
String matching is a widely studied problem
in Computer Science. There have been many
recent developments in this field. One
fascinating problem considered lately is the
order-preserving matching (OPM) problem.
The task is to find all the substrings in the
text which have the same length and relative
order as the pattern, where the relative order
is the numerical order of the numbers in a
string. The problem finds its applications in
the areas involving time series or series of
numbers. More specifically, it is useful for
those who are interested in the relative
order of the pattern and not in the pattern
itself. For example, it can be used by analysts
in a stock market to study movements of
prices.

We proposed various sublinear solutions for
exact and approximate OPM and we show
with experimental tests that our solutions
are efficient than the previous solutions.

A
alto-D

D
 101

/2
016

9HSTFMG*agicic+

ISBN 978-952-60-6828-2 (printed)
ISBN 978-952-60-6829-9 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

T
am

anna C
hhabra

A
lgorithm

s for O
rder-P

reserving M
atching

A
alto

 U
n
ive

rsity

2016

Department of Computer Science

Algorithms for Order-
Preserving Matching

Tamanna Chhabra

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11

text
pattern

DOCTORAL
DISSERTATIONS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80719236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preface

First, I would like to thank my supervisor, Professor Jorma Tarhio for

the support, supervision and guidance he has provided throughout my

research. I would also like to thank the former head of department, Pro-

fessor Heikki Saikkonen and the present head of department Professor

Jouko Lampinen, for the funding and all the facilities provided during

the research at the Department of Computer Science in Aalto University.

I also wish to express my gratitude towards my co-authors M. Oğuzhan

Külekci, Simone Faro and Emanuele Giaquinta.

I want to thank Hannu Peltola for his help during my research work.

I thank my pre-examiners Juha Kärkkäinen and Thierry Lecroq for re-

viewing my doctoral dissertation and providing useful comments.

I am also thankful to my mother for the motivation during my research.

Finally, I would like to thank my husband Sukhpal Singh Ghuman for all

his help and support.

Espoo, May 13, 2016,

Tamanna Chhabra

1

Preface

2

Contents

Preface 1

Contents 3

List of Publications 5

Author’s Contribution 7

1. Introduction 9

1.1 Motivation . 9

1.2 Outline . 10

2. Background 13

2.1 Terminology . 13

2.2 Methodologies . 14

2.2.1 SIMD Instruction Set 14

2.2.2 Data Structures . 19

3. Order-Preserving Matching 21

3.1 Definition . 21

3.2 Solutions by Others . 23

4. A Filtration Method for Order-Preserving Matching 29

4.1 Solution . 29

4.2 Analysis . 31

4.3 Experiments . 31

5. Filtering with SIMD and FM-index for Order-Preserving

Matching 35

5.1 SIMD Approach . 35

5.2 FM Indexing Approach . 39

3

Contents

5.3 Experiments . 40

6. SIMD Based Order-Preserving Matching without Filtration 43

6.1 Algorithm . 43

6.2 Experiments . 47

7. Approximate Order-Preserving Matching with Filtration 49

7.1 Preliminaries . 49

7.2 Solutions . 50

7.3 Analysis . 53

7.4 Experiments . 56

8. Conclusions 59

Bibliography 61

Publications 65

Errata 111

4

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Tamanna Chhabra and Jorma Tarhio. A filtration method for order-

preserving matching. Information Processing Letters, 116(2): 71–74,

2016.

II Tamanna Chhabra, M. Oguzhan Külekci, and Jorma Tarhio. Alter-

native algorithms for order-preserving matching. In Proceedings of the

Prague Stringology Conference, Prague, Czech Republic, 36–46, August

2015.

III Tamanna Chhabra, Simone Faro, and M. Oguzhan Külekci. Engineer-

ing order-preserving pattern matching with SIMD parallelism. Soft-

ware–Practice and Experience, 2015 .

IV Tamanna Chhabra, Emanuele Giaquinta, and Jorma Tarhio. Filtra-

tion algorithms for approximate order-preserving matching. In Proceed-

ings of the String Processing and Information Retrieval – 22nd Inter-

national Symposium, SPIRE, London, UK, Lecture Notes in Computer

Science 9309: 177–187, September 2015.

5

List of Publications

6

Author’s Contribution

Publication I: “A filtration method for order-preserving matching”

Design of the algorithm was joint work. I implemented the algorithm,

performed the experiments, and co-wrote the paper.

Publication II: “Alternative algorithms for order-preserving
matching”

I was responsible for the design of the algorithms, implementation of the

algorithms, carrying out the experimental results and I wrote the major

part of the paper.

Publication III: “Engineering order-preserving pattern matching with
SIMD parallelism”

I was involved in the design of the algorithm and I implemented the algo-

rithm, performed the experiments as well as wrote the major part of the

paper.

Publication IV: “Filtration algorithms for approximate
order-preserving matching”

I co-designed the algorithms, implemented the algorithms, carried out the

experimental results and co-wrote the paper.

7

Author’s Contribution

8

1. Introduction

1.1 Motivation

Order-preserving matching [3, 12, 37, 39] has gained much attention

lately and the thesis is related to the algorithms developed for the prob-

lem. The problem finds applications in the fields where we are interested

in locating patterns affected by relative orders and not by their values.

It can be applied to time series analysis [10] like share prices on stock

markets [37], weather data or to musical melody matching of two musical

scores [37]. For example, the analysts in a stock market could be inter-

ested in the frequency of various movements of the price after a steady

decrease of five days. It can also be used by a music composer to find if his

new song has a melody similar to any other song. In a similar way, order-

preserving matching can be applied to several areas involving series of

numbers.

By the year 2014, there were only a few solutions proposed for the prob-

lem. Moreover, these solutions were mainly linear and were not much

efficient. Therefore, our focus was on the development of faster solutions

for the problem.

We have also worked on the approximate variant of the problem and suc-

ceeded in developing the first sublinear solution for it. Our algorithms for

order-preserving matching and its variant are practical in nature whereas

not all algorithms in the literature have ever been implemented.

Our main emphasis is on the practical efficiency of algorithms and could

be best described by algorithm engineering [47]. Algorithm engineering is

a methodology where design, analysis, implementation and experimental

evaluation form a feedback loop driving the development of an efficient al-

gorithm. The loop is traversed until we get a competent algorithm. There-

9

Introduction

fore, we show with practical experiments that our new solutions are faster

than the previous solutions in most cases. Our solutions are based on the

following methodologies:

• Filtration: Filtration has proved to be quite effective in our approaches

for order-preserving matching, where in we filter out positions in the

text which are non-matching.

• SIMD (Single Instruction Multiple Data): These instructions were orig-

inally developed for multimedia but are recently employed for pattern

matching. The general trend in the last decades for speeding up string

matching algorithms was based on the word-RAM model, where in sev-

eral operations on items occupying a single word are assumed to be

achieved in constant time. In that context, the advance of the SIMD

technology gave rise to packed string matching [4], where one can as-

sume that several consecutive symbols of the underlying text are packed

into a single register, and there exist special instructions on those spe-

cial registers to operate on those items individually. The SIMD instruc-

tions were used to create a filter while searching for a long pattern in

[40]. This filtration code was listed among the best performing 11 pat-

tern matching algorithms in a recent survey [20]. The same idea was

deployed for multiple string matching [16], and then extended to also

cover short patterns [17, 18]. Ladra et al. [41] investigated the benefits

of using SIMD instructions on compressed data structures, mainly on

rank/select operations, and analyzed the Boyer–Moore–Horspool (BMH)

algorithm [29] as a case study.

• FM-index: We use the FM-index scheme as one of our approach to the

order-preserving matching problem. It can be used to count efficiently

the occurrences of a pattern in the compressed text and to determine the

locations of each pattern in the text.

1.2 Outline

The thesis consists of an overview and the publications. Below I give a

10

Introduction

brief summary of papers used in the thesis.

Publication I: A filtration method for order-preserving matching. We

present a simple yet efficient algorithm for order-preserving matching.

The algorithm is based on filtration and any algorithm for exact string

matching can be used as a filtering method. If the filtration algorithm

is sublinear, the total method is sublinear on average. We have shown

by practical experiments that our solution is more efficient than earlier

algorithms in most of the cases. This article is the journal version of a

conference paper [11].

Publication II: Alternative algorithms for order-preserving matching. In

this paper we introduced two online solutions and an offline solution for

the problem. The online solutions are based on two different SIMD (Single

Instruction Multiple Data) instruction sets, SSE (streaming SIMD exten-

sions) and AVX (Advanced Vector Extensions). The online solutions use

specialized packed string instructions with a low latency and turn out to

be faster than the previous online solutions in most cases. The offline

solution is based on the FM-index and the execution time decreases sub-

stantially for long patterns. We show with practical experiments that one

of our solutions is faster than the solutions in Publication I.

Publication III: Engineering order-preserving pattern matching with SIMD

parallelism. We proposed a practical and efficient algorithm without fil-

tration for the order-preserving pattern matching problem that turned

out to be faster than the best algorithms known. Specialized word-size

packed string matching instructions, based on the Intel streaming SIMD

extensions (SSE) technology were used. Our experimental results show

that the new algorithm is better on average than the algorithms in Publi-

cation I and II .

Publication IV: Filtration algorithms for approximate order-preserving

matching. We presented two practical solutions for the approximate

variant of the order-preserving matching problem. The solutions

are based on filtration and their worst-case time complexities are

O(nm(�m/w� + logm)) and O(n(�m/w� log logw + m logm)), respectively,

where w is the word size in bits, and the former is the first sublinear so-

lution on average. We also present experimental results which show that

11

Introduction

the filtering is effective and the algorithms are considerably faster than

the naive one where all the first n−m+ 1 text positions are match candi-

dates to be verified.

The rest of the thesis is organized as follows.Chapter 2 contains ba-

sic terminology used and the methodologies employed to design the al-

gorithms.

Chapter 3 describes the order-preserving matching problem and its vari-

ant, the approximate order-preserving matching problem. We also define

both the problems formally. Lastly we describe the previous online and

offline solutions for the problem.

Chapter 4 elaborates the explanation of our solution in Publication I

with an example. We analyze the solution and perform experimental

tests. We also explain how the results are different from the results in

Publication I.

Chapter 5 recounts other new algorithms for the problem from Publica-

tion II. We explain all the solutions and provide the detailed description

using an example. Analysis of the solution is done. Experimental tests

are being presented and it is explained how the results differ from the

results in the publication.

Chapter 6 describes another efficient solution for order-preserving

matching and is based on Publication III. We explain the solution and

elucidate it using an example. Further experiments are being performed

to show that the new algorithm is faster than the previous solutions in

most cases.

Chapter 7 details two new solutions for the approximate order-

preserving matching problem and the text is based on Publication IV. We

explain the solutions and analyze them. Experimental tests are conducted

and then we show how the results in the chapter differ from the results

in the publication.

12

2. Background

2.1 Terminology

A finite, non-empty set of symbols or characters is called an alphabet. It

is denoted by Σ. An alphabet may be an English alphabet, an integer

alphabet, a binary alphabet and so on. The size of the alphabet is denoted

by σ. A string is a finite sequence of symbols over the alphabet Σ. For

example, if the alphabet Σ is {a,b}, then ababbb and aaababb are strings

on Σ. We suppose that a total order relation “≤” is defined on the alphabet,

so that we could establish if a ≤ b for each a, b ∈ Σ. A substring or factor

S′ of a string S = s0s1 · · · sn−1 is S′ = si · · · sj where 0 ≤ i ≤ j < n. A

substring of length q is known as a q-gram. A prefix of the string S is

S′ = s0s1 · · · sj where j < n and suffix of the string is S′ = si · · · sn−1 where

i ≥ 0. A subsequence of a string S is a string that can be derived from S by

deleting some symbols of S, without changing the order of the remaining

symbols.

Given a string x, we denote by |x| the length of x and by xi or x[i] the

i-th symbol of x, for 0 ≤ i < |x| and xr = x|x|x|x|−1 . . . x0 is the reverse of

the string x. The concatenation of two strings x and y is denoted by x.y.

The Hamming distance between two strings of equal length is defined as

the minimum number of substitutions that can transform one string to

another. For example, if x = ababb and y = abbab, then the Hamming dis-

tance between x and y is 2. A bit vector is a binary string B = b0b1 . . . bn−1

such that bi = 0 or 1. We indicate with symbol w the number of bits in a

computer word.

We use some bitwise operations following the standard notation as in C

language: &, |, ∧, ∼, �, 	 for and, or, xor, not, left shift and right

shift, respectively.

13

Background

Two necessary functions are used in the development of our algorithms

explained below. Let x be a string of length m over an alphabet Σ, then:

• Rank function r: The rank function of x is a mapping r : {0, 1, . . . ,m −
1} → {0, 1, . . . ,m − 1} such that x[r(i)] ≤ x[r(j)] holds for each pair 0 ≤
i < j < m. If x[r(i)] = x[r(i+ 1)] holds, then r(i) < r(i+ 1).

• Equality function eq: Let x be a string of length m over an ordered al-

phabet Σ and let r be the rank function of x. The equality function of x

is a mapping eq : {0, 1, . . . ,m− 2} → {0, 1} such that, for each 0 ≤ i < m,

eq[i] =

⎧⎨
⎩ 1 if x[r(i)] = x[r(i+ 1)]

0 otherwise

2.2 Methodologies

This section explains the methodologies used to develop advanced algo-

rithms for order-preserving matching.

2.2.1 SIMD Instruction Set

SIMD (Single Instruction Multiple Data). In the last two decades a general

trend has appeared trying to exploit the power of the word RAM model to

speed-up the performance of string matching algorithms. In this model,

the computer operates on computer words, grouping blocks of characters

and several operations on items occupying a single word are assumed to

be achieved in constant time. The SIMD instruction set architecture [34]

allows the processor to execute a single instruction on multiple data. For

example, one can add several numbers simultaneously in parallel. SIMD

instructions were originally used in multimedia and 3D graphics but are

recently employed for pattern matching.

Specialized word-size packed string matching instructions, based on the

SIMD technology [31, 34] can be employed to design efficient solutions for

order-preserving matching. In packed string matching [17, 18] sets of ad-

jacent characters are packed into one single word, according to the size of

the word in the target machine. This allows us to compare set of charac-

ters in a bulk rather than individually, by comparing the corresponding

14

Background

words. In this case, the symbol w indicates the length of the SIMD reg-

ister (= 128). Therefore, when the characters are taken from an alphabet

of size σ, γ = �log σ� bits are used to encode a single character and �w/γ�
characters fit in a register. In this case we will use the symbol α = �w/γ�
to indicate the packing factor.

Recent CPUs manufactured by Intel and AMD support SSE (stream-

ing SIMD extensions) and AVX (Advanced Vector Extensions) instruction

sets. The fundamental data types used in the SIMD architecture are

bytes, words, doublewords, quadwords, and double quadwords. A byte

is eight bits, a word is 2 bytes (16 bits), a doubleword is 4 bytes (32 bits), a

quadword is 8 bytes (64 bits), and a double quadword is 16 bytes (128 bits).

Besides these fundamental data types, numeric data types such as integer

and floating point data types are also supported. Single-precision (32-bit)

floating-point and double-precision (64-bit) floating-point data types are

also supported by the SSE and AVX instruction set architectures. For the

SIMD operation, the data types are either in the packed or scalar form.

Packed operations work on several numbers in parallel whereas scalar

operations apply an operation on a single value. SIMD programming can

be implemented using intrinsic functions. To perform a task, we have

various intrinsic functions which depend on the type of instruction set ar-

chitecture used. An intrinsic function is a function whose implementation

is handled specially by the compiler. There are many different versions of

SIMD extensions. Three of them are described below:

• MMX (MultiMedia eXtention): This instruction set was introduced in

the Pentium processor 1997 by Intel. It uses eight 64-bit MMX registers.

The limitation of MMX instruction set is that it can handle only integer

data. To overcome its limitation SSE (streaming SIMD extensions) was

announced in 1999 with the Pentium III processor.

• SSE (Streaming SIMD Extensions): It added sixteen new 128-bit regis-

ters known as XMM0 through XMM15. However, the registers XMM7–

XMM15 are only accessible in the 64-bit operating mode. This archi-

tecture supports single-precision floating point operations. As the regis-

ters are 128 bits long, it can process four single-precision floating point

numbers or two double precision floating point numbers simultaneously

thereby providing important speedups in algorithms. In SSE, we have

the following data types:

15

Background

◦ _m128: four 32-bit floating point values

◦ _m128d: two 64-bit floating point values

◦ _m128i: 16/8/4/2 integer values

depending on the size of the integers. Various intrinsic functions are

available in SSE to carry out different operations detailed later in this

chapter. The identifier of each function starts with a return type. After

that follows the descriptive name of the function which describes the

operation. The next character specifies whether the operation is on a

packed vector or on a scalar value: p stands for a packed and s for a

scalar operation. The last character relates to the data type whether

it is a single precision or double precision floating point value. Then

follows the arguments of the function. For example,

_ _m128 _mm_cmpgt_ps(_m128 a, _m128 b)

is a function for comparing two values, where _ _m128 is a return type,

cmpgt is the descriptive name of the function which describes that it

is used to compare two numbers for greater than. The shorthand ps

indicates that the function operates on single precision floating point

values in a packed form.

• AVX (Advanced Vector Extensions): The functionality provided by

SSE instructions was extended by Intel AVX (Advanced Vector Exten-

sions) [31]. AVX was first supported by Intel with the Sandy Bridge pro-

cessor in 2011. It extended the registers to 256 bits known as YMM0–

YMM15. Therefore, it becomes possible to process eight single precision

floating point numbers or four double precision floating point numbers,

simultaneously.

Various intrinsic functions are used to carry out the implementation

of our proposed algorithms. The intrinsic functions used are:

1. Comparison Function (_mm_cmpgt_ps) [32, p. 2A:3-152]: The com-

piler intrinsic equivalent of the function is

_ _m128 _mm_cmpgt_ps(_m128 a, _m128 b).

16

Background

A SIMD comparison is performed of the packed single-precision floating-

point values in the first operand and the second operand. If a data el-

ement in the first operand is greater than the corresponding data el-

ement in the second operand, each corresponding data element in the

first operand is set to 1, otherwise, it is set to 0.

2. Comparison Function (_mm_cmpgt_epi8) [32, p. 2B:4-81]: The com-

piler intrinsic equivalent of the function is

_ _m128i _mm_cmpgt_epi8(_m128i a, _m128i b).

It carries out SIMD signed compare of the packed byte (8-bits) in the

first operand and the second operand. If a data element in the first

operand is greater than the corresponding data element in the second

operand, then each corresponding data element in the first operand is

set to 1, otherwise, it is set to 0.

3. Comparison Function (_mm_cmpeq_epi8) [32, p. 2B:4-71]: The

compiler intrinsic equivalent of the function is

_ _m128i _mm_cmpeq_epi8(_m128i a, _m128i b).

It executes a SIMD compare for equality of the packed byte (8-bits) in

the first operand and the second operand. If the corresponding data

elements in the first and second operands are equal, then each corre-

sponding data element in the first operand is set to 1, otherwise, it is set

to 0.

4. Comparison Function (_mm256_cmp_ps()) [32, p. 2A:3-152]: The

compiler intrinsic equivalent of the function is

_ _m256 _mm_cmp_ps(_m256 a,_m256 b, const int imm).

A SIMD comparison is performed of the packed single-precision floating-

point values in the first operand and the second operand. The compar-

ison predicate operand (third operand) specifies the type of comparison

performed on each of the pairs of packed values. The result of each com-

parison is a doubleword mask of all ones (comparison true) or all zeros

(comparison false) and is stored in the first operand.

5. Mask Function (_mm_movemask_epi8) [32, p. 2B:4-151]: The com-

17

Background

piler intrinsic equivalent of the function is

int _mm_movemask_epi8(_ _m128i a).

It generates a mask made up of the most significant bit of each byte of

the source operand (XMM register) and stores the result in the low byte

or word of the general purpose register.

6. Mask Function (_mm_movemask_ps) [32, p. 2A:3-568]: The com-

piler intrinsic equivalent of the function is

int _mm_movemask_ps(_ _m128 a).

It obtains the sign bits from the packed single-precision floating-point

values in the source operand (XMM register) and formats them into a

4-bit mask. The mask is stored in the 4 low-order bits of the general

purpose register.

7. Mask Function (_mm256_movemask_ps) [32, p. 2B:3-568]: The

compiler intrinsic equivalent of the function is

int _mm256_movemask_ps(_ _m256 a).

It performs the same function as the above function except that it forms

a 8-bit mask.

8. Load Function(_mm_loadu_ps) [32, p. 2A:3-600]: The compiler

intrinsic equivalent of the function is

_ _m128 _mm_loadu _ps(double ∗ p).

It moves four packed single-precision floating-point values from a 128-

bit memory location to an XMM register.

9. Load Function(_mm256_loadu_ps) [32, p. 2A:3-600]: The compiler

intrinsic equivalent of the function is

_ _m256 _mm256_loadu_ps(_ _m256 ∗ p).

It performs the same function as the above function except that it can

move eight packed single-precision floating-point values.

18

Background

10. Load Function(_mm_loadu_si128) [32, p. 2A:3-551]: The compiler

intrinsic equivalent of the function is

_ _m128i _mm_loadu_si128(_ _m128i ∗ p).

It moves 128 bits of packed integer values from a 128-bit memory loca-

tion to an XMM register.

2.2.2 Data Structures

Suffix Arrays. A suffix array (SA) [42] of a string S is an array pointing

to the starting positions of the suffixes of S in alphabetical order. Suffix

arrays are closely related to suffix trees as a depth-first traversal of the

suffix tree yields suffix array. The main advantage of suffix arrays is that

they use much less space as compared to suffix trees. A suffix array can be

used to quickly locate every occurrence of a pattern P within the string S.

It takes O(m log n) time to locate the pattern P of length m in the string

S of length n. But this time can be improved to O(m+ log n) by using the

LCP (longest common prefix) information.

Burrows-Wheeler Transform. The Burrows-Wheeler transform (BWT) [6]

BWT [1 . . . n] of a text T is a string of length n such that

BWT [i] =

⎧⎨
⎩ T [SA[i]− 1] if SA[i] > 1

$ otherwise

where SA is the suffix array of the string T . BWT is obtained by sorting

all the rotations of the text into lexicographical order. The last column

is then the result of the BWT. BWT is used to permute the string T to

T ′ = BWT (T) and then to reverse T ′ back to T . It is employed for com-

pression together with run-length encoding and move to front encoding

as it produces run of similar characters. The most fascinating property

of BWT is the LF (last to first) mapping, which means that the ith occur-

rence of character x in the last column is the ith occurrence of character

x in the first column. This property is employed to unwind the permuted

string back to the original string.

Wavelet tree. The wavelet tree of a string on an alphabet Σ of size σ

is a data structure to store the string in the form of a bit vector. Each

19

Background

character of the string is encoded as a bit vector. The root stores the first

bits of all the characters of the string. The root’s left child stores the

second bits of all the characters with a code starting with a 0 and the

root’s right child stores the second bits of all the characters with a code

starting with a 1. The query rank(i) returns the number of ones in the

bit vector B[0 · · · i] and the query select(j) returns the position of jth one

in B. The wavelet tree can be used to implement the practical rank and

select queries. These operations require O(log σ) time.

FM-Index. Ferragina and Manzini [21] proposed that if BWT [6] is cou-

pled with SA [42], we get a space efficient index which is a sort of com-

pressed suffix array called the FM-index. It can be used to count effi-

ciently the occurrences of a pattern P [0 . . .m− 1] in the text T [0 . . . n− 1]

and to determine the locations of each pattern in the text. The operation

count takes a pattern and returns the number of occurrences of that pat-

tern in the original text. The BWT of the string is stored as a wavelet

tree so that the rank queries can be implemented in O(log σ). Since the

rows in BWT of the string are sorted, and it contains every suffix of T, the

occurrences of pattern P will be next to each other in a single continu-

ous range. The operation count iterates backwards over the pattern. For

every character in the pattern, it finds the range that has the character

as a suffix. Therefore, counting the number of occurrences of a pattern P

takes O(m log σ) time. The operation locate takes an index of a character

in L as an input and returns its position i in the text T . This can be done

in O(m+ occ logε n) time where occ is the number of occurrences.

20

3. Order-Preserving Matching

The string matching problem [45] is one of the classical problems in com-

puter science. It can be broadly classified as exact and approximate string

matching. Exact string matching consists of finding all the occurrences of

a pattern string P of length m in a text string T of length n. A natural

generalization of the string matching problem can be obtained by allow-

ing the matching to be approximate, so as to search for the substrings in

the text T which are similar to the pattern P . One classical instance of

this kind is the string matching with k mismatches problem, where the

task is to find all the substrings in T that are at Hamming distance of at

most k from P , i.e., that match P with at most k mismatches.

Over the last few decades, there has been active development in the

field of string matching. The problem of order-preserving matching (OPM)

[3, 7, 12, 14, 19, 37, 39] has gained much attention recently. This problem

considers strings of numbers and has applications in time series studies

such as in the analysis of development of share prices in a stock market.

3.1 Definition

The task of order-preserving matching is to find all the substrings u in the

text T which have the same length and relative order as the pattern P . By

relative order we mean the numerical order of numbers in a string. For

example if P is (12, 19, 15, 8, 10, 24) then the relative order of the numbers

is 2,4,3,0,1,5. This means that 8 is the smallest number in the string,

10 is the second smallest number, 12 is the third smallest number and

so on. Let us assume that T = (11, 14, 25, 13, 22, 18, 10, 12, 30, 24, 36). Now,

the substring u = (13, 22, 18, 2, 8, 30) of T has the same relative order as

P = (12, 19, 15, 8, 10, 24) and thus P matches T at location 3 as is also

shown in Fig. 3.1.

21

Order-Preserving Matching

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10

text
pattern

Figure 3.1. Example of order-preserving matching.

As string matching, order-preserving matching can be exact or approxi-

mate.

• Exact order-preserving matching: In exact order-preserving matching,

the relative order of the pattern P matches substring of the text T ex-

actly. This is an informal description of order-preserving matching and

causes problems in handling equal values which can appear in real data.

The concept of order-isomorphism removes these problems. Let us de-

fine the problem formally.

Problem definition 1. Two strings u = u0u1 . . . um−1 and v =

v0v1 . . . vm−1 of the same length over Σ are called order-isomorphic [39],

written u ≈ v, if

ui ≤ uj ⇔ vi ≤ vj for 1 ≤ i, j ≤ m.

In the order-preserving pattern matching problem, the task is to find all

the substrings of T which are order-isomorphic with P .

• Approximate order-preserving matching: String matching with k mis-

matches problem is to find all the substrings of T that are at Ham-

22

Order-Preserving Matching

ming distance at most k from P , i.e., that match P with at most k mis-

matches. Gawrychowski and Uznanski [24] proposed a generalization

of the order-preserving matching problem to the approximate case. In

this, two strings are k-isomorphic if they have the same relative order

after removing up to k elements at the same positions in both strings.

Problem definition 2. Two strings u and v over Σ are order-isomorphic

with k mismatches [24] or k-isomorphic, written u ≈k v, if they have

the same length and there exists a subset K of {1, 2, . . . , |u|} of size k at

most, such that

ui ≤ uj ⇔ vi ≤ vj for i, j ∈ {1, 2, . . . , |u|} \K .

The order-preserving pattern matching with k mismatches prob-

lem is to locate all the substrings in the text T which are k-

isomorphic with the pattern P . Let P = (3, 13, 5, 8, 21) and T =

(6, 10, 55, 36, 45, 66, 6, 21, 28, 15, 36), then for k = 1, we get two approxi-

mate matches, at locations 1 and 6.

Several online [3, 7, 12, 19, 37, 39] and one offline solution [14] have been

proposed for exact order-preserving matching. But only one solution has

been presented for the approximate case [24]. Following section explains

all the solutions excluding ours developed until now.

3.2 Solutions by Others

We present our algorithms for order-preserving matching in subsequent

chapters. In this section we review solutions made by others.

Kubica et al. [39] proposed the first online solution based on the KMP

algorithm [38]. The solution is based on the computation of the order-

borders table B where

B[1] = 0;B[i] = max{j < i : P [1 . . . j] ≈ P [i− j + 1 . . . i]} for i ≥ 2

where P is a pattern of length m. The table can be computed in linear

time. Thereafter it is determined if the text T contains substring with the

same relative order as that of the pattern using the order-borders table as

shown in Alg. 1. This computation can be done in linear time. Hence, the

23

Order-Preserving Matching

total time complexity of the method is linear.

Algorithm 1 Modified algorithm of Morris and Pratt
1: i ← 0
2: j ← 0
3: while i ≤ n−m do
4: invariant ← P [1 · · · j] ≈ T [i+ 1 · · · i+ j]
5: while j < m & P [1 · · · j + 1] ≈ T [i+ 1 · · · i+ j + 1] do
6: j ← j + 1
7: end while
8: if j == m then
9: write i

10: end if
11: i ← i+ (j −B[j])
12: j ← max(0, B[j])
13: end while

Kim et al. [37] introduced another solution to the order-preserving

matching problem based on the KMP algorithm [38]. The solution

was based on the natural representation of order relations which

means that the numbers in the string are replaced by their ranks

in the string. The natural representation can be defined as σ(x) =

rankx(x[1]).rankx(x[2]). · · · .rankx(x[|x|]), where x is the pattern. The pat-

tern P of length m matches the text T of length n at position i if

σ(T [i − m + 1 · · · i]) = σ(P). But the rank of the number depends on

the substring in which it is calculated. Therefore, they further proposed

prefix representation in which numbers in the string are replaced by its

rank in the prefix. The prefix representation can be described as μ(x) =

rankx1(x[1]).rankx2(x[2]) · · · rankx|x|(x[|x|]). Dynamic order-statistic tree τ

was used as the data structure for the construction of prefix representa-

tion which could be upgraded incrementally by inserting the next number

to it and deleting the previous number from it. The computation of prefix

representation is shown in Alg. 2. The time complexity of Compute-Prefix-

Rep is O(m logm) as each of OS-INSERT and OS-RANK takes O(logm)

time and there are O(m) number of such operations.

The KMP failure function in this solution is defined as:

π[q] =

⎧⎨
⎩ max{k : μ(P [1 · · · k]) = μ(P [q − k + 1 · · · q])} if q > 1

0 if q = 1

The failure function π searches the text by filtering mismatched positions

in it using the KMP-Order-Matcher [37] as in the KMP algorithm. The

prefix representation computation and failure function computation takes

24

Order-Preserving Matching

Algorithm 2 Compute-Prefix-Rep(P)
1: m ← |P |
2: D ← φ
3: OS-INSERT(τ, P, 1)
4: μ(P)[1] ← 1
5: for k ← 2 to m do
6: OS-INSERT(τ, P, k)
7: μ(P)[k] ←OS-RANK(τ, P [k])
8: end for
9: return μ(P)

O(m logm) time whereas text search takes O(n logm) time. Therefore the

total time complexity of the method is O(n logm).

The prefix representation approach involved an overhead of O(logm).

Therefore, this approach is further optimized using the nearest neighbor

representation to overcome the overhead involved in computing the rank

function. The main thought behind the approach was to check whether

the order of each number in the text matches that of the corresponding

number in the pattern by comparing numbers themselves without com-

puting rank values explicitly. The advantage of this method is that with-

out computing rank explicitly we can check whether each number of the

text matches the corresponding number of the pattern in constant time.

The time complexity of the improved version is O(n+m logm).

Crochemore et al. [14] proposed an offline solution for the problem.

This approach is grounded on the construction of an index that han-

dles the queries in linear time with respect to the length of the pat-

tern. The index is based on the incomplete suffix tree and its construc-

tion takes O(n log log n) time. They extended their work to complete

order-preserving suffix trees and showed how these can be constructed

in O(n log n/ log log n) time. There exists no practical implementation of

this algorithm.

Cho et al. [12] brought forward another solution to order-preserving

matching based on the variant of the Boyer–Moore–Horspool (BMH) al-

gorithm [29] built on q-grams, i.e. strings of q numbers. The q-gram ver-

sion was adopted to make the shifts longer. It uses the shift table D to

filter the text so as to achieve sub linear time complexity. The table D is

evaluated as follows:

k = max{i | P [i− q + 1 · · · i] = x for q − 1 ≤ i ≤ m− 1}

25

Order-Preserving Matching

D[f(x)] = min(m− q + 1,m− k − 1)

where x is a q-gram, P is the pattern of length m, k is the last position of

P matching a q-gram x and D is the shift table. To index the shift table

D, they defined a fingerprint f(x) which maps a q-gram x to an integer.

In the worst case it takes O(mn) time. Later, Cho et al. [13] introduced a

linear version, which has been combined with KMP in order to guarantee

linear behavior in the worst case but that is in practice a bit slower than

the original one.

Belazzougui et al. [3] presented an optimal sublinear solution for the

problem. They viewed the problem in a slightly different way: T is a

permutation of 1, . . . , n and P consists of m distinct integers of [1, n]. They

constructed a forward search automaton working in O(m2 log logm + n)

time which is too large for long patterns. With a Morris-Pratt represen-

tation [35] of the forward automaton, they achieved O(m log logm + n)

search time. Furthermore, the automaton was extended to accept a set of

patterns. Besides these linear solutions, they presented a sublinear aver-

age case algorithm. Firstly, a tree is constructed of all isomorphic order

factors of P by inserting factors one at a time. Thereafter search is per-

formed along the text through a window of size m. The construction time

of the tree is O(m logm
log logm) and average-case time complexity is O(n logm

m log logm).

However, there exists no implementation of this algorithm so far.

Faro and Külekci [19] presented two filtering approaches in which the

original string is translated into a new string over large alphabets. In

the neighbourhood ranking approach, a binary sequence of length q is

computed which indicates the relative position of the element compared

with the elements in its q-neighbourhood. This ordering approach gives

information only about the elements in its q-neighbourhood. In the neigh-

bourhood ordering approach, a binary sequence of the element x describes

the relative order of the substring x[i, . . . , i+ q].

Cantone et al. [7] later proposed another efficient solution based on the

Skip Search algorithm [9]. It computes the fingerprint of all substrings

of a pattern of a given length. Thereafter, the fingerprints are indexed

to obtain the match candidates which are then located in the text. They

used the SSE instruction set architecture for the computation of the fin-

gerprint.

26

Order-Preserving Matching

Gawrychowski and Uznanski [24] proposed a solution for approximate

order-preserving matching based on the signature of a string. The sig-

nature S(a0a1 . . . am−1) of string a0a1 . . . am−1 is (0− pred(0), . . . , (m− 1)−
pred(m− 1)) where pred(i) is the position where the predecessor of ai oc-

curs in the string. Its computation takes O(m log logm) time by sorting.

The key result is that if a0a1 . . . am−1 ≈k b0b1 . . . bm−1 then the Hamming

distance between S(a0a1 . . . am−1) and S(b0b1 . . . bm−1) is at most 3k. The

algorithm iterates over each substring ti . . . ti+m−1 in the text T , determin-

ing its signature S(ti . . . ti+m−1) in O(log logm) time per position. For each

position i, it checks if the Hamming distance between S(ti . . . ti+m−1) and

S(p0 . . . pm−1) is greater than 3k. This step can be done in O(k + log logm)

time. If the test is true, the position is discarded. Otherwise, the al-

gorithm checks if ti . . . ti+m−1 ≈k p0 . . . pm−1 by reducing the problem to

the one of computing a heaviest increasing subsequence [24] spanning at

most 3(k + 1) elements. This step can be computed in O(k log log k) time.

Therefore, the total time complexity is O(n(log logm+ k log log k)).

27

Order-Preserving Matching

28

4. A Filtration Method for
Order-Preserving Matching

We present a sublinear solution based on filtration for order-preserving

matching. The solution consists of two phases: filtration and verification.

For filtration, the pattern and text are transformed into their respective

bitmaps where a 1 bit means the successive element is greater than the

current one and a 0 bit means the opposite. Then the text is filtered with

some exact matching algorithm. The match candidates are then verified

using a checking routine. If the filtration algorithm is sublinear, the total

method is sublinear on average.

4.1 Solution

Filtration. The consecutive numbers in the pattern P = p0p1 . . . pm−1 are

compared pairwise in the preprocessing phase and as a result we get a

transformed pattern P ′ = b0b1 · · · bm−2 as a bit vector, where bi is 1 if

pi < pi+1 holds, otherwise bi is 0. In the search phase, some algorithm

for exact string matching (let us call it A) is applied to filter out the text.

When Algorithm A reads an alignment window of the original text, the

text is transformed into T ′ incrementally online in order to skip charac-

ters. Algorithm A may recognize an occurrence of P ′ in T ′ which does not

correspond to an actual match of P in T , and therefore each occurrence of

P ′ in T ′ is only a match candidate which should be verified.

In simple words, for instance, if P = (15, 18, 20, 16) and T = (2, 4, 6, 1, 5, 3)

then P ′ and T ′ are 110 and 11010 respectively where 1 indicates an in-

crease and 0 indicates the opposite. P ′ occurs in T ′ at location 0 but the

relative order of the numbers in the pattern is 0,2,3,1 and the relative or-

der of the numbers in the text at location 0 of the text is 1,2,3,0. Therefore

P ′ is only a match candidate and needs to be verified.

29

A Filtration Method for Order-Preserving Matching

Verification. During preprocessing, the numbers of the pattern P =

p0p1 . . . pm−1 are sorted. Thereafter the rank function r and equality func-

tion eq (described in Chapter 2) for the pattern P are computed. The

match candidates found by Algorithm A are traversed in accordance with

r. If the candidate starts from tj in T , the first comparison is done between

tj−1+r[0] and tj−1+r[1]. There is a mismatch when

tj−1+r[i] > tj−1+r[i+1] or

(tj−1+r[i] = tj−1+r[i+1] and eq[i] = 0) or

(tj−1+r[i] < tj−1+r[i+1] and eq[i] = 1)

is satisfied. The candidate is discarded when a mismatch is encountered.

Verification is efficient because sorting is done only once during prepro-

cessing.

Remark. We use binary numbers in encoding. We also tried encoding of

three numbers 0, 1, and 2 corresponding to ‘<’, ‘=’, and ‘>’, but the binary

approach was faster in practice, because testing of one condition is faster

than testing of two conditions. Also the frequency of nearby equalities is

low in real data.

Example. We illustrate our solution with an example. Let

the pattern P be (10, 22, 15, 30, 20, 18, 27) and the text T be

(22, 85, 79, 24, 42, 27, 62, 40, 32, 47, 69, 55, 25). The pattern P is transformed

into P ′ = 101001 and the text T is transformed into T ′ = 100101001100

incrementally online. Some search algorithm for exact string matching

searches for the occurrence of P ′ in T ′. The match candidate of P ′ is

found in T ′ at location 3 which needs to be verified. For verification

the numbers in the pattern need to be sorted. The sorted pattern Ps

is 10, 15, 18, 20, 22, 27, 30. The rank values and equality values for the

pattern P are (0, 2, 5, 4, 1, 6, 3) and (0, 0, 0, 0, 0, 0) respectively. The match

candidate corresponds to the substring u = (24, 42, 27, 62, 40, 32, 47) of the

text T and is traversed in accordance with r. Since the relative order

of the numbers of u is the same as the pattern P , a match is found at

location 3 of the text.

30

A Filtration Method for Order-Preserving Matching

4.2 Analysis

We will prove that our approach is sublinear in the average case, if the

filtration algorithm is sublinear. Sublinearity means that on average all

the characters in the text are not examined.

Let us assume that the numbers in P and T are integers and they are

statistically independent of each other and the distribution of numbers is

discrete uniform. Let P ′ and T ′ be the transformed pattern and text. Let

c be the count of the integer range (i.e. the alphabet size). The probability

of one in a position of P ′ or T ′ (as a result of a comparison) is p = (c2/2 −
c/2)/c2 = (c−1)/2c, because there are c2 integer pairs and c equalities. So

the probability q of a character match is

p2 + (1− p)2 = 2p(p− 1) + 1 = 1− c− 1

c
· c+ 1

2c
= 1− c2 − 1

2c2
=

1

2
+

1

2c2
.

Because adjacent positions in P ′ = b1b2 · · · bm−1 and in T ′ are not

independent, let us consider matching of a relaxed pattern P ′′ =

b1$b3$b5 · · · $bs, which contains every other character of P ′ and where $

matches both 0 and 1 and s is 2�m/2� − 1. The probability of a match of

P ′′ at a certain position of T ′ is smaller than q(m−1)/2, which approaches

to zero, when m grows. This is true even for c = 2. The probability of a

match of P ′ (i.e. a match candidate of P) is smaller than the probability

of a match of P ′′. This means that the verification time approaches zero

when m grows, and the filtration time dominates. If the filtration method

is sublinear, the total algorithm is sublinear.

The preprocessing phase requires O(m logm) time due to sorting of the

pattern positions. The space requirement is O(m).

In the worst case, the total algorithm requires O(nm) time if, for ex-

ample, P ′ is 1m−1 and T ′ is 1n−1. If the filtration method is linear in the

worst case, the total algorithm can be modified to work in linear time by

combining a linear solution [39, 37] L with it. When the distance of start-

ing positions of subsequent match candidates is less than m/2, next 2m

positions are processed with L.

4.3 Experiments

The tests were run on Intel 2.70 GHz i7 processor with 16 GB of memory

running Ubuntu 12.10. All the algorithms were implemented in C and

31

A Filtration Method for Order-Preserving Matching

run in the testing framework of Hume and Sunday [30]. The tests are

performed on the time series of relative humidity of UK. The data contains

33, 510 integers representing the relative humidity of UK in percentage in

the years 1961–1990. From the text we randomly picked 200 patterns of

length 5, 10, 15, 20, 25, 30, and 50. Each test was repeated 180 times. The

data and testing environment is the same in the subsequent chapters too.

Our solution based on filtration was compared with the BMH approach

by Cho et al. [12]. Because the BMH approach was clearly faster than the

KMP-based algorithm [37] and slightly faster than the linear version of

the BMH approach in the tests [13], we tested only the first mentioned

algorithm.

We tested four string matching algorithms as filtration methods for

order-preserving matching. Two of them, SBNDM2 and SBNDM4 [15]

are based on the Backward Nondeterministic DAWG Matching (BNDM)

algorithm [45]. In BNDM, each alignment window is processed from right

to left like in the Boyer–Moore algorithm [5] by simulating the nondeter-

ministic automaton of the reversed pattern with bitparallelism. SBNDMq

starts the processing of each alignment window by reading a q-gram. The

third algorithm is Fast Shift-Or (FSO) [22]. We utilized a version of FSO

coded by B. Ďurian [15]. FSO was selected because it is efficient on short

binary patterns [15]. The fourth algorithm is the KMP algorithm [38];

together with verification it was supposed to approximate the two ear-

lier methods [37, 39] based on KMP. Of all the algorithms, SBNDM2 and

SBNDM4 are sublinear, whereas FSO and KMP are linear.

Table 4.1 shows the average execution times per pattern of all the al-

gorithms in milliseconds. In addition, a graph on times for the data is

shown in Fig. 4.2. In the Table, S2OPM represents the algorithm based on

SBNDM2 filtration, S4OPM represents the algorithm based on SBNDM4

filtration, BMOPM-q represents the BMH approach [12] for q = 3, 4 and 5,

KOPM represents the algorithm based on KMP filtration and FSO-OPM

represents the algorithm based on Fast Shift-Or.

The results are slightly different from the results presented in Publi-

cation I. From Table 4.1, it can be seen that S4OPM is a clear winner for

most tested values of m, and FSO-OPM is the fastest for m = 5. S2OPM is

faster than BMOPM-q and KOPM for all tested values of m and is faster

than FSO-OPM for all tested values of m except when m = 5. Whereas

in Publication I, the execution times of S2OPM and S4OPM for the data

sets are comparable and the execution time of S2OPM approaches that of

32

A Filtration Method for Order-Preserving Matching

S4OPM as the value of m increases. The results differ due to the nature of

the data. The relative humidity data used in this chapter is more or less

stable whereas the data used in the Publication I such as Helsinki tem-

perature data, Dow Jones data and random data portray more variation.

The reason for the differences in the experimental results is the same in

the subsequent chapters.

Table 4.1. Execution times of algorithms in milliseconds for relative humidity data.

m KOPM BMOPM-3 BMOPM-4 BMOPM-5 FSO-OPM S2OPM S4OPM
5 39.8 51.5 61.6 127.4 25.6 30.7 44.8
10 38.8 31.0 24.5 27.6 17.2 16.9 13.8
15 39.6 26.9 18.9 16.2 16.4 10.8 5.5
20 40.3 24.6 14.2 12.3 16.3 7.9 4.2
25 40.7 24.0 12.1 10.3 16.3 6.6 4.1
30 39.4 23.0 11.0 8.7 16.6 5.6 3.7
50 39.7 22.8 9.0 6.6 16.6 4.7 3.0

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30 50

Ti
m

e
(m

ill
is

ec
on

ds
)

Pattern length

BMOPM-3
BMOPM-5
FSO-OPM

S4OPM

Figure 4.1. Execution times of algorithms for humidity data.

33

A Filtration Method for Order-Preserving Matching

34

5. Filtering with SIMD and FM-index for
Order-Preserving Matching

In this chapter, we introduce three solutions for order-preserving match-

ing, two online solutions and an offline solution, based on filtration. The

sublinear average-case solution based on filtration in Chapter 4 is re-

ferred to as OPMF, short for order-preserving matching with filtration.

All the three solutions are improvements over the OPMF algorithm. In

OPMF, pattern P is transformed into P ′ and text T is transformed incre-

mentally to T ′. The online solutions are designed to perform this trans-

formation faster than in OPMF using the SIMD instruction set architec-

ture [34, 32] and are implemented using two different SIMD instruction

sets, SSE (streaming SIMD extensions) and AVX (Advanced Vector Ex-

tensions) explained in Chapter 2. They use specialized packed string in-

structions with a low latency and turned out to be faster than the previous

online solutions. The offline solution is built on the FM-index scheme [21]

described in Chapter 2. The computed bitmap of the text is stored in

the compressed form via the FM-index. The transformed pattern is then

searched in the FM-index to get potential matches which are then veri-

fied. We compare the solutions with OPMF. The experiments show that

at least one of the new online solutions is in most cases faster than OPMF.

And the indexing solution was the most efficient as one may expect.

5.1 SIMD Approach

This section explains the proposed online solutions for order-preserving

matching. The first online solution employs the SSE4.2 instruction set

architecture and the second solution utilizes the AVX instruction set ar-

chitecture.

35

Filtering with SIMD and FM-index for Order-Preserving Matching

Online solution using SSE4.2

The online solution based on SSE4.2 for order-preserving matching also

consists of two parts: filtration and verification. First the text is filtered

and thereafter the match candidates are verified using a checking routine.

Filtration using SSE4.2. We assume that floating point numbers are 32

bits long and the processor has SSE4.2 support. Filtration has two phases,

preprocessing and search phase. The preprocessing phase of the pattern

consists of two parts. First a bit mask, which is the reverse of P ′, is formed

and thereafter a shift table is constructed based on the mask. For the

bit mask, the consecutive numbers in the pattern P = p0p1 . . . pm−1 are

compared pairwise, (p0 > p1)(p1 > p2)(p2 > p3) . . . (pm−2 > pm−1). This

can be achieved by creating _mm128 type pointers ptr1 and ptr2 point-

ing to p0 and p1 respectively. Thereafter, we use the PCMPGT instruction

(_mm_cmpgt_ps()) detailed in Chapter 2 to compare ptr1 with ptr2 to

compute (p0 > p1)(p1 > p2)(p2 > p3)(p3 > p4) in parallel. The result of this

instruction is 128 bits long. Additionally, we use the MOVMSK instruc-

tion (_mm128_movemask_ps()) explained in Chapter 2. The reverse of

the result is stored in the four low-order bits of the destination operand.

The upper bits of the destination operand are filled with zeros. The result

is the bit mask mask. Alg. 3 shows how the transformation of the pattern

P into mask can be carried out rapidly.

Since SSE4.2 allows four numbers to be compared in parallel, we apply

binary 4-grams and set the size of the shift table delta to 16 (= 24). The

construction algorithm for delta is shown in Alg. 4. The computation

of the parameter mask is explained above. The entry delta[x] is zero if

x is the reverse of the last 4-gram of P ′. The entries of the table are

initialized to m − 1. Thereafter, the entries are updated according to the

preprocessing in Alg. 4.

Algorithm 3 Transformation of the pattern into a bitmap
1: mask ← 0
2: for i ← 0 to m− 1 do
3: x_ptr ← _mm_loadu_ps(pattern+ i+ 1)
4: y_ptr ← _mm_loadu_ps(pattern+ i)
5: mask ← mask |_mm_movemask_ps(_mm_cmpgt_ps(x_ptr, y_ptr)) � i
6: end for

The search algorithm shown in Alg. 5 is a variation of the BMH algo-

rithm [29, 48] utilizing 4-grams. Inside the main loop there are two loops.

The first loop searches for occurrences of the last 4-gram of P ′ by using

36

Filtering with SIMD and FM-index for Order-Preserving Matching

delta[0000] ← 6
delta[0001] ← 6
delta[0010] ← 6 ← 3
delta[0011] ← 6 ← 3
delta[0100] ← 6 ← 4
delta[0101] ← 6 ← 4
delta[0110] ← 6 ← 4 ← 0
delta[0111] ← 6 ← 4
delta[1000] ← 6 ← 5
delta[1001] ← 6 ← 5
delta[1010] ← 6 ← 5 ← 2
delta[1011] ← 6 ← 5
delta[1100] ← 6 ← 5
delta[1101] ← 6 ← 5 ← 1
delta[1110] ← 6 ← 5
delta[1111] ← 6 ← 5

Figure 5.1. Computation of the shift table for mask = 011010 and P ′ = 010110.

the shift table delta. The tested 4-gram is formed online with SIMD in-

structions in the same way as for the pattern. The numbers are compared

in parallel using the PCMPGT instruction explained above (simd-comp in

Alg. 5). The second loop checks whether a complete occurrence of P ′ is

found. If an occurrence of P ′ is found, the corresponding part of T is ver-

ified. The search algorithm uses a copy of the pattern as a sentinel (not

shown in Alg. 5) to recognize the end of input.

We illustrate the solution using an example. For example, if P is

(68,52,66,10,25,36,14) and T is (82,62,43,51,24,33,18,48,72,50,62), then

the PCMPGT instruction compares four numbers of the pattern at a

stretch, thereby yielding P ′ = 010110 and mask = 011010. Thereafter,

the shift table delta is constructed according to the preprocessing in Alg.

4. Fig. 5.1 shows how the shift table is formed for the pattern P and the

entries in it are initialized to 6 as the length of the pattern P is 7 and

then it is updated accordingly. At the end, entry 6 is zero. This means

that 6 = 0110 is the reverse of the last 4-gram of P ′. Similarly, for the

text T , PCMPGT compares four consecutive numbers of it and we get

T ′ = 0010101101. The search algorithm shown in Alg. 5 finds the occur-

rence of P ′ within T ′ and then the corresponding part of T at location 4 is

verified using a checking routine.

Verification. The verification process is the same as in OPMF. In the

preprocessing phase, the numbers of the pattern P = p0p1 · · · pm−1 are

sorted. Thereafter the rank function r and equality function eq (described

in Chapter 2) for the pattern P are computed. The potential candidates

obtained from the filtration phase are traversed in accordance with r. If

the candidate starts from tj in T , the first comparison is done between

tj+r[0] and tj+r[1].

37

Filtering with SIMD and FM-index for Order-Preserving Matching

Algorithm 4 Preprocessing (mask)
1: for i ← 0 to 15 do
2: delta[i] ← m− 1
3: end for
4: k ← (mask � 3) & 0xf
5: for i ← 0 to 7 do
6: delta[k + i] ← m− 2
7: end for
8: k ← (mask � 2) & 0xf
9: for i ← 0 to 3 do

10: delta[k + i] ← m− 3
11: end for
12: k ← (mask � 1) & 0xf
13: for i ← 0 to 1 do
14: delta[k + i] ← m− 4
15: end for
16: for i ← 0 to m− 3 do
17: delta[(mask 	 i) & 0xf] ← m− i− 5
18: end for

Algorithm 5 Search(Text, delta)
1: i ← m− 5
2: while i < n do
3: k ← 1
4: while k > 0 do
5: k ← delta[simd-comp(ti, ti+1, 4)]
6: i ← i+ k
7: for j ← i−m+ 5 to i step 4 do
8: z ← simd-comp(tj , tj+1, 4)
9: if z �= ((mask 	 (j − i+m− 5)) & 0xf)) then

10: goto out
11: end if
12: end for
13: verify occurrence
14: out : i ← i+ 1
15: end while
16: end while

38

Filtering with SIMD and FM-index for Order-Preserving Matching

Online solution using AVX

The AVX solution is similar to the above solution with a few excep-

tions. The difference is in the comparison of numbers and in com-

putation of the shift function. Instead of four numbers, eight float-

ing point numbers are compared at a stretch. The comparison in-

struction used is _mm256_cmp_ps() and the mask is computed using

_mm256_movemask_ps() explained in Chapter 2.

Analysis

Our SIMD search algorithm is a variation of 4-gram BMH. A binary 4-

gram corresponds to a character of an alphabet of 16 (= σ′) characters.

Baeza-Yates and Régnier [2] show that in this alphabet, the average

value of shift for the traditional BMH is at least (σ′ + 1)/2 = 8.5 when

m ≥ σ′ holds and the distribution of characters is discrete uniform. This

is roughly true also for our algorithm and the average value of shift ap-

proaches to 16 when m grows (we skip the formal proof). Because the

verification time approaches zero when m grows and the text is encoded

incrementally, the total algorithm is sublinear for m ≥ σ′ on average.

In the worst case the algorithm requires O(nm) time as OPMF. The pre-

processing phase requires O(m logm) time due to sorting of the pattern

positions.

5.2 FM Indexing Approach

In the FM indexing approach, the bitmaps of text T and pattern P are

also enumerated but the bitmap T ′ of text T is stored in the compressed

form via the FM-index. When a pattern is queried, we just extract the

possible candidate positions from the index, and then apply naive check.

It also consists of two parts: filtration and verification.

Filtration. In the preprocessing phase, the consecutive numbers in the

pattern P = p0p1 . . . pm−1 are compared pairwise and the pattern P is

transformed into a bitmap P ′ in the same way as in OPMF. The text is

also encoded and an FM-index is created of the encoded text. Alg. 6 below

shows how the encoded text is stored in the form of an FM-index. There-

after, the occurrences of the transformed pattern P ′ are found within the

compressed text. As an occurrence of P ′ is only a potential match candi-

39

Filtering with SIMD and FM-index for Order-Preserving Matching

date, it should be verified with a checking routine.

Verification. The verification process is the same as in the online solution

because once we get the potential matches they are verified using the

same checking function.

Algorithm 6 FM-index
1: std :: stringstr((char∗) & text[0], n)
2: construct_im(fm_index, str.c_str(), 1)
3: matches ← count(fm_index, (const char∗)P ′)
4: auto locations ← locate(fm_index, (const char∗)P ′

Analysis

Let us assume that the numbers in P = p0p1 · · · pm−1 and T = t0t1 · · · tn−1
are integers and they are statistically independent of each other and the

distribution of numbers is discrete uniform. In the case of the offline solu-

tion using FM-index, the verification time approaches zero when m grows

and the filtration time dominates. During the preprocessing phase, the

bitmap T ′ is compressed and stored via the FM-index. The operation

count takes a pattern P ′ and returns the number of occurrences of that

pattern in the text T ′. It can count all matching positions in O(m) time.

The operation locate finds the locations of all the occurrences (occ) of the

pattern P ′ in T ′ in time O(m + occ logε n). However, this solution also re-

quires O(nm) time in the worst case because checking a match candidate

takes O(m) time.

5.3 Experiments

The experimental setting is the same as is described in Section 4.3. We

compared the solutions with our OPMF solutions (based on SBNDM2 and

SBNDM4) detailed in Chapter 4. Table 5.1 shows the average execution

times of the algorithms for relative humidity data in milliseconds. In ad-

dition, graph on times for the data is also shown in Fig. 5.2. In Table 5.1,

SBNDM2 represents the OPM algorithm based on SBNDM2 filtration,

SBNDM4 represents the OPM algorithm based on SBNDM4 filtration,

SSE represents the online solution based on the SSE4.2 instruction set,

AVX represents the online solution based on the AVX instruction set and

FM-INDEX represents the offline solution based on the FM index. The

FM-index was implemented using the sdsl library [26].

40

Filtering with SIMD and FM-index for Order-Preserving Matching

Table 5.1. Execution times of algorithms in milliseconds for relative humidity data.

m SBNDM2 SBNDM4 SSE AVX FM-INDEX
5 22.4 32.8 24.3 —– 271.9
10 12.6 10.2 10.2 9.3 29.4
15 7.9 5.4 6.9 5.6 5.2
20 5.8 4.2 5.8 4.4 2.1
25 4.8 4.1 5.2 3.8 1.3
30 4.2 3.6 4.8 3.4 1.1
50 3.4 3.0 3.4 1.9 0.8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 50

Ti
m

e
(m

ill
is

ec
on

ds
)

Pattern length

SBNDM2-OPM
SBNDM4-OPM

SSE-OPM
AVX-OPM

FM-INDEX-OPM

Figure 5.2. Execution times of algorithms for humidity data

The results are different from the results presented in Publication II.

From Table 5.1, it can be clearly seen that our solutions based on the FM-

index, SSE4.2 and AVX are the fastest depending on the value of m except

for m = 5. However, irrespective of the data sets tested in Publication II,

the solution based on SSE4.2 is the fastest for m = 5. As the value of m

reaches 10 in the humidity data set, the AVX solution becomes the fastest.

However, when m is greater than or equal to 15, the FM-index based so-

lution is the fastest. And as the value of m reaches 50, the execution time

of FM-index based solution approaches zero. But in case of Dow Jones

data in Publication II, FM-index based solution is the fastest as the value

of m reaches 10. The construction times of the FM-index for relative hu-

midity data is 0.01 seconds and construction times of the FM-index for

Dow Jones and random texts in Publication II were 0.07 and 3.2 seconds,

respectively.

The FM-index based solution is very slow when the value of m is small.

41

Filtering with SIMD and FM-index for Order-Preserving Matching

It is due to cache inefficiency. For small values of m, the number of match

candidates is large and all the candidates are validated almost randomly

and thus the locality of a reference is lost. It is similar to randomly walk-

ing in the text. So the FM-index behaves much worse than the online

solutions due to cache misses. Another possible reason for the slowness of

FM-index for short patterns is that locate is a slow operation in FM-index.

A short pattern produces a lot of candidates that have to be located to be

verified [36]. However, when the pattern becomes longer, the number of

candidates decreases significantly and the FM-index becomes advanta-

geous.

42

6. SIMD Based Order-Preserving
Matching without Filtration

This chapter focuses on another practical and efficient algorithm without

filtration for the order-preserving matching problem. We use specialized

word-size packed string matching instructions, based on the SSE technol-

ogy [31, 34] discussed in Chapter 2, to design a very fast order-preserving

matching algorithm. The algorithm is named SIMD-OPM and turns out

to be faster than the online solutions in Chapter 4 and 5.

Several values of α and γ (explained in Chapter 2) are possible but we

assume that α = 16 and γ = 8, which is the most common case when we

deal with a word RAM model with 128-bit registers. In our experimental

evaluation (see Section 6.2) we have σ = 256 .

We will also make use of the popcount(C) instruction, when we will be

interested in counting the number of bits set in an α-bit register C. This

can be done in log(α) operations by using a population count function. In

our implementation we make use of a constant time ad-hoc procedure [1]

designed to work with 16-bit registers.

6.1 Algorithm

The SIMD-OPM algorithm is designed to search order-preserving occur-

rences of a pattern in a text.

Let P be the pattern of length m over the alphabet Σ and if Y is a block

of w bits (α elements) of the text T , we can find all the occurrences of P

having their leftmost position in Y .

Let T = Y0Y1 . . . Yk−1, where k = �n/α�+1. The idea behind the algo-

rithm is to check in parallel for groups of occurrences of P in T while

scanning each block Yi of the text. In particular for each iteration of the

algorithm we check groups of α occurrences of P .

The SIMD-OPM algorithm makes use of the wspc (word-size parallel

43

SIMD Based Order-Preserving Matching without Filtration

comparison) and wsec (word-size equality checker) specialized word-size

packed instructions. These two instructions are described below.

The instruction wspc

The instruction wspc(A,B), handles two w-bit registers B and A as a block

of α small integer values and computes an α-bit fingerprint from it. It

compares in parallel all the α values contained in A against the α values

in B. More formally, assuming B[0 . . . α − 1] and A[0 . . . α − 1] are w-bit

integer parameters, wspc(A,B) returns an α-bit value r[0 . . . α− 1], where

r[j] = 1 if and only if A[j] < B[j], and r[j] = 0 otherwise.

The wspc(A,B) instruction uses the following sequence of specialized

SIMD instructions and can be completed in constant time:

wspc(A,B)

B ← _mm_cmpgt_epi8(B,A)

r ← _mm_movemask_epi8(B)

return r

The instruction wsec

The instruction wsec(A,B), handles two w-bit registers A and B as a

block of α small integer values and computes an α-bit fingerprint from

it. Assuming A[0 . . . α− 1] and B[0 . . . α− 1] are w-bit integer parameters,

wsec(A,B) returns an α-bit value r[0 . . . α − 1], where r[j] = 1 if and only

if A[j] = B[j], and r[j] = 0 otherwise.

The wsec(A,B) instruction uses the following sequence of specialized

SIMD instructions and can also be completed in constant time:

wsec(A,B)

B ← _mm_cmpeq_epi8(A,B)

r ← _mm_movemask_epi8(B)

return r

The instructions _mm_cmpgt_epi8, _mm_cmpeq_epi8 and

_mm_movemask_epi8 are described in Chapter 2.

Formally, let Yi = T [iα . . . iα+α−1] be the current block of the text. The

substring T [j . . . j + m − 1] is an order preserving occurrence of P if and

only if

44

SIMD Based Order-Preserving Matching without Filtration

• T [j + r(h)] ≤ T [j + r(h+ 1)], for 0 ≤ h < m− 1

• T [j + r(h)] = T [j + r(h+ 1)] if and only if eq(h) = 1, for 0 ≤ h < m− 1

Algorithm 7 SIMD-OPM(P,m, T, n)

1: k ← 0
2: for i ← 0 to n−m, step α do
3: C ← 1α

4: for j ← 0 to m− 2 do
5: A ← T [i+ r(j) . . . i+ r(j) + α− 1]
6: B ← T [i+ r(j + 1) . . . i+ r(j + 1) + α− 1]
7: if eq(j) then
8: C ← C and wsec(A,B)
9: else

10: C ← C and wspc(A,B)
11: end if
12: if C = 0 then
13: goto out
14: end if
15: end for
16: k ← k + popcount(C)
17: out:
18: end for
19: return k

The pseudocode of the SIMD-OPM algorithm is given in Alg. 7. During

each iteration the algorithm checks the occurrences whose first position

is in the block Y = T [i . . . i+α− 1]. At the end of the iteration the value of

i is advanced α positions to the right. Thus the total number of iterations

of the algorithm is �n/α�. The blocks containing positions of T [i], i = n −
m + 1, · · · , n − 1, should be processed in another way because there is a

possibility of false matches.

During each iteration the algorithm creates a bit mask C of α bits, which

contains occurrences of the pattern in the current block Y . Specifically at

the end of the iteration the bit C[j] is set if and only if P ≈ T [j . . . j+m−1],

for j = 0 . . . α − 1, while C[i] = 0 otherwise. At the beginning of each

iteration C is initialized as 1α (line 3).

In order to understand how such a value is computed, let Aj = y[i +

r(j) . . . i+r(j)+α−1] (line 5) and Bj = y[i+r(j+1) . . . i+r(j+1)+α−1] (line

6). Moreover let Cj = wspc(Aj , Bj) (line 10). According to the definition

of the wspc instruction, we have C[h] = 1 if and only if A[h] < B[h] (i.e.

T [i+h+r(j)] < T [i+h+r(j+1)]), and C[h] = 0 otherwise, for h = 0 . . . α−1.

The value of the bit mask C is computed as C = C0&C1& . . .&Cm−2. It is

45

SIMD Based Order-Preserving Matching without Filtration

easy to prove that C[h] is set if and only if T [i+h+r(j)] < T [i+h+r(j+1)]

for j = 0 . . .m−2, which implies that P ≈ T [i+h . . . i+h+m−1]. Observe

that, when eq(j) = 1, we compute Cj as wsec(Aj , Bj) (lines 7-8) in order to

test whenever T [i+ h+ r(j)] = T [i+ h+ r(j + 1)].

At the end of each iteration we count the number of bits set in the bit

mask C. This is the number of occurrences the algorithm found in the

current block. Such a value is accumulated in a counter k (line 16) which

will contain the total number of occurrences of P in T .

If we are also interested in retrieving the position of each occurrence, an

additional O(logα) job must be done in order to locate the bits set in C.

More specifically if the h-th bit of C is set than an occurrence at position

i + h must be reported. The total time complexity of the algorithm is

O(nm/α).

We illustrate the algorithm using an example. Let P = (8, 5, 13, 10) be

a pattern of length 4 and T = (7, 9, 5, 14, 13, 22, 16, 10, 3, 13, 11, 10, 11, 8, 9, 2)

be a text of length 16. The rank values and equality values for the pattern

P are (1, 0, 3, 2) and (0, 0, 0), where Y = T . It involves m− 1 = 3 steps. We

know that P [r(i)] ≤ P [r(i + 1)], where 0 ≤ i ≤ m − 1. In order to have

an occurrence beginning at position j of Y we must have Y [j + r(i)] ≤
Y [j + r(i + 1)], for 0 ≤ i ≤ m − 1 . Then Ci is a 16-bit register where Ci[j]

is set to 1 if Y [j + r(i)] ≤ Y [j + r(i+ 1)] and Ci[j] is set to 0 otherwise.

Now, C is a 16-bit register where C = C0 AND C1 AND · · ·AND Cm−2

and C[j] is set if we have an occurrence of P at position j of Y and C[j] = 0

otherwise.

46

SIMD Based Order-Preserving Matching without Filtration

Step 1 is as follows:
Y<<1 9 5 14 13 22 16 10 3 13 11 10 11 8 9 2 0

Y<<0 7 9 5 14 13 22 16 10 3 13 11 10 11 8 9 2

C0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1

Step 2:
Y<<0 7 9 5 14 13 22 16 10 3 13 11 10 11 8 9 2

Y<<3 14 13 22 16 10 3 13 11 10 11 8 9 2 0 0 0

C1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0

Step 3:
Y<<3 14 13 22 16 10 3 13 11 10 11 8 9 2 0 0 0

Y<<2 5 14 13 22 16 10 3 13 11 10 11 8 9 2 0 0

C2 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0

Then we can compute the value of C as follows.

C0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 AND

C1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 AND

C2 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 AND

C 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 =

Thus we found three occurrences of P in T . The first at position 1, the

second at position 3 and the last at position 7.

6.2 Experiments

This section presents experimental results in order to compare the behav-

ior of the SIMD-OPM algorithm against the best known solutions in the

literature for the OPM problem.

The tests were run on an Intel 2.70 GHz i7 processor running Ubuntu

12.10 with 16 GB of memory. All the algorithms were implemented using

C programming language and run in the testing framework of Hume and

Sunday [30].

We tested our algorithm SIMD-OPM against the most effective previ-

ous solutions which include S2OPM and S4OPM (detailed in Chapter 4),

SSEOPM and AVXOPM (explained in Chapter 5), FFK-OPM [19] and

SKIP-OPM [7]. S2OPM and S4OPM (given in Chapter 4) solutions are

47

SIMD Based Order-Preserving Matching without Filtration

based on SBNDM2 and SBNDM4 [15]. SSEOPM and AVXOPM repre-

sent the online solution grounded on SSE4.2 and AVX instruction set re-

spectively. FFK-OPM [19] presents the filtration approach by Faro and

Külekci. SKIP-OPM [7] represents the solution based on Skip Search al-

gorithm.

Table 6.1 shows the average execution times per pattern of all the al-

gorithms for the humidity data in milliseconds. A graph of times for the

data set is also shown in Fig. 6.1.

From the table, we can observe that SIMD-OPM is fastest for all the

tested values of m except for m = 50. The difference between the execution

times of SIMD-OPM and other solutions is the maximum when m = 5

and thereafter the difference drops. We notice that our algorithm shows a

linear behavior.

Table 6.1. Execution times of algorithms in milliseconds for relative humidity data.

m S2OPM S4OPM SSEOPM AVXOPM FFK-OPM SKIP-OPM SIMD-OPM

5 26.3 43.5 38.7 —– 29.5 28.7 4.0
10 14.2 14.9 15.1 12.6 24.1 24.9 4.1
15 9.2 9.3 9.9 7.5 16.3 15.8 3.9
20 6.8 6.5 8.3 6.0 12.8 13.7 3.9
25 5.3 5.0 7.4 5.2 10.9 12.0 3.8
30 4.2 3.9 6.9 4.5 9.6 11.1 3.8
50 3.2 3.0 4.8 2.6 7.1 9.1 3.8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 50

Ti
m

e
(s

ec
on

ds
)

Pattern length

S2OPPM
AVXOPPM
SKIPOPPM

SIMD-OPPM

Figure 6.1. Execution times of the algorithms for humidity data.

48

7. Approximate Order-Preserving
Matching with Filtration

In this chapter, we consider the approximate variant of order-preserving

matching discussed in Chapter 3. In approximate order-preserving

matching, two strings match if they have the same relative order after

removing up to k elements at the same positions in both the strings. We

introduce two practical solutions for the approximate order preserving

matching problem, based on filtration. Their worst-case time complex-

ities are O(nm(�m/w� + logm)) and O(n(�m/w� log logw + m logm)), re-

spectively, where w is the word size in bits, and the former is the first sub-

linear solution on average. We also performed experimental tests which

show that the filtering is effective and the algorithms are considerably

faster than the naive solution where all the first n −m + 1 text positions

are match candidates to be verified.

With respect to applications of order-preserving matching (see

Chapter 3), approximate search is more meaningful than exact search.

Gawrychowski and Uznanski [24] defined the approximate order-

preserving matching problem and presented a solution for it (explained

in Chapter 3). The idea in their method is to quickly filter out positions

in the text T which are non-matching by comparing signatures of the pat-

tern and of the text substrings. As also acknowledged by the authors, this

algorithm is rather theoretical and has not been implemented to date.

7.1 Preliminaries

In this chapter the notation used for the transformation is different and

is described as follows. Given a string u, we denote by φ(u) the binary

string of length |u| − 1 such that φ(u)i is equal to 1, if ui < ui+1, and to 0

otherwise. The function φ is a linear approximation of the order for fast

filtration. Observe that any position 2 ≤ i < |u| in u covers two positions

49

Approximate Order-Preserving Matching with Filtration

in φ(u), i−1 and i. Let u and v be two strings and consider the mismatches

between the strings as φ(u) and φ(v). Each mismatch position i identifies

a different relative order, in u and v, between the adjacent symbols at

positions i and i+ 1.

Given a string x and a permutation π of {1, 2, . . . , |x|} we denote by

π(x) the string xπ(1)xπ(2) . . . xπ(|x|). Given two strings x and y of length

m, the Hamming distance between x and y is dh(x, y) = |{0 ≤ i <

m | xi �= yi}|, and the matching statistics M(x, y) is an array of |x| in-

tegers where M(x, y)[i] denotes the length of the longest substring of x

starting at position i that exactly matches a substring of y. We denote

by H(x, y) the largest subset of the mismatch positions between x and y

such that no two positions are consecutive, and define a distance mea-

sure do(x, y) = |H(x, y)|. Therefore, for any two strings u and v, there

is no overlap between the positions in u and v covered by any two mis-

matches in H(φ(u), φ(v)). For any two strings u and v such that u ≈k v

(order-isomorphic with k mismatches explained in Chapter 3), the Ham-

ming distance between φ(u) and φ(v) is at most 2k i.e. dh(φ(u), φ(v)) ≤ 2k

and distance measure do(φ(u), φ(v)) ≤ k (see Lemma 1 and 2 in Publica-

tion IV).

7.2 Solutions

Our solutions for approximate order-preserving matching consist of two

parts: filtration and verification. First the text is filtered with an algo-

rithm so as to locate all the potential matching locations and then the

match candidates are verified using a checking routine.

Filtration. The consecutive numbers in the pattern P are compared pair-

wise in the preprocessing phase and transformed into the binary string

φ(P) where a 1 bit means the successive element is greater than the cur-

rent one and a 0 bit means the opposite. Thereafter, in the search phase,

an algorithm is applied to filter the text T and find all the positions i in

T such that do(φ(Ti,m), φ(P)) ≤ k, where Ti,m = titi+1 . . . ti+m−1 is the sub-

string of T of length m starting at position i. The substrings Ti,m are en-

coded into the binary string φ(Ti,m) online in the same way as the pattern.

The algorithm determines approximate matches of the transformed pat-

tern φ(P) in the similarly transformed text φ(T). As these approximate

matches are just the match candidates, they need to be verified using a

50

Approximate Order-Preserving Matching with Filtration

checking routine.

Verification. For verification, we use the reduction, by Gawrychowski

and Uznanski, of the problem of k-isomorphism to the one of computing

an heaviest increasing subsequence (Lemma 8, [23]). To compute the

heaviest increasing subsequence, we use the algorithm of Jacobson and

Vo [33], which runs in O(m logm) time for a sequence of length m. If we

use a sorting algorithm with O(m logm) worst-case time complexity, the

total time complexity of the verification is also O(m logm). In theory, the

time complexity can be reduced to O(m log logm) by using Han’s sorting

algorithm [27] and plugging a data structure which supports predecessor

search in O(log logm) time, such as van Emde Boas trees, in Jacobson and

Vo’s algorithm. Observe that in the simpler case where there are no re-

peated elements in u and v, deciding whether u ≈k v can be reduced to

computing the longest increasing subsequence of π(v), where π is a sort-

ing permutation of u.

We propose two filtration algorithms, which are build on ideas from two

algorithms for string matching with k mismatches, namely approximate

SBNDM [28] and the GGF algorithm [25], respectively.

The first filtration algorithm, named AOPF1, is based on a generaliza-

tion of the method used by approximate SBNDM and first proposed by

Chang and Lawler [8] (lemma 3 described in Publication IV). Informally,

the idea is to factorize a string x into substrings of another string y which

cannot be extended to the right and are separated by 2-grams. It holds

that the size r of this factorization satisfies r − 1 ≤ do(x, y).

Let m̂ = |φ(P)|. The AOPF1 algorithm slides a window of size m̂ along

T , starting at position 0. For a given position i in T , the algorithm scans

the substring φ(Ti,m) from right to left and computes the factors Fj of

φ(P)r until either it has found k + 2 factors or it has scanned the whole

substring. In the former case, by the lemma described above, the posi-

tion is skipped. Otherwise the algorithm performs an additional filtration

step, namely it computes H(ψ(π(Ti,m)), ψ(π(P))), where ψ(u) is the string

of length |u| − 1 such that

ψ(u)i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if ui < ui+1

2 if ui = ui+1

0 otherwise

and π is a sorting permutation of P , computed in the preprocessing phase.

51

Approximate Order-Preserving Matching with Filtration

The position is then verified only if |H(ψ(π(Ti,m)), ψ(π(P)))| ≤ k. Indeed,

Lemma 2 in Publication IV can be easily proved to hold also when us-

ing ψ(π(u)) and ψ(π(v)) in place of φ(u) and φ(v) (observe that, if u ≈k v,

then π(u) ≈k π(v)). We permute the strings with π so as to obtain a per-

mutation of P where repeated elements are clustered, which allows us to

perform a finer filtering using the ψ function. Note that, in principle, this

additional filtration works with any permutation and ordering of repeated

elements.

For example, if u is (4, 1, 2, 4), v is (4, 5, 2, 3) and π is the sorting per-

mutation of u 2, 3, 1, 4, we have π(u) = (1, 2, 4, 4), π(v) = (5, 2, 4, 3),

ψ(π(u)) = (1, 1, 2), ψ(π(v)) = (0, 1, 0). Note that do(ψ(π(u)), ψ(π(v))) = 2,

while do(φ(u), φ(v)) = do(ψ(u), ψ(v)) = 1, as φ(u) = ψ(u) = (0, 1, 1) and

φ(v) = ψ(v) = (1, 0, 1).

The factors Fj are computed using the nondeterministic factor automa-

ton of φ(P)r, which is simulated using a modified version of the bit-

parallel SBNDM algorithm [43, 46]. The SBNDM algorithm is a slightly

faster version of BNDM (Backward Nondeterministic DAWG Match-

ing) [44] without bookkeeping of prefixes. The next scanned position is

then i + (m̂ − l) + 1, where l is the length of the longest suffix of φ(Ti,m)

with at most k + 1 factors. The worst-case time complexity of this algo-

rithm is O(nm(�m/w�+ logm)).

The second filtration algorithm, named AOPF2, is described informally

as follows:

Let H ′(x, y) be the subset of the mismatch positions between x and y

such that for each even position we exclude the two adjacent (odd) posi-

tions. Formally, we have

H ′(x, y) = B0 ∪B1 \ ({j − 1 : j ∈ B0} ∪ {j + 1 : j ∈ B0})

where B0 (B1) is the set of the even (odd) mismatch positions, and it holds

that |H ′(x, y)| ≤ do(x, y) (see Lemma 4 in Publication IV).

For example, if u = (4, 1, 2, 3) and v = (4, 5, 3, 2) we have u ≈2 v, φ(u) =

(0, 1, 1), φ(v) = (1, 0, 0), H(φ(u), φ(v)) = {1, 3}, H ′(φ(u), φ(v)) = {2}. In

the preprocessing, the AOPF2 algorithm computes the bit-vector X of m̂

bits such that the i-th bit is set to 1 if Pi < Pi+1 and to 0 otherwise. In

other words X is the bit-vector encoding of φ(P). The algorithm then

scans the text from left to right and maintains the bit-vector encoding Y

of φ(Ti,m), for i = 1, . . . , |T |. For a given position i in T , the bit-vector

52

Approximate Order-Preserving Matching with Filtration

encodings of B0 and B1 are computed as (X ∧ Y) & 01 . . . 01 and (X ∧

Y) & 10 . . . 10, respectively. Then, we have that the bit-vector encoding of

H ′(φ(P), φ(Ti,m)) is equal to

B0 | B1 & ∼((B0 � 1) | (B0 	 1)) .

The size of H ′(φ(P), φ(Ti,m)) is computed using the sideways addition op-

eration SA on each word of the resulting bit-vector. Given a word X, the

sideways addition of X returns the number of bits set in X. This oper-

ation can be computed in O(log logw) time in the word-RAM model [49]

and is also available as a POPCNT instruction in recent processors of

the x86 family. The worst-case time complexity of this algorithm is

O(n(�m/w� log logw +m logm)). The space complexity of both algorithms

is O(�m/w�). The pseudocode of the two algorithms is shown in Alg. 8

and 9. The psi-filter procedure called in AOPF1 at line 18 performs the

additional filtration step based on the ψ function and calls the verification

procedure, if necessary.

7.3 Analysis

In this section we analyze the average-case running time of the AOPF1

algorithm, and show that it is sublinear on average if k is not too large.

Suppose that T is a uniformly random string over an alphabet Σ of size

σ. The string φ(T) is not uniformly random in general as Pr[φ(T)i = 1] =

(σ + 1)/(2σ) and Pr[φ(T)i = 0] = (σ − 1)/(2σ). We make the simplifying

assumption that either all the symbols of T are distinct, in which case

the distribution becomes uniform, or that the alphabet is large enough

so that the distribution is arbitrarily close to uniform. Assume that k <

m/(logσ m+O(1)) and let Xj be the random variable corresponding to the

length of factor Fj . By the “Main Lemma” of Chang and Lawler [8] we

obtain that

1. the probability Pr[X1 + X2 + . . . + Xk+1 ≥ m] of a verification using

lemma 3 of Publication IV is less than 1/m3;

2. E[Xj] < logσ m+ 3;

since skipping two symbols instead of one between each factor Fj does

not invalidate the assumption that the variables Xj are independent

and identically distributed. By (1), the total verification time is thus

53

Approximate Order-Preserving Matching with Filtration

Algorithm 8 AOPF1(P, T, k)
1: m̂ ← |P | − 1
2: B[0] ← B[1] ← 0m̂

3: E ← 1m̂

4: for i ← 1 to m̂ do
5: c ← 0
6: if Pi < Pi+1 then
7: c ← 1
8: end if
9: B[c] ← B[c] | (1 � (i− 1))

10: end for
11: i ← m̂+ 1
12: while i ≤ |T | do
13: (e, j,D) ← (0, 0, E)
14: while e ≤ k and j < m̂ do
15: j ← j + 1
16: c ← 0
17: if Ti−j < Ti−j+1 then
18: c ← 1
19: end if
20: D ← (D 	 1) & B[c]
21: if D = 0m̂ then
22: (e, j,D) ← (e+ 1, j + 1, E)
23: end if
24: end while
25: if j ≥ m̂ and e ≤ k then
26: psi-filter(P, T, i)
27: end if
28: i ← i+ (m̂−min(j, m̂)) + 1
29: end while

54

Approximate Order-Preserving Matching with Filtration

Algorithm 9 AOPF2(P, T, k)
1: m̂ ← |P | − 1
2: X ← Y ← 0m̂

3: C[0] ← C[1] ← 0m̂

4: for i ← 1 to m̂ do
5: j ← i mod 2
6: C[j] ← C[j] | (1 � (i− 1))
7: if Pi < Pi+1 then
8: X ← X | (1 � (i− 1))
9: end if

10: if Ti < Ti+1 then
11: Y ← Y | (1 � (i− 1))
12: end if
13: end for
14: for i ← m̂ to |T | − 1 do
15: if Ti < Ti+1 then
16: Y ← Y | (1 � (i− 1))
17: end if
18: B0 ← (X ∧ Y) & C[0]
19: B1 ← (X ∧ Y) & C[1]
20: W ← (B0 � 1) | (B0 	 1)
21: e ← SA(B0 | B1 & ∼W)
22: if e ≤ k then
23: verify (P, T, i)
24: end if
25: Y ← Y 	 1
26: end for

55

Approximate Order-Preserving Matching with Filtration

O((n/m3)m logm). Instead, by (2), it follows that the average number

of symbols scanned in a single window and the average shift length are

equal to (k+1)(logσ m+3) and m− (k+1)(logσ m+3), respectively. From

this we obtain that the average filtering time is O((n/m)k logσ m) for the

aforementioned choice of k. Hence, the running time of both phases is

sublinear on average.

7.4 Experiments

We tested AOPF1 and AOPF2 against the following algorithms:

• AOPF1b: the filtration method based on the Hamming distance using

Approximate SBNDM;

• AOPF2b: the filtration method based on the Hamming distance using

the GGF algorithm;

• naive: the naive method where all the text positions are checked.

Note that the AOPF1b and AOPF2b algorithms must use 2k as bound

on the number of mismatches. In the AOPF1b algorithm we employ the

same additional filtration step used in AOPF1.

Table 7.1 shows the average execution times of the algorithms for the

humidity data in 10 of milliseconds for k ∈ {1, 2, 3}. In addition, a graph

of the times for the data and k = 1 (with logarithmic scale on the y axis) is

shown in Fig. 7.1. All the algorithms use the verification method described

in Sect. 7.3.

From the results, we observe that i) AOPF1 and AOPF2 are signifi-

cantly faster than the naive method, except for the case when m = 5 and

k = 2 and 3; ii) AOPF1 is always faster than AOPF1b; iii) AOPF2 is

either faster or comparable to AOPF2b. For all tested values of k and m,

in most cases AOPF1 is the fastest algorithm. The results vary slightly

from the results in Publication IV as AOPF2 is slower for relative humid-

ity data as compared to Dow Jones and Helsinki temperature data.

56

Approximate Order-Preserving Matching with Filtration

Table 7.1. Execution times of the algorithms (in 10 of milliseconds) for relative humidity
data.

Relative humidity
k = 1

m AOPF1 AOPF1b AOPF2 AOPF2b naive
5 45.2 45.9 37.1 43.2 53.3

10 8.1 17.1 21.7 35.1 209.9
15 4.0 10.6 12.8 20.7 395.8
20 2.4 6.1 10.1 14.9 607.9
25 1.9 4.0 7.9 10.6 855.4
30 1.6 2.8 7.0 7.7 1144.7
50 0.7 1.2 6.1 5.8 3243.8

k = 2
m AOPF1 AOPF1b AOPF2 AOPF2b naive
5 87.1 63.9 59.7 58.6 54.4

10 54.40 55.9 79.6 117.4 207.9
15 26.2 37.3 33.4 71.8 398.2
20 9.7 36.2 21.1 46.9 616.8
25 5.6 25.9 14.2 33.2 851.1
30 3.6 16.3 9.8 19.8 1106.2
50 1.7 3.9 6.8 7.9 2414.2

k = 3
m AOPF1 AOPF1b AOPF2 AOPF2b naive
5 63.8 64.6 59.3 58.4 53.2

10 147.1 150.6 170.0 197.3 209.7
15 45.4 46.7 98.7 185.8 395.0
20 33.8 53.2 49.2 116.6 608.8
25 19.7 57.3 31.0 84.8 849.7
30 11.0 52.8 18.3 55.2 1103.4
50 2.9 15.6 7.9 14.7 2462.7

 0.001

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 50

Ti
m

e
(s

ec
on

ds
)

Pattern length

AOPF1 AOPF2 naive

Figure 7.1. Execution times of algorithms for humidity data

57

Approximate Order-Preserving Matching with Filtration

58

8. Conclusions

We present several practical algorithms for the order-preserving matching

problem and its approximate variant in this thesis. We have proved with

our experimental tests that our algorithms are effective and faster than

the previous solutions in most cases. In the publications we have used the

Dow Jones index, feature data, Helsinki temperature data and random

data for testing. We chose a different data set for testing in our thesis,

relative humidity data. The tests were performed with a wide range of

pattern lengths.

Since not many efficient algorithms had been proposed for the order-

preserving matching problem, we first introduced a simple algorithm

based on filtration (Publication I), where in the non-matching positions

in the text are filtered out. Any exact string matching algorithm can be

used as the filtration algorithm. We used SBNDM2 and SBNDM4 [15],

FSO [22] and KMP [38] as the filtration algorithms. We carried out tests

and found that our solutions based on SBNDM2 and SBNDM4 were faster

than the previous solutions in most cases and the FSO based solution was

faster for short patterns.

Later, we combined the SIMD instruction set architecture with filtra-

tion (Publication II). The SIMD architecture requires careful redesigning

of an algorithm, and the outcome is not necessarily efficient for an arbi-

trary string matching problem. However, we succeeded in developing two

online solutions which were faster than our previous algorithm (in Publi-

cation I). The two online solutions used the SSE and AVX instruction set

architecture. SIMD instructions were originally developed for multimedia

but are recently employed for pattern matching. Our results show that

SIMD instructions can also be very efficient in order-preserving matching

as well.

We also developed an offline solution based on the FM-index (Publica-

59

Conclusions

tion II) and it is superior for long patterns. However, the search algorithm

of the offline solution was slower than we expected for short patterns be-

cause of cache inefficiency. Another possible reason for the slowness of

FM-index is probably that locate is a slow operation in FM-index.

It was thought that there might be inefficiency in the FM-index for a

bit string. It is because the FM-index uses a wavelet tree, and it would

be useless in the case of a binary text. So a modified FM-index without a

wavelet tree might be more efficient. Therefore we implemented another

FM-index without a wavelet tree. To keep the FM-index compressed, the

Burrows-Wheeler transform of the bit-string was computed and was com-

pressed via rank and select dictionaries, and then the backward search

on the compressed bit string was implemented via rank/select queries.

However, we observed that this approach was slower than the standard

one.

Henceforth, we presented another practical solution without filtration

for the order-preserving matching problem. Again we employed the SSE

instruction set architecture. Our results in the Publication III show that

our solution is the fastest until m is 20. However, the results differ a bit

in the case of relative humidity data, in which the solution is the fastest

for all values of m except when m reaches 50.

We also provided practical solutions for approximate order-preserving

matching grounded on filtration. And one of the solutions is the first sub-

linear solution for the problem. We compared our solutions against the

naive solution since no practical solution is available to date for the ap-

proximate variant of the problem. Our solutions were faster than the

naive solution in most cases.

It seems to be feasible that many more effective solutions can be de-

veloped using the SIMD instruction set architecture for order-preserving

matching and its variant. Moreover, the solutions of order-preserving

matching and its variant can be extended to the multi-pattern [50] and

multi-dimensional case. Such methods in turn can be applied to elec-

tronic medical record (EMR) to find useful patterns for detecting adverse

medical conditions.

60

Bibliography

[1] J. Ardnt. Matters computational. http://www.jjj.de/fxt/ (Loaded in Jan.
2016).

[2] Ricardo A. Baeza-Yates and Mireille Régnier. Average running time of the
Boyer–Moore–Horspool algorithm. Theor. Comput. Sci., 92(1):19–31, 1992.

[3] Belazzougui, Adeline Pierrot, Mathieu Raffinot, and Stéphane Vialette. Sin-
gle and multiple consecutive permutation motif search. In Algorithms and
Computation - 24th International Symposium, ISAAC 2013, Hong Kong,
China, December 16–18, 2013, Proceedings, pages 66–77, 2013.

[4] Oren Ben–Kiki, Philip Bille, Dany Breslauer, Leszek Ga̧sieniec, Roberto
Grossi, and Oren Weimann. Optimal packed string matching. In IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2011, December 12–14, 2011, Mumbai, India,
pages 423–432, 2011.

[5] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm.
Commun. ACM, 20(10):762–772, 1977.

[6] Michael Burrows and David J. Wheeler. A block-sorting lossless data com-
pression algorithm. Technical Report 124, DEC SRC, 1994.

[7] Domenico Cantone, Simone Faro, and M. Oguzhan Külekci. An efficient
skip–search approach to the order-preserving pattern matching problem.
In Proceedings of the Prague Stringology Conference 2015, Prague, Czech
Republic, August 24–26, 2015, pages 22–35, 2015.

[8] William I. Chang and Eugene L. Lawler. Sublinear approximate string
matching and biological applications. Algorithmica, 12(4/5):327–344, 1994.

[9] Christian Charras, Thierry Lecroq, and Joseph Daniel Pehoushek. A very
fast string matching algorithm for small alphabeths and long patterns (ex-
tended abstract). In Combinatorial Pattern Matching, 9th Annual Sym-
posium, CPM 98, Piscataway, New Jersey, USA, July 20–22, 1998, Pro-
ceedings, volume 1448 of Lecture Notes in Computer Science, pages 55–64.
Springer, 1998.

[10] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bag-
nall, Abdullah Mueen, and Gustavo Batista. The UCR time series classifi-
cation archive. https://www.cs.ucr.edu/∼eamonn/UCRsuite.html (Loaded
in Jan. 2016).

61

Bibliography

[11] Tamanna Chhabra and Jorma Tarhio. Order-preserving matching with fil-
tration. In Experimental Algorithms - 13th International Symposium, SEA
2014, Copenhagen, Denmark, June 29 – July 1, 2014. Proceedings, volume
8504 of Lecture Notes in Computer Science, pages 307–314. Springer, 2014.

[12] Sukhyeun Cho, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim. Fast
order-preserving pattern matching. In Combinatorial Optimization and Ap-
plications - 7th International Conference, COCOA 2013, Chengdu, China,
December 12–14, 2013, Proceedings, volume 8287 of Lecture Notes in Com-
puter Science, pages 295–305. Springer, 2013.

[13] Sukhyeun Cho, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim. A
fast algorithm for order-preserving pattern matching. Inf. Process. Lett.,
115(2):397–402, 2015.

[14] Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Ku-
bica, Alessio Langiu, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter,
and Tomasz Walen. Order-preserving incomplete suffix trees and order-
preserving indexes. In String Processing and Information Retrieval -20th
International Symposium, SPIRE 2013, Jerusalem, Israel, October 7–9,
2013, Proceedings, volume 8214 of Lecture Notes in Computer Science, pages
84–95. Springer, 2013.

[15] Branislav Durian, Jan Holub, Hannu Peltola, and Jorma Tarhio. Improving
practical exact string matching. Inf. Process. Lett., 110(4):148–152, 2010.

[16] Simone Faro and M. Oguzhan Külekci. Fast multiple string matching using
streaming SIMD extensions technology. In String Processing and Informa-
tion Retrieval - 19th International Symposium, SPIRE 2012, Cartagena de
Indias, Colombia, October 21–25, 2012. Proceedings, volume 7608 of Lecture
Notes in Computer Science, pages 217–228. Springer, 2012.

[17] Simone Faro and M. Oguzhan Külekci. Fast packed string matching for
short patterns. In Proceedings of the 15th Meeting on Algorithm Engineer-
ing and Experiments, ALENEX 2013, New Orleans, Louisiana, USA, Jan-
uary 7, 2013, pages 113–121, 2013.

[18] Simone Faro and M. Oguzhan Külekci. Fast and flexible packed string
matching. J. Discrete Algorithms, 28:61–72, 2014.

[19] Simone Faro and M. Oguzhan Külekci. Efficient algorithms for the order
preserving pattern matching problem. CoRR, abs/1501.04001, 2015.

[20] Simone Faro and Thierry Lecroq. The exact online string matching problem:
A review of the most recent results. ACM Comput. Surv., 45(2):13, 2013.

[21] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with
applications. In 41st Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2000, 12–14 November 2000, Redondo Beach, California, USA,
pages 390–398, 2000.

[22] Kimmo Fredriksson and Szymon Grabowski. Practical and optimal string
matching. In String Processing and Information Retrieval, 12th Interna-
tional Conference, SPIRE 2005, Buenos Aires, Argentina, November 2–4,
2005, Proceedings, volume 3772 of Lecture Notes in Computer Science, pages
376–387. Springer, 2005.

62

Bibliography

[23] Pawel Gawrychowski and Przemyslaw Uznanski. Order-preserving pattern
matching with k mismatches. CoRR, abs/1309.6453, 2013.

[24] Pawel Gawrychowski and Przemyslaw Uznanski. Order-preserving pattern
matching with k mismatches. In Combinatorial Pattern Matching - 25th
Annual Symposium, CPM 2014, Moscow, Russia, June 16–18, 2014. Pro-
ceedings, pages 130–139, 2014.

[25] Emanuele Giaquinta, Szymon Grabowski, and Kimmo Fredriksson. Ap-
proximate pattern matching with k-mismatches in packed text. Inf. Process.
Lett., 113(19–21):693–697, 2013.

[26] Simon Gog. Succinct data structure library 2.0. https://github.com/

simongog/sdsl-lite (Loaded in Jan. 2016).

[27] Yijie Han. Deterministic sorting in O(nloglogn) time and linear space. J.
Algorithms, 50(1):96–105, 2004.

[28] Tommi Hirvola and Jorma Tarhio. Approximate online matching of circular
strings. In Experimental Algorithms - 13th International Symposium, SEA
2014, Copenhagen, Denmark, June 29 – July 1, 2014. Proceedings, volume
8504 of Lecture Notes in Computer Science, pages 315–325. Springer, 2014.

[29] R. Nigel Horspool. Practical fast searching in strings. Softw., Pract. Exper.,
10(6):501–506, 1980.

[30] Andrew Hume and Daniel Sunday. Fast string searching. Softw., Pract.
Exper., 21(11):1221–1248, 1991.

[31] Intel. Intel Architecture Instruction Set Extensions Programming Refer-
ence. https://software.intel.com/sites/default/files/m/9/2/3/41604
(Loaded in Jan. 2016).

[32] Intel. Intel (R) 64 and IA-32 Architectures Software Developer’s
Manual. http://www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html

(Loaded in Jan. 2016).

[33] Guy Jacobson and Kiem–Phong Vo. Heaviest increasing/common subse-
quence problems. In Combinatorial Pattern Matching, Third Annual Sym-
posium, CPM 92, Tucson, Arizona, USA, April 29 – May 1, 1992, Pro-
ceedings, volume 644 of Lecture Notes in Computer Science, pages 52–66.
Springer, 1992.

[34] Hwancheol Jeong, Sunghoon Kim, Weonjong Lee, and Seok–Ho Myung. Per-
formance of SSE and AVX instruction sets. CoRR, abs/1211.0820, 2012.

[35] James H. Morris Jr. and Vaughan R. Pratt. A linear pattern-matching algo-
rithm. Report 40, University of California, Berkeley, 1970.

[36] Juha Kärkkäinen. Personal communication, 2016.

[37] Jinil Kim, Peter Eades, Rudolf Fleischer, Seok–Hee Hong, Costas S. Iliopou-
los, Kunsoo Park, Simon J. Puglisi, and Takeshi Tokuyama. Order- preserv-
ing matching. Theor. Comput. Sci., 525:68–79, 2014.

[38] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM J. Comput., 6(2):323–350, 1977.

63

Bibliography

[39] Marcin Kubica, Tomasz Kulczynski, Jakub Radoszewski, Wojciech Rytter,
and Tomasz Walen. A linear time algorithm for consecutive permutation
pattern matching. Inf. Process. Lett., 113(12):430–433, 2013.

[40] M. Oguzhan Külekci. Filter based fast matching of long patterns by using
SIMD instructions. In Proceedings of the Prague Stringology Conference
2009, Prague, Czech Republic, August 31 – September 2, 2009, pages 118–
128, 2009.

[41] Susana Ladra, Oscar Pedreira, José Duato, and Nieves R. Brisaboa. Exploit-
ing SIMD instructions in current processors to improve classical string algo-
rithms. In Advances in Databases and Information Systems - 16th East Eu-
ropean Conference, ADBIS 2012, Poznań, Poland, September 18–21, 2012.
Proceedings, pages 254–267, 2012.

[42] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string
searches. In Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, 22–24 January 1990, San Francisco, California, pages
319–327, 1990.

[43] Gonzalo Navarro. NR-grep: A fast and flexible pattern-matching tool.
Softw., Pract. Exper., 31(13):1265–1312, 2001.

[44] Gonzalo Navarro and Mathieu Raffinot. Fast and flexible string matching
by combining bit-parallelism and suffix automata. ACM Journal of Experi-
mental Algorithmics, 5:4, 2000.

[45] Gonzalo Navarro and Mathieu Raffinot. Flexible pattern matching in
strings - practical on-line search algorithms for texts and biological se-
quences. 2002.

[46] Hannu Peltola and Jorma Tarhio. Alternative algorithms for bit-parallel
string matching. In String Processing and Information Retrieval, 10th In-
ternational Symposium, SPIRE 2003, Manaus, Brazil, October 8–10, 2003,
Proceedings, volume 2857 of Lecture Notes in Computer Science, pages 80–
94. Springer, 2003.

[47] Peter Sanders. Algorithm engineering - an attempt at a definition using
sorting as an example. In Proceedings of the Twelfth Workshop on Algorithm
Engineering and Experiments, ALENEX 2010, Austin, Texas, USA, January
16, 2010, pages 55–61, 2010.

[48] Jorma Tarhio and Hannu Peltola. String matching in the DNA alphabet.
Softw., Pract. Exper., 27(7):851–861, 1997.

[49] Sebastiano Vigna. Broadword implementation of rank/select queries. In
Experimental Algorithms, 7th International Workshop, WEA 2008, Province-
town, MA, USA, May 30–June 1, 2008, Proceedings, volume 5038 of Lecture
Notes in Computer Science, pages 154–168. Springer, 2008.

[50] Bruce Watson. Personal communication, 2015.

64

Errata

Corrections to Publication II

• The analysis of online solutions is not correct. Look at the analysis in

Sect. 5.1 in the summary.

Corrections to Publication III

• Page 5,

wspc(A,B)

B ← _mm_cmpgt_epi8(B,A)

r ← _mm_movemask_epi8(B)

return r

• Page 5, line 3: Replace A[j] ≤ B[j] with A[j] < B[j]

• Page 6, Fig. 2, line 10: if C = 0 then goto out

• Page 6, before Example 2: Replace “When m = O(α)” by “In the average

case”.

• Page 6, line 11: Replace A[j] ≤ B[j] with A[j] < B[j] and y[i+h+ r(j)] ≤
y[i+ h+ r(j + 1)]) with y[i+ h+ r(j)] < y[i+ h+ r(j + 1)])

• Page 6, line 14: Replace y[i+ h+ r(j)] ≤ y[i+ h+ r(j+1)]) with y[i+h+

r(j)] < y[i+ h+ r(j + 1)])

111

String matching is a widely studied problem
in Computer Science. There have been many
recent developments in this field. One
fascinating problem considered lately is the
order-preserving matching (OPM) problem.
The task is to find all the substrings in the
text which have the same length and relative
order as the pattern, where the relative order
is the numerical order of the numbers in a
string. The problem finds its applications in
the areas involving time series or series of
numbers. More specifically, it is useful for
those who are interested in the relative
order of the pattern and not in the pattern
itself. For example, it can be used by analysts
in a stock market to study movements of
prices.

We proposed various sublinear solutions for
exact and approximate OPM and we show
with experimental tests that our solutions
are efficient than the previous solutions.

A
alto-D

D
 101

/2
016

9HSTFMG*agicic+

ISBN 978-952-60-6828-2 (printed)
ISBN 978-952-60-6829-9 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

T
am

anna C
hhabra

A
lgorithm

s for O
rder-P

reserving M
atching

A
alto

 U
n
ive

rsity

2016

Department of Computer Science

Algorithms for Order-
Preserving Matching

Tamanna Chhabra

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11

text
pattern

DOCTORAL
DISSERTATIONS

	Aalto_DD_2016_101_Chabbra_verkkovesio

