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Monilla aloilla esiintyy tarve korkeaulotteisen, kohinaisen datan analysoimiseen.
Algoritminen dimensionpudotus tai muuttujanvalinta ovat usein sovellettavia läh-
estymistapoja, joko muuta analyysiä edeltävänä esikäsittelynä tai itsenäisenä ana-
lyysinä.
Tässä työssä käsitellään sekä dimensionpudotusta että muuttujanvalintaa, keskit-
tyen erityisesti fMRI-dataan ja visualisointiin. Työssä esitellään kolme uutta al-
goritmia.
Ensimmäinen algoritmi käyttää harvaa kanonista korrelaatioanalyysi-mallia
(CCA) ja koeärsykkeen korkeaulotteista piirre-esitystä olennaisten vokseleiden
(muuttujien) valitsemiseen fMRI-kokeissa, joissa koehenkilöt altistetaan mon-
imutkaiselle luonnolliselle ärsykkeelle, kuten esimerkiksi musiikille. Kokeet musi-
ikkia ärsykkeenä käyttävän fMRI-kokeen kanssa osoittavat algoritmin löytävän
tärkeitä vokseleita.
Toinen algoritmi, NeRV, on dimensionpudotusmenetelmä korkeaulotteisen datan
visualisoimiseen hajontakuvion avulla. NeRV pohjautuu yksinkertaiseen abstrak-
tiin malliin ihmisen tavalle tulkita hajontakuviota. Kokeet osoittavat NeRVin ole-
van perinteisiä menetelmiä parempi tämän visualisointimallin mielessä. Lisäksi
NeRViä sovelletaan ensimmäisen algoritmin valitsemien fMRI-vokseleiden vi-
suaaliseen analyysiin; analyysi sekä osoittaa NeRVin hyödyllisyyden käytännössä
että tarjoaa uusia näkökulmia vokselinvalintatulosten ymmärtämiseen.
Kolmas algoritmi, LDA-NeRV, on NeRViä ja bayesiläistä latenttimuuttuja-
mallia soveltava visualisointimenetelmä graafeille. Kokeet osoittavat LDA-NeRVin
kykenevän visualisoimaan rakennetta, jota perinteiset visualisointimenetelmät
eivät tuo esiin.

Avainsanat: funktionaalinen MRI, dimensionpudotus, muuttujanvalinta, visual-
isointi, graafien piirtäminen
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The need to model and understand high-dimensional, noisy data sets is common in
many domains these day, among them neuroimaging and fMRI analysis. Dimen-
sionality reduction and variable selection are two common strategies for dealing
with high-dimensional data, either as a pre-processing step prior to further anal-
ysis, or as an analysis step itself.
This thesis discusses both dimensionality reduction and variable selection, with a
focus on fMRI analysis, visualization, and applications of visualization in fMRI
analysis. Three new algorithms are introduced.
The first algorithm uses a sparse Canonical Correlation Analysis model and a high-
dimensional stimulus representation to find relevant voxels (variables) in fMRI
experiments with complex natural stimuli. Experiments on a data set involving
music show that the algorithm successfully retrieves voxels relevant to the exper-
imental condition.
The second algorithm, NeRV, is a dimensionality reduction method for visualizing
high-dimensional data using scatterplots. A simple abstract model of the way a
human studies a scatterplot is formulated, and NeRV is derived as an algorithm for
producing optimal visualizations in terms of this model. Experiments show that
NeRV is superior to conventional dimensionality reduction methods in terms of this
model. NeRV is also used to perform a novel form of exploratory data analysis
on the fMRI voxels selected by the first algorithm; the analysis simultaneously
demonstrates the usefulness of NeRV in practice and offers further insights into
the performance of the voxel selection algorithm.
The third algorithm, LDA-NeRV, combines a Bayesian latent-variable model for
graphs with NeRV to produce one of the first principled graph drawing meth-
ods. Experiments show that LDA-NeRV is capable of visualizing structure that
conventional graph drawing methods fail to reveal.

Keywords: functional MRI, dimensionality reduction, variable selection, visual-
ization, graph drawing
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1 Introduction

One of the fundamental problems in modern machine learning and data analysis is
the curse of dimensionality, also known as the ‘small n, large p’ problem. Suppose
that we are interested in estimating the values of p one-dimensional variables that
interact with each other according to some model assumed to be known. Even for
many relatively simple models, the number n of sample data vectors required for a
reliable estimate increases superlinearly, possibly even exponentially, as a function
of p (see, e.g., Bishop, 2007, page 33). To make matters worse, it is not uncommon
for p to be orders of magnitude larger than n.

Fortunately data is rarely as high-dimensional as it might seem at first glance:
often a data set can be transformed into a much lower-dimensional data set without
losing much information. In some cases we may be able to determine that a large
portion of variables are irrelevant for our task, in which case we can simply ignore
them in further analysis; this approach is commonly referred to as variable selection
or feature selection. In other cases none of the variables are entirely irrelevant, but
strong dependencies among the variables nevertheless make most of them redun-
dant. For example, we may have a 10000-dimensional data set whose vectors all
lie approximately on a 10-dimensional hyperplane, in which case a simple change of
coordinates can reduce the dimensionality of the data by three orders of magnitude
while preserving most of the structure. Exploiting dependencies between variables
to find a transformation to reduce dimensionality is generally termed dimension-
ality reduction. This thesis deals with both variable selection and dimensionality
reduction.

Section 2 describes and expands upon the contributions of Publication 1. The
main result is a novel variable selection algorithm for functional MRI data, specifi-
cally for experiments involving complex natural stimuli such as music. The proposed
algorithm employs a sparse canonical correlation analysis (CCA) model, which itself
can be interpreted as a dimensionality reduction method, to discover which variables
are relevant. Preliminary experiments on fMRI data measured from subjects listen-
ing to music classified as ’happy’ or ’sad’ indicate that the algorithm successfully
retrieves a small set of variables that are sufficient for deciding whether a subject is
listening to ’happy’ or ’sad’ music. Notably the algorithm does not make any use
of the emotional categories for the music samples, nor does it benefit from any kind
of neuroscientific prior information: it learns the relevant voxels using only a set of
features that are automatically extracted from the music using a toolbox.

Section 3 highlights some of the main contributions of Publication 2. Apart from
being helpful in dealing with the curse of dimensionality in statistical modeling, di-
mensionality reduction methods have traditionally also been used for visualizing
high-dimensional data. A natural way to visualize a two-dimensional data set with
continuous variables is to draw a scatterplot. For higher-dimensional data sets we
can use a dimensionality reduction method to reduce the dimensionality to two, and
then draw a scatterplot. In general it is not possible to represent a high-dimensional
data set perfectly in two dimensions, so every scatterplot represents a compromise.
Presumably some details in the high-dimensional data are more important for a
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good visualization than others; finding the best possible compromise requires defin-
ing what characteristics make up a ‘good visualization’ and using a dimensionality
reduction method that triesto preserve those. Traditional dimensionality reduction
methods, such as Principal Component Analysis (PCA; Hotelling, 1933), and man-
ifold learning methods, like Isomap (Tenenbaum et al., 2000), have often been used
and suggested for visualizing high-dimensional data via scatterplots, despite being
designed to solve some other problem whose relation to visualization may be un-
clear. Section 3 formulates a simple abstract model of the way humans interpret
scatter plots and describes a dimensionality reduction method, the Neighbor Re-
trieval Visualizer (NeRV), that is specifically designed to produce scatterplots that
are optimal in terms of the model.

Section 4 introduces the main contribution of Publication 3, a novel, model-
based graph visualization method called LDA-NeRV. Most graph drawing methods
have not been formulated with an explicit goal: visualization quality is generally
evaluated using certain established aesthetic criteria, such as the number of edge
crossings, without stating what problem the visualization is supposed to solve and
how the aesthetic criteria relate to that problem. Analysis of the criteria suggests
that the underlying goal of traditional algorithms is to produce visualizations that
try to show local structure for individual nodes as clearly as possible. In contrast,
LDA-NeRV uses a Bayesian latent-variable model to learn a specific kind of global
structure in the graph, and then applies NeRV to visualize that structure as captured
by the estimated latent variables. Visualizations of two sample graphs demonstrate
the benefits of using an appropriate model for visualizing graphs.

Section 5 combines ideas from Sections 2 and 3 in a previously unpublished
case study. I use NeRV and PCA to visually explore fMRI voxel sets selected
by the algorithm in Section 2. The exploratory data analysis provides some new
insights into the experiment results in Section 2 and demonstrates why the abstract
visualization task of ‘neighbor retrieval’ is a useful approximation for how a person
actually studies a scatterplot. We also see how NeRV is different from PCA in
practice.

Finally, Section 6 summarizes my conclusions regarding the work presented in
this thesis.
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2 Data-driven variable selection for fMRI data

Modelling whole-brain fMRI data is a prime example of a ‘small n, large p’ problem.
For example, in the fMRI data set used in experiments in this section there are,
for each of the 16 test subjects, 300 samples of 219727 real-valued variables. Each
sample, or volume, measures the activity of the subject’s entire brain during a period
of 2 seconds. The area of the head is divided into a regular three-dimensional grid
of volumetric pixels or voxels, and the scanner produces a separate measurement for
each voxel. The 219727 variables correspond to the voxels that contain actual brain
matter; areas such as the skull and the eyes are excluded.

In addition to being extremely high-dimensional, fMRI data is also very noisy.
Naturally there is some scanner noise, but more crucially the scanner does not
even measure brain activity directly. A typical voxel contains more than 5 million
neurons, and as their activity levels change, so does the amount of blood flowing to
that area; the scanner tracks these changes in blood flow via the so-called blood-
oxygen-level-dependent (BOLD) contrast mechanism. Although it has traditionally
been assumed that an increase in the BOLD signal indicates neuronal excitation
— increased firing — it may in fact indicate inhibition as well (Logothetis, 2008).
Furthermore, there is of course always some blood flowing everywhere in the brain,
and the activations that fMRI analysis looks for show up as a mere 2% or 3%
increase over the baseline level of the BOLD signal (Ashby, 2011). Finally, when
using fMRI to study cognition, even if we had perfect measurements of every neuron
in the brain, we would still have noise in the form of a great deal of brain activity
that is unrelated to the particular aspect of cognition that we are trying to study.
For example, if we are interested in the experience of listening to music, we have to
assume that even the most avid listener’s brain is simultaneously processing many
other things in addition the music being heard. The last point is naturally equally
true for all neuroimaging methods.

In traditional fMRI analysis approaches like SPM, the problem of high dimen-
sionality is side-stepped by modelling each voxel independently (see Section 2.1), so
there is no need for a separate dimensionality reduction or variable selection step to
reduce the dimensionality. Although these traditional approaches based on univari-
ate modelling are still widely used, in the last 10 years true multi-variate models,
generally called multi-voxel pattern analysis (MVPA) methods, have become very
popular. In MVPA analysis it is standard to perform a separate variable selection
or dimensionality reduction step before the main analysis (Norman et al., 2006;
Mahmoudi et al., 2012).

Although generic dimensionality reduction methods like PCA can be used (Mah-
moudi et al., 2012), variable selection is particularly justified for fMRI data because
of functional segregation, the idea that a specific cognitive function can be attributed
to specific locations in the brain. Much of neuroimaging research has concentrated
on mapping cognitive functions to brain areas, and the principle of functional seg-
regation has been firmly established (although it should be pointed out that the
relationships between segregated areas, functional integration, is equally important
for understanding brain function). (Friston, 1995) In other words, we know a priori
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that provided that the experimental task is sufficiently specific, most of the relevant
brain activity should be found in some small subset of the voxels. This suggests
that we should expect variable selection to be a useful way of reducing dimensional-
ity prior to other analysis, but it also means that variable selection algorithms can
be interesting analysis methods on their own, because they can potentially tell us
which areas of the brain are related to a particular task. Indeed, as we will see in
Section 2.1, traditional analysis methods like SPM can be interpreted as variable
selection methods.

This section proposes a new variable selection method specifically designed for
fMRI experiments involving complex natural stimuli such as music. Section 2.1
briefly reviews existing approaches to variable selection. Section 2.3 motivates and
describes the new algorithm. Section 2.4 attempts to tentatively validate the algo-
rithm using a classification experiment on fMRI data measured from people listening
to classical music. Finally, Section 2.5 evaluates the algorithm based on the experi-
mental results and points out avenues for further research.

2.1 Existing approaches to variable selection

Statistical Parametric Mapping (Friston et al., 1994, SPM;) is arguably the most
established approach to analyzing fMRI data and still very popular today. The most
basic SPM analysis, sometimes called a ‘first level analysis’, produces a single-subject
‘activation map’ that shows which voxels display statistically significant activity
relevant to the experimental condition(Amaro and Barker, 2006). Although SPM
analysis can then proceed to analyze a wide variety of hypotheses, the foundation
is essentially a single-subject variable selection method.

In SPM, each voxel is modelled independently of the others using a linear regres-
sion model, which transforms the problem of modelling a high-dimensional data set
into a large number of independent univariate modelling problems. This bypasses
the issue of high dimensionality.

SPM handles noise partly by imposing certain requirements on the design of the
experiment in which the fMRI data is collected. The simplest possible experiment
design is a block design with two different kinds of stimuli or conditions, the ex-
perimental condition and a control condition (Amaro and Barker, 2006, see, e.g.,).
For example, if we wanted to find regions of the brain that are involved in recog-
nizing human faces, the experimental condition could be “show the test subject a
photo of a human face”, and a possible control condition would be “show the test
subject a photo of a landscape”. Several photos in one category are shown in one
contiguous block, and experimental blocks and control blocks alternate throughout
the experiment. We can then define binary vectors g

experimental

and g

control

such that
g·(t) = 1 if the relevant condition is present at time t and g·(t) = 0 otherwise; SPM
uses these variables as the regressors in its linear regression model for each voxel.
Various standard statistical tests can then be applied to find voxels that are active
during the experimental condition but not during the control condition.

The block design mitigates noise by severely restricting the degrees of freedom
of the model’s feature representation for the experimental condition. To continue



5

with the example from the previous paragraph, if we wanted to capture every de-
tail of the experimental condition of viewing and recognizing faces, we would need a
high-dimensional feature representation; a naive example would be a high-resolution
bitmap image of the photo being shown. In the block design the experimental condi-
tion is described using a single categorical variable that can assume two values, ‘face’
or ‘not a face’. Because the feature representation of the experimental condition is
so simple, it is possible to obtain statistically significant results even with relatively
few samples, noisy data, and plain linear regression. Due to the curse of dimension-
ality, a high-dimensional feature representation would require either impractically
large numbers of samples or a more sophisticated model (see, e.g., Bishop, 2007,
page 33).

The above is only a rough sketch of the simplest form of SPM, but the two main
points hold in general: each voxel is modelled independently, and the experimental
condition is described either using a single categorical variable or a one-dimensional
real variable (Davis and Poldrack, 2013). The categories are generally decided be-
fore the data is collected to reflect the hypotheses that the researcher wants to
test (Amaro and Barker, 2006). Although these properties simplify analysis and
statistical inference as noted above, they also have their disadvantages.

The main disadvantage of modelling each voxel independently of other voxels
is that we cannot discover groups of voxels that are individually insignificant but
relevant as a whole. Just like MVPA methods in general have gained traction, several
variable selection methods addressing this point have been proposed in the last 10
years. Kriegeskorte et al. (2006) proposed a model where each voxel is modeled
together with voxels within a neighborhood (called a ‘searchlight’) of a certain radius,
replacing univariate modelling with a kind of local multivariate model. Martino
et al. (2008) used Recursive Feature Elimination to find the best voxels for SVM
classification. Yamashita et al. (2008) selected voxels for a classification task using
a sparse logistic regression classifier. Varoquaux et al. Varoquaux et al. (2012)
recently introduced a voxel selection algorithm based on a randomized LASSO and
stability selection.

The disadvantage of describing the experimental condition using a categorical
variable is that it can be restrictive for some kinds of experiments and data analysis.
When working with complex natural stimuli like music or movies, the stimulus is so
rich that it is impossible to capture every interesting aspect with a single categorical
variable. At the same time, a rich feature representation may be readily available;
for example, in the case of music, many kinds of features can be easily extracted
automatically from a digital recording using software like the MIR toolbox (Lartillot
et al., 2008). The ability to retrieve all voxels that are relevant to any aspect of a
rich stimulus can be desirable especially when performing variable selection as a
preprocessing step for some other analysis. It can also be useful for exploring data
to generate new hypotheses; this idea will be explored in Section 5.

The disadvantages of the conventional categorical feature representation for the
experimental condition seem to have received less attention in voxel selection than
the disadvantages of modelling voxels independently: all the voxel selection methods
mentioned above assume the conventional feature representation. This was one of
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the main motivations for the algorithm proposed in the next section.
Apart from algorithms, another traditional way to select voxels is to limit analysis

to certain anatomical regions that are known to be relevant to the task based on
current neuroscientific understanding (Norman et al., 2006). Although this approach
can work well, the disadvantage is that we may exclude regions that are not yet
known to be relevant for the task. We also need to solve the problem of locating
each anatomical region in each individual subject’s brain.

2.2 Voxel selection for rich feature descriptions

As noted in Section 2.1, most variable selection algorithms for fMRI assume that
the experimental condition or stimulus is described using a categorical variable or
a single real parameter, and there are situations where being able to select voxels
based on a more general feature representation is desirable. The algorithm proposed
here is designed specifically for fMRI experiments involving stimuli like music for
which a high-dimensional, possibly real-valued feature representation is natural.

2.2.1 Canonical Correlation Analysis

At the core of the proposed voxel selection algorithm is a variant of the Canonical
Correlation Analysis (CCA Hotelling, 1936) algorithm. The following overview is
based on (Shawe-Taylor and Cristianini, 2004).

CCA operates on two data sets that are paired in the sense that they can in some
sense be interpreted as two different views of the same phenomenon; for example, if
we have fMRI measurements of a person listening to music as one view, then a feature
representation of the music being listened to could be another view. CCA assumes
that the two data sets have the same number of samples, so if the scanning interval
for the fMRI view is two seconds, then each of the music feature view’s samples
should describe a two-second window of music. Furthermore, the ith sample of the
music feature view should naturally describe the same two-second window as the
ith fMRI scan. The two views do not need to have the same number of variables.

CCA finds two projection vectors, u1 for the first view and v1 for the second,
such that the correlation beteen the projection of the first view onto u1 and the
projection of the second view onto v1 is maximized. It can be shown that u1 and v1

can be found by computing a singular value decomposition on the cross-correlation
matrix of the two views.

Conceptually, CCA could be used as a naive voxel selection method: we compute
CCA using fMRI data as one view and stimulus features as the other, and interpret
the projection vector returned by CCA for the fMRI view as a weight vector. A
larger weight (in absolute value) indicates that the voxel is more relevant.

In practice there are two problems with this idea. The first problem is yet
another incarnation of the curse of dimensionality: it can be shown that when the
dimensionality of at least one view is sufficiently large compared with the number
of samples, we can find perfectly correlated projections even if both views are pure
uncorrelated noise. To ensure that the correlation found by CCA actually reflects a
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real relationship between the two views, we need to add some form of regularization
to the algorithm.

The second problem is that the basic form of CCA does not tend to produce
sparse solutions (Hardoon and Shawe-Taylor, 2011). The CCA solution is not in
general unique: we can find infinitely many pairs of projection vectors that all
produce the maximal correlation. Even if the maximal correlation could be achieved
by giving non-zero weights to only 100 voxels, the weight vector returned by basic
CCA may well give a non-zero weight to every voxel in the brain.

2.2.2 Kernel CCA

It can be shown that to compute CCA for two views, we don’t actually need access
to the sample vectors themselves: it is enough to have a kernel matrix for each
view, in which case the method is called Kernel CCA or KCCA (Lai and Fyfe, 2000;
Shawe-Taylor and Cristianini, 2004). If a view has n samples x

i

, a kernel matrix is
an n ⇥ n matrix K such that the entry K(i, j) = k(x

i

, x

j

), where k(·, ·) is a kernel
function. A kernel function is a function for which it can be shown that, for all x, y,
k(x, y) = h�(x),�(y)i

⌫

, where ⌫ is some Hilbert space, h·, ·i is the corresponding
inner product, and � is some mapping from the feature space to ⌫.

In other words, computing the kernel function for two samples is equivalent to
first mapping them to some space ⌫ and then taking their inner product there.
The mapping can be highly nonlinear and ⌫ can be infinite-dimensional, so kernel
methods are potentially very powerful. Note that in KCCA each view has its own
kernel, and the kernels can be completely different.

The simplest kernel function is the so-called linear kernel, where k(x, y) = x

T
y;

we simply take the scalar product of the two feature vectors, so � is the identity
mapping and ⌫ is the original feature space. If we use the linear kernel, KCCA is
equivalent to normal CCA. Linear KCCA can still be useful if the number of samples
is smaller than the dimensionalities of the feature spaces, because then the kernel
matrix will be smaller than the covariance matrix, so matrix decompositions will be
computationally cheaper.

For a detailed treatise of kernel CCA and kernel methods in general, see (Shawe-
Taylor and Cristianini, 2004).

2.2.3 Sparse Canonical Correlation Analysis

The Sparse Canonical Correlation Analysis (SCCA; Hardoon and Shawe-Taylor,
2011) algorithm is a variant of CCA that finds sparse projection vectors.

A distinguishing feature of this particular CCA formulation is that one of the
views is represented as an ordinary data matrix X 2 RM⇥N (the primal view),
where each column is one sample vector, but the other view is represented as a
kernel matrix K 2 RM⇥M (the dual view). Hardoon and Shawe-Taylor do not state
an explicit reason for this asymmetry, but I suspect that there is a technical reason
for it, which I will discuss below and in Section 2.5.

Like CCA, SCCA tries to find projection vectors w 2 RN and e 2 RM such
that the projections X

T
w and Ke are maximally correlated. The two problems
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of basic CCA for voxel selection mentioned above, overfitting and lack of sparsity,
are addressed by penalizing the L1 norms of w and e. Hardoon and Shawe-Taylor
express the problem as the optimization problem

min

w,e

kXT
w �Kek22 + µkwk1 + �kek1, (1)

subject to the constraints kekinf = 1 and e � 0 (element-wise). The constraint
kekinf = 1 is necessary to avoid the trivial solution e = w = 0. The element-wise
non-negativity constraint e � 0 seems to be specific to the problem domain in whose
context SCCA was introduced, and could in principle be dropped.

Equation 1 would be a convex optimization problem if it weren’t for the con-
straint kekinf = 1, which is convex but not affine; a convex optimization problem
can have convex inequality constraints, but only affine equality constraints (Boyd
and Vandenberghe, 2004). Hardoon and Shawe-Taylor circumvent the problem by
replacing the constraint with the convex inequality constraint kekinf  1 and an
additional affine equality constraint, e

k

= 1, where e

k

is the kth element of e, and
k, the seed index is a parameter set by the user of the algorithm. In other words,
the user must choose one sample that will receive a constant weight of 1 in the dual
view.

The optimization problem is solved using a fast customized iterative algorithm
that alternates between optimizing w and optimizing e. The regularization pa-
rameters µ and � are determined automatically using an approach that has been
shown to work well in practice; see (Hardoon and Shawe-Taylor, 2011) for more
details. A MATLAB implementation of the iterative algorithm is available at
http://davidroihardoon.com/Professional/Code_files/SCCA2.m. This imple-
mentation was used for the experiments in Section 2.4.3.

2.3 Applying SCCA to voxel selection

When applying SCCA to voxel selection, one should use the primal representation
X for the fMRI scans and the dual representation K for the stimulus features. The
reason for this is that the primal-view projection vector w is sparse in the variables
(voxels), whereas the dual-view projection vector e is sparse in the samples.

The basic idea is to run SCCA and then select those voxels that have non-zero
entries in the sparse weight vector w. In principle, the sparsity-inducing regular-
ization of SCCA solves the two problems of performing voxel selection with CCA
discussed in Section 2.2.1. In practice, however, the second problem is only partly
solved. Although SCCA favors sparse linear combinations over non-sparse ones, the
sparse linear combination that minimizes the cost function is still unlikely to be
unique. The voxels with non-zero weight in the sparse weight vector w returned by
SCCA should be among the most relevant, but we cannot know whether there are
other equally relevant voxels, or whether some of the voxels implicated by w are
more relevant than the others. For example, if w has 20 non-zero weights, 10 of
those weights might correspond to voxels that contain information that isn’t found
in any other voxel in the brain, whereas the rest might contain information that
could just as well be explained by selecting 10 voxels from a pool of 20000 voxels.

http://davidroihardoon.com/Professional/Code_files/SCCA2.m
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To address this issue, the proposed voxel selection algorithm incorporates the
idea of stability selection, as introduced by Meinshausen and Bühlmann (2010).
The algorithm randomly subsamples 10% of the voxels and 66% of the samples and
runs SCCA on those. This step is repeated 1000 times while keeping count of how
many times each voxel received a non-zero weight relative to how many times it was
included in the random subsample. This ratio can be interpreted as an empirical
probability of relevance: if a voxel is almost always assigned a non-zero weight no
matter what other voxels are available, it is more likely to be relevant than a voxel
that only occasionally gets a non-zero weight. We include in our set of relevant
voxels all voxels whose probability exceeds a certain threshold p

thres

.
Due to the subsampling, each iteration of the stability selection procedure effec-

tively trains SCCA on a different data set, and so the optimal seed index k could be
different each time. An exhaustive search on each iteration would be prohibitively
expensive. In the experiments described in Section 2.4 the music feature sample
vectors were first clustered using K-means with 20 clusters. For each of these index
clusters, SCCA and stability selection were performed on the full data set, as de-
scribed in the previous paragraph, so that on each iteration a new seed index k was
chosen randomly from the corresponding cluster. Thus 20 different sets of empirical
voxel probabilities were obtained, one for each cluster; to create a single stable voxel
set, every voxel whose probability exceeded p

thres

in at least one of the 20 sets was
included.

2.4 Validating the voxel selection method

The goal of the voxel selection method is to retrieve voxels that are relevant to the
experimental condition. Validating the method is complicated by the fact that there
are two distinct points of failure: the set of stimulus features and the algorithm itself.
On the one hand, the stimulus features might not be rich enough to capture what’s
relevant; on the other hand, the algorithm itself might fail to find the voxels that
are relevant to the features.

In an attempt to tentatively validate both the algorithm and the music features
in a single experiment, a classification experiment was devised. The voxel selection
method was used to select relevant voxels from a set of fMRI measurements of people
listening to classical music, using as the feature view a set of features extracted
automatically from digital recordings of the music. The experiment in which the
fMRI data had been collected followed a traditional block design, with the block
labels being ‘happy music’, ‘sad music’, ‘neutral music’ and ‘rest’. Two classifiers
for the labels ‘happy’ and ‘sad’ were trained, one using only the voxels selected as
relevant by the proposed algorithm, and another using only a structurally similar
but randomly picked set of voxels.

Because neither the voxel selection algorithm nor the feature extraction process
use these block labels in any way, the block labels can be treated as an independent
ground truth. If many different people perceive a certain set of songs as ‘happy’
and another set of songs as ‘sad’, there should be some structure in the songs that
determines the emotional content, and a good feature representation might capture
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that structure. Therefore if the selected voxels provide significantly better classifi-
cation performance in the happy–sad task than the random voxels do, this would
indicate that the automatically extracted music features successfully captured some
information about the music, and that the algorithm successfully selected voxels
that were relevant to the music features.

2.4.1 The data set

The data set used in the experiments was originally introduced in (Mitterschiffthaler
et al., 2007). 16 healthy subjects listened to 20 extracts of orchestral classical music,
each 30 seconds long. Each extract was labeled as either ’happy’, ’sad’ or ’neutral’.
The labels were based on a separate pilot study where people were asked to rate 60
different pieces of music on a scale from 0 (very sad) to 100 (very happy). Of the
60 pieces, 20 of the most consistently rated pieces were chosen so that there were
5 happy pieces, 5 sad pieces and 10 neutral pieces. First happy pieces were played
alternating with neutral pieces, and then sad pieces were played, again alternating
with neutral pieces.

The scanning interval was 2 seconds, so there were altogether 300 samples for
each subject. Scans taken during the silent resting periods between each music
extract were omitted.

For details on data pre-processing, see (Mitterschiffthaler et al., 2007). For this
experiment, a voxel mask toremove the eyes and the skull was applied, leaving
219,727 voxels per scan. The data set was randomly partitioned into 150 training
samples and 150 test samples. The training set and the test set contained the same
number of samples from each class. Voxel selection was performed only on the
training data.

2.4.2 Music features

A 26-dimensional set of features was extracted from CD-quality music (encoded in
.WAV format) using the MIR toolbox for MATLAB (Lartillot et al., 2008). The
feature set used consists of all the low-level features (all features but pulse clarity,
key clarity and tonal centroid) in the feature set recently used by Alluri et al. to
study fMRI measurements from subjects listening to tango (Alluri et al., 2012).
Music feature vectors within each 2-second window corresponding to one fMRI scan
were then averaged to obtain one music feature sample for each fMRI scan. Finally
the music samples were convolved with a standard hemodynamic response function.

2.4.3 SVM classification of fMRI scans as ’happy’ or ’sad’

To obtain a two-class problem, the neutral samples were removed from the training
and test data set defined in Section 2.4.1. For each subject, there were thus 75
training samples and 75 test samples. Separately for each subject, linear Support
Vector Machines (SVM) (Cristianini and Shawe-Taylor, 2000) were trained using
libSVM (Chang and Lin, 2011) on three different sets of variables:
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Table 1: SVM happy–sad classification rates for various fixed (not cross-validated)
values of p

thres

.
Stability threshold p

thres

0.02 0.05 0.1 0.2 0.4 0.6 0.8
SVM accuracy (stable), % 83.53 82.85 82.77 83.19 81.50 77.28 68.50
SVM accuracy (random), % 82.56 75.57 74.66 72.09 69.30 64.54 57.92
Voxels used, % of full 15.95 6.40 2.79 0.96 0.20 0.043 0.0057

1. the full brain;

2. the subset of stable voxels chosen by applying the voxel selection algorithm to
the training data;

3. and a random set of voxels generated by taking set #2 and moving each
contiguous cluster of voxels to a random location in the brain (overlap allowed).

The random voxel set #3 was generated as described to obtain a random set that
would be comparable in size and shape to set #2. It was found that if we simply
sample N2 voxels uniformly from the entire brain, where N2 is the number of voxels
in set #2, we obtain classification performance very similar to using the full brain,
unless N2 is extremely small. This is not surprising considering how strongly corre-
lated adjacent fMRI voxels are: voxels sampled uniformly from the brain may well
contain most of the information found in the entire brain.

In training the SVM, two parameters had to be set: the SVM regularization
parameter C

SVM

and the stability probability threshold p

thres

for the voxel selec-
tion method. The parameters were selected using 5-fold cross-validation on the
training data, with C

SVM

taking values from 10

�
9 to 10

�
2 and p

thres

taking val-
ues from 0 to 0.8. The utility function maximized under cross-validation was
((SVM classification accuracy in percent)� �(percent of total voxels used). Here �

can be interpreted as a non-negative hyperparameter specified by the user to control
the trade-off between classification accuracy and the number of voxels used. I set
� = 7 to favor sparsity over tiny performance improvements.

The classification accuracy for the SVM trained on all the voxels, averaged over
subjects, was 82.10%.The corresponding accuracy for the SVM trained on stable
voxels was 79.05%, and the stable voxels comprised on average 0.10% of the full
voxel set (circa 200 voxels). The accuracy for the randomly translated clusters was
65.60% (averaged over 10 different random sets).

Table 1 shows classification rates for various stability thresholds p
thres

, when the
same threshold is used for every subject instead of selecting the parameter using
cross-validation. We can see that the classification rate is actually even slightly
better than the full-brain classification rate for a large range of values of p

thres

. For
very small values of p

thres

— corresponding to a large set of voxels — the randomized
voxel clusters performed almost as well as the stable voxels, most likely because the
voxel subsets in this range were so large (15–38% of all voxels) that a randomized
voxel set was likely to contain many relevant voxels (overlap was allowed in the
randomization procedure).
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Figure 1: A visualization of a stable voxel set produced by the proposed voxel
selection algorithm. This stable voxel set is studied further using exploratory visu-
alization in Section 5. Stable voxels are displayed as tiny red squares; most of the
red patches contain several voxels. The voxels were obtained from Subject 6 using
a stability threshold p

thres

of 0.4. There are altogether 535 stable voxels.
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2.5 Discussion

Voxels selected by the proposed algorithm perform significantly better than the ran-
domized voxels in the happy–sad classification task, which suggests that the music
features successfully capture some meaningful structure in the music, and that the
voxel selection algorithm finds voxels relevant to that structure. A classification
experiment was used to validate the algorithm mainly because the only easily avail-
able independent ground truth happened to be in the form of class labels. The
algorithm was not compared with other recently proposed voxel selection methods
because they use the class labels for selecting voxels, which would have made a fair
comparison impossible.

I was surprised to see randomized voxels produce such high classification rates;
when I first saw the results, I assumed that I must have accidentally used some test
data to train the classifier, but that was not the case. It seems that the difference
between ‘happy’ music and ‘sad’ music can to some extent be seen almost everywhere
in the brain; otherwise it is difficult to explain how a handful of small clusters from
random locations in the brain could give a classification rate significantly higher
than 50% in a balanced two-class classification problem. Because random voxels
perform so well, this classification task is not ideal for validating a voxel selection
algorithm. A task where relevant information is more localized in the brain could
offer stronger evidence.

I do not know whether the performance of randomized voxels in fMRI classifica-
tion has been studied in other contexts; if the good performance generalizes beyond
this particular experimental condition and data set, this would imply that compar-
isons with random voxel sets should be included in every fMRI study that wants
to make claims about the significance of a voxel set based on its performance in a
classification or prediction task.

Some time after carrying out the classification experiments in Section 2.4.3, I dis-
covered what appears to be a small bug in the MATLAB SCCA implementation due
to Hardoon and Shawe-Taylor that was used in the experiments. The Karush-Kuhn
Tucker conditions for optimality (see, e.g., Boyd and Vandenberghe, 2004) did not
seem to hold for the solutions returned by the implementation. I wrote an alterna-
tive implementation (see Appendix A) that solves the convex optimization problem
using the well-known CVX package (Grant and Boyd, 2014, 2008). Due to time
constraints I have not repeated the entire set of voxel selection experiments with
the new implementation, but in a brief comparison with data from one randomly
selected subject the new and old SCCA implementations seemed to produce nearly
identical solution vectors (in terms of the L2 norm), so it is possible that the bug
did not have a significant effect on the voxel selection experiments. Nevertheless, I
would recommend using the new implementation in future experiments. Uurtio et al.
(2015) tried both SCCA implementations for studying microbe-environment inter-
actions and found that the new implementation performed more robustly than the
original: the correlations were more stable with respect to the sparsity parameter,
and when measured by permutation tests, high correlations had higher statistical
significance (Uurtio, 2015).
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Some technical aspects of the voxel selection algorithm could be improved. In
particular, needing to set the seed index k is burdensome. As mentioned in Sec-
tion 2.2.3, the peculiar constraint e

k

= 1 exists to avoid the trivial solution e = w = 0

without making the problem non-convex. Using my alternative SCCA implementa-
tion as a basis, I have briefly experimented with some alternative constraints, but
have not found a constraint that would reliably prevent the trivial solution without
causing overfitting.

Another aspect of the SCCA algorithm that could be changed is the element-wise
non-negativity constraint e � 0. The constraint seems somewhat arbitrary for this
problem domain; why would we not allow negative weights for the music feature
samples? It seems that in this case the constraint is just an unnecessary restriction
on the solution space. Removing the constraint amounts to removing one line in the
alternative SCCA implementation in Appendix A.

Finally, the set of music features used deserves further investigation. I chose
this set of music features as a starting point because a superset of these features
had been successfully used in a different kind of fMRI study (Alluri et al., 2012).
It is quite possible that a different set of music features would be better for voxel
selection with SCCA.
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3 Dimensionality reduction for visualization

Dimensionality reduction methods are often used for visualizing high-dimensional
data by reducing the dimensionality to 2 and drawing a scatterplot. It is in general
impossible to represent a high-dimensional data set perfectly in two dimensions.
Thus producing a good scatterplot requires defining ‘good’ quantitatively and opti-
mizing that quantity. Most dimensionality reduction methods as well as the mea-
sures used to evaluate them, however, are not based on an explicit definition of a
‘good’ visualization. A survey of 69 papers on dimensionality reduction from the
years 2000–2006 found that 28 of the papers only presented visualizations of sample
data sets as a proof of quality (Venna, 2007). The papers that did use quantitative
measures mostly measured one of two things: how well the two-dimensional projec-
tion preserves pairwise distances in the original data; or how well a classification
algorithm trained on the projection performs. These measures could be measures
of visualization quality if the scatterplot were used for classification or assessing
distances between points, but otherwise the connection to visualization is vague.

Section 3.1 defines an abstract visualization task, visual neighbor retrieval, that
can be used to model some tasks that humans perform when they study scatter-
plots. A quantitative measure of visualization quality naturally follows from this
visualization task. The quantitative measure can be turned into a differentiable
cost function that can be optimized directly, which gives rise to a dimensionality
reduction method for visualizing similarity relationships, the Neighbor Retrieval Vi-
sualizer (NeRV). Here I describe the method in abstract; in Section 5 I will apply it
in practice and demonstrate how the abstract visualization task translates into real
exploratory data analysis.

Graphs are important in many fields, and like high-dimensional data sets, are
often explored by visualizing. Like dimensionality reduction methods used to visual-
ize high-dimensional data sets, graph visualization methods have traditionally been
evaluated by showing sample plots or by computing quantitative measures that are
only vaguely related to visualization. Section 4 describes a graph layout algorithm,
based on NeRV and a generative model for graphs, that is specifically designed to
visualize certain kinds of graphs.

3.1 NeRV

When a person looks at a scatterplot where each data point is represented by an
identical glyph, they are inclined to assume that points that are close to each other
on the display are similar and that points that are far away from each other are
dissimilar. In the psychology of vision, this perceptual organizing principle is known
as the Gestalt law of proximity. A related concept is the spatial concentration
principle, which states that regions with similar element density are perceptually
grouped (Ware, 2004). The spatial concentration principle is illustrated in Figure 2.
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3.1.1 Viewing scatter plots interpreted as an information retrieval task

One simple way to model human perception based on the principles above is to
imagine that it uses the visualization to perform a simple information retrieval task:
given a sample i, use the visualization to find that sample’s neighbors, the set Q

i

.
Q

i

could be defined simply as the points that lie within a certain radius r of sample
i in the visualization, or the k nearest neighbors for some fixed k, or perhaps some
more intricate model that incorporates the spatial concentration principle.

If we analogously define the set P
i

as the neighbors of sample i in the input data,
we can identify two possible types of errors in this visual information retrieval task.
First, a sample could be in Q

i

but not in P

i

; this would be a false positive, a sample
that appears similar to i in the visualization, but is in fact dissimilar in the real
data. Second, a sample could be in P

i

but not in Q

i

; this would be a miss, a sample
that appears dissimilar to i in the visualization, but is in fact dissimilar in the data.
If we assign a fixed cost C

FP

to false positives and a fixed cost C

MISS

to misses, we
can define a cost function for the visualization with respect to sample i:

E

i

= N

FP,i

C

FP

+N

MISS,i

C

MISS

, (2)

where N

FP,i

is the number of false positives for sample i, and N

MISS,i

is the number
of misses.

It can be shown that Equation 2 can be interpreted as a weighted sum of precision
and recall for a single query; see Publication 2 for details. Averaging E

i

over all
samples would then give a cost function for the entire visualization.

Although the abstract task of retrieving a single point’s neighbors from the
visualization probably has very little to do with how human visual processing works,
it can still be a useful model for assessing visualization quality. Many real analysis
tasks can be thought of in terms of multiple single-point neighbor queries. For
example, if I look at Figure 2 and want to find clusters, then if I know that the
visualization has high precision, I can be relatively certain that any clusters that I
see in the visualization are actually clustered in the high-dimensional data as well.
If the visualization has low recall, the visualization may have dispersed or split up
some clusters.

3.1.2 Probabilistic neighbor retrieval

Equation 2 is the conceptual basis for NeRV, but as E

i

is not a smooth function,
optimizing it directly would be difficult. From a modelling perspective the idea of
having fixed sets of neighbors P

i

and Q

i

, where each neighbor is equally relevant
and each point outside the neighborhood is completely irrelevant, is also somewhat
inflexible. For example, in Figure 2, what should Q

x

be? The cluster marked ‘a’
could be one natural answer based on perceived clustering. But in Figure 3 one
might be inclined to include cluster ‘b’ as well. The relationships between ‘x’, ‘a’,
and ‘b’ are identical in Figures 2 and 3, but the context is different, and the context
affects how those relationships are perceived.

Instead of having a fixed set of neighbors, NeRV uses a probabilistic model of
neighborhood, where each sample j is assigned a non-zero (but possibly extremely
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small) probability of being the neighbor of sample i. The probability of sample j

being a neighbor of sample i in the visualization is defined as

q

j|i =
exp (�kyi�yjk2

�

2
i

)

P
k 6=i

exp (�kyi�ykk2
�

2
i

)

, (3)

where y

k

is the coordinate vector of sample k in the visualization, and k · k is the
L2 norm. Analogously, the probability of sample j being a neighbor of sample i in
the original data is defined as

p

j|i =
exp (�kxi�xjk2

�

2
i

)

P
k 6=i

exp (�kxi�xkk2
�

2
i

)

, (4)

where x

k

is the sample vector in the original high-dimensional data set. The ex-
ponentials in the numerators of Equations 3 and 4 ensure that the neighborhood
probability drops off very quickly as the distance increases, but �

i

can be set to
adjust the rate for a more flexible concept of neighborhood. By default �

i

is set to
the value that gives the distribution p·|i an entropy equal to log k, where k is a rough
upper limit for the number of neighbors specified by the user.

The actual cost function optimized by NeRV is defined as

E

NeRV

= �E
i

[D(p

i

, q

i

)] + (1� �)E
i

[D(q

i

, p

i

)]

/ �

X

i

X

j 6=i

p

j|i log
p

j|i

q

j|i
+ (1� �)

X

i

X

j 6=i

q

j|i log
q

j|i

p

j|i
(5)

where D(p, q) is the (asymmetric) Kullback-Leibler divergence and � is a parameter
set by the user. It can be shown that D(p

i

, q

i

) is a generalization of recall in the
sense that the two are equivalent if we define p

i

and q

i

appropriately; see Publication
2 for details. Similarly, D(q

i

, p

i

) is a generalization of precision. Therefore � allows
the user to control the trade-off between precision and recall.

Figure 4 illustrates the trade-off between precision and recall. Embedding A
was computed with a value of � close to 0, strongly emphasizing precision. This
results in the sphere being cut open and folded out. If we pick any point in the
visualization, every point in its vicinity is also nearby in the original data, so there
are no false positives. On the other hand, points on opposite sides of the ‘seam’
along which the sphere was cut end up far away from each other, so there are some
misses. In contrast, embedding B was computed with a value of � close to 1, strongly
emphasizing recall. This results in the sphere being squashed flat. Now points in
the original data are always relatively close to each other, so there are fewer misses,
but there are also many false positives due to points on opposite sides of the sphere
ending up next to each other.

Extensive experiments in Publication 2 show that NeRV universally produces
better precision and recall than other dimensionality reduction and manifold learning
methods, which suggests that it is a good method for visualization tasks where
those are reasonable measures. In Section 5 I will apply NeRV to results from the
voxel selection experiments in Section 2 to demonstrate its usefulness in real-world
exploratory data analysis.
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Figure 2: Illustration of the spatial concentration principle; drawn based on an
illustration in (Ware, 2004). The point marked ‘x’ is perceived as being part of
cluster ‘a’ rather than cluster ‘b’, even though it is no further from the points in ‘b’
than points in ‘b’ are from each other.

a

b

x
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Figure 3: The scatter plot from Figure 2 with more points added.
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Figure 4: Demonstration of the tradeoff between false positives and misses. Top
left: A three-dimensional dataset sampled from the surface of a sphere; only the
front hemisphere is shown for clarity, although the entire sphere is projected in em-
beddings A and B. The color of a glyph encodes its position in the three-dimensional
data. Bottom: Two embeddings of the dataset. In the embedding A, the sphere
has been cut open and folded out. This embedding eliminates false positives, but
there are some misses because points on different sides of the tear end up far away
from each other. In contrast, the embedding B minimizes the number of misses by
simply squashing the sphere flat; this results in a large number of false positives
because points on opposite sides of the sphere are mapped close to each other. Top
right: mean precision–mean recall curves with input neighborhood size r = 75, as a
function of the output neighborhood size k, for the two projections. The embedding
A has better precision (yielding higher values at the left end of the curve) whereas
the embedding B has better recall (yielding higher values at the right end of the
curve).
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4 Model-based straight-line graph drawing: LDA-

NeRV

Graphs are an important form of data in many fields. Visualization is often employed
to discover or illustrate structural patterns in the data, such as communities in a
social network. The simplest and most common way to visualize a graph is to
algorithmically generate a two-dimensional plot where nodes are drawn as glyphs
and edges are drawn as lines connecting the nodes. The term ‘graph layout’ in this
section refers specifically to straight-line graph drawing. Other ways of generating
static graph visualizations exist, and there are also many interactive visualization
interfaces; for a review, see (Herman et al., 2000). Nevertheless, many of them use
straight-line graph drawing as a basis.

4.1 Traditional graph layout: ‘graph neighbor retrieval’

Many graph layout algorithms have been published. Force-based algorithms seem
to be the most established and wide-spread class. Going back at least as far as
Fruchterman and Reingold (1991), the first algorithms were motivated by a physical
analogy. Each edge in the graph is modeled as a mechanical spring with an equilib-
rium length k. Nodes are steel rings to which the springs attach. Nodes are given
(possibly random) starting positions, and then the mechanical system is released and
simulated until it finds an equilibrium, which produces the graph layout. Traditional
force-based methods were computationally expensive for large graphs, so recently
faster approximations, so-called multi-level methods, have been developed (Hadany
and Harel, 1999; Walshaw, 2003). Spectral graph layout algorithms based on matrix
decompositions are even older than force-based methods (Hall, 1970; Kruskal and
Seery, 1980), but have only recently become popular (Civril et al., 2005), apparently
largely due to being significantly faster than the fastest force-based methods (Hachul
and Juenger, 2007).

Of the authors cited in the last paragraph, only Fruchterman and Reingold ex-
plicitly state a goal for graph visualization: “producing a drawing that meets some
generally accepted aesthetic criteria”, namely avoiding edge crossings and overlap-
ping nodes, making edge lengths uniform, and placing nodes connected by an edge
next to each other. The implicit unifying goal behind the aesthetic criteria seems
to be to visualize local graph adjacency as clearly as possible without making any
assumptions about the structure of the graph. In other words, given a node, the
user should be able to see which nodes that node connects to; in the spirit of NeRV,
we could call this a task of graph neighbor retrieval. In a straight-line graph drawing
this task amounts to looking at the node on the display and then tracing the outgo-
ing edges. Violating the aesthetic criteria suggested by Fruchterman and Reingold
interferes with this visualization task: If the edge being traced by the user crosses
many other edges, the user can lose track of the edge. If the connected nodes are
next to the node, but not too close, they’re easier and faster to find. Shorter edges
in general are easier to ‘read’ correctly.
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The other papers seem to implicitly use the criteria put forward by Fruchter-
man and Reingold, and consequently optimize ‘graph neighbor retrieval’: they do
not state an explicit problem that their algorithm is trying to solve, but they use
similar aesthetic criteria and sample visualizations to evaluate the algorithm. Apart
from computable aesthetic criteria like the number of edge crossings, quantitative
evaluation of algorithms tends to focus on measuring computational speed.

One exception is the LinLog graph drawing algorithm that is specifically designed
to highlight graph clusters, that is, subgraphs where nodes within the subgraph are
more connected to each other than to nodes outside the subgraph (Noack, 2007).
Noack shows that the goal of the LinLog algorithm is different from and in conflict
with the goals formulated by Fruchterman and Reingold: optimizing one will result
in violating the other.

4.2 LDA-NeRV

Publication 3 proposes a new graph layout algorithm, LDA-NeRV, that uses an
explicit model both for what aspect of the data it tries to visualize and for how
it is tries to visualize it. The nodes are laid out using t-NeRV, a variant of NeRV
also introduced in Publication 2, so the visualization model is the neighbor retrieval
task formulated in Section 3.1. Thus the basic idea is to place similar nodes next
to each other in the visualization. Defining similarity defines the structure that is
being visualized. Informally, LDA-NeRV considers two nodes similar if they have
edges going to the same nodes. If we consider a social network where each node is a
person, and an edge between two nodes indicates that the persons know each other,
this would mean that people who know the same people are considered similar.

Formally, similarity for nodes is defined in terms of SSN-LDA (Zhang et al.,
2007), a Bayesian latent-variable model for graphs. SSN-LDA assumes that graphs
are generated by a specific stochastic process; given a graph, it uses Bayesian infer-
ence to estimate which parameters of the stochastic process are most likely to have
produced that graph. The most important parameter is the set of components, or
communities as Zhang et al. call them. Each component is a probability distribution
over the nodes in the graph, where the probability for a node reflects the probabil-
ity of an edge to that node. Each node in the graph, in turn, is associated with
a ‘membership distribution’, a probability distribution over the components. To
generate an edge for a node, the stochastic process first samples a component from
the node’s membership distribution, and then samples a target for the edge from
the distribution of the sampled component. The intuition is that the ‘membership
distribution’ reflects to what extent the node belongs to each of the components. In
a social network, the components could be different ‘social circles’, and a person’s
membership distribution could be interpreted as indicating how they divide their
time and energy between the different circles.

More precisely, then, LDA-NeRV considers nodes with similar estimated mem-
bership distributions to be similar, and tries to place those nodes near each other
in the visualization, while controlling the trade-off between precision and recall as
discussed in Section 3.1. One interpretation of the algorithm is that it embeds
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the nodes in a higher-dimensional component space and then visualizes them using
dimensionality reduction.

4.3 Differences between graph drawing models in practice

Figures 5 and 6 illustrate the effects of different graph drawing models using two
sample graphs, each visualized with LDA-NeRV and three other graph layout algo-
rithms. All drawings were produced with Cytoscape (Shannon et al., 2003) using the
node layouts generated by the algorithms. The three other methods are Walshaw’s
multi-level force-based algorithm (Walshaw, 2003), implemented as a Cytoscape
plugin(Salmela et al., 2008); Kruskal and Seery’s spectral method (Kruskal and
Seery, 1980), later independently rediscovered as SDE by Civril et al. (2005), who
kindly provided an implementation; and Noack’s Edge-Repulsion Linlog (Noack,
2007, 2010). The first two methods were chosen to have one representative modern
algorithms from the two main classes, force-based and spectral methods. LinLog is
interesting as the only other model-based graph layout algorithm.

The graph in Figure 5 (Girvan and Newman, 2002) represents football teams and
their games: each node is a team, and an edge between two teams indicates that they
played each other during a certain period of time. Each team belongs to one of 12
conferences, indicated by the color of the node, and teams mostly played each other.
Both LinLog and LDA-NeRV mostly cluster teams by conference. LinLog clusters
them because they are clusters in the graph: teams within a conference play each
other more than they play other teams. LDA-NeRV clusters them because nodes
in a graph cluster have similar edge distributions. Walshaw’s algorithm also groups
nodes by conference to some extent, but the intra-cluster and inter-cluster distances
are so similar that the grouping is only apparent when the nodes are colored by
conference. The layout produced by Walshaw’s algorithm is the best for seeing
exactly which nodes a single node connects to. SDE also tends to place teams from
the same conference fairly near each other, but many of the conferences overlap.

Notably a few teams in Figure 5 don’t get clustered with teams from the same
conference in either the LinLog or the LDA-NeRV visualization. At least the yellow
teams seem to break the general rule that teams within a conference mainly play
each other, so the LinLog visualization is correct (i.e., consistent with its stated
goal) in not clustering them together. The yellow teams don’t seem to belong in any
of the other clusters either, so they get left out. In the LDA-NeRV visualization,
however, each of the yellow nodes belongs to one of the 12 clusters. The LDA-NeRV
visualization was produced with the number of components set to 12, and each node
has to belong to at least one component (the membership probability distribution
has to sum to 1). Here it seems that every node is strongly associated with only
one component, which results in 12 tight clusters. If the number of components
were set higher, some of the clusters in Figure 5 would most likely split up. This
does not necessarily imply that a higher number of components would necessarily
be ‘correct’; the correct number of components is ambiguous in the same way as the
correct number of clusters for K-means is ambiguous. The need to set the number
of components is nonenetheless one inconvenience of the LDA-NeRV model as it is
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formulated in Publication 3.
In the graph in Figure 6 (Newman, 2006), each noun is either an adjective (blue)

or a noun (red), and an edge between nodes indicates that the words appeared next
to each other in the Charles Dickens novel David Copperfield. The football graph in
Figure 5 was an example of assortative structure, where nodes in the same class link
to each other. In contrast, the adjective–noun graph is an example of a disassortative
graph: nodes in the same class mainly link to nodes in other classes. In English,
a noun appearing next to an adjective is far more common than a noun appearing
next to a noun or an adjective appearing next to an adjective. This is reflected
in the LDA-NeRV visualization, which mostly groups nouns together and adjectives
together. (The exceptions in the visualization tend to correspond to true exceptions;
for example, there are also nouns that mainly appear next to other nouns.) In this
visualization, the number of components was set to 4. Unlike the football graph
visualization, this visualization has several nodes outside the four main clusters,
which indicates that several nodes belong to more than one component.

LinLog fails to reveal the disassortative structure for the adjective–noun graph in
Figure 6, because the algorithm is specifically designed to show assortative structure.
Walshaw’s algorithm and SDE predictably also do not show the structure. As in
the case of the football graph, the force-based algorithm produces the most uniform
distribution of nodes and edge lengths, which is one of the goals of traditional graph
layout methods.

4.4 Discussion

Most papers on graph layout methods have not explicitly defined what they are
trying to visualize; implicitly they have focused on aesthetic features that seem to
indicate that they are trying to create visualizations where, given a node, it is easy to
find the nodes that connect to that node. At first sight this task of ‘graph neighbor
retrieval’ may seem like a natural goal for graph visualization. A graph, after all,
can be defined as a list of nodes and a list of edges between those nodes. A perfect
graph neighbor retrieval visualization could be used to reconstruct the graph, which
would indicate that the visualization captures the structure of the graph perfectly.

In practice there are two problems with the traditional task of graph neighbor
retrieval. The first is that as the number of edges grows, it seems to be very difficult
to produce a straight-line graph drawing that would truly perform well in this task.
For example, in Figure 5, Walshaw’s algorithm manages to produce a visualization
where it is possible to retrieve a single node’s adjacent nodes. In Figure 6, the
situation already looks quite hopeless for most nodes, and this is still a relatively
small graph.

The second problem is that even if it were possible to make a visualization that
perfectly reveals every node’s adjacent nodes even for very large graphs, researchers
are often interested in global structural patterns, such as the assortative and dis-
assortative structure found in the football and adjective–noun graphs. Focusing on
making every single node’s adjacent nodes clearly visible does not necessarily bring
out global patterns, and as the visualizations suggest, may even hide them.
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A B

C D

Figure 5: Football graph layouts. (A) Walshaw, (B) SDE, (C) LinLog, (D) LDA-
NeRV. Colors correspond to the 12 football conferences.

Publication 3 proposes a two-stage solution for graph visualization: first define
and model the structure of interest as explicitly as possible; then produce an optimal
visualization based on a model of how the user uses the visualization. In LDA-NeRV
SSN-LDA models the graph structure; because the structure can be understood and
visualized in terms of node similarity, NeRV can be used for the visualization. A
different model of graph structure might benefit from a different visualization model.

Of course this solution can be applied to visualizing other kinds of data. In the
case of NeRV, the model of structure is encoded in the form of the ‘input probability
distribution’ p

ji , which postulates that local neighborhood structure is important
(Section 3.1). Although the model superficially focuses on local features of single
data points, in this case optimizing the local structure does bring out certain kinds
of global features in practice, as we will see in Section 5.
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C D

Figure 6: Adjective-noun graph layouts. (A) Walshaw, (B) SDE, (C) LinLog, (D)
LDA-NeRV. Colors: blue nodes are adjectives, red nodes are nouns.
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5 What exploratory data visualization can tell us

about voxel selection

When working with high-dimensional data, creative use of exploratory visualization
can be an invaluable tool for gaining intuition and generating hypotheses to guide
further research. In Section 2.4.3 we saw that a small set of randomly selected
voxels performed surprisingly well in the two-class classification task: averaged over
subjects, the classification rate was clearly above chance, and only 12 percentage
points below the classification rate of the voxels selected using SCCA.

In this section, I will try to shed some light on these observations by using
NeRV from Section 3 and Principal Component Analysis (PCA) (Hotelling, 1933)
to visually explore the different voxel sets. As is typical for exploratory visualization,
the results not only give us some tentative answers to the questions we set out with,
but also raise questions we didn’t think of asking before we saw the visualizations.

5.1 Visualization by dimensionality reduction in fMRI: Rep-

resentational Similarity Analysis

The idea of visualizing fMRI data using unsupervised dimensionality reduction is not
new as such. According to Kriegeskorte et al. (2008), the use of multi-dimensional
scaling (MDS; Kruskal, 1964) for visualizing fMRI data was first suggested by
Edelman et al. (1998). More recently, Kriegeskorte et al. have introduced the
Representational Similarity Analysis (RSA; Kriegeskorte et al., 2008) framework,
where visualization using MDS plays an important part.

Kriegeskorte et al. proposed RSA as one solution to the challenge of quanti-
tatively relating data from the three main branches of neuroscience: brain-activity
measurement, behavioral measurement, and computational modeling. Even within
a single branch, there is no obvious general way to relate data from different sources;
for instance, how does one quantitatively compare microelectrode recordings from a
single neuron with fMRI measurements of the BOLD response in the entire brain?
One might simultaneously also want to relate the two to the predictions of compu-
tational models of some aspect of the cognition being studied.

RSA addresses this problem by shifting the focus from the data vectors to re-
lationships between the data vectors. For each data set, we compute a pairwise
dissimilarity matrix — called a representational dissimilarity matrix or RDM in
the context of RSA — exactly as we would as the first step for computing NeRV
(Section 3.1.1). Instead of comparing the samples from different data modalities or
models directly, we can compare their RDMs. RDMs serve as a kind of universal
data format. Conceptually the idea is very similar to multi-view kernel methods
like Kernel CCA (Lai and Fyfe, 2000), where instead of relating two different data
sets directly, we compute a kernel matrix for each data set, and relate the kernel
matrices.

As one part of the RSA analysis, Kriegeskorte et al. advocate visualizing RDMs
using MDS; others have also applied it successfully (Cichy et al., 2014). Kriegesko-
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rte et al. motivate the use of MDS by noting that “similar entities will be placed
together, dissimilar entities apart” (Kriegeskorte et al., 2008, p. 11). As a disadvan-
tage of MDS visualizations they mention the unpredictable distortion of distances
and the lack of error bars or other statistical indicators. We can see NeRV visualiza-
tions like the ones in this section as a refinement of the basic visual RSA analysis:
compared with MDS, we have some control over how distances are distorted by by
controlling the precision–recall trade-off as described in Section 3.

5.2 The data

In Section 2.4.3 three different subsets of fMRI voxels were compared:

1. the entire brain;

2. the voxels selected as relevant by our variable selection algorithm (‘stable
voxels’);

3. and a randomized subset of voxels (obtained by ’shuffling’ the relevant voxels;
see Section 2.4.3 for details).

We can interpret each of these voxel subsets as a model of the brain that generates
its own data set: the fMRI measurements restricted to just that particular subset
of voxels. We can compute an RDM for each voxel set and visualize the RDMs.

The voxel selection was done separately for each subject, so each visualization
also corresponds to a single subject. To guard against drawing conclusions based on
outliers, I visualized all the subjects, but in the interest of clarity and brevity I will
only show and discuss visualizations for one subject. This is one of the limitations of
exploratory visualization: the effectiveness of discussing visualizations in text scales
poorly with the number of visualizations.

I chose subject #6 because they were one of the subjects for whom the SVM
classification rate for stable and random voxels was fairly close; as I mentioned in
Section 2.4.3, there was notable individual variability here. For subject #6, the
classification rate for the entire brain was 83.78%. The classification rate for stable
voxels (stability threshold 0.4, yielding 535 stable voxels out of 219727) was 81.08%,
and the classification rate for the corresponding random voxel subset was 75.81%.
To see where the stable voxels are located in the brain, consult Figure 1.

The random voxel subset classification rate quoted above is an average over
several different random subsets. There is no reasonable way of averaging the NeRV
visualizations shown below, so I will instead show visualizations of several random
sets.

5.3 Visual analysis using NeRV and PCA

The left column of Figure 7 shows NeRV visualizations of the RDMs corresponding
to the full brain, the stable voxels and one random voxel set. NeRV was computed
using � = 0.9, emphasizing precision (see Sections 3.1.1 and 3.1.2). The dissimilarity
measure used for the RDMs was (1�r

p

(i, j), where r
p

(i, j) is the Pearson correlation
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of fMRI volumes i and j, computed over the voxel subset in question. This is
one of the dissimilarity measures suggested in (Kriegeskorte et al., 2008) for fMRI
data. For comparison I have also included PCA visualizations, shown in the right
column of Figure 7. The PCA visualizations were generated for each data set by
projecting it onto its first two principal components. PCA is computed directly
for the data matrix without first computing an RDM, so no distance measure is
explicitly involved; nevertheless, PCA can be interpreted as the linear projection
that minimizes the reconstruction error as measured by Euclidean distance (see,
e.g., Shawe-Taylor and Cristianini, 2004).

5.3.1 Overview based on static plots

Looking at the NeRV visualization for the full brain in the upper left of Figure 7, we
can immediately see that the ’happy’ and ’sad’ classes are very cleanly separated.
More precisely, we can enclose all the samples from one class using a small number
(relative to the number of samples) of convex polygons without including a single
sample from the other class, as illustrated in Figure 8.

As discussed in Section 3.1, the NeRV algorithm is completely unsupervised and
merely tries to represent pairwise relationships between neighbors faithfully; it does
not use the class labels, and does not perform any kind of clustering. Thus the fact
that a two-dimensional NeRV projection of a 219727-dimensional data set achieves
perfect separation between the classes strongly suggests that a good supervised
classification method should perform very well. One might even wonder why the
SVM classification rate wasn’t even higher than 83.78%, but it is important to keep
in mind that the SVM used was a linear classifier, whereas NeRV is a nonlinear
projection method.

Comparing the NeRV visualizations of the stable voxels and one random voxel
set in Figure 7 with the full-brain visualization, we see that the separation between
the classes deteriorates slightly for the stable voxels, and more noticeably for the
random voxel set, but overall it remains nearly as good as for the full brain. There
are some differences between visualizations of different random voxel sets (Figure 9),
but the class separation is consistently good.

Overall, the visualizations would lead us to expect the classification results that
we witnessed in Section 2.4.3. It seems that there is something in our fMRI data
that separates happy music from sad music quite clearly, and that distinguishing
quality is measurable everywhere in the brain.

The PCA visualizations in the right column of Figure 7 do not separate the classes
particularly well. The data also looks less structured in general; I will discuss this
further below.

5.3.2 Detailed analysis using interactive neighbor retrieval

Apart from the obvious class separation discussed above, Figure 7 also hints at more
subtle structure in the data:

• There seems to be a slight asymmetry between the classes: in the full-brain and
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stable-voxel visualizations, the samples in the sad class seem to be relatively
tightly clustered, whereas the happy samples are more evenly dispersed.

• The full-brain and stable-voxel visualizations contain many formations where
multiple samples from the same class are stringed together, as if tracing out a
curve. These strings might be consecutive samples from the same song. This
would not be surprising, as the BOLD response in two consecutive scans are
naturally correlated.

• On the other hand, not all clusters take the form of a chain. In particular,
all three NeRV visualizations feature one conspicuous cluster of sad samples
on the right side, far away from the other sad samples, and surrounded by
happy samples. If samples from some songs form a chain and samples from
some songs clump together, the samples that clump together might indicate
a song with a stronger reaction (e.g., recognition), because it would suggest
that the correlation between samples in the song in general is stronger than
the correlation between consecutive samples.

• The random-voxel visualization seems to make the distance from a sample to
its nearest neigbor more uniform across samples. Happy and sad are closer
together, and the sad samples seem somewhat less tightly clustered.

All the conjectures above were formulated based on the static plots in Figure 7.
To verify them requires the ability to interact with the visualization and the data.
At the very least we need to be able to determine which sample in the data set a
certain glyph in the visualization corresponds to — that is, we need to retrieve data
points based on the visualizations, precisely the task for which NeRV was formulated.
Ideally we would have an interface that would look roughly like Figure 7, but allow
us to select glyphs in any of the individual scatter plots. Once the user selects a set
of glyphs, the interface would both list the corresponding samples in the data set
and highlight the corresponding glyphs in the other scatter plots.

For the purpose of this experiment, I implemented a makeshift version of such
an interface by loading a visualization I wished to interact with into Cytoscape
(Shannon et al., 2003) as a layout of a graph that has 150 nodes and no edges. Below
I will attempt to report my findings from interactively exploring the visualizations
in Figure 7. Figure 10 contains the same visualizations shown in Figure 7, but
annotated to highlight features referred to in the text.

5.3.3 The conspicuous sad cluster

I began by investigating the conspicuous cluster of sad samples marked with an
ellipse in the all-voxel NeRV visualization in Figure 10. I discovered that this cluster
consists of 15 consecutive samples — all the samples from one of the sad songs —
and that it is indeed clearly visible in every visualization (see the ellipses in the
other visualizations). In the random voxel NeRV visualization the formation is very
close to neighboring happy samples, but still separate and tightly clustered.
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It is particularly noteworthy that this cluster is visible and clearly separate from
the rest of the data even in the PCA visualizations, where all the other samples
form one large diffuse cloud. The axes correspond to the directions in which the
variance in the data is largest, so it seems that the subject’s BOLD response for
this particular song is somehow markedly different from everything else. The NeRV
projections also suggest this, but because they were computed using � = 0.9 to
emphasize precision, the visualization might allow some samples that are actually
close to each other in the data to become separated in the visualization, as with
the cut-open sphere in Section 3.1, so one must be more careful about making
conclusions based on points being separated in the visualization than one would for
a visualization that emphasizes recall.

In this case the NeRV and PCA visualizations together offer sufficient evidence
that we can be relatively certain that this cluster of samples is somehow unique,
but determining the cause requires further research. Perhaps the subject had a
unique reaction to this particular song, or perhaps it was just a scanner artefact
that happened to be active during that song. It could even be both: perhaps the
subject having a unique reaction to the song and consequently slightly moved their
head while the song was playing.

5.3.4 Another notable cluster

In addition to the ‘elliptic’ cluster discussed in the previous section, the stable-voxel
NeRV visualization has another notable tight cluster of sad samples, enclosed by
a black rectangle in Figure 10. Again the black rectangles elsewhere in Figure 10
mark the areas where the samples in this cluster landed in the other visualizations.

The samples in this cluster are also from a single song, but this time it does not
include every sample from that song; some of the remaining samples are in fact quite
far. Another difference from the ‘elliptic’ cluster is that these samples do not form
an obvious cluster in every visualization; this is one example of structure that the
stable voxels capture better than the random voxels. In the random-voxel NeRV
and all-voxel PCA visualizations the samples are still quite neatly together, but
distances within the cluster and between the cluster and its neighbors are similar.
In the random-voxel PCA visualization the cluster is merged with other samples to
the extent that there is no point in drawing a rectangle: to include all the samples,
it would need to cover most of the data.

5.3.5 One song, two strings

I examined several string formations in the all-voxel and stable-voxel NeRV visual-
izations, and they did generally represent consecutive or nearly consecutive samples
from one song, as conjectured.

There were two interesting exceptions, however, marked by green rounded rect-
angles in the all-voxel NeRV visualization in Figure 10. Together these two strings
form one complete song, but the string in the upper rectangle contains all the odd-
numbered samples in sequence, whereas the lower rectangle contains all the even-
numbered samples in sequence.
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This suggests that there is some kind of periodic structure, with a period of about
four seconds, in the BOLD response for this specific song. The phenomenon could
naturally be an irrelevant artefact, but it nevertheless warrants closer investigation.

This structure is only present in the all-voxel NeRV visualization, which is why
the green rectangles are missing from the others. In the stable-voxel visualization,
for example, the samples from this song are split into two groups, but not according
to the parity of the sample index as in the all-voxel visualization. The two groups
are also quite far from each other in the stable-voxel plot. Whatever the periodic
structure is, it does not seem to be present in the stable voxels (or the random
voxels), or at least it is weaker than the correlations between the samples in the
song in general.

5.4 Discussion

The results from the exploratory data analysis both support and elaborate the clas-
sification results Section 2.4. It is clear based on the NeRV visualizations that we
should expect good performance from a support vector machine trained on the ran-
dom voxels. The distances between samples from different classes seem to shrink
in the random-voxel visualizations, which might account for the lower classification
performance.

The visualizations also suggest that there is subtle structure in the BOLD mea-
surements that the stable voxels captured but the random voxels did not. The
all-voxel and stable-voxel NeRV visualizations contain clusters and other patterns
that would be clearly visible even if we omitted the class information by replacing
the red and blue glyphs in Figure 7 with black dots, whereas the random-voxel
visualizations would appear far noisier.

One may of course ask to what extent we should trust conjectures based on
visualizations. After all, a low-dimensional visualization of a high-dimensional data
set is necessarily distorted in some way, and the human analyst may be biased. The
most conservative answer is that we should not and need not trust visualizations:
to verify a conjecture inspired by a visualization, we can always devise a specific,
separate experiment that is as rigorous as we like.

In practice, however, we may sometimes be able to make some conclusions based
on a visualization alone. I would argue that the NeRV ‘neighborhood retrieval’
task formulation was a natural fit for the actual analysis tasks that I performed
above. Particularly in the interactive analysis I was literally looking at points and
retrieving their neighbors from the display. Hence knowing that the visualizations
should have high precision helped me judge whether I should trust a conjecture or
not. For example, when I saw a tight cluster in a visualization, I could be relatively
confident that it corresponds to a tight cluster in the high-dimensional data (in terms
of the distance measure used, correlation). I was more careful to draw conclusions
about two points being on the opposite sides of the visualization. Even if I still
want to carry out a separate quantitative experiment to be certain, knowing that
the algorithm generally can (or cannot) be trusted to visualize a specific property
(e.g., tight clusters) reliably will at least help with prioritizing which conjectures to
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Figure 7: NeRV visualizations (first column) and PCA visualizations (second col-
umn) for subject #6. The NeRV visualizations were computed using (1 - Pearson’s
R) as the dissimilarity measure. Blue circles represent samples from sad songs; red
crosses represent samples from happy songs. The black ellipses, the black rectangles,
and the green rounded rectangles have been added to highlight features discussed
in Section 5.3.2.
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Figure 8: The full-brain NeRV visualization from Figure 7 with polygons added to
illustrate the separability of the two classes.
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Figure 9: NeRV visualizations of six different random voxel subsets for subject #6
using (1 - Pearson’s R) as the dissimilarity measure. Blue circles represent samples
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Figure 10: The same visualizations shown in Figure 7, but with annotations (the
black ellipses, the black rectangles, and the green rounded rectangles) added to
highlight features discussed in Section 5.3.2.



37

explore first.
The PCA visualizations on their own were generally less informative than the

NeRV visualizations: they simply did not show most of the structure that gave rise
to the conjectures investigated in Section 5.3.2. On the other hand, PCA did offer
important supporting evidence in some cases, most notably the ‘elliptic cluster’ in
Section 5.3.3. The lesson here is that visualizing the same data using several different
algorithms at the same time can often give extra information at almost no additional
cost. We need to make trade-offs when we are creating a single visualization, but
when we are performing interactive real-world data analysis we can study several
complementary visualizations in parallel, as I did here with NeRV and PCA. In that
vein, having additional NeRV visualizations generated with � = 0.1 to emphasize
recall would have been particularly useful to complement the precision-focused � =

0.9 NeRV visualizations, but in the interest of readability I did not want to increase
the number of figures in the text further.

6 Conclusions

Each of the publications included in this thesis contributes a new algorithm for an es-
tablished problem, but more importantly, each of them tries to argue for a paradigm
that is somehow different from the one shared by existing algorithms. Publication
1 champions the use of rich, high-dimensional stimulus features for voxel selection,
in lieu of or in addition to the categorical features associated with traditional fMRI
experimental designs (block design, event design) and traditional analysis meth-
ods (e.g., SPM). Publication 2 asserts that visualization of high-dimensional data,
as well as quantitative evaluation of visualizations, should be based on an explicit
model of how the user uses the visualization. Publication 3 states that the same
should apply to graph visualization, and that it is also important to have an explicit
model for the structure that one wants to visualize.

Because the new algorithms break with established paradigms, they actually
solve different problems than existing algorithms, which makes comparison and
hence validation difficult. Publication 2 validates NeRV mainly by introducing
and theoretically justifying quantitative quality measures for the new visualization
paradigm, which are then used to compare NeRV with existing methods. One of my
intentions with the case study in Section 5 was to complement the solid theoretical
justifications with empirical evidence both of the algorithm’s usefulness in practical
data analysis and of the relevance of the ‘visual neighbor retrieval’ task formulation.

The classification experiment in Publication 1 shows that the voxel selection
method successfully recovers something that is relevant to the experience of lis-
tening to music, but it is difficult to assess how strong the results are. The good
performance of the random voxels suggests that this particular classification task is
weak for evaluating a voxel selection algorithm, because sufficient information for
discriminating between the classes can be found in large portions of the brain. This
might be a neuroscientifically interesting result in its own right. I would also be in-
terested in knowing how well random voxels generally perform in SVM classification
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tasks; this does not seem to have been widely studied.
The exploratory data analysis in Section 5 reveals that although the random

voxels have surprisingly good class separation in terms of ‘happy’ and ‘sad’, the
stable voxels and the full brain contain more subtle structure that is not evident in
the random voxels. This suggests that the difference between stable and random
voxels might be larger in some other task. Further experiments are required to
determine whether the proposed voxel selection method is truly effective, or merely
somewhat better than random.

The subtle structure found in the stable-voxel NeRV visualizations also gave rise
to some interesting conjectures and insights about the fMRI data being visualized,
which gives some evidence for the value of exploratory data analysis in general and
RSA-style (Kriegeskorte et al., 2008) fMRI analysis in particular. NeRV seems to
be a useful visualization method for RSA analysis. Kriegeskorte et al. originally
suggest MDS (Kruskal, 1964), which I have not tried, but the experiments in Pub-
lication 2 show that NeRV is generally superior to MDS in terms of the neighbor
retrieval quality measures. Because neighbor retrieval turned out to be a useful task
formulation for the RSA analysis — the conjectures in Section 5 were mainly based
on visually retrieving neighbors from the visualizations — it seems possible that
NeRV would perform better than MDS in practice, although further experiments
would be required to establish that.

In Publication 3, LDA-NeRV is mainly validated by showing visualizations of
graphs that contain the kind of structure that LDA-NeRV is designed to visualize.
Publication 3 also features a KNN classification task that I did not discuss in Sec-
tion 4. The visualizations are enough to establish that LDA-NeRV reveals certain
kinds of graph structure much better than existing graph drawing algorithms, but
they do not indicate whether the algorithm could be even better.

More important than the algorithms themselves, however, are the ideas behind
them. Regardless of whether the combination of SCCA and stability selection sug-
gested in Publication 1 is a good algorithm for selecting voxels, I believe that there is
value in using rich stimulus features for selecting variables and analyzing fMRI data
in general. Regardless of whether NeRV is a good algorithm for visualizing high-
dimensional data, I believe that there is value in explicitly modeling how people
use visualizations, and optimizing the visualization for that. Regardless of whether
LDA-NeRV is a good algorithm for visualizing graphs, I believe that there is value
in explicitly modelling the structure that one wants to visualize.

Regarding visualization, it seems to me that many traditional dimensionality
reduction methods like PCA and MDS(Kruskal, 1964) are based on the idea of
minimizing some kind of very general reconstruction error that makes as few as-
sumptions about the structure of the data as possible. The same could be said of
traditional graph visualization methods, which, I argued in Section 4.1), seem to
try to produce a visualization from which the user could reconstruct the graph. I
would argue that, for data visualization, an algorithm that visualizes a specific kind
of relevant structure reliably and ignores every other aspect of the data is more
useful than an algorithm that tries to do everything. For example, by studying
a LinLog(Noack, 2007) visualization of a graph, an analyst can quickly tell with



39

high confidence whether the graph has assortative clusters or not; knowing that
the graph does not have them can be just as informative as knowing that it does.
Traditional force-based graph visualization methods cannot offer similar assurances
because their optimization criteria are difficult to interpret visually. I feel that this
is a strong argument for adopting model-based visualization methods in exploratory
data analysis.
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A An alternative MATLAB implementation of SCCA

using the CVX package

%Input parameters are the same as for David Hardoon’s SCCA2.m.
%Before you run this, make sure CVX is installed (unpack CVX files
%somewhere) and setup (call cvx_setup in MATLAB in the CVX folder)
%and that you’re using the SeDuMi solver (call ’cvx_solver sedumi’
%after you’ve installed and setup cvx). The default solver SDPT3 seems
%to run into numerical problems with the SCCA optimization problem.
%The numerical problems seemed to disappear if I set mu and gamma right,
%but SeDuMi seems to be able to handle mu and gamma as they are computed
%in David’s code.
function [w, e, correlation, optval, beta] = scca_cvx_singleprog_tau(X, ...

K, seed_index, sk)

primal_dim = size(X,1);
N_samples = size(X,2);
tau = 0.5;

%This is how mu and gamma are set in David’s SCCA2.m
Ij = eye(size(K,2));
Ij(seed_index,seed_index) = 0;
c = X*K(:,seed_index);
KK = K’*K;
d1 = 2*tau*(1-tau)*c;
mu = sk*mean(abs(d1));
gamma = mean(abs(2*(1-tau)^2*Ij*KK(:,seed_index)));
beta = 1

cvx_begin
variable w(primal_dim)
variable e(N_samples)
minimize(square_pos(norm(tau * X’*w - (1-tau)*K*e)) + mu*norm(w,1) ...

+ gamma*norm(e,1))
e >= 0 %Remove this line to remove the non-negativity constraint
e(seed_index) == 1
norm(e,Inf) <= 1

cvx_end

optval = cvx_optval;
correlation = corr(X’*w, K*e);
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