,
causes electric current inside the brain (light gray). Adapted from Hallett
(2000).

from other modalities (Iwasaki et al., 2005; Heers et al., 2010) and is im-

portant for the epilepsy surgery planning (Sutherling et al., 2008).

2.2 Transcranial magnetic stimulation (TMS)

2.2.1 Physics of TMS

TMS is a non-invasive brain stimulation technique that employs a mag-

netic coil positioned close to the head to induce electric currents inside

the brain (Hallett, 2000, 2007; O’Shea and Walsh, 2007). A brief (usu-

ally shorter than 1 ms) pulse of current driven through the coil induces a

time-varying magnetic field that penetrates into the brain (see Fig. 2.2).

According to Faraday’s law, a time-varying magnetic field induces an elec-

tric field, which, in turn, causes electric currents inside the brain.

The geometric distribution of the TMS-induced current inside the brain

depends on the coil geometry and conductivity distribution of the brain

tissue. Out of several coil geometries proposed, the most widely used are

the circular and the figure-of-eight coils. The latter offers the advantage

of a more focused pattern of induced current.

Regardless of coil geometry, the ability of TMS to produce a spatially

compact distribution of current is restricted to the most superficial parts

of the brain. Therefore, most TMS studies restrict themselves to stimu-

lating the cortex.
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2.2.2 Physiological mechanisms of TMS

The physics that describes how TMS induces currents inside the brain is

relatively simple and well-known. However, the mechanisms by which

these currents affect the brain function are much more complicated and

less explored. Depending on stimulation parameters, TMS has been re-

ported to cause either an increase or decrease of neuronal activity. The

exact nature of the underlying physiological processes remains unclear

(Lisanby et al., 2000; Terao and Ugawa, 2002; Di Lazzaro et al., 2004).

2.2.3 Functional brain imaging with TMS

Most functional neuroimaging techniques adopt the experimental para-

digm in which the experimenter manipulates the subject’s behavior and

measures the corresponding changes in the brain activity. TMS puts this

approach on its head by allowing the experimenter to directly manipulate

the brain activity. The functional role of the stimulated part of the brain

reveals itself through the resulting effect either on subject’s behavior or

some physiological variables measured from the subject simultaneously

with stimulation. Examples of such variables include electrical activity

of peripheral muscles measured with electromyography (EMG) and brain

signals recorded with various brain imaging methods.

Despite the technical challenges, TMS has been successfully combined

with many other neuroimaging modalities such as EEG, fMRI, PET, and

NIRS (Ziemann, 2011), combined TMS-EEG experiments (Ilmoniemi and

Kičić, 2010) being by far the most common. Nevertheless, participant’s

behavior remains an important (and sometimes the only available) source

of information in TMS experiments. For example, the TMS procedure for

localizing parts of the cortex involved in speech production (Pascual-Leone

et al., 1991) depends critically on detecting speech disruptions, which can

be only performed by examining the behavior.

2.2.4 Navigated TMS (nTMS)

Obviously, many applications of TMS depend critically on the ability to ac-

curately localize brain structures receiving the stimulation. A variation

of TMS procedure that provides such a localization is known as a navi-

gated TMS or nTMS (for a review, see Ruohonen and Karhu, 2010). nTMS

tracks positions of the stimulation coil and the subject’s head using, for ex-
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ample, optical tracking technology. Registration of pre-acquired anatom-

ical (e.g. MRI) image of the brain to the head surface using anatomical

landmarks allows nTMS to estimate the spatial distribution of the stim-

ulation electric field with respect to the brain anatomy. nTMS visualizes

the stimulation field overlayed on the anatomical image in real time dur-

ing the stimulation procedure, providing guidance to the operator.

2.2.5 Applications

Like MEG, nTMS is an established neuroimaging method widely used

in research and clinical practice. The most common clinical application

of nTMS is a preoperative localization of the motor cortex—cortical areas,

whose resection might result in a motor deficit in the patient. nTMS is the

only non-invasive brain imaging method that shares the basic principle of

operation with direct cortical stimulation—the current gold standard of

the clinical motor-cortex localization. A high degree of agreement has

been shown between the the two methods (Picht et al., 2009, 2011).
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3. Neuroimaging of complex behavior

3.1 Behavioral aspect in functional neuroimaging: from simple to
complex

One of the main goals of the neuroscience is to understand the neural

mechanisms underlying organism’s behavior. Functional neuroimaging

typically approaches this goal by investigating relations between two sets

of variables: (1) brain activity (parameters of brain measurements or

brain stimulation), and (2) behavior-related variables that describe the

stimuli presented to the participant and/or participant’s actions. Although

there is a considerable disagreement among behavioral biologists over the

precise meaning of the term “behavior” (and, in particular, over the ques-

tion whether passive perception of stimuli that does not result in any ac-

tion constitutes behavior; for a discussion, see Levitis et al., 2009), in the

context of the thesis I use that term to refer to both perception of the

stimuli and the actions of the subject.

The classical approach to neuroimaging attempts to attain as much con-

trol over the subject’s behavior as possible, making sure that only few

parameters of interest vary during the experiment, and that they vary

in a controlled fashion. For example, in an imaging study, the experi-

menter may try to ensure that all the stimuli presented to the subject

are identical in every respect (presentation duration, size, spatial spec-

tral content, etc.) except for one or two carefully controlled parameters

of interest, such as the emotional valence of stimuli. With this approach,

the requirements for the instrumentation handling the behavioral side of

the experiment are quite straightforward: it should provide for presenting

predetermined stimuli sequences in different sensory modalities to, and

registering simple responses (e.g, button presses) by the subject.

23



Neuroimaging of complex behavior

The underlying philosophy of systematic and rigorous control of the ex-

perimental conditions, which is customary in many natural sciences, is

motivated by the pursuit of clarity and simplicity in the interpretation

of the results. However, these clarity and simplicity come at the price of

restricting the research to very simple, unnatural behavior, which con-

siderably limits its ability to explain the neural mechanisms underlying

the organism’s function under natural conditions. Electrical recordings

from single neurons have demonstrated that models of brain function

derived under simplified experimental conditions might perform poorly

at explaining the brain’s operation in natural environment (Rieke et al.,

1995; David et al., 2004; Felsen and Dan, 2005).

An alternative to the classical approach suggests forfeiting some of the

control over the experimental conditions (and the ensuing straightfor-

wardness of the interpretation of the results) in favour of being able to

probe neuronal mechanisms of more complex naturalistic behavior. The

new approach calls for neuroimaging experiments with subjects involved

in complex, naturalistic (also referred to as "ecologically valid") behavior

such as maintaining a free conversation, and has recently been attracting

an increasing attention (Hasson and Honey, 2012; Hari et al., 2015).

In addition to basic research, the need to handle complex behavior in

neuroimaging experiments also arises in clinical practice. Clinical appli-

cations normally do not allow such behavior-control techniques as pre-

selecting subjects based on their ability to conduct the behavioral task

or discarding subjects with excessive movements. Additionally, complex

uncontrollable behavior (such as complex movements during an epileptic

seizure) might constitute an integral part of the very patho-physiological

state that is being examined in the neuroimaging experiment.

The transition from the classical framework of simple controlled behav-

ior to that of complex, naturalistic one necessitates radical changes in two

aspects of the neuroimaging experiment:

1. Experimental strategies. The new approach requires different strate-

gies in terms of experimental design and data analysis, suitable

for experiments that debar straightforward interpretation of brain

imaging or stimulation parameters in terms of simple behavioral

categories.

2. Instrumentation. The transition to complex-behavior imaging re-
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quires new instrumentation capable of adequately handling the be-

havioral aspect of the experiment.

Although in principle the question of instrumentation is subordinate to

that of applications, in practice the availability of the instrumentation

can considerably constrain the design of the application. Thus, the two

questions are intricately entangled and have to be solved together.

3.2 Strategies

A number of strategies for complex-behavior neuroimaging have been re-

ported in the literature. This chapter briefly reviews some of them.

3.2.1 One-person experiments

Within the domain of neuroimaging, “one-person neuroscience” or “1PN”

concerns itself with the neuroimaging experiments in which only one sub-

ject is being recorded or stimulated at a time, as opposed to “hyperscan-

ning”, or “two-person neuroscience (2PN)” experiments that involve si-

multaneous recordings of brain signals from multiple interacting subjects.

In a 1PN setting, the most obvious attempt at transitioning from simple

to complex behavior starts with a classical simple-behavior experiment

and proceeds towards making the behavioral aspect more complex and

ecologically valid while trying to preserve the overall experimental frame-

work. One relatively straightforward way to increase the complexity and

ecological validity of the subjects behavior is by using video clips of natu-

ral scenes as stimuli. The experiments of Zacks and colleagues (2001) and

Bartels and Zeki (2004) provide illustrative examples of this approach.

Further development of this idea places the participant in a virtual

reality (VR) environment. The subject is no longer passively receiving

the stimuli, but is actively interacting with the environment (Aguirre

et al., 1996; Maguire et al., 1998; Spiers and Maguire, 2006; Naismith and

Lewis, 2010; Shine et al., 2011). While these experiments accommodate

for subject’s endogenous motor behavior, this behavior is very restricted

and artificial, like button presses or joystick movements.

Despite the use of rich naturalistic stimuli, the experiments described

above still follow the classical approach to neuroimaging, trying to reduce

the complex behavior to a few simple variables before proceeding to in-

vestigate the relation between brain signals and behavior. This reduction
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is performed by various means, such as participants’ verbal reports or

content analysis. One particular method—classifying the behavior into

several discrete categories by a trained expert—is dominant in clinical

practice, such as long-term video-EEG monitoring or preoperative TMS

mapping of the language-related cortical areas.

This forcing of complex-behavior neuroimaging experiments into the

classical framework considerably restricts the experimenter’s possibili-

ties. In a sense, reducing complex behavior to a few manageable variables

defeats the purpose of having it in the first place.

As an alternative to accommodating complex behavior into a classical

neuroimaging framework, the experimenter may try something totally

different—something that does not require characterising the behavior

at all. There is a variety of ways to sidestep the explicit characterization

of behavior. One can look at the correlations across the subjects (intersub-

ject correlations; Hasson et al., 2004), and within the subject across differ-

ent recording sessions and across different temporal structures (Hasson

et al., 2008). Another possibility is to adopt a reverse-correlation approach

similar to the spike-triggered averaging method used in single-cell elec-

trophysiology (Hasson et al., 2004). For a more comprehensive review of

different experimental strategies for complex-behavior neuroimaging, see

Spiers and Maguire (2007).

3.2.2 Hyperscanning

One particular, but very important type of human behavior is social in-

teraction. Traditionally, most neuroimaging studies of social behavior

have adhered to the classical neuroimaging paradigm, where brain sig-

nals are recorded from a single subject following a carefully controlled

but unnatural experimental protocol. More recently, a number of alterna-

tive approaches have been attracting the attention of the research com-

munity (Hari and Kujala, 2009; Dumas, 2011; Dumas et al., 2011; Hari

et al., 2015). A notable example of such an approach is hyperscanning—

simultaneous recording of brain signals from multiple interacting sub-

jects.

Although electrophysiological experiments that can be retrospectively

described as hyperscanning date at least half a century back (Duane and

Behrendt, 1965), it was the fMRI community that first genuinely em-

braced this approach, starting with the seminal work by Montague and

colleagues (2002) that coined the term “hyperscanning”. Though consti-
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tuting an important methodological advance, fMRI-based hyperscanning

is handicapped by its low temporal resolution, which severely restricts the

method’s applicability to many types of social interaction.

More recently, the hyperscanning paradigm has been applied to a num-

ber of other neuroimaging modalities such as NIRS (Cui et al., 2012;

Cheng et al., 2015), EEG (Babiloni et al., 2006; Lindenberger et al., 2009;

Dumas et al., 2010, 2012; Jiang et al., 2012; Sänger et al., 2012), or MEG

(Publications III and IV; Hirata et al., 2014).

3.2.3 Characteristic temporal scales

Virtually any ecologically-valid behavior, whether it is navigating a city

in virtual reality, watching a movie, or playing a musical instrument in

synchrony with a partner, involves events unfolding over timescales as

short as tens of milliseconds. Naturally, this fast behavior must be effec-

tuated by neuronal activity occurring on similar (or faster) timescales. For

instance, in such an exemplary case of ecologically valid behavior as natu-

ral speech perception, the stimuli evolve on the millisecond timescale and

are intricately entangled with various oscillatory processes in the brain

(Giraud and Poeppel, 2012), spanning the frequency range from delta (1–

3 Hz) to gamma (above 25 Hz).

Indeed, in many cases probing the neural mechanisms of such fast be-

havior is the primary reason for shifting from simple to complex behavior

in a neuroimaging experiment. In an illustrative example, Spiers and

Maguire (2006) describe the scientific contribution of their study as fol-

lows: “In this study, we have explored the second-by-second nature of

human thought processes and their underlying brain dynamics . . . This

fine-grained temporal characterisation of the unfolding navigation pro-

cess permits new insights into the roles of specific brain regions that were

inaccessible to previous studies . . . ”. Yet neuroimaging research into this

fine-grained temporal dynamics can be severely impeded by inadequate

temporal resolution of the neuroimaging method. Certainly, it must have

been quite challenging for Spiers and Maguire to “explore the second-by-

second nature of human thought” with the reported fMRI sampling fre-

quency of about 0.25 Hz.

Therefore, neuroimaging research into naturalistic behavior profoundly

requires facilities for recording both the brain activity and the subject’s

behavior on millisecond timescales. This requirement raises the impor-

tance of fast neuroimaging modalities such as EEG or MEG.
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3.3 Instrumentation

Transition to complex-behavior neuroimaging brings along the demand

for instrumentation capable of handling the increased complexity of the

behavioral aspect of the experiment and supporting the new experimental

strategies.

3.3.1 One-person experiments

In the simplest (from the instrumentation perspective) case, the experi-

ment attains ecological validity through the use of complex naturalistic

stimuli while requiring no behavioral response. For example, in the ex-

periment described by Hasson et al. (2004), the subjects were passively

watching a fragment of a Hollywood movie while their brain activity was

recorded with fMRI. This case requires little, if any, modification to the

stimulation setup.

Moving from passive perception of complex stimuli to virtual reality in-

troduces additional requirements for the instrumentation handling the

behavioral aspect of the experiment. The important difference is the ap-

pearance of the endogenous component in the participant’s behavior—it

is no longer predetermined. This development brings along three new

requirements:

1. The instrumentation needs to capture some aspect of the subject’s

endogenous behavior.

2. The stimuli need to be updated in real time in response to the sub-

ject’s behavior.

3. The behavior needs to be recorded in a way that is synchronized with

the neuroimaging device.

In most cases, the first requirement is addressed by employing a very sim-

ple and artificial, but readily available feedback channel, such as a button-

or joystick-based controller (Aguirre et al., 1996; Maguire et al., 1998;

Spiers and Maguire, 2006). Some experiments also capture additional

behavioral variables, such as gaze direction (Spiers and Maguire, 2006),

using standard off-the-shelf equipment. One group resorted to designing

a custom feedback device—MR-compatible foot pedals—to increase the

ecological validity of the subject’s behavior (Naismith and Lewis, 2010;

Shine et al., 2011). While pedals are more ecologically-relevant than a
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typical off-the-shelf MR-compatible controller for the particular research

question—investigating freezing of gait—they still constitute a very arti-

ficial and restrictive way of capturing the subject’s behavior.

In case of virtual reality, the second requirement essentially amounts

to providing a VR environment. Computer games being among of the

most prominent applications of VR, experimenters usually employ a mod-

ified version of a commercial computer game to address this requirement

(Aguirre et al., 1996; Maguire et al., 1998; Spiers and Maguire, 2006; Nai-

smith and Lewis, 2010; Shine et al., 2011).

The third requirement is typically handled in an ad-hoc fashion. For

example, Spiers and Maguire (2006) employed “camera footage of the scan

console and a stopwatch manually synchronized with the time stamp on

debriefing video”; Maguire et al. (1998) used the built-in record function

of the computer game used to create the VR.

The situation becomes more complicated once the requirement for the

ecological validity is extended to the endogenous aspect of the subject’s

behavior. This case requires facilities for accurately documenting the sub-

ject’s actions that in their complexity go far beyond button presses. Differ-

ent research groups attempted to capture subject’s motor activity with a

variety of means such as accelerometers (Bowyer et al., 2007; Kim et al.,

2014), driving (Haufe et al., 2011) and flight (Astolfi et al., 2011) simu-

lators, video cameras (Publications I and II; Lüders, 1992; Karayiannis

et al., 2005), and specialized 3D human motion tracking systems (Cunha

et al., 2012).

3.3.2 Hyperscanning

In NIRS or EEG hyperscanning experiments brain signals can be simulta-

neously recorded from multiple participants sharing the same room. This

arrangement makes the interaction between the subjects quite straight-

forward. The situation is more complicated with MEG or fMRI. Although

dual-subject MEG (Hirata et al., 2014) and fMRI (Lee et al., 2012; Ren-

vall et al., 2015) devices have been reported, they are scarcely available.

In most cases, MEG or fMRI hyperscanning arrangement comprises two

separate instruments located at geographically separated sites, necessi-

tating some kind of a link to allow the subjects to interact. Due to its

ubiquity and flexibility, the Internet is a natural choice for the underlying

communication channel. The main disadvantage of this solution comes

from relatively long and unpredictable delays that it might introduce.
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4. Aims of the study

The general motivation of this thesis was to develop instrumentation that

enables capturing complex naturalistic behavior of a subject in a neu-

roimaging experiment. The aims of the individual publications included

in the thesis are:

Publication I

To design and validate instrumentation for documenting subject’s perfor-

mance in speech mapping TMS studies.

Publication II and the Helsinki VideoMEG Project

To design and implement the instrumentation for integrating video and

audio recordings of the subject into the MEG procedure, and to quanti-

tatively evaluate the added value of such recordings in a clinical MEG

recordings of epilepsy patients.

Publication III

To implement and validate a simple MEG hyperscanning setup using

audio-only link between the subjects.

Publication IV

To extend the setup described in Publication III to enable simultaneous

MEG recordings of two subjects interacting over an audiovisual connec-

tion.
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5. Summary of results

This chapter briefly describes the publications included in the thesis. Ad-

ditionally, Section 5.2 introduces the Helsinki VideoMEG Project. Pub-

lications I and II, and the Helsinki VideoMEG Project pertain to docu-

menting the participant’s behavior with video- and audiorecordings in a

single-subject setup; Publications III and IV relate to hyperscanning.

5.1 Publication I: “A novel approach for documenting naming
errors induced by navigated transcranial magnetic stimulation”

This publication describes a setup for documenting participant’s behav-

ior during a nTMS language-mapping experiment. In this experiment,

the subject is required to perform a language task, for example count

aloud. While the subject performs the task, the experimenter stimulates

the the subject’s brain at different locations trying to identify the areas,

the stimulation of which interferes with the speech production (Pascual-

Leone et al., 1991). Such language-mapping procedure can be a useful tool

in the basic research of brain mechanisms of speech as well as in clinical

practice, where it can be used to delineate language-related brain areas

that should be preserved during surgery.

Our experiment employed an object naming task in which the subject

was required to name the object presented on a computer screen. Ob-

ject naming has been argued to be an efficient task for mapping language

areas with direct cortical stimulation (Petrovich Brennan et al., 2007),

which shares the basic principle of operation with TMS. The experiment

involves evaluation of the participant’s performance in a relatively com-

plex natural speech task. Such an evaluation should take into account at

least the following aspects:

• Interference with the speech production can manifest itself as many
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different types of naming errors such as anomias (lack of response),

semantic paraphasias, circumlocutions, phonological paraphasias,

neologisms, and performance errors (Corina et al., 2010). The bound-

aries between errors and correct responses as well as between differ-

ent error types are often fuzzy.

• In addition to the above errors, interference with speech mecha-

nisms can produce more subtle effects, such as increased response

times.

• Differences in the familiarity of the objects or in the phonetic com-

plexity of the corresponding nouns might confound the evaluation of

the subjects performance.

• Naming errors might also be caused by inadvertent stimulation of

facial muscles or TMS-induced pain.

Despite the progress in the development of automated tools for objective

analysis of TMS speech-mapping data (Vitikainen et al., 2015), manual

annotation by a human expert remains the most widely used analysis

method. Thus, recording video and audio of the patient synchronized to

the stimulus presentation is a natural way to capture the behavioral side

of the experiment. The publication describes a prototype implementation

of such a video-nTMS setup (see Fig. 5.1). Our setup records the video of

the patient with a consumer-grade camcorder and synchronizes with the

visual stimuli presentation and nTMS system by cloning the monitors of

these two within the camcorder’s field of view. This simple construction

circumvents the need to synchronize TMS, stimulation and video record-

ing equipment. Despite the shortcomings of our prototype, we were able to

successfully identify cortical language-sensitive sites in all the four sub-

jects that participated in the experiment.

Video recordings proved to be a valuable tool for capturing the behav-

ioral aspect of the experiment. In particular, some naming errors that

were overlooked during the experiment, were discovered after reviewing

the video.
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Figure 5.1. Prototype video-TMS system. (A) Schematic diagram of the setup, view from
above. (B) Single frame from the video. Adapted from Publication I.

5.2 Publication II: “Quantifying the contribution of video in
combined video-magnetoencephalographic ictal recordings of
epilepsy patients” and the Helsinki VideoMEG Project

Another neuroimaging modality that may benefit from synchronized video

recording is MEG. Particularly, clinical MEG recordings of epilepsy pa-

tients might involve complex behavioral patterns that have considerable

implications for the analysis of the MEG signals.

The most prominent example of such a pattern is an ictal event—an

episode of abnormal behavior caused by the epilepsy. Detecting such pe-

riods and accurately identifying the timing of their onset is an impor-

tant part of the clinical MEG analysis routine. This task is challenging

as ictal events can manifest themselves behaviorally in many different,

sometimes quite subtle ways. Currently, the most reliable way to detect

these events is a manual review of the recordings by a properly trained

human expert who, in addition to MEG signals, takes into account in-

formation from a number of other sources: physiological signals, such as

EEG and electromyograms (EMG), patient’s clinical history, etc. Since ic-

tal episodes are defined in terms of the patient’s behavior, one can expect

video recording of the patient to be of crucial value for their detection.
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In addition to ictal events, video can reveal other behavioral patterns

that are important for analysing clinical MEG recordings; for example,

subject’s movements or failure to maintain a proper head position inside

the sensor helmet.

Considering the potential clinical value of synchronized video recordings

in MEG, one would expect the facilities for such recordings to be a stan-

dard part of the instrumentation at every MEG laboratory. Surprisingly,

very few reports of such video-MEG setups have been published to date

(Burgess et al., 2009; Wilenius et al., 2010).

The Helsinki VideoMEG Project (Zhdanov et al., 2014)1 aims at reme-

dying this situation. The goal of the project is to provide tools that will

enable any MEG laboratory to augment the MEG procedure with synchro-

nized video and audio recordings of the patient.

Integrating video into an MEG procedure requires technical solutions

for:

1. recording video and audio of the patient simultaneously with MEG

in a manner that allows synchronizing them to the MEG data;

2. analysing audio and video jointly with the MEG data.

The Helsinki VideoMEG Project addresses the first requirement by pro-

viding the hardware design and the software for the video-recording sta-

tion that allows recording multiple video and audio streams. The video-

recording station generates a timing signal that, when recorded with the

MEG trigger channel, can be used for synchronizing audio, video and

MEG data. This arrangement attains the synchronization accuracy of

about 16 ms for audio, and about 1 frame (33 ms) for video, as measured

using and external source of synchronized audio, video, and MEG events.

The second requirement is currently only partially fulfilled—the project

provides MATLAB R© and Python routines for loading, synchronizing and

manipulating the data, but not a complete GUI (Graphical User Interface)-

based tool. For MEG systems manufactured by Elekta Oy, a prototype of

such a tool has been demonstrated by the company.

Publication II demonstrates the added value of the tools developed in the

framework of the Helsinki VideoMEG Project in clinical MEG recordings

of epilepsy patients. The publication focuses on MEG recordings of ictal

events.

In Publication II, we compared the ictal events that were detected in

1Available at https://github.com/andreyzhd/VideoMEG

36



Summary of results

Patient
Events
without
video

Events
with
video

Result changes due to video

Detecteda Discardedb Changedc

1 1 1
2 1 1
3 1 1
4 6 1 5 1
5 5 12 7
6 1 3 2
7 0 6 6
8 1 1
9 1 7 6

10 0 5 5

Table 5.1. Changes in the outcome of the ictal episode detection due to video.

aDetected: events missed without video, detected after viewing the video.
bDiscarded: false events detected without video, discarded after viewing the
video.
cChanged: events for which the timing was changed after viewing the video.

the same recording with and without video. Adding video changed the

number of detected events in 6 out of 10 patients, in all cases by more

than 50%. The results are summarized in Table 5.1.

5.3 Publication III: “MEG dual scanning: a procedure to study
real-time auditory interaction between two persons”

Publication III describes our first attempt to adapt the hyperscanning

experimental paradigm to MEG. In our experiment, we simultaneously

scanned two interacting subjects at two MEG sites—one at the MEG Core,

Brain Research Unit, Aalto University, Espoo, and the other at BioMag

laboratory at the Helsinki University Central Hospital, Helsinki. The

sites are separated by approximately 5 km.

The principal technical challenge of MEG hyperscanning involving ge-

ographically separated sites is providing facilities for subjects to interact

with each other. In the experiment described in Publication III, we re-

stricted the interaction to audio-only communication and used fixed phone

lines for establishing the connection between the two sites (see Fig. 5.2),

attaining one-way communication latency of merely 12.7 ms. Such a lag

is experienced in a face-to-face conversation by participants separated by

approximately 4 m.

Another issue that needs to be addressed is synchronization of all the

data streams. At each site, the MEG device, the audio recording com-
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Figure 5.2. Schematic depiction of the experimental setup. Two similar sets of hard-
ware are located at the two MEG sites and are linked over phone landlines.
Adapted from Publication III.

puter, and the stimulus presentation computer are synchronized using

trigger pulses. Between the sites, the audio recording computers are syn-

chronized using GPS time sources.

We have validated the setup by a straightforward experiment where

we recorded subjects’ brain responses to simple auditory stimuli (50-ms

long 500-Hz tone pips). We observed very similar responses to stimuli

presented locally and remotely over the audio connection, suggesting that

our setup is suitable for conducting auditory-based MEG hyperscanning

experiments.

5.4 Publication IV: “An Internet-Based Real-Time Audiovisual Link
for Dual MEG Recordings”

In Publication IV, we extended the research described in Publication III

in two ways:

1. We augmented our hyperscanning setup with a video link between

the two subjects.

2. We validated the setup using a task that requires genuine interac-

tion between the subjects.

Fig. 5.3 presents our setup. We capture the video of the subject with a

machine-vision camera mounted inside the magnetically shielded room.

The camera transmits the video to the audiovisual (AV) computer located

in the MEG control room via the optical fiber. To present the video from

the other site we use a projector and a back-projection screen.
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Figure 5.3. Schematic depiction of the experimental setup. Two similar sets of hardware
are located at the two MEG sites and are linked over the Internet. Adapted
from Publication IV.

Figure 5.4. Inter-subject coherence for one subject pair. The flattened sensor-helmet
maps show the average coherence in the 0.5–2-Hz band. At each location,
the maps depict the average coherence value to all the planar-gradiometer
channels from the other subject. Adapted from Publication IV.

Each AV computer streams the video to its counterpart at the other site

over the Internet, which is the only practical way of transmitting the video

data between the sites. Since we use the Internet for the video transmis-

sion, we decided to forfeit the phone-line-based audio link in favour of

transmitting the audio over the Internet, too. This simplifies the setup

and increases the audio quality at the expense of an increased audio de-

lay. The latter, however, does not constitute a problem in combined audio-

visual experiments, since the audio needs to be delayed anyway to keep

it synchronized with the video, which introduces a much longer transmis-

sion lag.

To validate out setup, we asked the subjects to perform simple repetitive

hand movements synchronously. By observing each other’s hands over
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the video link, the participants were able to synchronize their movements

to a sub-second accuracy (measured independently by accelerometers at-

tached to the subjects’ fingers).

The coherence analysis that we conducted for one pair of subjects re-

vealed increased coherence between the signals from the MEG sensors

located over the subject’s motor cortex and the signals from the other sub-

ject (see Fig 5.4), occurring roughly at the frequency of the movement.

This further demonstrates the suitability of our setup for MEG hyper-

scanning experiments.
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6. Discussion and conclusions

The rising prominence of complex-behavior neuroimaging brings along

the requirements for novel strategies and instrumentation for handling

the behavioral aspect of the neuroimaging experiments. In the repertoire

of possible instruments for registering the participants behavior—such

as accelerometers, joysticks, pedals, etc—video cameras occupy a special

place for a number of reasons:

• Video often provides richer information about the subject’s behavior

than the other available methods.

• Being ubiquitous technology, video benefits from extensive research

and development efforts resulting in significant advances in sensor

technology, video compression and processing tools.

• For a human observer, video provides arguably the most natural de-

scription of the participants behavior. This is particularly important

for hyperscanning experiments, where the participants’ behavior is

not only recorded for subsequent analysis, but is also communicated

in real time to their peers to enable interaction. Additionally, the

interpretability of video by a human reviewer greatly facilitates its

adoption in clinical practice.

Despite the low cost and the potential benefits of integrating video into

neuroimaging procedures, the use of video in brain imaging is far from

being widespread. In some areas, such as long-term EEG monitoring of

epilepsy patients, video has long been a part of the established routine.

Yet, in other fields, such as MEG, video has been mostly overlooked so far.

This thesis explores the possibilities for documenting complex behavior

offered by video in clinical practice (Publications I and II), and in basic

research (Publications III and IV). Additionally, the Helsinki VideoMEG
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project provides researchers and clinicians with tools for integrating video

recordings into their MEG measurements.

Publication I demonstrates that video can be relatively easily integrated

into a clinical nTMS procedure. The added value of video in TMS language

mapping as demonstrated in Publication I has eventually led to the in-

tegration of video recording capabilities into a commercial TMS product

(NexSpeech by Nextim Plc, Helsinki, Finland), which is currently used

at more than 40 TMS installations around the world. Pre-operative lo-

calization of language areas performed with video-augmented nTMS pro-

vided maps that are in good agreement with the current gold standard of

clinical language localization—intra-operative direct cortical stimulation

(Picht et al., 2013; Tarapore et al., 2013). Although Publication I provides

some qualitative evidence for the utility of video, it does not report any

quantitative measures.

Publication II addresses this shortcoming while investigating the feasi-

bility of integrating video with a different neuroimaging modality—MEG.

The results reported by this publication suggest that video can contribute

considerably to the interpretation of MEG data.

The experiment described in Publication III restricts itself to an audio-

only configuration. However, it introduces a transition from recording

audio of a single MEG subject to using audio as a communication channel

in a hyperscanning experiment, where two subjects are simultaneously

recorded at geographically separated MEG sites. The transitions from

1PN to 2PN experiment introduces additional challenges related to the

communication latency and the requirement for synchronization between

the sites. Publication III demonstrates that these challenges can be suc-

cessfully addressed.

Finally, Publication IV extends the research reported in Publication III

by adding video capability to the inter-subject communication channel

and describing an example of inter-subject coherence in MEG signals re-

sulting from the subjects interaction.

The most obvious direction for the future research seems to be devel-

opment of automated tools for more quantitative and objective analysis

of the video and audio recorded from the participant in the neuroimag-

ing experiment. Another promising direction for future development of

video in neuroimaging is fusion of video data with signals from different

brain imaging instruments. For example, clinical video-EEG and video-

MEG recordings of epilepsy patients may benefit from tools for automatic
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detection of seizures. Despite the long history of combining video with

EEG, the tools that are currently used in clinical video-EEG practice for

automated seizure detection (Gotman, 1982, 1999) ignore the video. Al-

though there are a number of video-based seizure detection tools being

developed (Pediaditis et al., 2012), none of these utilizes EEG data. By

fusing the data from two modalities one can expect to develop video-EEG

and video-MEG seizure detectors that outperform current methods.
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Errata for publications

Publication IV

The captions for the figures 6 and 7 should be swapped.

51



 

A
alto-D

D
 121

/2
016 

9HSTFMG*agihdc+ 

ISBN 978-952-60-6873-2 (printed) 
ISBN 978-952-60-6874-9 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Science 
Department of Neuroscience and Biomedical Engineering 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
ndrey Zhdanov 

C
apturing com

plex behavior in brain im
aging: strategies and instrum

entation 
A

alto
 U

n
ive

rsity 

2016 

Department of Neuroscience and Biomedical Engineering 

Capturing complex behavior 
in brain imaging: strategies 
and instrumentation 

Andrey Zhdanov 

DOCTORAL 
DISSERTATIONS 




