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Abstract—The cores of electrical machines are generally punched 

and laminated to reduce the eddy current losses. These 

manufacturing processes such as punching and cutting deform 

the electrical sheets and deteriorate its magnetic properties. 

Burrs are formed due to plastic deformation of electrical sheets. 

Burr formed due to punching on the edges of laminated sheets 

impairs the insulation of adjacent sheet and make random 

galvanic contacts during the pressing of stacked sheets. The effect 

of circulating current occurs if the burrs occur on the opposite 

edges of the stacks of laminated sheets and incase of bolted or 

wielded sheets, induced current return through it. This induced 

current causes the additional losses in electrical machine. The 

existence of surface current on the boundary between two 

insulated regions causes discontinuity of tangential component of 

magnetic field. Hence, based on this principle, the boundary layer 

model was developed to study the additional losses due to 

galvanic contacts formed by burred edges. The boundary layer 

model was then coupled with 2-D finite element vector potential 

formulation and compared with fine mesh layer model. Fine 

mesh layer model consist of finely space discretized 950028 

second order triangular elements. The losses were computed 

from two models and were obtained similar at 50 Hz. The 

developed boundary layer model can be further used in electrical 

machines to study additional losses due galvanic contacts at the 

edges of stator cores. 
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I INTRODUCTION 

Electrical steel sheets are the indispensable constituent in 

the construction of cores of electromagnetic devices. Sheets 

are rolled to their given thickness, and laminated to minimize 

the eddy current loss. Later, they are cut or punched into 

desired shape for electromagnetic device. Sheets are laminated 

or coated before they are cut or punched to ease the punching 

process and also to prevent the damage of cutting tools and 

sheet itself [1]. Punching and cutting induces internal 

mechanical stresses which deforms the sheets and deteriorates 

their magnetic properties. The behavior of the magnetic 

properties and iron loss under such stress is studied in [2] 

where the hysteresis loss was observed due to change in 

permeability. It was observed in [3] that an annealing process 

reduces iron losses by 50 % and produces a factor 3 change in 

permeability of test samples of laminated sheets. However, the 

cores of the electrical machines and transformers are not 

perfectly insulated from each other. The laminated sheets of 

electrical machines are subjected to many foreign particles 

during assembly and make galvanic conact between inter-

laminar sheets and makes thin conducting layer. However, 

manufacturing process such as punching also introduces burrs 

at the edges of electrical sheets and makes conducting layer 

and causes additional losses. The effect of punching has been 

widely researched in the scientific community. According to 

Schmidt [4], when cutting by punching, stress region can be 

from 0.35 mm up to 10 mm [5] from the cut edge and the 

deformed area can extend for about 0.3 mm due to plastic 

deformation [6]. It is studied that burr size of commercial 

material is less than 0.02 mm high in 0.28 mm thick sheet [7]. 

However, engineering society has agreed upon the average 

affected cut edge, having a width equal to or larger than the 

thickness of the lamination [8] and the ISO 13715 standard 

defines the edge of a work piece as burred if it has an 

overhang greater than zero [9].  

II EFFECTS OF BURRS ON LAMINATED SHEETS 

A burr formed during punching of sheets has a strong 

impact on interlayer short circuits as well as on the cut edge 

properties. Burr formation occurs due to shearing during the 

separation of the metal by two blades. The series of the events 

occur when the moving blade gets in contact to the sheet and 

rolls over until reaching the fracture shear stress of the sheet 

[10], [11]. As the load continues to increase it initiates a crack 

which produces the rapid breakthrough involving a ductile 

fracture and formation of a burr as shown in Fig. 1 [12]. 

However, there are many de-burring techniques such as using 

electrochemical machining, abrasive flow machining or high 

pressure water jet but no single de-burring operation can 

accomplish 'burr free' conditions without having side effects 

[13]. Burrs formed at the edges of laminated sheet impair the 

insulation of adjacent sheet and make random galvanic 

contacts during pressing of stacked sheets. The effect of 

circulating eddy current occurs if burrs occur on opposite 

edges of the laminations and in case of bolted or welded 

sheets, induced current returns through these paths. These 

additional paths increase the loss and it is important to model 

such phenomena in order to identify the parameters which can 

minimize these effects. The effect of punching on magnetic 

properties is studied in [14] and [15] where the increment of 

hysteresis loss is up to 20-40% compared to guillotine cut and 

in [16] magneto-mechanical coupled FEM was proposed to 

model the effect. There are also few studies done regarding the 

modeling of inter-laminar short circuit losses using artificial 

burr contacts in [7], [17], [18], [19] and [20] where effect on 



permeability due to punching is assumed constant and 

randomness of burr contacts are not completely addressed. In 

[7] experimental studies were done to measure the losses due 

to burr contacts. They drilled the laminated sheets to have the 

controllable artificial contacts. The contacts were varied by 

inserting conducting pins. They measured the loss on 

temperature rise principle. Temperatures were measured by 

using microprocessor controlled thermistor bridge. They 

concluded the increase of the loss due to burr contacts was up 

to 5 % of total loss. There are also analytical studies done in 

[21], [22], [23], [24], [25] and [26] to model thin conducting 

layers using finite element method. However, the conducting 

layers formed by burrs within the stacks are uncertain, since 

they are formed by a stochastic process which depends on a 

large number of parameters, such as the age of punching die, 

stacking pressure, short circuit's geometry, thickness of the 

insulating layer and the number of sheets [27], [28].   

 

Fig. 1.  Burr formation.  

The conducting layer formed by the burred edges can be 

modeled with finite element method with a very fine mesh 

layer and usually adaptive mesh is used but the fine mesh 

layer may consist of degenerated element or very high number 

of elements. The degenerated elements may lead to the system 

of ill conditioned matrix and hence the alternative method of 

modeling the thin conducting layer is required.  

III  MATHEMATICAL MODELING AND METHODS  

A. Thin Boundary Layer Formulation 

Burr formed at the edges of electrical sheets deteriorates the 

insulation and make galvanic contacts. The surface current on 

the contact edges of a laminated sheet causes the discontinuity 

of the tangential component of the magnetic field [29].  It can 

be written as  

1 2
0

( ) = .
h

dx  n H H J     

It is assumed that the laminated sheets are parallel to the xy 

plane and the current density J is perpendicular to the plane 

and assumed constant in thin conducting layer. Under quasi-

static approximation, the current density of a slab shown in 

Fig. 2 is given by J=σE .The current density is integrated 

along the conducting layer and surface current in terms of 

vector potential A=Azk is given by (1) where 𝝂1,𝝂2 are the 

reluctivities of iron and air respectively.  

Fig. 2.  Thin slab. 
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The magnetic field can be expressed in terms of magnetic 

flux density using the material equation as 
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The magnetic vector potential A in 2D is in z direction and 

its gradient is written as in (7). Normal component can be 

decomposed in the two dimensional plane by writing as 

n=nxi+nyj. Cross product of the vectors in (3) can be written as  
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The surface current in terms of magnetic vector potential 

can be written as 
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The magnetic flux density is the curl of magnetic vector 

potential and in two dimensional study, it can be expressed as  
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The gradient of Az can be expressed as 
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The magnetic flux density can be expressed in terms of 

gradient of magnetic vector potential with the introduction 

of matrix term. It can be written as 

  (2) 

(7) 
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The material equation B=µH is used. Equation (8) is 

substituted in material equation. The introduced matrix is 

inversed and 𝝂𝛁Az is expressed in terms of H as in (9). 
 

The expression 𝝂𝛁Az.n can be graphically represented as the 

tangential component of magnetic field in Fig. 3.  
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Fig. 3.  Graphical representation of 𝝂𝛁Az.n as tangential component of H . 

 
Fig. 4.  Insulated iron and air region. 

B. Coupling of Boundary Layer Model into 2D Model 

Maxwell equations in terms of magnetic vector potential is 

solved in two non conducting regions using Green’s theorem 

and weighted residual method. The weight function vanishes 

along the Dirichlet boundaries Γdir and Γdair. The presence of 

surface current along the boundaries Γia and Γai causes the 

discontinuity of tangential magnetic field. Hence, the coupling 

of the boundary layer model into 2D finite element of two 

insulated iron and air region as shown in Fig. 4 is given by  
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Equation (10) was space discretized by replacing weight 

function w with shape functions of active nodes. The coupling 

of boundary layer model to 2D finite element method results 

to system of equations 

a a = 0S T
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The system of equations is solved as 𝝂=𝝂2 (constant for air) 

and 𝝂=𝝂1 (linear insulated iron region). S is the stiffness 

matrix and T is the damping matrix which accounts for time 

dependent terms. The coupling of the boundary layer model in 

existing system of equations results in an additional term in 

time dependent matrices. It is important to know that the 

additional term in Tij is the line integration along the material 

boundaries and shape functions Ni and Nj corresponds to only 

nodes that belong to the material boundaries.  

IV RESULTS 

The derived mathematical boundary layer model is given by 

(1). It is compared with fine mesh model in electrical UI 

sheets in finite element software COMSOL. In fine mesh layer 

model, thin conducting region is finely space discretized. It 

consisted of 950028 quadratic triangular elements as shown in 

Fig. 5. 

 

 

      Fig. 5.  Fine mesh layer of UI model. 
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Fig. 6.  Air gap flux density of boundary layer model. 

The two models are compared with same mesh in the 

frequency domain, changing frequency from 50 Hz to 150 Hz 

and parametrizing thickness of conducting layer from 0.05 

mm to 0.2 mm. The air gap flux density of two different 

model, obtained from COMSOL was compared. The 

difference in the air gap flux density between the U and I sheet 

in different frequencies and conducting width can be seen in 

Fig. 6 and Fig. 7.  

The galvanic contacts along the edges of UI sheets can be 

modeled by assigning constant conductivity of iron at the 

edges. The losses due to galvanic contacts were computed 

from both the model. The loss obtained from two models 

behave very closely at 50 Hz and 100 Hz.  

The losses increased as frequency increased and this 

behaviour can be seen in Fig. 8. However, at high frequency 

and at conducting width of 0.15 mm, the losses start to 

decrease, probably because of shielding effect. In fine layer 

model, at high frequency the flux cannot penetrate near the 

skin depth and hence the losses start to decrease. However, 

boundary layer model is less affected by skin depth. It can be 

seen from Fig. 8 that the two models behave closely in loss 

computation. 

  

Fig. 7.  Air gap flux density of fine layer model. 

Fig. 8.  Comparison of the two models. 

The developed boundary layer model has a wide 

application. It can also be used to model conducting layer that 

is used in high speed permanent magnet machines to lower 

eddy current loss and to damp mechanical oscillations and 

screening of an inverse field [30]. However, the process of 

burr formation and the contacts of sheets on the edges of 

laminated sheet is random in nature and hence requires 

stochastic approach to the solution. Uncertainities in magnetic 

vector potential can be quantified as in [31]. The random 

distribution of conductivity and burr width can be obtained by 

measuring the resistivity along the edges of numerous samples 

of sheets as a function of stacking pressure [32]. Thus, 

obtained experimental data can be validated using an 

appropriate stochastic model with the aid of statistical tools.  

V CONCLUSION 

In conclusion, the boundary layer model can compute the 

loss similar to fine mesh layer model at 50 Hz and at burr 

width less than 0.2 mm. However, boundary layer model 

predicts more losses than fine mesh model at 150 Hz 

frequency and 0.2 mm burr width. The maximum difference 

between the losses computed from these two  model was 19 

%. The boundary layer model provides the mesh free solution 

at the thin conducting region. This model can be used to study 

the additional losses due to interlaminar galvanic contacts in 

37 kW induction machine considering the random 

conductivity. This application will be presented in the future 

paper.  
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