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Abstract 

The aim of this thesis is to setup a simulation environment that prepares the ground for 
Multiple Hearth Furnace (MHF) advanced process control development based on 
Economic Model Predictive Control (EMPC) and/or MPC techniques. 
 
Additionally, the interest is to design an Economic MPC for the Multiple Hearth Furnace, 
aiming to minimize energy consumption of the furnace while maintaining the specified 
product quality. The implementation of the EMPC requires a dynamic model which is 
simplified from a previously developed mechanistic model of the MHF. The simplified 
model is developed in the form of a nonlinear Hammerstein-Wiener model, which is 
linearized at every sampling time to carry out the state estimation and MPC optimization 
tasks. As the accuracy of the simplified process model is crucial for performance of the 
EMPC, the thesis aims to compare the simulation results of the mechanistic model and 
the simplified one. The comparison of the models show that the simplified model follows 
accurately the mechanistic model in all cases.  

 
A description of the process of interest is given, with an emphasis in outlining the overall 
control strategy currently implemented. Next the components of the EMPC design are 
illustrated, including the overall strategy, the cost function and the necessary models of 
the process. Afterwards an implementation algorithm is provided comprising all the 
elements of the design, in order to obtain the optimal control of the MHF. Finally, practical 
problems regarding industrial implementations of temperature control in the hearth 4 are 
discussed and further research items outlined.  
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Notation 

  

𝕀≥𝑎 set of integer numbers greater than or equal to a ∈ ℝ 

𝑒𝑡 White noise 

𝑟𝑡 System setpoint(s) at sampling instant t 

𝑢𝑡 System input(s) at sampling instant t 

𝑥𝑡 System states(s) at sampling instant t 

𝑥(𝑡 + 𝑖|𝑡) 
𝑥𝑡+𝑖 

expected value of 𝑥(𝑡 + 𝑖) with available information at instant t 

𝑦𝑡  System output(s) at sampling instant t 

𝒦 A function α:ℝ≥0 → ℝ≥0 is a class 𝒦 function (or α ∈ 𝒦 for 

short), if it is continuous, strictly increasing, and α(0) = 0 

𝒦∞ A function α:ℝ≥0 → ℝ≥0  is a class 𝒦∞ function (or α ∈ 𝒦∞ for 

short), if α ∈ 𝒦 and α(r) → ∞ for r → ∞ 

𝐹𝐾 feed rate of kaolin 

𝐹𝐶  calcined kaolin 

𝐹𝑔4 Gas flow to Hearth 4 

𝐹𝑔6 Gas flow to Hearth 6 

𝐹𝑔 Total gas flow 

𝑝𝑐 Selling price of calcined kaolin 

𝑝𝑔 Price of methane gas 

𝑐𝐻2𝑂 Water content 

𝑐𝑓𝑚 Free moisture content 
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1 Introduction 

 

Model Predictive Control (MPC) is a control strategy that has been implemented 

successfully in industry for more than 30 years and has attracted the interest of 

both the industrial and academic communities. Since its early development in 

1978 [1], it has improved, in many ways, the manner that processes are 

controlled, specifically the prediction of process behavior [2].  

 

Operational efficiency is an important aspect in chemical processes, but also 

economic goals are important. In recent years new improvements have been 

made to MPC so it may take into consideration the economic indicators as an 

objective function to optimize directly in real time the economic performance of 

the process [3]. This improvement is known as economic model predictive control 

(EMPC). 

 

EMPC includes in its internal routines a general cost function, reflecting the 

economics of the process [4], as an objective function. Therefore, the process 

may be optimized economically in a dynamic time-variant approach. This 

approach presents an advantage compared to other methodologies that employ 

Real Time Optimization (RTO) to optimize the process in steady-state at a given 

specific time. 

 

EMPC has been used in a number of industrial applications, including 

fermentation process [5], operation of gas pipes [6], oil sand primary separation 

vessel [7], Building Climate Control in a Smart Grid [8], and chemical process 

network [9]. Although this control strategy could also be applied to the mining 

industry, no studies have yet attempted to implement EMPC strategies in this 

industry. Traditionally, the mining industry has relied on single-loop PID 

controllers in grinding mill circuits [10]. By implementing EMPC more broadly in 
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the mining industry, the economic performance would improve, since this industry 

is driven by economic indicators and market prices of the minerals. 

 

The aim of this thesis is to design a simulation environment for testing advanced 

control strategies in a Multiple Hearth Furnace used for kaolin calcination, as part 

of a kaolin processing chain. In order to accomplish this, an economic model 

predictive control strategy is developed for the simulation environment.  The 

furnace considered in this work is a Herreschoff calciner, which is a large upright 

cylindrical furnace with eight different chambers, these chambers are commonly 

denominated as hearths. 

 

The main two components of the simulation environment include the multiple 

hearth furnace model and an economic MPC strategy for controlling the furnace 

for minimizing its energy consumption while maintaining the specified product 

quality. Additionally, the current temperature control in Hearth 4 is analyzed in 

order to improve its performance in this part of the process. 
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LITERATURE PART 

 

The literature part consists of introductory concepts on the model predictive 

control theory. Chapter 2 presents the fundamental concepts of MPC, including 

process modelling, the objective function, and the control law, which are 

necessary to understand this advanced control strategy. Furthermore, it reviews 

several MPC algorithm in Section 2.5, and discusses the MPC stability. Chapter 

3 expands the previous concepts to incorporate process economics to the 

denominated Economic Model Predictive Control. Moreover, this Chapter 

provides basic properties and concepts on the control strategy of interest. Finally 

Chapter 4 provides an insight on calcination, including the physical and chemical 

phenomena that occurs within this process. 

2 Fundamentals of Model Predictive control 

 

This Chapter presents in Section 2.1 the model structure used in control theory. 

Section 2.2 shows prediction methods, Section 2.3 explains the necessary 

objective function and constraints and Section 2.4 describes the control law. 

Section 2.5 reviews a few commonly used MPC methods, while Section 2.6 

provides the methods to ensure stability in MPC. 

 

Model Predictive Control is an advanced process control strategy, using a model 

to foresee the future behavior of a process and to apply the proper corrective 

control actions leading the process to a desired state. In general, the objective of 

MPC is to drive the output variables to their selected setpoints, while preventing 

violations of the input and output constraints. In addition, MPC aims to avoid 

excessive movement of the input variables and to control as many process 

variables as possible even when a sensor or actuator is not available [11]. 
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MPC algorithms may vary from each other but include the following common 

elements [12]: a prediction model, objective function and algorithms to obtain the 

control law. Choosing different options for these elements, allows different MPC 

implementations to be obtained. 

 

2.1  Process and Disturbance Models 

 

The key element of MPC is a process model, which states the relationship 

between the input and the output of a physical plant or a process. A disturbance 

model can be also used to develop a state estimator or to describe the plant model 

mismatch. Various MPC implementations, utilize many forms of process models 

[13], some of these are shown in this section.  

 

2.1.1 Impulse response model 

 

The impulse response model is defined as the convolution of the input sequence 

𝑢𝑖 and the impulse response 𝑓𝑖: 

 

𝑦𝑡 =∑𝑓𝑖𝑢𝑡−𝑖

∞

𝑖=1

 (1) 

where the impulse response 𝑓𝑖 is the sampled output of the system stimulated by 

a unit impulse input. This sum is generally truncated where only values till 𝑁𝑆 are 

considered, where 𝑁𝑆 is the settling time of the process. 

 

This models has the following advantages: 

- Admits complex dynamics, such as delays, to be described with ease. 

- Reflects, in an intuitive and clear way, the effect of each manipulated 

variable. 
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The model has two disadvantages: 

- Is necessary to have a significant number of parameters 

- May only be represented by stable processes without integrators 

 

2.1.2 Step response model 

 

The step response model is defined as follows: 

 

𝑦𝑡 =∑𝑔𝑖∆𝑢𝑡−𝑖

∞

𝑖=1

 
(2) 

Where ∆𝑢𝑡 = 𝑢𝑡−𝑢𝑡−1 and 𝑔𝑖 is the sampled output of the system disturbed by 

the unitary step input. In stable systems, the step response 𝑔𝑖 is a constant after 

the settling time 𝑁𝑆. The relation between the impulse and the step responses is 

as follows: 

 𝑓𝑖 = 𝑔𝑖 − 𝑔𝑖−1 (3) 

 

𝑔𝑖 =∑ 𝑓
𝑗

𝑖

𝑗=1

 (4) 

Step response models present matching advantages and disadvantages, 

compared to the impulse response models. 

 

2.1.3 Transfer function model 

 

The transfer function model is defined in the Laplace or Z-transform domains. 

However, assuming 𝑧−1 acts as a time delay operator, the following notations are 

frequently used: 

 
𝑦𝑡 =

𝐵(𝑧−1)

𝐴(𝑧−1)
𝑢𝑡 

(5) 

The advantages of this model type include:  

- Is suitable to describe unstable processes 

- Requires fewer parameters. 
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The disadvantages are: 

- The structure of the process is essential for identification, specifically the 

orders of A and B. 

- Certain processes may not be described adequately by a low-order 

transfer function model. 

 

2.1.4 State Space Model 

 

A linear state-space is described by the following equations: 

 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 (6) 

 𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 (7) 

The state-space models possess the following advantages: 

- Multivariate processes are represented in the same way as SISO 

dynamics. 

- Modern control theory and analysis methods, including a Kalman filter, may 

be applied with ease to state space models. 

Disadvantages 

- A few processes may not be described adequately by a state-space model 

with a limited number of states. 

 

2.1.5 Time Series Model for the Disturbance 

 

A widely used disturbance model is the Auto Regressive Integrated Moving 

Average (ARIMA), where the disturbance, representing the difference between 

the calculated output and measured output, is given by the following expression 

[14]: 

 

𝑑𝑡 =
𝐶(𝑧−1)

∆𝐷(𝑧−1)
𝑒𝑡 

(8) 
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where 𝑑𝑡 is the disturbance, 𝑒𝑡 is the white noise, the symbol ∆ denotes 1−𝑧−1, 

and C and D are polynomials sometimes selected to be 1. 

 

 

2.2  Multiple step ahead prediction 

 

In MPC, the process model is used to design predictors of the future plant 

behavior, and subsequently the control law is devised utilizing the designed 

predictors. Based on multiple step ahead predictions, the future input actions of 

the process are selected to drive the process outputs towards the desired values. 

In the following equations (9)-(13), the multiple step ahead prediction is discussed 

in more details.  

 

The simple model is considered, which is a slight modification of the conventional 

ARX model, including term ∆𝑢𝑡 instead of 𝑢𝑡: 

 𝑦𝑡 = −𝑎𝑦𝑡−1 + 𝑏∆𝑢𝑡−1 + 𝑒𝑡 (9) 

The one-step ahead prediction is obtained by considering the model equation at 

time instant 𝑡 + 1 

 𝑦𝑡+1 = −𝑎𝑦𝑡 + 𝑏∆𝑢𝑡 + 𝑒𝑡+1 (10) 

If the white noise is ignored, then expressing the previous equation in prediction 

terms: 

 𝑦̂(𝑡 + 1|𝑡) = −𝑎𝑦𝑡 + 𝑏∆𝑢𝑡 (11) 

In order to get a two-steps ahead prediction, the modeling equation is considered 

at the time instant 𝑡 + 2:  

 𝑦𝑡+2 = −𝑎𝑦𝑡+1 + 𝑏∆𝑢𝑡+1 + 𝑒𝑡+2 (12) 

Substituting equation (10) in equation (12), then: 

 𝑦𝑡+2 = −𝑎(−𝑎𝑦𝑡 + 𝑏∆𝑢𝑡 + 𝑒𝑡+1) + 𝑏∆𝑢𝑡+1 + 𝑒𝑡+2 (13) 

                     = 𝑎2𝑦𝑡 + 𝑏∆𝑢𝑡+1 − 𝑎𝑏∆𝑢𝑡 − 𝑒𝑡+1 + 𝑒𝑡+2  
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The two-step ahead prediction is obtained by ignoring the unknown future noise 

values: 

 𝑦̂(𝑡 + 2|𝑡) = 𝑎2𝑦𝑡 + 𝑏∆𝑢𝑡+1 − 𝑎𝑏∆𝑢𝑡 (14) 

After combining equations (11) and (14), a one and two steps ahead prediction is 

obtained based on the past input-output and the future input values: 

 
(
𝑦̂(𝑡 + 1|𝑡)
𝑦̂(𝑡 + 2|𝑡)

) = (
−𝑎
𝑎2
) 𝑦𝑡 + (

𝑏 0
−𝑎𝑏 𝑏

) (
∆𝑢𝑡
∆𝑢𝑡+1

) 
(15) 

The derivation of predictions over additional steps may be done in a similar way, 

as it is described in Section 2.2.1. Similarly, other models may be used with the 

same idea of substitution to find the i-step predictions. 

 

2.2.1 Prediction with the state space models 

 

A state space model, permits a multiple step prediction by introducing recursively 

the one step prediction equation, as shown in [15]: 

 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 
𝑦𝑡+1 = 𝐶𝑥𝑡+1 

(16) 

For 𝑡 + 2  

 𝑥𝑡+2 = 𝐴𝑥𝑡+1 + 𝐵𝑢𝑡+1 
𝑦𝑡+2 = 𝐶𝑥𝑡+2 

(17) 

Substituting Equation (16) into Equation (17): 

 𝑥𝑡+2 = 𝐴
2𝑥𝑡 + 𝐴𝐵𝑢𝑡 + 𝐵𝑢𝑡+1 
𝑦𝑡+2 = 𝐶𝑥𝑡+2 

(18) 

Repeating the substitution for 𝑡 + 3: 

 𝑥𝑡+3 = 𝐴
2[𝐴𝑥𝑡 + 𝐵𝑢𝑡] + 𝐴𝐵𝑢𝑡+1 + 𝐵𝑢𝑡+2 

𝑦𝑡+3 = 𝐶𝑥𝑡+3 

(19) 

For the k-step prediction: 

 𝑥(𝑡 + 𝑘|𝑡) = 𝐴𝑘𝑥𝑡 + 𝐴
𝑘−1𝐵𝑢𝑡 + 𝐴

𝑘−2𝐵𝑢𝑡+1 +⋯+ 𝐵𝑢𝑡+𝑘−1 
𝑦̂(𝑡 + 𝑘|𝑡) = 𝐶[𝐴𝑘𝑥𝑡 + 𝐴

𝑘−1𝐵𝑢𝑡 + 𝐴
𝑘−2𝐵𝑢𝑡+1 +⋯

+ 𝐵𝑢𝑡+𝑘−1] 

(20) 

This may be written in matrix form for the prediction horizon 𝑁: 
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[
 
 
 
 
𝑥𝑡+1
𝑥𝑡+2
𝑥𝑡+3
⋮

𝑥𝑡+𝑁]
 
 
 
 

⏟  

𝑥
→𝑡+1

=

[
 
 
 
 
𝐴
𝐴2

𝐴3

⋮
𝐴𝑁]
 
 
 
 

⏟

𝐹𝑥

𝑥𝑡 +

[
 
 
 
 
𝐵
𝐴𝐵
𝐴2𝐵
⋮

𝐴𝑁−1𝐵

0
𝐵
𝐴𝐵
⋮

𝐴𝑁−2𝐵

0
0
𝐵
⋮

𝐴𝑁−1𝐵

⋯
⋯
⋯
⋮
⋯]
 
 
 
 

⏟                    

𝐻𝑥

[
 
 
 
𝑢𝑡
𝑢𝑡+1
𝑢𝑡+2
⋮

𝑢𝑡+𝑁−1]
 
 
 

⏟    

𝑢
→𝑡

 (21) 

 

[
 
 
 
 
𝑦̂𝑡+1
𝑦̂𝑡+2
𝑦̂𝑡+3
⋮

𝑦̂𝑡+𝑁]
 
 
 
 

⏟  

𝑦
→𝑡+1

=

[
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁]

 
 
 
 

⏟  

𝐹

𝑥𝑡 +

[
 
 
 
 
𝐶𝐵
𝐶𝐴𝐵
𝐶𝐴2𝐵
⋮

𝐶𝐴𝑁−1𝐵

0
𝐶𝐵
𝐶𝐴𝐵
⋮

𝐶𝐴𝑁−2𝐵

0
0
𝐶𝐵
⋮

𝐶𝐴𝑁−3𝐵

⋯
⋯
⋯
⋮
⋯]
 
 
 
 

⏟                      

𝐻

𝑢
→𝑡

 
(22) 

 

So the prediction for the standard model of Equation (16) is defined as: 

 𝑥
→𝑡+1

= 𝐹𝑥𝑥𝑡 +𝐻𝑥 𝑢
→𝑡

 

𝑦
→𝑡+1

= 𝐹𝑥𝑡 +𝐻 𝑢
→𝑡

 
(23) 

 

2.2.2 The Free and forced response 

The free and forced response concepts are commonly used in different MPC 

algorithms. The main purpose is to express the control sequence as the sum of 

two signals: 

 𝑢𝑡 = 𝑢𝑓(𝑡) + 𝑢𝑐(𝑡)  

Where the signal 𝑢𝑓(𝑡) is consistent with the past inputs and is maintained 

constant (equal to the last value) in the future: 

 𝑢𝑓(𝑡 − 𝑘) = 𝑢(𝑡 − 𝑘) for 𝑘 = 1,2,…  

 𝑢𝑓(𝑡 + 𝑘) = 𝑢(𝑡 − 𝑘) for 𝑘 = 0,1,2,…  

In the case of 𝑢𝑐(𝑡), the values in the past are made equal to zero, and the 

following time instants are made equal to next control moves in the future: 

 𝑢𝑐(𝑡 − 𝑘) = 0 for 𝑘 = 1,2, …  

 𝑢𝑐(𝑡 + 𝑘) = 𝑢(𝑡 + 𝑘) − 𝑢(𝑡 − 1) for 𝑘 = 0,1,2,…  
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Figure 1. Free and forced response [12] 

 

As shown in Figure 1. the prediction of the output sequence has been separated 

in two parts, the free response 𝑦𝑓(𝑡), is the forecast of the process when the 

manipulated variable is equal to 𝑢𝑓(𝑡); and the forced response 𝑦𝑐(𝑡), 

corresponds to the prediction of the process when making the control sequence 

equal to 𝑢𝑐(𝑡). In other words the free response is the evolution of the process, 

if there are no changes in the manipulated variable in the present state; while the 

forced response is the development of the process due to future control changes. 

 

2.3  Objective Function and Constraints 

 

MPC algorithms make use of varied cost functions to obtain the control law [16]. 

These algorithms use the objective function to ensure that the outputs follow a 

fixed reference setpoint in the future until the considered prediction horizon, 

whereas the necessary control efforts are not too high. Thus, a general expression 

for the objective function is shown: 

 
𝐽 = ∑ [𝑟𝑡+𝑖 − 𝑦̂(𝑡 + 𝑖|𝑡)]

𝑇𝑄𝑖[𝑟𝑡+𝑖 − 𝑦̂(𝑡 + 𝑖|𝑡)]

𝑁𝑚𝑎𝑥

𝑖=𝑁𝑚𝑖𝑛

+ ∑ [∆𝑢𝑡+𝑖−1]
𝑇𝑅𝑖[∆𝑢𝑡+𝑖−1]

𝑁𝑐

𝑖=𝑁𝑚𝑖𝑛

 (24) 

+ 

Process 

+ 
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The parameters 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 are the minimum and maximum prediction 

horizons, while 𝑁𝑐 is the control horizon. 𝑁𝑐 may differ from 𝑁𝑚𝑎𝑥. The meaning 

of the parameters 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥, may be intuitively derived. These parameters 

mark an interval where the reference trajectory is optimal. Therefore if a high value 

parameter 𝑁𝑚𝑖𝑛 is considered, then previous errors are unimportant. If the 

process possesses a dead time 𝑑, then 𝑁𝑚𝑖𝑛should be a larger value than          

𝑡 + 𝑑. In some instances, where the process has an inverse response, this 

behavior may be omitted from the objective function. 𝑄𝑖 and 𝑅𝑖are the weighting 

matrices. 

 

The reference trajectory is the desired direction that must be followed by the 

process. Even though it is preferred that the process output will reach the setpoint 

with no errors, there might be differences with the actual output of the process 

due to model mismatch, time delays or some hard constraints. It is common to 

use a smooth curve starting from the current value of the output and approaching 

the setpoint as the reference trajectory. 

 

Processes are limited to certain constraints. For instance, actuators need specific 

restrictions that prevent them from going beyond their physical limits. Other 

constraints are imposed due to economic and safety reasons. For example, a 

chemical reaction may be favored at high temperatures, but the reactor may have 

a definite threshold which should not be surpassed, due to material tolerance and 

safety reasons. MPC considers integrating constraints, and this inclusion has 

been demonstrated to be successful in industry. In general the constraints present 

the following formulation: 

 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑡 ≤ 𝑢𝑚𝑎𝑥          ∀𝑡 
𝑑𝑢𝑚𝑖𝑛 ≤ 𝑢𝑡 − 𝑢𝑡−1 ≤ 𝑑𝑢𝑚𝑎𝑥          ∀𝑡 

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑡 ≤ 𝑦𝑚𝑎𝑥           ∀𝑡 

(25) 
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With the inclusion of these constraints to the optimization, calculations become 

more complex. However, this allows MPC to control the process according to the 

restrictions existing in the applications. 

 

2.4  Control Law 

 

The input of the process, or control actions ∆𝑢𝑡+𝑖, are computed by minimizing 

the objective function. For this purpose, the output prediction 𝑦̂(𝑡 + 1|𝑡) is 

calculated, for example as shown in Equation (15), and used to compute the 

objective value according to Equation (24). Subsequently a derivative of the cost 

function is taken with respect to ∆𝑢𝑡, ∆𝑢𝑡+1,…, ∆𝑢𝑡+𝑁𝑐−1, and the solution of 

the optimization is found by equating the derivatives to zero. By following this 

algorithm, which is a typical least squares problem, it is possible to obtain an 

analytical solution.  

 

If some constraints exist on 𝑢𝑡, ∆𝑢𝑡, or 𝑦̂(𝑡 + 1|𝑡), analytical solutions are no 

longer possible, and some numerical minimization is needed. It is important to 

remember that all these calculations occur within the sampling time interval.   

The control horizon serves as a means to impose a structure on the control law, 

as 𝑢𝑡 becomes constant after it: 

 ∆𝑢𝑡+𝑖−1 = 0    𝑖 > 𝑁𝑐 (26) 

 

2.5  Review of MPC Algorithms 

 

This section presents a short description of some of the most popular MPC 

methods used in industry, with the purpose of demonstrating the most important 

characteristics. 
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2.5.1 Dynamic Matrix Control 

 

The Dynamic Matrix Control (DMC) method, assuming that the process is stable 

and with no integrators, employs the step response model (2), and considers the 

first 𝑁 terms. The disturbances are assumed to be equal to the measured value 

of the output 𝑦𝑚 minus the value predicted by the model 𝑦̂(𝑡|𝑡). 

 𝑑̂(𝑡 + 𝑘|𝑡) = 𝑑̂(𝑡|𝑡) = 𝑦𝑚 − 𝑦̂(𝑡|𝑡) (27) 

The predicted output value becomes: 

 

𝑦̂(𝑡 + 𝑘|𝑡) =∑𝑔𝑖∆𝑢𝑡+𝑘−𝑖

𝑘

𝑖=1

+ ∑ 𝑔𝑖∆𝑢𝑡+𝑘−𝑖

𝑁

𝑖=𝑘+1

+ 𝑑̂(𝑡 + 𝑘|𝑡) (28) 

The first term on the right hand side of the previous equation contains the future 

control actions to be calculated, while the second term are the past input values, 

which is known information, and the last term represents the disturbances.  

 

The cost function considers either simply future errors, or may include the control 

effort as well, as defined by Equation (24). Furthermore, it is possible to add some 

constraints to this method, with a general form: 

 

∑𝐶𝑦𝑖
𝑗
𝑦̂(𝑡 + 𝑘|𝑡) + 𝐶𝑢𝑖

𝑗
𝑢(𝑡 + 𝑘 − 𝑖) + 𝑐𝑗 ≤ 0      𝑗 = 1…𝑁𝐶

𝑁

𝑖=1

 (29) 

 

Afterwards, numerical optimization must be performed at every sampling instant, 

and the value of 𝑢𝑡, is sent to the process in a similar way with to all MPC 

methods. There are a few disadvantages with this method, such as: in presence 

of unstable processes the method is not applicable, and the required size of the 

process model. 
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2.5.2 Model Algorithmic Control 

 

Marketed under the name IDCOM (Identification-Command), also known as 

Model Predictive Heuristic Control, this method presents many similarities with 

respect to DMC. The main difference of IDCOM is the use of an impulse response 

model (1), thus, the value of ∆𝑢𝑡 is replaced with 𝑢𝑡 in the modeling equations. 

Similarly to DMC, this method is also effective only for stable processes. This 

method does not use the idea of a control horizon. Instead it introduces a 

reference trajectory continuously changing from the latest output value towards 

the setpoint. The trajectory is generated by a first order system with a certain time 

constant [12]: 

 𝑤𝑡 = 𝑦𝑡 
𝑤𝑡+𝑘 = 𝛼𝑤𝑡+𝑘−1 + (1 − 𝛼)𝑟𝑡+𝑘    𝑘 = 1…𝑁 

(30) 

The parameter 𝛼 is given a value between 0 and 1, and it is a value that may be 

modified to influence the dynamic response of the system.  

 

The objective is to minimize the difference between the trajectory and the output. 

In MAC the disturbances may be handled similarly compared to DMC, or it is 

possible to make an estimation using the recursive expression: 

 𝑑̂(𝑡 + 𝑘|𝑡) =  𝛼𝑑̂(𝑡 + 𝑘 − 1|𝑡) + (1 − 𝛼)𝑦𝑚 − 𝑦̂(𝑡|𝑡) (31) 

With 𝑑̂(𝑡|𝑡) = 0. The parameter 𝛼 is adjustable, as stated before (0 ≤ 𝛼 < 1), 

and is directly related to the bandwidth, the response time, and the robustness of 

the closed loop system [17].  
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2.5.3 Predictive Functional Control 

 

This method was developed for the implementation of fast processes [18]. This 

strategy includes a state space model of the process and allows the use of 

nonlinear and unstable linear models. The nonlinear dynamics are introduced to 

the PFC as a nonlinear state space model. PFC features two important 

characteristics: the implementation of coincidence points and basis functions. 

Coincidence points are used to make the calculation simpler, by only taking in 

consideration a subset of values in the prediction horizon. It is only required that 

the setpoint and predicted future outputs, concur at these points and not over all 

the prediction horizon. The second characteristic is the utilization of polynomial 

basic functions in order to parametrize the control signal. These functions are 

defined as: 

 

𝑢𝑡+𝑘 =∑𝜇𝑖(𝑡)𝐵𝑖(𝑘)

𝑛

𝑖=1

 
(32) 

The values of 𝐵𝑖 are selected depending on the nature of the process and the 

reference, which are commonly polynomials. 

𝐵0 = 1,   𝐵1 = 𝑘,   𝐵2 = 𝑘
2, … 

This property permits the use of a small number of parameters to specify a 

relatively complex input over a considerably large horizon. These functions may 

be defined with certain specifications, for instance in mechanical servo control 

applications, they may be used to follow a polynomial setpoint with no lag. 

 

In PFC the cost function to be minimized is defined as follows:  

 

= 𝐽∑[𝑦̂𝑡+ℎ𝑗 −𝑤𝑡+ℎ𝑗)]
2

𝑛𝐻

𝑗=1

 
(33) 
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Where 𝑤 is generally a first order approach to the reference. It is also possible to 

include maximum and minimum input acceleration constraints to the PFC 

algorithm, this is convenient for the servo control applications [12]. 

 

2.5.4 Generalized Predictive Control 

 

The GPC algorithm makes use of the CARIMA (Controlled Auto Regressive 

Moving Average) model: 

 
𝐴(𝑧−1)𝑦𝑡 = 𝐵(𝑧

−1)𝑧−𝑑𝑢𝑡−1 +
𝐶(𝑧−1)𝑒𝑡

∆
 

(34) 

 

It is possible to obtain the optimal prediction by solving a Diophantine equation, 

this solution is found with the help of an efficient recursive algorithm. 

The cost function of GPC is quadratic: 

 

𝐽(𝑁1, 𝑁2, 𝑁𝑢) = ∑ 𝛿𝑖[𝑦̂(𝑡 + 𝑖|𝑡) − 𝑤𝑡+𝑖]
2 +∑𝜆𝑖[∆𝑢𝑡+𝑖−1]

2

𝑁𝑐

𝑖=1

𝑁𝑚𝑎𝑥

𝑖=𝑁𝑚𝑖𝑛

 
(35) 

 

Where 𝛿𝑖 and 𝜆𝑖 are weighting sequences, which are normally selected as 

constant or exponentially increasing, while 𝑤𝑡+𝑖 is the reference trajectory and is 

normally generated, with a simplified recursion, beginning from the current value 

of the output and moves exponentially towards to the setpoint. 

This algorithm has been studied broadly in the past, and it has been shown that, 

for a small number of the parameter choices, this algorithm is stable [19].  

 

2.6  Stabilizing Model Predictive Control: 

 

From here onwards the set theory notation will be put in use for better 

understanding of the topic. This notation is widely used in the field of advanced 

control strategies. 
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Considering the nonlinear system to be of the form: 

 𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑢𝑡), 𝑥0 = 𝑥(0) (36) 

Where 𝑓: 𝕏 × 𝕌 → ℝ𝑛, 𝑢𝑡 ∈ 𝕌 ⊆ ℝ
𝑚, and 𝑥𝑡 ∈ 𝕏 ⊆ ℝ

𝑛 are the control input 

and system state respectively, with time 𝑡 ∈ 𝕀≥0 = [0,1,2… ] , and initial 

condition 𝑥0 ∈ 𝕏. The constraints for the system may be expressed as:  

 (𝑥𝑡 , 𝑢𝑡) ∈ ℤ ⊆ 𝕏 × 𝕌 (37) 

For all 𝑡 ∈ 𝕀≥0; denote by ℤ𝕏 the projection of ℤ on 𝕏, in other words:  

ℤ𝕏 ≔ {𝑥 ∈ 𝕏: ∃𝑢 ∈ 𝕌, (𝑥, 𝑢) ∈ 𝑍}. 𝑆 is delimited as the set of all feasible 

state/input equilibrium pairs of Equation (36): 

 𝑆 ≔ {(𝑥, 𝑢) ∈ ℤ: 𝑥 = 𝑓(𝑥, 𝑢)},   (38) 

The set 𝑆 is assumed to be non-empty. The control for the system in Equation 

(36) should be stabilized at a setpoint 𝑥∗, this value is a point of the system, where 

it lies in equilibrium. The corresponding control input is 𝑢∗, this means: (𝑥∗, 𝑢∗) ∈

𝑆. The following assumption are taken: The function 𝑓 is considered as 

continuous, the set 𝕌 is compact, and the set ℤ ⊆ 𝕏 × 𝕌 is closed. 

 

The following optimization problem is solved, with the purpose of defining the 

receding horizon control law at every time 𝑡 ∈ 𝕀≥0, the state 𝑥𝑡 is measured. 

 min
𝑢𝑡
𝐽𝑁(𝑥𝑡, 𝑢𝑡) 

𝑥(𝑡 + 1|𝑡) =  𝑓(𝑥𝑡 , 𝑢𝑡), 𝑡 ∈ 𝕀[0,𝑁−1] 

𝑥0 = 𝑥(0) 
(𝑥𝑡 , 𝑢𝑡) ∈ ℤ,     𝑡 ∈ 𝕀[0,𝑁−1] 

𝑥𝑁 = 𝑥(𝑁) ∈ 𝕏
𝑓 

(39) 

Where: 

 

𝐽𝑁(𝑥𝑡 , 𝑢𝑡) ≔ ∑ ℓ(𝑥𝑡, 𝑢𝑡) + 𝑉
𝑓(𝑥𝑁)

𝑁−1

𝑖=0

 
(40) 



  

18 
 

The closed terminal region is defined as 𝕏𝑓 ⊆ 𝕏, also the stage cost function is 

 ℓ:𝕏 × 𝕌 → ℝ and the terminal cost function 𝑉𝑓: 𝕏𝑓 → ℝ. These functions are 

assumed to be continuous.  

 

Denoting the values that minimize the cost function: 

𝑢0
→0
≔ [𝑢0(0|𝑡), … , 𝑢0(𝑁 − 1|𝑡)] 

the corresponding state sequence:   

𝑥0
→0
≔ [𝑥0(0|𝑡), … , 𝑥0(𝑁 − 1|𝑡)] 

and the corresponding optimal value function: 

 𝐽𝑁
0(𝑥𝑡) ≔ 𝐽𝑁 (𝑥𝑡 , 𝑢

0

→0
) (41) 

Now the MPC may be solved with the following algorithm: 

 

1- Consider the system of Equation (36) 

2- Measure the state 𝑥𝑡 at each time 𝑡 ∈ 𝕀≥0 

3- Solve problem of Equation (39) 

4- Apply control input 𝑢𝑡 ≔ 𝑢0(0|𝑡) 

 

The results of the algorithm in the closed loop system are: 

 𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑢
0(0|𝑡)),    𝑥0 = 𝑥(0)   (42) 

With purpose of guaranteeing that  𝑥∗ is a stable equilibrium point for the system 

in Equation (42), some condition should be imposed on the stage and terminal 

cost functions (ℓ, 𝑉𝑓), and terminal region 𝕏𝑓 [11]. 

 

The stage cost function ℓ satisfies ℓ(𝑥∗, 𝑢∗) = 0, and there exists a function 

𝛼1 ∈ 𝒦∞ such that ℓ(𝑥𝑡 , 𝑢𝑡) ≥ 𝛼1(|𝑥 − 𝑥
∗|) for all (𝑥𝑡 , 𝑢𝑡) ∈ ℤ. Furthermore 

the terminal cost function 𝑉𝑓satisfies 𝑉𝑓(𝑥∗) = 0 and 𝑉𝑓(𝑥) ≥ 0,     ∀𝑥 ∈ 𝕏𝑓.  
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The terminal region 𝕏𝑓 ⊆ 𝕏 is closed and 𝑥∗ ∈ 𝕏𝑓. Additionally there is a local 

auxiliary control law such that 𝑢𝑡 = 𝜅
𝑓(𝑥) and for all 𝑥 ∈ 𝕏𝑓the following is 

satisfied: 

i) (𝑥, 𝜅𝑓(𝑥)) ∈ ℤ 

ii) 𝑓(𝑥, 𝜅𝑓(𝑥)) ∈ 𝕏𝑓 

iii) 𝑉𝑓(𝑓(𝑥, 𝜅𝑓(𝑥))) − 𝑉𝑓(𝑥) ≤ − ℓ(𝑥, 𝜅𝑓(𝑥)) +  ℓ(𝑥∗, 𝑢∗) 

 

The previous assumption denotes that when the local auxiliary controller is 

implemented to the system in Equation (36), i) input and state constraints are 

fulfilled inside the terminal region and ii) the terminal region is invariant. Condition 

iii) signifies that 𝑉𝑓serves as a Lyapunov function included in the terminal region 

(for this case 𝑉𝑓 is positive with respect to 𝑥∗). These assumptions are considered 

standard for stabilizing in MPC with a terminal cost/ terminal region setting [11].  

 

Denoting  𝕏𝑁 as the set of all states 𝑥 ∈ 𝕏, such that the system in Equation 

(36), has a solution. Supposing that all assumptions hold, then the system is 

feasible for all 𝑡 ∈ 𝕀≥0. Additionally for the closed loop system that results from 

the previous algorithm, the input constraints and the pointwise-in-time state are 

satisfied for all 𝑡 ∈ 𝕀≥0, and 𝑥∗ is an equilibrium point asymptotically stable with 

region of attraction 𝕏𝑁 [11]. 
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3 Economic Model Predictive Control:  

 

Through the years MPC became more popular in industry and for academic 

research. The combination of MPC with Real Time Optimization (RTO) as shown 

on the left side of Figure 2, has become a classical control approach in     

industries [20]. The RTO, determining the economically optimal setpoint for the 

process, is generally done in a timeframe of hours at a specific steady state [21]. 

The setpoint is sent to the second layer, in this case the MPC, and the controller 

drives the process to the setpoint provided by the RTO. The drawback of this two-

layer approach is that the RTO focuses on the steady-state optimization, which 

may not necessarily be the economically best strategy. This is caused by the 

possible presence of an unreachable set point obtained from the economic 

optimization [22].  

 

It was discovered that economic optimization may be considerably improved if the 

cost function were to be incorporated directly into the MPC [23] [24]. Economic 

Model Predictive Control (EMPC) is a variation of MPC, which uses a general cost 

function to dynamically optimize the process economy [25]. In this case, no 

reference or a target steady state is provided to the EMPC, and the objective 

function is not necessarily positive definite as commonly accepted for the 

standard MPC [26]. The control structure relying on EMPC is shown on the right 

side of Figure 2. 
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Figure 2. Differences between MPC with RTO and EMPC [4] 

Currently, EMPC has already become a well-established technique with a range 

of implementations [27]. Similar to the MPC optimization, the EMPC objective is 

defined as follows: 

 

𝐽𝑁(𝑥𝑡, 𝑢𝑡) ≔ ∑ ℓ(𝑥𝑡 , 𝑢𝑡)

𝑁−1

𝑖=0

 
(43) 

where the stage cost function ℓ(𝑥𝑡 , 𝑢𝑡) defined as an arbitrary cost function that 

resembles the economics related to the process [28]. Similarly to traditional MPC, 

the stage cost function is commonly convex for linear systems and frequently non-

convex for non-linear systems. 

 

In contrast to the traditional MPC, the stage cost function ℓ(𝑥𝑡 , 𝑢𝑡) from Equation 

(43), may not achieve its minimum at a fixed equilibrium state. In other words, the 

optimal steady state stage cost for MPC is not necessarily smaller compared to 

the stage cost in EMPC. Therefore, limit cycles may arise in EMPC because they 

are economically favorable, which can only happen for a nonlinear process 
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dynamics or a nonconvex economic objective. Therefore, it is desirable to reach 

the following asymptotic average limit: 

 
lim sup
𝑇→+∞

∑ ℓ(𝑥𝑡, 𝑢𝑡)
𝑇
𝑡=1

𝑇
≤ ℓ(𝑥𝑆, 𝑢𝑆) 

(44) 

In order to ensure the average EMPC performance, as defined by Equation (37), 

denote the decision vector 𝑢
→0
≔ [𝑢(0|𝑡), … , 𝑢(𝑁 − 1|𝑡)] to be the control 

sequence for each time step calculated for MPC, as stated before. Next, consider 

the admissible set ℤ𝑁 of (𝑥0, 𝑢
→0
) pairs that satisfies the following constraints  

 

ℤ𝑁 ≔ {

(𝑥0, 𝑢
→0
) |∃𝑥1, … , 𝑥𝑁: 𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑢𝑡),

(𝑥𝑡 , 𝑢𝑡) ∈ ℤ, 𝑡 ∈ 𝕀[1,𝑁−1]
𝑥0 = 𝑥(0), 𝑥𝑠 = 𝑥𝑁

}, (45) 

and its projection 𝒳𝑁 on 𝕏 that is defined as: 

 𝒳𝑁 ≔ {𝑥 ∈ 𝕏 | ∃ 𝑢
→0
: (𝑥, 𝑢

→0
) ∈ ℤ𝑁}. 

(46) 

According to [3], for any 𝑥 ∈𝒳𝑁 exists at least one control sequence that directs 

the state to 𝑥𝑆 at time 𝑁 without abandoning 𝒳𝑁 and the closed-loop system in 

(36) with 𝑢0
→0

 has an asymptotic average performance that is, as a minimum, as 

suitable as the best admissible steady state.  

 

Even though the asymptotic average performance is assured, the EMPC with 

objective defined by Equation (43) does not guarantee the stability in closed loop. 

In traditional MPC, the optimal cost of 𝐽𝑁(𝑥𝑡), denoted before as 𝐽𝑁
0(𝑥𝑡) in 

Equation (41) is used as a Lyapunov function for the closed loop system, as it is 

monotonically decreasing for different closed loop solutions, meaning that 

𝐽𝑁
0(𝑥𝑡+1) ≤ 𝐽𝑁

0(𝑥𝑡). However, for EMPC, this does not necessarily occurs 

because of the possible limit cycles, even if the system is stable. The reason for 

that is that in the case of non-convex cost functions and general nonlinear 

systems, it is not guaranteed that 𝑥𝑆 is the optimal steady state.  
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However, convergence to a steady-state can be ensured for an EMPC with the 

terminal constraint using a Lyapunov function, if the strong duality assumption is 

satisfied [29], meaning that the solution 𝑥𝑠, 𝑢𝑠 of the steady state optimization 

problem  

 𝑚𝑖𝑛
𝑥,𝑢

𝑙(𝑥, 𝑢)

𝑥 = 𝑓(𝑥, 𝑢)
𝑔(𝑥, 𝑢) ≤ 0

 (47) 

is the only minimizer of the following expression for some Lagrange multiplier 𝜆𝑠: 

 𝑚𝑖𝑛
𝑥,𝑢

𝑙(𝑥, 𝑢) + (𝑥 − 𝑓(𝑥, 𝑢))
′
𝜆𝑠. (48) 

Later, the strong duality condition (47), (48) was relaxed to the dissipativity 

assumption [24]. 

 

The system of Equation (36) is said to be dissipative with respect to the supply 

rate 𝑠(𝑥𝑡 , 𝑢𝑡): 𝕏 × 𝕌 → ℝ, If a function 𝜆: 𝕏 → ℝ exists, such that: 

 𝜆(𝑓(𝑥𝑡 , 𝑢𝑡)) − 𝜆(𝑥𝑡) ≤ 𝑠(𝑥𝑡 , 𝑢𝑡), ∀(𝑥𝑡, 𝑢𝑡) ∈ ℤ (49) 

Additionally, if a function 𝜌: 𝕏 → ℝ≥0, positive definite exists, such that: 

 𝜆(𝑓(𝑥𝑡 , 𝑢𝑡)) − 𝜆(𝑥𝑡) ≤  −𝜌(𝑥𝑡) + 𝑠(𝑥𝑡 , 𝑢𝑡),  (50) 

Then it is said that the system is strictly dissipative [3]. 

 

There are several formulations to achieve closed-loop stability if the dissipativity 

assumptions are fulfilled, including the terminal constraints and the terminal costs.  

 

For the economic problem, the closed loop system 𝑥𝑆 is an asymptotically stable 

point with region of attraction 𝒳𝑁, if it is strictly dissipative with respect to the 

supply rate in Equation (49), (50). This can be proven by creating an auxiliary 

augmented problem with a rotated stage cost, subsequently showing that the 

feasible sets, 𝒳𝑁, coincide. Finally it exhibits that the objective function of the 
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original and rotated formulations are different only by a constant, concluding that 

both solutions are the same [3]. 

 

Stability in the closed-loop may also be achievable by employing an adequate 

terminal cost with an inequality terminal constraint, as opposed of an equality 

constraint. This proof also involves a rotated stage cost, which is considered as a 

Lyapunov function, and taking into consideration the strict dissipativity property 

[3].  
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4 Calcination of kaolin 

This chapter provides a general view of the kaolin processing, and afterwards it 

focuses on the calcination process which is the interest of this work. 

 

4.1 Kaolin processing 

 

Kaolin clays are commonly extracted from open pits, because underground 

mining involves added costs of production that may not be optimal or in some 

cases prohibitive, for a stable operation. Ore obtained from the deposits needs to 

be refined since the mineral contains many impurities and the kaolin calcining 

stage requires high quality kaolin as raw material for processing. The kaolin is 

extracted from the pits with a method known as wet processing giving a more 

efficient extraction compared to dry processing [30]. Wet processing yields higher 

uniformity, improved color and the mineral is relatively free of impurities. The 

processing of the clay generates large quantities of by-products. These include 

rock, mica and sand. In Figure 3 a simplified view on the kaolin extraction, refining 

and processing is presented.  

 

The flow of kaolin from the pit to the calcining stage is classified into three main 

stages: 

I. Pit operations 

II. Refining processes 

III. Drying processes 

 

After the kaolin passes through these stages it is ready to be calcined. 
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Figure 3. Simplified flow diagram of kaolin production [30] 
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4.2  Kaolin Calcination  

 

Calcination is a very important unitary operation that is used to process solids in 

order to yield a value-added product. Calcination was introduced in the beginning 

of the 1950s [31]. The calcination process contributes to an increase in hardness 

and modifies the structure of the kaolin. The calcination provides kaolin a low 

dielectric loss due to the lack of crystallinity, and an excellent insulation 

performance. This process effectively upgrades opacity, brightness and other 

characteristics of kaolin. Furthermore, calcined kaolin has diverse industrial 

applications such as the paint industry, paper industry, pharmaceutical industry, 

and many others.  

 

Calcined kaolin may be classified generally in two grades. The first grade 

corresponds to a kaolin with improved brightness and opacity. This kaolin grade 

is treated at temperature between 450 to 700 °C [32]. The product has a bulky 

characteristic and may be used as coating additive for paper, to increase 

resiliency and opacity in low basis weight sheets [33]. 

 

Further heating of kaolin to a temperature close to 980 °C causes a 

physicochemical change that transforms the amorphous mixture of alumina and 

silica to a more organized structure, giving rise to the stage known as “spinel 

phase” [34]. If the material is heated even more, it causes a new modification, 

where the spinel phase forms high temperature quartz, also known as cristobalite, 

and small crystals of mullite [35]. The second grade of calcined kaolin is 

constituted by spinel phase and mullite, which has a brightness between 92 and 

94% [32]. The second grade of calcined kaolin is whiter with an increased 

abrasivity, compared to the primary kaolin [36]. The mullite content in the kaolin 

determines the abrasivity, with high concentrations of mullite the product will be 

more abrasive. The abrasivity is controlled by selecting a proper feed of kaolin, 

maintaining acceptable temperatures during calcination, and appropriate 
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processing after calcination. The following Table 1 describes the differences 

between the two calcination grades for kaolin. 

Table 1. Kaolin grades and changes in properties [37]. 

Kaolin 
Calcination 
(grade 1) 

Calcination 
(grade 2) 

Brightness Increased Increased 

Particle shape  Changed Changed 

Particle size Changed Changed 

Opacity Improved - 

Color - Whiter 

Abrasion - Increased 

Specific surface 
area 

- Increased 

Temperature 
range 

500-700 °C 1000-1100 °C 

Porosity Increased with higher temperatures 

 

The following set of equations describe the different physicochemical 

transformations that kaolin suffers during calcination [38]: 

 

I. Dehydroxylation of kaolinite to metakaolinite:  

 
Al2O3 ⋅ 2SiO2 ⋅ 2H2O ⟹

450−700°C
Al2O3 ⋅ 2SiO2 + 2H2O(𝑔) 

(51) 

 

II. Formation of Al–Si spinel phase from metakaolinite 

 
2(Al2O3 ⋅ 2SiO2) ⟹

925−1050°C
2Al2O3 ⋅ 3SiO2 + SiO2(amorphous) 

(52) 

 

III. Formation of mullite 

 
3(2Al2O3 ⋅ 3SiO2) ⟹

≥1050°C
2(3Al2O3 ⋅ 2SiO2) + 5SiO2 

(53) 

 

IV. Crystallization of cristobalite from amorphous silica 

 
SiO2(amorphous) ⟹

≥1200°C
SiO2(cristobalite) 

(54) 
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At the beginning free water is removed by evaporation at temperature near         

100 °C. There, the energy is absorbed as latent heat due to the evaporation. In 

the first reaction (51) a loss of weight (Dehydroxylation) occurs which is displayed 

in the thermogravimetric (TG) curve shown in Figure 4 [39]. The reaction is 

endothermic as determined by differential scanning calorimetry (DCS) curve 

presented in the blue line of the same figure. The second (52) reaction, depicted 

in the temperature range 925-1050°C, is exothermic. In the second reaction (52), 

the crystal structure of the metakaolin transmutes to a more stable state, and a 

part of solid transforms into mullite in the third reaction (53) [40]. The fourth 

reaction (54) only occurs when further heating is applied to over 1200 °C, which 

in this particular process is not performed. 

Figure 4. Thermogravimetric analysis and Differential Scanning Calorimetry 

Curve for kaolin calcination (provided by IMERYS). 
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4.3 Review of control strategies for the MHF 

 

4.3.1 Fuzzy logic control for Nickel Recovery Process 

 

One of the areas where MHF has been employed is the selective reduction of 

nickel. The MHF configuration considered in this section is installed at the Nicaro 

plant in Cuba. The configuration of this particular MHF is illustrated in Figure 5. 

The furnace dimensions are 6.7 m in diameter and 21.3 m high, contains 17 

circular hearths, numbered top to bottom from the H-0 until the H-16. The 

reductant is dried ore and blended with fuel oil, previous to the feed to the roaster, 

where it is roasted at 700–800 °C with a 5400 s of retention time. The ore is also 

warmed up by the hot reducing gas (CO + H2). This gas is generated in nine 

combustion chambers positioned along the furnace. The combustion of the fuel 

oil occurs in a deficiency of air. The chemical heat value of the gas is recovered 

by burning it with the incorporation of secondary air to the hearths 4 and 6. This 

process is defined as post-combustion. The post-combustion allows a reduction 

of fuel use by 50%, in this way the furnace consumes about 10 million kilograms 

of fuel oil per year [41]. 

 

  
Figure 5  MHF furnace used for Nickel recovery [26] 
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The effect of the air flow on the steady state temperature in the hearth 4 is notably 

nonlinear. Moreover, there are actually two operation regions with opposite gain 

signs. The curve describing the effect of the air flow on the temperature depends 

on the furnace operating conditions (quantity of carbon in the fed mineral, 

concentration of reductants in H-4, mineral flow, etc.), as shown in Figure 6. 

 

It is also widely recognized that this kind of process is hard to control, because it 

has a rather stochastic nature; it is time-varying, multivariable with interactive 

influences, and also non-linear. In particular, the traditional PID controllers are not 

able to perform well due to the gain sign change in the air flow effect on the gas 

temperature.  

 

To achieve the control objectives, a fuzzy logic controller is designed and 

implemented in [41]. In more details, a multivariate controller is designed to 

controls the temperatures in the hearth 4 where the post-combustion process 

happens. This controller is installed in the supervisory system of a nickel reduction 

furnace.  

 

 

 

Figure 6  Relationship between the temperature and the air flow of H-4. [26] 
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Table 2. Elements of the control structure [41] 

Control schemes Manipulated variable Controlled variable 

Fuzzy Controller 

Air flow to hearth 4 (𝑓𝑎𝐻4) Temperature of hearth 4 

(𝑇𝐻4) Air flow to hearth 6 (𝑓𝑎𝐻6) 

Fuel oil flow (𝑓𝑝) Temperature of hearth 6 

(𝑇𝐻6) Ore flow fed to the roaster (𝑓𝑚) 

 

 The fuzzy controller considers five variables: the control error (𝑒) of temperatures 

𝑇𝐻4 and 𝑇𝐻6, the change of these errors (𝑐𝑒), and the specific fuel consumption 

defined as amount of fuel in kilograms used per 1 ton of ore fed to the furnace. 

While the manipulated variables include the change in airflow to the hearth 4 and 

6, fuel oil flow to combustion chambers (𝑓𝑝), and the ore feed rate to the roaster 

(𝑓𝑚). Mathematically, the considered variables are expressed by: 

 𝑒(𝑘) = 𝑟(𝑘) − 𝑦(𝑘) 
𝑐𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1) 

(55) 

where 𝑟 is the reference signal, 𝑦 is the output (of the process), and 𝑘 is the 

discrete time, while the final control signal is given by: 

 𝑢(𝑘) = 𝑢(𝑘 − 1) + ∆𝑢(𝑘). (56) 

After assigning the membership functions to the variables, the subsequent task is 

to design the knowledge base. The knowledge bases were created from the 

experienced operators and control engineering knowledge, i.e., using the so 

called verbalization technique. Taking into account various regions of operation 

of the MHF and/or technological restrictions, 60 rule bases were designed, each 

consisting of 108 rules. A typical rule, for example, is tabulated in Table 3. 

 

Table 3 Example rule base, where A 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 B (𝐴 → 𝐵) [41] 

Rules A B 

R 𝑒𝑡ℎ4 is “negative”, and 

𝑐𝑒𝑡ℎ4 is “negative”, and 
𝑒𝑡ℎ4 is “negative”, and 
𝑐𝑒𝑡ℎ4 is “negative”, and 
𝑓𝑢𝑒𝑙 𝑐𝑜𝑚𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 is “low”. 

𝑓𝑎ℎ4 is “diminish”; 

𝑓𝑎ℎ6 is “augment”; 
𝑓𝑝 is “augment much”; 
𝑓𝑚 is “maintain”. 
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Number of field tests were performed at the plant. During the tests the process 

was subject to different disturbances, and the controller maintained the 

temperature of the hearths H-4 and H-6 in the desired range in all the cases. 

 

4.3.2 Predictive control for recovery of the vanadium process 

 

Rotary Kilns or Multiple Hearth Roasters are commonly used for extraction of 

Vanadium from steelworks slag. The slag is roasted under alkaline conditions, 

usually using 𝑁𝑎𝐶𝑙 or/and 𝑁𝑎2𝐶𝑂3 as additives. The following chemical reactions 

are reported in the literature for the conversion of Vanadium 

 𝑉2𝑂3 + 𝑂2 → 𝑉2𝑂5 
𝑉2𝑂5 + 2𝑁𝑎𝐶𝑙 + 𝐻2𝑂 → 2𝑁𝑎𝑉𝑂3 + 2𝐻𝐶𝑙 
𝑉2𝑂5 + 𝑁𝑎𝐶𝑂3 → 2𝑁𝑎𝑉𝑂3 + 𝐶𝑂2 

(57) 

 

Figure 7 shows a scheme of the multiple hearth furnace, where 𝑚𝐺𝑖(𝑡) and 𝑚𝐵𝑖(𝑡) 

are the mass of the bulk (B) and the gas (G) in the hearth 𝑖, 𝑇𝐺𝑖(𝑡) and 𝑇𝐵𝑖(𝑡) are 

the temperature of the gas and the solid, and 𝑐𝑗𝑖(𝑡) is the concentrations for the 

component 𝑗 on the 𝑖th floor. The slag and the additives are fed at the top of the 

furnace and transported from floor to floor by the shaft driven (DS) agitator. Heat 

and oxygen are provided in some of the floors by burners with a high excess air.  

Figure 7 Scheme of a Multiple Hearth Furnace [28] 
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Assuming homogenous gas- and bulk-layers in every floor, a physically based 

model of the vanadium roast process in a multiple hearth furnace is derived in 

[42]. This development yields a nonlinear state space model for calculating the 

mean values for mass, temperature and concentrations. Further, this nonlinear 

model is linearized around a typical operating point to facilitate the controller 

design. It has been observed that the process model order is quite high due to 

several decisive states on every floor of the MHF. Model order reduction was then 

carried out by assuming a lower order transfer function structure.  

 

The control objective is to maintain an oxidizing atmosphere during roasting which 

is essential for maximum efficiency in the conversion of the vanadium. 

Furthermore, the second control objective is to achieve accurate temperature 

control in the roasting units which is required for reasonable recovery of the 

vanadium and to avoid any undesirable process behavior like hearth build up (see 

[43] and the references therein). To achieve the aforementioned objectives, the 

overall controller design is divided into four parts. Figure 8 illustrates the block 

diagram of the controller structure [44]. The main control loops include: 

 

1. 𝑝𝐻-control: The 𝑝𝐻-value of the roasted bulk is controlled by 𝑢𝑝𝐻, the mass 

flows 𝑚̇𝑁𝑎𝐶𝑙  and/or 𝑚̇𝑁𝑎2𝐶𝑂3. 

2. 𝑐- control: Stationary control of a key component concentration by 𝑢𝑐. This 

system is of minor importance from the control engineer's viewpoint since 

in practice this control operates in a time scale which is slower compared 

the process dynamics. Therefore, the design of this controller will not be 

further discussed. 

3. 𝑇-control: The temperature 𝑇 of the individual floors is controlled by the 

burner gas flow 𝑢𝑇 

4. 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑-control: The overhead controller provides the setpoint values for 

pH 𝑤𝑝𝐻, concentration 𝑤𝑐, and temperature 𝑤𝑇 to the above control loops. 
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Figure 8 Block diagram of the controller structure [43] 

The main aim of designing the temperature controller is to maintain a desired 

temperature profile over the furnace by controlling the temperature of the 

individual floors. This usually gives a strongly coupled multivariable system. In the 

preliminary works of [43], PI controllers were designed using the following transfer 

function: 

 
𝐺𝑃𝐼 = 𝐾

𝑠 + 𝑎

𝑠
. (58) 

The parameters of the controllers were selected by optimizing a quadratic cost 

functional, including the tracking error and the weighted control efforts.  

 

Concerning the 𝑝𝐻-control, a total dead time 𝑇𝑝𝐻 is composed of the retention 

time and the time of the offline analysis of the 𝑝𝐻-value. Consequently, a Smith 

predictor control structure is employed, as illustrated in Figure 9. In this predictive 

control scheme, the knowledge of the process model 𝐺𝑃 and a precise information 

of the total dead time is required to estimate the 𝑝𝐻̂ value. The sampled and 

delayed variable 𝑝𝐻𝑚𝑒𝑎𝑠.  is used to compensate modelling errors or the influence 

of unaccounted disturbances 𝑍1, ⋯ , 𝑍𝑚. Other free variables are the measurable 

disturbances. Consequently, further improvements in the controlled behavior may 

be achieved by feed forward controllers. 
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Figure 9 Block diagram of the 𝒑𝑯-control system with Smith-Predictor [43] 

 

The overhead controller acts with the purpose of enhancing the process efficiency 

by providing the reference values to the internal closed-loops. In addition, 

operators take care on the controller to avoid undesirable operating conditions. 

 

4.3.3 Model predictive control for Nickel recovery in the MHF 

A multi-variable model predictive control (MPC) technique is used as an advanced 

process control method to control and optimize a set of nickel reduction roasters 

located at Votarantim Metais Niquel (VMN) in Niquelandia, Gioas State, Brazil 

[45]. The physical structural properties of the Herreschoff roaster include 12 

hearths with, in total, 45 meters in height and 8 meters in diameter. The operating 

phenomena of the nickel laterite ore remains similar to the above. The reported 

total transit time of the roaster is approximately three hours. A simplified overview 

of the roaster configuration is illustrated in Figure 10, where each of the lower 

hearths has a pair of burners (12 in total) in which heavy fuel oil is burned under 

sub-stoichiometric conditions. This generates an atmosphere rich in carbon 

monoxide which, together with temperatures in the range 600 to 800 degrees 

Centigrade, causes the reduction of the oxide ore to metalized form. 
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The main control objectives are to improve the stability of roaster temperatures, 

to reduce fuel oil consumption per ton of feed and to increase nickel metallization 

levels in the roaster product stream. Indeed, the regulation of a hearth 

temperature is achieved by adjustment of the firing rate (oil flow) of the associated 

burner. However, each hearth temperature is also strongly affected by the firing 

rate of the adjacent burners, by the ore feed rate and the secondary air flow. For 

the optimal metallization of the ore, attainment of the correct temperature profile 

from top to bottom of the roaster is critical. The target profile is defined as a series 

of ranges expressing the minimum and maximum acceptable temperatures at 

each hearth. 

 

The basic automation of the VMN roasters is provided by a network of Allen-

Bradley PLCs, with a supervisory SCADA layer implemented by Wonderware 

InTouch software. For implementing the control algorithms, the Connoisseur 

software package from Invensys Process Systems was used. The predictive 

model used in the Connoisseur multi-variable controller has a straightforward 

Figure 10 Roaster process overview [30] 
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linear time-series format. The model parameters were estimated using response 

data generated from Pseudo-Random Binary Sequence (PRBS) testing of the 

roasters. The data allow identifying a high quality multi-variable dynamic model. 

In order to achieve the control in real-time, the dynamic process model is deployed 

within a constrained model-predictive control structure, where the control moves 

are calculated such that the value of a quadratic cost function is minimized subject 

to linear inequality constraints (QP). The cost function is composed of the 

following variables: square of the predicted controlled variables (CV) errors over 

the prediction horizon, square of the incremental manipulated variables (MV) 

moves over the control horizon and square of the predicted MV deviations from 

target over the control horizon. The results reported in [45] confirms the superiority 

of the QP controller as stabilizing comparing a period under Connoisseur control 

with a similar period under conventional control. 
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EXPERIMENTAL PART 

5 Aim of the experimental part 

The main purpose of the MHF control system is to ensure uniform product quality, 

whereas maximizing the furnace capacity and improving its energy efficiency is 

necessary for optimal operation. As there is no online product quality and solid 

temperature measurements available, the process control have to rely on a 

monitoring technique to improve the control of the calcination progress. In this 

thesis, a first principal model previously developed in [37] is employed to obtain 

an estimation of the product composition, and a model-based method (MPC) is 

selected to design the supervisory control of the furnace. Furthermore, the 

economic modification of the MPC technique called EMPC is taken in use to 

incorporate the process economics to control the furnace.  

 

The mechanistic model employed in the thesis is symmetric in the sense that the 

conditions in each Hearth are assumed to be dependent only on the distance from 

the hearth center. In contrast, four burners are installed in each of Hearths 4 and 

6, providing energy to four quarters of the Hearths independently. In practice, the 

amount of the energy supplied to every quarter and the temperature measured in 

different quarters can significantly differ, which makes impossible to use the 

symmetric first principal model for monitoring and control. Thus, the prerequisite 

problem is to achieve similar conditions in different sectors of Hearths 4 and 6, 

which can be solved at the basic level of the control strategy. 

 

The purpose of the experimental part is to setup the simulation environment that 

prepares the ground for MHF advanced process control development based on 

EMPC and/or MPC techniques. This includes the revision of the mechanistic MHF 

model to include more accurate walls dynamics, simplification of the mechanistic 

model to the state space form suitable for MPC implementation and the design of 

the basic controllers for Hearth 4 temperature.  
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The mechanistic model developed in [46] relies on an approximated dynamics of 

the wall temperature, considering only the temperature of the inner surface and 

the temperatures between each of the wall material layers. In order to accurately 

describe the walls temperature dynamics, a detailed model of the heat transfer in 

the walls have been developed. This wall model describes the dynamics 

pertaining to the heat transfer flux across the differen in this thesis and 

incorporated to the mechanistic model.  

 

The implementation of the EMPC requires to simplify a previously developed 

mechanistic model of the Multiple Hearth Furnace. The simplified model is 

developed in the form of a nonlinear Hammerstein-Wiener model, which is 

linearized at every sampling time to carry out the state estimation and MPC 

optimization tasks. As the accuracy of the simplified process model is crucial for 

the performance of the EMPC, the thesis aims to compare the simulation results 

of the mechanistic model and the simplified one.  

 

The EMPC designed in the thesis provides setpoints for the temperature in 

Hearths 4 and 6, which have to be tightly tracked by the controllers to achieve 

similar conditions in each quarter of the hearths. The existing temperature control 

in Hearth 6 performs well, however, the control of Hearth 4 temperature needs to 

be improved. The experimental part suggests a few alternative controls for the 

Hearth 4 temperature and presents the simulation results to evaluate the 

performance of the existing and the proposed solutions.  

 

The experimental part is organized as follows. The MHF is described in Chapter 

6. The design of the Economic Model Predictive control for the Multiple Hearth 

Furnace is provided in Chapter 7. The details of the simulation environment for 

EMPC implementation are presented in Chapter 8. The comparison of the models 

and the simulation results are reported in Chapter 9. The current temperature 
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control in the Hearth 4 is analyzed and the suggested alternative controls are 

provided and evaluated in Chapter 10. The conclusions are given in Chapter 11.   
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6 Process Description 

 

6.1  Description of the Multiple Hearth Furnace 

 

This section presents the key physical-chemical phenomena taking place in the 

solid and the gas phases in the calciner. The Multiple Hearth Furnace (MHF) 

considered in this Master’s thesis is the Herreschoff calciner. The Herreschoff 

calciner is a furnace with eight chambers called hearths and numbered H1, H2, 

H3… H8. The furnace has installed four burners to each of the hearths 4 and 6, 

which supply the heat needed for calcination. The burners are placed with a 

tangential alignment and have the potential to use a maximum of 8000 kW of 

power. Raw kaolin is introduced at the top and the temperature increases as it 

travels down through the furnace. 

 

Within the calciner, the material is moved through the furnaces by the metal plates 

or blades attached to the rotating rabble arms. The blades are designed with the 

intention of transporting the material outwards on even-numbered hearths and 

inwards on odd-numbered hearths. The kaolin traversing the even numbered 

hearths moves outward to descend through individual holes at the outside border 

of the hearth, while kaolin moving on the odd-numbered hearths falls to the next 

hearth through a single annulus located around the shaft supporting the rabble 

arms at the center. Figure 11 illustrates the design of the Herreschoff calciner. 

 

An important mechanism of heat transfer inside the furnace is radiation from the 

flames. This radiation is also reflected by the internal walls of the hearths. As 

additional mechanisms, conduction and convection heat from the gas phase is 

transferred through walls and air respectively. 
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Kaolinite transforms to metakaolin in the hearths 3, 4 and 5. This transformation 

occurs between 400-700 °C within the furnace. The metakaolin is released from 

the hearth 5 at a temperature approximately 800 °C which continues to elevate in 

the hearth 6 where the transformation of metakaolin to the Al–Si spinel phase 

occurs. The main objective of the hearth 6 is to increase the temperature in order 

to facilitate the absorption of aluminum into the silica phase. The control of 

temperature in the hearth 6 is essential to avoid overheating which may result in 

the undesired formation of a more crystalline material that may generate some 

1 

2 

3 

4 

5 

6 

7 

8 

Figure 11. Cross-sectional picture of the Herreschoff calciner with direct fire 
burners [32] 
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abrasion problems. The reacted material begins to decrease temperature in the 

hearths 7 and 8 and finally leaves from the hearth 8 at a temperature of 750 °C.  

 

6.2  Overall control scheme of the MHF 

 

The temperature levels in the hearths 4 and 6 are controlled by adjusting the gas 

flows to the burners. The temperature controllers connected to the burners, 

maintain the temperatures within the safety limits. Gas and air flow measurements 

are performed utilizing orifice plate flow meters. Feed rate determines the 

maximum gas flow allowed in the hearth 4, this limitation prevents an unnecessary 

use of gas. To ensure a complete combustion of the gas, sufficient amount of air 

is required, which is controlled by a separate PI controllers. The set-point for 

combustion air flow is determined according to the stoichiometric ratio between 

the oxygen and methane in the combustion reaction. 

 

Table 4. Major online measurements and online lab analysis                    

(provided by IMERYS). 

Measurements  Lab analysis 

Hearth 2-8 Mean gas temp. (°C)  

Feed rate (kg/min)  

Mean Gas flow to H4&H6 (m3/h)  

Mean Air flow to H4&H6 (m3/h)  

Kiln exhaust temp. (°C)  

Kiln rabble arm amps  

Kiln offtake pressure (mBar)  

Gas temp. (°C) 

Combustion air temp. (°C) 

Fe2O3 (feed)  

K2O (feed) 

brightness (feed) 

particle size (feed, product) 

Sol. Al. (product) 

brightness (product) 

 

The operating control strategy for the MHF is aimed to process kaolin and calcine 

it. After setting up the production objectives, the chemical composition of the 

kaolin is analyzed in earlier process units so that the MHF calciner can be 

operated on some particular conditions. This analysis including checking the iron 
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content, mica, feldspar, silica and quartz in the feed to be further processed at 

higher temperatures in the calciner. The major online measurements and lab data 

are summarized in Table 4. 

 

The brightness of the product is primarily affected by the temperature profile of 

the solid material in the furnace. The temperature profile depends on the following 

variables: the gas temperature of the burners located at the hearths 4 and 6, the 

shaft rotational speed of the rabble arms and inherently, the feed rate to the 

calciner. The operators provide the set-points for the target temperature values of 

the burners in the hearths 4 and 6 separately. The temperature (for each burner) 

is then adjusted accordingly in a ramp fashion (i.e., the temperature is increased 

or decreased in a constant rate). The rate in which the temperature is adjusted, is 

also determined by the operators. Ramp rate allows the temperature to vary either 

up or down at a rate such that the fabric of the calciner has protection from 

excessive temperature changes. Control of ramp rate also gives a degree of 

control to prevent overshoot. The above uses the existing “stand alone" 

Eurotherm adaptive controllers, where the control is facilitated by modulation of 

the gas flow. Furthermore, the limits of the gas flow are controlled as well. This 

prevents temperature overshoot and reduces the consumption of gas, thereby 

maximizes the energy efficiency of the furnace.  

 

There is an additional requirement of the percentage of soluble aluminum together 

with brightness specifications, which is checked and taken care by the control 

strategy. The above discussed control strategy provides a stable control of the 

kiln. 
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6.3 A case study of the temperature profile variations 

 

This section aims to demonstrate the effect of disturbances in the MHF on the 

temperature profile in the furnace while the Hearth 4 and 6 temperature controllers 

are performing well. The goal of this example is to motivate the need of a 

supervisory control minimizing the final product quality variations through 

manipulating the setpoints of the basic temperature controllers.  

 

The case study considers a period of time when the furnace was operated with a 

feed rate of 100 kg/min. During the considered period, the temperature in the 

Hearth 6 is tightly controlled, whereas the amount of methane required by this 

hearth rapidly rises after sample 500 while the temperature in the Hearth 8 drops 

simultaneously, as it can be seen in Figure 12. In fact, the temperature in Hearth 

8 strongly correlates with the temperature of the solids leaving the furnace. 

Furthermore, the observed drop of the gas and solids temperature in the Hearth 

8 is probably caused by lower temperature of the solids leaving from the         

Hearth 6.  At the same time, the methane inflow to the Hearth 4 drops, while the 

Figure 12. Process variables related to Hearths 6 and 8 
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temperature in this hearth is stable and the temperature in the Hearth 5 is even 

increasing, see Figure 13. 

 

The observed process variable trends could be explained by partly shifting the 

exothermic reaction from the Hearth 6 to earlier hearts. This leads to the increase 

of the temperature in the Hearth 4, which is mostly compensated by the lowered 

gas flow to the hearth, and also in the Hearth 5. At the same time, less spinel 

phase is formed in the Hearth 6 causing simultaneous drop of the solid peak 

temperature reached in this hearth. The effect on the gas temperature in the 

hearth is fully compensated by the increased methane inflow, but the solid and 

gas temperature in the subsequent hearths drops. Better understanding of the 

described phenomena requires more accurate modeling of the heat exchange 

between the solids and the gas phase, especially in the Hearths 4 to 6. 

 

The provided case study confirms that tracking the temperature in the Hearths 4 

and 6 is not able to eliminate variations of the temperature profile in the furnace 

completely. In fact, many similar cases are found in the process data, especially 

for the high feed rates.  

Figure 13. The process variables related to the Hearths 4 and 5 

H4 average temperature measured 
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7 Design of Economic MPC for the Multiple Hearth Furnace 

 

This chapter describes the design of EMPC for the MHF. The overall control 

strategy based on the EMPC is given in Section 7.1 and the rest of the section 

describes the elements of the EMPC. In more details, the cost function is 

explained in Section 7.2 and the process models are introduced in Section 7.3. 

 

7.1 EMPC control strategy 

 

The EMPC control designed in the thesis aims to optimize the temperature profile 

in the furnace through determining the feed rate and providing the setpoints to the 

basic temperature controllers in the Hearths 4 and 6, as shown in Figure 14. 

Assuming the basic temperature controllers are operating properly, the 

temperature measured in the Hearths 4 and 6 is close to the setpoints provided 

by the EMPC. Thus, the main feedback from the process to the controller is the 

gas consumption in the Hearths 4 and 6 and the gas temperature measured in 

other hearths. In addition, the updated prices of calcined kaolin and methane are 

used to calculate the objective of the EMPC optimization. The constraints have to 

be also specified to maintain proper operating conditions and prevent damage to 

the furnace.  

 

The EMPC relies on a process model to predict and optimize the future plant 

behavior in on-line. As the mechanistic model is too complicated to implement the 

necessary computations, a simplified model is used for the EMPC development. 

Furthermore, the simplified model is linearized at each EMPC run resulting in the 

following model:  

 
{
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 ,    𝑡 ∈ 𝕀[0,𝑁−1]
𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡                                  

 (59) 
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where 𝑥𝑡 is the state of the furnace, 𝑦𝑡 contains the temperatures 𝑇𝐻𝑖 measured 

in the Hearth 𝑖 = 1,… , 8, 𝑢𝑡 contains the feed rate to the furnace 𝐹𝐾 and the gas 

flow rates 𝐹𝑔4 and 𝐹𝑔6 to the Hearths 4 and 6 respectively: 

𝑦𝑡 = [

𝑇𝐻1
𝑇𝐻2
…
𝑇𝐻8

] , 𝑢𝑡 = [

𝐹𝐾
𝐹𝑔4
𝐹𝑔6

]. 

Both the mechanistic model and its simplification represent the open loop furnace 

dynamics, while the EMPC handles the process running in the closed loop with 

the temperature controllers. In more details, the EMPC manipulates the setpoints 

for the gas temperatures in the hearths 4 and 6 and considers the gas flows to 

the hearths as the feedback from the process. In opposite, the mechanistic and 

the simplified models consider the gas flow rates and the feed flow as the inputs 

Economic MPC 

Gas flow to 

the Hearth 4 

Multiple Hearth Furnace 

Gas flow to the 
Hearth 6 

Cost Function 
& Constraints 

Simplified 
Model 

Natural Gas 

price 

EMPC calculations 

Process 

Constraints 

Feed flowrate 

Calcined Kaolin 

price 

Figure 14. EMPC control strategy for the MHF 

Temperature 
Controllers 
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to predict the temperature profile in the furnace. Thus, the open-loop dynamics 

(59) has to be converted to the close-loop model to be used in the EMPC 

calculations. 

 

Assuming the measured temperatures in the Hearths 4 and 6 equal to the 

setpoints 𝑦𝑡
∗ provided by the EMPC, the inputs can be expressed from the second              

equation in (59): 

 𝑢𝑡 = 𝐷
−1(𝑦𝑡

∗ − 𝐶𝑥𝑡) (60) 

Substituting the last equation to Equation (59), the closed loop dynamics for the 

state is derived:  

Thus, system of Equations (60), (61) represents the closed loop model that is 

necessary for EMPC implementation that can be formulated as follows:   

 max
𝑦𝑡
∗
 𝐽𝑀𝐻𝐹(𝑢𝑡) 

{
𝑥𝑡+1 = 𝑥𝑡 + 𝐵𝐷

−1(𝑦𝑡
∗ − 𝐶𝑥𝑡),    𝑡 ∈ 𝕀[0,𝑁−1]

𝑢𝑡 = 𝐷
−1(𝑦𝑡

∗ − 𝐶𝑥𝑡)                                  
 

𝑥0 = 𝑥(0)   
(𝑥𝑡 , 𝑦𝑡

∗) ∈ ℤ,     𝑡 ∈ 𝕀[0,𝑁−1] 

𝑥𝑁 = 𝑥(𝑁) ∈ 𝕏
𝑓 

(62) 

𝑦𝑡
∗ contains the setpoints for the Hearths 4 and 6 temperature control. As the 

EMPC optimization problem is defined, it is possible to provide more details of the 

design. 

 

7.2 Cost Function 

 

The economic interest of the process is to maximize production of the calcined 

kaolin and at the same time to minimize energy consumption. The flow rate of the 

calcined output (𝐹𝐶), which contains the product of interest, is calculated using 

simple mass balances of the form: 

 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝐷
−1(𝑦𝑡

∗ − 𝐶𝑥𝑡) (61) 
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 𝐹𝐶 = (1 − 𝑐𝐻2𝑂) ∗ (1 − 𝑐𝑓𝑚) ∗ 𝐹𝐾 (63) 

From [37], it is known that when the kaolin enters the process, it releases 

approximately 14% of its weight through evaporation and dehydroxylation (𝑐𝐻2𝑂), 

as explained in Section 4.2. Additionally, the calcined product contains 

approximately 0.5% free moisture (𝑐𝑓𝑚) when it leaves the process.  

 

Other interest, as mentioned earlier, is to minimize the energy consumption. In 

the Multiple hearth furnace, the main energy provider is the methane gas, which 

is combusted to increase temperature inside, and to reach the desired levels to 

initiate the different chemical reactions that occur inside the furnace. 

The methane entering the process is burned in the hearth 4 and hearth 6, and the 

variables for gas flow for the H4 and H6 are 𝐹𝑔4 and 𝐹𝑔6 respectively. The total 

gas flow entering the system is defined as:  

 𝐹𝑔 = 𝐹𝑔4 + 𝐹𝑔6 (64) 

To build the cost function it is important to include the price for the variables 

involving the process economics. In this way, the cost function is expressed as an 

equation that contains the main economic interest of the process (profit). 

 

𝐽𝑀𝐻𝐹 =∑𝑝𝐶𝐹𝐶 − 𝑝𝑔𝐹𝑔

𝑁

𝑡=0

 (65) 

Where 𝑝𝐶 and 𝑝𝑔 are the respective prices of calcined kaolin and methane gas, 

and 𝐽𝑀𝐻𝐹 is the Economic Performance Index of the MHF for a specific interval 

of time [0,N]. 
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7.3 Models for the Multiple Hearth Furnace 

 

This section presents the models used for the EMPC development. In the first 

subsection, the mechanistic model of the MHF based on physical and chemical 

principles is presented. In this thesis, the mechanistic model is modified to include 

detailed walls dynamics presented in the second subsection. Next, the 

mechanistic model with the detailed walls dynamics is simplified and the resulting 

model is presented in the third subsection. In the last subsection, the linearization 

of the simplified model, necessary for the EMPC implementation, is introduced.  

 

7.3.1 Mechanistic model of the MHF 

 

In the work of Eskelinen [46], a mechanistic model of the MHF was developed. In 

this work, the MHF was divided in six parts: the gas phase, solid bed, central shaft, 

walls, rabble arms, and the cooling air. In this Section the basic equations used 

in this model will be presented, for more details please refer to [46]. 

 

The MHF considered by Eskelinen, consists of eight hearths and it is designed 

with a counter-current solid and gas flows as described in Section 6.1. The 

calcination process requires great amounts of heat, and it is supplied to the 

furnace through a total of eight methane burners distributed between the Hearths 

4 and 6.  

 

Some assumptions have been taken into consideration to develop the model. 

Primarily, the solid bed on the hearths are split into four (Hearths 3 to 8) or five 

(Hearths 1 and 2) homogenous annular volumes depending to the furnace rabble 

arm configuration. As a second consideration, the volumes are assumed to be 

identical in size in the mass content and the radial direction. In third instance, the 

mixing model assumes that one shaft rotation disperses the contents of a volume 

between the original volume and its neighbor volumes (one is the following and 
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the other is the preceding).  Finally the solid mass distribution after one time 

rotation is defined as: 

 𝑚𝑡+1
𝑗

= 𝐷𝑗 ∙ (𝑚𝑡
𝑗
− 𝑅𝑟,𝑡

𝑗
) + 𝑚𝑓𝑒𝑒𝑑,𝑡

𝑗
 (66) 

Where 𝑚𝑓𝑒𝑒𝑑,𝑡
𝑗

  and 𝑅𝑟,𝑡
𝑗

 denote the feed to the Hearth and the mass loss in the 

solid phase in the Hearth 𝑗. The mass movement matrix 𝐷 defines the distribution 

of the contents of each partition 𝑚𝑡
𝑗
 after one central shaft rotation in the hearth j, 

specifically, the column 𝑖 of the matrix represents the distribution of volume 𝑖 

between the volumes of the hearth. 

 

The feed to a hearth may be determined as the exiting volume from the previous 

hearth as follows: 

 𝑚𝑓𝑒𝑒𝑑,𝑡
𝑗

= (1 − ∑𝐷𝑗−1
𝐾 ) (𝑚𝑡

𝑗−1,𝐾
− 𝑅𝑟,𝑡

𝑗−1,𝐾
) (67) 

Where 𝐾 is the exiting volume of hearth 𝑗 − 1 and 𝐷𝑗−1
𝐾  is the Kth column of matrix 

𝐷𝑗−1 .  Defining the solid bed movement matrix for the H1 as: 

 

𝐷1 = 

[
 
 
 
 
1 − 𝑎1
𝑎1 − 𝛼
0
0
0

𝑎1
1 − 2 𝑎1 + 𝛼
𝑎1 − 𝛼
0
0

0
𝑎1

1 − 2 𝑎1 + 𝛼
𝑎1 − 𝛼
0

0
0
𝑎1

1 − 2 𝑎1
𝑎1

0
0
0
𝑎1

1 − 𝑎1]
 
 
 
 

 (68) 

The parameter 𝛼 is presented to define the net forward flow through a hearth, this 

is the feed rate minus the mass loss caused by dehydroxylation reactions and 

evaporation. 𝑎1 is the upper diagonal matrix elements and represents the flow 

from the current volume to the next volume. Therefore, the lower diagonal matrix 

elements (𝑎1 − 𝛼) represents the flow equal to the difference of the full forward 

and the net forward flows. 

 

The gas phase mass balance equation is determined as: 

 𝑛̇𝑖,𝑖𝑛 − 𝑛̇𝑖,𝑜𝑢𝑡 − 𝑅𝑖 = 0 (69) 
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Where 𝑛𝑖,𝑜𝑢𝑡 signifies the number of moles of component 𝑖 leaving a volume, 𝑅𝑖 is 

the mass difference of component 𝑖 due to reactions, and 𝑛𝑖,𝑖𝑛 , represents the 

incoming moles of component i, obtained as follows: 

 𝑛𝑖,𝑖𝑛
𝑗
= 𝑐𝑖

𝑗+1
𝐹𝑗 (70) 

𝐹𝑗 is the gas flow passing through the Hearth, 𝑐𝑖
𝑗+1

 is the concentration of 

component 𝑖 in the previous volume, and j is the number of the volume. 

 

For each hearth having different temperature, the real volumetric gas flow 𝐹𝑟𝑒𝑎𝑙, 

can be calculated based on the ideal gas law as: 

 
𝐹𝑟𝑒𝑎𝑙 = 𝐹𝑁𝑇𝑃

𝑇𝑟𝑒𝑎𝑙
𝑇𝑁𝑇𝑃

 (71) 

where 𝐹𝑁𝑇𝑃 is the volumetric flow calculated from  atmospheric temperature and 

pressure. 

 

The model also takes in consideration energy balances for the walls, gas phase, 

the central shaft, cooling air, rabble arms, and for the solid bed: 

 𝑄̇𝑔𝑎𝑠,𝑖𝑛 − 𝑄̇𝑔𝑎𝑠,𝑜𝑢𝑡 + 𝑄̇𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 + 𝑄̇𝑔𝑠 + 𝑄̇𝑔𝑤 + 𝑄̇𝑔𝑠ℎ𝑎𝑓𝑡 + 𝑄̇𝑔𝑎𝑟𝑚𝑠 = 0 (72) 

Where 𝑄𝑔𝑎𝑠,𝑖𝑛 and 𝑄𝑔𝑎𝑠,𝑜𝑢𝑡 denote the heat of the inlet and the outlet gas flows,  

𝑄𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 is the heat released by the combustion, and the final four terms in the 

left side of the equation, denote the heat exchange of the gas phase with the solid, 

walls, central shaft and the arms. 

 

The combustion energy is obtained: 

 𝑄̇𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 = 𝑏𝑖𝑛̇𝑚𝑒𝑡ℎ𝑎𝑛𝑒∆𝐻𝑐𝑜𝑚𝑏𝑢𝑠𝑡 (73) 

Where bi is the combustion ratio, 𝑛𝑚𝑒𝑡ℎ𝑎𝑛𝑒 represents the methane feed rate, and 

∆𝐻𝑐𝑜𝑚𝑏𝑢𝑠𝑡 is the combustion enthalpy of methane.  

 

Heat transfer between the solid and gas phase 𝑄̇𝑔𝑠 takes place through radiation 

and convection: 
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 𝑄̇𝑔𝑠 = 𝜎𝑋𝑠𝐴𝑔𝑠𝜀𝑠𝜀𝑔(𝑇𝑔
4 − 𝑇𝑠

4) + ℎ𝑐𝑔𝑠𝑋𝑠𝐴𝑔𝑠(𝑇𝑔 − 𝑇𝑠) (74) 

Where 𝐴𝑔𝑠 is the area of the Hearth floor, 𝜎 is the Stefan-Boltzmann constant. 

Solid and gas emissivities εs and εg, and heat transfer coefficient hcgs. 𝑇𝑔 and 𝑇𝑠 

are the temperatures of the gas and the solid respectively. Xs is a surface view 

factor. 

 

Heat transfer among the inner walls and the gas phase 𝑄̇𝑔𝑤 takes place by 

convection and radiation: 

 
𝑄̇𝑔𝑤 = 𝜎𝐴𝑔𝑤

(𝜀𝑤 + 1)

2
𝜀𝑔(𝑇𝑔

4 − 𝑇𝑤
4) + ℎ𝑐𝑔𝑤𝐴𝑔𝑤(𝑇𝑔 − 𝑇𝑤) (75) 

𝐴𝑔𝑤 is the area of the walls, 𝜀𝑤 and 𝜀𝑔 is the emissivities of the walls and the gas, 

𝑇𝑔 and 𝑇𝑤 are the temperatures of the gas and the walls respectively, and ℎ𝑐𝑔𝑤 is 

the heat transfer coefficient. 

 

The heat flux between the gas phase and the central shaft 𝑄̇𝑔𝑠ℎ𝑎𝑓𝑡, and between 

the gas phase and rabble arms 𝑄̇𝑔𝑎𝑟𝑚𝑠 comprises the radiative and the convective 

heat transfer terms respectively: 

 𝑄̇𝑔𝑠ℎ𝑎𝑓𝑡 = 𝜎𝑍𝐴𝑔𝑠ℎ𝑎𝑓𝑡𝜀𝑠ℎ𝑎𝑓𝑡𝜀𝑔(𝑇𝑔𝑎𝑠
4 − 𝑇𝑠ℎ𝑎𝑓𝑡

4 ) + ℎ𝑐𝑔𝑠ℎ𝑎𝑓𝑡𝑍𝐴𝑔𝑠ℎ𝑎𝑓𝑡(𝑇𝑔𝑎𝑠 − 𝑇𝑠ℎ𝑎𝑓𝑡) (76) 

 𝑄̇𝑔𝑎𝑟𝑚𝑠 = 𝜎𝐴𝑔𝑎𝑟𝑚𝑠𝜀𝑎𝑟𝑚𝑠𝜀𝑔(𝑇𝑔𝑎𝑠
4 − 𝑇𝑎𝑟𝑚𝑠

4 ) + ℎ𝑐𝑔𝑎𝑟𝑚𝑠𝐴𝑔𝑎𝑟𝑚𝑠(𝑇𝑔𝑎𝑠 − 𝑇𝑎𝑟𝑚𝑠) (77) 

Where 𝐴𝑔𝑠ℎ𝑎𝑓𝑡 and 𝐴𝑔𝑎𝑟𝑚𝑠 are the areas of the central shaft and the arms 

respectively, 𝜀𝑠ℎ𝑎𝑓𝑡, 𝜀𝑎𝑟𝑚𝑠 and 𝜀𝑔 are the respective emissivities of the shaft, the 

arms and the gas, while 𝑇𝑠ℎ𝑎𝑓𝑡, 𝑇𝑎𝑟𝑚𝑠 and 𝑇𝑔 are the temperatures of the model 

parts respectively, ℎ𝑔𝑠ℎ𝑎𝑓𝑡 and ℎ𝑎𝑟𝑚𝑠 are the heat transfer coefficients, and Z is a 

constant describing the insulation of the central shaft. 

 

The energy balance equation for the walls is: 

 𝜕𝑄𝑤
𝜕𝑡

= 𝑄̇𝑤𝑔 − 𝑄̇𝑤𝑠 − 𝑄̇𝑤𝑎 (78) 
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𝑄𝑤 is the heat accumulated in the walls, and 𝑄̇𝑤𝑔 and 𝑄̇𝑤𝑎 symbolize the heat 

transfer between the walls and the gas, and the walls and the ambient air. 

 

The radiative heat flux is obtained as: 

 𝑄̇𝑤𝑠 = 𝜎𝑋𝑠𝐴𝑠𝑤𝜀𝑠𝑤 (𝑇𝑤
4 − 𝑇𝑠

4) (79) 

𝑋𝑠 and 𝐴𝑠𝑤 are the form factor of the solid surface and the area of the Hearth floor, 

and the emissivity between the solid bed and the walls is symbolized 𝜀𝑠𝑤. 

 

The following equation is used to obtain the heat transfer between the outer wall 

and the ambient air: 

 𝑄̇𝑤𝑎 = ℎ𝑐𝑤𝑎𝐴𝑤𝑎(𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 − 𝑇𝑜𝑢𝑡𝑒𝑟 𝑤𝑎𝑙𝑙) (80) 

𝐴𝑤𝑎 is the surface of the outer layer of the furnace wall, 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 and 𝑇𝑜𝑢𝑡𝑒𝑟 𝑤𝑎𝑙𝑙 

are the respective temperatures of the ambient air and the outer layer of the wall, 

finally ℎ𝑐𝑤𝑎 is the heat transfer coefficient. With the purpose of calculating 

temperature profile, the furnace wall is divided into eight segments according to 

the hearths distribution. 

 

The equations describing the heat in the central shaft and the rabble arms are 

respectively: 

 𝜕𝑄𝑠ℎ𝑎𝑓𝑡

𝜕𝑡
= 𝑄̇𝑔𝑠ℎ𝑎𝑓𝑡 − 𝑄̇𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙 (81) 

 𝜕𝑄𝑎𝑟𝑚𝑠
𝜕𝑡

= 𝑄̇𝑔𝑎𝑟𝑚𝑠 − 𝑄̇𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙 (82) 

Where the heat exchange among the gas and shaft, gas and arms, respectively 

are denoted by 𝑄𝑔𝑠ℎ𝑎𝑓𝑡 and 𝑄𝑔𝑎𝑟𝑚𝑠.  

 

The heat transfer between cooling air and the central shaft and the rabble arms 

correspondingly are obtained: 

 𝑄̇𝑠ℎ𝑎𝑓𝑡_𝑐𝑜𝑜𝑙 = 𝜎𝐴𝑠ℎ𝑎𝑓𝑡_𝑐𝑜𝑜𝑙𝜀𝑠ℎ𝑎𝑓𝑡 (𝑇𝑠ℎ𝑎𝑓𝑡
4 − 𝑇𝑐𝑜𝑜𝑙

4 ) + ℎ𝑐𝑠ℎ𝑎𝑓𝑡_𝑐𝑜𝑜𝑙𝐴𝑠ℎ𝑎𝑓𝑡_𝑐𝑜𝑜𝑙(𝑇𝑠ℎ𝑎𝑓𝑡 − 𝑇𝑐𝑜𝑜𝑙) (83) 
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 𝑄̇𝑎𝑟𝑚𝑠_𝑐𝑜𝑜𝑙 = 𝜎𝐴𝑎𝑟𝑚𝑠_𝑐𝑜𝑜𝑙𝜀𝑎𝑟𝑚𝑠(𝑇𝑎𝑟𝑚𝑠
4 − 𝑇𝑐𝑜𝑜𝑙

4 ) + ℎ𝑐𝑎𝑟𝑚𝑠_𝑐𝑜𝑜𝑙𝐴𝑐𝑎𝑟𝑚𝑠_𝑐𝑜𝑜𝑙(𝑇𝑎𝑟𝑚𝑠 − 𝑇𝑐𝑜𝑜𝑙) (84) 

𝐴𝑠ℎ𝑎𝑓𝑡_𝑐𝑜𝑜𝑙 and 𝐴𝑎𝑟𝑚𝑠_𝑐𝑜𝑜𝑙 are the surfaces of the central shaft and the arms, 

𝜀𝑠ℎ𝑎𝑓𝑡and 𝜀𝑎𝑟𝑚𝑠 are the emissivities of the shaft and the arms, while 𝑇𝑠ℎ𝑎𝑓𝑡, 𝑇𝑎𝑟𝑚𝑠 

and 𝑇𝑐𝑜𝑜𝑙 are the temperatures of the model parts respectively, ℎ𝑐𝑠ℎ𝑎𝑓𝑡_𝑐𝑜𝑜𝑙 and 

ℎ𝑐𝑎𝑟𝑚𝑠_𝑐𝑜𝑜𝑙 are the heat transfer coefficients.  

 

The energy balance of the cooling air: 

 𝜕𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑖𝑟

𝜕𝑡
= 𝑄̇𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑖𝑟,𝑖𝑛 + 𝑄̇𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙 + 𝑄̇𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙 − 𝑄̇𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑖𝑟,𝑜𝑢𝑡 (85) 

Where 𝑄̇𝑐𝑜𝑜𝑙𝑖𝑛𝑔𝑎𝑖𝑟,𝑖𝑛 and 𝑄̇𝑐𝑜𝑜𝑙𝑖𝑛𝑔𝑎𝑖𝑟,𝑜𝑢𝑡 are the heat of the inlet and outlet cooling, 

while 𝑄̇𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙 and 𝑄̇𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙 symbolize the respective heat exchange 

concerning the cooling area and the central shaft and the arms.  

 

Finally, the solid phase energy balance equation is obtained: 

 𝜕𝑄

𝜕𝑡
= 𝑄̇𝑚𝑎𝑠𝑠,𝑖𝑛 − 𝑄̇𝑚𝑎𝑠𝑠,𝑜𝑢𝑡 − 𝑄̇𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 − 𝑄̇𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑄̇𝑠𝑤 + 𝑄̇𝑠𝑔 (86) 

Where 𝑄 denotes the solid phase heat of a volume, 𝑄̇𝑚𝑎𝑠𝑠,𝑖𝑛 and 𝑄̇𝑚𝑎𝑠𝑠,𝑜𝑢𝑡 denote 

the solid phase heat, inflowing and outflowing the volume, 𝑄̇𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 and 

𝑄̇𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 define the heat of the chemical reactions occurring in the solid phase 

and free water evaporation, while the final two terms symbolize the heat exchange 

concerning the solid bed and the walls, and the solid bed and the gas. 

 

The heat in each solid bed partition can be obtained in a similar manner as 

previously defined in Equation (63): 

 𝑄𝑡+1
𝑗,𝑘

= 𝐷𝑗 ∙ 𝑄𝑡
𝑗,𝑘
+ 𝑄𝑓𝑒𝑒𝑑,𝑡 (87) 

 

  



  

58 
 

7.3.2 Detailed model of the furnace wall  

 

This section discusses the role of the walls in the heat transfer routes in the 

furnace, which is followed by the description of the detailed model of the walls 

dynamics. In more details, the furnace walls are involved in the following heat 

transfer routes: the walls transfer the energy obtained from the gas phase to the 

solids, the walls accumulate thermal energy and the walls conduct heat from the 

furnace to the ambient causing energy losses [47]. The first route, which is the 

energy transfer from the walls to the solids through radiation, is known to be very 

significant. A calculation from the mechanistic model shows that a variation of 10K 

in the temperature of the inner walls in the Hearth 6 affects the heat transfer to 

the solid by 100 kW, and this is noticeable in the process scale. 

 

 In order to estimate the effect of the heat accumulation in the walls on the energy 

fluxes in the furnace, the walls heat capacity has been calculated based on the 

material properties provided in Table 5. The estimated heat capacity of the walls 

is around 80 MJ/K, which means that only minor energy fluxes are generated by 

accumulating/releasing heat by the walls due to very slow dynamics of the walls 

temperature. As an example, rising the walls temperature by 10 °C during 24 

hours would only require approximately 9 kW of heating power, which is negligible 

in the process scale. Next, the total heat losses, estimated based on the material 

properties provided in Table 5, are about 90 kW, which is around 2% of the energy 

released from methane combustion in the furnace. Thus, the heat losses 

represent a minor component of the energy balance of the process, and the 

variations in the heat losses have negligible effect on the furnace dynamics. In 

brief, it can be concluded that the temperature of the inner walls has a strong 

influence on the intensity of the radiation emitted by the wall surface, whereas the 

heat accumulation in the walls can be neglected and the heat losses can be 

assumed constant.  
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Table 5. Material properties (provided by Imerys) 

Material Width Conductivity 
(W/m K) 

Heat capacity 
(J/Kg K) 

Density 
(Kg/m3) 

Refractory 152 1.6 1000 2480 

Fire bricks 114 0.32 1000 769 

Backfill 75 0.16 1000 2350 

Steel 25 54 465 7833 

 

The mechanistic model developed in [46] relies on an approximated dynamics of 

the wall temperature, considering the temperature of the inner walls and the 

temperature between the material layers shown in Table 5. In order to accurately 

describe the dynamics of the inner walls temperature, a detailed model of the heat 

transfer in the walls have been developed in this thesis. The walls are divided into 

5 mm thick layers, whereas the first and the last layers represents the outer and 

the inner wall respectively, and the total number of layers is denoted as 𝑁. The 

temperature 𝑇𝑖 of each layer 𝑖 = 1,… ,𝑁 is assumed to be uniform. The implicit 

finite difference approximation of the temperature dynamics of layer 𝑖 is as follows:  

 (𝑇𝑡+1
𝑖 − 𝑇𝑡

𝑖)𝐶𝑝𝑖
Δ𝑡

=
(𝑇𝑡

𝑖−1 − 𝑇𝑡
𝑖)𝑘𝑖

2𝑑
+ 
(𝑇𝑡+1

𝑖−1 − 𝑇𝑡+1
𝑖 )𝑘𝑖

2𝑑
+
(𝑇𝑡

𝑖+1 − 𝑇𝑡
𝑖)𝑘𝑖

2𝑑
+ 
(𝑇𝑡+1

𝑖+1 − 𝑇𝑡+1
𝑖 )𝑘𝑖

2𝑑
 (88) 

where 𝑡 denotes the time step, 𝐶𝑝𝑖 and 𝑘𝑖 are the heat capacity and the heat 

conduction coefficient of volume 𝑖, computed according to the material properties 

taken from Table 5, and 𝑑= 5mm is the spatial step.  

The heat inflow through the inner surface (𝑄𝑡) of the walls is assumed to be 

linearly depend on the inner wall temperature, where Δ is the linear part 

coefficient:  

 𝑄𝑡 = 𝑄
∗ + Δ 𝑇𝑡

𝑁 (89) 

and the temperature of the inner wall layer is approximated as follows: 

 (𝑇𝑡+1
𝑁 − 𝑇𝑡

𝑁)𝐶𝑝𝑖
Δ𝑡

=
(𝑇𝑡

𝑁−1 − 𝑇𝑡
𝑁)𝑘𝑁

2𝑑
+ 
(𝑇𝑡+1

𝑁−1 − 𝑇𝑡+1
𝑁 )𝑘𝑁

2𝑑
+ 𝑄𝑡 

(90) 
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Starting from the initial temperature of the walls 𝑇0
𝑖 , 𝑖 = 1,… ,𝑁, the algorithm 

resolves the system  of equations (88), (90) at every time step 𝑡 to obtain the 

temperature profile within the walls at the next instant 𝑡 + 1.  

In order to study the dynamics of the inner walls temperature, the coefficient 𝑄∗ 

describing the heat inflow to the walls was varied and the resulting steady state 

temperature of the inner walls is presented in Figure 15. The linear part coefficient 

Δ was assumed to be Δ = 0.17kW/m2/𝐾 in (92), which roughly represents the 

conditions in the Hearth 6.  

In general, the inner walls temperature follows its steady state with a short delay, 

which can be described by a dynamics with the settling time less than 1 hour. 

Compared to the inner surface, the inside of the wall shows considerably slower 

dynamics, with the settling time of more than a day. In fact, the temperature inside 

the walls have a minor effect on the inner surface temperature, causing it to 

approach the steady value very slowly between samples 200 and 500, as shown 

in Figure 15.  

 

 Based on this comparison, it is possible to conclude that the temperature of the 

inner wall is important due to its effect on the radiative energy transference inside 

the furnace, which provides heat to the solid. The main component of the inner 

walls temperature dynamics has a settling time below 1 hour, whereas the slow 

temperature dynamics inside the walls has a minor effect on the inner surface. 

Figure 15. Simulation results of the detailed walls temperature model 
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7.3.3 Simplified model  

 

For the purpose of future implementation of a nonlinear model to MPC or EMPC, 

a simplified model based on the mechanistic model described in Section 7.3.1 has 

to be developed. A simplification of the mechanistic model is built based on its 

dynamics and nonlinear behavior separately. By separating the behavior in a 

nonlinear static block and a linear dynamic block, it is possible to construct a 

model that retains the response of the original. For the case where the linear 

dynamic block is preceded by a static input nonlinearity the model is known as a 

Hammerstein model and for the alternative case where the linear dynamic block 

is followed by a static nonlinearity, the model is identified as a Wiener model [48].  

 

The simplified model is expressed as a Hammerstein-Wiener model (HWM). The 

HWM separates the dynamic system in blocks that contain the nonlinearities in 

static form and the dynamics in linear form. The linear block, which encloses the 

dynamics of the process, is preceded and followed by a static non-linear block. 

 

Figure 16 shows the structure of the HWM which denotes the dynamic process 

by means of input and output static nonlinear blocks in between dynamic linear 

blocks which is affected by static nonlinearities. The Hammerstein-Wiener 

structure is then utilized to capture the physical nonlinear effects in the process 

that will influence the input and output of the linear system.  

 

As discussed in the previous section and in [46], the dynamics of the MHF 

includes the very fast component, relating to the gas phase, and the slower 

component, representing the solid state. For EMPC implementation the 

Static 
Nonlinear 

Linear 
Dynamic 

Static 
Nonlinear 

𝑢𝑡  𝑤𝑡  𝑥𝑡  𝑦𝑡  

𝑢𝑡  

Figure 16. Structure of Hammerstein-Wiener model [33] 
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temperature of the solid has to be described dynamically. Furthermore, as the 

temperature of the inner layer of the walls has a direct effect on the calcination 

process happening in the furnace, it is also considered in the model as a state. 

The gas temperature profile could be modeled with algebraic equations. 

Additionally the spinel phase content and/or mullite content may be included as 

an output in order to control the quality of the product.  

 

The simplified model is implemented as the following Hammerstein-Wiener 

nonlinear dynamic model: 

 𝑥𝑡+1 = 𝛼𝑥𝑡 + (1 − 𝛼)𝐹(𝑢𝑡)
𝑦𝑡 = 𝐺(𝑢𝑡 , 𝑥𝑡)                

 (91) 

Where 𝑢𝑡 are inputs to the process (kaolin feed, gas flows to the H4 and H6), 𝑥𝑡 

contains the temperature of the solids in each volume of the furnace and the 

internal wall temperature in the hearths, 𝛼 is a parameter characteristic of the 

HWM and is obtained through identification using the identification toolbox 

included in the numerical computing environment MATLAB®. 𝐹(𝑢𝑡) and 

𝐺(𝑢𝑡 , 𝑥𝑡) are static nonlinear functions obtained from the mechanistic model 

simulations and energy balances respectively. 

 

In order to implement the first function 𝐹(𝑢𝑡), describing the steady-state values 

of the process, a look up table has been created by running the mechanistic model 

simulations with different process inputs. The obtained values are interpolated as 

follows:  

where 𝑏𝑖,𝑗,𝑘 are the values from the look-up table and the piecewise linear basis 

functions ℎ𝑖
𝑥, ℎ𝑗

𝑦
 and ℎ𝑘

𝑧 have been used for the interpolation, as shown in        

Figure 17: 

 

𝐹(𝑢𝑡)  =∑∑∑𝑏𝑖,𝑗,𝑘 ℎ𝑖
𝑥(𝐹𝐾)ℎ𝑗

𝑦
(𝐹𝑔4)ℎ𝑘

𝑧(𝐹𝑔6)

5

𝑘=1

5

𝑗=1

5

𝑖=1

  (92) 
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The second function 𝐺(𝑢𝑡 , 𝑥𝑡), describing the steady state values of the gas 

temperature next to the walls in the Hearths (the temperature profile), is 

implemented by resolving the energy balance for the gas phase derived from the 

mechanistic model.  

 

7.3.4 Linearization of the simplified model 

 

The mechanistic model includes a large number of nonlinear differential and 

algebraic equations, and therefore, it is unsuitable for model predictive control 

implementation. The simplified model developed in this work, is aiming to limit the 

number of states of the model and to achieve a simple equations structure, thus, 

making the simplified model suitable for the online optimization. Furthermore, the 

simplified model contains the energy balance of the furnace as algebraic 

equations in order to utilize the physical-chemical knowledge collected in the 

mechanistic model.  To implement the simplified model for the EMPC structure a 

further step should be made. A linearization of the HWM for the furnace is 

performed online in order to reduce the complexity and number of calculations. 

 

Figure 17. The basis function used for the interpolation in Equation (92) 
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The simplified model in Equation (91) is linearized by approximating the nonlinear 

terms in the right hand of the equations by linear functions. In particular, the first 

function 𝐹(𝑢𝑡) has been approximated with a truncated Taylor series to the first 

term for each variable as follows: 

 𝐹(𝑢𝑡)  ≈ 𝐹
0(𝐹𝐾

∗, 𝐹𝑔4
∗, 𝐹𝑔6

∗) +
𝜕𝐹

𝜕𝐹𝐾
(𝐹𝐾 − 𝐹𝐾

∗) +
𝜕𝐹

𝜕𝐹𝑔4
(𝐹𝑔4 − 𝐹𝑔4

∗) +
𝜕𝐹

𝜕𝐹𝑔6
(𝐹𝑔6 − 𝐹𝑔6

∗) (93) 

where the derivatives in the right side part in Equation (93) are calculated, 

therefore differentiating analytically the function 𝐹(𝑢𝑡)  that is defined according 

to Equation (92). After approximating to a Taylor series the function 𝐹(𝑢𝑡) may 

be expressed as part of a linear state space model: 

 𝐹(𝑢𝑡) ≈ 𝐵𝑢𝑡 + 𝐹
0(𝑢𝑡

∗) (94) 

The dynamic part in this model remains the same as the HWM, because it is linear 

in nature, consequently the matrix 𝐴 is an identity matrix with a congruent size. 

 

For the linearization of the second function 𝐺(𝑢𝑡 , 𝑥𝑡), a simple unity step up and 

down response was used to determine the linear terms that constitute the state 

space model. Therefore the function is to be reduced to the following form: 

 𝐺(𝑢𝑡 , 𝑥𝑡) ≈ 𝐶𝑥𝑡 + 𝐷𝑢𝑡 + 𝐺
0(𝑢𝑡

∗, 𝑥𝑡
∗) (95) 

To determine the values of 𝐶 and 𝐷 a numerical derivative approximation is 

applied, as a unitary increase and decrease to the state variables and process 

inputs respectively, while 𝐺0 is only a constant associated to the initial value, 

analogous to 𝐹0(𝑢𝑡
∗). Thus these matrices are obtained according to: 

 
𝐶 =  

𝐺(𝑢𝑡 , 𝑥𝑡 + ∆𝑥) − 𝐺(𝑢𝑡 , 𝑥𝑡 − ∆𝑥)

2∆𝑥
 

𝐷 = 
𝐺(𝑢𝑡 + ∆𝑢, 𝑥𝑡) − 𝐺(𝑢𝑡 − ∆𝑢, 𝑥𝑡)

2∆𝑢
 

(96) 
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Where ∆𝑥 and ∆𝑢 are vectors constituted of unitary values corresponding to each 

of the states and process variables respectively. Finally the linearization model 

may be expressed according to the following system: 

 𝑥𝑡+1 = 𝛼𝐴𝑥𝑡 + (1 − 𝛼)[𝐵𝑢𝑡 + 𝐹
0(𝑢𝑡

∗)]

𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 + 𝐺
0(𝑢𝑡

∗, 𝑥𝑡
∗)      

 (97) 

As it is noticeable, the system in Equation (97) is expressed as a linear state 

space model. This model is suitable for EMPC implementation as demonstrated 

in Section 2.2.1, because it facilitates the prediction of states, which is the 

fundamental basis of Predictive Control strategies. 
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8 Setup of the MHF simulation environment for advanced process control 

implementation 

 

This chapter describes the simulation environment created in this thesis for 

implementation and testing of advanced process controls of the MHF, like the 

EMPC designed in the previous section. In particular, the overview of the 

simulation environment is provided and the details of the EMPC implementation 

are discussed. 

 

The simulation environment developed in this work is implemented in 

MathWorks™ MATLAB®. This software includes a fourth generation programming 

language, which handles matrix calculations, implementation of algorithms, 

interfacing with other programs, plotting of diverse data, among others. MATLAB is 

broadly used in research and academic institutions, as well as in industry, due to the 

ease of access, fast processing and reliability. 
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The overview of the simulation environment is shown in Figure 18 above. The 

mechanistic model including the detailed walls dynamics is used to simulate the 

actual process behavior. The model obtains the gas flow rates to Hearths 4 and 

6 from the basic temperature PI controllers and the feed rate from the advanced 

controller optimization. The temperature profile predicted by the model and the 

gas flow rates to Hearths 4 and 6 are supplied to the Kalman filter estimating the 

current state of the furnace. The simplified model is linearized at the estimated 

state, and the linear model is utilized in the MPC/EMPC optimization. In addition, 

Advanced Control 

Basic Temperature 
Control 

EMPC/MPC 

Optimization 

Linearization  

Kalman Filter 
Constraints 

Figure 18. Simulation environment for advanced process control development 
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the Kalman filter receives the linear model to carry out the state estimation at the 

next time step. 

 

In order to carry out simulation studies, some variables should be defined, 

including the calcined Kaolin price and the methane gas price. Within each EMPC 

optimization, the prices are assumed to be constant equal to the current price 

values, whereas the gas and product prices can vary during simulations.  

 

The necessary parameters for the first principle model are obtained from [37]. The 

simulator designed in the work of Eskelinen [37] enhanced to include the detailed 

walls dynamics and the dynamics of Hearth 4 temperature is employed as the 

process of interest, in this case the Herreschoff calciner. This simulator takes in 

consideration the equations described Section 7.3.1 to model in its entirety the 

MHF, and was implemented likewise in MATLAB. 

 

The optimization problem is solved, by predicting the states using the linearized 

model and calculating the optimal temperature setpoints, through the solution of 

the optimization problem in Equation (98): 

 

max
𝑦𝑡
∗
 ∑𝑝𝐶𝐹𝐶 − 𝑝𝑔𝐹𝑔

𝑁

𝑡=0

 

{
𝑥𝑡+1 = 𝛼𝐴𝑥𝑡 + (1 − 𝛼)𝐵𝐷

−1(𝑦𝑡
∗ − 𝐶𝑥𝑡)

𝑢𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡                                     
 𝑡 ∈ 𝕀[0,𝑁−1] 

𝐹𝐾 ∈ [95, 115] 𝐾𝑔/𝑚𝑖𝑛  
𝐹𝑔/𝐹𝐾 ∈ [2.96, 3.12]𝑚𝑜𝑙/𝑘𝑔 

𝐹𝑔4/𝐹𝑔 ∈ [0.56, 0.63]  

𝑇𝐻4 ∈ [980, 1020] °𝐶 

𝑇𝐻6 ∈ [1068, 1108] °𝐶 

∆𝐹𝐾 ∈ [−5, 5] 𝐾𝑔/𝑚𝑖𝑛  

∆𝐹𝑔4, ∆𝐹𝑔6 ∈ [−5, 5] 𝑚
3/ℎ  

(98) 
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where 𝑝𝐶 and 𝑝𝑔 denote the calcined kaolin and methane prices respectively. The 

equations above include all process constraints, the linearized model and the cost 

functions described in Chapter 7. In more details, the first equation in (86) 

represents the economic objective to be maximized. The second and the third 

equations represent the closed loop dynamics of the simplified model governed 

by the basic temperature controllers. The matrixes 𝐴, 𝐵, 𝐶 and 𝐷 and the time 

constant 𝛼 are obtained from the linearized model (97) and converted to the 

closed loop model according to the system of Equations (60), (61). Equations four 

to six in (98) represent the constraints on the feed rate, the specific energy 

provided to the furnace and the combustion gas distribution between the Hearths. 

These limits have been estimated from the process data. Equations seven and 

eight in (98) impose the limits on the gas temperature in the Hearths 4 and 6 in 

order to restrict the operating conditions to the commonly used. The last two 

equations in (98) prevent rapid variations of the combustion gas flows to the 

furnace in order to avoid wall material damage.  

 

After solving the optimization problem, the manipulated variables are applied to 

the process to attain the desired economical operation. The following steps have 

to be carried out at each sampling time of the simulation cycle: 

 

1- Linearizing the simplified model according to Section 7.3.4 

2- Estimate the current state of the process 𝑥𝑡  

3- Solve the EMPC optimization problem defined by Equations (98) 

4- Apply the control setpoint obtained from the EMPC to the temperature 

controllers 

5- Simulate the process model for one sampling time 
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9 Simulation Results 

 

This chapter presents the simulation results of the implemented models, 

described in Section 7.3. The simplified and linearized model for the MHF are 

compared to the mechanistic model quantitatively. The quantification reference 

for this comparison is the coefficient of determination, denoted as R2. This 

coefficient permits a simple way to discern if the simplified and linear models are 

a valid representation of the process described by the mechanistic model. 

 

A series of tests were designed for the purpose of analyzing the dynamic 

response of the different models, and to finally make a comparison. The tests 

include a series of step changes to input variables at different times. The variables 

used in these tests are: the kaolin feed, total gas flow ratio to the feed, and the 

ratio of hearth 4 gas flow to the total gas flow, constrained according to the 

following: 

𝐹𝐾 ∈ [26, 40] 𝐾𝑔/𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

𝐹𝑔/𝐹𝐾 ∈ [3.06,3.18] 𝑚𝑜𝑙/𝐾𝑔  

𝐹𝑔4/𝐹𝑔 ∈ [0.59, 0.65] 

The reason to introduce the abovementioned constraints is to ensure that the 

considered input signals agree within the commonly used process conditions. In 

the following figure the input series considered in this comparison is presented: 
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Figure 19. series of inputs changes for response analysis in the different 

models, 𝐹𝐾 (top), 𝐹𝑔/𝐹𝐾 (middle), 𝐹𝑔4/𝐹𝑔 (bottom) 
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In Figure 19, the sampling time is based on the shaft rotations periods instead of 

seconds or minutes, according to how it was used by the mechanistic model in 

[37]. In the top graph are observed the ramp changes of the kaolin feed to be 

introduced into the process. First, the kaolin feed is reduced from 33.33 to 30 

Kg/rotation after sample 1000. The feed maintains the same value until time 4000, 

were a new ramp increase occurs from 30 to 36.67 Kg/rotation. The feed is 

maintained constant at 36.67 Kg/rotation until sample 7000, were the final ramp 

decrease occurs, from 36.67 to 33.33 Kg/rotation. The latter value is maintained 

constant for the remaining of the simulation ending at sample 10000.  

 

The second series for the testing is illustrated in the middle graph from the 

previous figure. The final series of step changes is visualized in the bottom chart 

of Figure 19. The changes are performed to the 𝐹𝑔4/𝐹𝑔 ratio. For these tests a 

number of step changes are performed.  

 

In the following figures, the simulated outputs are given for each of the models. 

The results include the important sections of the furnace, these are: Heart 1,     

Heart 4 and Hearth 7.  
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The importance of presenting the Hearth 1 comes from the fact that in this region 

of the furnace is where the solid phase is introduced to the process, subsequently 

begins to dehumidify and rise its temperature, through heat exchange with the 

gas phase. The figure above presents the simulation results for gas, solid and 

wall temperatures in Hearth 1, given the series of changes of the input variables, 

presented earlier in this Chapter. These changes are applied to the upgraded 

mechanistic model with the wall model, and the simplified model, described in 

Section 7.3.  

Figure 20. Comparison between model responses in Hearth 1 



  

74 
 

The top of Figure 20 provides the gas phase temperature of Hearth 1 after 

introducing the series of changes in the input variables. It is noticeable that every 

1000 time samples a response change occurs, this will persist throughout the 

furnace temperature values for each Hearth. Initially it is observed that the 

simplified model follows remarkably close the response of the mechanistic model. 

The comparison between the two models is achieved using the coefficient of 

determination R2. The simplified model R2 has a value of 0.99498 for the gas 

temperature, similarly for the solid and wall temperatures the R2 is 0,8824 and 

0,96843 respectively. This means that the simplified model gives a remarkable 

prediction for all temperatures. The reason for this is that the simplified model 

includes the nonlinearities associated with the process, therefore can explain the 

behavior of the MHF in a proper manner. 

 

Next the simulations of Hearth 4 are presented. In Hearth 4 the Metakaolin is 

formed and in this location the solid begins its transformation to the spinel phase, 

which is later reinforced in Hearth 6, as described in Section 6.1. 

 

Figure 21 depicts the response based on the sequence of the input variables, in 

Hearth 4. At first glance it is noticeable that the behavior of the simplified model, 

for the gas temperature, follows outstandingly close the response from the 

mechanistic model, with a R2 value of 0.9526. The solid temperature follows 

closely the response from the mechanistic model with a R2 value of 0.80735. In 

the case of the wall temperature, the simplified model performs with reduced 

accuracy compared to other cases, the reason for this could be the limitation on 

the simplified model to predict the exothermic reaction that begins to occur in the 

hearth 4. This reaction is difficult to predict, and thus creates overshoots in the 

temperature, these overshoots are also observable in the solid temperature chart, 

near time samples 1000, 4000 and 7000. 
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The final section of the Herreschoff calciner analyzed is Hearth 7. In this Hearth 

the spinel phase begins its cooling down before leaving the process after the 

Hearth 8. 

 

A comparison between the models presented is accomplished for Hearth 7. In 

Figure 22 the different temperatures of Hearth 7 are estimated and compared. 

Initially it is noticeable how the simplified model describes accurately the expected 

behavior from the mechanistic model.  

Figure 21. Comparison between the model responses in the Hearth 4 
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To conclude, the results provided by the simplified model are always accurate. 

Thus, the simplified model may be regularly linearized during the closed loop 

EMPC simulations in order to maintain the good accuracy of the model used by 

the MPC implementation.  

Figure 22. Comparison between model responses in the Hearth 7 
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10 Practical perspectives on EMPC implementation 

 

10.1 Burner Configuration in the Hearth 4 

Many process equipment face operation difficulties after design, this might create 

a scenario of unexpected behavior during process control. The reason for this 

behavior could possibly be, due to a change in production levels, sizing, or 

operation outside the intended design performance. In the case of furnaces an 

important phenomena that occurs is a flame interaction. This phenomena is 

characterized by the creation of a dense fire cloud, alteration of the heat flux 

distribution inside the furnace, a rise in NOx emissions, among others [49]. 

 

Over the years there has been an interest from industry, to reduce the NOx 

emissions in multi burner furnaces, therefore new burner technologies has been 

introduced to address this demand. Generally these technologies use a type of 

furnace gas recirculation in order to reduce the flame temperature, subsequently 

reducing the formation of NOx emissions. However, to lower the flame 

temperature, a reduction in the concentration of air is needed, this brings as a 

consequence that the flames to be much longer. When the flames, in the modern 

multi burner furnaces, have increased length and volumetric heat release density, 

then this situation might lead to a phenomenon known as burner-to-burner (BtoB) 

interaction [50]. 

Take in Consideration two diffusion flames, as shown in Figure 23 that are 

neighboring to each other. The flame height is defined here as Lf. Also there is a 

Figure 23. Condition of interaction between two adjacent diffusion flames.  
Lf < Zc (no flame interaction); Lf > Zc (flame interaction) [35] 
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critical height where the jets interact (Zc). If the flame height is less than the critical 

height (Lf < Zc), no BtoB interaction will occur. If the flame height is larger than 

the critical height (Lf > Zc), the flames will interact. BtoB [50]. 

The configuration of the burners inside the furnace gives a clear idea of the 

interactions that occur inside the furnace. In the figure above (Figure 24) it is 

showed the burner configuration. This configuration is disposed in four equidistant 

points around the circumference of the hearth. Every burner is located in one of 

the points and they are facing a contiguous burner as represented in the figure 

above. Burner 1 (B1) faces burner 4 (B4), B4 faces Burner 3 (B3) and so on. 

 

B1 

B3 B2 

B4 

Figure 24. Burners configuration in the multiple hearth furnace 
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it is probable that increased capacity operation may give rise to difficulties to 

control temperature in the Multiple Hearth Furnace. These difficulties are most 

likely related to the BtoB phenomenon, causing some instabilities and 

nonlinearities in the temperature control in the Hearth 4. The interaction between 

the burners may cause a nonlinear correlation between gas flow and temperature 

in hearth 4. The scenario of burner interactions might be the reason for the rise of 

nonlinearities during temperature control of a furnace.  

From Figure 25 it is noticeable for B1, that after an increase of gas flow over 60 

m3/h the effect on temperature is negative, this means that a rise of gas flow after 

this point will cause a decrease in temperature. It is important to emphasize that 

this effect is similar for the other burners, therefore this phenomena is treated in 

the same manner for the four burners in hearth 4. 
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of the Herreschoff calciner. 
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The result of the BtoB interaction and the nonlinear effect is confirmed in Figure 

26. This figure shows process data of the furnace. The top graph shows the 

temperature of every burner, each associated with a color B1 in blue, B2 in green, 

B3 in red and finally B4 in light blue. The bottom image displays the gas flow of 

the burners, using the same color relations. At first glance, it is perceptible the 

relation between temperature of B1 and gas flow of B2. This relation is direct, 

indicating that an increase of gas flow in B2 causes an increase of temperature in 

B1, this occurs most probably due to the burner configuration and the fact that B2 

faces directly to B1. A second observation provides that there is a small effect on 

temperature of B2, even when gas flow of B2 is fluctuating. After observing 

closely, the gas flow in B2 shown in green has an approximate average of 60 

m3/h. This small change on temperature in B2 is attributed to the nonlinear effect 

exposed in Figure 25. If gas flow is close to 60 m3/h the temperature has a small 

change. 
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Figure 26. Effect of gas flow on subsequent temperature measurements 
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10.2 Simulation studies on temperature control of the Hearth 4 

 

10.2.1 Classical PI controllers 

 

The current control employed in H4 is constituted of 4 PI controllers, one for each 

burner, and the controllers operate individually. The control scheme is shown in 

Figure 27. 

 

 

 

 

 

 

 

 

 

PI controller 1 B1
SP

PI controller 2 B2
SP

PI controller 3 B3
SP

PI controller 4 B4
SP

Figure 27. Existing control in Hearth 4 
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Simulations were made for the purpose of performing tests on the process, and 

then design a solution for the situation. In the top of Figure 28 real data of the 

process is depicted, demonstrating the behavior of H4. In general one burner 

temperature, at a given time, follows the setpoint. This is illustrated in the top left 

graph. In the top right figure the gas flows for the burners are shown. In this case 

only one gas flow is manipulated while the rest remain in saturation. All behavior 

of the process is the result of the phenomena explained in section 10.1. In the 

bottom of the figure, the results of the current control are shown as a simulation. 

The setpoint is fixed to 1000 °C for all burners. The behavior of the simulated 

process closely resembles the real process, with only one temperature following 

the setpoint and the gas flows not associated to the stable temperature are in a 

state of saturation, as shown in the bottom right. For the purpose of this work the 
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Figure 28. Real process data of H4 (top).  

Simulation on current control in H4 (Bottom) 
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simulations presented follow the main behavior of nonlinearity and interaction, 

and are used as a basis to develop a solution. 

 

A series of simulations were made in order to show the behavior of the system for 

2 operation energy levels. These simulations include two setpoints, the first one 

being 1000 °C, is considered a high energy operation. The high energy operation 

uses values of gas flow from 60-85 m3/h, this range as shown previously in Figure 

25, has an inverse proportionality to temperature, and therefore it is more difficult 

to control. The second setpoint is 960 °C, this value is considered a low energy 

operation, with gas flow ranging from 0 to 60 m3/h. 

 

As portrayed in Figure 29 the first 500 time samples follow a setpoint of 1000 °C 

with corresponding manipulated gas flows. Time samples from 501-1000 follow a 

setpoint of 960 °C also with corresponding manipulated variables. For the first 

part (1000 °C setpoint) the temperature is only achieved by a burner at a time, 
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Figure 29. Simulation of change of setpoint, on current control scheme for H4 
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one control loop working, switching after a certain period, while others are in an 

uncontrolled state. Two burner temperatures follow the desire state in the case 

for setpoint of 960 °C, with two control loops not working properly, equally 

changing after a certain time. 

 

10.2.2 Mean temperature control 

 

A proposed solution for the current situation in H4, is the design of a controller 

that operates on the average temperature of the burners, instead of controlling 

each burner individually. There is the possibility that in high energy operation the 

temperature of 1000 °C is not achievable by the system. 

The schematic of the mean temperature control is displayed in Figure 30. The 

controller consists of the detection of temperature of the four burners and the 

calculation of the average value. Based on this calculation control measures are 

applied to the system by the manipulation of gas flows. Every gas flow is 

manipulated by the exact same amount. 

Figure 30. Mean temperature control for H4 
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After implementation a simulation of the mean control is obtained and shown in 

Figure 31. It is evident that the controller follows the setpoint very closely in both 

energy operations, as presented in the top graph. The mean temperature on the 

first 500 time samples is near 1000 °C, while for the second half the mean 

temperature is fixed to 960 °C. The middle picture illustrates the evolution of 

temperatures of all burners throughout the simulation. Finally the bottom figure 

shows how each gas flow is manipulated to achieve the desired control. 
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Figure 31. Simulation of change of setpoint, on mean control scheme for H4 
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10.2.3 Switching Control  

 

A different approach to solve the problem would be to consider the causes of the 

current behavior as explained before in Section 10.1. So based on the interactions 

and nonlinearity a control scheme has been devised as switching control. The 

function of the controller is very simple. It consider two energy operations, low and 

high energy.  

The low energy operation stablishes the control as it is currently implemented with 

a limit of 60 m3/h, while the high energy control is reconfigured to control 

temperature in one point with the influencing burner, manipulating gas flows from 

60 to 85 m3/h. In other words, since for example B2 interacts with B1 then the 

control is rewired to control temperature in B1 by manipulating gas flow in B2, and 

so subsequently. The controller detects an energy operation from the fixation of 

gas flows at 60 m3/h for a few time samples. For example, starting with a setpoint 

of 1000 °C, the control uses the high energy configuration with the scheme shown 

on the right side of Figure 32. After a change to 960 °C the gas flows start to 
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decrease until they reach a mean of 60 m3/h, if every gas flows maintains this 

level for 5 time samples, then the controller switches to the low energy 

configuration. In the same manner occurs a change from the low energy to the 

high energy configuration, after gas flows saturate at 60 m3/h during 5 time 

samples. 

 

Once the implementation was completed a simulation of the response was 

obtained. As portrayed in the top of Figure 33, the temperature of all burner follow 

the setpoint remarkably close for the first and second half of the simulation. It is 

visible the period for the switching of controllers; this occurs five time samples 

after the 500 samples mark, in the bottom of the figure.   
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Figure 33. Simulation of change of setpoint, on switching control scheme for H4 
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11 Conclusions 

 

This thesis focused on the design of a simulation testing environment for 

advanced control strategies (EMPC, MPC) on the Multiple Hearth Furnace aiming 

to improve the energy efficiency of the process while maintaining the specified 

product quality. In the literature part, the fundamentals of Model Predictive Control 

were presented, including the underlying concepts of Economic MPC. The kaolin 

processing was described briefly, and the calcination furnace was introduced. A 

review of control methods used in industry for the control of similar calcination 

furnaces was presented.  

 

The design of the simulation environment was developed in the experimental part 

based on several components: a mechanistic model developed previously, an 

improved wall model, a simplification of the mechanistic model, a linearization 

method to facilitate implementation in EMPC. 

 

 In contrast to the mechanistic model, including hundreds of various equations, 

the simplified model is implemented in the form of Hammerstein-Wiener nonlinear 

dynamic model with a reduced number dynamic equations, thus, making MPC 

implementation possible. Furthermore, the EMPC optimization problem has been 

formulated mathematically.  

 

Next, a procedure for the linearization of the simplified model, that is necessary 

for the MPC implementation, was developed. The mechanistic model, and 

simplified model were tested. The comparison showed that the simplified model 

follows accurately the mechanistic model in all cases. Thus, a linear model is 

unable to represent the furnace dynamics properly, and the linearization of the 

simplified model should be made at each MPC sampling time for obtaining 

accurate model predictions.  
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As the EMPC is designed to provide setpoints to basic controllers tracking the 

temperature in Hearths 4 and 6, the accuracy of the temperature setpoints 

tracking is essential for the overall control performance. Thus, some suggestions 

were provided in the thesis for the control in Hearth 4, including a mean 

temperature control and a switching control. Based on the simulation results, it 

was concluded that the proposed controller were able to track the temperature 

setpoints sufficiently well. 
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