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Abstract

Increasing levels of transportation and exploratory activities in the High

North increase the significance of ice-capable ship designs, and the demand

for them. This demand covers a wide range of ship types; such as tugs, vessels

for search and rescue (SAR), patrol boats, military vessels, cruise ships, and

merchant ships. Both the economically driven preference for operations in the

Arctic over operations in a warmer climate, and the safety of the operations,

require adequate performance prediction methods.

The capability of model-scale ice and its availability and advantages in han-

dling compared to sea ice spurred to the decision to investigate its material

behavior to develop a numerical model. This model serves as a corner-stone

towards a numerical ice tank and provides insight into the mechanical behav-

ior of model-scale ice. Therefore, systematic ice property tests were conducted

with the model-scale ice of Aalto University to define the material behavior.

The model-scale ice is fine grained (FG) and doped with ethanol to artificially

weaken the material. The experiments investigate the behavior until failure in

tension, compression and bending. Furthermore, the elastic modulus is deter-

mined by ice sheet deflection experiments and the grain-size is measured. The

stress plane that is investigated is orthogonal to the vertical (thickness) coor-

dinate and is the same as the one in which stresses occur when ships interact

with ice. On the basis of the experiments, the mechanics and the constitu-

tion of the model-scale ice are investigated to define a suitable material model

and its parameters. It was found that a damage based elasto-plastic material

model represents the behavior of the Aalto model-scale ice well. The numerical

model accounts explicitly for flaws in the model-scale ice, comprised of voids

filled with liquid and air, which are randomly distributed. It is found that

the random distribution of flaws enables the reproduction of the variation in

experimentally observed failure patterns and affects the response forces. Fur-

thermore, the cantilever beam bending experiments and their simulation reveal

that the gradual change of ice properties over thickness has to be modeled to

represent the experimentally measured axial stiffness and flexural stiffness in

the same model. Ultimately, the model-scale ice is demonstrated to be a func-

tionally graded material which is capable of representing tensile, compressive

and flexural failure modes.

Additionally, the development of the numerical model of the Aalto model-

scale ice provides a deeper insight into its mechanical deformation processes.

The material behavior that is found reveals that Cauchy similitude in scaling
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cannot be applied, because the model-scale ice of Aalto University is on micro

scale not a purely elastic material. Consequently, model-scale ice consumes

more energy prior to bending failure than a material complying Cauchy simil-

itude.
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Walter Kühnlein, Jens-Holger Hellmann, Dr.-Ing Karl-Heinz Rupp and Klaus

Niederhausen. In this context, I want to thank especially Karl-Ulrich Evers

and Peter Jochmann from HSVA, with whom I have been working and cooper-

ating in various contexts from 2004 until now. The mutual support in projects

and exchange of knowledge has been an outstanding experience.

Since 2012 I have been a member of the ITTC (International Towing Tank

Conference) specialist committee on ice. The work and collaboration with its

members has also had a valuable impact on the thesis. Therefore, I wish to ex-

press my gratitude to Prof. Akihisa Konno, Topi Leiviskä, Dr. Kirill Sazonov,
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NOTATIONS

Symbols

Roman symbols Name

A Area

Ag Crystal type constant (g = granular)
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Fg Gravitational force
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H Hardening modulus

Hc Compressive hardening modulus

Ht Tensile hardening modulus

I Areal moment of inertia

K Bulk modulus
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NOTATIONS
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Ri Ice resistance
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l Length

q Exponent

r Plastic strain

rd Damage threshold

sD Stress deviator

t Time

td Damage material constant / exponent

14



NOTATIONS

v Velocity

x Exponent for ice thickness modification

za Distance to neutral axis
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Δtot Total uncertainty

αT Temperature dependent constant

ε Strain

εd Delayed elastic strain

εp Plastic strain

εv Secondary creep

ε̇p Plastic flow

˙̄εp Plastic strain-rate
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dλ Plastic consistency parameter

λ Scaling factor

ν Poisson ratio

ρw Density (of water)

σ Stress

σH Hydrostatic stress

σb Flexural strength according to the definition of ITTC

σc Nominal compressive strength
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σx Axial stress in x-direction

σy Yield stress

ρ Density

ρw Fluid density
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Abbreviation Name

Aalto Aalto University

CFD Computational Fluid Dynamics
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EEDI Energy Efficiency Design Index
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NOTATIONS
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FE Finite Elements

FG Fine Grained
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IOT Institute for Ocean Technology

NRC National Research Council Canada
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NTNU Norwegian University of Science and Technology
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SPH Smoothed particle hydrodynamics
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Original Features

Ice model tests are the state-of-the-art method to assess the performance of

ships in ice. Semi-empirical formulations for the calculation of the ice resis-

tance of ships are not of general validity, because they are based on regression

analysis of the performance of specific ships in specific ice conditions. There-

fore, the core of the thesis is dedicated to the development of a numerical

model of model-scale ice at Aalto University to gain insight into its mechani-

cal behavior and to set a milestone for future model-scale simulations of ships

in ice.

The key feature of this numerical model is its grounding in experimental find-

ings. Ultimately, the findings related to the numerical model are put into

perspective with state-of-the-art scaling laws.

The following additional features of the thesis are believed to be original:

1. Systematic experiments are presented in PI including tensile, compres-

sive and flexural specimen tests which are performed in the same ice

sheet ensuring coherence between the test results of different experi-

ments. Tensile tests are not covered by the standard ITTC (2002) guide-

line and the method presented is considered to be sufficiently practical

to be applied in other ice tanks as well.

2. The Aalto model-scale ice is found to be a material with a low yield

limit. The hardening modulus (i.e., a strain modulus or tangent modu-

lus) which is effective after this point is two orders of magnitude smaller

than the elastic modulus (PII).

3. The change of the ice properties through-thickness is found to be of

high significance for the mechanical behavior. The commonly assumed

homogeneity of the properties of model-scale ice over thickness would

not allow tensile, compressive and flexural behavior to be represented in

one model (PIII).
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Original Features

4. The numerical model that is presented and validated accounts for the

physical structure of the model-scale ice, such as grain-size and the in-

clusions of air and water. The inclusions and their locations are found

to affect response forces and failure patterns, since they act as local

stress-concentrators in the model-scale ice (PI, PII).

5. The numerical model of the cantilever beam, where some layers respond

elastically and others plastically, can explain the difference between the

elastic modulus determined by the deflection of an infinite plate and

the effective strain modulus determined by cantilever beam tests. The

significant difference in results between the two methods is also observed

in other ice tanks over the past three decades (PIII, PIV).

6. Model-scale ice tests and material are to comply with Froude and Cauchy

similitude and in addition to this it is postulated that the ratio of the

elastic modulus to the bending strength is at least around 2000 (E/σb ≥
2000) as for sea ice. The latter is used as a criterion for the brittleness

of the material. The model-scale ice investigated in this thesis complies

with the set criterion. However, on a microscopic level the elastic modu-

lus plays a small role compared to the high plasticity in the deformation

process of tensile, compressive or bending specimen (PII, PIII). This

consequently affects the effective strain modulus in bending, Sequ, which

causes a large deformation of the cantilever beam as Sequ/σb � 2000 and

on micro-scale a non-compliance with Cauchy similitude, which accounts

for elastic forces (PIV).
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1. Introduction

1.1 Background

Ships are investments and consequently their economic efficiency plays a key

role in design and operation. Merchant vessels reflect this by their revenue,

which grows by increasing tonnage and speed while reducing operational and

capital costs. Those are reflected in parameters of measure such as the ship

merit factor, SMF, (Cheng, 1968) or the comparative ship merit factor, CSMF

(von Bock und Polach et al., 2014). In addition to this, with the introduction

of the EEDI (Energy Efficiency Design Index, see International Maritime Or-

ganization, 2013) a regulatory aspect is added, demanding an increase in the

transport efficiency.

In open water the design process can make use of established methods such

computational fluid dynamics, CFD, to optimize the hull shape (e.g., Sames

et al., 2011). Design validations by model testing in open water can rely

on an environment for which properties are well known. However, for ships

in ice established simulation methods are not available. In the pre-design

phase, the ice resistance is often determined with semi-empirical formulations

that are based on a few physical parameters and regression analysis of ex-

perimental results. The way those formulations (e.g., Vance, 1980; Zahn and

Philips, 1987; Lindqvist, 1989; Keinonen et al., 1991 and Riska et al., 1998)

are derived limits their range of validity. A comparison of different semi-

empirical resistance methods, including model-scale tests, in von Bock und

Polach et al. (2015) shows the method related spread in transport efficiency.

In von Bock und Polach et al. (2015) a transit simulation of ice capable tanker

MT Varzuga (formerly MT Uikku) along the Northern Sea Route, NSR, is pre-

sented in which semi-empirical methods over-predict the transport efficiency

significantly compared to ice model tests. The prediction of performance in
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Introduction

the design process (e.g., von Bock und Polach et al., 2014) affects the decision

making and possible mis-predictions may have severe economic consequences.

On the one hand, this emphasizes the significance of ice model tests and on

the other hand the need for reliable numerical prediction methods.

In addition to the semi-empirical formulations, physical computational mod-

els such as Valanto (2001) exist, which are of limited availability, but show

partly good agreement with measurements. Valanto (2001) developed an ap-

proach in which the ice is represented by a plate as a boundary condition

of a potential flow problem. In the simulations, the ice sheet fails once the

principal stress equals the flexural strength of the ice. The contact force be-

tween the ice and the ship includes a contact coefficient of empirical origin

to artificially reduce forces related to the ice crushing process. The total re-

sistance in Valanto (2001) is a combined result of the theoretical model and

the semi-empirical approach of Lindqvist (1989). However, in all cases the

actual physical constitution of the ice is simplified by using property values

of e.g. flexural strength or compressive strength in the form of macroscopic

engineering stresses. This may set additional limits of validity on the avail-

able models. Macro-scale refers, in this thesis, to a length scale of the order of

magnitude of the ice thickness 1. Macroscopic stresses refer to forces related to

the macroscopic specimen dimensions. Micro-scale applies to size levels below

macro-scale, such as grain-size level.

Over the past decades computational methods evolved from triangular-plate

bending elements applied on ice cantilever beam bending (Svec et al., 1985)

to explicit solvers using cohesive elements (Gürtner, 2009), damage models

(Moore et al., 2013) including mesh updating algorithms (Kolari et al., 2009)

or smoothed particle hydrodynamics, SPH (Das et al., 2014). The trend in

the material models applied has evolved from linear elastic material models

(Svec et al., 1985) towards modeling on a micro-scale (McKenna, 1992) and

accounting for plasticity (e.g., Kolari, 2007; Gürtner, 2009 and Ehlers and

Kujala, 2014).

One of the more complex and advanced models available is that of MDVL,

the Marine Dynamics Virtual Laboratory at NRC-IOT 2, which is used to

simulate the interaction between ice and structures (Derradji-Aouat, 2010).

The ice model uses the visco-elastic constitutive law for ice (Derradji-Aouat

et al., 2000) and the multi-surface failure criterion of Derradji-Aouat (2003).

1This applies on full-scale and model-scale.
2National Research Council Canada - Institute for Ocean Technology.
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Introduction

The model incorporates instant elastic, visco-elastic, visco-plastic and defor-

mation behavior resulting from damage. Derradji-Aouat (2010) successfully

validated the model against unconfined compressive experiments with different

strain-rates (Sinha, 1978a) of cyclic compressive loading tests with moderately

confined pressure (Stone et al., 1989). According to Derradji-Aouat (2010),

more efforts to perform validation and verification of the MDVL are required.

McKenna (1992) presented a model on a micro-scale, i.e. grain-size level, of

discrete elements consisting of soft and hard elements based on Ashby and

Duval (1985) to model transient and steady creep. The model includes spring

and spring dashpot elements at the discrete element boundaries to represent

the mechanical behavior of the grains. Furthermore, the discretization level of

finite elements might require cases to model on a size level of individual grains

and flaws to represent the deformation behavior adequately (McKenna, 1992),

as is done in this thesis.

The development of a material model for ice or model-scale ice has to follow

a similar process as for other materials. In order to gain a good understand-

ing of the material behavior, different specimen tests are required. Kerr and

Palmer (1972) stated that the properties of sea ice change over thickness due to

the temperature gradient. Consequently, the ice has a certain similarity with

composite materials that are functionally graded (see, e.g., Reddy, 2011), and

the testing of which requires axial tensile tests and bending tests to assess the

axial tensile properties of different layers.

Despite the currently strong role of model-scale ice in the design process

of ships, little is known about its mechanical behavior and most of it refers

to the mechanical behavior on a macro-scale. This means that, e.g., in can-

tilever beam tests small displacements and rapid failures are observed, from

which perfect elastic-brittle failure behavior is abstracted. In processes where

sea ice is impacted with high loading rates and strain-rates ≥ 10−3s−1 the

material behavior may be considered elastic (Derradji-Aouat, 2003) because

viscous effects do not have sufficient time to develop (see, e.g., Sanderson, 1988;

Cammaert and Muggeridge, 1988 and Derradji-Aouat, 2010). Strain-rates of

this magnitude can occur in ship-ice interaction to which the development of

model-scale ice, especially in Finland, is closely related (see, Wilkman, 2014).

At lower strain-rates the compressive strength was found to be strain-rate sen-

sitive (e.g., Sinha, 1978a Sanderson, 1988) and both laboratory experiments

with fresh water ice and field tests with sea ice contributed to the knowledge

of the state of the art. (Sinha, 1983) stated that the compressive behavior of
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Introduction

fresh-water ice is similar to sea ice with respect to its rate sensitivity 3.

As the ice properties play a significant role in ice-ship interaction, they need

to be accounted for in scaling from prototype to model. The Froude simil-

itude, i.e. Froude number (Equation 1.1) is to be maintained when inertial

forces, Fi, and gravitational forces, Fg, are significant and their ratio needs to

be kept in the scaled environment. This may be the case when broken ice is

accelerated by the momentum of the ship (see Vance, 1975) and restored by

gravitational forces. On the basis of sufficiently high strain-rates (≥ 10−3),

the ice responds with elastic deformations (Derradji-Aouat, 2010) and breaks

rapidly, which requires maintaining the Cauchy number as a ratio of inertial

forces and elastic forces, Fe (Equation 1.2, Vance, 1975; Schwarz, 1977 and

Zufelt and Ettema, 1996 and Section 6.1).

Fr =
Fi

Fg
=

v√
gL

(1.1)

Ch =
Fi

Fe
=

ρv2

E
(1.2)

Froude (Equation 1.1) and Cauchy (Equation 1.2) similitude are applied by

default in ice model testing and considered appropriate for ice-ship interaction,

however the validity of their application may not always be appropriate when

the forces, Fi, Fg and / or Fe, play a minor role (Atkins and Caddell, 1974;

Atkins, 1975; Schwarz, 1977; Palmer et al., 2009 and Jordaan et al., 2012).

An alternative approach of Atkins and Caddell (1974) is based on the consid-

eration that ice contains pre-existing cracks, e.g. air bubbles. The stiffness

of the ice sheet changes when the cracks start to grow. Atkins (1975) named

the failure force of the cantilever beam cracking force and linked it to the

fracture toughness (Equation 1.3). Consequently, Atkins (1975) presented a

non-dimensional ice number as scaling similitude which combines the Cauchy

number and the effects of a defective cracked continuum (Equation 1.3). Equa-

tion 1.3 contains the fracture toughness, KIC , length, L, elastic modulus, E,

velocity, v, ice density, ρ, and the stress intensity factor, KI .

In = Ch2
√

EL
KIC

= v2ρ
√
L

KI
(1.3)

With reference to the small significance of inertial forces at slow interaction

speeds Palmer et al. (2009) promoted to abandon Froude-scaling (Equation

3This topic is further addressed in Section 3.1.2.
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1.1) and to introduce the application of a dimensionless number based on non-

linear fracture mechanics. Another scaling method is presented by Jordaan

et al. (2012) which is based on the weakest link theory of Weibull (1939). The

consideration of applying the Weibull modulus for scaling is similar to Atkins

and Caddell (1974) as it refers to pre-existing flaws in the ice.

The three alternative approaches of Atkins (1975); Palmer et al. (2009) and

Jordaan et al. (2012) are not implemented in the standard guidelines of the

ITTC (2002). Additionally, their applicability in practice might be limited as

even the experimental determination of the fracture toughness for small-scale

laboratory tests is still a “research question” (Palmer et al., 2009), as well

as the practical scaling of flaw sizes (Jordaan et al., 2012). Model-scale ice

is artificially doped to adjust the macroscopic strength properties for bend-

ing failure and to comply with the target scaling similitudes. Timco (1981a)

conducted bending strength measurements with different ice dopants such as

various salts, alcohols and sugars. Therefore it is concluded that a combina-

tion of low molecular weight and high molecular weight chemicals would be

optimal (Timco, 1981a). However, Table 1.1 shows that ice tanks of today

operate with model ice types that differ in grain structure and dopant.

Table 1.1. Model ice types in operating ice tanks.

Facility Country Grain struc-

ture

Chemical

dopant

Aalto University Finland Fine-grained Ethanol

Aker Arctic Finland Fine-grained Natrium-

chloride

HSVA Germany Columnar Natrium-

chloride

Krylov State Research Centre Russia Fine-grained /

Columnar

Natrium-

chloride

National Maritime Research

Institute

Japan Columnar Propylene Gly-

col

OCRE / NRC a Canada Columnar EGADS b

aNational Research Council - Ocean, Coastal and River Engineering
bEthylene-Glycol-Aliphatic-Detergent-Sugar

The grain structure and the dopant have an impact on the mechanical be-

havior and the scalability. Schwarz (1985) stated that carbimide model ice

has a ratio of compressive strength to flexural strength between two and three

which is claimed to be in compliance with sea ice, whereas the fine-grained
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model ice, at that time, had a ratio of one. As the elastic forces are considered

significant in the deformation process of ice, Schwarz (1977) postulated that

in model ice the ratio of the elastic modulus, E, to the flexural strength, σb,

has to follow Equation 1.4 in analogy to sea ice.

E

σb
≥ 2000 (1.4)

Both Evers and Jochman (1993)(HSVA) and Jalonen and Ilves (1990)(Aalto)

reported plasticity in previous versions of the model ice of their affiliated ice

tanks. In addition to this, different experimental methods to determine the

elastic modulus yielded substantially different results (Enkvist and Mäkinen,

1984; Evers and Jochman, 1993). The elastic modulus determined by plate

bending in Enkvist and Mäkinen (1984) was twice as large as the one deter-

mined by cantilever beam tests. It is however unclear, whether encountered

differences are related to experimental differences or different material behav-

ior.

The bending strength is the commonly used strength parameter of model ice

for which the ITTC (2002) provides recommended procedures and guidelines

for physical testing and analysis methods. In both model-scale (e.g. ITTC,

2002) and full-scale (e.g., Anderson and Weeks, 1958; Suominen et al., 2013)

the material is assumed to be homogeneous and isotropic with its neutral axis

at its center. However, as the temperature distribution through the thickness

of sea ice varies, its mechanical properties vary as well (see, e.g., Kerr and

Palmer, 1972; Åse, 2013). This applies to model-scale ice as well, where the

gradient is likely to be different as the boundary conditions are different as

well. Furthermore, Timco (1981a) observed in experiments with various un-

seeded ices with different dopants that the top-layer appears to be significantly

stronger compared to the rest. This complies with operational experience in

the Aalto ice tank and suggests that mechanical properties vary through thick-

ness. In model-scale experiments the bending strength is usually determined

by in-situ cantilever beam tests, whereas in full-scale cantilever beam tests

(e.g. Krupina and Kubyshkin, 2007) three-point bending tests (Suominen

et al., 2013, ex situ) or four-point bending tests (Kujala et al., 1990) are con-

ducted. In cantilever beam tests the stress concentrations at the root corners

act as stress amplifiers which reduces the tolerable load (see, Svec et al., 1985).

Consequently, the though-thickness property distribution, the test type and

the mechanical behavior of the material affect the scalability, but to a not yet

quantified magnitude.
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In order to investigate the mechanical behavior and resulting scalability of

the model-scale ice at Aalto University, systematic ice property measurements

are conducted and a numerical model is developed. The numerical model is

defined on micro-scale with the purpose to reproduce the tensile, compressive

and flexural experiments on macro-scale. Furthermore, an assessment of the

scalability of model-scale ice is made, based on the insight gained into the

mechanics of model-scale ice. Additionally, the thesis provides a review of

forces involved in ship-ice interaction and a brief abstract on the mechanical

behavior of ice.

1.2 Objectives, Scope and Structure of the Thesis

A numerical model of model-scale ice is to be developed that is in close agree-

ment with the experimental evidence. The scope is, to set a first milestone for

a future numerical model-scale testing environment, as well as to contribute

to the clarification of the mechanical constitution of the model-scale ice. The

primary application of the numerical model-testing environment is to investi-

gate ship interaction with ice, for which physical model scale ice was originally

developed. A numerical model of ice that can represent ship-ice interaction

processes requires an accurate definition supported by experiments. There-

fore, the scope of the publications PI, PII and PIII is to conduct systematic

measurements of the failure mechanisms of the Aalto model-scale ice, to define

the mechanics of the material and to derive a numerical simulation model that

can represent the failure in tension, compression and bending, while account-

ing for the actual physical constitution of the model-scale ice. This requires

all experimentally determined parameters to be represented in the numerical

model.

The numerical model should preferably make use of existing models that are

already incorporated into finite element-programs to make its use easier for

the community. The findings related to the numerical model are to be ap-

plied to investigate the scalability of the Aalto model-scale ice with respect

to its mechanical behavior in the context of state-of-the-art scaling laws (PIV).

The thesis is based on four journal publication, which are graphically repre-

sented in Figure 1.1.
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Figure 1.1. Position of the thesis in context with the publications.

1.3 Limitations

The publications PI, PII and PIII present the numerical model of model-

scale ice at Aalto University; the publication PIV refers to the scalability

of the model-scale ice at Aalto University. The limitations of the thesis are

considered to be as follows:

1. The ice property tests conducted in PI are of small sets in terms of sta-

tistical analyses with seven to nine specimens. However, the number of

samples in ice property testing is small in general, due to time limita-

tions. The sample size reflects the upper standard-threshold of tests in

one location in the field of model ice testing 4.

2. All experiments are conducted at a single loading rate of 6 mm/s for

which specimens fail within less than one second. Earlier conducted

uni-axial tension and compression tests did not reveal loading rate sen-

sitivity in the range from 1 mm/s to 16 mm/s; consequently, strain-rate

sensitivity is not considered in this thesis. This automatically limits the

validity of the presented model to interactions that are comparable to a

ship model breaking model-scale ice.

3. The defined numerical model (PII) and its parameters can represent the

4Best practice in daily ice tank tests are three to four samples per location.
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failure in tension, compression and downward bending under uni-axial

loading. It is not (yet) suitable for engineering applications such as

actual ship-ice interaction due to excessive computational costs. The

calculation of larger ice sheets is currently infeasible because of memory

limitations.

4. The material model according to Lemaitre and Desmorat (1992) is based

on von Mises stresses, which cannot distinguish between tensile and com-

pressive stresses. In consequence the compressive and tensile layers in

the cantilever beam model are to be defined a priori.

5. Compressive tests in other ice sheets indicate an increase of the nominal

pressure with decreasing impact surface (PIV). The model presented in

PII cannot represent this effect; additionally, the physical cause has also

not yet been identified.
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2. Ship-Ice Interaction

This chapter describes ice mechanics involved in ship-ice interaction and in-

dicates the most significant parameters affecting the process. The flexural

strength, respectively the failure in bending, plays a significant role for the

resistance of ships and is, consequently, scaled to model-scale. Therefore, the

numerical model this thesis presents focuses on the flexural failure of model

ice and the processes it involves.

2.1 Interaction Mechanics and Processes

This section describes qualitatively the processes involved when a ship pro-

ceeds through ice in the chronological sequence of the process steps. There-

after, the breaking pattern and also the process of the ice sliding along the

hull is briefly introduced.

2.1.1 Crushing and Bending Failure

The crushing and bending failure are demonstrated in a 2D cross-section plane

at the longitudinal centerline of the ship. At the first contact between the in-

clined hull and the ice the normal force, FN, causes highly localized compressive

loads at the ice edge, which causes so-called crushing failure of the ice (Enkvist

et al., 1979, Figure 2.1). At the same time the vertical force, FV = FN cosφ,

as a function of the normal force and the stem angle, φ, bends the ice sheet

downwards 1. The crushing continues until the maximum crushing depth ξc is

reached. The downward bending continues until the flexural strength of the

ice sheet is reached and it breaks.

The bent ice sheet fails by exceeding the tensile strength on the top sur-

face. The horizontal forces, FH, introduce compressive stresses in the top

1According to Varsta (1983) the friction in the ship-ice contact surface is small and

can be neglected.
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Figure 2.1. Schematic 2D description of the crushing and bending failure, with a horizontal

direction of advance and the time instance t0 prior to contact and t1 when the

crushing process terminates and the ice sheet fails. The crushing depth is ξc.

The Figure is based on Varsta (1983).

layer which are superimposed to the tensile bending stresses and can delay the

flexural failure (Valanto, 1997; Vance, 1975).

2.1.2 Ice Sheet Fracture and Breaking Pattern

The interaction between ice and ship can form radial cracks and circular cracks,

which are illustrated in Figure 2.2. The radial cracks originate from the bow

of the ship, which may act in a similar fashion as a horizontal indenter. The

ship introduces compressive stresses in the near field and, in reaction, causes

tensile stresses to build up in the far field (Sanderson, 1988). The occurring

stress intensity factor, KI , at the impact zone depends on far-field tensile

forces which are a function of the compressive load introduced by the ship

(Sanderson, 1988). Once KI reaches the fracture toughness of the sea ice,

KIC , radial cracks start to form (Palmer et al., 1983; Sanderson, 1988).

The circular cracks in the ice sheet originate from the flexural failure after

bending(see Figure 2.1) and proceed parallel to the initial edge and create

cusps. Goldstein and Osipenko (1993) describes the crack-growth stability as

a result of the in-plane compression (see also Valanto (1997)) and the acting

bending moment introduced by the ship. Consequently, the forces related to

the downward bending and the flexural strength of the ice sheet determine

how cusps break.

As illustrated in Kärmäräinen (1993) (based on observations from E. Mäkinen,
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1976, in full-scale) the breaking pattern in level-ice does not necessarily include

radial cracks, which applies also on model-scale ice, (Ettema et al., 1989;

Yamaguchi et al., 1997, 1999) as the required condition on the stress intensity

is not fulfilled. Valanto (2001) refers to one radial crack as an extension of the

center line, CL (Figure 2.2), while Vance (1975) referred to several originating

from the stem.

Figure 2.2. Schematic breaking pattern with circular and radial cracks, based on illustra-

tions in (Vance, 1975; Palmer et al., 1983; Ettema et al., 1989; Kärmäräinen,

1993; Valanto, 2001) on the water line, WL, level of a ship.

2.1.3 Shoulder Crushing

In case the width of the broken ice field is smaller than the width of the vessel,

as indicated in Figure 2.2, the bow shoulder may compressively interact with

the ice by crushing it, so called shoulder crushing (Kujala and Riska, 2010;

Riska, 2010). This interaction may also occur with broken wedges that do

not submerge or turn before the bow shoulder approaches. The occurrence of

shoulder crushing can cause an increase of resistance (e.g. Su et al., 2010).
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2.1.4 Behavior of Broken Ice Floes

Ice floes that are bent sufficiently so that occurring stresses exceed the bending

strength, break off the ice sheet and proceed along the hull (Figure 2.3). Di-

rectly after breaking, the floe rotates with a relatively steady speed (Valanto,

2001). The top surface of the floe, which is in step 2 and 3 in contact with the

ship, may be fully 2 or partly ventilated. Full ventilation is more likely to oc-

cur at higher speeds, than at lower speeds (Valanto, 2001). After the rotation

and submergence the floe impacts the proceeding ship in step 2 and proceeds

by sliding along the hull in step 3. In the sliding process the full ventilated

floes produce a sliding resistance force, FS, resulting from the buoyancy force,

FB, and the friction coefficient between the hull and the ice. In case that full

ventilation does not occur, the pressure field in the gap between hull and ice

floe may affect the resistance (Valanto, 2001; Kärmäräinen, 2007). In Figure

2.3 this process is illustrated for the bow stem, but occurs in a similar fashion

also in other hull areas (e.g., Kujala and Riska, 2010).

Figure 2.3. Progress of ice floes after being broken off at the bow stem from the intact ice

sheet in a 2D view.

2.2 The Level-Ice Resistance of Ships

2.2.1 Level-Ice Resistance and its Components

The ice resistance represents the sum of horizontal response forces due to the

ship-ice interaction described in Section 2.1.

Equation 2.1 shows the component break down according to Vance (1975).

The ice resistance is defined as sum of the breaking resistance, Rb, the resis-

tance related to the rotation of the ice floe, Rrot, the resistance due to ice floe

submersion, Rsub, the resistance caused by the relative sliding of ice against

the hull, Rslide, resistance due to ship motions, Rmov, resistance to impacts

2Ventilated means free of water.
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between hull and ice, Rimp (see Figure 2.3), and the resistance from clearing

the ice, respectively ”pushing the ice away” (Vance, 1975), Rclear.

Ri = Rb +Rrot +Rsub +Rslide +Rmov +Rimp +Rclear (2.1)

The breaking down of the components may vary from author to author as

some do not account for all components and others may see some smaller

components as a part of other components. A component breakdown accord-

ing to Ettema et al. (1989), is similar to Equation 2.1. The ice resistance is

divided into icebreaking (Rb), the submergence and displacement of broken

ice, including the momentum exchange to it (Rsub + Rrot + Rimp), and the

resistance due to ice floes sliding along the hull Rslide as well as due to ship

motions Rmov. The impact of ship motions is of higher significance at lower

speeds and / or thicker ice, but not at higher ship speeds or thinner ice (e.g.

Enkvist (1972); Ettema et al. (1987); von Bock und Polach and Ehlers (2011))

consequently, the significance of this part is case dependent.

A more condensed break down of components is found in Equation 2.2 after

Myland and Ehlers (2014) or in Enkvist (1983), who summarized the ice re-

sistance as breaking resistance, submersion resistance and velocity resistance.

Ri = Rb +Rrot +Rsub +Rslide (2.2)

The force created by ice floes sliding along the hull is Rslide. This force depends

on the friction coefficient between hull and ice when the ice floe is fully venti-

lated (dry friction). Otherwise, when water is entrapped between floe and hull

Rslide depends on the pressures in the gap between hull and floe (see, Kärmäräi-

nen, 2007 and Section 2.1.4. This resistance increases with speed (Lindqvist,

1989; Valanto, 2001; Riska, 2010) and is considered mainly causative for the

speed dependency of the ice resistance (see also Kärmäräinen, 1993).

The resistance increase due to the ice floe or ice cusp rotation after breaking

is Rrot, in sequence of which the remaining energy introduced into the ice floe

causes it to submerge, which is Rsub. According to Kujala and Riska (2010)

the required energy expenditure of the ship for turning the ice floe is small.

The breaking resistance, Rb, resembles forces related to crushing, downward

bending and subsequent flexural failure (Section 2.1) and fracturing (Section

2.1.2). The latter is usually not explicitly considered. The icebreaking resis-

tance is the largest resistance component of the ice resistance (e.g. Ettema

et al., 1989; Riska, 2010; Kujala and Riska, 2010) of which the flexural failure

is the most significant (see, e.g. Ettema et al., 1989). Enkvist (1983) stated

that flexural failure contributes between 40 % - 80 % (see i.a. Poznyak and
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Ionov, 1981; Nyman, 1986 of the total resistance 3 in full-scale and model-

scale. Schwarz (1977) quantified the fraction of icebreaking by 30 % - 70 % of

the ice resistance.

In model-scale test series at the Aalto Ice Tank, the ice-breaking resistance

of the ice-going tanker Uikku was found to be 60% - 70% (von Bock und Po-

lach (2010)). The fraction is determined by resistance tests in level-ice and

pre-sawn ice. In the pre-sawn ice condition the contribution of flexural failure

is eliminated, but it is not certain to what extend crushing interaction might

be eliminated.

The icebreaking resistance holds, in many cases, the largest fraction of the

entire ice resistance. Independent from the degree of detail of the component

breakdown (Equation 2.1 and Equation 2.2) the compressive edge crushing

and the flexural failure of the ice sheet are commonly considered the most rel-

evant contributors to the ice resistance involving ice mechanics. The breaking

related to flexural failure is for the ship-ice interaction the more significant one

(e.g. Kujala and Riska, 2010) and is, consequently, the one scaled and mod-

eled in model-scale tests (ITTC, 2002). This is also reflected in semi-empirical

formulas for the ice resistance (see, e.g., Lindqvist, 1989), where the flexural

strength, σb, is usually the only accounted ice property 4.

An analysis of the maximum forces experienced by the vessels Oden and Polar

Sea revealed that the loads in ramming events (Polar Sea) can be represented

by methods based on local high pressures. However, when the ice failure is

dominated by flexure (in case of Oden) the maximum force had to be repre-

sented by a model based on the flexural strength of sea ice (Jordaan, 2001).

The currently established method of ice model-scale testing is designed on the

basis of ships moving in level ice and modeling relevant parameters, which is

generally acknowledged (e.g. Jordaan et al., 2012). Riska et al. (1994) demon-

strated a good correlation of the level ice resistance prediction based on model

tests (at Aalto Ice Tank) compared to full-scale tests for some conditions,

whereas in others cases there was less agreement. This may be due to the fact

that not all resistance components can be scaled in the same way (Grochowal-

ski and Hermanski, 2011) or that the magnitude of certain resistance parts

might not be proportional in model-scale and full-scale Vance (1975).

3The total resistance is a superposition of the ice resistance and the open water

resistance, i.e. the percentage of ice breaking of the ice resistance is even larger.
4It is acknowledged that the flexural strength is not an actual ice property, but it is

often named as such.
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This section describes the mechanics of sea ice and model-scale ice and ranks

them. The mechanics of model-scale ice uses findings presented in the pa-

pers related to this thesis (PI, PII, PIII, PIV). The review is reduced to the

mechanical behavior in tension, compression and bending as these are the re-

searched aspects in this thesis in model-scale. The high strain-rates in ship-ice

interactions allow its idealization as a linear elastic material Derradji-Aouat,

2010. Model-scale ice was initially developed to assess the performance of ship

models in ice (see, e.g., Enkvist, 1990). The first design of a model testing

basin in Finland refers to the transport of oil through the Canadian Arctic

Islands by ship and the assessment of its resistance (Wilkman et al., 2010).

Consequently, there is a strong emphasis on the flexural strength of ice as it

predominantly fails against ships in bending (see Chapter 2).

3.1 The Mechanical Behavior of Sea Ice

3.1.1 Tensile Strength

The tensile strength is mainly affected by the porosity and temperature (Timco

andWeeks, 2010). Experiments with different strain-rates presented by Richter-

Menge and Jones (1993) indicated that the strain-rate sensitivity between

rates of 10−5s−1 and 10−3s−1 is small. Consequently, according to Timco and

Weeks (2010), the strain-rate effect in tension can be neglected and the tensile

strength can sufficiently be presented as a function of porosity.
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3.1.2 Compressive Strength

The compressive behavior is here classified into deformations at low strain-

rates, where viscosity plays a role, and deformations at higher strain-rates,

where the effect of pressure localizations (e.g. Johnston et al., 1998; Jordaan

et al., 1999; Dempsey et al., 2001; Jordaan, 2001; R.S. and I.J., 2015) may be

encountered in the ice-structure interface, which is found as so called pressure-

area relationship in design references (19906, 2010; Ehlers et al., 2015) 1.

In contrast to tensile loading the compressive stress can experience a signif-

icant loading rate or strain-rate sensitivity (Hawkes and Mellor, 1972; Karr

and Das, 1983).

a Representation of the ice rheology

with mechanical elements

t0
time t

st
ra

in
ε

delayed elastic strain εd(t)

elastic strain εe

viscous strain εv(t)

tertiary creep

b Qualitative representation of the strain devel-

opment in ice over time

Figure 3.1. strain-rate dependent deformation of ice, reproduced according to Sanderson

(1988).

In the case that strain-rates are sufficiently low to trigger viscous effects, the

total strain is reassembled by elastic, εe, viscous εv, and delayed elastic strain,

εd which is shown in Figure 3.1a and Figure 3.1b. Furthermore, the contribu-

tion of the different strain components changes over time (Figure 3.1b).

The progress of the delayed elastic strain is defined as an exponential function

in compliance with experiments (Sinha, 1978a, 1982, 1983) as a function of

the elastic modulus, the grain diameter and time. The non-recoverable de-

formation (εv(t)) in Figure 3.1b is named secondary creep (Sanderson, 1988;

Schulson and Duval, 2009). The secondary creep strain-rate ε̇v(t) can also be

expressed as an exponential function depending on temperature and crystal

structure (see, e.g., Glen, 1955; Shoji and Higashi, 1978). At the end of pri-

mary and secondary creep tertiary creep commences (see Figure 3.1b) which is

associated with the formation of micro-cracks at grain boundaries (Sanderson,

1Pressure-relationship can be associated with crushing failure
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1988). Those micro-cracks might coalesce with increasing strain and accel-

erate deformation; however recrystallization processes might also play a role

here (Sanderson, 1988). The inelastic strain of ice may be up to ten times

larger than the elastic strain (Le Gac and Duval, 1979). Equations and addi-

tional discussion on viscosity and its application on model-scale ice is found

in Section 5.5 and the Discussion in Section 7.2.

3.1.3 Flexural Strength

The flexural strength is not typically considered as a material parameter since

in bending the acting stresses are tensile and compressive. Nevertheless, it

is an important parameter of high practical relevance in ship-ice interaction

as ice predominantly fails in bending. The behavior in short loadings in ice

sheet deflection, i.e. high strain-rates, causes mainly elastic strain (Weeks

and Assur, 1967; Derradji-Aouat, 2003) as time dependent terms do not have

enough time to develop (Jordaan, 2001; Derradji-Aouat, 2010). The threshold

for these high strain-rates, ε̇, in which ice behaves brittlely is around ε̇ ≥ 10−3

s−1, where it may be modeled linear-elastically (Derradji-Aouat, 2003). Fur-

thermore, the bending strength is incorporated in most semi-empirical ice

resistance calculation methods (see, e.g., Lindqvist, 1989). Timco and Weeks

(2010) summarized that the flexural strength can be expressed as a function

of porosity, as loading rate effects and, in consequence, strain-rate effects are

considered of minor significance. This indicates the significance of tensile prop-

erties in flexural failure as those are likewise considered strain-rate independent

compared to compressive properties.

3.2 Properties of Model-Scale Ice

3.2.1 The Model-Scale Ice at Aalto University [PI]

The Aalto Ice Tank has a lateral area of 40 m x 40 m, with a uniform depth

of 2.8 m (see Figure 3.2). The model-scale ice is fine-grained (FG), as it is

produced by several layers of frozen spray which is emitted as a dense water

fog from the carriage. Consequently, the ice is grown upwards unlike sea ice,

where the ice grows into the water. The tank water is sprayed from a height

of ≈ 1.7 m at an ambient temperature of ≈ -12◦C onto the water surface. The

tank water contains 0.3 % ethanol to weaken the ice in order to achieve the

desired scalability of sea ice according to Froude and Cauchy similitude (Jalo-
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nen and Ilves, 1990; Riska et al., 1994 and Li and Riska, 2002, see Equation

1.1, 1.2). The scaled and directly adjusted parameters are common thickness

and bending strength (according to ITTC, 2002). The strength is adjusted

by a low temperature consolidation phase (as low as -15◦C) after the spray-

ing. Thereafter, the temperature is increased to between 0◦C and -2◦C in

the tempering phase to re-adjust the strength to the target and to reduce the

temperature and ice property gradient within the ice.

Figure 3.2. Ice tank at Aalto University.

3.2.2 Summary of the Mechanical Behavior of Model-Scale Ice in

the Context of Sea Ice

As emphasized in Section 1.1, the focus of this thesis is to create a sound basis

for the development of a virtual ice tank 2 for ships in ice and to determine how

to effectively simulate the mechanical behavior of model-scale ice. The tests

presented in PI are aligned with the recommendations of ITTC (2002), which

propose a test speed of 1 mm/s for flexural strength tests. It is acknowledged

that the proposed loading rate of 1 mm/s for cantilever beams may lead to

different strain-rates, depending on the dimensions of the specimen; neverthe-

less, it is considered as a target value to obtain elastic deformation. However,

it is reported that some types of model ice appeared to deform plastically

(Schwarz, 1977; Jalonen and Ilves, 1990), visco-elastically (Zufelt and Ettema,

1996) or visco-plastically (Moores et al., 2001).

2The concept of the virtual ice tank is explained in the future work (Section 7.2) to

which this thesis contributes.
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Generally, model-scale ice must be considered as a material that can differ

from sea ice in its constitution and its mechanical behavior. Furthermore, the

properties of model-scale ice are significantly less explored than those of sea

ice and are often based on assumptions related to macroscopic observations.

The presumption of analogies between both materials can be considered as

valid starting points on a macro-scale, but are yet to be proven.

The scope of this thesis covers experiments in tension, compression and bend-

ing. As stated in Section 3.1, sea ice may be considered strain-rate insensi-

tive in tension and bending, while in compression ice can exhibit significant

strain-rate sensitivity. Therefore, prior to the work of this thesis, tensile and

compressive tests conducted with different loading rates (Figure 3.3) 3. The

variation of loading rate (i.e. strain-rate) shows neither an impact on the

nominal stress (Figure 3.3) nor on the stiffness Wegner (2011).
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Figure 3.3. Average tensile and compressive strength as a function of loading rate (data

from Wegner, 2011).

On the basis of experience in ice tanks, it is assumed that the grains of

model-scale ice are of high strength compared to the bonds between them.

Therefore, trans-granular cracks are not considered to occur. Furthermore,

Timco (1981b) reported that in bending tests with ice from impure melt that

the failure frequently occurs along the grain boundaries. This is another differ-

ence compared to sea ice or fresh water ice where trans-granular cracks occur;

according to Gold (1970), as many as 2/3 of all cracks are trans-granular.

3The velocity of ship models in model-scale ice lies often between 0.1 m/s to 1 m/s
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4. Experiments with Model-Scale Ice

[PI, PIII]

4.1 Grain Size Measurements ([PI])

Grain size measurements are usually conducted using thin sections. However,

the Aalto model-scale ice is too weak, every thin-section attempt at the ambi-

ent temperature of the ice tank, between 0◦C and -2◦C, failed because the thin

slice of ice could not support itself. Furthermore, the inter-granular cohesion

is apparently significantly weaker than the strength of the individual grains

so that any attempt at cutting the specimen led to shaving off an entire grain

layer and ultimately, to the destruction of the specimen. In order to assess

the grain-size the grains are carefully separated from the ice pieces with a cold

blade. This produces an image as displayed in Figure 4.2 with single grains

distributed over the surface between the polarized light filters. This allows

solely for an assessment of the grain-size, but not of the overall ice structure,

which is however considered sufficient here. The grain-sizes are measured with

digital image processing and the results are found following a lognormal dis-

tribution (Figure 4.2), with a highest probability density, i.e. mode value, of

0.68 mm. Additional information can be found in PI.

Figure 4.1. Ice grains of Aalto model-scale ice (PI).
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Figure 4.2. Log-normal distribution of measured grain sizes with 60 samples (PI).

4.2 Elastic Modulus [PI, PIII]

The elastic modulus here is the linear elastic relationship between the elastic

strains and the related stresses. The nature of experimental methods that

apply physical strain to the ice to determine the elastic modulus are defined in

other sources as the elastic strain modulus (e.g., Timco and Weeks, 2010) or

strain modulus (e.g. Tatinclaux, 1988). In this thesis the term elastic modulus

is used, because the results of the strain experiments to determine the elastic

modulus are later implemented in the numerical model as the elastic modulus

(PII and PIII).

The macroscopic elastic modulus is determined by loading the intact ice sheet

with weight increments, while measuring the ice sheet deflection. The loading

and unloading is done repeatedly to assess whether the deformation can be

fully recovered after unloading. The deflection that is encountered is in the

order of micrometers and is measured with a laser displacement transducer

of high resolution. This device is mounted in the center of a tripod with a 2

m span-radius. The weight of the system and its heat exchange with the ice

cause the tripod to carve into the ice. This leads to a slight relative movement

between the tripod and the ice sheet, which in turn affects the measured

displacement. Because of this, the displacement measured over time in Figure

4.3 is slightly curved and not straight.

The macroscopic elastic modulus, which is considered to be constant through-

thickness, is defined according to Kirchhoff plate theory in Equation 4.1 (see

also ITTC, 2002) with the loading force, F , the ice thickness, h, the dis-

placement measured δ, and the foundation factor, k, which is the product of

gravitational acceleration and the density of the water (Equation 4.1).
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Figure 4.3. Time-history of an ice sheet deflection measurement (PI).
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The average macroscopic elastic modulus with a constant distribution over

thickness 1 of the experiments would be around 108 MPa with a maximum

load of 56 g at 0.056 mm displacement (see PI, Equation 4.1 and Figure 4.4).

However, the next higher weight increment of 109 g causes a reduction of

the strain modulus by 25 % (see Figure 4.4) and is associated with partial

plasticity as the deformation cannot be fully recovered (see PI, Figure 4.5).

Figure 4.4 indicates the theoretical continuation of elastic response up to the

load that causes a partly plastic response (Figure 4.5). Furthermore, the

possible range of loads causing plastic deformation is marked in Figure 4.4.
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Figure 4.4. Graphical representation of the measured linear elastic range, the measured

in-elastic (plastic) response and the possible range of loads causing plasticity.

1This is the standard according to ITTC (2002).
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Figure 4.5. Deflection of an ice sheet causing elastic-plastic response (see also PI).

4.3 Tensile, Compressive and Flexural Experiments [PI]

The experiments on the ice properties are conducted for tension, compression

and downward bending. In all the experiments the displacement, response

force and specimen dimensions are measured. Figure 4.6 shows the specimens

for the ice property experiments, i.e. for tension, compression and bending

(from left to right) cut from 25 mm thick ice. The tensile specimens have a

ring-shaped head at which the loading force of the linear drive acts and pulls

the specimen to cause failure at the thinning part between the ring and the

adjacent ice sheet. The minimum width is 25 mm, equal to the thickness.

The compressive specimen has the shape of a small cube, i.e. 25 mm x 25

mm, with one side attached to the ice sheet. The dimensions of the cantilever

beam follow the recommendations of ITTC (2002) with a width of 58 mm and

a length of 175 mm to 170 mm, a loading point about 15 mm from the tip and

a thickness of 25 mm. All specimens are tested at the same speed of 6 mm/s

(PI).

The setup of the measurement units and the loading device is displayed

in Figure 4.7. In all the experiments, the same devices are employed. All

specimens are tested at the same speed of 6 mm/s (PI).

The compressive specimens are loaded horizontally and their failure starts

from random locations at the plain impact face (Figure 4.9, PI). The tensile

specimens are loaded at the ring and fail at or near the thinnest cross-section,

as in Figure 4.8. The bending specimens are loaded vertically downwards and

fail at the transition between beam and ice plate.

The force-displacement measurements obtained for compression, tension and

44



Experiments with Model-Scale Ice [PI, PIII]

Figure 4.6. Model-scale ice property experiments.

bending are found in PI, PII and PIII and are replotted in Figure 4.10, 4.11

and 4.12. In all measurements the maximum force is used as the representative

value for the sustainable force. In all cases, the maximum force refers to the

global peak in the loading history, which is at the same time the point of the

specimen failure. The experimental data are compiled in Appendix A.

4.4 Measurement Accuracy

The measurement accuracy of the bending strength, which is calculated from

the force and dimensional parameters, is treated in PIII. The accuracy of the

entire bending strength is a function of its components and inherent accura-

cies for which the available standard of ITTC (2005) is used here. The total

accuracy is mainly affected by the dimension measurements as an indentation

of 1 mm to 1.5 mm at the softer bottom layer may easily occur 2. Figure 4.13

shows a broken tensile test-specimen with the hard top-layer, the soft bottom

layer and the gradual transition in texture in between. Consequently, in PIII

the total accuracy is calculated for the bending strength of 59.1 kPa is ±8%.

2Other measurements refer to an accuracy above 99.9% (see PIII).
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Figure 4.7. Device for model-ice specimen tests, with: 1) a round cylinder for loading

tensile rings, 2) a plate for compressive tests, 3) a plunger for flexural tests

with the cantilever beam, 4) the load-cell, which records force signals in all

three load cases, 5) a displacement transducer, which records displacements in

all load cases and 6) the loading fame, with indicated rotation axis (PI).

Figure 4.8. Tensile specimen after failure.
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Figure 4.9. Failure patterns of compressive specimens observed in experiments (PI).
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Figure 4.10. Compressive specimen measurements (see also PI) and PII).
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Figure 4.11. Tensile specimen measurements (see also PI and PII).
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Figure 4.12. Cantilever beam bending measurements (see also PIII).

Figure 4.13. Tensile specimen extracted from the tank after testing.
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5. A Numerical Model for Model-Scale

Ice [PI, PII, PIII]

5.1 The Background of the Numerical Model [PII]

The purpose is to build a numerical model on micro-scale that reflects the

mechanical behavior on macro-scale, while including experimental findings.

The element size is aligned with the predominant grain-size of the model-

scale ice 1, which is considered to be the reference element size. Operational

experience in the ice tank shows that a significant amount of water is trapped

within the model-scale ice. In this context Li and Riska (2002) defined a

strength index for the Aalto model-scale ice on the basis of the contained

amount of unfrozen liquid, which weakens the material. Consequently, the

voids, i.e. inclusions of water and air, are incorporated into the model. Their

size is assumed equivalent to the grain size (see Figure 5.1). Figure 5.1 shows

the composition of the numerical model with the air elements removed, one

example marked (1), and water elements colored brown marked (2).

The material model (153 Damage3 in LS-DYNA) relates to the work of

Lemaitre and Desmorat (1992) as it includes damage softening. Figure 5.2

shows a compressive measurement (see also Figure 4.10), where softening is

observed, which is considered to be associated with damage.

The damage is considered to represent physically the increasing number of

micro-cracks in the grain boundaries, which are considered to lose coherence

with increasing strain. According to Chaboche (1987), all processes prior to

macro-crack initiation, such as micro-crack initiation and micro-crack prop-

agation, are considered part of the damage mechanics, whereas fracture me-

1The grain-size is in general considered an invariable parameter in the ice production

process as all parameters (droplet size, water pressure in pipes, ambient and water

temperature) are invariable.

49



A Numerical Model for Model-Scale Ice [PI, PII, PIII]

Figure 5.1. Composition of the numerical model-scale ice model, with air voids marked (1)

and water elements marked (2).

chanics begin at the point of macro-crack initiation. As the failure observed

in the experiments grows quickly and occurs almost instantly, fracture me-

chanics are not considered for the tests presented in this thesis. The voids of

air and water are explicitly modeled by removing the elements representing

air pockets, while the water elements are modeled as elastic fluid (LS-DYNA

material model 001 Fluid Elastic Fluid). The amount of voids is determined

based on the model-ice density (911 kg/m3)2, which results in 5.5% porosity

(1% air and 4.5% water). The voids are distributed randomly over the entire

specimen.

Compared to sea ice or fresh water ice, model-scale ice and especially fine-

grained model-scale ice is a sparsely researched material. Consequently, on the

basis of the state of the art, the numerical model is aligned to two modeling

approaches. One is aligned with ITTC (2002), assuming constant material

properties through-thickness, and the second one is an exponential distribution

of properties through-thickness for the bending of cantilever beams on the basis

of Kerr and Palmer (1972). The through-thickness distribution of the elastic

modulus in sea ice is significant for the bending behavior, which is found in

generalized form in Reddy (2011) for functionally graded beams. The theory

of a stronger top and weaker bottom of the model-scale ice is supported by

operational ice tank experience and observations made by Timco (1981a);

Valkonen et al. (2007).

2Pure ice is assumed to be 917 kg/m3 and tank water is measured as 989 kg/m3 (see

PI).

50



A Numerical Model for Model-Scale Ice [PI, PII, PIII]

0 2 4 6 8

0

20

40

60

80

Displacement [mm]

Fo
rc

e 
[N

]

Displacement
at failure

Softening

Figure 5.2. Force-displacement curve of a compressive experiment and simulation with in-

dicated simulation progression without damage. The section in which softening

manifests is considered to refer to a significant accumulation of micro-cracks.

Once those reach a critical threshold a macroscopic crack forms leading to the

failure of the specimen.

5.2 The Numerical Model of Model-Scale Ice [PI, PII]

5.2.1 A Functionally Graded Property Model for Cantilever

Beam Tests

The strength properties of the model-scale ice appear to change over thickness.

In bending, the response of a cantilever beam depends on the actual distri-

bution of the strength properties as the bending stiffness of a layer depends

on the second moment of inertia and the strain modulus, S 3. The second

moment of inertia, I, of a rectangular cross-section, A, with width, b, and

height, h, additionally depends on its vertical distance to the neutral axis, za

(see Equation 5.1 and Figure 5.3). The subscript, L, indicates here a layer

inherent property.

SItotal =

n∑
i=1

SL,i

b · h3L,i
12

+ b · hL,i · za2L,i (5.1)

The distribution of properties through-thickness, f(z), for the model-scale

ice in this thesis is defined by the exponential Equation 5.2 with the thick-

ness coordinate z and the coefficients a and b with the set exponent - 0.5.

An exponential function is selected. Kerr and Palmer (1972) used an expo-

nential function 4 for the elastic modulus variation through thickness in sea

ice. Furthermore, as the top of the model-scale ice is apparently of higher

3This may be an elastic modulus or a plastic strain modulus.
4This is analogous to Reddy (2011) for functionally graded beams.
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Figure 5.3. Schematic variation of stiffness properties through-thickness with reference to

Equation 5.1.

strength compared to lower layers (see, e.g., Valkonen et al., 2007), the dis-

tribution requires a significant gradient, for which an exponential function is

well suited.

f(z) = a+ b · z−0.5 (5.2)

The coefficients a and b are defined by boundary conditions, which are defined

in agreement with the experiments, such as, e.g. the total axial stiffness in

tensile tests (see PIII).

5.2.2 A Model with Constant Properties Through Thickness for

Uni-Axial Tests

On the basis of available information and the nature of the load case, appro-

priate simplifications are made. The guidelines of ITTC (2002, 2014) consider

the model-scale ice as homogeneous and isotropic material. Unlike in bending,

the response in tension and compression is a simplification considered indepen-

dent from the actual distribution of strength properties through thickness 5.

Consequently, the summation over the number, (i = [1;n]), of individual layer

stiffnesses, SL, times the layer cross-section, AL, equals the average stiffness,

Savg, times the total area, A, (see Equation 5.3).

n∑
i=1

SL,iAL,i = SavgA (5.3)

The available measured parameters are the total axial force, Fx, and the

axial displacement, ux, in coordinate direction x. The force, Fx is represented

in Equation 5.4 as a function of the axial strain. Both sides of Equation 5.3

can be interchanged with each other in Equation 5.4.

Fx = SavgAL
∂u

∂x
(5.4)

5This means the distribution does not affect the response force. However, Reddy

(2011) showed that this is not exactly valid.
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5.2.3 The Material Models in LS-DYNA

The material models that are introduced in this section are applied on solids

with eight nodes.

The Damage Model for Ice Elements

The applied material model in LS-DYNA is 153 Damage3. This particular

material behavior is linear elastic until the yield stress. Thereafter the plas-

tic regime starts, in which the stress-strain relationship is governed by the

hardening modulus, while damage causes additional softening of the material.

Failure occurs once the critical damage is reached (see Figure 5.30).

st
re

ss
σ

strain ε

Elastic
Elasto−plastic (bilinear)
Elasto−plastic with damage

Ht

Hc

E

D = dc
(element failure)

Figure 5.4. A principle illustration of stress-strain behavior of the damage material in

comparison with an elastic and an elasto-plastic (bilinear) material. It must

be noted that the exact definition and shape varies in compression and tension

as well as through-thickness in bending. The subscripts t and c denote tension

and compression.

The damage evolution, Ḋ, is defined by the strain energy release rate, Y, the

damage resistance parameter, S, the exponent, td, and the equivalent plastic

strain-rate, ˙̄εp, (Equation 5.5). The damage value, D, evolves from 0 to (just

less than) 1. The material fails once the damage, D, is equal to the predefined

critical damage value, dc, which is maximum tolerable damage.

Ḋ =

⎧⎪⎪⎨
⎪⎪⎩

(
Y
S

)td

ε̇p ,r > rd & σH
3σvM

> −1
3

0 , otherwise

(5.5)

The damage evolution in Equation 5.5 is coupled on the stress tri-axiality,

σH
3σvM

, 6 and the damage threshold, rd. The damage threshold is the accumu-

lated plastic strain at which the damage starts to accumulate. In this thesis

6σH is the hydrostatic stress and σvM the von Mises stress.
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the damage threshold is equal to zero in order to accumulate damage directly

after yielding (rd is equivalent to EPSD in Table B.0.1).

The accumulation of the damaged plastic strain, r, which is used in this

thesis, follows Equation 5.6 as a function of the damage, D, and the equivalent

plastic strain-rate, ˙̄εp, (Equation 5.7).

r =

∫
(1−D) ˙̄εp (5.6)

The plastic strain-rate is defined according to Equation 5.7 as a function of

the associated plastic flow, ε̇p, as defined in Equation 5.8. The plastic flow is

a function of the equivalent von Mises stress σvM , the stress deviator, sD, and

a plastic consistency parameter dλ (for additional information, see LS-DYNA

(2013) ).

˙̄εp =

√
2

3
ε̇p ε̇p (5.7)

ε̇p =
3sD

2σvM
dλ (5.8)

The energy release rate, Y , in Equation 5.5 is defined by the elastic strain,

εel, and the elasticity tensor, T el, following Equation 5.9 (LS-DYNA, 2013).

Y =
1

2
εel T el εel (5.9)

The stress after yielding, σ, is defined by the isotropic hardening modulus

(equivalent to the tangent modulus), H, the plastic strain, εp, and the yield

strength, σy, in Equation 5.10.

σ = σy +Hεp (5.10)

The stresses, σd, are the undamaged stresses, σ, modified by the damage, D,

defined in Equation 5.11.

σd = σ(1−D) (5.11)

The Fluid Model for Water Elements

The water elements are represented by the material model of an elastic fluid

(001 Fluid Elastic Fluid, see LS-DYNA, 2013). The resulting pressure rate,

ṗ, is defined by the bulk modulus, K, and the volumetric strain-rate, ˙εjj , in

Equation 5.12.

ṗ = −K ˙εjj (5.12)

The deviatoric stresses, σij , are defined by tensor viscosity coefficient, V C,

a characteristic element length, ΔL, the fluid bulk sound speed, a, the fluid
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density, ρw, and the deviatoric strain-rate, ˙εij in Equation 5.13.

σij = V C ·ΔL · a · ρw ˙εij (5.13)

In case of a fluid, the input parameters are the fluid density, ρw = 989 kg/m3,

the bulk modulus of water, K = 2.15 · 109 Pa, the tensor viscosity coefficient

is set to a default value, V C = 0.1, as well as the cavitation pressure, CP =

1 · 1020 Pa.

5.3 Definition of Material Parameters

This section describes the method that is used to define the material parame-

ters for a model where properties are a constant through-thickness (PII) which

can be applied for uni-axial tests and a functionally graded model for cantilever

beam bending. The property values for the material model 153 Damage3 de-

scribed in Section 5.2.3 are stated in Table 5.1 and the following subsections

provide more information on the particular parameters.

Table 5.1. Summary of material properties for the functionally graded material (PIII) and

the material with constant properties through-thickness (PII). The material con-

stants, i.e. the damage resistance S = 25 Pa and exponent td = 2 are the same

in both models (PII, PIII).

Thickness

/ z-

coordinate

[mm]

Elastic

modu-

lus, E

[MPa]

Yield

strength,

σy [kPa]

Hardening

modulus, H

[MPa]

dc

Tens. Comp. Tens. Comp. Tens. Comp.

Material properties functionally graded over thickness

0 to 2 770 7.5

23

21.5

0.84 0.0017

0.0065

2 to 5 197 4.5 5.2 0.025

5 to 10 118 2.5 3.0 0.085

10 to 15 78 1.8 1.8 0.13

15 to 20 56 1.4 1.16 0.4

20 to 25 43 1.2 0.76 0.55

Material properties constant through-thickness for uni-axial specimen tests

0 to 25 148 0.45 0.45 3.07 a 1.14 b 0.001 c 0.036 d

aaverage, full range: 2.8 - 3.3
baverage, full range: 0.95 - 1.3
clog-normal median, full range: 5.0 ×10-6 - 3.4 ×10-2

dlog-normal median, full range: 0.005 - 0.236
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5.3.1 Elastic Modulus

The Elastic Modulus Constant Through Thickness

The elastic modulus is determined by experiments (see Section 4.2), from

which load and displacement are recorded. A linear elastic model of finite

elements is built which is loaded with the same load as in the experiments. The

elastic modulus is iteratively modified to obtain the measured displacement of

0.056 mm at the same load as in the experiments (56 g, see also Figure 4.4).

In the isotropic case the mesh size is 25 mm for which an elastic modulus of

148 MPa is determined (PII).

On the basis of increased computational resources in PIII a mesh size sensi-

tivity study is conducted (Figure 5.5) 7, for which an average elastic modulus

of 110 MPa is determined, which is in agreement with the analytical solution

(Equation 4.1) of 108 MPa.
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Figure 5.5. Mesh size dependency of displacement results in reproducing the deflection of

an infinite plate on elastic foundation. The figure is an extension of what is

found in PIII.

The Functionally Graded Elastic Modulus

In the functionally graded model the distribution of the elastic modulus follows

Equation 5.2. The boundary conditions to define the unknown coefficients of

Equation 5.2 are the average elastic modulus of 110 MPa and the value of the

top layer. The elastic modulus in the top layer, Etop, is taken as seven times

the average elastic modulus (see Equation 5.14). The factor seven refers to

an assumed analogy to the distribution of the tensile hardening modulus for

which a line of arguments defined this relationship (see PIII).

Etop

Eav
=

Ht,top

Ht,av
= 7 (5.14)

7The figure shows the smallest computationally feasible discretization.
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The factor seven refers to an assumed analogy of the distribution of the ten-

sile hardening modulus (see Section 5.3.3). The top layer being seven times the

average stiffness provides a good compliance of numerical results and experi-

mental data in uni-axial tension and cantilever beam tests (see PIII). Figure

5.6 represents the distribution of the elastic modulus, which is considered be-

ing invariant for compression and tension, i.e. loading direction independent.
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Figure 5.6. Distribution of the elastic modulus (PIII).

5.3.2 Yield Strength

The Yield Strength Constant Through Thickness

The yield strength of the model with constant properties through thickness is

the same for both tension and compression. The yield strength is considered

to be the lowest confident yield limit, i.e. the highest elastic stress von Mises

stress at 56 g load (see Figure 4.4). The yield strength, σy = 0.45 kPa 8, is

determined with the same model used in Section 5.3.1. As Figure 4.4 indicates

the actual yield strength might be higher, but still be of the same order of

magnitude as σy = 0.45 kPa, consequently, a minor variation of its absolute

value would not affect the simulated failure processes.

The Yield Strength of the Functionally Graded Model

The tensile yield strength at the bottom of the functionally graded model-scale

ice is determined in analogy to the yield strength, which is constant through-

thickness. It is considered that Figure 4.5 shows partly plastic deformation

and remaining elasticity. Consequently, it is assumed that only bottom layers

yield in the experiments which are strained in tension, as shown in Figure 5.7.

The tensile yield strength is distributed over thickness by Equation 5.2 and

8This value is used in all simulations with constant properties through-thickness.
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Figure 5.7. Principle stress distribution in a loaded infinite plate as in Figure 4.5. Com-

pressive stresses act above the neutral axis and tensile stresses below. The

material exceeds the elastic yield limit in the bottom layer which is marked in

red. This effect is considered to cause the plastic deformation encountered in

Figure 4.5.

the second boundary value, the tensile yield strength on top (7.5 kPa), is de-

termined iteratively as the highest possible value that maintains compliance

with the experiments (see Figure 5.8 and Table 5.1). With reference to Figure
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Figure 5.8. Tensile simulations with highlighted yield related peak (PIII) together with a

reference measurement of a similar maximum force.

5.7, the experiments neither provide direct evidence for the value of the com-

pressive yield strength nor for its distribution. In order to simplify the model

the compressive yield strength of the functionally graded model is taken as a

constant value through thickness of 23 kPa (Table 5.1). The compressive yield

strength remains the only unknown and is treated as free parameter which

is defined to achieve compliance of the cantilever beam simulation with the

experiments. However, the compressive yield strength of 23 kPa causes an

offset in the displacement (see Figure 5.9) 9.

9See also PIII and the Discussion in Section 7.2 for additional information.
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Figure 5.9. Compressive force displacement curves of the functionally graded model to-

gether with the reference model with properties constant through thickness.

5.3.3 The Hardening Modulus

The Hardening Modulus as Constant Through-Thickness

The hardening modulus governs the stress-strain relationship in the plastic

regime (Figure 5.30). The tensile and compressive hardening modulus is de-

termined for all uni-axial experiments (see Figure 4.10 and 4.11). The tensile

and compressive average values are used as representative values to calibrate

the functionally graded model (Table 5.1).

Examples of simulated force-displacement curves plotted against their refer-

ence measurements are found in Figure 5.10 for compression and 5.11 for

tension. Force-displacement plots with stress distribution at different displace-

ment instances are found in Appendix C.2 for tension and in Appendix C.3

for compression.
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Figure 5.10. Compressive simulation with associated measurement (PII).
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Figure 5.11. Tensile simulation with associated measurement (PII).

In order to simulated the global stiffness of the cantilever beam a hardening

modulus of 20 MPa is required which is constant through-thickness. This

value is seven times greater than the tensile hardening modulus (Table 5.1)

and indicates possible conflicts when representing tensile and flexural behavior

in a model which properties are constant through-thickness.

The Hardening Modulus of the Functionally Graded Model

Cantilever beam simulations with constant properties through thickness re-

quire a hardening modulus of around 20 MPa in consequence of which the

tensile hardening modulus on top of the functionally graded material is con-

sidered to be seven times greater than the average tensile hardening modulus

(Table 5.1).

In order to determine the coefficients of Equation 5.2 two boundary values

are required. For the hardening modulus, one boundary value is the hardening

modulus of the top layer (see also Equation 5.14) and the other is the global

plastic stiffness (thickness x isotropic hardening modulus). However, this de-

livered too weak of a response, in consequence of which the thickness of the

strong top layer is increased by two layers to around 2 mm, which coincides

with the freeboard of the ice sheets (see the black dashed line in Figure 5.12).

Figure 5.13 shows the stress distribution of the functionally graded model,

where the stresses in the top-layer are significantly higher than in lower layer.

A hardening modulus, which is constant through-thickness, is also used for

the cantilever beam model to assess its order of magnitude. Its value is approx-

imately seven times greater than the average tensile hardening modulus. This

value is used as tensile hardening modulus of the top-layer for the functionally

graded material (see also Equation 5.14). The exponential distribution of the
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Figure 5.12. Distribution of the tensile hardening modulus through thickness (PIII).

Figure 5.13. Distribution of von Mises stresses in a tensile specimen in the loading process

(σvM,max = 1.4 · 105 Pa) through thickness. Note: Only the center part,

where failure occurs, is modeled with layers, the rest has average properties.

tensile hardening modulus (see Figure 5.12 and Equation 5.2) has a nearly

vertical course in the lower layers, which take compressive stresses in bending.

Numerical experiments with varying ratios of top-layer strength to average

strength show a change in the failure pattern for ratios above five, where fail-

ure is initiated by the stress-concentrations at the corners between ice sheet

and specimen (Figure 5.14), which is not observed in experiments (Figure

4.9). Consequently, the distribution of the compressive hardening modulus

is considered less pronounced than for the tensile hardening modulus and is

simplified as being constant for the functionally graded model.

5.3.4 The Critical Damage Value

The critical damage value, dc, denotes the point of failure. This value is

determined analogously to the hardening modulus iteratively for all uni-axial
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Figure 5.14. Failure pattern in a simulated compressive specimen at a Htop/Haverage ≈5

originating from stress-concentrations in the specimen corners (PIII).

tests (e.g. Figures 4.10 and 4.11) with models that have constant properties

through thickness. Furthermore, the dc values are statistically analyzed to

define a representative value for tension (Figure 5.15) and compression 10,

which is found in Table 5.1. This value is used to define a representative

reference force-displacement curve for tension and compression, with which

the functionally graded model is calibrated to determine its representative dc

values.
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Figure 5.15. Log-normal probability plot of tensile dc values.

The value of the tensile dc values of the functionally graded model is con-

stant through thickness (see Table 5.1) which is essentially the dc value of

the top-layer. As shown in Figure 5.13, the strong top-layer dominates the

deformation behavior of the numerical specimen and after its failure the en-

tire specimen fails, consequently, the dc values of the lower layers cannot be

determined.

The failure pattern on top of the functionally graded numerical specimen

under compressive load (Figure 5.16a) is in agreement with the experimental

observation (Figure 4.9). Over the thickness the failure varies in length di-

10The distribution for compression is found in PII.
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rection (yellow marking in Figure 5.16b). This is most likely related to the

difficulty of determining the dc value accurately for each layer 11. Further-

more, no observations are made that allow an assessment whether this failure

through thickness complies with experiments or not.

a Failure pattern on top. b Angeled view on failed simulated

compressive specimen, with marked

failure pattern on the side.

Figure 5.16. Failure pattern of the functionally graded numerical specimen in compression.

The “non-synchronous” failure of the numerical specimen through thickness

also manifests in the stress-strain relationship of elements through thickness.

The failed element in Figure 5.17 is one of the last elements to fail before the

specimen failure occurs. The drop in stress in the other elements indicates

that surrounding elements fail at this point and that causes missing support

for the displayed elements. Furthermore, when the stress in the elements drop

the stress in the ”failed element” increases. The progression of the stress-strain

relationship is also reflected in the force-displacement curve in Figure 5.9.

5.3.5 The Parameter Fitting Technique

The hardening moduli and the dc values for compression and tension in PII

are determined iteratively for all uni-axial experiments.The hardening mod-

ulus can be determined within an estimated accuracy of at least 5%. This

is indicated by the simulations shown in Figure 5.18, where the hardening

modulus of 1.25 MPa deviates by 4%, but its deviation from the experimental

target can be well identified. The critical damage parameter, dc, depends on

the damage evolution and is also determined in compliance with the experi-

ments with an accuracy of about 5%, whereas Figure 5.18 shows an example

for values differing by 8%. As the dc value refers to the point of failure it is

considered to be determined uniquely.

11See Figure 5.30 for stress-strain curves.
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Figure 5.17. Stress-strain relationship in a functionally graded numerical specimen under

compressive load. The failed element is within the failure pattern that refers

to the ultimate specimen failure. The other three elements are from the

impact interface, but do not fail.
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Figure 5.18. A compressive measurement together with simulations of different H and dc

values.

5.3.6 Other Constants of the Damage Material

The value of the critical damage value, dc, depends on the damage evolution

and therefore on the damage resistance, S = 25 Pa, and the exponent, td =

2 (see Equation 5.5). The damage resistance is systematically increased and

S = 25 Pa is found to be suitable and applicable for all models in this thesis

(see Table 5.1). Figure 5.19 shows the difference between two different damage

resistance values.

The exponent td is equal to 1 by default, but as Figure 5.19 shows (especially

for the blue curves) an exponent of 2 refers to a more rapid failure, which is

considered to be in better agreement with the experiments.
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Figure 5.19. A compressive measurement together with simulations of different S and td

values. The simulations show the accelerated progression of damage with re-

duced damage resistance and the impact of td. In all simulations the material

properties are constant through thickness.

5.3.7 The Impact of the Void Density and Distribution

The voids 12 act like local stress concentrators and, consequently, they influ-

ence the failure pattern and the location of its initiation. This complies well

with experimentally observed failure patterns (see Figure 5.20). A certain

variability of the failure pattern is also found for tension in both experiments

and simulations (see PII and Figure 3.1e).

Figure 5.20. Failure patterns of three numerical compressive specimens (PII, top-layer in

green to raise visibility of macro-failure).

A comparison of the response forces (see PII, Figure 5.21a) showed that

different random void arrangements have a bigger impact on tensile speci-

mens than on compressive ones. However, as the number of possible random

variations of the voids is high the sensitivity study in PII is not considered

exhaustive. Furthermore, Figure 5.21b shows the sensitivity of simulated com-

pressive specimens on different void densities.

12The number of voids is constant, but their location varies randomly.
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Figure 5.21. Sensitivity of simulation results on void distribution and void density (see also

PII).

5.4 Strains and Strain-Rate Sensitivity

The modeling of strain-rate effects is not considered in this thesis as the loading

time (around 1 second) is considered too short to activate such effects. There-

fore, the presented strain-rates are relative rates of strain. In this section the

occurring strain-rates in the models for tension, compression and bending is

presented with an analysis concluding that strain-rate related effects are not

likely to occur. The strain-rates and a discussion on their possible impact is

found in the Discussion, Section 7.2. Figure 5.22 shows a numerical tensile

specimen with the elements A, B and C, which are selected for the plots of

the strain-rates in Figure 5.23. The average strain-rate in the loading pro-

cess is around 0.05 s-1 (see Figure 5.23a) and 0.03 s-1 near the root, without

considering peaks of local (neighboring elements) or global failure. The strain-

rates in Figure 5.23 show a steady and continuous behavior over the course of

the loading process, at the end of which, when the numerical specimen fails,

a sudden increase in rate is found. This occurs directly after failure in the

stress relaxation process. The magnitude of the strain-rate peak at failure is

larger closer to the failure interface (Element C) and declines towards the root

(Element A).

The global failure occurs right before the peak (Element C, Figure 5.23a).

The elements near the thinnest cross-section take the highest stresses (Fig-

ure 5.23b). After the global failure the elements relax again, which proceeds

at higher rates, when elements are closer to the thinnest cross-section, the

location of failure.

Figure 5.24 shows the elements A, B and C to which the plots in Figure

5.25 refer to. As in tension, the strain-rate depends on the analyzed location

in the numerical specimen. With reference to Figure 5.25a the representative
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Figure 5.22. A tensile numerical specimen and selected elements for strain-rate analysis.
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Figure 5.23. Strain-rate in a numerical tensile specimen with reference to element locations

shown in Figure 5.22.

strain-rate is around -0.1 s-1 and -0.05 s-1 near the specimen root. As soon as

first elements fail within the specimen the strain-rate drops from -0.1 s-1 to

-0.03 s-1 in this particular case.

The global specimen failure occurs between 4 mm and 5 mm plunger displace-

ment after which high strain-rates occur. Figure 5.25a indicates a reduction

in strain-rate and stress of element A at 2.5 mm displacement, which is next

to the plunger interface. At this point first elements fail, which can affect the

backing of other elements and the global stress distribution. In compression,

several elements may fail relatively long before the global specimen failure, un-

like in tension, where a couple of failed elements suffice to initiate global failure

(see Figure 5.23). In tension, the stress and strain increase is continuous until

the global failure. In compression, the failure of elements (partly significantly)

before the ultimate failure leads to a re-distribution of load (stresses) to the

remaining elements. After first elements fail this continues and repeats until

ultimate failure and gives Figure 5.25b the slightly unsorted appearance.
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Figure 5.24. Compressive numerical specimen and selected elements for strain-rate analy-

sis.
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Figure 5.25. Strain-rate in a numerical specimen under compression with reference to ele-

ment locations shown in Figure 5.24.

The stress-strain relationship for the elements at the impact interface (el-

ement A, compression) and the failure (Element C, tension) is displayed in

Figure 5.30 (following Section 5.5), where the stress values are used for an

assessment of viscous strain.

In bending the strain-rate of elements is presented in their variation over

length (Figure 5.26a) and through thickness (Figure 5.26b). Additionally,

the strain-rate of an element in the center at the top of the beam (near the

failure) is compared to one near the root, where notch effects occur (Figure

5.29). Figure 5.27 indicates the slightly higher stresses occurring near the

notch (Element N) compared to the middle (Element C).

Figure 5.27a shows that the stress strain-rate behavior of one of the three

elements on the top surface is qualitatively similar with increasing stresses

towards the root. The variation in the strain-rate is related to the gradual

transition from the elastic to the plastic regime of the different layers. The

failure initiations starts near Element N (Figure 5.26a) and the opposite side,
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a Cantilever beam and se-

lected elements over length

for strain-rate analysis.

b Elements through thickness

selected for strain-rate analy-

sis. The elements C2 - C5 are

in the same lateral location as

element N (Figure 5.26a).

Figure 5.26. Elements selected for analysis in the cantilever beam.

which leads from a stress of 1̃20 kPa to an increase in strain-rate as the load

carrying cross-section on top extenuates. This sudden increase in strain-rate

is also found in Element C2, onces the layer with element above it fails and

the load is redistributed. The same effects are shown in Figure 5.27a, where

the strain-rate is plotted over the plunger displacement.

Figure 5.27b shows the stress and strain-rate relationship through thickness.

As the top-layers are of higher strength (see also Figure 5.6) the neutral axis

closer to the top; consequently, the deformations (Figure 5.28a) and strain-

rates at the bottom are higher than at the top. As soon as the first top layers

fail the strain and its rate increase suddenly 5.27b.
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Figure 5.27. Strain-rates in a cantilever beam.

The average tensile strain-rate is around 0.05 s-1 and in compression its

absolute value is slightly higher. Peaks or sudden changes refer to the failure
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of the top layers.
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Figure 5.28. Strain-rate progress through thickness of a cantilever beam.

Figure 5.28b shows the stress-strain distribution through thickness of ele-

ments close to the later crack (see Figure 5.27a). A comparison of the stress

distribution through thickness for the numerical model and the analytical ho-

mogeneous model of ITTC (2002) is found in Figure 6.1. The strain-rate at

the edge near the notch is around three times higher than in the center, i.e.,

0.015 s-1 (Figure 5.29). On the top of the cantilever beam the strain-rates can

reach the same order of magnitude as in the tensile tests, but their absolute

values are in all cases lower than those in tension or compression 13.
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Figure 5.29. Strain-rate development on the top of the cantilever beam at the center (C)

and the outer edge near the root notch (N).

The strain-rates in compression and tension are in the same order of mag-

nitude; therefore, strain-rate effects are not considered causative for different

stiffness in compression and tension, but as a material inherent property. In

bending the strain-rate is approximately one order of magnitude lower than

in tension and compression (see Figure 5.28). The activation of viscous ef-

fects is associated with a more compliant response at lower strain-rates. This,

13This topic is also addressed in the discussion Section 7.2.
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however, is not the case here; consequently, the through thickness distribution

(PIII) of properties appears to be a valid explanation for the apparently higher

stiffness in bending compared to uniaxial tensile tests.

5.5 Application of Viscous Theory on Model-Scale Ice in

Compression

Sea ice undergoes, in compression, elastic deformation in addition to delayed

(visco-) elastic and visco-plastic deformation. The viscous deformations are

strain-rate dependent (e.g. Sinha, 1978b, 1982; Sanderson, 1988; Timco and

Weeks, 2010). As indicated in PII and Table 5.1, the hardening modulus or the

effective strain modulus is around 1% of the elastic modulus. Consequently,

the tested specimens undergo relatively large strains (Figure 5.30 shows the

compressive stress-strain curve of Element A) 14 to which comparisons with

sea ice are made.

The visco-elastic strain is defined by Equation 5.15 where C is a constant

(9·10−3 m) for pure ice and αT is a temperature dependent quantity with

related to -10 C◦. Both parameters are also used in the calculation for model-

scale ice, as equivalences for model-scale ice are unknown. The elastic modulus

is 148 MPa (Table 5.1), the grains size, d, is rounded to 1 mm and the de-

formation time, t, to 1 second. The exponent, q, is according to Sanderson

(1988) 0.34, but may also be the reciprocal of the exponent, n, in Norton’s law

Sanderson (1988) 15 for the secondary creep, which is 3. However, related to

experiments with granular polycrystalline ice an approximate value of n = 5

and q = 1/5 (Jones, 1982; Moores et al., 2001) is considered more appropriate.

The compressive stress 85 kPa refers to the stress in Figure 5.30. This delivers

a delayed elastic strain of 0.0009. Compared to the strain 0.075 in Figure 5.30,

this value would be around 1 % of the total strain 16.

εd =
Cσ

Ed
(1− exp[−(αT t)

q]) (5.15)

The secondary creep, see Section 3.1, represents strains referring to plastic

deformation. Sanderson (1988) presents the formulation for granular sea ice

which accounts for the porosity of sea ice. The porosity, por, in the model of

the model-scale ice and in the numerical model is 5 %, which is accounted for

14Note: this element does not fail, but is close to a failing element.
15It originally refers to the creep of steel at high temperatures, but is also used in

other disciplines such as rock mechanics (e.g., Bürgmann and Dresen, 2008) and for

super-alloys (e.g., Golan et al., 1996).
16An alternation of the exponent, n, would not change the magnitude of the result.
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in Sanderson (1988) (Equation 4.10), which results in 5.16. However, as the

stresses in Figure 5.30 result from a model, where porosity is already accounted

for, 1−por = 1 is used. The parameters in Equation 5.16 are constants related

to the crystal type, (g = granular) Ag = 7.8·1016 MPa-3 s-1, the activation en-

ergy, Qg = 120 kJ / mol, the universal gas constant, R = 8.314 J / mol K 17,

the temperature in Kelvin, T = 273 K, and σ the stress from Figure 5.30 as

50 kPa and 85 kPa for the failed element. The universal gas constant relates

the energy scale (unit in Joules) to the temperature scale of a particle (mole)

to which the activation energy, Q, also refers.

An integration over time (deformation time approximately 1 second) of Equa-

tion 5.16 would deliver a viscous strain of approximately 2.7 ·10−13 s−1 and

3.8 ·10−12 s−1 respectively. A continued discussion of this topic is found in

Section 7.2.

ε̇ = Ag

[
exp

(
Qg

RT

)](
σ

1− por

)n

(5.16)
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Figure 5.30. Stress-strain curve elements in numerical specimens in compression. Element

C refers to Figure 5.23a and Element A refers to Figure 5.25 and the failed

elements are withing the later failure pattern (e.g., Figure 5.20).

The curves in Figure 5.30 reflect that the lower strains and higher stress

increase in tension rather than in compression. This already manifests in the

force-displacement curves and the higher strain modulus (hardening modulus)

used (see also Figure 5.28b).

In compression Element A does not fail, but first elements around Element A

fail, which takes away supporting elements of Element A; consequently, only

small stresses and deformations are acting on the element. The failed element

17R is an equivalent to the Boltzmann constant.
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lies within the global failure pattern of the specimen (e.g., Figure 5.20) and is

consequently one of the last elements to fail. This element also shows a stress

increase at the point where the stress drops in Element A. Due to the failure

and stress-relaxation of some elements, the stresses are redistributed to the

load-carrying elements. In compression, several elements fail already before

the global failure of the numerical specimen. In tension, however, the failure

of the first elements causes instant global failure of the specimen. Element

C does not fail itself and is plotted here until the point where the numerical

specimen fails globally.

5.6 Summary and Main Findings

The cantilever beam test simulation, with the values compiled in Table 5.1 is

presented in Figure 5.31, together with experiments. The failure force refers

to the ITTC bending strength of 59 kPa. The model accounts for hydrostatic

buoyancy and tip flooding forces 18.
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Figure 5.31. Simulation and experiments of the cantilever beam bending (PIII).

The functionally graded model for the cantilever beam maintains compliance

with the uni-axial tests 19 and indicates two significances that occur in bending.

First, the model-scale ice must be modeled as a functionally graded material

which is of significant strength on top compared to the lower layers. Secondly,

in bending, layers that are close to the neutral axis respond elastically and

18The water density used is 997 kg/m3. The force-displacement curve and von Mises

stress distributions of the numerical model at various stages is found in Appendix

C.1.
19With some limitation in compression (see Figure 5.9 and Figure 5.17).
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others plastically, whereas the plastic region grows from the outer layers with

the increasing load, which has a strong impact on global specimen stiffness

(Figure 5.32).

Figure 5.32. Principle sketch of the material behavior of a cantilever beam of model-scale

ice under load, F, with adjacent ice sheet. The increasing load causes a growth

of the plastic zone from the outer edges inwards, towards the center.

The average strain modulus 20 in bending is one order of magnitude greater

than the one based on the uni-axial tensile tests 21 and one order of magnitude

smaller than the elastic modulus (Figure 5.33).

20This is the modulus representing the stress-strain relationship.
21The hardening modulus in compression is 1.14 MPa and even lower than the one

for tension (3.07 MPa).
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Figure 5.33. A visualization of the beam bending experiments and numerical models (PIII

with additional explanations). The model based on the uni-axial tensile tests

has a stiffness significantly lower than the experimental results. A model with

constant properties through thickness that complies with the average stiffness

of the experiments (red solid line) requires a hardening modulus that is one

order of magnitude higher (H ≈ 22 MPa).
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6. The Scalability of Model-Scale Ice

Properties and Model Testing [PIII,

PIV]

In the following, the scalability of the model-scale ice of the Aalto ice tank is

discussed on the basis of the found mechanical behavior. Scalability means

in this context the capability of the model-scale ice to be scaled, respectively,

to comply with requirements set by the state of the art scaling laws following

Froude and Cauchy similitude.

6.1 A Review of the State of the Art Scaling Approach

This section provides a brief review on the scaling approaches used in model

ice. The state of the art refers to geometric scaling while maintaining Froude

(Equation 1.1) and Cauchy number (Equation 1.2) in both scales. The Cauchy

number represents the ratio between inertial forces, applied by the momentum

of the ship, and the elastic response-forces of the material, i.e. the ice. Con-

sequently, Cauchy similarity is only valid at sufficiently high ship speeds, as

at low impact speeds inertial forces are small (see, e.g. Schwarz, 1977; Palmer

et al., 2009. Furthermore, the ice must be loaded at sufficiently high strain-

rates (≥ 10−3) to be considered as responding elastically until failure (see,

e.g. Derradji-Aouat, 2010). Therefore, the response in model-scale is aimed

at being elastic for ship-ice interactions as well.

In the following, the origin of Froude number, Fn, and the Cauchy number,

Ch, is shown on the basis of Vance (1975); Zufelt and Ettema (1996). As found

in Vance (1975); Atkins (1975); Zufelt and Ettema (1996); Palmer (2008) it

is set that the factor λ scales the length dimension, L, between model (sub-

script m) and prototype (subscript p, Equation 6.1), while
√
λ scales the time

dimension, T, in Equation 6.2.

Lp

Lm
= λ (6.1)
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Tp

Tm
=

√
λ (6.2)

Inertial forces, Fi, gravitational forces, Fg, and elastic forces, Fe, are defined

in Equation 6.4 (Vance, 1975) with the mass, M, density, ρ, volume, V, grav-

itational acceleration, g, acceleration, a, area, A, elastic modulus, E, stress, σ

and strain, ε.

Fi = Ma = ρV LT−2 (6.3)

Fg = Mg = ρV g

Fe = σA = Eσε

The Froude similitude is applied when inertial forces and gravitational forces

are significant, i.e., when ice is accelerated by the transferred momentum of

the ship and submerged (see, Vance, 1975) until gravitational forces restore

its floating position. Froude similitude may be considered valid for many ship-

ice interaction scenarios. However, at low interaction speeds, such as civil

structures versus slowly drifting ice sheets, inertial forces play an insignificant

role (see also, Atkins, 1975; Palmer et al., 2009).

The relationship between inertial forces and gravitational forces and the

resulting Froude number is found in Equation 6.5 with the velocity, v, defined

as v = LT−1.

Fi,p

Fg,p
=

Fi,m

Fg,m
(6.4)

ρpVpLpT
−2
p

ρpVpgp
=

ρmVmLmT−2m

ρmVmgm

LpT
−2
p

gp
=

LmT−2m

gm

Lp

gpT 2
p

L2
p

L2
p

=
Lm

gmT 2
m

L2
m

L2
m

v2p
gpLp

=
v2m

gmLm
= Fn2

In the icebreaking process, the momentum (inertia) of the ship interacts

with the ice. The ice is broken and the broken floe is accelerated, which can

also involve significant added mass effects. On the basis of sufficiently high

strain-rates (≥ 10−3, see, e.g. Sanderson, 1988; Derradji-Aouat, 2010), the ice

responds elastically until failure (Vance, 1975). Cauchy similitude (Equation

1.2) represents the ratio between inertial and elastic forces and may be applied
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when the deformation process on both scales is governed by elasticity. The

derivation of the Cauchy number, Ch, is demonstrated in Equation 6.6, on the

basis of Equation 6.4, 6.1, 6.2.

Fi,p

Fe,p
=

Fi,m

Fe,m
(6.5)

Fi,p

Fi,m
=

Fe,p

Fe,m

ρpVpLpT
−2
p

ρmVmLmT−2m
=

EpεpAp

EmεmAm

ρp
ρm

λ3
LpT

−2
p

LmT−2m
=

Ep

Em
λ2

ρp
ρm

λ3
LpT

−2
p

LmT−2m

Lp

Lp
=

Ep

Em
λ2

ρp
ρm

λ3 v
2

v2
1

λ
=

Ep

Em
λ2

ρpv
2
p

Ep
=

ρmv2m
Em

= Ch

6.2 The Scalability of the Bending Strength [PIV]

6.2.1 The Functionally Graded Model

Normally, the bending strength is an analytically calculated stress referring

to an isotropic and homogeneous material with its neutral axis in the center

at half thickness, as proposed by ITTC (2002). However, as elaborated in

PIII and displayed in Figure 5.6 the strength properties are not constantly

distributed over the thickness, but are functionally graded through thickness.

Figure 6.1 compares the stresses of the numerical model of PIII and the stresses

of a model-scale ice beam with homogeneously distributed properties. The cor-

responding stresses of the numerical model are based on the stress outputs of

five different elements at different locations over thickness. Figure 6.1 indi-

cates a significant disagreement between the two models, despite equivalent

failure force.

The assumption of isotropy and homogeneity on sea ice is also applied in

full-scale measurements (e.g., Krupina and Kubyshkin, 2007; Suominen et al.,

2013). Kerr and Palmer (1972) proposed functions for the distribution of the

elastic modulus over thickness in sea ice, which found successful application

in e.g. Åse (2013); Ehlers and Kujala (2014) for numerical and analytical

remodeling of experiments (Kujala et al., 1990). In all cases, the reference
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Figure 6.1. Stress distribution in the model-ice cantilever beam based on the numerical

model of PIII and the analytical homogeneous material model proposed by

ITTC (2002).

measurements were taken in winter. On a macroscopic level, the gradient of

the stiffness properties in sea ice is less than in model-scale ice (compare e.g.,

Kerr and Palmer, 1972 or Ehlers and Kujala, 2014 with PIII).

6.2.2 The Temperature Variation Though-Thickness

The ice is a boundary layer between the relatively warm water and the cold air.

In model-scale this boundary layer is thin, so the temperature change has to

take place over a considerably thinner layer, which leads to a stronger gradient.

In addition to the temperature gradient at the time of testing (PIII) the time-

history of the cooling process with the low temperature in the consolidation

phase might also affect the gradient of the through-thickness properties of the

model-scale ice. Table 6.1 states that the C◦/m gradient, especially in the

production phase of the model-scale ice, is very high. This might be the main

cause of the significant strength property gradient in the model ice. Table

6.1 compares the temperature difference over thickness for the Aalto model

ice sheet analyzed in PI-PIII and sea ice data from Petrich and Eicken (2009)

taken in the year 2008 in Barrow.

6.2.3 A Simplified Numerical Example on the Impact of Different

Property Distributions

The different distributions of properties in model scale and full scale lead

to different positions of the neutral axes and, consequently, different tensile

stresses on top. A numerical example calculation is performed comparing

the bending strength for a property distribution of sea ice (Kerr and Palmer,
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Table 6.1. Temperature distributions in sea ice and model-scale ice.

Model ice Sea ice Petrich and Eicken (20

Production phase Testing February 2008 May 2008

Temperature
Top [C◦] -12 -0.9 -16 -4

Bottom [C◦] -0.3 -0.3 -2 - 2

Thickness [m] 0.025 0.025 0.9 1.4

Linear gradient [C◦/m] -480 -24 -18 -1.4

1972), model-scale ice (PIII) and ITTC, while assuming that materials respond

elastically, as it might occur in rapid ship-ice interactions (see Figure 6.2). The

materials in this example are set to have the same bending strength (following

ITTC, 2002), i.e. the same load (2 N), at failure for beams of equivalent

dimensions (170 mm length, 58 mm width, 25 mm thickness).
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Figure 6.2. Elastic modulus distributions and the related neutral axis for model ice and

sea ice (scaled) in a 25 mm thick ice sheet with the model of ITTC as reference.

The stresses in the top layer, σx, are calculated using the bending moment,

Mb, the area moment of inertia, I, and the distance between the top layer and

neutral axis, za, according to Equation 6.6.

σx =
Mb

I
za (6.6)

The results according to Equation 6.6 are compiled in Table 6.2. The de-

viation between the model with constant properties through-thickness and

the functionally graded distributions for sea ice and model ice are significant

1. The different strength distributions indicate that the bending strength,

specifically the axial tensile strength on top, is not scaled with the simplified

1It is acknowledged that environmental conditions and thickness affect the gradients

and hence this example can only be an indication of the qualitative differences.
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standard methods. The neglecting of differences in the material constitution

between both scales effectively scales the response force level in a specimen

with geometrically scaled dimensions, but not necessarily the flexural stress.

Table 6.2. Data of analytical example calculation on stresses in a cantilever beam.

ITTC model Sea ice Model ice

Stress, σx [kPa] 56 41 32

Deviation from model with constant

properties through-thickness

0 % 27 % 43 %

6.3 Scalability in Perspective of the Material Stiffness [PI - PIV]

The flexural strength (according to ITTC, 2002) is significant to assess the

strength properties of level ice is an important index.

Another material parameter of significance for loading at high strain-rates is

the elastic modulus, E, as it contributes to the bending stiffness and is indi-

rectly a measure for the critical displacement of a cantilever beam at failure.

A material of low rigidity, consequently, requires more work to be bent until

failure, as the required failure strain is higher than for stiffer materials (see,

Schwarz, 1977 and Equation 6.7).

Efull scale

σb,full scale
=

Emodel scale

σb,model scale
≥ 2000 (6.7)

If the elastic modulus of the ice sheet being investigated in this thesis were

the dominant material parameter, the ratio E
σb

would be 1864 (see Equation

6.9) and close to the postulated target value of Schwarz (1977) (Equation 6.7).

However, in order to obtain a force-displacement curve of a similar progression

as in the cantilever beam experiments, the stiffness would need to be equivalent

to an elastic modulus of around 15 MPa, which is visualized in Figure 6.3.

As the response in bending is a mixed response of elastic and plastic domains,

the material property is, consequently, not named the elastic modulus, as in

Figure 6.3, but an equivalent stiffness, Sequ, of 15 MPa, which is used to

calculate the ratio with the flexural strength in Equation 6.9.

E

σb
=

110 MPa

59 kPa
= 1864 (6.8)

Sequ

σb
=

15 MPa

59 kPa
= 254

The elastic modulus determined by the plate deflection method (PI) is con-

sidered to be the actual elastic modulus, which is effective until a low yield
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Figure 6.3. Cantilever beam experiments together with a linear-elastic simulation of the

cantilever beam.

stress (PII). In PIII it is shown that in bending the outer layers respond plas-

tically, whereas those closer to the neutral axis respond elastically. Because of

this, the elastic modulus determined by cantilever beam tests (see, e.g., von

Bock und Polach, 2005) would deliver a lower value than the deflection of an

infinite plate on elastic foundation. A significant difference between these two

methods was also stated in Enkvist and Mäkinen (1984); Evers and Jochman

(1993).

Figure 6.4 shows the force-displacement curves of two numerical cantilever

beam experiments. The experiment is conducted once with a linear elastic

cantilever beam using the elastic modulus measured in the experiments (PI),

by the deflection of an infinite plate; the second simulation uses the numerical

model developed on the basis of the damage model of (PIII). The indicated

maximum bending force in Figure 6.4 represents the target bending force at

which the cantilever beam has to fail in order obtain a bending strength of 59

kPa, according to ITTC (2002).

The integration of the area below the curves in Figure 6.4 up to the max-

imum bending force reflects the work required to break the cantilever beam

(Figure 6.5). The energy expended in the elasto-plastic model representing

the experiments is here ≈11 times greater than in the linear elastic case. In

conclusion the model ice may represent the response force correctly, but the

energy required to break the ice is too large 2. This may reduce the scalability

when the energy of the ice-breaking process is of significance and other effects

do not compensate for the icebreaking energy being too high in model-scale.

2Based on the assumption that the ice should be represented as linear-elastic material.
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Figure 6.4. Numerical cantilever beam experiment with a linear-elastic material and an

elasto-plastic material including damage and through-thickness dependent

property distributions (PIII).
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Figure 6.5. Energy expended in the numerical cantilever beam experiments.

6.4 The Impact of Experimental Differences on the Scalability

Independently from the applied scaling laws, the transfer of information, or the

scaling of data between model scale and full scale, is affected by the character-

istics of tests. The bending strength is tested in model testing basins mainly

by cantilever beam tests following the standards of the ITTC (2002). However,

the notch effect at the transition between beam and its root amplifies stresses,

the impact of which is already shown by Svec et al. (1985). In full scale the

bending strength is determined by cantilever beam tests (e.g., Krupina and

Kubyshkin, 2007), three point bending tests (e.g., Suominen et al., 2013) or

four point bending tests (e.g., Kujala et al., 1990). Both finite element, FE,

simulations in PIV with the model of Ehlers and Kujala, 2014 and measure-

ments of Kujala et al. (1990) reported significantly higher bending stresses at
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failure in four point bending experiments than in cantilever beam experiments.

The axial stress at failure in the cantilever beam is found to be 37% lower com-

pared to the four point bending test. This is an additional aspect that might

limit the scalability, especially when the bending strength on test voyages is

determined with a different method than in model scale.
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7. Concluding Remarks

7.1 Conclusion

The thesis presents a numerical model of the strength and deformation be-

havior of the model-scale ice of the Aalto Ice Tank. The model is valid for

tension, compression and downward bending. The numerical model provides

valuable insight into the mechanical behavior of the model-scale ice and is a

substantial step towards a numerical ice tank.

The experiments included uniaxial tensile and compressive specimen tests as

well as downward cantilever beam tests. The testing of the tensile specimens is

a new approach (PI) which is not even covered by the ITTC (2002) guidelines.

The tensile tests provided essential information on the mechanical behavior

of model-scale ice and supported the development of the numerical model sig-

nificantly. Furthermore, both the tensile testing method and the information

on tensile strength already attracted the attention of other ice tanks with the

potential of a growing impact in the future.

The numerical model is built of finite elements which are modeled on grain size

level and includes randomly distributed flaws, which represent the inclusions

of air and water 1. An analysis conducted in PII shows that the flaws have an

impact on the failure pattern, which made it possible to reproduce variations

in the failure patterns that were observed in the experiments. Especially in

tension, a variation of flaw distribution can partially explain variations in re-

sponse forces, but not in full.

The elastic modulus is experimentally determined by the deflection of an in-

finite ice sheet on an elastic foundation. The encountered non-elastic defor-

mations at low loads (compared to uniaxial or flexural tests) and its analysis

indicated that for a homogeneous model-ice material the yield strength is lower

1The water includes ethanol.
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than 1 kPa PI. In the plastic domain, after yielding, the strain modulus in ten-

sion and compression is less than 3% of the elastic modulus, i.e. two orders of

magnitude lower. Consequently, the measured loads or stresses refer to signif-

icant deformations or strains.

The assumption of constant properties through thickness would require, in

bending, a strain modulus being one order of magnitude larger than in uni-

axial tension or compression to reproduce the experiments. The modeling

of the cantilever beam tests (PIII) require a functional grading of the elastic

and tensile properties through-thickness. The functional grading of properties

also complies with experimental observations, where the top of the model ice

appeared to be of higher strength than the bottom. As the top layer yields

early, the strain modulus in the plastic regime (i.e. named hardening modu-

lus) requires a significantly higher stiffness than the average stiffness 2. Due to

the through-thickness distribution of properties, the outer layers of the model-

scale ice responds after short loading time plastically, while the core remains

in the elastic regime. Consequently, the elastic modulus determination on the

basis of the deflection of an infinite plate deliver a different result than the one

3 on the basis of cantilever beam tests, as it refers to a mixed response of an

elastic and a plastic domain. This insight is considered of high value for the ice

model testing community as the difference between the methods has also been

noted by other facilities (see Enkvist and Mäkinen, 1984; Evers and Jochman,

1993). The through-thickness distribution is an essential parameter to repre-

sent tensile, compressive and downward flexural behavior in one model. The

low yield strength and the significant difference in stiffness between the elastic

and the plastic domain cause different macroscopic response stiffnesses in uni-

axial loading and flexural loading. In uniaxial loading the specimen responds

fully plastically, whereas the response in bending is a mixture of plastic re-

sponses (outer layers) and elastic responses (inner layers, close to the neutral

axis).

An analysis of the strain-rates in the three different loading cases did not point

to a significant presence of strain-rate effects or viscous strains.

As the model-scale ice is found to yield early (PI and PIV), Cauchy-scalability

cannot be fulfilled. In ship-ice interaction ice is usually loaded until ultimate

failure, which reduces the significance of the response being dominated by an

2This is equivalent to the properties constant through thickness.
3Strain modulus would be the correct term, but elastic modulus is commonly used in

this context.
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elastic modulus or another strain modulus, as long as the consumed defor-

mation energy for sea ice and model-scale ice is equivalent. Consequently, in

the Cauchy similitude the elastic modulus should be replaced by the effective

strain modulus, which can be determined by cantilever beam tests 4. This

effective strain modulus has to replace the elastic modulus in the E/σb ratio.

In model-scale and full-scale it is best practice to calculate flexural stresses

based on the assumption of homogeneity and isotropy for the properties through

thickness. In both scales the functional grading of the properties is different

over thickness, in consequence, the assumptions of invariant properties through

thickness effectively scales the response force, but not the failure stresses. This

may be an explanation as to why ice resistance tests show reasonable scala-

bility, despite the pronounced plasticity of the model-scale ice. However, this

may also restrict the scalability to certain scenarios and can cause a poor rep-

resentation of certain ice resistance parts (see also (Vance, 1975)).

This thesis provides unique insight into the mechanical behavior of model-

scale ice in combination with a numerical model. The gained insight into

the mechanical behavior also provides a basis to discuss the scalability of the

model-scale ice.

7.2 Discussion and Future Work

The work presented uses an elasto-plastic damage model to represent the ma-

terial behavior of the Aalto model-scale ice. The experiments and numerical

model for model-scale ice presented in PI, PII and PIII are only valid for a

thickness of 25 mm and a bending strength of 59 kPa (according to ITTC,

2002). Consequently, the experiments presented in PI should be repeated for

different bending strength to thickness relationships in order to gain a more

global understanding of the mechanics of model-scale ice. Furthermore, simi-

lar experiments should be commenced by other ice model tanks to assess the

differences between various model ice types 5

The numerical model contains voids that are explicitly modeled and dis-

tributed randomly. The variation of the maximum response forces in the

4This is valid for ship-ice interactions, where the bending is the main deformation

mode.
5On the basis of PI and PII experiments conducted as in this thesis are already

planned by other facilities.
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simulations is shown as a function of the amount of voids and their void loca-

tions (see Section 5.3.7 and PII). An increasing number of voids weakens the

material and reduces the response force. The variation of the void-locations

affects the maximum force in compression less than in tension (± 6 %). This

can partly explain the variation in response forces in the experiments, but not

in full. It remains to be investigated, whether the variation in response force

may be related to high local void density variations or other reasons 6. Es-

pecially in compression, the variation of the voids causes variations of failure

patterns that were also observed in the experiments (see PI, Figure 4.9 and

Figure 5.20). The variation in response resulting from varied random flaw

distributions is indicative and not exhaustive, as the number of possible ver-

sions is naturally very large. In the experiments a notable, but not significant,

variation in response stiffness is found, which is accounted for by different

hardening moduli (i.e. strain moduli) in the numerical model (PII).

Each uni-axial experiment is reproduced numerically, while varying specimen

dimensions refer to different void distributions. Consequently, the random void

distributions transfer an uncertainty to the determined critical damage, dc, val-

ues. However, the variation in failure pattern in the experiments (see PI and

Figure 4.9) indicate that already the physical model ice and the experimental

results were subjected to a variation of the void distributions. Therefore, the

values presented in Table 5.1 are affected with uncertainty, but are considered

to be good guiding values.

The experiments and related simulations provide information or indications

on boundary values for most tensile property distributions. Significantly less

information can be derived for the compressive properties; consequently, the

compressive hardening modulus and the compressive yield strength are kept

constant through-thickness (Table 5.1). The compressive yield strength is

treated as the only wild-card parameter, which is defined to achieve compli-

ance of the cantilever beam simulation with the experiments. Its rather high

value (see Table 5.1) compared to the model, where properties are constant

through thickness (Table 5.1) causes an offset in displacement for the force-

displacement curves of the functionally graded material (see Figure 5.9). It

might be possible to overcome this with an appropriate grading of properties

through thickness, however this requires additional information on possible

distributions. Furthermore, its value may also reflect shortcomings in model-

ing assumptions of other parameters. Consequently, in the functionally graded

6Local changes in void density can affect the response stiffness of a specimen.
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model the compressive yield strength is partly to be seen as corrective, but

also as indicator that additional research is required on this topic.

At this point it is unknown, whether the modeled plastic domain reassembles

other sub-domains which might refer to strain-rate sensitive effects. A calcula-

tion of strain-rate related strains (Section 5.4) points to them being less than

1% of the total strain. However, the formulations and constant values applied

partly refer to sea ice, as their equivalences for model-ice are unknown. The

strain-rates in compression and tension are in the same order of magnitude

and those in bending are lower. However, the commonly associated decrease in

stiffness with decreasing strain-rates is not observed. Consequently, differences

in stiffness for tension, compression and bending are not considered to refer

to strain rate effects but rather to material anisotropy and functional grading

of material properties (Sanderson, 1988; Schulson, 1999; Moores et al., 2001).

The functional grading of the material and the combined response of elastic

and plastic layers appears to be an acceptable explanation for the increased

stiffness encountered in bending. In all experiments the time elapsed between

load initiation and failure was 1 second or less, which is considered too short

to significantly activate viscous effects 7. However, the currently available

knowledge on the strain-rate sensitivity or viscous behavior of model-scale ice

is very limited and should be addressed in the future, experimental research,

especially for strain-rates being significantly lower than those in this thesis.

Experiments in other ice sheets show that the nominal compressive pressure

increases with decreasing area of the impact face (see PIV) by 10% to 20%. In

PIV it is shown that the model of PII cannot reproduce this effect and conse-

quently more research and dedicated experiments are required in the future to

investigate the compressive properties of the model-scale ice. Consequently,

in future compressive experiments are to be conducted with different speci-

men geometries and different ice strength, i.e. bending strength, to assess the

impact of through thickness property variations in connection with varying

specimen geometries. As a consequence of the research presented in this the-

sis the latter will be investigated jointly by Aalto University and HSVA in the

Horizon 2020 EU project HYDRLAB-PLUS (Project ID: 654110).

The functional grading of the material properties is considered a result of

differences in the boundary conditions of the surrounding temperature (see

also e.g., Gow and Ueda, 1989). In PIII the temperature gradient at the

7The loading rate in the experiments complies with the recommended procedures of

ITTC (2002).
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time of the measurements is considered as cause for the property variation

through-thickness. However, it remains to be clarified how significantly the

temperature gradient in the production process (see Table 6.1) affects the ice

properties. The presence of the strong gradient is considered as valuable in-

sight for the design of new production processes for the model-scale ice of the

Aalto Ice Tank.

The non-compliance of the model-scale ice with Cauchy similitude and the

target E/σb ratio requires a review of the actual practical feasibility of this

scaling approach. With reference to Atkins (1975); Palmer et al. (2009) and

Jordaan et al. (2012) it is considered worthwhile to investigate the feasibility

of alternative scaling approaches, where different scaling methods are applied

to different scenarios, i.e. case-based scaling.

The model in this dissertation indicates how to combine information from sev-

eral independent tests, and explains the differences between the elastic modu-

lus and the stiffness in bending. The bending stiffness was, however, lower that

desired, which requires experimental research to raise the material stiffness in

bending and to reduce, eliminate or strengthen the weak plastic domain for

ship-ice interactions.

This thesis intends to be the corner stone for a virtual model-ice tank by

investigating and defining the mechanical behavior of the model-scale ice.

Model-scale ice is a surrogate material which scales the most relevant proper-

ties of full-scale ice. A fully functioning, full-scale ice simulation environment

is preferable compared to a numerical ice tank. Such environments for full-

scale show reasonable agreements with some measurements, but not for all

(e.g. Valanto, 2001; Derradji-Aouat, 2010). In full-scale the ship performance

is rarely combined with detailed ice property measurements, and most ice

property measurements are conducted stationarily and their variation along

the ship’s voyage is not captured as, for example, in Suominen et al. (2013).

In model-scale, however, both the ice properties of the entire ice sheet as well

as the ship performance parameters (e.g. resistance, thrust, torque) can be

accurately measured. Consequently, for the validation of a numerical ice tank

that relies on physical parameters, data of higher quantity and quality are at

hand than for full-scale simulators. This would allow for one to assess the

inter-dependence between ship performance and ice properties and eventually

shift some tests in the future to the computer. Furthermore, a validated nu-

merical ice tank offers the possibility to replace properties that do not scale

well with target values based on full-scale measurements. This would offer two
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additional possibilities: one is to assess the impact of scale effects related to

ice properties and the second is to create a simulation environment that per-

forms better than the actual tank and may lead to a well functioning full-scale

simulation environment. Ultimately, a virtual ice tank provides a deeper in-

sight into the model-scale ice itself and may provide starting-points for further

developments of the physical tank.
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A. Tabulated Data of Experiments

Table A.0.1. Tabulated values of the experiments conducted and presented in PI and PII

with test numbers equivalent to the publications. The labels of the test

numbers are equivalent to the ones used in PI, PII and PIII.

Compressive experiments (all specimens are of 25 mm length)

Test Maximum

force [N]

Displacement

at failure

[mm]

Average

slope

[N/mm]

Ice thick-

ness [mm]

Specimen

width

[mm]

C 31 57.2 4.1 13.9 27 26

C 32 49.7 3.8 13.1 25 26

C 33 67.3 5.7 11.8 25 26

C 34 78.1 6.5 12.0 26 25

C 35 69.4 5.3 13.1 25 25

C 36 38.4 2.9 13.3 27 25

C 37 47.9 3.2 15.0 26 26

C 38 67.3 4.2 16.0 26 25

C 39 47.6 3.1 15.4 26 25

Tensile experiments

Test Maximum

force [N]

Displacement

at failure

[mm]

Average

slope

[N/mm]

Ice thick-

ness [mm]

Thinnest

width

[mm]

T 31 42.4 3.7 11.5 25 25

T 32 7.0 1.0 7.0 26 25

T 33 22.0 1.9 11.6 25 25

T 35 21.3 2.1 10.1 25 25

T 36 30.0 3.0 10.0 24 25

T 38 15.4 1.5 10.3 24 25

T 39 20.2 1.9 10.6 24 25
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Tabulated Data of Experiments

Table A.0.2. Tabulated values of the experiments conducted and presented in PI and PIII.

The labels of the test numbers are equivalent to the ones used in PI, PII and

PIII.

Cantilever beam experiments

Test Maximum

force [N]

Displacement

at failure

[mm]

Average

slope

[N/mm]

IB 1 2.64 4.7 0.6

IB 2 2.74 5.4 0.5

IB 3 2.13 4.0 0.5

IB 4 2.55 5.0 0.5

IB 5 2.41 5.5 0.4

IB 6 2.19 4.9 0.4

IB 7 3.06 6.0 0.5

IB 8 2.29 4.3 0.5

Table A.0.3. Data of the experimental cantilever beam tests including average values. The

beam length, l, is the difference between the beam length after failure, lb,

and the distance between plunger and beam tip, dp. The dimensions are ice

thickness, h, and beam width, b. The maximum force is F, and Δtot is the

total uncertainty in of σb due to measurement accuracies (PIII).

Test h [mm] b [mm] lb [mm] dp [mm] l [mm] F [N] σb [kPa] Δtot [kPa]

IB 1 26 58 173 19 154 2.64 62.13 4.96

IB 2 27 58 170 25 145 2.74 56.47 4.37

IB 3 24 59 165 19.5 145.5 2.13 54.78 4.72

IB 4 26 58 175 17 158 2.55 61.55 4.91

IB 5 25 60 174 15 159 2.41 61.26 5.06

IB 6 27 56 172 19 153 2.19 49.36 3.82

IB 7 26 56.5 177 17 160 3.06 76.88 6.14

IB 8 27 59 173 15 158 2.29 50.40 3.88

Average: 59.10 4.73
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Material Model Parameters

Table B.0.1. Material parameters of the Lemaitre damage law in LS DYNA, see also LS-

DYNA (2013).

Parameter Function Origin

Elastic

modulus

Definition of initial stress-strain re-

lationship until yielding

Experiment (infinite

plate on elastic founda-

tion, ITTC (2002))

Yield

strength

Stress, which marks the end of the

elastic regime and the beginning of

the plastic regime

Experiments and FE

simulations

Mass den-

sity

Defines the density of the model-ice

grains

Estimate 917kg/m3

Poisson’s

ratio

Literature and tank

standard 0.3 (Riska

et al., 1998)

Hardening

modulus

Isotropic hardening modulus, which

defined the stress-strain relationship

after yielding

Based on compli-

ance of numerical and

experimental force-

displacement curves

IDAMAGE IDAMAGE = 1, Activation of dam-

age

LS-DYNA (2013)

IDS IDS = 1, Output of damaged

stresses

LS-DYNA (2013)

IDEP IDEP = 1, Damaged plastic strain

is accumulated

LS-DYNA (2013)

EPSD EPSD = 0, Damage threshold value,

which starts accumulating immedi-

ately after yielding

Best estimate, LS-

DYNA (2013)

S Damage resistance parameter S =

25 Pa, default value = yield strength

/ 200

Best estimate

td Damage exponent td = 2 , default

value = 1

Best estimate

dc Critical damage value at which the

element is deleted

Compliance FE simula-

tions with experiments
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C. FE Stress Plots

In all sections the stresses are plotted at four marked instances d1 to d4. In

addition to the highest stress in some cases also the visible most dominant

stress color is stated.

C.1 Functionally Graded Cantilever Beam [PIII]

The four instances are at the beginning of the loading process, at constant

force increase (d2), and the highest load (d3) and at failure (d4).
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FE Stress Plots
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a Force-displacement curve of a simulated cantilever beam simula-

tion

b d1, at load initiation, σvM,max = 3.0·
104Pa, σvM,yellow = 2.4 · 104Pa

c d2, in the loading progress,

σvM,max = 1.9 · 105Pa

d d3, at maximum load, σvM,max =

2.0 · 105Pa

e d4, after failure, σvM,max = 2.4 ·
105Pa, σvM,green = 1.5 · 105Pa

Figure C.1.1. von Mises stress distribution in a cantilever beam at different displacements.

C.2 Numerical Tensile Test with Constant Properties

Through-Thickness [PII]

The four instances are at yielding (d1), at constant force increase (d2), and

the highest load (d3) and at failure (d4).
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FE Stress Plots
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a Force-displacement curve of a simulated tensile specimen

b d1, after load applica-

tion, σvM,max = 1.1 · 104Pa,

σvM, light blue = 2.2 · 103Pa

c d2, in loading progress, σvM,max =

5.9 · 104Pa

d d3, at maximum load, σvM,max =

1.1 · 105Pa

e d4, after failure, σvM,max = 7.2 ·
104Pa, σvM,green = 4.3 · 104Pa

Figure C.2.1. von Mises stress distribution in a tensile specimen at different displacements.

C.3 Numerical Compressive Test with Constant Properties

Through-Thickness [PII]

The four instances at first contact (d1), at constant force increase (d2), and

the highest load (d3) and at failure (d4). The numerical specimen is shown in

front and top view.
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FE Stress Plots
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Figure C.3.1. Force-displacement curve of a simulated compressive specimen.

a Top-view on the specimen b Front-view on the specimen impact

face

Figure C.3.2. von Mises stress distribution at displacement d1, the initial impact,

σvM,max = 4.5 · 103 Pa.

a Top-view on the specimen b Front-view on the specimen impact

face

Figure C.3.3. von Mises stress distribution at displacement d2, the loading process,

σvM,max = 1.4 · 105Pa, σvM,green = 1.0 · 105Pa.
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FE Stress Plots

a Top-view on the specimen b Front-view on the specimen impact

face

Figure C.3.4. von Mises stress distribution at displacement d3, maximum load, σvM,max =

6.3 · 105Pa, σvM,lightblue = 1.3 · 105Pa.

a Top-view on the specimen b Front-view on the specimen impact

face

Figure C.3.5. von Mises stress distribution at displacement d4, developed failure pattern,

σvM,max = 2.96 · 105Pa, σvM,turquoise = 8.9 · 104Pa.
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FE Stress Plots
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Errata

PI: On page 79 the yield strength is stated erroneously as ”0. kPa”, which

must be ”0.5 kPa”

PII: On page 54 in Equation 1 the symbol Y must be the damage release rate,

which has the same symbol as the yield strength

PIII: Table 6 on page 101 contains erroneous dc values, for which must be

replaced with values of Table 5.1

PIV: In Figure 4 the elastic modulus E = 117 is a misprint and must be E =

110. In consequence also E/σb must be 1864 instead of 1983.
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The research presented in this thesis 
investigates the mechanical behavior of 
model-scale ice. A numerical model is built 
that can reproduce conducted experiments 
in compression, tension and bending. On 
this basis, an assessment of the ability of 
model-scale ice to scale the mechanical 
behavior of sea ice is made. The conducted 
research is to be seen in the context of ship-
ice interactions. 
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